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TOMOGRAPHIC RECONSTRUCTIONS

USING MAP ALGORITHMS -

APPLICATION TO THE SPIDR MISSION
D.N. Ghosh Roy, K. Wilton, T.A. Cook, S. Chakrabarti

Center For Space Physics, Boston University, Boston, Massachusetts

J. Qi, G.T. Gullberg

E.O. Lawrence Berkeley National Laboratory, University of California, Berkeley

Abstract

The spectral image of an astronomical scene is reconstructed from noisy tomographic projections

using maximum a posteriori (MAP) and filtered backprojection (FBP) algorithms. Both maximum entropy

(ME) and Gibbs prior are used in the MAP reconstructions. The scene, which is a uniform background

with a localized emissive source superimposed on it, is reconstructed for a broad range of source counts.

The algorithms are compared regarding their ability to detect the source in the background. Detectability

is defined in terms of a contrast-to-noise ratio (CNR) which is a Monte Carlo ensemble average of

spatially averaged CNRs for the individual reconstructions. Overall, MAP was found to yield improved

CNR relative to FBP. Moreover, as a function of the total source counts, the CNR varies distinctly

different for source and background regions. This may be important in separating a weak source from

the background.

I. I NTRODUCTION

Tomographic reconstructions often involve recovering point-like emissive sources from noisy pro-

jections, the sources being located in a uniform background. The problem is typical of astronomical

investigations in which localized, emissive astronomical sources are superimposed on an otherwise

uniform sky. Spectral imaging of the sky in the extreme and far ultraviolet, as in the SPIDR (Spectroscopy

and Photometry of Intergalactic Diffuse Radiation) mission [1], is an important application in this

direction. In the conventional method, an imaging spectrograph is scanned across a telescopic image
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of the sky formed on the entrance slit. However, the astronomical objects are generally weak in emission,

and the conventional technique is handicapped by its narrow field of view (FOV) and exposure time since

the instrument scans only a narrow portion of the sky at any time stage of data collection. In order to

overcome these difficulties, a novel technique, called SPINR (Spectrograph for Photometric Imaging with

Numeric Reconstruction) [2-3], was recently developed in order to keep the entire scene within the FOV

of the instrument over the complete duration of data collection. The data collection is tomographic, and

the imaging spectrograph employed for this purpose is equipped with a toroidal grating which acquires

spectral data along the dispersion and spatial data along the cross-dispersion direction [4]. In SPINR, a

two-dimensional detector is aimed at the sky and is rotated. At each angular position, the line integrals

of a uniform, but infinite sky is formed through a fixed, finite FOV. The SPINR angular projections

of the uniform sky are, therefore, not typical Radon transforms. Notwithstanding this, once the angular

projection data is obtained, classical tomographic procedures can be applied to reconstructing the scene.

Some preliminary reconstructions using SPINR technique appeared in [2-3,5].

Further applications of MAP [6] and FBP [7] tomographic algorithms are discussed in this paper.

The MAP algorithms are used in the form of thepenalized maximum log-likelihood(PML) with entropy

(ME) and Gibbs prior [8-12], and penalized least squares(PLS) [13] with entropy prior. The MAP

algorithms are nonlinear, statistical, and are considered to yield better noise performance than the linear

FBP [14]. This is also the conclusion of this study. It has been shown [15-16] that ME is effective

for sparse, point-like objects, and it enhances relative differences between weak and strong features in

a distribution, although it does not necessarily imply enhancement in sensitivity. Recently, maximum

entropy was appliedin the mean, called maxentropy on the mean(MEM). In MEM, the standard ME

functional,f log f , f being the object density distribution, is used in determining an overall probability

distribution the mean of which provides the reconstruction [17-18]. However, in this paper, ME was

applied in its standard form, namely, using the ME functional directly into the reconstruction algorithm.

A realistic prior must take into account the correlations between the neighboring elements of the density

distribution. One such prior is Gibbs prior [11-12] which is considered here. The use of this prior leads to

smoother reconstructions. The amount of the prior was varied in each of the nonlinear algorithms used.

In our numerical experiments, the model density distribution consisted of a localized emissive source

in an otherwise homogeneous background. The total count (over the entire sinogram, that is, the sum

over all the measurement rays) for the source was varied over a broad range so that the algorithms

could be compared in their detectability on a wide range of counts. A contrast-to-noise ratio (CNR) was

used as the criterion of detectability. Its definition involved Monte Carlo ensemble averaging of spatially
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averaged, per simulation CNRs (see Section III for details). The ensemble averaged CNR was investigated

as a function of total source count. Numerical results reported here show that, in general, the nonlinear

methods lead to higher detectability compared to the linear FBP. This is especially true in low count

regions which are of particular interest in astrophysical investigations.

The plan of the paper is as follows. Section II outlines the basic algorithms, and the associated iteration

procedures. Methodological and computational details, results of numerical experiments, and discussions

appear in Section III. Finally, a short summary in Section IV concludes the paper.

II. RECONSTRUCTIONALGORITHMS

Consider an object with a density distributionf . The object is discretized into aP × P matrix. Thus

{fi}N
i=1, N = P 2, fi > 0, ∀i, are the pixel values in the object. LetH denote the projection matrix. The

ji-th element,Hji, of H, represents the intersection of thej-th ray with thei-th pixel in the object.

From now onward, a matrix operator will be denoted by a bold-faced capital letter, and a vector quantity

by a bold-faced lower-case letter. LetND, NA be the number of detector bins and the number of angular

projections, respectively. ThenM = NDNA is the total number of ray measurements. Letg = {gi}M
1

represent theM × 1 vector. The data in thej-th detector bin,gj , is given by

gj =
N∑

i=1

Hjifi + nj = gj + nj . (1)

gj =
∑N

i=1 Hjifi is the noiseless projection in thej-th ray, f being the given object.f is unknown and

is to be recovered from the noisy datag. When the data contain Poisson noise, the mean and variance,

σ2
j , of gj both equalgj . As written in Eq. (1), the noisen has zero mean, and its covariance is the same

as the covariance ofg.

The MAP reconstruction algorithms of PML and PLS are described in this Section. Tomography being

an ill-posed problem, regularization is necessary, and this motivates the penalization. In PML, the Poisson

nature of noise in the data explicitly enters into the algorithm, whereas it is indirect in PLS. Each of

these algorithms are described below starting with the penalized maximum log-likelihood with entropy

prior.

A. The Penalized Maximum Log-likelihood (PML) With Entropy Prior

Nonlinear, statistical methods of image reconstruction frequently use the concept that the reconstructed

distribution is, in some sense, also the most probable one. The solutions by these methods involve
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extremizing some joint probability distribution of the objectf and the datag. The distribution considered

here is the conditional probability,p(g|f), or theglobal likelihoodof the datag given the objectf . Assume

that each detector bin is subjected to an independent Poisson process. Then an individual projection,gj ,

in the j-th detector bin is distributed according to

p(gj |f) =
[
e−

∑N

i=1
Hjifi

] (
∑N

i=1 Hjifi)
gj

gj !
. (2)

The global likelihoodp(g|f) is the product of the individual distributions in Eq. (2). Therefore,

p(g|f) =
M∏

j=1

[
e−

∑N

i=1
Hjifi

] (
∑N

i=1 Hjifi)
gj

gj !
. (3)

From the computational point of view, it is convenient to work with thelog-likelihood, log{p(g|f)},
of p(g|f), instead of the global likelihoodp(g|f) itself. Moreover, extremizing the log-likelihood is

equivalent to extremizing the global likelihood. From Eq. (3), the log-likelihood is obtained as:

log{p(g|f)} =
M∑

j=1

[
gjlog

{
N∑

i=1

Hjifi

}
−

N∑

i=1

Hjifi − log(gj !)

]
. (4)

Next consider the maximization of the objective function:

Φ(f) = log {p(g|f)}+ βΨ(f). (5)

Ψ(f) will be represented by theentropy functional, namely,Ψ(f) = −f log f . β is a weighting factor

which controls the smoothness of the solution. Multiplication and division of two vectorsa,b, is to be

considered in a pointwise sense. In other words,ab = aibi, and a/b = ai/bi. Differentiating Eq. (5)

with respect tof , using Eq. (4), and setting the result to zero results in the optimality condition:

0 = − HTΛ−1
p g −

[
HTΛ−1

p H
]
f − β(1 + log f). (6)

In Eq. (6),p = Hf ,Λz represents a diagonal matrix, the diagonal elements of which are the components

of the vectorz, that is,(Λz)`` = z`. In component form, Eq. (6) is:

−β(1 + logf`) +
M∑

j=1

Hj`
gj −

∑N
i=1 Hjifi∑N

i=1 Hjifi

= 0, (7)

f` being the`-th component of the vectorf .

Let s` =
∑M

j=1 Hj` be the`-th element of the vectors = HT1. s` represents the probability that a

photon emitted from thè-th element in the object will be detected by any one of the detectors. The

vectors is known as thesensitivity vector[19-20]. From Eq. (7), we obtain

s` =
M∑

j=1

Hj`
gj∑N

i=1 Hjifi

− β(1 + logf`),
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from which

1 =
1
s`




M∑

j=1

Hj`
gj∑N

i=1 Hjifi

− β(1 + logf`)


 . (8)

Multiplying both sides of Eq. (8) byf` leads to the nonlinear equationf` = A(f`), the nonlinear function

A(f`) representing the multiplication off` by the R.H.S. of Eq. (8). The standard method [21] for solving

this equation is to cast it in an iterative format :

f
(k+1)
` = (1− α)f (k)

` + αA(f (k)
` ). (9)

The parameterα is introduced for the acceleration of convergence [21], and can be updated in each

iteration (see Section III for details). When written fully, Eq. (9) becomes

f
(k+1)
` = (1− α)f (k)

` − α
f

(k)
`

s
(k)
`


β(1 + logf

(k)
` )−

M∑

j=1

Hj`
gj∑N

i=1 Hjif
(k)
i


 . (10)

The penalized maximum log-likelihood solution with entropy functional is obtained by iterating Eq.

(10).

B. The Penalized Least Squares (PLS) With Entropy Prior

For the penalized least squares algorithm, the objective functionΦ to be maximized is

Φ(f) = Ψ(f)− β

2
[Hf − g]T Σ−1

g [Hf − g] . (11)

In Eq. (11),Σg is a diagonal matrix the elements of which are given by the variance of the datag. In

other words,
(
Σ−1

g

)
jj

= σ−2
j , σ2

j being the variance of the j-th measurementgj . The functionΨ(f) is,

as in PML, the entropy functional. Equation (11) then gives

Φ(f) = −
N∑

i=1

fi log fi − β

2

M∑

j=1

1
σj

2

[
N∑

i=1

Hjifi − gj

]2

. (12)

The factorβ is again a constant determining the smoothness of the solution.

We next differentiateΦ in Eq. (12) with respect tof , and set the result to zero. Note that

1
2
∇f |Hf − g|2 = HT (Hf − g),

This yields the following compatibility condition

0 = βHTΣ−1
g g − β

[
HTΣ−1

g Hf
]
f − (1 + log f). (13)
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From Eq. (13), it follows that

1 = −log f` − β
M∑

j=1

Hj`

∑N
i=1 Hjifi − gj

σ2
j

. (14)

Again as in the previous Subsection, we multiply both sides of Eq. (14) byf`, and obtain the iteration

equation

f
(k+1)
` = (1− α)f (k)

` − αf
(k)
`


log f

(k)
` + β

M∑

j=1

Hj`

∑N
i=1 Hjif

(k)
i − gj

σ2
j


 . (15)

The variance,σ2
j is not known beforehand, but must be estimated. In an actual numerical implementation,

σ2
j is replaced by the data,gj , itself [3-5,22].

Equation (15) is the basic equation for the tomographic reconstruction of the unknown density distri-

bution f using the penalized least squares with entropy prior.

C. The Maximum Log-likelihood With Gibbs Prior

In this subsection, we discuss the maximum log-likelihood algorithm with Gibbs prior in place of

the entropy functional. Gibbs priors have been adopted as suitable priors in image reconstruction and

many other applications of image processing. The Markovian properties of these distributions make them

theoretically attractive as a formalism for describing empirical local image properties, as well as compu-

tationally appealing since the local nature of their associated energy functions result in computationally

efficient update strategies. The prior functions can be chosen to attempt to reflect that the images are

locally smooth yet can also have rather sharp transitions. Here we use a simple Gaussian model.

Let f(j) be the value off at the j-th pixel in the object, andfa(j) the value of the density at a pixel

adjacent to the j-th pixel, but in the directiona. Thusa = e refers to the pixel which is adjacent to the

center pixelf(j), but to the east of it, and similarly fora = s, ne, se for south, northeast and southeast,

respectively. Moreover, we define the discrete approximate directional derivative,f ′a(j), of f at j in the

directiona by

f ′a(j) = f(j)− fa(j). (16)

The objective function for the MAP algorithm with Gibbs prior is given by

Φ(f) = log p(g|f)− βU(f). (17)
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As before,β is the weight factor which controls the amount of the priorU(f). We consider a clique of

f(l) consisting of 8 nearest neighbors, and use the following Gibbs prior

U(f) =
N∑

j=1

[f ′2e(j) + f ′2s(j) +
1√
2
{f ′2ne(j) + f ′2se(j)}]. (18)

Substitute Eqs. (4), (16) and (18) in (17). Upon differentiating the resultingΦ with respect tof(l), and

setting it to zero gives:

0 =
M∑

j=1

Hjl

∑N
j=1 Hjlf(l)− gj∑N

j=1 Hjlf(l)
+ 2β[(f(l)− fe(l)) + (f(l)− fs(l))

+
1√
2
(f(l)− fne(l)) +

1√
2
(f(l)− fse(l))]. (19)

Simplifying Eq. (19) yields

0 =
M∑

j=1

Hjl

∑N
j=1 Hjlf(l)− gj∑N

j=1 Hjlf(l)
+ β[(4 + 2

√
2)f(l)− 2(fe(l) + fs(l))−

√
2(fne(l) + fse(l))]. (20)

The log-posterior density function is maximized using a preconditioned gradient algorithm. The update

equation is

f (k+1) = f (k) + λM(k)∇Φ(f (k)). (21)

The preconditionerM(k) is given by

M(k) = Λ(k)
f/S.

∇Φ(f (k)) is the gradient of the objective function (17) atf (k), and is given by the RHS in Eq. (20). The

parameterλ is obtained by a one-dimensional line search.

Gibbs prior can also be written asU(f) = (1/2)fTTf . T is a block Toeplitz matrix, with diagonals

equal to4+4/
√

(2). A maximum of 8 elements in each column (or row) are nonzero next to the diagonal.

They correspond to the eight neighboring pixels. The entry values are either -1 or−1/
√

2, depending

on their locations.

III. M ETHODS AND NUMERICAL RESULTS

Methods

The MAP algorithms with maximum entropy in Eqs. (10) and (15), and with Gibbs prior in Eq. (21),

were applied to the reconstruction of an object consisting of a uniform background (the sky) with a

localized, emissive source superimposed on it. The objective is to detect the source in the presence of
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the background. The measure ofdetectabilityis a contrast-to-noise ratio, the evaluations of contrast and

noise being detailed in this section.

Let the scene be described as

f(x) = fbχR,0(x) + ffχr,a(x). (22)

fb andff are constants, and subscripts b and f indicate background and foreground or source, respectively.

χd,c(x) is the characteristic function of a region of size d with center atc. That is,χd,c(x) = 1 if x

is in the region, and zero otherwise. In Eq. (22),R > r. The pointa is assumed to be sufficiently far

from the boundary of the reconstruction region.χR,0(x), χr,a(x) can be termed [23] thebackgroundand

foreground area, respectively. The reconstructed image,f re
f (x), of the foreground is of the form

f re
f (x) = φ(x;A, ff , fb)χr′,a(x;A). (23)

φ is a nonlinear function of the arguments,A denoting the algorithm used for reconstruction.χr′,a(x;A)

in Eq. (23) is a characteristic function of some radiusr′, and may be viewed as theregion-of-interest

recovery function[24], the foreground being the region of interest. Note that ifA = filtered-backprojection,

then f re
f (x) = ff χ̃r′,a(x; FBP ), whereχ̃r′,a(x; FBP ) is the so-calleddisk image function[24], which

is the FBP reconstruction of the characteristic functionχr′,a(x). The argumentA will be dropped in

χr′,a(x;A) in what follows.

Assume that an estimate of the background has been obtained. Subtracting this estimated background

from Eq. (23) results in the source contribution,f re
s (x), to f re

f (x). Integrating (see below)f re
s (x) over

χr′,a(x) defines the contrastC. Thus defined,C represents the total number of photons withinχr′,a(x).

CNR for a given reconstructed image is obtained by dividing the contrastC by an appropriate measure

of the uncertainty of the restoration as discussed below. It should be mentioned that a related definition

of CNR was used by Qi and Leahy [25]. However, these authors used acontrast impulse responsefor

C which involved the derivative of the mean reconstruction instead off re
s (x).

The determination of contrast involves integratingf re
s (x) over χr′,a(x). It is, therefore, necessary to

estimateχr′,a(x). The knowledge of the point-spread-function (PSF) of the reconstruction algorithm

can be used for this purpose. It should be noted that the point-spread-function in a nonlinear algorithm

may not be unique, but may vary with location and intensity of the source. However, in the numerical

computations of this paper, the PSF was used only as an indicator ofχr′,a(x), or equivalently, the number

of pixels to be summed.

The determination of the noise uncertainty is determined as follows. Given a reconstruction, the mean

of its pixel values is calculated over the image except those pixels that are in the region-of-interest.
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With this mean, the pixel variances are calculated, and subsequently averaged over the same area used

in the calculation of the mean. The corresponding standard deviation is then considered to be the noise

uncertainty. Dividing the contrast by this uncertainty, CNR is obtained.

The CNR described above is the CNR for a single reconstruction. However, direct Monte Carlo

simulations were performed. The CNR that was adopted as the measure of detectability was obtained

by ensemble averaging the CNRs of the individual restorations over the Monte Carlo reconstructions.

Let L, ñ, denote the total number of restorations, and the number of pixels in the region-of-interest,

respectively.NR is the total number of pixels in a region of radius R. R is smaller than the radius of

the boundary of the reconstruction region. ThenÑR = NR − ñ is the number of pixels outside the

region-of-interest used for sample averaging. Letf
`

be the`-th sample mean, that is, the mean in the

`-th restoration. Thenf
` = (1/ÑR)

∑ÑR

n=1 f `
n. The `-th sample variance is, therefore,

σ2
` =

1
ÑR − 1

ÑR∑

n=1

(
f `

n − f
`
)2

, (24)

from which the`-th standard deviation isσ`. The `-th CNR, (CNR)`, follows as

(CNR)` =
1
σ`

ñ∑

n=1

(
f `

n − f
`
)

, (25)

and the ensemble averaged CNR, (denoted also by CNR) is

CNR =
1
L

L∑

`=1

(CNR)`. (26)

On the basis of the PSF data shown in Figure 2, it was decided to sum over a3× 3 region around the

target pixel. The number of pixels̃n was thus 9.

As mentioned in Section IIa, the variance,Σg, in the data that appears in the iteration Eq. (15) for

PLS, is not known a priori, and must be estimated. In actual computations,Σg was replaced by the noisy

data,g, itself with the proviso thatg was to be replaced by unity in the event that the mean countg

was nullified by the noise.

A few words are in order at this point regarding the determination of the relaxation parameterα in

Eq. (9). An analytical determination of this parameter was shown by Isaacson and Keller [21] to require

severe restrictionviz that the Jacobian matrix of the nonlinear functionA(f) in Eq. (9) must be strongly

diagonally dominant. However, the lack of strong diagonal dominance in the projection-backprojection

matrix HTH along with the presence of the logarithmic terms in the reconstruction equations renders

the satisfaction of such restrictive conditions highly unlikely in tomographic imaging. However, the

objective functions in Eqs. (5) and (11) are strictly convex as also the domain of the solutions, namely,
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f ∈ RN , f > 0, f log f < ∞. Under these conditions (which extend to the weaker conditionf ≥ 0,)

the optimization problems (10) and (15) have unique solutions [26]. In that case, as shown in [21], the

iterations converge for some choice ofα. We adopted the following phenomenological choice of this

parameter, and our iterations converged in the stopping criterion of a steadyχ2 defined as:

χ2 =
1
N

M∑

j=1

∑N
i=1 [Hjifi − gj ]

2

gj
.

An inspection of Eq. (10) and Eq. (15) shows that during the initial stages of iteration,α must not be

too small, whereas as the iterations proceed, its value must gradually diminish. We, therefore, started

with a high value ofα, such asα = 100. As the iterations proceeded,α was slowly increased until

χ2 stopped decreasing. At that point,α was reduced by an order of magnitude, and the procedure was

repeated until convergence in which stage the value ofα could be as small as10−9. In the case thatf

becomes negative, the last iteration is rejected and the calculation is moved to the next level ofα.

Finally, it should be mentioned that reconstructions were also performed for FBP with Ram-Lak filter

[7]. The discrete FBP equation is:

f(m,n) =
1

NA

NA∑

i=1

K−1∑

k=0

gi,t(m,n)+khk.

t(m,n) is the bin index of pixel (m,n), and the Ram-Lak filter is given by:

h = {· · · ,−9π−2, 0,−π−2, 0.25,−π−2, 0,−9π−2, · · ·}.

The integer K was 11 in our case.

Numerical Results

Numerical calculations were carried out under the following conditions. The conditions described

are for the specific design of SPIDR. The object size was64 × 64, and the number of detector bins

and the number of angular projections (over 0 toπ) were both 64. ThusND = NA = 64. The

projection matrixH was obtained as follows. In SPINR, the 2D detector rotates around its center.

The area of reconstruction is, therefore, a circle of diameter
√

2ND. Thus for a64 × 64 object, the

circle encompasses roughly 90 pixels on its diameter. The sinogram for an arbitrary pixel within and on

the circle is determined numerically, that is, without using the analytical Radon transform. The entire

H matrix is subsequently obtained by sequentially scanning across the circular domain beginning with

the lowermost left pixel. All computations, including the generation of the data, were performed with

the projection (and backprojection) matrix thus generated. The total count (i.e., count over the entire
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sinogram) for a background pixel was 11, and the number for the source was varied, ranging from 20 to

7500. These are reasonable numbers for an astronomical scene. Poisson noise was added to the data, and

200 Monte Carlo reconstructions were performed.σ2
` , (CNR)`, andCNR, were obtained as described

above according to Eqs. (24)-(26).

Some typical examples of PSFs are shown in Figures 1 and 2. Figure 1 shows log displays of some

reconstructed PSF images, whereas the photon collection characteristics of the algorithms are illustrated

in Figure 2. The vertical axis in Figure 2 represents the percentage of the signal, that is, the total number

of photons in the annuli, each one pixel thick, and of increasing radii from the center or the source

pixel. The plots of Figure 2, therefore, indicate how tightly the source emission is swept up by different

algorithms. As can be seen from this figure, the nonlinear methods collect photons more tightly than the

linear FBP. This is evidenced by the faster fall-off of PML and PLS curves 1-6 compared to the FBP

curve 7 which meanders without tapering off with increasing radius.

A few examples of typical reconstructions are shown in Figures 3 and 4. The images are self-

explanatory. The reconstructions shown in Figure 3 are some typical members of the Monte Carlo

ensemble, and correspond to S = 200. Some typical mean reconstructed images are displayed in Figure

4 for S = 100. FBP images with Ram-Lak filter are also shown in these figures.

The Monte Carlo ensemble averaged contrast-to-noise ratio, is plotted in Figures 5a and 5b as functions

of total source count S. Figure 5a contains results for PML and PLS with entropy prior, FBP and the

background. Figure 5b is the same as Figure 5a, but for Gibbs prior. The horizontal line in the figures is

the 3σ detection line, whereas the straight line, marked A, corresponds to theexactreconstruction. An

exact reconstruction is the one where the uncertainty in the data equals the uncertainty in the reconstructed

image, and in which the density distribution is restored perfectly. Letσre, σg, denote the uncertainty

in the restoration and data, respectively. Then, in general,σre = κ(f)σg. The factorκ, which depends

uponf , accounts for the intervening reconstruction algorithm. In an exact reconstruction,κ = 1, κ being

> 1 otherwise. In the present case, with the total background count of 11, and Poisson noise in the data,

σre =
√

11 for the exact reconstruction. Therefore,(CNR)exact = Cexact/
√

11. The line A represents

(CNR)exact. In Figure 5b, two sets of results are shown for Gibbs prior. The data corresponding to

Method 2 in the inset were obtained by the procedures described in the previous section, that is, summing

over the3×3 region. The data for Method 1 were obtained as follows (see Discussions below). In Method

1, the statistics of the background were determined over a30×30 region, but excluding a13×13 region,

both around the source pixel. The contrast was still determined by summing over3× 3 pixels.

The CNR data for a background point away from the source are also plotted in Figure 5, and are
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indicated by stars. For the sake of the clarity of presentation, data are displayed only for a single pixel,

but for the various algorithms shown in the legend. In Figure 5a, the background data refer to PML, PLS

and FBP, whereas in Figure 5b, the results are for PML with Gibbs prior and FBP. In both Figure 5a and

5b, multiple points correspond to a single fixed S. Their occurrences are due to the different algorithms

used. Moreover, the background data points which are missing in the plots fall outside the scale of the

figures. Also, the absolute values of the background CNR are plotted here. The results for an arbitrary

background pixel away from the region-of-interest show similar behavior.

Finally, a typical behavior of the relaxation parameterα as a function of iteration is displayed in Figure

6.

Discussions

The PSFs shown in Figures 1 and 2 correspond to a single source point without the background.

Consequently, PSFs in these figures are not directly related to those, for example, in Figures 3 and 4. As

pointed out above, the only use of the PSFs was to obtain an estimate of the region-of-interest. Moreover,

since the object to be recovered is unknown, this is the PSF which can be directly obtained in practice.

The reason for two sets of data in Figure 5b for Gibbs prior is as follows. Note that the trend of CNR

vs. β in Method 2 undergoes a reversal at S = 7500. This is a consequence of the PSF for this algorithm

being sufficiently wide at this count (Figure 2) so that much of the energy falls outside the summed

area. It has been shown [27] that the PSF in MAP reconstructions are wider in high count regions than

in low count regions. Since the signal is strong, excluding only3× 3 pixels is not sufficient. CNR was

recalculated by determining the statistics over a30 × 30 region, as in Method 1, but now excluding a

13× 13 region, both around the source pixel. The contrast was still determined by summing over3× 3

pixels. It is seen that the reversal of the trend at S = 7500 is eliminated.

The results of Figure 5 show that, overall, the nonlinear algorithms display increased detectability

compared to FBP with Ram-Lak over a broad range of counts. PML with entropy prior and Gibbs are

seen to perform particularly well, especially in low count regions. Now the detectability depends upon

the region-of-interest. If this region is so chosen as to incorporate the widest PSF (of the algorithms one

would choose to use), then the CNR would be determined primarily by the noise uncertainty. In that case,

FBP with filters having roll-offs smoother than Ram-Lak may yield higher values for CNR compared to

Ram-Lak. However, CNR being an indicator of detectability only, image resolution is to be considered

simultaneously. Hence in using linear methods, both of these must be considered simultaneously. In
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addition, from the point of view of comparing the merits of different methods in regard to detectability,

the region-of-interest may not be allowed to accommodate the widest PSF. In that case, Ram-Lak would

be the choice for linear reconstructions.

As a function of total source counts, CNR for the source behaves distinctly differently from the

background regions as is evident from the data in Figure 5. The background shows no definite pattern,

consisting of randomly scattered points which are mostly below the3σ detection line. In applications in

which the detection of a weak source in a background is of primary interest, as in the SPIDR mission,

the existence of a distinctive trend in the source CNR compared to random background points may be

important when separating a weak source from the background is an important consideration.

IV. CONCLUSIONS

In summary, an astronomical object consisting of the infinite sky with a single emissive source in

the field of view was tomographically reconstructed by applying nonlinear maximum a posteriori or

MAP algorithms, and the linear FBP with Ram-Lak filter. The MAP reconstruction methods included

penalized maximum log-likelihood with entropy and Gibbs prior, and penalized least squares with

entropy functional. Compared with FBP, the nonlinear algorithms resulted in tighter photon collection

characteristics, the number of photons collected only in the source pixel itself being several times greater

than in FBP. A Monte Carlo ensemble average of spatially averaged contrast-to-noise ratio was defined

as the measure of detectability of the source in the presence of background. The behavior of the CNR so

defined with the total countS in the source sinogram was investigated, and compared with the results of

FBP. The nonlinear algorithms yielded overall higher CNR over a broad range of S, PML with entropy

and Gibbs prior performing particularly well in regions of low counts. For PML, the enhancement was

as high as four times. Furthermore, the behavior of CNR for a source pixel is distinctly different from

that of the background. The source CNR increases with S as opposed to a totally random variation for

the background. In applications in which the detection of the source is of prime interest, this constitutes

an important consideration.
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Fig. 1. Log displays of some reconstructed images of a point source. The source is off-centered at (40,45) in a 64× 64 object.

(a) PML with entropy prior, Eq. (10). (b) PLS with entropy prior, Eq. (15). (c) PML with Gibbs prior, Eq. (21). (d) FBP with

Ram-Lak. The total source count S = 500 in (a)- (d). (e)-(h): Same as (a)-(d), but S = 100. Total counts refer to counts over an

entire sinogram.β = 1 for all the images shown.

reconstruction: space- invariant tomographs,”IEEE. Trans. Imag. Proc., vol. 15, pp. 1346-1357, 1996.
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Fig. 2. Illustrations of PSFs in terms of their photon collection characteristics. The vertical axis represents the percentage

of signal (total number of photons) in the annuli (each unit pixel thick), at increasing radii from the center (source) pixel. In

the display,β = 1 for all the algorithms except FBP. The FBP with Ram-Lak (curve 7) clearly evidences increased diffusion

relative to curves 1-6 for the nonlinear algorithms.
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Fig. 3. Some typical reconstructions of a localized source (location is as in Figure 1) in a uniform background. Total counts

for background = 11, and the displays are for the source count of 200. (a)-(c) PML with entropy prior, Eq. (10). (d)-(f) PLS

with entropy prior, Eq. (15). (g)-(h) PML with Gibbs prior. (i) FBP with Ram-Lak.β values are indicated in the figures. The

displays are random samples from the Monte Carlo ensemble.
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Fig. 4. Some typical mean reconstructions of a localized source (location is as in Figure 1) in a uniform background. Total

counts for background = 11, and the displays are for the total source count of 100. (a)-(c) PML with entropy prior, Eq. (10).

(d)-(f) PLS with entropy prior, Eq. (15). (g)-(h) PML with Gibbs prior. (i) FBP with Ram-Lak.β values are given in the figures.
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Fig. 5. (a) Illustrations of detectability for various algorithms. The Monte Carlo ensemble averaged CNR (see text) is plotted

against the total source count S. Results shown are for PML with entropy prior, Eq. (10), PLS with entropy prior, Eq. (15), and

FBP with Ram-Lak. Data for a single background pixel away from the source point are indicated by stars. The straight line A

represents an exact reconstruction (see text), and the horizontal line corresponds to 3σ detection.
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Fig. 5. (b) Illustrations of detectability for various algorithms. The Monte Carlo ensemble averaged CNR (see text) is plotted

against the total source count S. Data shown are for PML with Gibbs prior. Note that two sets of data are displayed in this

figure (see text). The rest is same as in Figure 5(a).
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Fig. 6. A typical behavior of the phenomenological relaxation parameterα (Eq. 9). The iterations spend more time in the

lower range ofα as expected.
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