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THE ASYMPTOTIC VERTEX FUNCTION IN A CROSSING
: *
SYMMETRIC BOOTSTRAP MCDEL OF THE HADRONS
1.
John Harte
Department of Physice and Lawrence Radiation Laboratory

University of California, Berkeley

ABSTRACT |

‘An asymptotic solution to an off-shell, nonlinesar, crossing syumetric
béotstrep egquation for the vertex funétion is found, thus determining the
explicit depencence of the asymptotic vertex function on all three vari-
ables. The equation bootstraps the entire vertex function rather than
Just the coupling constant and describes the constituents of a composite
particie asvcomposite particles. fhe aéymptotic golution 1is characterized
by a constant which wé show to0 be universal, i.e., independent of the
types of particles coupling to a given vertex. This allows us to predict
the relative rates of decreasé of all hadronic form factors. The pre-
dicted behavior for the NNy and the N¥Ny form factors is in good
agreenznt wilh experiment. Several extensions énd further tests of the

theory are proposed and will be discussed in future papers.

This work was done under the auspices of the U.S. Atomic Energy Commissior

T AEC Postdoctoral Fellow under contract No. AT(11-1)-34.
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I. INTRODUCTION

This paper is the second ih a series dethed to thé asymptotic
behaviér of'verféx fuhétiohé and scattériné amblitudes iﬁ a:créssing
symmétric bbotstré? model. Hére, as in the‘first’papérl (hereaftér'
referred to as I);vwe-shall restrict our attention to a étudy 6f‘the
vertex function. The éiossing*symmetrié’Bethe-Salpeter bound state
eéuatibn which we ‘in§e3tigate describes the bootstrap of'ah entire
vertex function réther'fhan just thé.coupling'constant which is the
on-shell value of the vertex function. BecauSé the'bOOtstrap equation‘
is crossing symmetrie, the constituents of the composite‘pértiClégare,
tﬁeﬁéelves, reéliétically described as composite particles.2 .‘

The bootstrap equation is nonlinear in the vertex function and probably
too aiffiéult to employ in practical calculations of masses and coupling

‘congtants; for this reason we content ourselves with asymptotic state-

ments. Thus we are bootstrapping the high energy behavior of the strong

interactions, rather than the hadrons themselves. It is our hope that

this self-consistent asymptbtic behavior, which we shall see is well
behaved at-large momenta, may serve to regularize the field theory and
thus ailcwvthe calculation of masses and coupling constants_within the
framework of the more standard, linear bootstrap equatioﬁs with effective
form'factors‘given by Eq.»(éil9) of Section II. In any case, we shail
see that the tpgory cantains 8 gfeat deal of predictive ﬁower even at the
asymptotic level in the 1nformation it provides about forﬁ factors and,
as we shall discuss in é subsequeﬁt‘paper, about large angle hadron-

hgdron scattering.



let us first briefly review the results of I. There we actually
performed three model cé,lculations: First we derived and found the asymp-
totic solution to a nomlinear Schroedinger equation describing the bound
state of a composite particle in a fixed-source potential, subject to
the requirement that the composite-constituent particle and the bound
state of the éomposite-constituent particle have the same wave fﬁnction.
Then we investigated a relativistic Bethe-Salpeter equation bootstrap
model i#‘which'the exchanged particle coupled with a form factor which
waé'directly related to the bound state wave function. In order to
simplify the equation, one of the two constituents was taken to be an
elementary particle with a point interaction. This simplification
allowed us to deal with vertex functions depending on only one variable
rather than thrge as will be the case for the arbitrary vertex function
which we investigate here. Finally we treated a two-body Schrdedinger

equation in which both of the constituent particles were composite. In

all three cdses we found that the wave function of the composite particle
decreased eprnentially in the square root of the invariant momentum
transfer variable. | |
We begin this paper with an extension of I to the full relativistic

problem with no elementary particles. Thus we are able to find the
vertex function for the coupling of three composite hadrons in an asymp-
totic limit in which the four-momentum squared of one or more of the
three legs approach infinity. We show that this asymptotic vertex
function is characterized by a universal constant which is independent
of the types of particles coupling at the vertex, if the bootstrap is
truly reciprocal. In Section III we discuss the implications of our

‘result and, where possible, compare with experiment. The asymptotic



vertex function derived in Section II allows us to relate the nucleon
form factor to that of auny other hadron. The prediction for the

N*Ny vertex is compared with experiment and is in good agreement. It

is observed that a measuremenf.of the‘pion form factor would provide an
excellenttgsf;of_the theory as the predicted behavior of the form factor
of this particle at large mqmentﬁm*transfer is strikingly different from
tpat_for thé other hadrons.‘ Finaliy othef applicat;ons of the theory are
mentioned, although a detailed treatment of these will be given in sub-

sequent papers.
II. THE ASYMPTOTIC VERTEX FUNCTION

The crossing symmetric, Bethe-Salpeter bootstrap equation3 (Bq. (1.h4)
of I) which we shall investigate here describes the bootstrap of a scalar

3

meson with an effective ¢ vinteraction.h We will restrict ourselves
to the single-channel, spiniess problem forrsimplicity, although our
results, as we shall argue later, are independent of this aspproximation.

Tyevequa%ién reads (see‘I for details)
Go-ly(f, 2)) 1 (2p)% )
=j‘%x@%@£F%%chfxgp%>< .Xau
x X((2-K)% (p-k)%, (2-2)®) [(p-k)? - 121 (&%, (px)2,p°)

and is illustrated in Fig. (1). P, peand k denote four-vectors through-

out the paper. X 1s the Bethe-Salpeter wave function for the composite

particle with mass P° = M, G, is the product of the constituent particle



propagators, and we have assumed the ladder approximation for’thg
interaction. We will show in a subsequent paper that our asfﬁptotic
results are valid for a significantly wider class of kernels than the
lowest order one treated here. It should be stressed that although

]

(2.1) has a non-crossing-symmetric appearance due to the condition

P2 = M?, the equation actually contains the full symmetry because the

boundary condition, P = M?, is symmetric in the sense that it could
have been arplied to any of the.three external legs.

(2.1) is sufficiently complicated that we will not attempt to
defermine the precise asymptotic solution, as we did in I, but will only
determine the exponential factor in the asymptotic solufion. That is,
we will not attempt to solve for the polynomial or inverse polynomial,
which may multlply the exponential term in the asymptotic limit of

2
x(p,% p,

s p3 ). Since Gb is simply a polynomial (equal to the pro-
duct of the bare propagators in the asymptotic limit) we can safely

ignore it and the othér.propagator in Eq. (2.1). It will also be more
convenient to work with the vertex function, T', rather then the»wave
functicn which ie related o P.by = G, so that Eq. (2.1) can finally

be written

r(E (pBpP) ~ f a*e 1P, (k)2 K°) X
(2.2)

x  T((2-5)% (k)% (B-p)2)r (x5, (p-k)5,50)

While we have been unable to establish the validity of the Wick
rotation for this equation, we shall assume it from here on and consider
it as an equation in a Fuclidean space. We shall use the method of

steepest descent (m.o.s.d.) to find an asymptotic form for T° which
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solves Eq. (2.2) in an asymptotic limit in which 22 and/or (g{p)z -,
In order to illustrate the use of the m.o.s.4., let us digress
briefly and look at a simpler problem which we treated in I - the re-
lativistic bootstrap with one elementary-constituént and one composite-
constltuent The asymptotic bootstrap equation fo: this problem

(Eg. (3.3) cf 1) reads
’ELX(B fd k k X(k ) X((p—ﬁ) ) . - (2.3)

Diegrammatically this equation is described by Fig. (1) except that
one vertex function in the kernel is replaced by a point interaction
and each vertex function is assumed to depend only on the invariant
momentum—sQuared of the elementary particle leg attached to it rather

than on all three invariants as in Eq. (2.2). In I, we showed that

1/2

~1/2,- ap 2) »was an asymptotic solution to

, wvhere p =(p

X(p) ~p D
this équation. We use the m.o0.s.d. now to show that if we assume a .
- general, trial asympototic‘solution of the form

o |
X(p) ~ p’e “BF (2.4)

then vy =1 . _
Substituting Eq. (2.4) into Eq. (2.3) we obtain the asymptotic

(Euclidean) equation

R Y
K7 pppl¥ e ¥ o 2l

p’-l+v e aPY "'J dhk
/ S 2, 2 v/2
= hrf dkf dx (1-x° (+ p° - 2rpx) ' © % (2.5)

/

- akY - a(k + p 2kpx)

OOV S - B e e

ORI



The r.h.s. of this equation can be cast into a form suitable for the
application of the m.o.s.d. by introducing the change of variable
k = yp, and rewriting Eq. (2.5) in the form

S | ( /2
R o apY ~ hxpkjp dyu/‘l dx exp-{- apY [yY + (y2 i 1 -2yx) -
: o - _

o

(2.6)
1/2 ., 1/2
CAix®) T Aa(er)?tY An(®p® + 28 - o) ]}
apT apr apr
In the asymptotic limit p 9« , the logarithmic terms can be dropped,
as they only contribute polynomisls multiplying the exponenfial term
in the asymptotic limit of the integral, whereas our interest now is
only in the eXponentiai term. Then, by the m.o.s.d. we obtain the
equation
_ | ¥
et -8 Ty ,x )
wvhere f(yo,xo) is the minimum value of the function
. 2 /2
t(y,x) =y + (y" +1 - 2yx) . (2.8)

It is straightforward to show5that for v = 1 the minimum of

£(y,x) is given by y = % » X = 1 and we obtain the result

YA
fgry) =(3) + (2) =27 (2.9)



For Eq. (2.7) to be asymptotically correct we require
A . , . . . T
f(yo:xo) =1 o o (2°10)

or
Yy =1 o (2.11)

as we set cut to prove.

':We cbuld have alsobpérformed the x integration explicitly and
then carried out the m.o.s.d. in one dimension and coteined the same
result. In any cése,'itwis'cléar that the complexitiésvaésociaﬁed
with the ‘four-dimensionality of the space were irrelevant to our final
result. In addition, it can be seen that the propagators, oerolynomial
terms, in Eq. (2.5) did not contribute to the exponent in the asymptotic
limit, but only gave rise to polynomials.

Now we turn to the reiétivistic bootstrap model (Eq. (2.2)) with no
elementary particles and with full vertex syﬁmetry; The additional soﬁrce
of complexity in-this equatioﬁ is the dependence of thé solution on three
variables. With the simpler'equation discussed above, we were able to
prove a theorem (see Appendix of I) implying that in order to verify the
consistency of a particular asymptotic form for the wave’fuﬁction, it
was sufficient.to determine the asymptotic behavior of the r;h.s. of

Eq. (2.2) with each X replaced by X, , the asymptotic part of the

A
wave function. The vertex function, here, depends on three invariants,

s0 we malie the decomosition

2_2_2 2_2_2 2 _2_2 P



Where FA > £ if one or more of the invariants piQ approach in-

finity. The theorem proved in I can then be shown to hold and states

that we can check the consistency of the asymptotic behavior, FA ;y by
replacing T by PA
straightforward and proceeds analagously to that in I, so it will not

in the integrand in Eq. (2.2). The proof is

be given here. We emphasize that by asymptotic we mean that PA is

the leading term in the vertex function if any or all of the invariant
momenta ple,paz,p32 approach infinity. We shall restrict our investi-
gation of Eq. (2.2) to symmetric functions of the three invariants which
have the property that

- cp
2 2 2 1
'I\A(Pl )pe )p3 ) ~ e (2'13)

for p12 =0 and p22, p32 finite, since this limiting behavior is
suggested by the results of I.

A plausible first guess for the form of T

A might bg

1/2
2, 2, 2
- a(p” +py" +pg)

2;p32) =e ' . (2.14)

2

After substituting this expression into Eq. (2.2), we obtain the

asymptotic equation

1/2
ot @)~ [ahx

1/2 1/2
x expl-a(p? + x° + (B0 + ((2k)Z +@-K)Z + (2-p)?) 2,
1/2
+ (F+ ()P0 )]

~

whose consistency must be verified in the limit p —w. To simplify
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fhisvequation we shéll work in one dimension since, as we saw before
and have explicitly checked in this case, this does‘not affect the
eXponential term in the vertex function; Furthermore we set P = O
without loés of_generality. If we make the substitution k =yp we

arrive at the equation

/2

—ad2p  pe -adop [yl f21+3%y) 1 (2.16)
e ~ pk/\’ dy e '
‘-m
Then, by the m.o.s.d. we have
-'&.1[2 P - a'\/-ep f(yo) o+
e ~ e ' (2.17)
where
_ ' s 1/2 ‘ '
£(y) = |yl +2 (1 +y-y) (2.18)

and f(yo) is the miuimum ﬁalue of f(y) . Since f(yo) =v2,
Eq. (2.17) cannot be valid and we conclude that the function given.by
Eq. (2.14) is not a suitable asymptofic solution to Eq. (2.2).

With the use of similar techniqués,a large class of triai
asymptotic solutions have been tested. One asymptotic'solution

to Eq. (2.2) which we have discovered is

o o p1/2

-2 (p Py P5 )

PA(plz,pza,p52) =e (2.19)
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To verify that this is indeed a solution, we substitute into Eq. (2.2).

(Now we camnnot set P = 0, clearly) and cbtain the result
' 1/2
2 22 L
- a(p“(P-p)%") ~fdkx
e

- 1/2 1/2
x o [ofRERE + (@pen et ¢

(2.20)

1/
2.2
* (0% 21] :
_ (See appendix) |
It is straightforward to verify that /in the limit 22 and/or

('13--;:')2 - o , the minimum of the function

: 1/2 | 1/2
g, pk) = (B2(0%%)  + (2p)2ex)P(Ep?) +

(2.21)

1/2
+ (EPeE)%) /

occurs when ('13-}5)2 =0 or (2-1'3)2 = 0 or ’152: 0. In other words,
g(‘g,g,}é) is a minimum whenever the invariant momentum-squared of any
of the three internal legs of the triangle graph (Fig. 1) vanish, and
thus the saddle points in the Euclidean space are }5 o = B, 1~<° =2
and k 0 = 0. At each of these three values, it is easy to check that

1/2
)

eBpk,) = (B ep% (2.22)

and hence Eq. (2.20) is satisfied. We have also verified this result
in one dimension where the integral in Eq. (2.20) can be performed exactly,
and we find agreement with the m.o.s.d. calculation.
Eq. (2.19) is actually only one example of a function which solves
EqQ. (2.2) in the asymptotic limit. The properties of Eq. (2.19) which



‘ 12
were needed in order to verify Eq. (2.22) can be expressed in the
following way. Define

. 2 . —_ . .
Taleypy s ) = e ) (2.23)
Then we simply require that
1/2 S
2 2
gi(pi ) ~ (Pi ) | v v (2.2&)
g

as Dy —Sw , and

., D , , .
as pi2 - 0, in order for Eg. (2.23) to describe an asymptbtic SOlutiﬁaﬁﬁﬁ
: S

to Eq. (2.2).

The function given By Eq, (2.19) would give rise to an unwanted
cut in the hadronic form factors at t = 0 1if that function described
the vertex function for'gl&l_pie and not jﬁst in the asymptotic limit

in which one or more of the pi2 -0, Of course the exact solution to

I SN
st

Eq. (2.1) will certainly be an extraordinarily complicated function of -
the three invarianté, but nevertheless it would be usefui in practical
calculations to have a simple function which satisfied the asympﬁotic
properfies which we have derived here and which did nof contain unwahted

singularities. Examples of such functions, satisfying Eas. (2.2L4, 2.25),

are

gi(Pie) = - 11/2 75 | (2.26)
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or
® 1/2
5@ = [ , a6 52 (2.27)
¢
wherev
[ 2 a6®u=0 X
c
1
and -
f 5 awu?) =1 (2.29)
. -

[ i

The plus sign appears under the square foot since we have Vrittén these
fﬁnctions in terms of the Euclidean varisble pia. In these examples,
ciis some non-zero constant related to the thresholds in the vertex
function.

In the following section we will assume Eq. (2.19) describes the
asymptotié vertex function and:examine the consequences of this expression
for the hadronic form factors at large t, remembering not to take seriously
the singularity structure implied by this function at pia = 0.

Finally it must be stressed that while we have foﬁnd sufficient
conditions on the vertex function in order for it to satisfy Eq. (2.2)
asymptotically, we have neither‘demonStratgd that a_unidue solution
exists nor have we shown that if one doesvéxisf, th§£ it have the asymp-
totic behavior described above. We have examined a variety of other

2

forms for the function I‘(ple,p2 ,p32) wvhich do not satisfy Egs. (2.23 -

2.25). Among these are the functions



1k

D, 1/2
2 2 2y '

-a E912.f'c2)(p2? +-c2)(p32 + ¢))

1 /2
l/2+ (P22.-_ + c?) &

- log r(plz,p22»p32) - 9[(Plz-+"cg) j+_(P3 te

snd

2 2 2 2, o2
log P(Pl_’22 »P3 ) = - a(Pl tpy, *tP; too

none of these are esymptofic solutions to Eq.(2.2).

' ITI. DISCUSSION.

P
R L]
I

Having established the asymptotic behavior, Eq.v(2 19), for the_

' vertex function, 1t is natural to ask whether one can calculate the

- value of the constant a.6 While in principle 1t can be determined

from Eq. (2 1) and the normalization condition on the Bethe Salpeter wave: '

fe  emv e mimnsmi v b

__2) 
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funcfion, one wouid have to know the entire wave function to compute.'
it in practice; this would entall solving the complete bootstrap |
problem and is clearly beyond reach now. Instead, we would like to
give an argument suggesting that a is a universal constant, indepen-
dent of fhe types of;partiéles coupling at the vertex.

In_order to shoﬁ this, we éhall assume nuclear dembcracy andvuse
the consfraints imposed by the reciprocal bootétrap to show that all
hadrons share tﬁe same qonstént a. Let us consider thevsubsyétem 6f_
hadrons N, p, n, where the N is an Np and 14 compbsite;.the
% isa pr and fN composite, and the p 15 a xx  and i composite.

We denote the asymptotic.vertex functions for the three vertices by

__ . i/2
2_2_2 a"\]Nn P Pe P3 °)
PNI\T:T(pl )P2 }p3 ) = 4
| e (0%,%.2) 1/2
2_2_ 2 p "l ~2 3 :
PNN‘K (pl )p2 )P3 ) = > (3'1)
- and v
| - (p, D 2p 2) o
2 2 _ 2y _ Fonn \P1.Pp P
FNNﬂ(pl /P2 )P3 ) = € ' M
The bootstrap equations for this system read
r = /\F T Jf
NNr  “ NNy "Nl Nl\hr N’\Tp Nl\Tp NN:: f NNar '\T\Ip Ppmr
P = [T T + - B
NNp \/P NNp " Nip PNNb \/PrﬁNh PNNh PNNb +\/PrﬁNh PNNh Fpnn (3.2)

r =
prts fr\pmr 1-‘pmr I‘pmt +fPNNp I‘NI\TJI T e
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wherevwe have dropped the momentum variables for simplicity. Now in
an integral over a triangle graph with vertices given by Eq. (2.19),
" the leading term in the asymptotic limit will be given by the function

‘ ' 1/2
-y 2 2 2 : :

- p .

e a(pl P2 3 )g : - (3.3)

where & 1is the minimm a appearing in the vertices in the

1jk
integrand. That is, the integral will be dominated by the contribution
which arises when the four-momentum squared of the intermal line which

is not connected to the vertex with the minimum value of & vanishes.

Hence we have the conditiohs

}

e T min'-{aNNh’aNNb’apﬁn
'aﬁNb-= min. {ayy s Sy, o) (3
- 8 = min {apnu’aNNb’aNNh}
which imply o
! = 8 = a . e (3.5)

NNw. - NNp prs

- Clearly this argument is generalizable to an arbifrafy number of’

- channels. Thus the one-channel problem investigated in Section I easily

k]
H

generallizes to the many;channel bootstrép and'provides us with.a universal
description of an arbitrary, asymptotic, hadronic vertex.

Let us look now at the i@pliéations of our results for the large
.ﬁomentum transfer electromagnetic form factors of the hadrons. Ve firét
'point out that Eq. (2.19) also describes the vertex couplingvé photon to
an arbitrary hadron. This can be understood byvexamining particular

Feynman graphs. For example, consider the p-dominance model which gives
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rise to the electromagnetic vertex

v . AT (P 2 P 2)P 2') V
2_2_2y Tmp‘\tlL’T2’Y3 :
Ty (P 2Pp 9P37) = - - - (3.6)
3 Tp
Now, - since
: - a(p, %, % 2)1/2 |
2_2_2 1273

" and since the consfant a appearing here is the universal a in
Eq. (2.19) it is clear that Eq. (2.19) describes the electromagnetic
form factor. More generélly, this can be made plausible by inserting
photons in Fig. (1) aé one of the lines with'momentum p or P-p (but
héver as thé bound sﬁate line with momentum g) and using the arguments
given above to establish the universality oan.

‘Therefore, the electromagnetic form factor of an on-shell hadron

of mass M is given by

| 1/2
F(t) ~ e a(-t) (3.8)

/ ’ . : ’

7

where we have set ple and p22 in Eq. (2.19)_equai to M2 and‘have

set p32 equal to ~t. We have assumeésthat the form factor is actually
félling, not oscillating, in the spacelike region. From Eq. (2.2) we

- see that the more massive the particle, the more rapidly the form factor
should decrease for large [t].

In comparing Eq. (3.8) with experiment, however, we have to take

' 8
into account a rather surprising feature of our model. We have shown
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that if the vertex function given by Eg. (2.19) is used to calculate

the two-photon eXchange.contribution to electron-~-hadron séattering,

then because the electron is a poinf particle and does’not éouple to

the photon with a composite«particié'vertex, the two-photon contribution

falls off as an inverse'power in t rather than with an exponential as

does the'onerhbton‘ekchange contribution. This dembnstratioh'actually |

depends only on the géneral properties (Eqs. (2.23 - 2.25)) of the vertex

function and not on the particular form of Eg. (2.19). Therefore thev

two-photon exchange term must eventually dominate the electron-hadron

scattering amplitude. If fhe'mpdel is correct, then, we evpect the

effective form factor of.theAhadron tokhaVe an'exponéntial dependence

in t ﬁntil F(t) is of order « and then to continue to decrease with

a poWér depehdence in t. The presence of this effect makes comparison

of experiment with Eq. (3.8) ambiguous at very large |t|, but at the

same time, of course, offers a method of checking the theory as one can

determine the existence of two-photon contributions experimentally.
Returning to Eq. (3.8), in Fig. 2 we compare the proton magnetic

form factor to the proton-N* ML transition form factor. The latter was

0

’ Q
extractedb from electroproduction datal and we have shown the data out

: _ .
to the largest measured momentum transfer. The nucleon data*l is only

shown out to t = -h(BeV/c)e which is the region in which the exponential

2

fit is\eXcellent. The straight line £1ts'®  shown in Fig. (2) are

G, (M) = 1.5 e 212(-4)"/2

(3.9)

- 2.65(-t)%/2

'GMl(N*Nf) = 1.7
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On the other hend our model predicts that

o
- -t
gymr) v

/2

1
- sy (-t)

Gm(N*Nr) ~ e . (3.10)

Comparing Egs. (3.9) and Eq. (3.10) and using mN/mN* =~ 0.76, we
find the prediction is quiﬁe well satisfied. The value of a obtained
from these fits is a = (0.7S i;ev)'3 .

This success of the theory may be relatively independent of the

2

form of P(ple,p2 ,p32) for small pie provided Egs. (2.23 - 2.25) are

satisfied. For example, if we replace Eq. (2.19)'with Egs. (2.23, é.26)
and set ’cla = c22 = (mN + mh)2 , the lowest threshold communicating
with the nucleon or the N¥, then we obtain essentially.the same result.

If we turn now to the pion form factor, we see that the small value
of fhe.pion mass 1s expected to give rise to an extremely'Slowlyndecreas-
ing asymptotic behavior. Hence, the pion form factor should not decrease
as rapidly as does the nucleon's; perhaps the p-pole will provide a good
description 6f the pion form factor out to large Itl.

In future papers we will investigate other applications of our
theory. In particular, we have found a solution to a crossing symmetric
off-shell equation for a hadron-hadron scattering amplitude in the asymp-
totic limit in which s, |t|, |u] »= . 1In this equation, we assumé each
vertex is described by Eq. (2.17) and sum an infinite set of graphs which
satisfy crossing symmetry and elastic unitarity. The solution enables us

to relate large angle scattering cross sections to electromagnetic form
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factors, but unlike the situation described above for e-p scattering,
'there'are no terms with power dependence in s, t, and u arising from
higher order graphs because now all the particles are compbsité.
| To conclude, we mention some unénéwered quesfions. We do not know
whether the condition for Eq. (2.19) to be valid isvsimply that pi2
become large or if it is that pi2 must becdme large relative to Miz.
In other words: Does Eq. (2.19) describe the couPiing constant for
three on~sheli particles when the mass of at least one ofythem is
suffiéiéntly large? Secondly, we wonder whether Eq. (2.19) describes
systems like the deuteron or even heavier nuclei. While these particles
are not generally considered within the framework of the reciprocal
bootstrap, there is no reason not be include them at very high momentum
transfers., If Eq. (2.19) describes the deuteron form factor, we expect
. 1/2 ‘ 1/2
- oamp (-t} - 8.5(-t)
G (t) ~ e : ~e

(3.11)
Since this function is decreasing extremely rapidly, we expect8 two-
photon exchange effects to become important at values of t =~ 1(Bev/c) .
Finally there is thé perplexing question of the existence and nature of
“the ( possibly nenloezl) field theory vhich underlies Eq. (2.1) in a

bootstrap universe; we. defer speculation on this subject.
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Appendix

We wish to show here that the function

2 2,24 2 2 2 2 221
g.(B p, k) = (B°(B-k)” k)% + ((B-k)” (B-p)"(p-k) 2+ (2 (pk)%p?)?
o (a.1)
in the limit in which gg and/or (g-,;g)2 approach infinity, is a
minimvm when k = P, O or p. |
We write
1’E=c2+d£+g (A.Q)

where ¢ « p=g « P = 0. Clearly q=01s asnecessary condition

for g vo be winiuum 38, in a Fuclidean space g ¥ O leads to the extra
positive caniribution + 2q2 under each square root sign in Eq (A.l).

Consider, now, without loss of generality, the case

(3'2)2 - - Mg, P2 >0 (A.3)
then the last term in Eq. (A.l) can be written |
_2, r . )
(6% (p-5)? %) = ip‘s (& + ca)((e-1)? + (c-1)a) (8.4)

L
+ ph P2 d2 [(c2 + cd) + (c-d)2 + (c=1)d] + pQPudé}L_

5 and p2

Now, a necessary condition for g to be minimum is that the p
terms in g vanish since at the values k =P, 0 and p, and under the
conditions of Eq. (A.31), g~ p. Setting the coefficients of these

terms equal to zero in Eq. (A.L4), we arrive at the four solutions

1. c=0 a=1

2. ¢=0,d-=

5. e=1,4d=0 (4.5)
b ¢=1,4 =1
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Solutions l., 2., and 3.are k = P 0, and p respectively. Solutioen

L corresponds to k =p - P and at this value, the last term in Eq. (A.1)

I~ &

equals (22 (Efg)g 22)3, Solution 4 can then be shown not to yield a
minimhm'of g by substituting k = p - P into the first and second terms
on the rlght hand side of Eq. (A 1). Since these two terms do not
vanlsh for this case, we have
2 2.4
g(P k, P-P)>(P (Pg) p)*

3 = g(P g, k) | (a.6)
where Eo =‘g, 0 or p. Hence the value §.= P, 0, and p yield tﬁe
mipima of the function g as we set out to prove. . |

| The integral (Eq. (2.20)) which we evaluated by the m.o.s.d. i,

in one dimension,of the form

u/‘_d o [83 «x-cl)e(x-ca)e)%+a2((x-cl)2(x-c3)2)%+al((x-c3)2(x_c2)2)%]
B _ (&.7)

This integral can be evaluated exactly in terms of error functions and

exponentials and can be shown to have the asymptotic behavior

L
2

g ((ege)%emep) ) ay((egmey)epmes)®)F -alleyme)lemep)®)
(4.8)

This is precisely the asymptotic behavior we have derived in Sectibn IT,
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FIGURE CAPTIONS

Diagrammatic representation of Eq. (2.1). The shaded

circles denote the Bethe-Salpeter wave function X.

Comparison of NNy and N*Nr\\form factors. The data
points denoted by & are experimentalvvalues for the
magnetic form factor GM(t) .of the’proton as measured by
Coward et al, réf. (11?, and fhe date points denoted by O
are the experimental values for ML N*N(transition form
factor as measured by M. L. Lynch et.al. ref. (10) and
analyzed by J. Dufner and Y. S. Tsai, ref. (9). The
straight line fits shown in the figure are GNN(t) =

1/2

1.5 exp[-2.12(-t)™ 7] and G, (t) = 1.7 exp[-2;65(~t)l/2].
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