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Bayesian General Equilibrium

Alexis Akira Toda∗†

This Version: August 21, 2014

Abstract

In this paper I build a general equilibrium model of non-optimizing
agents that respond to aggregate variables (prices and average demand
profile of agent types) by putting a ‘prior’ on their demand. An interim
equilibrium is defined by the posterior demand distribution of agent types
conditional on market clearing. A Bayesian general equilibrium (BGE) is
an interim equilibrium such that aggregate variables are correctly antici-
pated. Under weak conditions I prove the existence and the informational
efficiency of BGE. I discuss the conditions under which the set of Bayesian
andWalrasian equilibria coincide and show that the Walrasian equilibrium
arises from a large class of non-optimizing behavior.

Keywords: Bayes rule; distribution; Kullback-Leibler information; max-
imum entropy.

JEL codes: C11, D03, D3, D51, D83.

1 Introduction

Most of economic theory centers around optimizing behavior, but there is now
a growing evidence in the behavioral economics literature that real human be-
ings do not necessarily fully optimize (Kahneman and Tversky, 1979). What
if agents do not optimize but only behave according to a satisficing behav-
ioral rule (Simon, 1959)? In a classic paper Becker (1962) has shown that the
downward-sloping aggregate demand can be obtained even under a large class of
non-optimizing behavior at the individual level. In this paper I develop a gen-
eral equilibrium model of satisficing behavior and study the conditions under
which the equilibrium coincides to the Walrasian equilibrium.

I model a behavioral rule of an agent type by a correspondence that maps
aggregate variables such as the price vector and the average demand profile
of all agent types (which can be regarded as a sort of ‘reference point’ as in
Kahneman and Tversky (1979)) to a prior probability distribution of demand
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over the consumption set. This correspondence (which depends on the price
vector) can be interpreted as a generalization of the usual demand function,
the only difference being that agents need not optimize and the demand may
be random. Because agents may also violate their budget constraints (nothing
prevent them from dreaming of whatever trade opportunities they like), these
demands may not be feasible. I assume that agents are sophisticated enough so
that if the demands are infeasible, the agents revise their demand distribution
by applying the Bayes rule. An interim equilibrium is defined by the poste-
rior demand distributions of all types conditional on market clearing, which is
achieved by minimizing the Kullback-Leibler information of the distributions
subject to the feasibility constraint. Such interim equilibria naturally give rise
to the shadow price of each commodity and an updated average demand profile.
I define a Bayesian general equilibrium (correct expectations equilibrium) by an
interim equilibrium that is correctly anticipated—it is a pair of the price vector,
the average demand profile, and posterior demand distributions such that the
price and the average demand profile are self-fulfilling and markets clear.

This paper has three main contributions. First, I prove the existence of
Bayesian general equilibrium under much weaker assumptions than in the previ-
ous literature, which will be discussed shortly. Second, I prove that the Bayesian
general equilibrium is informationally efficient in the sense that it achieves the
best possible trade-off between the lack of information gain (surprise) and the
lack of arbitrage (getting a good deal by chance). Third, I prove that if for each
agent type the support of the prior probability distribution (called offer set) is
contained in the upper contour set of the average demand and coincide to the
upper contour set within the budget set whenever the average demand is bud-
get feasible, then the set of Bayesian and Walrasian equilibria exactly coincide.
Therefore the Walrasian equilibrium is robust in the sense that it arises from a
large class of non-optimizing behavior.

This paper is broadly related to two strands of literature. The first is the
statistical equilibrium model of markets developed by Foley (1994, 1996, 2003)
and extended by Toda (2010). According to Foley (1994), a statistical market
equilibrium is defined by the maximum entropy distribution over transactions
subject to the acceptability and the feasibility constraints. In this paper I clar-
ify the relation between maximum entropy and Bayesian inference, which seems
to be still relatively unknown in the economics literature. Since information-
theoretic techniques are recently more and more applied to economics (Krebs,
1997; Sims, 2003; Veldkamp, 2011; Cabrales et al., 2013), the results on maxi-
mum entropy and Bayesian inference presented in this paper might be of interest
to economists. With this clarification, Foley’s statistical equilibrium is precisely
an interim equilibrium that I define in this paper. In Toda (2010), agents’ prior
demand distributions are not fixed but depend on price, but in order to prove
the existence of equilibrium I assumed in my earlier paper that a strictly feasible
allocation always exists, which is a strong assumption that is incompatible with
the Arrow-Debreu model. In this paper I refine the equilibrium concept and
weaken the assumptions of equilibrium existence. Most importantly, I dispose
of the assumption that a strictly feasible allocation always exists, which enables
me to include standard Walrasian economies as special cases of my model.

Second, this paper is also related to the literature of getting the Nash
and Walras equilibria from satisficing behavior (McKelvey and Palfrey, 1995;
Geanakoplos, 2003; Becker and Chakrabarti, 2005; Chakrabarti, 2013). Roughly
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speaking, in this paper I prove that when (within the budget set) the offer set
of each agent type coincides to the upper contour set of the average demand,
then the set of Walrasian and Bayesian equilibria exactly coincide. Therefore
Walrasian equilibrium is robust in the sense that it arises from a large class of
non-optimizing behavior. My result is also the first rigorous formulation and
proof of Foley (2003)’s conjecture that “there may be a sense in which Wal-
rasian equilibrium can be viewed as an asymptotic approximation to statistical
equilibrium.” In a recent paper, Chakrabarti (2013) shows that the set of his
equilibria exactly coincides to that of Walrasian equilibria under different as-
sumptions and equilibrium concept than mine. The similarities and differences
between my result and his are discussed in Section 4.

2 Model

2.1 Economy

There are I agent types indexed by i = 1, 2, . . . , I. Type i consists of a contin-
uum of agents with mass ni > 0, where

∑

i ni = 1. There are C commodities
labeled by c = 1, 2, . . . , C, and the commodity space is X , a nonempty, closed,
convex subset of RC

+. Agents of the same type are ex ante identical and are
endowed with a commodity bundle ei ∈ X .

Let ∆C−1 =
{

p ∈ R
C
+

∣

∣

∣

∑C
c=1 pc = 1

}

be the usual price simplex. The only

difference of my model from the standard Walrasian (Arrow-Debreu) model is
that agents do not necessarily respond to prices optimally. Instead, agents act
probabilistically (and independently) according to a satisficing behavioral rule,
taking aggregate variables as given. I assume that the aggregate variables upon
which agents base their behavior are the price vector p ∈ ∆C−1 and the profile
of the average demand of each type x = (xi)i∈I ∈ XI . xi can be regarded as a
sort of ‘reference point’ of type i agents.

In the context of the standard Arrow-Debreu model (utility maximization),
agents respond only to prices, not on average demand. The decision rule or the
“new” demand is merely the utility maximizing bundle. In my non-optimizing
(“satisficing”) context, type i agents’ decision rule is characterized by a prob-
ability measure µi(p, x) that is supported on a subset of the commodity space
X , where p is the price vector and x = (xi) ∈ XI is the profile of the average
demand of each type. A type i agent will draw a random demand from the
distribution µi. I refer to the probability measure µi(p, x) as the prior, because
it is the distribution of actions (demands) that type i agents take given the
aggregate variables (p, x) before updating any information.

Let M(X) be the set of all probability measures on the commodity space
X . Then µi(p, x) ∈ M(X). I formally define an economy as follows.

Definition 2.1. An economy is a quadruple E = {I, {ni} , {ei} , {µi}}, where
I = {1, . . . , I} is the set of agent types, ni > 0 is the mass of type i agents

with
∑I

i=1 ni = 1, ei ∈ X is the endowment of type i, and µi : ∆
C−1 ×XI →

M(X) is a mapping that maps the price vector p and average demand profile
x = (xi)i∈I to a (prior) probability measure µi(p, x) on the commodity space
X . The support1 of the prior, Xi(p, x) = suppµi(p, x), is called the offer set of

1The support of a Borel measure µ on a second-countable topological space X, denoted

3



type i given price p and average demand x.2

Thus the offer set Xi(p, x) consists of demands y ∈ X that type i agents
take with positive probability given aggregate variables (p, x). If y /∈ Xi(p, x),
then the agent never demands y.

The reason why I allow the prior measure µi(p, x) to depend on price p as
well as the average demand profile x is intuitive. First, the price affects the
value of agents’ initial endowment and thus their ability to spend. Second,
agents may change their behavior by learning what other agents are doing on
average, such as “catching up with Joneses.”

Clearly the classic utility maximization (Walrasian) framework is a special
case of my model.

Example 1. Consider the standard Walrasian economy with I agent types,
where type i has mass ni > 0 and a continuous, strictly quasi-concave utility
function ui. The optimal behavior is

xi,p = argmax
y∈R

C

+

{ui(y) | p · y ≤ p · ei} .

Setting µi(p, x) = “counting measure on xi,p” (thus the average demand profile
x does not influence agent behavior), E = {I, {ni} , {ei} , {µi}} is an economy
in the sense of Definition 2.1.

One way to think of the prior µi is the subjective probability measure over
bundles that type i agents are willing to hold. In the Walrasian case of Example
1, agents completely trust the market mechanism and demand only (puts the
Dirac measure on) the utility maximizing bundle. In my model, agents are not
so certain and their beliefs are more spread. Another view is that agents observe
their utility function subject to some noise, which translates into their behavior.
The quantal response equilibrium model of McKelvey and Palfrey (1995) is such
an example.

In this paper I do not address the question of how the priors {µi} are formed
from more primitive notions such as preferences. There are two reasons for this
approach. First, there can be many ways to model satisficing behavior, each of
them leading to different priors. But at the abstract level of modeling in this
paper, no particular modeling choice is more plausible than another. Second,
in this paper I am concerned with existence and informational efficiency of
equilibrium and its relation to the Walrasian equilibrium. It turns out that
I can answer these questions without specifying a particular behavioral rule,
so there is no need to model the agent behavior from a more primitive level.
This point contrasts with the classical general equilibrium theory in which the
preferences of agents are primitives of the model. In my model, the primitive is
the prior (behavioral rule) µi(p, x), which corresponds to the demand function
in the classical setting.

by S = suppµ, consists of the points that do not have a neighborhood with measure zero.
Let U be the countable base of the topology (for the case of X = R

C , it suffices to take
the family of all open balls with rational radii and centers with rational coordinates) and
S = X\

⋃
U∈U :µ(U)=0 U . Since U is the countable base of the topology, it follows that S is

closed, µ(S) = µ(X), and µ(U ∩S) > 0 whenever U is open and U ∩S 6= ∅. Hence S = suppµ.
2I follow Foley (1994) in calling Xi(p, x) the offer set, but a more appropriate term might

be offer correspondence, since sets are parametrized by the price vector p and the average
demand profile x.
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2.2 Equilibrium

Given an economy E = {I, {ni} , {ei} , {µi}}, how should we define the equilib-
rium concept? As in any equilibrium concept, markets have to clear. However,
since so far there is nothing that keeps agents from violating their budget con-
straints (they are free to believe whatever trade opportunities they want), these
demands may not be met. This implies that agents’ belief are typically incom-
patible with market clearing, so in order to clear the market agents need to
update their beliefs (prior over demand). Thus the question is how agents up-
date their beliefs. The obvious and natural answer is that agents should revise
their demand distribution by applying the Bayes rule conditional on market
clearing.

In our context, since there are a continuum of agents, the calculation of
posterior distributions using the Bayes rule is not obvious. However, this can
be accomplished by using the “equivalence” between Bayesian inference and
the minimization of the Kullback-Leibler information (maximum entropy), as
explained in Appendix A.

To define the equilibrium, I proceed in two steps. First, I define the updat-
ing rules for price and average demand. This part is similar to Foley (1994)’s
“statistical equilibrium” model of markets, which Foley (2003) interprets as
a temporary equilibrium concept. Second, I define the equilibrium (Bayesian
general equilibrium) by self-fulfilling price and average demand.

2.2.1 Interim equilibrium

Let E = {I, {ni} , {ei} , {µi}} be an economy and fi(y) be the probability density
function of the posterior (to be computed) with respect to the prior µi(p, x).
Then

∫

yfi(y)µi(dy; p, x)

is the expected ex post demand of type i. Since I assumed that agents act
independently conditional on aggregate variables (p, x) and that there are a
continuum of agents in each type, by the law of large numbers for a continuum
of random variables (Uhlig, 1996) the total demand of type i agents is

ni

∫

yfi(y)µi(dy; p, x)

almost surely. Hence by letting f = (fi)i∈I and µ(p, x) = (µi(p, x))i∈I , we can
define the aggregate demand in the economy by

x̄[f ;µ(p, x)] :=

I
∑

i=1

ni

∫

yfi(y)µi(dy; p, x). (2.1)

Next, in order to use the equivalence between the Bayes rule and maximum
entropy, we need to define the Kullback-Leibler information. In our context, the
Kullback-Leibler information of the densities f = (fi)i∈I relative to the priors
µ(p, x) = (µi(p, x))i∈I is defined by

H [f ;µ(p, x)] :=

I
∑

i=1

ni

∫

fi(y) log fi(y)µi(dy; p, x).
3 (2.2)

3This definition can be understood as follows. If we take the prior measure µi(p, x) as the
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With notations and terminologies adapted to my situation, Foley (1994) defined
his “statistical equilibrium” concept as follows.

Definition 2.2 (Interim equilibrium). Let E = {I, {ni} , {ei} , {µi}} be an econ-
omy with offer sets Xi(p, x) = suppµi(p, x). Given price p ∈ ∆C−1 and the av-
erage demand profile x = (xi)i∈I ∈ XI , the collection of densities f = (fi) and
the vector π ∈ R

C
+ constitute a interim equilibrium if fi’s are posterior densities

conditional on market clearing, i.e., f = (fi) solves

min
f

H [f ;µ(p, x)] subject to x̄[f ;µ(p, x)] ≤ ē, (2.3)

whereH [·;µ(p, x)] is the Kullback-Leibler information defined in (2.2), x̄[·;µ(p, x)]

is the aggregate demand defined in (2.1), ē =
∑I

i=1 niei is the aggregate en-
dowment, and π is the corresponding Lagrange multiplier on the feasibility
constraint in (2.3).

The idea of the interim equilibrium is as follows. Agents come to the market
with their prior behavioral rule µi(p, x). But they realize that markets may
not clear with these rules, so we need some kinds of “rationing scheme” in
order to clear the market. Specifically, our agents revise their behavior by the
Bayes rule conditional on market clearing, which is equivalent to minimizing
the Kullback-Leibler information of the entire economy subject to the feasibility
constraint according to the results in Appendix A. Therefore although agents
are not sophisticated in that they do not fully optimize, they are sophisticated
enough to apply the Bayes rule.

Implicit in the minimization problem (2.3) is that f = (fi) is constrained to
be a collection of probability density functions, so fi ≥ 0 and

∫

fidµi(p, x) = 1
for all i. The interim equilibrium in Definition 2.2 is essentially a partial equilib-
rium concept in which the price and the average demand profile are exogenously
given. It is exactly the statistical equilibrium defined by Foley (1994) except
that he uses finite discrete sets as offer sets and motivates the equilibrium by en-
tropy maximization, not Bayesian updating or minimum information principle.
Foley (1994) calls the Lagrange multiplier π the entropy price because it is the
shadow price of commodities in units of entropy (Kullback-Leibler information).

In the literature of general equilibrium with price rigidities, many rationing
schemes have been proposed (Drèze, 1975; Herings, 1996). These schemes typ-
ically have upper bounds on demand and supply, whereas in my model agents
do not change the support of the distribution but only tilt the probabilities of
demanding particular consumption bundles. Any rationing scheme is ad hoc in

reference measure µ in (A.2) and noting that fi corresponds to the posterior density, we get
q = 1 and hence the Kullback-Leibler information of a single agent of type i is

Hi = H(fi; 1) =

∫
fi log fidµi(p, x).

Now suppose that there are Ni agents of type i, and let the total number of agents be
N =

∑
i Ni and the proportion be ni = Ni/N . In general, the entropy of the joint distribution

of two independent random variables is the sum of the entropy of each variable.4 The additivity
of the entropy carries over to the Kullback-Leibler information. Therefore, the economy-wide
information is

H =
I∑

i=1

NiHi =
I∑

i=1

Ni

∫
fi log fidµi(p, x).

Dividing this expression by N , we obtain the per capita information (2.2).

6



the sense that none is more convincing than any other. Foley’s choice of using
(only) maximum entropy principle (Bayes rule) is natural because it is the only
rational way of updating beliefs in the presence of new information according
to the axiomatization of Jaynes (2003) and Knuth and Skilling (2012).

Of course, in order to solve the minimum information problem (2.3) agents
need to know a great deal about the economy. Not only they need to know
the quoted price p and the average demand profile x ∈ XI , but also the priors
of all agent types {µi(p, x)}i∈I . This is of course informationally demanding
and unrealistic, but agents can learn a great deal from rounds of the following
experiments. At each round, each agent expresses his demand randomly drawn
from his prior. Then the “auctioneer” calculates the aggregate demand and
tell the agents whether the allocation was feasible or not. By repeating these
rounds, which are similar to the setting in Van Campenhout and Cover (1981),
agents will obtain their posterior conditional on market clearing.

2.2.2 Bayesian general equilibrium

An interim equilibrium is a rule for updating demand, taking price and average
demand profile as given. In order to define the full (general) equilibrium, we need
updating rules for price and average demand profile. Let ((fi), π) be an interim
equilibrium corresponding to price p ∈ ∆C−1 and average demand profile x =
(xi) ∈ XI . Since fi is a density,

x′
i =

∫

yfi(y)µi(dy; p, x)

is a natural candidate for updating the average demand. Since π ∈ R
C
+ is the

Lagrange multiplier corresponding to the feasibility constraint, πc is the shadow
price of commodity c (the amount of Kullback-Leibler information reduced by
injecting one unit of commodity c in the economy). Therefore normalizing π
such that

p′ =
π

∑C
c=1 πc

is a natural candidate for updating the price.
Based on this argument I define a (non-degenerate) correct expectations

equilibrium as follows. (The definition is essentially due to Toda (2010).)

Definition 2.3 (Correct expectations equilibrium). Let E = {I, {ni} , {ei} , {µi}}
be an economy with offer sets Xi(p, x) = suppµi(p, x). The price p ∈ ∆C−1,
average demand profile x = (xi) ∈ XI , and collection of densities (fi) constitute
a (non-degenerate) correct expectations equilibrium if

1. fi’s are posterior densities conditional on market clearing, i.e., f = (fi)
solves (2.3),

2. the Lagrange multiplier π to (2.3) is proportional to p,

3. the average demand profile is consistent, i.e., for all i

xi =

∫

yfi(y)µi(dy; p, x).

7



The idea of the correct expectations equilibrium is to push the degree of
sophistication of agents one step further than the interim equilibrium. Here
agents not only use the Bayes rule for updating their demand. They are aware
that their change in behavior will shift the price and average demand profile,
so they agree on a price and average demand profile that are self-fulfilling. In
many institutions there is a mechanism for revising prices that plays the role of
the market auctioneer. For instance, in the (equilibrium existence proof of the
Arrow-Debreu model), agents respond optimally to the quoted price, and the
Walrasian auctioneer updates the price given the revealed demand. As a result,
the equilibrium is defined by a rest point where prices are correctly anticipated.
Thus we can interpret the definition of the correct expectations equilibrium as
a rest point where there is no further need of updating.

In cases that the market clearing condition is extremely tight, it may happen
that we cannot find any feasible posteriors that are absolutely continuous with
respect to the priors. The following definition of degenerate equilibria handles
those cases. Degenerate equilibria are intuitively (and mathematically: see
Proposition 3.5) the asymptotic limit of non-degenerate ones.

Definition 2.4 (degenerate equilibrium). Let E = {I, {ni} , {ei} , {µi}} be an
economy with offer setsXi(p, x) = suppµi(p, x). A price vector p and an average
demand profile x = (xi) ∈ XI constitute a degenerate equilibrium if

4. xi ∈ cl coXi(p, x) for all i,
5

5.
∑I

i=1 ni(xi − ei) ≤ 0, and pc = 0 if
∑I

i=1 ni(xic − eic) < 0,

6. for all i and y ∈ Xi(p, x), we have p · y ≥ p · xi.

Condition 4 means that the average demand profile x = (xi) is consistent.
Since the demand y of a type i agent must lie on the offer set Xi(p, x), by
averaging y across all type i agents the average demand xi must belong to
cl coXi(p, x), since averaging has convexifying effects. Condition 5 means that
the average demand profile is feasible, and that the price of a commodity in
excess supply is zero. Condition 6 means that the offer set Xi(p, x) is supported
by the hyperplane p · y = p · xi.

A rationale of the degenerate equilibrium is that consistency (condition 4)
and market clearing (condition 5) are minimum requirements, and that we can
reduce the Kullback-Leibler information if condition 6 fails by “spreading” den-
sities over the offer sets, contradicting the minimum information principle.

A degenerate or non-degenerate correct expectations equilibrium is simply
referred to as a Bayesian general equilibrium, for the obvious reason that agents
use the Bayes rule for updating their beliefs.

3 Existence and informational efficiency

3.1 Existence and uniqueness of interim equilibrium

Since a Bayesian general equilibrium is an interim equilibrium with correct ex-
pectations (self-fulfilling price and average demand profile), the natural starting
point for studying existence is that of interim equilibrium. For subsets X,Y of a

5clA and coA denote the closure and the convex hull of A, respectively.
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vector space, let αX + βY := {αx+ βy |x ∈ X, y ∈ Y }. The following theorem
shows the existence and uniqueness of an interim equilibrium when there is a
strictly feasible allocation.

Theorem 3.1 (Existence, uniqueness, duality). Let price p ∈ ∆C−1 and aver-
age demand profile x = (xi) ∈ XI be given. Let E = {I, {ni} , {ei} , {µi}} be
an economy with offer sets Xi(p, x) = suppµi(p, x) and define the dual function
H∗ : RC

+ → R by

H∗(ξ) =

I
∑

i=1

ni

[

ξ′ei + log

(
∫

e−ξ′yµi(dy; p, x)

)]

.

If
∫

‖y‖µi(dy; p, x) < ∞ and

(

I
∑

i=1

ni(coXi(p, x) − ei)

)

∩ (−R
C
++) 6= ∅, (3.1)

then there exists a unique interim equilibrium f = (fi) and

min
f

{H [f ;µ(p, x)] | x̄[f ;µ(p, x)] ≤ ē} = − min
ξ∈R

C

+

H∗(ξ), (3.2)

where ē =
∑I

i=1 niei is the aggregate endowment. Furthermore, letting π ∈ R
C
+

be a Lagrange multiplier for the left-hand side minimization of (3.2), π is also a
solution to the right-hand side minimization of (3.2), and the (unique) solution
to the left-hand side minimization is fi(y) = e−π′y/

∫

e−π′yµi(dy; p, x).

Proof. Since the price p and the average demand profile x = (xi) ∈ XI are
fixed, in what follows I suppress p, x.

Step 1. Proof of duality (3.2).

Consider the primal problem

inf
f=(fi)

I
∑

i=1

ni

∫

fi log fidµi subject to

I
∑

i=1

ni

∫

yfi(y)µi(dy) ≤ ē. (P)

By Lemma 3.2 of Toda (2010) and (3.1), there exists a strictly feasible f1 = (f1
i ),

that is,
I
∑

i=1

ni

∫

f1
i dµi ≪ ē =

I
∑

i=1

niei,

so the regularity condition of Fenchel duality (Borwein and Lewis, 1991, Corol-
lary 2.6) holds. Letting

φ(t) =











t log t, (t > 0)

0, (t = 0)

∞, (t < 0)

we can ignore the non-negativity constraints fi ≥ 0 in (P). Since the convex
conjugate function of φ is

φ∗(s) = sup
t∈R

[st− φ(t)] = sup
t≥0

[st− t log t] = es−1,

9



the dual problem of (P) is

sup
ν∈RI ,ξ∈R

C

+

I
∑

i=1

ni

[

νi − ξ′ei −

∫

eνi−ξ′y−1µi(dy)

]

, (D)

where ξ ∈ R
C
+ is the Lagrange multiplier to the feasibility constraint x̄[f ;µ] ≤ ē

and νi ∈ R is the Lagrange multiplier to
∫

fidµi = 1 (accounting of probability).
By the Fenchel duality theorem, the optimal value Hmin of (P) and (D) coincide
and (D) has a solution. Taking the partial derivative of the objective function
in (D) with respect to νi, we obtain

1−

∫

eνi−ξ′y−1µi(dy) = 0 ⇐⇒ νi = 1− log

(
∫

e−ξ′yµi(dy)

)

.

Substituting νi into (D), after some algebra we get

Hmin = − min
ξ∈R

C

+

I
∑

i=1

ni

[

ξ′ei + log

(
∫

e−ξ′yµi(dy)

)]

, (D’)

which is precisely the right-hand side of (3.2).

Step 2. Proof that fi(y) = e−π′y/
∫

e−π′yµi(dy) is a solution to (3.2).

Since µi is a finite measure and
∫

‖y‖µi(dy) < ∞, by Lebesgue’s dominated

convergence theorem
∫

e−ξ′yµi(dy) is C1 as a function of ξ ∈ R
C
+. Letting

π ∈ R
C
+ be a solution to (3.2), by the Karush-Kuhn-Tucker theorem there exists

a Lagrange multiplier λ ∈ R
C
+ such that λcπc = 0 for all c and

0 =

I
∑

i=1

ni

[

ei −

∫

ye−π′yµi(dy)
∫

e−π′yµi(dy)
− λ

]

. (3.3)

Letting fi(y) = e−π′y/
∫

e−π′yµi(dy), (3.3) shows that f = (fi) is feasible.
Multiplying π to (3.3) as an inner product, we get

0 = π′
I
∑

i=1

ni

[

ei −

∫

yfidµi

]

. (3.4)

Substituting f = (fi) into the objective function in (P) and invoking (3.4), the
Kullback-Leibler information is

H [f ;µ] =

I
∑

i=1

ni

∫

fi log fidµi =

I
∑

i=1

ni

∫

fi

[

−π′y − log

(
∫

e−π′ydµi

)]

dµi

= −
I
∑

i=1

ni

[

π′ei + log

(
∫

e−π′ydµi

)]

,

which is precisely the value in (D’). Therefore the minimum of the left-hand
side of (3.2) is attained by f = (fi), which shows that f = (fi) is an interim
equilibrium. (Almost everywhere) uniqueness follows by the strict convexity of
the function φ(t) = t log t.
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Theorem 3.1 is essentially due to Toda (2010). The novelty is to show that
Fenchel duality makes clear how to solve the minimum information problem. By
Theorem 3.1, the minimum information problem (minimization over a functional
space) reduces to the minimization of the dual function H∗ (over a Euclidean
space), as long as the regularity condition (3.1) is satisfied. Some kind of reg-
ularity condition is necessary in order to apply the Fenchel duality theorem
in optimization problems like (2.3). However, the regularity condition (3.1) is
rather strong from an economic point of view since it implies that there is a
strictly feasible allocation under the priors µ = {µi}i∈I , but in the Walrasian
case (Example 1) there is never a strictly feasible allocation. Fortunately, the
following proposition shows that we do not need to assume this rather strong
regularity condition.

Proposition 3.2. Let everything be as in Theorem 3.1 except that we do not
assume the strict feasibility (3.1). If the right-hand minimization of (3.2) has
a solution π ∈ R

C
+, then f = (fi) given by fi(y) = e−π′y/

∫

e−π′yµi(dy; p, x) is
the unique solution of the left-hand minimization of (3.2), and π is the corre-
sponding Lagrange multiplier.

Proof. Since φ(t) = t log t is strictly convex, for s, t > 0 we have

φ(t) − φ(s) ≥ φ′(s)(t − s) ⇐⇒ t log t ≥ (log s+ 1)t− s, (3.5)

with equality if and only if s = t. The same inequality holds even if t = 0 or
s = 0 provided that we define 0 log 0 = 0.

Suppose that π ∈ R
C
+ minimizes H∗. Letting fi(y) = e−π′y/

∫

e−π′yµi(dy),
by (3.3) and (3.4) we have x̄[f ;µ] ≤ ē and π′(x̄[f ;µ]− ē) = 0. Let g = (gi) be
any (not necessarily feasible) collection of densities. Then setting t = gi and
s = fi in (3.5) and using

∫

fidµi =
∫

gidµi = 1, we get

H [g;µ] =

I
∑

i=1

ni

∫

gi log gidµi ≥
I
∑

i=1

ni

∫

[(log fi + 1)gi − fi]dµi

=

I
∑

i=1

ni

∫

gi log fidµi = −π′(x̄[g;µ]− ē)−H∗(π)

⇐⇒ H [g;µ] + π′(x̄[g;µ]− ē) ≥ −H∗(π), (3.6)

with equality if g = f . (3.6) shows that f = (fi) minimizes the Lagrangian
corresponding to the left-hand minimization of (3.2) with Lagrange multiplier
π. If g = (gi) is feasible, since π ≥ 0 and x̄[g;µ] ≤ ē, by (3.6) we get

H [g;µ] ≥ H [g;µ] + π′(x̄[g;µ]− ē) ≥ −H∗(π).

Since x̄[f ;µ] ≤ ē and π′(x̄[f ;µ] − ē) = 0, it follows that H [f ;µ] = −H∗(π), so
f = (fi) minimizes the Kullback-Leibler information among all feasible densi-
ties. Uniqueness follows by the strict convexity of φ(t) = t log t.

Before proceeding to the existence of Bayesian general equilibrium, it is
important to understand what are assumed and proved in Theorem 3.1 and
Proposition 3.2. Theorem 3.1 shows that under a Slater-type constraint qual-
ification (that a strictly feasible allocation exists), the minimum information
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problem (the left-hand minimization of (3.2)) has a unique solution and it cor-
responds to a solution to the dual problem (right-hand minimization of (3.2)).
Although this result motivates using the dual function, we do not want to as-
sume that there exists a strictly feasible allocation. Then Proposition 3.2 shows
that if the dual problem has a solution, then the primal problem (the minimum
information problem, the left-hand minimization of (3.2)) has a (unique) solu-
tion, and it has the form fi(y) = e−π′y/

∫

e−π′yµi(dy; p, x). Thus in order to
obtain a solution to the primal problem, we do not need to assume the existence
of a strictly feasible allocation; it suffices to solve the dual problem. The sole
purpose of presenting Theorem 3.1 is to motivate the dual problem.

3.2 Existence of Bayesian general equilibrium

In this subsection I prove the existence of Bayesian general equilibrium under
the following assumptions. Each assumption is followed by a justification.

Assumption 1. For all agent type i ∈ I, price p ∈ ∆C−1, and average demand
profile x ∈ XI , the prior µi(p, x) is a finite measure. Furthermore,

sup
p∈∆C−1

x∈XI

∫

yµi(dy; p, x) < ∞. (3.7)

Since µi(p, x) is a prior (subjective probability measure, hence µi(X ; p, x) =
1), µi(p, x) is necessarily a finite measure. (3.7) means that the average demand
implied by p, x is uniformly bounded. This condition does not say that the
demand is finite: the offer set Xi(p, x) may well be unbounded, but agents
must put less and less probability on y ∈ Xi(p, x) as y tends to infinity. This
assumption seems natural, since agents are aware that aggregate endowment is
finite. Assumption 1 trivially holds if the consumption set X is compact and µi

is a regular Borel measure.

Assumption 2 (Budget feasibility). For all agent type i ∈ I, price p ∈ ∆C−1,
and average demand profile x ∈ XI , we have

inf {p · (y − ei) | y ∈ Xi(p, x)} ≤ 0.

Assumption 2 implies that agents are “realistic” in the sense that they always
put some probability on allocations that are budget feasible. If agents “aim too
high” by demanding only allocations that exceed their budgets, it is obvious
that markets cannot clear.

Actually the individual budget feasibility is not necessary for the existence
of an equilibrium. We can relax Assumption 2 to

I
∑

i=1

ni inf {p · (y − ei) | y ∈ Xi(p, x)} ≤ 0,

which means that the total value of acceptable allocations with lowest expendi-
tures is at most the total value of the endowment. Thus, there can be agents that
“aim too high” as long as there are enough agents that are conservative enough.
(For an analogy, little kids can get what they want if they insist stubbornly and
their parents give in.)
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Next come two continuity assumptions, which are technical conditions neces-
sary for the proof. These conditions are similar to the properties of the demand
correspondences in the classical general equilibrium theory.

Assumption 3 (Continuity of priors). For all agent type i ∈ I, the mapping

µi : ∆
C−1 ×XI → M(X)

is weakly continuous, i.e., for every bounded continuous function f and sequences
{pn} ⊂ ∆C−1 and {xn} ⊂ XI such that pn → p and xn → x, we have

lim
n→∞

∫

f(y)µi(dy; pn, xn) =

∫

f(y)µi(dy; p, x).

Assumption 3 is satisfied, for instance, if {µi(p, x)} is absolutely contin-
uous with respect to a common measure νi, the Radon-Nikodym derivative

fi(y; p, x) := dµi(p,x)
dνi

is continuous in p, x for νi-a.e. y, and there exists a νi-
integrable function gi such that |fi(y; p, x)| ≤ gi(y) for νi-a.e. y. To see this,
apply the dominated convergence theorem.

Assumption 4 (Continuity of offer sets). The correspondence

(p, x) 7→
∏

i∈I

cl coXi(p, x)

is closed at points (p, x) such that

I
∑

i=1

ni inf {p · (y − ei) | y ∈ Xi(p, x)} = 0, (3.8)

i.e., pn → p, xn → x, yni ∈ cl coXi(pn, xn), and yni → y∞i implies y∞i ∈
cl coXi(p, x) for all i ∈ I whenever (3.8) holds.

Note that Assumption 4 is automatically satisfied if the inequality in As-
sumption 2 is strict, since I require Assumption 4 only when the equality (3.8)
holds. Also if Xi(p, x) is convex, then cl coXi(p, x) = Xi(p, x) since Xi(p, x) is
closed by construction.

Under the aforementioned assumptions, we can prove the first main result
of this paper: a Bayesian general equilibrium exists.

Theorem 3.3. Let E = {I, {ni} , {ei} , {µi}} be an economy with offer sets
Xi(p, x) = suppµi(p, x) that satisfies Assumptions 1–4. Then E has a Bayesian
general equilibrium. If Assumption 2 is replaced by

I
∑

i=1

ni inf {p · (y − ei) | y ∈ Xi(p, x)} < 0,

in which case Assumption 4 is vacuous, all equilibria are non-degenerate.

Proof. For ξ ∈ R
C
+, p ∈ ∆C−1, and x ∈ XI , define the dual function H∗ by

H∗(ξ; p, x) =
I
∑

i=1

ni

[

ξ′ei + log

(
∫

e−ξ′yµi(dy; p, x)

)]

.
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Write H∗(ξ) = H∗(ξ; p, x) when the choice of (p, x) is obvious. Since

Xi(p, x) = suppµi(p, x) ⊂ X ⊂ R
C
+,

whereX is the consumption set, we have e−ξ′y ≤ 1 for all ξ ≥ 0 and y ∈ Xi(p, x).
Then

∫

e−ξ′yµi(dy; p, x) < ∞ by Assumption 1, so H∗(ξ) < ∞ for all ξ ≥ 0.
The outline of the proof is as follows. Since we know from Proposition 3.2

that minimizing H∗ is enough for minimizing the Kullback-Leibler information,
we wish to construct a correspondence from (p, x) ∈ ∆C−1×XI to the Lagrange
multiplier and implied average demand and show the existence of a fixed point
(which is precisely the idea in Toda (2010)). However, H∗ may not attain a
minimum if the regularity condition (3.1) is violated. To overcome this difficulty,
I restrict the domain of H∗ to a compact set and define a quasi equilibrium
concept. Specifically, define a t-quasi equilibrium as follows. Let ‖·‖1 denote

the L1 norm, so ‖ξ‖1 =
∑C

c=1 |ξc|.

Definition 3.4 (t-quasi equilibrium). Let t > 0. The pair of vectors (p, x, π) ∈
∆C−1 ×XI × R

C
+ is said to be a t-quasi equilibrium if

1. ξ = π solves

minH∗(ξ; p, x) subject to ξ ≥ 0, ‖ξ‖1 ≤ t,

2. π is proportional to p, and

3. x = (xi) is self-fulfilling, i.e., xi =
∫

yfi(y)µi(dy; p, x), where fi(y) =

e−π′y/
∫

e−π′yµi(dy; p, x).

Thus, in view of Proposition 3.2, the definition of a t-quasi equilibrium
is the same as that of a non-degenerate equilibrium except that the former
minimizes H∗ within a domain bounded by t. I show by a standard fixed point
argument that a t-quasi equilibrium always exists. Thus, we can take a sequence
of t-quasi equilibria such that t → ∞. I then show that either some t-quasi
equilibrium happens to be a non-degenerate equilibrium, or a subsequence of
t-quasi equilibria converges to a degenerate equilibrium.

Step 1. H∗(ξ; p, x) is C1 in ξ and is differentiable under the integral sign.
H∗(ξ; p, x) and its first derivatives are continuous in (p, x, ξ) ∈ ∆C−1×XI×R

C
+.

(Proof in Appendix B.)

Step 2. Construction of a fixed-point correspondence.

As we saw above, H∗(ξ) < ∞ for all ξ ≥ 0. By Proposition C.3, H∗(ξ)
is convex and lower semi-continuous (indeed, continuous) in ξ. Since the set
t∆C :=

{

ξ ∈ R
C
+

∣

∣ ‖ξ‖1 ≤ t
}

is nonempty, compact, and convex, so is the set

Π(p, x) := argmin
ξ∈t∆C

H∗(ξ; p, x).

By Step 1, H∗(ξ; p, x) is continuous in (p, x, ξ) on ∆C−1 ×XI × R
C
+. Thus, by

the Maximum Theorem, Π : ∆C−1 ×XI
⇉ t∆C is upper semi-continuous.
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Using Π(p, x), define the set Φ(p, x) ⊂ ∆C−1 by

Φ(p, x) :=

{

{ξ/ ‖ξ‖1 | ξ ∈ Π(p, x)} , (0 /∈ Π(p, x))

∆C−1. (0 ∈ Π(p, x))

Let us show that Φ : ∆C−1 ×XI
⇉ ∆C−1 is nonempty, compact, convex and

upper semi-continuous.

1. Φ(p, x) 6= ∅ is trivial. Since Φ(p, x) is either ∆C−1 itself (a convex set) or
the intersection of ∆C−1 and the convex cone generated by Π(p, x), it is
convex.

2. Suppose that pn → p, xn → x, qn ∈ Φ(pn, xn), and qn → q. If 0 ∈ Π(p, x),
then Φ(p, x) = ∆C−1 ∋ q. Therefore without loss of generality we may
assume 0 /∈ Π(p, x).

3. If 0 /∈ Π(pn, xn) infinitely often, by taking a subsequence we may assume
0 /∈ Π(pn, xn) for all n. Take ξn ∈ Π(pn, xn) such that qn = ξn/ ‖ξn‖1.
Since {ξn} ⊂ t∆C and t∆C is compact, {ξn} has a convergent subsequence
ξnk

→ ξ. Since (p, x) 7→ Π(p, x) is upper semi-continuous, we have ξ ∈
Π(p, x), so q = ξ/ ‖ξ‖1 ∈ Φ(p, x).

4. If 0 ∈ Π(pn, xn) eventually, by the definition of Π(p, x) for large enough n
we haveH∗(0; pn, xn) ≤ H∗(ξ; pn, xn) for all ξ ∈ t∆C . Letting n → ∞ and
using the continuity ofH∗, we getH∗(0; p, x) ≤ H∗(ξ; p, x), so 0 ∈ Π(p, x).
Hence Φ(p, x) = ∆C−1 ∋ q.

Thus, (p, x) 7→ Φ(p, x) is upper semi-continuous. In particular, by letting pn = p
for all n, it follows that Φ(p, x) is closed, but since Φ(p, x) ⊂ ∆C−1, it is compact.

Finally, define Ψ : ∆C−1 ×XI → XI by

Ψi(p, x) =

∫

yfi(y)µi(dy; p, x),

where fi(y) = e−ξ′y/
∫

e−ξ′yµi(dy; p, x) for ξ ∈ Π(p, x). (Any such ξ will give
the same fi almost surely.) By Assumption 1, we can take b > 0 such that
∫

yµi(dy; p, x) ≤ b for all p, x. Let Xb = X ∩ [0, b]C be the consumption set
bounded by b.

Step 3. Ψ is well-defined, continuous, and Ψ : ∆C−1 ×XI
b → XI

b .

Proof. Let

gic(yc) =

∫

fi(yc, y−c)µi(dy−c; p, x)

be the marginal density of yc, where y = (y1, . . . , yC) ∈ R
C
+. Since ξ ≥ 0, gic(·)

is a decreasing function. On the other hand, yc is an increasing function of yc.
Hence by Chebyshev’s inequality (Lemma C.1), we obtain

Ψic(p, x) =

∫

ycfi(y)µi(dy; p, x) = E[Ycfi(Y )]

= E[Ycgic(Yc)] ≤ E[Yc] E[gic(Yc)]

= E[Yc] =

∫

yµi(dy; p, x) ≤ b.
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Clearly Ψ is a single-valued upper semi-continuous correspondence, so it is a
continuous function.

Step 4. For all t > 0, a t-quasi equilibrium exists. Either there exists a non-
degenerate equilibrium, or we can take a sequence of tn-quasi equilibrium with
tn → ∞ as n → ∞.

Proof. Since ∆C−1 and XI
b are both nonempty, compact, and convex, by Kaku-

tani’s fixed point theorem there exists (p, x) ∈ ∆C−1 ×XI
b such that

(p, x) ∈ (Φ×Ψ)(p, x).

Since p ∈ Φ(p, x), there exists k ≥ 0 such that π = kp ∈ Π(p, x), where
k = 0 if 0 ∈ Π(p, x) and k > 0 if 0 /∈ Π(p, x). Since x ∈ Ψ(p, x), we have
xi =

∫

yfi(y)µi(dy; p, x). Therefore (p, x, π) is a t-quasi equilibrium.
Let {tn}

∞
n=1 ⊂ (0,∞) be a monotone increasing sequence tending to ∞. By

passing to a subsequence if necessary, we may assume that for each n, there exists
a tn-quasi equilibrium (pn, xn, πn) such that pn → p ∈ ∆C−1 and xn → x ∈ XI

b .
If πn ∈ argminξ≥0 H

∗(ξ; pn, xn) for some n, then by Proposition 3.2 (pn, xn, πn)
is a non-degenerate equilibrium.

Suppose that for all n, minξ≥0 H
∗(ξ; pn, xn) has no solution. For notational

simplicity let µn
i := µi(pn, xn), H

∗
n(ξ) = H∗(ξ; pn, xn), and

L(ξ, λn, θn) =

I
∑

i=1

ni

[

ξ′ei + log

(
∫

e−ξ′yµn
i (dy)

)]

− λ′
nξ + θn(‖ξ‖1 − tn)

be the Lagrangian of minξ∈tn∆C H∗
n(ξ), where λn ∈ R

C
+ and θn ≥ 0 are Lagrange

multipliers. By the Karush-Kuhn-Tucker theorem, we obtain

I
∑

i=1

ni

[

ei −

∫

ye−π′

n
yµn

i (dy)
∫

e−π′

n
yµn

i (dy)

]

− λn + θn1 = 0 (3.9)

and λcnπcn = 0 for all c. Since (pn, xn, πn) is not a Bayesian general equilibrium
but a tn-quasi equilibrium, the constraint ‖πn‖1 ≤ tn binds for all n. To see
this, suppose ‖πn‖1 < tn. Since πn /∈ argminξ≥0 H

∗
n(ξ), we can take ξ ≥ 0

such that H∗
n(πn) > H∗

n(ξ). Let ξα := (1 − α)πn + αξ for α ∈ [0, 1]. Then for
sufficiently small α > 0 we have ‖ξα‖1 < tn, and by the convexity of H∗ we
have

H∗
n(ξα) ≤ (1− α)H∗

n(πn) + αH∗
n(ξ) < H∗

n(πn),

which contradicts the optimality of πn in tn∆
C . Hence we have πn = tnpn.

Step 5. limn→∞ θn = 0.

Proof. Multiplying πn = tnpn as an inner product to (3.9) and dividing both
sides by tn > 0, it follows from λcnπcn = 0 for all c that

I
∑

i=1

ni

[

p′nei −

∫

p′nye
−tnp

′

n
yµn

i (dy)
∫

e−tnp′

n
yµn

i (dy)

]

+ θn = 0. (3.10)

Regard

H∗
n(tξ) =

I
∑

i=1

ni

[

p′nei + log

(
∫

e−tξ′yµn
i (dy)

)]
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as a function of t. Since by Proposition C.3 H∗
n is convex, d

dtH
∗
n(tξ) is increasing

in t. Fix any t > 0 and choose n sufficiently large such that tn > t. Then, by
(3.10) we obtain

θn = −
d

dt
H∗

n(tnpn) ≤ −
d

dt
H∗

n(tpn).

Letting n → ∞, it follows from Step 1 that

lim sup
n→∞

θn ≤ lim sup
n→∞

[

−
d

dt
H∗

n(tpn)

]

= −
d

dt
H∗

∞(tp), (3.11)

where H∗
∞(ξ) = H∗(ξ; p, x). Since t is arbitrary in (3.11), for any s > 0, by the

mean value theorem take ts > 0 such that

H∗
∞(sp)−H∗

∞(0)

s
=

d

dt
H∗

∞(tsp).

Then (3.11) becomes

lim sup
n→∞

θn ≤ −
H∗

∞(sp)−H∗
∞(0)

s
.

Letting s → ∞, by Proposition C.4 and Assumption 2 we obtain

lim sup
n→∞

θn ≤
I
∑

i=1

ni inf {p · (y − ei) | y ∈ Xi(p, x)} ≤ 0. (3.12)

Since θn ≥ 0, we have θn → 0.

Step 6. E has a degenerate equilibrium.

Proof. By Step 5 and (3.12), we have

I
∑

i=1

ni inf {p · (y − ei) | y ∈ Xi(p, x)} = 0.

By Assumption 4, the correspondence (p, x) 7→ cl coXi(p, x) is closed at (p, x).
Since (pn, xn) is a fixed point of Φ×Ψ, in particular we have

xn
i =

∫

yfn
i (y)µ

n
i (dy) ∈ cl coXi,pn

,

where xn = (xn
i ) and fn

i (y) = e−tnp
′

n
y/
∫

e−tnp
′

n
yµn

i (dy). Therefore letting
n → ∞ we have xi ∈ cl coXi(p, x), so condition 4 of Definition 2.4 holds. By

(3.9), {xn
i }

I
i=1 satisfies

I
∑

i=1

ni(x
n
i − ei) = −λn + θn1 = 0. (3.13)

Since λn ≥ 0 and θn → 0 by Step 5, letting n → ∞ in (3.13) we get

I
∑

i=1

ni(x
n
i − ei) →

I
∑

i=1

ni(xi − ei) ≤ 0.
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Thus, {xi} is feasible. By (3.10), we have
∑I

i=1 nip
′
n(x

n
i − ei) = θn, so letting

n → ∞ we get p ·
∑I

i=1 ni(xi− ei) = 0. Hence, if
∑I

i=1 ni(xic− eic) < 0, it must
be pc = 0 and condition 5 of Definition 2.4 holds. Condition 6 of Definition 2.4
holds because Assumption 2 and p ·

∑I
i=1 ni(xi − ei) = 0 imply p · y ≥ p · xi for

all y ∈ Xi(p, x). Therefore (p, x) is a degenerate equilibrium.

Step 7. Suppose that Assumptions 1–4 hold. If

I
∑

i=1

ni inf {p · (y − ei) | y ∈ Xi(p, x)} < 0

for all p ∈ ∆C−1 and x ∈ XI , then all Bayesian general equilibria of E are
non-degenerate.

Proof. If E has a degenerate equilibrium (p, x), by Definition 2.4 we have p ·y ≥
p · xi for all y ∈ Xi(p, x). Thus

I
∑

i=1

ni inf {p · (y − ei) |x ∈ Xi(p, x)} ≥ p ·
I
∑

i=1

ni(xi − ei) = 0,

a contradiction.

The above steps complete the proof.

The value added of this existence theorem compared with those in my pre-
vious paper (Toda, 2010) is that I do not assume that there is a strictly feasible
allocation for all p, i.e., the regularity condition (3.1). We know that there must
be a feasible allocation in the Bayesian general equilibrium but not necessarily
so otherwise. Therefore the assumptions of Theorem 3.3 are considerably weaker
than my earlier existence theorems. Disposing the regularity condition (3.1) is
important because the Walrasian economy in Example 1 is never compatible
with (3.1).

Proposition 3.5 below strengthens the conclusion of Theorem 3.3. Its proof
shows that degenerate equilibria are indeed the asymptotic limit of non-degenerate
ones.

Proposition 3.5. Let E = {I, {ni} , {ei} , {µi}} be an economy with offer sets
Xi(p, x) = suppµi(p, x) that satisfies Assumptions 1, 3, 4, and

I
∑

i=1

ni inf {p · (y − ei) | y ∈ Xi(p, x)} = 0 (3.14)

for all (p, x) ∈ ∆C−1 × XI. Then E has a Bayesian general equilibrium, and
all equilibria can be interpreted as degenerate ones. Furthermore, we can take
a sequence of economies {En} such that all equilibria of En are non-degenerate
and they converge to degenerate equilibria of E.

Proof. See Appendix B.
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3.3 Informational efficiency

the Kullback-Leibler information is a measure of information gain or “surprise”
from updating the prior to the posterior. Let

αi(p, x) := inf {p · y | y ∈ Xi(p, x)}

be the minimum value of demand of type i agents, given price p ∈ ∆C−1 and
average demand profile x ∈ XI . If a type i agent demands y, then p ·y−αi(p, x)
is the ex post value of trade relative to the worst case scenario. The larger this
value is, the more the agent is likely to gain from arbitrage.6 Therefore, its
economy-wide ex post average,

A[f ;µ(p, x)] :=

I
∑

i=1

ni

∫

(p · y − αi(p, x))fi(y)µi(dy; p, x)

= p · x̄[f ;µ(p, x)]−
I
∑

i=1

niαi(p, x),

can be interpreted as the degree of arbitrage or that of market imperfection.
The following “informational efficiency theorem” states that there is a trade-

off between the lack of arbitrage and the lack of surprise: in a market with
low arbitrage (low A[f ;µ]), the agents have to gain a lot of information or be
surprised (high H [f ;µ]). The Bayesian general equilibrium attains the best
possible trade-off.

Theorem 3.6 (Informational efficiency theorem). Let E = {I, {ni} , {ei} , {µi}}
be an economy with offer sets Xi(p, x) = suppµi(p, x), and let (p, (xi), (fi)) be
a non-degenerate Bayesian general equilibrium. If (3.1) holds, so there exists a
strictly feasible allocation, then there exists t ≥ 0 such that f = (fi) minimizes
the functional H [g;µ(p, x)] + tA[g;µ(p, x)] over unconstrained g = (gi).

Proof. Let us suppress p, x. Let π = tp and ē =
∑I

i=1 niei be the aggregate
endowment. Since

H [g;µ] + tA[g;µ] = H [g;µ] + π′(x̄[g;µ]− ē)− t

I
∑

i=1

niαi + π′ē

and the last two terms are additive constants, g minimizes the left-hand side if
and only if g minimizes H [g;µ]+π′(x̄[g;µ]− ē). By the generalized Kuhn-Tucker
theorem (Theorem C.2), f minimizes H [g;µ]+π′(x̄[g;µ]− ē) over unconstrained
g’s if it is a non-degenerate Bayesian general equilibrium distribution, provided
that the regularity condition of the Kuhn-Tucker theorem is satisfied. However,
by Lemma 3.2 of Toda (2010), (3.1) is a sufficient condition for the Slater-type
constraint qualification to be satisfied.

The informational efficiency theorem should not be confounded with Pareto
(or allocative) efficiency (first welfare theorem) in standardWalrasian economies.

6Here I am using the term ‘arbitrage’ informally to refer to a situation that agents execute
trades that yielded higher values than they had expected. Thus ‘arbitrage’ here is synonymous
to “getting a good deal by luck”.
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In Walrasian economies, the arbitrage measure A is (roughly) a measure of wel-
fare, and we want to make A large. Nevertheless, the first welfare theorem states
that A is nonpositive for any feasible allocation and is zero for the Walrasian
equilibrium allocation. In Theorem 3.6, on the other hand, A is viewed as the
degree of arbitrage. Large A means that there is a lot of room for agents to
improve their position compared to the worst case scenario, so their worst case
scenario were too pessimistic. A perfect market is one that there is no room for
improvement, so the smaller A is, the closer the market is to perfection.

4 Relation between Walrasian and Bayesian equi-

libria

Now we can answer the question: how are Walrasian and Bayesian equilibria
related? Somewhat surprisingly, for any economy in which each offer set is
contained in the upper contour set to the average demand and coincides to the
upper contour set within the budget set, the sets of Walrasian and Bayesian
equilibria exactly coincide. Thus the Walrasian equilibrium is robust in the
sense that it arises from a large class of non-optimizing behavior.

In order to state and prove the theorem, I introduce some notations. Let
X ⊂ R

C
+ be the nonempty, closed, convex consumption set and

EW = {I, {ni} , {ei} , {ui}}

be a Walrasian economy, where ni is the fraction of type i agents, ei is the
endowment of a type i agent, and ui : X → R is a continuous, quasi-concave,
locally non-satiated utility function. The budget and upper contour sets of type
i given average demand xi ∈ X are

Bi(p) = {y ∈ X | p · y ≤ p · ei} ,

Ui(p, xi) = {y ∈ X |ui(y) ≥ ui(xi)} .

With the usual topology on R
C relative to X , the interior of the budget set is

intBi(p) = {y ∈ X | p · y < p · ei} .

Theorem 4.1. Let EW be a Walrasian economy such that intBi(p) 6= ∅ for
all i, p and EB = {I, {ni} , {ei} , {µi}} be a Bayesian economy with offer sets
Xi(p, x) = suppµi(p, x) that satisfies Assumptions 1–4. Suppose that for all
i ∈ I, p ∈ ∆C−1, and xi ∈ Bi(p), we have

(i) the offer set is contained in the upper contour set, i.e., Xi(p, x) ⊂ Ui(p, xi),

(ii) within the budget set, the upper contour set is locally contained in the
offer set, i.e., there exists ǫ > 0 such that if y ∈ Bi(p), ‖y − xi‖ < ǫ, and
ui(y) > ui(xi), then y ∈ Xi(p, x).

Then all Bayesian general equilibria of EB can be interpreted as degenerate, and
they are Walrasian equilibria of EW . If in addition

Xi(p, x) ∩Bi(p) = Ui(p, xi) ∩Bi(p), (4.1)

in which case condition (ii) automatically holds, then all Walrasian equilibria of
EW are Bayesian general equilibria of EB.
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Proof. By Theorem 3.3, EB has a Bayesian general equilibrium. Assume that
(p, (xi), (fi)) is a non-degenerate equilibrium. Since xi =

∫

yfi(y)µi(dy; p, x),
clearly xi ∈ cl coXi(p, x) since integration has a convexifying effect.

Step 1.
∑I

i=1 ni(xi − ei) ≤ 0, and pc = 0 if
∑I

i=1 ni(xic − eic) < 0.

By market clearing we have

I
∑

i=1

nixi =
I
∑

i=1

ni

∫

yfi(y)µi(dy; p, x) ≤
I
∑

i=1

niei,

so
∑I

i=1 ni(xi − ei) ≤ 0. Multiplying p as an inner product, we get
∑I

i=1 nip ·
(xi − ei) ≤ 0. If p · xi < p · ei for some i, by local non-satiation we can take
y ∈ Bi(p) such that ‖y − xi‖ < ǫ and ui(y) > ui(xi). By condition (ii), we
have y ∈ Xi(p, x). Since Xi(p, x) is the support of the measure µi(p, x), for any
neighborhood V of y in Xi(p, x), we have µi(V ; p, x) > 0. By the continuity of
ui, we may assume ui(z) > ui(xi) for all z ∈ V . Then by the quasi-concavity of
ui, we obtain

ui(xi) = ui

(
∫

yfi(y)µi(dy)

)

= ui

(

∫

V

+

∫

Xi(p,x)\V

)

> u(xi),

which is a contradiction. Therefore p · xi ≥ p · ei for all i. Combining with the
previous inequality, we get p ·

∑I
i=1 ni(xi − ei) = 0. Therefore the claim holds.

Step 2. If y ∈ Xi(p, x), then p · y ≥ p · xi.

Since by condition (i) y ∈ Xi(p, x) ⊂ Ui(p, xi), we have ui(y) ≥ ui(xi). If
p · y < p ·xi = p · ei, by local non-satiation there exists y′ such that p · y′ < p · ei
and ui(y

′) > ui(xi). Let y′′ = (1 − α)xi + αy′. By the continuity and quasi-
concavity of ui, for sufficiently small α we have ‖y′′ − xi‖ < ǫ, p · y′′ < p · ei,
and ui(y

′′) > ui(xi). By condition (ii), we have y′′ ∈ Xi(p, x). Then we get a
contradiction by the same argument as in Step 1. Therefore p · y ≥ p · xi.

By Steps 1 and 2, (p, (xi)) is a degenerate equilibrium.

Step 3. If (p, (xi)) is a degenerate equilibrium, it is also a Walrasian equilibrium.

By Definition 2.4 p ·y ≥ p ·xi for all y ∈ Xi(p, x), so p · (xi−ei) ≤ p · (y−ei).
Taking the infimum over y, by Assumption 2 we get p · (xi − ei) ≤ 0. Again by

Definition 2.4 we have p ·
∑I

i=1 ni(xi−ei) = 0, so it must be p ·xi = p ·ei for all i.
In order to show that (p, x) is a Walrasian equilibrium, it remains to show that
ui(y) ≤ ui(xi) whenever p · y ≤ p · ei. Suppose on the contrary that there exists
y such that ui(y) > ui(xi) and p · y ≤ p · ei. Then by the continuity of ui and
intBi(p) 6= ∅ there exists y′ such that ui(y

′) > ui(xi) and p · y′ < p · ei. Taking
y′′ as in Step 2, we get y′′ ∈ Xi(p, x) and p · y′′ < p · ei = p · xi, contradicting
the definition of a degenerate equilibrium. This completes the proof that all
Bayesian equilibria are Walrasian.

Step 4. If (4.1) holds, then a Walrasian equilibrium is a Bayesian equilibrium.

Let (p, (xi)) be a Walrasian equilibrium. By market clearing, we have
∑I

i=1 ni(xi − ei) ≤ 0. By local non-satiation, we have p · xi = p · ei, so
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p ·
∑I

i=1 ni(xi − ei) = 0. By (4.1), clearly xi ∈ Xi(p, x). If there exists
y ∈ Xi(p, x) such that p · y < p · ei (so ui(y) ≥ ui(xi) by (4.1)), by local
non-satiation there exists z such that ui(z) > ui(xi) and p · z < p · ei, contra-
dicting that (p, (xi)) is a Walrasian equilibrium. Therefore p · y ≥ p · ei = p · xi

for all y ∈ Xi(p, x). Hence (p, (xi)) is a degenerate Bayesian equilibrium.

Theorem 4.1 is vacuous unless we show that a Bayesian economy satisfying
the assumptions of Theorem 4.1 exists. The following proposition constructs
such an economy.

Proposition 4.2. A Bayesian economy satisfying the assumptions of Theorem
4.1 exists.

Proof. Let X = R
C
+ be the consumption set. For any x = (xi) ∈ XI and

p ∈ ∆C−1, define the probability measures

ν1i (A; p, x) =

∫

A

e−ǫ′ydy

/

∫

Ui(p,xi)

e−ǫ′ydy,

ν2i (A; p, x) =

∫

A

e−ǫ′ydy

/

∫

Ui(p,ei)

e−ǫ′ydy,

where A is any Borel set on X , ǫ ∈ R
C
++ is arbitrary, and dy refers to the

Lebesgue measure. Take b > 0 such that
∑I

i=1 niei ≪ nib1 and let Xb =
[0, b]C . For each i take a continuous function αi : ∆C−1 × XI → [0, 1] such
that αi(p, x) = 1 whenever x = (xi) ∈ XI

b and p · xi ≤ p · ei and αi(p, x) < 1
otherwise. For instance,

αi(p, x) =
1

1 + dist(x,XI
b ) + dist(xi, Bi(p))

will do, where dist(x, S) is the distance from x to a closed convex set S. Define

µi(p, x) = αi(p, x)ν
1
i (p, x) + (1− αi(p, x))ν

2
i (p, x).

Then Assumptions 1–4 clearly hold. If x = (xi) ∈ XI is feasible, then x ∈ XI
b .

Hence if p · xi ≤ p · ei, then by the definition αi(p, x) = 1 and hence µi(p, x) =
ν1i (p, x), so Xi(p, x) = Ui(p, xi). Therefore (4.1) holds.

The conclusion of Theorem 4.1 that the set of equilibria arising from a large
class of non-optimizing behavior coincides to the set of Walrasian equilibria is
qualitatively the same as Chakrabarti (2013). For comparison I describe his
model below.

In his model, given the average demand profile x = (xi) (which can be in-
terpreted as the current position of each agent type), agents put a probability
measure µi(p, x) on preferred bundles that are affordable. Thus µi(p, x) is sup-
ported on Ui(p, xi) ∩ Bi(p). Then agents update the demand by taking the
average

x′
i =

∫

yµi(dy; p, x).
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The “market” (or auctioneer) also puts a probability measure µm(p, x) on prices
that make the value of demand larger. Thus µm(p, x) is supported on

Um(p, x) :=

{

q ∈ ∆C−1

∣

∣

∣

∣

∣

q ·
I
∑

i=1

(xi − ei) ≥ p ·
I
∑

i=1

(xi − ei)

}

.

Then the market updates the price vector by taking the average

p′ =

∫

∆C−1

qµm(dq; p, x).

A social equilibrium is defined by a fixed point of the map (p, x) 7→ (p′, x′). With
a particular choice of the measures µi(p, x) and µm(p, x), Chakrabarti (2013)
shows that a social equilibrium exists and that the sets of social and Walrasian
equilibria coincide.

The difference between my model and Chakrabarti (2013)’s is the following.
In my model agents are free to demand bundles outside their budget as long
as they put some probability within their budget, whereas in Chakrabarti’s
model agents demand bundles only within their budget. My assumption has
some realism since we are free to dream of becoming rich. The price to be paid
with this weaker assumption is that the resulting average demand may not be
feasible. In my model, agents apply the Bayes rule to update their demand
distribution so that the demand becomes feasible. This aspect is what replaces
utility maximization in the Walrasian model and the better response demand
in Chakrabarti’s model.

5 Application: endogenous wage distribution in

a search model

The example is a standard search model as in McCall (1970) with a twist of
Bayesian general equilibrium theory. While in a typical search model we as-
sume that the distribution of wage offer is exogenous, by using Bayesian general
equilibrium theory we can make sharp predictions about it. Time is discrete.
There is only one agent type, workers, who can be either employed or unem-
ployed. At period t, each unemployed worker gets an i.i.d. wage offer w that he
believes to come from a stationary prior P . If the worker accepts the offer w,
he becomes employed and consumes w forever (and goes out of the model be-
cause for simplicity I do not explicitly model firing). Otherwise, he receives an
unemployment compensation c and waits for another offer next period. The sup-
ply of the consumption good is exogenously given at y per unemployed worker
(y > c). The actual wage distribution (posterior) is determined by Bayes’s rule.
A worker’s objective is to maximize EP

∑∞
t=0 β

tu(ct), where ct is consumption
and EP denotes the expectation under the prior P .

An unemployed worker’s Bellman equation is

v(w) = max

{

u(w)

1− β
, u(c) + β EP [v(w

′)]

}

.
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The reservation wage w̄ is determined by7

u(w̄) = u(c) +
β

1− β

∫ ∞

w̄

(u(w)− u(w̄))P (dw). (5.1)

Since the worker consumes c if w < w̄ and w otherwise, the offer set is X =
{c} ∪ [w̄,∞). The measure µ on the offer set consists of the probability mass
Pr(w ≤ w̄) = P (w̄) on the point c and the probability measure P restricted on
the set [w̄,∞). For this economy let us show that a genuine Bayesian general
equilibrium exists. Assumption 1 is automatic if P is a probability measure.
Assumption 2 hold because x ≥ c for x ∈ X and c < y. Assumption 3 is
trivial because since there is only one commodity, the relative price is always
p = 1. Assumption 4 is vacuous. Hence by Theorem 3.3, there exists a genuine
equilibrium.

Let π be the entropy price and define the dual function H∗ by

H∗(π) = log

(

e−πcP (w̄) +

∫ ∞

w̄

e−πwP (dw)

)

+ πy.

By minimizing the Kullback-Leibler information (or minimizing the dual func-
tion H∗; see Theorem 3.1), we obtain

d

dπ
H∗(π) = 0 ⇐⇒

ce−πcP (w̄) +
∫∞

w̄
we−πwP (dw)

e−πcP (w̄) +
∫∞

w̄
e−πwP (dw)

= y. (5.2)

Given the prior P , (5.1) determines the reservation wage w̄ and (5.2) determines
the entropy price π. The density of the actual wage distribution is proportional
to e−πwP (dw).

Now suppose that the initial prior P0 is exponential and at each period
workers update the prior according to the rule Pt+1(dw) ∝ e−πtwPt(dw), that
is, by extrapolating the actual (posterior) wage distribution to those wages
under the reservation value. Then Pt is exponential with a parameter λt that
evolves according to λt+1 = πt + λt, where the reservation wage wt and the
entropy price πt are determined by (5.1) and (5.2), which reads in this case

u(wt) = u(c) +
β

1− β

∫ ∞

wt

(u(w)− u(wt))λte
−λtwdw, (5.3a)

ce−πtc(1− e−λtwt) + λt(1+(πt+λt)wt)
(πt+λt)2

e−(πt+λt)wt

e−πtc(1− e−λtwt) + λt

πt+λt
e−(πt+λt)wt

= y. (5.3b)

The unemployment rate at period t is 1 − e−(πt+λt)wt . At first glance the rule
Pt+1(dw) ∝ e−πtwPt(dw) might seem too strong, for workers learn the wage dis-
tribution itself at the end of each period. However, in order for this rule to be
feasible, workers only need to know the current GDP, unemployment rate, un-
employment compensation, and reservation wage because the wage distribution
(which is exponential) can be recovered by these information.

Since the entropy price πt is nonnegative, the sequence of exponential pa-
rameter {λt} either converges or diverges to ∞. The interesting case is the

7See, for example, Equation (6.3.3) in (Ljungqvist and Sargent, 2004, p. 144).
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former. Substituting wt = w̄, πt = 0, and λt = λ in (5.3), we obtain the steady
state by solving

u(w̄) = u(c) +
β

1− β

∫ ∞

w̄

(u(w) − u(w̄))λe−λwdw,

c(1− e−λw̄) +
1 + λw̄

λ
e−λw̄ = y.

As a numerical example, I choose the constant absolute risk aversion (CARA)
utility function u(w) = 1

a
e−aw with absolute risk aversion a = 3, and other

parameter values are: discount factor β = 0.9, unemployment compensation
c = 1, and initial exponential parameter λ0 = 0.001. The initial per capita
consumption good is y = 10, but it (unexpectedly) plunges to y = 8 at t = 21.
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Figure 1. Time series of per capita GDP yt (top left), reservation wage wt (top right), exponential
parameter λt+1 = πt + λt (bottom left), and unemployment rate (bottom right, in percent).

Figure 1 shows the time series of per capita output yt, reservation wage wt,
exponential parameter πt+λt, and unemployment rate. As seen in the figure, the
reservation wage hardly respond to the negative output shock. The reduction
in output is adjusted through an increase in unemployment rate and decrease
in the variation of wage (note that the standard deviation of the exponential
distribution with parameter λ is 1/λ: see the bottom left panel of Figure 1).
This result—quantity adjustment rather than price adjustment—is qualitatively
in accordance with empirical findings (Bewley, 1999).

6 Conclusion

This paper has reinterpreted Foley (1994)’s statistical equilibrium as an equilib-
rium concept for an economy in which agents demand commodities according
to a not necessarily optimizing but satisficing behavioral rule. The Bayesian
general equilibrium is a situation such that the price is correctly anticipated

25



and agents no longer revise their behavior. I proved the existence of equi-
librium under much weaker assumptions than previous works. I also showed
that the equilibrium is informationally efficient and that if each offer set is
contained in the upper contour set to the average demand and coincide to the
upper contour set within the budget set, then the set of Bayesian and Walrasian
equilibria coincide. Therefore the Walrasian equilibrium is robust in the sense
that it arises from a large class of non-optimizing behavior. Although still not
well known in the economics literature, the fact that applying the Bayes rule
implies the minimization of the Kullback-Leibler information in large samples
(Van Campenhout and Cover, 1981) seems an important property that deserves
more attention.

An interesting (and challenging) future research topic might be to analyze
the relation between BGE and recursive equilibria (Markov equilibria), the stan-
dard equilibrium concept used in modern macroeconomics. In many applica-
tions, recursive equilibria are unique but only because the assumption of point
expectations is made (price function) and distributions over exogenous vari-
ables are taken as given. If, in contrast, we use the concept of Markov equilibria
defined as a joint Markov process over exogenous and endogenous variables
(Duffie et al., 1994), then indeterminacy of equilibria is the rule. Krebs (1997)
has shown how to use maximum entropy to resolve this indeterminacy issue
by using the concept of statistical expectational equilibrium (SEE), which is in
a sense the most likely rational expectations equilibrium. In the example of
Section 5, BGE and SEE coincide. Whether this property is robust is left for
future research.

A Bayesian inference and maximum entropy

Given a multinomial distribution p = (p1, . . . , pK), where pk ≥ 0 and
∑K

k=1 pk =
1, Shannon (1948) defined its entropy by

H(p) = −
K
∑

k=1

pk log pk. (A.1)

Jaynes (1957) proposed that when we want to assign probabilities p = (p1, . . . , pK)
given some background information (such as moment constraints), we should
maximize the Shannon entropy (A.1) subject to the constraints imposed by the
background information. This is the original maximum entropy principle (Max-
Ent). A prototypical example of such an inference problem is the die problem
in Jaynes (1978), which dates back to a 1962 lecture:

Suppose a die has been tossed N times and we are told only that
the average number of spots up was not 3.5 as one might expect for
an “honest” die but 4.5. Given this information, and nothing else,
what probability should we assign to i spots in the next toss?

One drawback of the Shannon entropy is that it is not clear how to define it
for distributions on a continuous space (say, Euclidean space). To circumvent
this difficulty, Kullback and Leibler (1951) introduced the information measure

H(p; q) =

∫

p(x) log
p(x)

q(x)
dx,
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where q(x) is the “prior” and p(x) is the “posterior” density. Here we are
implicitly using the Lebesgue measure dx and the density functions with respect
to the Lebesgue measure, but it does not need to be so. A big advantage of the
Kullback-Leibler information is that it is invariant to the choice of the reference
measure: if measures P,Q, µ1, µ2 are mutually absolutely continuous and pi =
dP/dµi, qi = dQ/dµi are Radon-Nikodym derivatives (which correspond to
density functions of probability distributions), then

H(p1; q1) =

∫

p1 log
p1
q1

dµ1 =

∫

p2 log
p2
q2

dµ2 = H(p2, ; q2),

so the choice of µ1, µ2 is irrelevant. Thus given any “prior” measure Q and
“posterior” measure P , we can define the Kullback-Leibler information8 of P
with respect to Q by

H(P ;Q) =

∫

dP

dQ
log

dP

dQ
dQ =

∫

p log
p

q
dµ, (A.2)

where µ is any reference measure and p = dP/dµ, q = dQ/dµ are Radon-
Nikodym derivatives (density functions).

The Shannon entropy (A.1) corresponds to the Kullback-Leibler information
(A.2) with respect to the uniform prior on a discrete set modulo the sign and
an additive constant. Thus the maximum entropy principle of Jaynes (1957)
can be generalized to what I refer to as the minimum information principle,
which prescribes to minimize the Kullback-Leibler information (A.2) subject to
the given constraints. Axiomatizations of the minimum information principle
have been obtained by Shore and Johnson (1980), Caticha and Giffin (2006),
and Knuth and Skilling (2012).

Returning to Bayesian inference, Van Campenhout and Cover (1981) showed
that Bayes’s theorem implies the minimum information principle in the following
sense: the conditional distribution of a random variable Xn given the empirical
observation

1

N

N
∑

n=1

T (Xn) = T̄ ,

where Xn’s are i.i.d. with prior density g, converges to fλ(x) = eλ
′T (x)g(x)

(suitably normalized) as N → ∞, where λ is chosen to satisfy the population
moment constraint

∫

T (x)fλ(x)dx = T̄ .

This fλ(x) turns out to be the solution to

min
f

H(f ; g) subject to

∫

T (x)f(x)dx = T̄ ,

i.e., the minimum information problem, and that λ is the corresponding La-
grange multiplier.9 Although Van Campenhout and Cover (1981) proved the

8In the literature this quantity is also known as the relative entropy, cross entropy, infor-
mation gain, I-divergence, etc.

9The solution of the more general entropy-like minimization problem can be found in
Borwein and Lewis (1991, 1992).
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statement only for the case T is a real function, Csiszár (1984) showed that
the same conclusion holds even if T is vector-valued and the sample moment
constraints 1

N

∑N
n=1 T (Xn) = T̄ are replaced by the condition that the sample

moments belong to a specified convex set, in particular with inequality con-
straints. Thus computing the posterior distribution (in the Bayesian sense)
reduces to solving the minimum Kullback-Leibler information problem, at least
in the large sample limit.

B Proof of equilibrium existence

Proof of Step 1. That H∗(ξ; p, x) is C1 in ξ and is differentiable under the
integral sign follow by Assumption 1 and Lebesgue’s dominated convergence
theorem. I only show that H∗(ξ; p, x) is continuous in (p, x, ξ) since the case for
its first derivatives is similar. Let (pn, xn, ξn) → (p, x, ξ) as n → ∞, fn(y) =
e−ξ′

n
y, and f(y) = e−ξ′y for y ∈ R

C
+. Then for any sequence such that yn → y, we

have fn(yn) → f(y). (This property is referred to as “fn continuously converges
to f”.) Since fn ≤ 1, {fn} are uniformly µi(pn, xn)-integrable, i.e.,

lim
α→∞

sup
n

∫

fn>α

fn(y)µi(dy; pn, xn) = 0.

(Just take α ≥ 1.) Therefore by Theorem C.5, we have

lim
n→∞

∫

fn(y)µi(dy; pn, xn) =

∫

f(y)µi(dy; p, x).

Hence
∫

e−ξ′yµi(dy; p, x) is continuous in (p, x, ξ), and so is H∗(ξ; p, x).

Proof of Proposition 3.5. E has a Bayesian general equilibrium because (3.14)
is stronger than Assumption 2. Suppose that E has a non-degenerate equilib-
rium (p, x, (fi)). Then

xi =

∫

yfi(y)µi(dy; p, x) ∈ cl coXi(p, x).

By market clearing and the nature of Lagrange multipliers, we have

I
∑

i=1

ni(xi − ei) = x̄[f ;µ(p, x)]− ē ≤ 0

and p ·
∑I

i=1 ni(xi− ei) = 0. Then for any y = (yi) with yi ∈ Xi(p, x), by (3.14)
we get

p ·
I
∑

i=1

ni(yi − ei) ≥ 0 = p ·
I
∑

i=1

ni(xi − ei),

so p · y ≥ p · xi for all i and y ∈ Xi(p, x). Hence, by Definition 2.4, (p, x) is a
degenerate equilibrium.

Let En = {I, {ni} , {ei} , {µn
i }} be an economy such that

µn
i (B; p, x) = µi

(

(1 − 1/n)−1B; p, x
)
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for any Borel set B, that is, the prior µn
i (p, x) is obtained by shrinking the

domain of µi(p, x) by 1− 1/n about the origin. Then the offer set is Xn
i (p, x) =

suppµn
i (p, x) = (1− 1/n)Xi(p, x), so

I
∑

i=1

ni inf {p · y | y ∈ Xn
i (p, x)} =

(

1−
1

n

) I
∑

i=1

ni inf {p · y | y ∈ Xi(p, x)}

<

I
∑

i=1

ni inf {p · y | y ∈ Xi(p, x)} .

Hence by (3.14) we get

I
∑

i=1

ni inf {p · (y − ei) | y ∈ Xn
i (p, x)} <

I
∑

i=1

ni inf {p · (y − ei) | y ∈ Xi(p, x)} = 0.

By Theorem 3.3, the economy En has a non-degenerate equilibrium (pn, (xn
i ), (f

n
i )),

where

xn
i =

∫

yfn
i (y)dµi(p

n, xn) ∈ cl coXi(p
n, xn).

Then by market clearing and the nature of Lagrange multipliers, after some
algebra we obtain

I
∑

i=1

ni(x
n
i − ei) ≤ 0 and pn ·

I
∑

i=1

ni(x
n
i − ei) = 0, (B.1)

where ē =
∑I

i=1 niei is the aggregate endowment. Since xn
i ∈ cl coXi(p

n, xn) ⊂
X ⊂ R

C
+ and {xn

i } is bounded (∵ market clearing), by taking a subsequence
if necessary we may assume xn

i converges to some xi as n → ∞. Since ∆C−1

is compact, we may also assume pn → p. Letting n → ∞ in (B.1), we get
∑I

i=1 ni(xi − ei) ≤ 0 and p ·
∑I

i=1 ni(xi − ei) = 0. By Assumption 4, we have
xi ∈ cl coXi(p, x), where x = (xi). By the same argument as above, (p, x) is a
degenerate equilibrium.

C Mathematical Results

Lemma C.1 (Chebyshev’s inequality). If f, g : R → R are increasing (decreas-
ing) functions and X is a random variable, then

E[f(X)g(X)] ≥ E[f(X)] E[g(X)].

Proof. Let X ′ be an i.i.d. copy of X . Since f, g are monotone, we have

(f(X)− f(X ′))(g(X)− g(X ′)) ≥ 0.

Taking expectations of both sides, noting that X,X ′ are i.i.d., and rearranging
terms, we obtain E[f(X)g(X)] ≥ E[f(X)] E[g(X)].

Clearly if one of f, g is increasing and the other is decreasing, the reverse
inequality holds.
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Theorem C.2 (Generalized Kuhn-Tucker). Let X be a linear vector space,
Z1, Z2 normed spaces, Ω a convex subset of X, and P the positive cone in Z1.
Assume that P contains an interior point.

Let f be a real-valued convex functional on Ω, G1 : Ω → Z1 a convex map-
ping, and G2 : X → Z2 an affine mapping. Assume the existence of a point
x1 ∈ Ω for which G1(x1) < 0 (i.e., G1(x1) is an interior point of N = −P ) and
G2(x1) = 0, and that 0 is an interior point of G2(Ω). Let

µ0 = inf f(x) subject to x ∈ Ω, G1(x) ≤ 0, G2(x) = 0 (C.1)

and assume µ0 is finite. Then there exist z∗1 ≥ 0 in Z∗
1 and z∗2 ∈ Z∗

2 such that

µ0 = inf
x∈Ω

[f(x) + 〈G1(x), z
∗
1〉+ 〈G2(x), z

∗
2〉] . (C.2)

Furthermore, if the infimum is achieved in (C.1) by x0 ∈ Ω, it is achieved by x0

in (C.2) and 〈G2(x0), z
∗
2〉 = 0.

Proof. Similar to (Luenberger, 1969, Theorem 1, p. 217).

Proposition C.3. Let (X,B, µ) be a measure space, where X is a topological
space, B is the Borel σ-algebra, and µ(X) > 0. Let T : X → R

C be measurable.
Then,

f(ξ) := log

(
∫

e−ξ′T (x)µ(dx)

)

is convex and lower semi-continuous on dom f .10 Furthermore, f is strictly
convex if dimT (suppµ) = C.11

Proof. See Proposition B.4 in Toda (2010).

Proposition C.4. Let (X,B, µ) be as in Proposition C.3 and φ : X → R be
measurable. If

∫

etφ(x)µ(dx) < ∞ for some t > 0, then

lim
t→∞

1

t
log

(
∫

etφdµ

)

= ess supφ. (C.3)

If φ is upper semi-continuous, then (C.3) is equal to sup {φ(x) |x ∈ suppµ}.

Proof. Let En = {x ∈ X |φ(x) ≥ −n}. If µ(En) = 0 for all n, then

µ(X) = µ (
⋃∞

n=1 En) = lim
n→∞

µ(En) = 0,

which contradicts suppµ 6= ∅. Therefore µ(En) > 0 for some n. Letting

v = ess supφ = sup {c |µ({x ∈ X |φ(x) ≥ c}) > 0} ,

we have v > −∞.
Let us first prove (C.3) when v < ∞. Define

X+ = {x ∈ X |φ(x) > v} , X− = {x ∈ X |φ(x) ≤ v} , and

Xn =

{

x ∈ X

∣

∣

∣

∣

φ(x) ≥ v +
1

n

}

.

10dom f = {x ∈ X | f(x) < ∞} is the domain of f .
11For a subset A of a vector space, dimA denotes the dimension of the smallest affine space

that contains A.
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Since X+ =
⋃∞

n=1 Xn and µ(Xn) = 0 by the definition of v, we have µ(X+) = 0.
Obviously,X± are disjoint andX+∪X− = X , so µ(X−) = µ(X) > 0. Fix t0 > 0
such that

∫

et0φ(x)dµ < ∞. Then, for all t > 0 we obtain
∫

etφ(x)dµ = etv
∫

X−

et(φ(x)−v)dµ. (C.4)

Denote the integral over X− in (C.4) by I(t). Since φ(x) ≤ v for x ∈ X−, for
each x ∈ X− the integrand et(φ(x)−v) is decreasing in t, so I(t) is decreasing in
t. (In particular, 0 < I(t) < ∞ for t ≥ t0.) Hence for t ≥ t0 we obtain

1

t
log

(
∫

etφ(x)dµ

)

= v +
1

t
log I(t) ≤ v +

1

t
log I(t0). (C.5)

Letting t → ∞ in (C.5), we obtain

lim sup
t→∞

1

t
log

(
∫

etφ(x)dµ

)

≤ v. (C.6)

To show the reverse inequality, take any ǫ > 0 and let

A = {x ∈ X− |φ(x) ≥ v − ǫ} .

By assumption and the definition of X±, we have

µ(A) = µ({x ∈ X |φ(x) ≥ v − ǫ}) > 0.

By taking a compact subset of A if necessary, we may assume 0 < µ(A) < ∞
since µ is regular. Therefore we obtain

1

t
log

(
∫

etφ(x)dµ

)

≥
1

t
log

(

et(v−ǫ)

∫

A

et(φ(x)−v+ǫ)dµ

)

≥ v − ǫ +
1

t
logµ(A). (C.7)

Letting t → ∞ in (C.7) and then ǫ → 0, we obtain

lim inf
t→∞

1

t
log

(
∫

etφ(x)dµ

)

≥ v. (C.8)

(C.3) follows by (C.6) and (C.8).
If v = ∞, let Fn = {x ∈ X |φ(x) ≥ n}. By the definition of v, we have

µ(Fn) > 0. Then we obtain the same result as (C.7) with A replaced by Fn and
v − ǫ replaced by n. Letting n → ∞ we get (C.3).

Finally let us show ess supφ = sup {φ(x) |x ∈ suppµ} if φ is upper semi-
continuous. Let u = sup {φ(x) |x ∈ suppµ}. If u < ∞, for all ǫ > 0 there exists
an x0 ∈ X such that u − ǫ < φ(x0). Since φ is upper semi-continuous, there
exists an open neighborhood U of x0 such that x ∈ U implies φ(x) > u − ǫ.
Since µ(U ∩ X) > 0 by assumption, it follows that v ≥ u − ǫ. Since ǫ > 0 is
arbitrary, we obtain v ≥ u. A similar reasoning holds for the case u = ∞.

To show the reverse inequality, take any ǫ > 0. By the definition of v, we
have µ({x ∈ X |φ(x) ≥ v − ǫ}) > 0. In particular, there exists an x0 ∈ suppµ
such that φ(x0) ≥ v − ǫ. Therefore,

u = sup {φ(x) |x ∈ suppµ} ≥ φ(x0) ≥ v − ǫ.

Since ǫ > 0 is arbitrary, we obtain u ≥ v. Therefore u = v.
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Finally, I need a convergence theorem of Lebesgue integrals with varying
measures. Let X be a locally compact second countable Hausdorff space (e.g.,
Euclidean space) with Borel σ-algebra B. We say that fn continuously converges
to f , denoted by fn →c f , if lim fn(xn) → f(x) for any xn → x.12

Theorem C.5. Let µ, {µn} be finite Borel measures on X. Suppose that fn ≥ 0,
fn →c f , µn → µ weakly, and

∫

fndµn < ∞ for all n. Then

lim
n→∞

∫

fndµn =

∫

fdµ

if and only if {fn} is uniformly {µn}-integrable, i.e.,

lim
α→∞

sup
n

∫

fn>α

fndµn = 0.

Proof. See (Serfozo, 1982, Theorem 3.5).
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