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(Received 18 July 2012; accepted 1 November 2012; published online 28 November 2012)

This paper reports the results of gyrokinetic simulation studies of ion temperature gradient driven

turbulence which investigate the role of non-resonant modes in turbulence spreading, turbulence

regulation, and self-generated plasma rotation. Non-resonant modes, which are those without a

rational surface within the simulation domain, are identified as nonlinearly driven, radially extended

convective cells. Even though the amplitudes of such convective cells are much smaller than that of

the resonant, localized turbulence eddies, we find from bicoherence analysis that the mode-mode

interactions in the presence of such convective cells increase the efficiency of turbulence spreading

associated with nonlocality phenomena. Artificial suppression of the convective cells shows that

turbulence spreading is reduced, and that the turbulence intensity profile is more localized. The more

localized turbulence intensity profile produces stronger Reynolds stress and E�B shear flows,

which in turn results in more effective turbulence self-regulation. This suggests that models

without non-resonant modes may significantly underestimate turbulent fluctuation levels and

transport. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767652]

I. INTRODUCTION

We know that self-generated sheared plasma flows play

a crucial role in reducing turbulence and anomalous trans-

port. The combined system of plasma turbulence and flow

regulates and organizes itself. In the presence of a shear

flow, turbulence eddies are stretched, so that perpendicular

wave number increases. As a result of this, the growth rate

and the autocorrelation time of turbulent fluctuations

decrease, leading to suppression of turbulence.1,2 The poloi-

dal zonal flow is generated by nonlinear processes—such as

modulational instability—in the fluctuation spectrum or the

divergence of the radial flux of wave momentum or Reyn-

olds stress.1,3,4 Thus, the saturation and self-organization

process of turbulence and zonal flows are affected by the

fluctuation intensity profile. On the other hand, the spatial

spreading of turbulence, which can alter the turbulence in-

tensity profile, is coupled to the spectral transfer of fluctua-

tion energy through nonlinear mode-mode interactions in an

inhomogeneous system.5–10 Thus, we expect that modifica-

tion of spectral transfer will alter the dynamics of flows and

the subsequent fluctuation profile structure and transport. By

experimenting with switching on/off various classes of non-

linear interactions, we can elucidate the relation between

those nonlinear interactions, turbulence spreading, the inten-

sity profile, and the self-generation of zonal flow.

There are interesting results of numerical simulations

which link the spectral transfer of fluctuation energy to the

self-organization process. From previous gyrofluid and gyro-

kinetic simulations, qualitatively different transport phenom-

ena were observed in studies with different populations of

non-resonant modes (i.e., modes without a rational surface

where q(r)¼m/n within the simulation domain) in the fluctu-

ation spectra.11–14 Here m, n, and q(r) denote the poloidal

and toroidal mode numbers of fluctuating potentials, and the

safety factor, respectively. Since non-resonant modes, which

have a finite parallel wave number kjj � m� nq 6¼ 0, are

usually stable in linear theory, they are readily distinguished

from linearly excited, localized turbulence eddies, which

correspond to linearly unstable resonant modes.

The non-resonant modes are related to the poloidally

(and toroidally) localized envelope of fluctuations, which is

composed of a large number of poloidal and toroidal modes.

These fluctuation envelopes have radially extended structure

with non-vanishing kjj. Even though the envelopes are radi-

ally extended and have streamer-like structure, they can and

should be distinguished from the streamer structure gener-

ated by superposition of linearly unstable resonant modes.15

Interestingly, the radially extended envelopes evolve through

nonlinear processes such as mode-mode interactions, so they

may be considered as secondary convective cells. The radi-

ally extended convective cells can be associated with stream-

ers observed in flux-driven turbulence simulations,16,17

which are excited intermittently by nonlinear mode-mode

interaction processes.18–21 The amplitude and dynamics of

the convective cells depend on aspects of the simulation

models, such as the representation of turbulence spectrum

and method of turbulence drive—how non-resonant modes

are incorporated and whether the free energy source is con-

stant or decays in time, for example. Note that these convec-

tive cells differ from the traditional picture, in which the

cells are flute-like (kjj ¼ 0) and quasi-coherent.22,23

The radially extended convective cells can modify the

spatial profile and propagation of turbulence through the pro-

cess of turbulence spreading. We can relate mode-mode

interactions among only resonant modes in spectral space to

the spatial spreading of fluctuation by using the fact that a

(m, n) resonant mode is localized around its rational surface
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with a finite, usually limited, radial extent. Nonlinear interac-

tions between overlapping resonant modes, which are situ-

ated on different but nearby flux surfaces, can transfer

energy not only in spectral space but also in position space.

This results in spectral energy transfer in radius—so called

turbulence spreading. Turbulence spreading is often thought

of as a diffusive process because the radial flux of turbulence

energy caused by numerous mode-mode interactions can be

modeled by a random walk with a short step size. A simple

equation of turbulence spreading has been derived from a

Fokker-Planck-type analysis of the evolution of turbulence

intensity.8 Now, let us consider mode-mode interactions in

the presence of the radially extended convective cells. The

interactions including the non-resonant modes—i.e., the con-

vective cells—can effectively spread fluctuation energy to

more distant radii in a single, large step, thus driving a broad

fluctuation intensity profile. In Fig. 1, we contrast the mode-

mode interactions (a) among resonant modes only and (b)

including non-resonant modes. Based on this consideration,

we can suggest that the radially extended convective cells

significantly affect the couplings among the resonant modes

and therefore the turbulence intensity profile. We expect

that, by artificially suppressing the convective cells, longer

range interactions will be limited, and so turbulence spread-

ing should decrease. With non-resonant modes, turbulence

spreading becomes a nonlocal process.

Reduced turbulence spreading by suppression of radially

extended convective cells affects the self-regulation dynam-

ics of turbulence and flows by changing the intensity profile

and pattern of radial propagation of turbulence. The weaker

spreading localizes the turbulence intensity profile more

sharply. In turn, the turbulence intensity profile is closely

related to the Reynolds stress component responsible for

zonal flow generation by the familiar equation3

@hVE�Bi
@t

¼ � @hvrvhi
@r

¼ v2
T0q

2
i0

@

@r

X
k

krkh/
2
k � �

@h/2ðrÞi
@r

:

(1)

Therefore, a more peaked turbulence intensity profiles result

in stronger zonal flow shear. Conversely, the radially

extended convective cells can enhance the level of turbu-

lence by reducing the generation of zonal flow and so weak-

ening the self-regulation process. This impacts overall

transport and self-regulation phenomena, such as intrinsic

plasma flows driven by turbulence, etc. The overall process

is summarized in Fig. 2.

In this paper, we present results of gyrokinetic simula-

tions which elucidate the role of nonlinear mode-mode inter-

actions and turbulence spreading on the self-regulation

dynamics of plasma turbulence and flows, with special focus

on the role of non-resonant modes. Analyzing the non-

resonant mode spectrum, we show that the non-resonant

modes are nonlinearly driven cells with larger kjj and broader

radial extent, as compared to the resonant modes. The latter

correspond to the familiar case of radially localized turbu-

lence eddies. From this observation, we identify the non-

resonant modes as radially extended, secondary convective

cells. To demonstrate the effects of radially extended con-

vective cells on turbulence profile evolution and zonal flow

generation, we can artificially control and vary the allowed

values of kjj for the fluctuating potential in the simulation.

Using a bicoherence analysis, we find that by restricting the

allowed values of kjj and thereby suppressing the radially

elongated convective cells, local interactions among the res-

onant modes are enhanced and energy transfer between radi-

ally distant modes becomes weaker. This implies that the

range of scattering of fluctuation energy in spectral and con-

figuration space simultaneously decreases. As a conse-

quence, the profile of turbulence intensity is more localized

in radial position and so zonal flows are stronger and turbu-

lence fluctuation levels are lower. We argue that this result

demonstrates that non-resonant cells are important to the dy-

namics of turbulence saturation by their effect on intensity

profiles via increased turbulence spreading.

FIG. 1. Cartoon of the spatial extent of mode-mode interactions (a) among

resonant modes only and (b) involving non-resonant modes. FIG. 2. Role of turbulence spreading in flow generation and transport.
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The organization of the remainder of this paper is as

follows: In Sec. II, we present our gyrokinetic simulation

model, the method to control the excitation of non-

resonant modes, and the details of the spectral analysis of

turbulence, including the bicoherence analysis. In Sec. III,

we compare non-resonant modes to resonant modes and

identify them as radially extended, secondary convective

cells. Then, we demonstrate the connection between non-

linear interactions and turbulence spreading by varying the

degree of excitation of the convective cells. In Sec. IV,

we compute the turbulence-driven Reynolds stress and dis-

cuss the relation between the turbulence intensity profile

and generation of Reynolds stress. Effects on the turbu-

lence regulation and transport are presented in Sec. V. In

Sec. VI, we briefly report effects of turbulence spreading

on toroidal rotation. Finally, the conclusions are given in

Sec. VII.

II. SIMULATION MODEL AND ANALYSIS METHOD

A. Global gyrokinetic particle in cell code

In this study, we use a global df gyrokinetic particle in

cell code gKPSP.24 gKPSP solves the electrostatic gyroki-

netic equation.25 The fluctuating potential, dU, which obeys

the gyrokinetic Poisson equation,25 is represented using the

following quasi-ballooning representation for efficient mod-

eling of turbulent eddies aligned along equilibrium magnetic

field lines26,27

dUðt; xÞ ¼
X
i;j;n

UijnðtÞQiðwÞQjðhÞexpf�in½u� SiðhÞ�g: (2)

Here w and h are the radial and poloidal variables, with spa-

tial index i and j, respectively. For the toroidal variable u, a

spectral representation is adopted with toroidal mode num-

ber n. QiðwÞ and QjðhÞ denote quadratic spline functions

centered at wi and hj. The numbers of radial and poloidal

grid points for these spline functions are Nw and Nh, respec-

tively. SiðhÞ is a phase factor at a flux surface w ¼ wi and

given by

SiðhÞ ¼
ðh

0

dh0
B � ru

B � rh0

����
wi

:

Figure 3 illustrates spectrum of the fluctuating potential rep-

resented by Eq. (2) and represents the resonant and non-

resonant modes. Non-resonant modes are not localized

“near” a flux surface. More details and verification of the

simulation model are presented in Ref. 24.

The evolution of the fluctuation intensity envelope is

affected by the population of non-resonant modes. To control

the population of non-resonant modes allowed in the simula-

tion, we change the number of grid points for Qj in Eq. (2),

i.e., we vary Nh. We set Nh ¼ 32 for a proper representation

of the fluctuating potential with a full population of non-

resonant modes. To suppress the envelope evolution artifi-

cially, we reduce the number to Nh ¼ 6. Note that the number

of Nh ¼ 6 is the minimum possible in our numerical scheme.

Even though we set Nh ¼ 6, a few non-resonant modes

remain within the simulation domain. In what follows, we

refer, respectively, the Nh ¼ 32 and Nh ¼ 6 cases as “with”

and “without” the non-resonant modes, for convenience.

It should be noted that there is no profile control during
the simulations. Turbulence is excited by temperature gradi-
ent and produces heat transport until free energy in the tem-
perature gradient is exhausted. Therefore, temperature
profiles relax in time and the turbulence eventually decays.
Due to this limit, the excitations of the secondary convective
cells are limited and their nonlinear evolution cannot be
fully addressed in this work. However, we do observe clear
impact of non-resonant modes and associated convective
cells on the turbulence evolution, in general, and on the in-
tensity profile, in particular.

Simulation parameters and profiles are set as follows: A

concentric circular equilibrium is used with major radius

R0 ¼ 130 cm and minor radius a¼ 48 cm. We consider a

q-profile with normal shear. Safety factor and magnetic shear

at the mid-minor radius r¼ 0.5 a are q¼ 1.43 and ŝ ¼ 0:78.

The q values at the innermost and outermost surfaces are

q0 ¼ 0:85 and qa ¼ 3:02, respectively. Electrostatic ion tem-

perature gradient (ITG) driven turbulence is excited by an

initial temperature profile with radial gradient

R0=LTi ¼ 7:14, and the radial gradient of the density profile

R0=Lne is set to satisfy gi ¼ Lne=LTi ¼ 3:1 at r¼ 0.5 a.

Velocities are normalized by vT0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
T0=mi

p
¼ 4:90

�107 cm=s and time by ss ¼ R0=vT0 ¼ 2:65 ls, where vT0

and T0 ¼ 5 keV are the ion thermal velocity and ion tempera-

ture in the center of a deuterium plasma, respectively. The

normalized value of the ion Larmor radius on axis is

qi0=a ¼ 0:011. The fluctuating potential is the usual dimen-

sionless quantity / ¼ edU=T0. The number of radial grid

points in Eq. (2) is set as Nw ¼ 192. The range of toroidal

mode number is chosen as [–32, 32], for which jkhqij � 0:9
at r¼ 0.5 a. We use a medium number of 40 M markers (100

markers per a grid) to demonstrate physics related to the con-

vective cells. We additionally perform a convergence study

to confirm the physical non-resonant mode amplitude and

related issues by increasing the number of marker particles

by 4 times.

FIG. 3. Illustration of resonant and non-resonant modes on a flux surface.
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B. Convergence study and numerical property of
parallel filter

Numerical noise in particle in cell simulations often

contaminates important physical results. In this subsection,

we present the convergence of key properties of non-

resonant modes with varying marker numbers. In Fig. 4, the

root-mean-square amplitudes of resonant and non-resonant

modes

ffiffiffiffiffiffiffiffiffi
h/2i

q
are plotted for simulations with 40 M and

160 M marker particles. Here, h/2i is defined as

h/2i � 1

V

ð
dV
X

m;n2K
/2

m;nðrÞ;

where K is a set of (m, n) defined as K ¼ fðm; nÞjqmin �
m=n � qmaxg for the resonant modes, K ¼ fðm; nÞjm=n <
qmin or qmax < m=ng for the non-resonant modes, and V is

the volume of the simulation domain. While the number of

marker particles increases by 4 times, the root-mean-square

amplitude of the non-resonant modes decreases by only

about 20%. We also show the local poloidal spectra of poten-

tial fluctuations of toroidal mode n¼ –6 at r=a 	 0:4 for the

different numbers of markers in Fig. 5(a). From the similar

levels of non-resonant components of the simulations with

40 M and 160 M markers, we can see that even the low-

amplitude, physical non-resonant modes are well-resolved.

The non-resonant modes are artificially filtered out by

decreasing the number of poloidal grids, as shown in Fig.

5(b). In the simulations with the larger marker particles, the

bicoherence analysis and profiles of turbulence intensity,

Reynolds stress, and zonal flow also show the same trend

with those in the simulations with the medium number of

marker particles. (More detailed comparisons are presented

in the forthcoming sections.) This convergence of the results

in number of marker particles demonstrates that the proper-

ties of non-resonant modes and their effects are physical

results.

We note that the numerical method employed in this

study to suppress non-resonant modes is basically equivalent

to the field-aligned Fourier filter in Ref. 28. In the previous

study,28 it was noted that too narrow kk filtering of fluctuat-

ing potential can lead to incorrect linear dynamics of ITG

turbulence. To check the linear response of ITG turbulence

with the different Nh values used in this work, we perform

linear ITG simulations with Nh ¼ 6 and 32. In Fig. 6, the

time evolutions of fluctuating potentials and linear growth

rates are plotted. The results of Nh ¼ 6 and 32 show good

agreement, which confirms that the numerical method used

in this study preserves the linear dynamics of ITG turbulence

very well and only controls non-resonant mode population in

nonlinear phase.

C. Spectral analysis of turbulence

Comprehensive spectral analyses are performed in 3-

dimensional configuration space ðr; h;uÞ and also in time (if

necessary), so as to distinguish the propagation direction of

the modes. The spectral component of fluctuating potential is

expressed in the Fourier form as

/ðx; tÞ ¼
X

kr ;m;n;x

/kr ;m;n;xexp½iðkrr þ mh� nu� xtÞ�: (3)

We also measure bicoherence among poloidal and toroi-

dal modes, /m;n, in order to quantitatively compare the

FIG. 4. Time histories of volume integrated, root-mean-square amplitude of

non-resonant and resonant modes for simulations with 40 M markers (solid)

and 160 M markers (broken).

FIG. 5. Local poloidal spectra of potential fluctuations of toroidal mode n¼ –6 at r=a 	 0:4 (a) for different marker numbers of 40 M (black) and 160 M (red)

with Nh ¼ 32 and, (b) for different poloidal grid numbers of Nh ¼ 6 and 32 with 40 M markers. The spectra are averaged over the period t ¼ 100� 110ss. The

blue and black vertical lines show the local resonant mode (i.e., nq(r)) and the range of possible resonant mode within the simulation domain (i.e.,

mminðmaxÞ ¼ nqminðmaxÞ), respectively.
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strength of nonlinear interactions. Specifically, we refer to

quadratic interactions of ðm1; n1Þ þ ðm2; n2Þ $ ðm1 þ m2;
n1 þ n2Þ, which need not to be radially local. Bispectral anal-

ysis is a well-established method to evaluate the relative

strength of quadratic interactions.29,30 The bispectrum can be

written in terms of the Fourier components as

Bn1;n2;m1;m2
ðr1; r2; r3Þ ¼ h/m1;n1

ðr1Þ/m2;n2
ðr2Þ/
m1þm2;n1þn2

ðr3Þi;
(4)

where the angle bracket indicates an average over realiza-

tions. By adopting the ergodic hypothesis, this is replaced by

average over a time period about 20ss, which is about the

time scale of evolution of the turbulence intensity profile.

The bicoherence is defined in terms of the bispectrum with

the normalization

b2
n1;n2;m1;m2

ðr1; r2; r3Þ

¼ jBn1;n2;m1;m2
ðr1; r2; r3Þj2

hj/m1;n1
ðr1Þ/m2;n2

ðr2Þj2ihj/m1þm2;n1þn2
ðr3Þj2i

:
(5)

The bicoherence is bounded by 0 � b2 � 1 and will have a

finite, non-zero value for mode numbers among which a non-

linear interaction has taken place. Larger bicoherence indi-

cates stronger interaction.

III. NONLINEAR INTERACTIONS AND TURBULENCE
SPREADING

To compare the structure of non-resonant modes to that

of resonant modes, we estimate the effective mean square

parallel wave number hk2
jj;eff i and the radial extent hðDrÞ2i of

both resonant and non-resonant modes. These quantities are

defined as

hk2
jj;eff i �

1

N

X
m;n2K

Ð
dr½ðm=qðrÞ � nÞ=R0�2/2

m;nðrÞÐ
dr/2

m;nðrÞ
;

hðDrÞ2i � 1

N

X
m;n2K

Ð
drðr � r0Þ2/2

m;nðrÞÐ
dr/2

m;nðrÞ
;

respectively. Here, N and r0 are the total number of the

entries and the center of each envelope, respectively. Time

histories of the above quantities are shown in Fig. 7. The

onset of the nonlinear phase of turbulence occurs around

t 	 110ss. The effective parallel wave number of the non-

resonant modes is larger than that of the resonant modes, so

the non-resonant modes experience stronger Landau damp-

ing. In spite of this stabilizing effect, the amplitude of the

non-resonant modes grows continuously during the nonlinear

phase, as shown in Fig. 4. This implies that the non-resonant

modes are nonlinearly driven. The non-resonant modes have

broader radial extent than the resonant modes, as shown in

Fig. 7(b). The radial extent of the resonant modes is mainly

determined by the linear theory of low-kjj ballooning mode

structure during the linear phase. We note that in the nonlin-

ear phase, the radial extent of the resonant modes

FIG. 6. (a) Time histories of n¼ 12 mode amplitudes at r/a¼ 0.5 and (b) linear growth rate spectra of linear simulations with Nh ¼ 6 and Nh ¼ 32.

FIG. 7. Time histories of (a) effective mean square parallel wave number

and (b) mean square radial extent of resonant and non-resonant modes for

simulations with 40 M markers.
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continuously increases, instead of remaining unchanged. The

evolution of hðDrÞ2i of the resonant modes cannot be under-

stood by the linear ballooning mode theory and requires a

theory incorporating nonlinear mode-mode couplings, spec-

tral spreading, or other nonlinear effects. We do not have a

clear explanation for this radial extent evolution, which is

beyond the scope of this work.

We also estimate spatial correlation of resonant and

non-resonant modes. Many, but not all, non-resonant modes

have a coherent radial structure. As an example, we show ra-

dial structure and kr power spectrum of a non-resonant mode

with m/n¼ 1/–7, averaged over the period t ¼ 130� 140ss,

in Fig. 8. The correlation length can be estimated as dc 	 4

=Dk � 0:16a � 14qi0 from the width of the dominant peak

in the spectrum. This value is larger than the correlation

length of resonant modes dc � 5� 7qi0.

Based on these observations, the spectrum of the non-

resonant modes can be associated with nonlinearly driven,

radially extended structures, as compared to the resonant

modes, which correspond to localized eddies that evolve

from linear instability. Thus, we identify the non-resonant

modes as a type of radially extended, secondary convective

cell. These cells differ from the traditional concept of

“convective cell,” though, in that they have finite kjj and a fi-

nite life time, as opposed to being flute-like and quasi-coher-

ent.22,23 The radially extended convective cells have a

structure similar to that of streamers. However, the large kjj

of the convective cell distinguishes them from the well-

known linear streamer.15 On the other hand, the convective

cells may be related to nonlinearly driven streamers observed

in simulations.16–18 Furthermore, we can expect that turbu-

lence spreading efficiency increases with nonlinear interac-

tions including the non-resonant modes associated with

radially extended cells.

We measure changes in nonlinear interactions according

to the degree of control of the radially extended convective

cells by calculating the bicoherence in Eq. (5). First, we exam-

ine local mode-mode interactions which take place on a given

flux surface, that is r1 ¼ r2 ¼ r3 ¼ r, by computing the

“local” bicoherence. Figure 9 shows the local bicoherences

(a) with, and (b) without, the non-resonant modes in an early

(t ¼ 100� 120ss) and later (t ¼ 120� 140ss) phase of the

nonlinear evolution. Data are taken from r/a¼ 0.54 and the to-

roidal mode for this figure is chosen as n1 ¼ n2 ¼ �5. The

results for other toroidal modes show a similar trend.

In each plot, the black, broken lines denote the resonant

poloidal mode number at the radial position and; the red,

broken lines show the range of possible resonant poloidal mode

numbers within the simulation domain, i.e., mminðmaxÞ
¼ nqminðmaxÞ. Thus, the interior of the triangle made by the two

red broken lines and the m1 ¼ m2 line corresponds to the inter-

actions among the resonant modes having their own rational

surfaces within the simulation domain. The region outside of

the triangle corresponds to interactions involving the non-

resonant modes, which arise from radially extended convective

cells, which can couple to fluctuations at distant radii.

For the two cases of retaining and suppressing the con-

vective cells, the local interactions among resonant modes are

dominant in the early stage of the nonlinear phase. Differences

in evolution emerge in the later nonlinear phase. The local

interactions among the resonant modes decrease for the case

which retains convective cells, as shown in Fig. 9(a). On the

other hand, when we suppress the convective cells in Fig.

9(b), the local resonant mode interactions remain strong, even

in the later nonlinear phase. We expect that the stronger local

interactions result in decrease in the spectral scattering of fluc-

tuation energy away from the local region of excitation, and

so cause a more peaked turbulence intensity profile. In other

words, the degradation of the local interactions upon inclusion

of non-resonant convective cells indicates that such non-

resonant modes mediate longer range interactions.

The expected effect of the local resonant mode interac-

tions on turbulence spreading is shown by the time evolution

of turbulence profiles in Fig. 10. By suppressing the convec-

tive cells, the turbulence profile forms a more localized peak

at t 	 130ss due to the stronger local interactions among the

resonant modes. In addition to this observation, we quantita-

tively evaluate nonlocal interactions which occur between

modes at different radii by computing average bicoherence

over the total interactions, defined as

�b2ðr; r þ drÞ � 1

Ninter

X
n1;n2;m1;m2

b2
n1;n2;m1;m2

ðr; r; r þ drÞ;

where b2
n1;n2;m1;m2

is given by Eq. (5). Here, we restrict r1 ¼ r2

¼ r for simplicity and Ninter is the total number of interactions.
FIG. 8. (a) Radial structure and (b) kr power spectrum of a non-resonant

mode with m/n¼ 1/–7 for simulations with 40 M markers.
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Figure 11 shows the radial profile of the average bicoherence

near the location where the turbulence intensity peak forms

(r=a 	 0:6). The result is obtained with a time average over the

time interval t=ss ¼ 123� 137, when the peak persists. The

convective cells weaken the local interaction around dr ¼ 0

and strengthen the nonlocal interaction. The difference between

the two cases is not apparent, due to the transient character of

the simulation, which is dominated by profile relaxation. The

broader fluctuation intensity profile in the presence of the con-

vective cells in Fig. 10(b) is closely related to the increase

(decrease) of nonlocal (local) interactions. In the same vein, the

turbulence profile becomes broader on account of nonlocal

spectral energy transfer, implying enhancement of turbulence

spreading by convective cells. We confirm that the fluctuation

intensity profile becomes broader with the increase of nonlocal

interactions in the simulations with 160 M marker particles (see

Fig. 12).

IV. EFFECTS ON REYNOLDS STRESS AND ZONAL
FLOW

The difference in turbulence intensity profile caused by

the suppression of the radially extended convective cells

affects the Reynolds stress and zonal flow generation,

because the time evolution of turbulence and zonal flow are

obviously quite tightly coupled to one another. The

turbulence-driven Reynolds stress and zonal flow increment

are computed using Eq. (1). The radial profiles of Reynolds

stress, zonal flow increment, and zonal flow are shown in

Figs. 13 and 14 for the simulations with 40 M and 160 M

marker particles, respectively. The profiles are averaged over

the period t ¼ 135� 155ss. In the cases with suppressed

non-resonant convective cells, the gradient of Reynolds

stress increases at the middle radii (r=a � 0:5) and a stronger

zonal flow is driven. The stronger zonal flow increment can

be understood as resulting from the peaked turbulence inten-

sity profile from the relation in Eq. (1), @thVE�Bi � �@rh/2i.
On the other hand, when we retain convective cells, the

broad intensity profile caused by the enhanced turbulence

spreading reduces the zonal flow increment, since j@rh/2ij is
smaller. Figure 15 summarizes the effect of the convective

cells on the self-generation of zonal flow.

From the equation of zonal flow generation in Eq. (1),

we can also identify the correlation of fluctuating potential in

kr and kh space as a key ingredient in Reynolds stress genera-

tion. Figure 16 shows the kr � kh spectra of fluctuating

potential /2ðkr; khÞ (a) without, and (b) with, non-resonant

modes associated with convective cells. The data analyzed

are taken at t ¼ 135ss when the difference between the two

cases is most noticeable. The data are from r=a 	 0:5, inside

of the region where the turbulence intensity peak forms. The

radial wave number spectra are obtained using the Fourier

transform of the fluctuating potential within a radial interval

of length L � 0:25a, so the resolution in kr is

Dkr 	 0:28q�1
i0 . When convective cells are suppressed, a

clear asymmetry in the /2ðkr; khÞ spectrum appears, as

denoted by the black dashed line in Fig. 16(a). This asymme-

try corresponds to radially outgoing propagation from the

location of the turbulence intensity peak in Fig. 10(b). For

the case with convective cells retained, an additional fluctua-

tion structure with krkh > 0 arises (as denoted by the red,

dashed line in Fig. 16(b)), with the result that the spectrum

FIG. 9. Local bicoherences of the potential fluc-

tuations (a) with, and (b) without, non-resonant

modes in an early (t ¼ 100� 120ss) and later

(t ¼ 120� 140ss) phase of the nonlinear evolu-

tion for simulations with 40 M markers. Interac-

tions among three modes such that

ðm1; n1Þ þ ðm2; n2Þ $ ðm1 þ m2; n1 þ n2Þ are

considered. Data are taken from r/a¼ 0.54 and

n1 ¼ n2 ¼ �5 modes are shown. The local

interaction among the resonant modes decreases

for the case which retains non-resonant modes

(a) in the later nonlinear phase, implying that

the non-resonant modes mediate longer range

interactions.
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becomes more symmetric. The additional fluctuation struc-

ture is associated with propagation opposite to the outgoing

direction. This opposite direction propagation increases con-

comitantly with the decrease of the turbulence localization

caused by the enhanced turbulence spreading. The more

symmetric spectrum in the case with non-resonant modes is

consistent with the decrease of the Reynolds stress in the

middle radii in Fig. 13(a).

The /2ðkr; khÞ spectrum also reflects the effect of zonal

flow shearing on kr. Recalling the eikonal theory for evolu-

tion of kr with zonal flow shearing1

d

dt
kr ¼ �

@

@r
½khVE�BðrÞ� � �kh

@VE�B

@r
;

we note that kr increases with stronger zonal flow shearing.

We confirm this by computing the average radial wave num-

bers from the spectra in Fig. 16, which is defined as

hkri �

X
kr ;kh;x>0

kr/
2
k;x

X
kr ;kh;x>0

/2
k;x

:

FIG. 10. Time evolution of the turbulence intensity profiles with (red), and

without (black), non-resonant modes for simulations with 40 M markers.

FIG. 11. Radial profile of average bicoherence with (broken), and without

(solid), non-resonant modes near the position r=a 	 0:6 for simulations with

40 M markers.

FIG. 12. Radial profiles of (a) turbulence intensity and (b) average bicoherence near the position r=a 	 0:6 averaged over the period t ¼ 135� 150ss for simu-

lations with 160 M markers.
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The values are hkrqi0i 	 0:14 for the case with stronger

zonal flow shear and hkrqi0i 	 �0:03 for the case with

reduced zonal flow shear.

Figure 17 shows time histories of (a) zonal flow incre-

ment, (b) zonal flow, and (c) E�B shearing rate,

xE�B � @hVE�Bi=@r, around the central radii. A stronger

drive of zonal flow at t ¼ 130� 140ss appears when the

radially extended convective cells are suppressed. The esti-

mated zonal flow increment is consistent with the increase of

the zonal flow and E�B shearing rate.

V. EFFECTS ON TURBULENCE AND TRANSPORT

When the radially extended convective cells are sup-

pressed, turbulence is more effectively regulated due to the

increase of zonal flow, as shown in Fig. 18(a)—the time his-

tory of the total turbulence intensity integrated over the sim-

ulation volume, for the simulations with 40 M markers. (For

the larger marker number simulations, turbulence level is

higher in the case with retained convective cells.) Figure

18(b) shows the radial profile of the temperature gradient

R0=LT during the times of enhanced turbulence regulation

(t ¼ 130� 140ss). In the case with suppressed convective

cells, the temperature perturbation is stronger. This is

because the turbulence intensity peak around r=a � 0:6 in

Fig. 10(b) produces larger heat and momentum transport.

We can interpret the production of larger Reynolds stress

addressed in Sec. IV as the increase of momentum transport.

VI. TOROIDAL ROTATION

In addition to zonal flows, toroidal rotation is an essen-

tial element in the dynamics of profiles and turbulence. From

FIG. 13. Radial profiles of (a) Reynolds stress, (b) zonal flow increment,

and (c) zonal flow averaged over the period t ¼ 135� 155ss for simulations

with 40 M markers.

FIG. 14. Radial profiles of (a) Reynolds stress, (b) zonal flow increment,

and (c) zonal flow averaged over the period t ¼ 135� 155ss for simulations

with 160 M markers.
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previous studies, we know that broken kjj-symmetry in the

fluctuation spectrum can generate intrinsic torque and drive

toroidal plasma rotation.24,31 In this section, we briefly report

the effects of nonlinear interactions involving non-resonant

modes (associated with the convective cells) on intrinsic to-

roidal rotation.

The radial profiles of toroidal rotation are shown in Fig.

19(a). The intrinsic rotation profiles are similar for the two

cases during nonlinear phase (t � 155) except the middle ra-

dius, where stronger zonal flow shear is driven without the

non-resonant modes. Interestingly, a remarkable difference

appears after the decay of turbulence by profile relaxation.

Higher intrinsic rotation persists during the whole time inter-

val in the case without non-resonant modes, while the rota-

tion decreases in the case with non-resonant modes. Because

this observation is limited to the late phase of the simulation

when turbulence decays, the effect of the non-resonant

modes on the toroidal rotation is modest.

The decrease in the flow is related to the decrease of par-

allel wave number asymmetry, i.e., decrease of mean parallel

wave number hkjji. The asymmetry in hkjji can be evaluated

from the potential fluctuation spectrum as

hkjji ¼

X
m;n;x

m� nq

qR0

/2
m;n;x

X
/2

m;n;x

; (6)

where x > 0. Compared in Fig. 19(b) are the hkjji profiles

before (black) and after the decay (red). Before the decay,

the radial profiles of hkjji in both cases are similar. After the

decay at t � 225ss, the profile of hkjji significantly decreases

in the outer radii (r=a > 0:6) with non-resonant modes,

while it hardly changes from its value of the time of satura-

tion in the case without non-resonant modes. During the

entire time of the simulation, the interactions involving the

non-resonant modes continue to spread the modes with a fi-

nite kjj, subjected to a constraints of total momentum

conservation.

VII. CONCLUSIONS AND DISCUSSION

We have presented the results of gyrokinetic simulation

studies of the role of non-resonant modes in turbulence

spreading and plasma zonal flow generation. Non-resonant

modes may be thought of as radially extended convective

cells with finite kjj. Motivated by considerations of coupling

between spatial spreading and spectral scattering of fluctua-

tions via nonlinear interaction, we investigated the effects of

non-resonant modes on the self-regulation dynamics of tur-

bulence and plasma flows. The amplitude of the non-

resonant modes grows continuously during the nonlinear

phase. Non-resonant modes have broader radial extent and

larger effective parallel wave number than do resonant

modes. We identified and characterized the non-resonant

modes as radially extended, secondary convective cells.

Using comparisons between full simulations and studies with

the cells switched off, we elucidated the relation between the

role of the convective cells in turbulence spreading, the

structure of the turbulence intensity profile, and the saturated

turbulence level.

Results showed that the local interactions of resonant

modes can be enhanced by suppressing the convective cells,

which leads to a change in the spatial profile of turbulence

intensity. The relation between the nonlinear interactions

and turbulence spreading can be summarized as follows: (i)

the interactions among the resonant modes, only, are more

radially localized, and so yield a peaked turbulence intensity

profile, (ii) the interactions involving the non-resonant

modes, associated with radially extended convective cells,

FIG. 15. Flow chart showing the effect of secondary convective cell on self-

generation of zonal flow.

FIG. 16. Fluctuation spectra in kr � kh; /2ðkr ; khÞ, in the cases (a) without, and (b) with, non-resonant modes around r=a � 0:5 and at t ¼ 135ss for simula-

tions with 40 M markers.
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are more distributed in radius, thus promote turbulence

spreading and so cause the turbulence intensity profile to

broaden. More peaked intensity profiles are more effective at

driving zonal flows; other factors being equal and so should

exhibit weaker turbulence and better confinement.

These studies unambiguously demonstrated that the tur-

bulence spreading plays a significant role in the self-

regulation dynamics. By suppressing the radially extended

convective cells and thereby reducing turbulence spreading,

we indeed showed that the resulting peaked spatial profile of

turbulence intensity yielded a larger Reynolds stress. Thus,

stronger E�B shear flows were generated near the turbu-

lence intensity gradient peak. As a consequence of the

increase of zonal flow, the turbulence level is significantly

reduced.

Several aspects of these results merit discussion in the

context of current issues in tokamak transport phenomenol-

ogy. These are

1. Turbulence spreading is frequently invoked as a possible

mechanism for nonlocal phenomena observed in tokamak

experiments. Such nonlocality phenomena include the

rapid core response to a cold pulse at the edge32,33 and the

increase of fluctuation levels at inner radii during the H-L

back-transition.34 Turbulence spreading can be experimen-

tally identified by estimating the spatially dependent bico-

herence of fluctuation data.35 If turbulence spreading is a

dominant process in these nonlocal phenomena, the bico-

herence range may exceed the turbulence correlation

length. Since we have shown that non-resonant modes play

a role in turbulence spreading, it is likely that they are an

element of the dynamics of nonlocality phenomena.

2. The dynamics of edge-core coupling in tokamaks is espe-

cially crucial to understanding the formation and extent of

the H-mode pedestal. In particular, the extent and precise

location of the domain connecting the core region to the

edge-pedestal region—the so called “No Man’s Land”—

is uncertain. And the turbulence level in the intermediate

region deviates from most theoretical predictions based

on local gradient-driven instabilities. Turbulence spread-

ing likely plays a role in determining the turbulence level

in the intermediate region by backwash or spillover from

the strongly turbulent L-mode edge into the marginally

stable core or by the breaking of core turbulence spread-

ing on the “beach” of No Man’s Land.8–10 Here, we argue

that the efficiency of spreading is enhanced in regions

where secondary convective cells are situated and so

varies in radius. The dynamics and turbulence level of the

intermediate region are influenced by profiles of the non-

linear scattering of turbulence intensity as well as linear

growth. Thus, non-resonant modes are likely a significant

element in the dynamics of No Man’s Land.

3. We note that most of transport models in use today are

based on the local features of turbulence structure. The

level of fluctuations is usually determined by mixing-

length rules linking the linear growth rate and the domi-

nant E�B nonlinearity36 or by a saturation rule deter-

mined by fits to nonlinear gyrokinetic turbulence

simulations, which are local in both position and spectral

space.37 Discrepancies between transports models and ex-

perimental measurements still exist and may arise from

the local approximations of turbulence properties. We

believe that the present study demonstrates the impor-

tance of nonlocal coupling between spectral modes in tur-

bulence and transport. The gap between transport models

and experiment might be bridged by a nonlocal model for

the effective mixing length scale and the saturation level

of fluctuations, including the spatial flux of fluctuation

energy driven by spectral interactions. To this end, proper

treatment of non-resonant modes seems essential to accu-

rately calculate the fluctuation envelope structure and

zonal flow generation.

FIG. 17. Time histories of (a) zonal flow increment around r=a 	 0:5 and

(b) zonal flow and (c) zonal flow shear averaged over the region r/a¼ 0.48–

0.51 for simulations with 40 M markers.
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To reliably reproduce and understand the formation of

transport barriers using computer simulations, such simula-

tions should reflect the experimental realities more faithfully

and include such effects as external momentum sources that

may assist the mitigation of ion temperature profile stiffness.

In a related vein, the effects of plasma rotation and its shear

on the nonlinear interactions and spatial spreading of turbu-

lence will be an important subject for future works. Also, it

will be interesting to study how relaxation of the assump-

tions inherent in this simulation, such as adiabatic electron

response, will change the nature of nonlinear interactions

involving non-resonant modes.

In future works, we will study roles of nonlinear interac-

tions and turbulence spreading in turbulence self-

organization and transport barrier formation using a global

flux-driven gyrokinetic model, which can achieve the

required steady state simulation. We will revisit the observa-

tions in the present study without the transient features and

so obtain a clearer interpretation of the physics of non-

resonant modes and their roles in the self-regulation dynam-

ics of confined plasma turbulence and flows.
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