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THE ASYMPTOTIC VERTEX FUNCTION IN A CROSSING 

* SYMMETRIC BOOTSTRAP MODEL OF THE HADRONS 

John Hartet 

Department of Physics and Lam"ence Radiation Laboratory 

University of California, Berkeley 

ABS~CT 

1 

An asymptotic solution to an off-shell, nonlinear, crossing symmetric 

bcotstre.p eq~lation for the vertex function is found, thus determining the 

explicit dependencE: of the asymptotic vertex function on all three vari­

ables. The equation bootstraps the entire vertex function rather than 

just the cou?ling constant and describes the constituents of a composite 

particle as co~osite particles. The asymptotic solution is characterized 

by a co.c.stant which we show to be universal) Le., independent of the 

types o:c particles c01:!.pling to a given vertex. This allows us to predict 

the relative rates of decrease of all hadronic form factors. The pre­

dicted behavior for the NNr and the N*Nr form factors is in good 

agreem:::nJ~ with expe:L~iment. Several ext:.e'1sions and further tests of the 

theory a.re prl.>posed and will be discussed in future papers. 

* This work was done under the auspices of the U.S. Atomic Energy Commissior 

t AEC Postdoctoral Fellow under contract No. AT(11-1)-34. 
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I. INTRODUCTION 

This paper is the second in a series devoted to the asymptotic 

behavior of vertex functions and scattering amplitudes in a crossing 

symmetric bootstrap model. Here, as in the firstpaperl (hereafter 

referred to as I), we shall restrict our attention to a study of the 

vertex fUnction. The crossing symmetric Bethe-Salpeter bound state 

equation which we investigate describes the bootstrap of an entire 

vertex function rather than just the coupling constant which is the 

on-shell Value of the vertex function. Because the bootstrap equation 

is crossing symmetric, the constituents of the composite particle are, 

themselves, realistically described as composite particles. 2 

The bootstrap equation is nonlinear in the vertex function and probably 

too difficult to employ in practical calculations of masses and coupling 

constants; for this reason we content ourselves with asymptotic state­

ments. Thus we are bootstrapping the high energy behavior of the strong 

interactions, rather than the hadrons themselves. It is our hope that 

this self-consistent asymptotic behavior, which we shall see is well 

behaved at large momenta, may serve to regularize the field theory and 

thus allow the calculation of masses and coupling constants within the 

framework of the more standard, iinear bootstrap equations with effective 

form factors given by Eq. "'(2:19) of Section II. In any case, we shall 

see that the theory contains a great deal of predictive power even at the 
" 

asymptotic level in the information it provides about form factors and, 

as we shall discuss in a subsequent paper, about large angle hadron-

hadron scattering. 

.' 
" 
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Let us first briefly review the results of I. There we actually 

performed three model calculations: First we derived and found the asymp­

totic solution to a nonlinear Schroedinger equation describing the bound 

state of a composite particle in a fixed-source potential, subject to 

the requirement that the composite-constituent particle and the bound 

state of the composite-constituent particle have the same wave function. 

Then we investigated a relativistic Bethe-Salpeter equation bootstrap 

model in which the exchanged particle coupled with a form factor which 

was directly related to the bound state wave fUnction. In order to 

simplify the equation, one of the two constituents was taken to be an 

elementary particle with a point interaction. This simplification 

allowed us to deal with vertex functions depending on only one variable 

rather than three as will be the case for the arbitrary vertex function 

which we investigate here. Finally we treated a two-body Schroedinger 

equation in which both of the constituent particles were composite. In 

all three cases we found that the wave function of the composite particle 

decreased exponentially in the square root of the invariant momentum 

transfer variable. 

We begin this paper with an extension of I to the full relativistic 

problem with no elementary particles. Thus we are able to find the 

vertex function for the coupling of three composite hadrons in an asymp­

totic limit in which the four-momentum squared of one or more of the 

three legs approach infinity_ We show that this asymptotic vertex 

function is characterized by a universal constant which is independent 

of the types of particles coupling at the vertex, if the bootstrap is 

truly reciprocal. In Section III we discuss the implications of our 

result and, where possible, compare with experiment. The asymptotic 
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vertex function derived in Section II allows us to relate the nucleon 

form factor to that of any other hadron. The prediction for the 

N*Ny vertex is co;."';pared with experiment and is in good agreement. It 

is observed that a measurement of the'pion form factor would provide an 

ex~elle~test of the theory as the predicted behavior of the form factor 

of t:Pis particle at large momentum transfer is strikingly different from 

that for the other hadrons. Finally other applications of the theory are 

mentioned, although a detailed treatment of these will be given in sub-

sequent papers. 

II. THE AS1'.HPTOTIC VERTEX RmCTION 

The crossing symmetric, Bethe-Salpeter bootstrap eQuation3 (Eq. (1.4) 

of I) which we shall investigate here describes the bootstrap of a scalar 

meson with an effective ~3 interaction. 4 We will restrict ourselves 

to the single-channel, spinless problem for simplicity, although our 

results, as we shall argue later, are independent of this approximation. 

The equation reads (see I for details) 

(2.1) 

and is illustrated in Fig. (1). £,.~ and ~ denote four-vectors tbrough~ 

out the paper. X is the Bethe-Salpeter wave function for the composite 

2 2 particle with mass P = M , Go is the ~roduct of the constituent particle 
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propagators, and we have assumed the ladder approximation for the 

interaction. We will show in a subsequent paper that our asymptotic 

results are valid for a significantly wider class of kernels than the 

lowest order one treated here. It should be stressed that although 

Eq. (2.1) bas a non-crossing-symmetric appearance due to the condition 
22· . 

P = M , the equation actually contains the full symmetry because the 

b d ·d . ~ . p2 M2 it· i th th t it ul·d oun ary con ~ .... ~on, =., s symme r~c n e senee a co 

have been a~plied to any of the three external legs. 

Eq. (2.1) is sufficiently complicated that we will not attempt to 

determine the precise asymptotic solution, as we did in I, but will only 

determine the exponential factor in the asymptotic solution. That is) 

'\ole will not attempt to solve for the polynomial or inverse polynomial, 

which may multiply the exponential term in the asymptotic limit of 

( 2 2 2 
X. Pl ' P2 ' P3)' Since Go is simply a polynomia.l (equal to the pro-

duct of the bare propagators in the asymptotic limit) we can safely 

ignore it and the other propagator in Eq. (2.1). It will also be more 

convenient to work with the vertex function, r, rather tl,cn tJle '!DVe 

functicn il}jich is related to r by X "~ G r, so that Eq. (2.1) can finally o 
be written 

2 22 J4 2 22 r(~ ,(£-~) ,;e ) '" d k r(£ ,(~-~) ,~ ) x 
(2.2) 

While we have been unable to establish the validity of the Wick 

rotation for this equation, we shall assume it from here on and consider 

it as an equation in a Euclidean space. We shall use the method of 

steepest descent (m.o.s.d.) to find an asymptotic form for r which 
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solves Eq. (2.2) in an asymptotic limit in which ~2 and/or ~_~)2 ~oo • 

In order to illustrate the use of the m.o.s.d., let us digress 

briefly and look at a simpler problem which we treated in I - the re-

lativistic bootstrap with one elementary-constituent and one composite­

constituent. The asymptotic bootstrap equation for t:h~.s problem 

(Eg. (3.3) cf I) reads 

" '. 

Diagrammatically this equation is described by Fig. (1) except that 

one vertex function in the kernel is replaced by a point interaction 

and each vertex function is assumed to depend only on the invariant 

momentum-squared of the elementary particle leg attached to it rather 

than on all three invariants as in Eq. (2.2). In I, we showed that 

1/2 
X (p) - p -1/2e - ap , where p == (p2) '-' was an asymptotiC solution to 

'" 
this equation. We use the m.o.s.d. now to show that if we assume a· 

general, trial asympototic solution of the form 

then r = 1 • 

v ~y 
X(p) _ P e -ap (2.4) 

Substituting Eg. (2.4) into Eq. (2.3) we obtain the asymptotic 

(Euclidean) equation 

. ('. 4 
e- apr N J d k 

l CO Jl 2 1/2 5 2 v/2 = 4r. dk dx (1-::) k +v (k2+ p - 2i-.:px) )< 
. 0 -1 



" 

The r.h.s. of this equation can be cast into a form suitable for the 

application of the m.o.s.d. by introducing the change of variable 

k = yp, and rewriting Eq. (2.5) in the form 

_ tn(py)5+v 

apr 

2 2 2 ~ 1/2 
_ tn (y p + P - ?:,~~'"'x L-Jil . 

apr if 
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In the asymptotic limit p -+00 , the logarithmic terms can be dropped, 

as they only contribute polynomials multiplying the exponential term 

in the asymptotic limit of the integral, whe=eas our interest now is 

only in the exponential term. Then, by the m.o. s.d. we obtain the 

equation 

where f(yo'xo) is the minimum value of the function 

(2.6) 

2 r/2 
f(y,x) = yr + (y + 1 _ 2yx) • (2.8) 

It is straight.forward to sho~tha.t for r ~ 1 the minimum of 

f(y,x) 13 given by y = ~ , x = 1 and we obtain the result 

(2·9) 



For Eq. (2.7) to be asymptotically correct we require 

or 

as we set c".]"-~ to prove. 

fey ,x )' = 1 o 0 

r = 1 

8 

(2.10) 

(2.11) 

"W<; could have also performed the x inter,!'atio!l '~xplicitiy and 

then ca;,-ried out the tn.o.s.d. in one dimension and ootained the same 

result. In any case, it is clear that the complexities associated 

with the 'four-dimensionality of the space were irrelevant to our final 

result. In addition, it can be seen that the"prop.:lgators, or polynomial 

terms, in Eq. (2.5) did not contribute to the eXponent in the asymptotic 

limit, but only gave rise to polyriomia1s. 

Now we turn to the relativistic bootstrap model (Eq. (2.2» with no 

elementary particles and with full vertex symmetry. The additional source 

of complexity in this equation is the dependence of the solution on three 

variables. With the Simpler equation discussed above, we were able to 

prove a theorem (see Appendix of I) implying that in order to verify the 

consistency of a particular asymptotic form for the wave function, it 

was sufficient to determine the asymptotic behavior of the r.h.s. of 

Eq. (2.3) with each X replaced by XA , the asymptotic part of the 

wave fQ~ction. The vertex function, here, depends on three invariants, 

so we mal:e the decol:I!>osition 

(2.12) 
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2 where rA > f if one or more of the invariants Pi approach in-

fini ty. The theorem proved in I can then be shown to hold and states 

that we can check the consistency of the asymptotic behavior, rA , by 

replacing r by rA in the integrand in Eg. (2.2). The proof is 

straightforward and proceeds analagously to that in I, so it will not 

be given here. We emphasize that by asymptotic we mean that r
A 

is 

the leading term in the vertex function if any or all of the invariant 

momenta P12,P22,P32 approach infinity. We shall restrict our investi­

gation of Eg. (2.2) to symmetric functions of the three invariants which 

have the property that 

(2.13) 

for P12 ~~ and P22, P32 finite, since this limiting behavior is 

suggested by the results of I. 

A plausible first guess for the form of rA might be 

After substituting this expression into Eg. (2.2), we obtain the 

asymptotic equation 

1/2 2 1/2 
x exp[-'1(~2 + ~2 + (£:.~)2) + «~_~)2 +(J2.-~)2 + (~-J2.» + 

1/.2 
+ (k2 + (k_~)2 + p2) ) ] 

t'V '" '" t'V 

(2.14) 

whose consistency must be verified in the limit p ~OO. To simplify 
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this equation we shall work in one dimension since j as we saw before 

and have explicitly checked in this case, this does not affect the 

exponential term in the vertex function. Furthermore we set P= 0 

without loss of generality. If we make the substitution k = yp we. 

arrive at the equation 

/ 2 1/2 
- a,J2 P . J 00 - a ,[2 p C! y r + 2 J + y -y) J 

e - p dy e 
-00 

(2.16) 

Then, by the m.o.s.d. we have 

- a ,'(2 p - a,J2 p f (y 0) 
e .... e 

'! 

(2.17 ) 

where 

fey) 
. 2 1/2' 

= IY/ + 2 (1 + Y -y) (2.18) 

and f(y) is the mi.uimum value of f (y ). Since f(y) = 2, o ·0· 

Eq. (2.17) cannot be valid and we conclude that the function given by 

Eq. (2.14) is not a suitable asymptotic solution to Eq. (2.2). 

With the use of similar techniques,a large claSS of trial 

asymptotic solutions have been tested. One asymptotic solution 

to Eq. (2.2) which we have discovered is 

(2.1:9) 
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To verif,y that this is indeed a solution, we substitute into Eq. (2.2). 

(Now we cannot set P:: 0" clearly) and obtain the result 

2 221/2 J 4 
- a(;e U!~) ~) ,., d k x 

e 

+ (l(.!:_~)2:f2) 1/1 . 
(See appendix) 

It 1s straightforward to verify that 1n the limit ;e2 and/or 

(~_~)2 -+ 00 , the minimum of the function 

(2.20) 

(2,21) 

occurs when (~_~)2 = 0 or (;e-~)2 = 0 or ~2 = O. In other words, 

g(p,n,k) is a minimum whenever the invariant mOmentum-squared of any _i4. .... 

of the three internal legs of the triangle graph (Fig. 1) vanish, and 

thus the saddle points in the Euclidean space are k = P, k = n 
.... 0 .... -0 I{, 

and !o = O. At each of these three values, it is easy to check that 

(2.22) 

and hence Eq. (2.20) is satisfied. We have also verified this result 
in one dimension where the integral in Eg. (2.20) can be performed exactly 
and we find agreement with the m.o.s.d. calculation. ' 

Eq. (2.19) is actually only one example of a function which solves 
Eg. (2.2) in the asymptotic limit. The properties of Eq. (2.19) ",hieh 

J . 



were needed in order to verifY Eq. (2.22) can be expressed in the 
following way. Define 

Then we simply require that 

and 

12 

(2.23) 

(2.24) 

(2.25) 

2 as Pi -+ 0, in order for Eq. (2.23) to descr-ibe an asymptotic sOlutil~'l'''i': 

to Eq. (2.2). 

The function given by Eq. (2.19) would giveriseto an unwanted .. 
cut in the hadronic form factors at t = 0 if that function described 

the vertex function for all 

in wl1ich one or more of the 

p,2 and not just in the asymptotic limit 
J. 

p, 2 -+ 00. Of course the exact solution to 
J. 

Eq.(2.1) will certainly be an extraordinarily complicated function of 

the three invariants, but nevertheless it would be useful in practical 

calculations to have a simple function which satisfied the asymptotic 

properties which we have derived here and which did not contain unwanted 

singularities. Examples of such functions, satisfying Eqs. (2.24, 2.25), 

are 

2 
2 Pi 

gi(Pi ) = 2 2 1/2 
(ci + Pi) + 

2 1/2 
(c

i 
) 

(2.26) 



or 

where 

00 

1:2 
i 

and· 

2 2 2 2 1/2 
d~ p(~ )(~ + Pi ) 

2 2 
~ p(~ ) IJ. = 0 

13 

(2.27 ) 

(2.28) 

(2.29) 

The plus sign appears under the square root since we have Written these 

functions in terms of the Euclidean variable Pi2• In these examples, 

ciis some non-zero constant related to the thresholds in the vertex 

furiction. 

In the following section we will assume Eq. (2.19) describes the 

asymptotic vertex function and examine the consequences of this expression 

for the hadronic form factors at large t, remembering not to take seriously 

2 the singularity structure implied by this function at Pi = O. 

Finally it must be stressed that while we have found sufficient 

conditions on the vertex function in order for it to satisfy Eq. (2.2) 

asymptotically, we have neither demonstrat~d that a unique solution 

exists nor have we shown that if one does exist, that it have the asymp-

totic behavior described above. We have examined a variety of other 

222 forms for the function r(Pl ,P2 'P
3 

) which do not satisfy Eqs. (2.23 -

2.25). Among these are the functions 



. ' 14 

. 2 2· 2. . 2· 2 1/2 22 1/2 . 2 2 1/2 
log r(pl'p~ ,P; )= - ~[(Pl + c ) . + (P2 + c) + (p; + c) ] 

and 

no~e of these are asymptotic solutions to Eq.(2.2). 

III. DISCUSSION 

Having established the asymptotic behaVior, Eq~ (2.19), fpr the 
" ..", 

vertex function, it is· natural to ask whether. one can calculate the 

. value of the constant a. 6 While in principle it cart be determined 
. ..". 

fromEq. (~.l) and the normalization condition on the Bethe-Salpeter wave 

j 

i 
i 

( 
, . 
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function, one would have to know the entire wave function to compute 

it in practice; this would entail solving the complete bootstrap 

problem and is clearly beyond reach now. Instead, we would like to 

give an argument suggesting that a is a universal constant, indepen-

dent of the types of, particles coupling at th~ vertex. 

In order to show this, we shall assume nuclear democracy and use 

the constraints imposed by the reciprocal bootstrap to show that all 

hadrons share the same constant a. Let us consider the subsystem of 

hadrons N, p, n, where the N is an Np and Nn, composite, the 

n is a pn and NN composite, and the p is ann and NN composite. 

We denote the asymptotic vertex functions for the three vertices by 

2 2 2 1/2 
( 2 2 2 - ~~n(Pl P2 P3 ) 

r NNn Pl JP2 'P3 ) = e , 

2 2 2 1/2 
222 - ~p (Pl P2 p} ) 

rNNn(Pl 'P2 'P3 ) = e (3.1) 

and 
2 2 21/2 

r (2 2, 2) = e 
- apnn(P1P2 P3 ) 

NNn Pl )P2 'P3 

The bootstrap equations for this system read 

r f' r = I r r - r + r r r +Jr r r NNn J NNn NI.n NNn NNp NNip 1\11\T J.VL~n NNn }r.J'p pn1C 

(3.2) 

r =Jr r r +Jr r r P,'C1t' pnn P1t'1t' pnn NNp :r..TNn NNn 
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where we have dropped the momentum variables for simpliCity. Now in 

an integral over a triangle graph with vertices given by Eg. (2.19), 

the leading term i~ the asympto~ic limit will be given by the function 

(3.3) 

-where a is the minimum a ijk appearing. in the vertices in the 

integrand. That is} the integral will be dominated by the contribution 

which arises when the four-momentum squared of the internal line which 

is not connected to the vertex with the minimum value of a vanishes. 

Hence we .have the conditions 

a1\TI\T... = min. ( a1\TI\T. ,a1\T1IT ,a } 
.nm. J.v.l.~lf J.u~p Plf1t 

(3.4) 

a = min. { a ,allT1lT , a1\T1IT } 
Plflf Plf1t u~p uulf 

which imply 

a =a =a • 
NNlf NNp p1t1t 

Clearly this argument is generalizable to an arbitrary number of 

channels. Thus the one-channel problem investigated in Section I easily 
r 

generalizes to the many-channel bootstrap and provides us with a universal 

description of an arbitrary, asymptotic, hadronic vertex. 

Let us look now at the implications of our results for the large 

momentum transfer electromagnetic form factors of the hadrons. We first 

point out that Eg. (2.19) also describes the vertex coupling a photon to 

an arbitrary hadron. This can be understood by examining particular 

Feynman graphs. For example, consider the p -dominance model which gives 
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rise to the electromagnetic vertex 

Now, since 

(3.7) 

and since the constant a appearing here is the universal a in 

Eg. (2.19) it is clear that Eg. (2.19) describes the electromagnetic 

form factor. More generally, this can be made plausible by inserting 

photons in Fig. (1) as one of the lines with momentum ~ or £-~ (but 

never as the bound state line with momentum p) and using the arguments 
IV 

given above to establish the Universality of a. 

Therefore, the electromagnetic form factor of an on-shell hadron 

of mass M is given by 

~ 1/2 
F(t) IV e- . (-t) 

where we have set 7 P12 

2 
set P3 egual to -to 

and P22 in Eg. (2.19) egual to ~ and have 

We have assumed6that the form factor is actually 

falling, not oscillating, in the spacelike region. From Eg. (2.2) we 

see that the more massive the particle, the more rapidly the form factor 

should decrease for large 't ,. 

In comparing Eg. (3.8) with experiment, however, we have to take 
8 

into account a rather surprising feature of our model. We have shown 
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that if the vertex function given by Eg. (2.19) is used to calculate 

the two~photon exchange contribution to electron-hadron scattering, 

then becaUse the electron is a point particle and does not couple to 

the photon with a composite-particle vertex, the two-photon contribution 

falls off as an inverse power in t rather than with an exponential as 

does the one-photon exchange contribution. This demonstration actually 

depends only on the general properties (Egs. (2.23 - 2.25» of the vertex 

function and not on the particular form of Eg. (2.19). Therefore the 

two-photon exchange term must eventually dominate the electron-hadron 

scattering amplitude. If the model is correct, then, \Ie expect the 

effective form factor of the hadron to have an exponential dependence 

in t until F(t) is of order ex and then to continue to decrease with 

a power dependence in t. The presence of this effect makes comparison 

of experiment with Eg. (3.8) ambiguous at ~ large Itl, but at the 

same time, of course, offers a method of checking the theory as one can 

determine the existence of two-photon contributions experimentally. 

Returning to Eg. (3.8), in Fig. 2 we compare the proton magnetic 

form factor to the proton-N* Ml transition form factor. The latter was 

o 10 extracted/ from electroproduction data and we have shown the data out 

to the largest measured momentum transfer. The nucleon datall is only 

shown out to t ~ -4(BeV/c)2 which is the region in which the exponential 

fit is excellent. The straight line fits12 shown in Fig. (2) are 

~>1(NNr ) = 1.5 e 
2.l2(_t)1/2 

GMl (N*Ny) = 1.7 e 
_ 2.65(_t)1/2 
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On the other ha,nd our model predicts that 

IV e 

2 . 1/2 
- ~ (-t) 

Comparing Eqs. (3.9) and Eq. (3.10) and using ~~* ~ 0.76, we 

find the prediction is quite well satisfied. The value of a obtained 

from these fits is a ~ (0.75 BeV) -3 • ' 

This success of the theory may be relatively independent of the 

222 2 (' ) form of r(p1 ,P2 ,P3) for small Pi provided Eqs. 2.23 - 2.25 are 

satisfied. For example, if we replace Eq. (2.19) with Eqs. (2.23, 2.26) 

and set c1
2 = c2

2 = (~ + m
n

)2 , the lowest threshold communicating 

with the nucleon or the N*, then we obtain essentially the same result. 

If we turn now to the pion form factor, we see that the small'value' 

of the pion mass is expected to give rise to an extremely slowly decreas-

ing asymptotic behavior. Hence, the pion form factor should not decrease 

as rapidly as does the nucleon's; perhaps tbe p-pole will provide a good 

description of the pion form factor out to large Itl. 

In f~ture papers we will investigate other applications of oUr 

theory. In particular, we have found a solution to a crossing symmetric 

off-shell equation for a hadron-hadr0n scattering amplitude in the asymp­

totic limit in which s, Itl, lui ~OO. In this equation, we assume each 

vertex is described by Eq. (2.17) and sum an infinite set of graphs which 

satisfy crossing symmetry and elastic unitarity. The solution enables us 

to relate large angle scattering cross sections to electro~gnetic form 



/; 

I 
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factors, but unlike the situation described above for e-p scattering, 

there are no terms with power dependence in s, t, and u arising from 

higher order graphs because now all the particles are composite. 

To con9lude, we mention some unanswered questions. We do not know 

whether the condition for Eq. (2.19) to be valid is simply that Pi2 

become large or if it is that 2 2 Pi must become large relative to Mi • 

In other words: Does Eq. (2.19) describe the coupling constant for 

three on-shell particles when the mass of at least one of them is 

sufficiently large? Secondly, we wonder whether Eq. (2.19) describes 

systems like the deuteron or even heavier nuclei. While these particles 

are not generally considered within the framework of the reciprocal 

bootstrap, there is no reason not be include them at very high momentum 

transfers. If Eg. (2.19) describes the deuteron form factor, we expect 

Since this function is decreasing 

photon exchange effects to become 

1/2 
- 8.5(-t) 

(3.11) 

8 extremely rapidly, we expect two-
. 2 

important at values of t ~ l(BeV/c) • 

Finally there is the perplexing question of the existence and nature of 

the ( possibly ncnlocl.:..l) field theory ul1ich underlies Eq. (2.1) in a 

bootstrap universe; we defer speculation on this subject. 
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Appendix 

We wish to show here that the function 

g.(~, E, ~) = (~2(~_~)2 ~2)l + «f_~)2 (~_£)2(£_~)2)i+ (~2 (£_~)2£2)~ 
(A.l) 

in the limit in which £2 and/or (!:_£)2 approach infinity, is a 

mi'1iillu1D. when k = P, 0 or p. 
'" '" '" 

We write 
k=cp+d:p+q 
'V "" "-I "V 

(A.2 ) 

where ~ • E = ~ .. t.= O. Clearly q = 0 is ficneceEsary condition 
'" 

for g to be :":.inlll1u:n JoB, in a Euclidean space, ~ * 0 leads to the extra 

positive canixi~c1an + 2q2 under each square root sign in Eq (A.l). 

Consider, now, without loss of generality, the case 

222 2 
(~-~ ) = P = M, P -. 00 

then the last term in Eq. (A.l) can be written 

2 2 2·t {f" 6 2 2 
(~(~-~) ~)2 = P (c + cd)«c-l)+ (c-l)d) 

+ p4 p2 d2 [(c2 + cd) + (c_d)2 + (c-l)d] + 
1 

2 4 212 
PPd

f 

(A.3) 

(A.4) 

Now, a necessary condition for g to be minimum is that the p3 and p2 

terms in g, vanish since at the values k =P , 0 and p, and under the 
'" '" '" 

conditions of Eq. (A.3l), g'" p.Setting the coefficients of these 

terms equal to zero in Eq. (A.4), we arrive at the four solutions 

1. e = 0 d = 1 

2. c = 0, d = 0 

3· c = 1, d = 0 

4. c = 1, d = 1. 
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Solutions 1., 2., and 3.arek = P, 0, and p respectively. Solution 
'''''' 'V ~ 

4 corresponds to ~ = ~ - ~ and at this value, the last term in Eq. (A.l) 

e 2 2 1.. equals (? (P-p) p)2. Solution 4 can then be shown not to yield a 
"W "tJ .~ ""'" 

minimum of g by substituting k = p - P into the first and second terms 
. . 'V ~ ~ 

on the right hand side of Eq. (A.l). Since these two terms do not 

vanish for this case, we have 

g (~, ~, ~-~) > (~2C!>;e)2 ~2)t = g (~J ;e, ~o) 

where ~o = .£, 0 or~. Hence the value ~ = £, 0, and;e yield the 

minima of the function g as we set out to prove. 

(A.6) 

'The integral (Eq. (2.20» which we evaluated by them.o.s.d. is, 

in one dimension,of the form 
(Xl 

J d x 
2 2 ~ 2 2 ~ 2 2 ~] e- [~ «X-cl ) (X-c

2
) )<.;+a

2
«x-cl ) (X-C

3
) )"+al «x-c

3
) (x-c

2
) ),,-

(A.7 ) 

This integral can be evaluated exactly in terms of error functions and 

exponentials and can be shown to have the asymptotic behavior 

2 24-· 2 2.!.. 2 2.!. 
-~ «c3-cl ) (c

3
-c2 ».:'; -a2«c2-cl ) (c

2
-c

3
»)2 -~«cl-c3) (cl -c2 ) )2 

e +e +e 
(A.8) 

'This is precisely the asymptotic behavior we have derived in Section II. 
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FIGURE CAPTIONS 

Fig. (1) Diagrammatic representation of Eg. (2.1) •.. The shaded 

Fig. (2) 

circles denote the Bethe-Salpeter.wave functioll x.. 

, 
Comparison of NNr and N*Nr form factors. The data 

pOints denoted by 0 are experimental values for the 

magnetic form factor ~(t)Of the proton as measured by 

Coward et al, ref. (11), and the date pOints denoted by 0 

are the experimental values for Ml N*N transition form 

factor as measured by M. L. Lynch et.a1. ref. (10) and 

analyzed by J. Dufner and Y. S. Tsai, ref. (9). The 

straight line fits shown in the figure are GNN(t) = 
1.5 expC-2.l2(-t)1/2J and GN*N(t) = 1.7 exp[_2.65(_t)1/2]. 
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