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Abstract

Applications of Integer Programming Methods to Solve Statistical Problems

by

Michael James Higgins

Doctor of Philosophy in Statistics

University of California, Berkeley

Jasjeet Sekhon, Co-chair

Deborah Nolan, Co-chair

Many problems in statistics are inherently discrete. When one of these problems also contains
an optimization component, integer programming may be used to facilitate a solution to the sta-
tistical problem. We use integer programming techniques to help solve problems in the following
areas: optimal blocking of a randomized controlled experiment with several treatment categories
and statistical auditing using stratified random samples.

We develop a new method for blocking in randomized experiments that works for an arbitrary
number of treatments. We analyze the following problem: given a threshold for the minimum
number of units to be contained in a block, and given a distance measure between any two units in
the finite population, block the units so that the maximum distance between any two units within
a block is minimized. This blocking criterion can minimize covariate imbalance, which is a com-
mon goal in experimental design. Finding an optimal blocking is an NP-hard problem. However,
using ideas from graph theory, we provide the first polynomial time approximately optimal block-
ing algorithm for when there are more than two treatment categories. In the case of just two such
categories, our approach is more efficient than existing methods. We derive the variances of es-
timators for sample average treatment effects under the Neyman-Rubin potential outcomes model
for arbitrary blocking assignments and an arbitrary number of treatments.

In addition, statistical election audits can be used to collect evidence that the set of winners (the
outcome) of an election according to the machine count is correct—that it agrees with the outcome
that a full hand count of the audit trail would show. The strength of evidence is measured by the p-
value of the hypothesis that the machine outcome is wrong. Smaller p-values are stronger evidence
that the outcome is correct. Most states that have election audits of any kind require audit samples
stratified by county for contests that cross county lines. Previous work on p-values for stratified
samples based on the largest weighted overstatement of the margin used upper bounds that can be
quite weak. Sharper p-values than those found by previous work can be found by solving a 0-1



2

knapsack problem. We also give algorithms for choosing how many batches to draw from each
stratum to reduce the counting burden.
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Chapter 1

Introduction

Statistics features many problems that are discrete in nature. Statistical sampling problems
often begin with the assumption that an integer number of units is drawn from a finite population,
with attributes of units considered fixed. Many problems in experimental design examine how
to efficiently assign a finite number of units to pre-selected treatment categories. Nonparametric
inference problems may involve computing ranks and counting the number of permutations of
treatment assignments that would produce a test statistic as large or larger than the one observed
under an exact null hypothesis. Frequently in causal inference, subjects in one treatment group
are matched to one or more subjects in another treatment group based on the units’ propensity
scores or observed values of selected pretreatment covariates to improve accuracy of treatment
effect estimates. Statistical clustering problems investigate methods to best partition a finite set of
units.

The aforementioned areas have all benefitted from the use of integer programming techniques.
Integer programming is a branch of combinatorial optimization that focuses on methods for opti-
mizing objective functions over integer domains. Recognizing a statistical problem as an integer
programming problem (e.g. as a graph partitioning problem or a knapsack problem) may facilitate
the solution of the statistical problem.

We give two novel instances of solving a statistics problem through the use of integer program-
ming. In chapter 2, we borrow from graph partitioning literature to obtain efficient methods for
blocking units before applying treatment in an experiment. Our blocking method is applicable for
experiments with an arbitrary number of treatment categories and an an arbitrary number of repli-
cations of each treatment within each block. When treatment is randomized within each block,
our blocking method will ensure some level of covariate balance between treatment groups. In
chapter 3, we consider statistical election audits in which batches of ballots are selected for audit
by a stratified random sample (which is commonly how contests that span multiple counties are au-
dited). We show that a p-value for the null hypothesis that the machine count outcome is different
from what a full hand count would show can be obtained by solving a 0-1 knapsack problem. This
observation allows for a reduction in the audit workload (compared to previous methods) while
preserving the same confidence in the election outcome, and can further be exploited to obtain
optimal sample sizes for audits.



1.1. OPTIMAL BLOCKING 2

1.1 Optimal blocking
In randomized controlled experiments where treatment is completely randomized, especially in

those with very few units, there may be a non-negligible probability of poor balance on a covariate
that is highly predictive of response. When this happens, estimates of treatment effects may be
inaccurate unless the covariate imbalance is taken into account. For example, consider a medical
trial where patients are given either a medication or a placebo. If very sick people are dispropor-
tionally assigned to the placebo, and only healthy people receive the medication, it may be very
difficult to accurately access the true effectiveness of the medication. Moreover, current methods
for adjusting for covariate imbalance when estimating treatment effects (e.g. post-stratification)
may be susceptible to “data-mining” problems; it may be preferable to ensure that randomization
is restricted to ensure balance on important covariates (Lock Morgan & Rubin 2012).

In chapter 2, based on work with Jasjeet Sekhon, we propose a method for blocking units
before treatment is assigned. Given a pre-specified threshold for the minimum number of units to
be contained in a block, and given a measure of dissimilarity between any two experimental units,
our method selects a blocking so that the maximum dissimilarity between any two units within the
same block is “close” to minimal. In this way, our blocking method will ensure a level of covariate
balance between treatment groups. The method can be applied to experiments with an arbitrary
many treatments, with arbitrarily many replications of each treatment within each block, and can
be used for both small and fairly large experiments (up to about 10,000 units at this current time,
with hopes of millions of units soon).

Our blocking method first uses an observation made by Paul Rosenbaum that units in an ex-
periment can be viewed as vertices on a graph (Rosenbaum 1989). We then view blocking as a
graph partitioning problem. The condition of minimizing the maximum within-block dissimilar-
ity is closely related to the idea of bottleneck subgraphs (Gonzalez 1985; Hochbaum & Shmoys
1986). We exploit methods from this literature to develop an efficient blocking algorithm.

We then conclude the chapter with a discussion on estimation the sample average treatment
effect of under the Neyman-Rubin potential outcomes model (Splawa-Neyman et al. 1990; Rubin
1974; Holland 1986). Under this model, we derive variances for two unbiased estimate of this
parameter: the difference-in-means estimate and the Horvitz-Thompson estimate. We also discuss
conservative estimates of these variances.

1.2 Election auditing
Statistical auditing uses techniques like statistical sampling and hypothesis testing to make

rigorous statements about the amount of discrepancy contained in a set of units under audit. Often,
this statistical rigor requires minimal assumptions to be made on the distribution of the discrepancy
across the units; when the discrepancy is sufficiently large and deliberate, it will be allocated so as
to make detection by an audit difficult. Thus, statistical auditing problems can become very hard
very quickly.

There is a large literature on the subject of statistical financial auditing (Fienberg et al. 1977;
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Guthrie et al. 1989; Wendell & Schmee 1996; Talens 2005; Financial Audit Manual 2008). More
recently, many of the ideas in financial auditing have also been used in election auditing (Aslam
et al. 2007; Stark 2008a,b, 2009a,b,c; McLaughlin & Stark 2011; Miratrix & Stark 2009). In chap-
ter 3, originally published as Higgins et al. (2011) and reprinted with permission from De Gruyter1,
we discuss how to test whether an election outcome is incorrect when batches of ballots are drawn
by a stratified random sample—a common way a contest is audited when it spans multiple counties.

The core of the paper presents an exact substantive test of details when units are selected
using a simple random sample. A substantive test of details is a type of audit that tests whether
the aggregate discrepancy in a set of audited units is material—greater than some prespecified
threshold. In election auditing, a discrepancy in a batch of ballots is a difference between the
reported vote total and the hand-count vote total for that batch, and the aggregate discrepancy is
material when the reported winners differ from what a full hand count would show.

Although the chapter focuses on election audits, our method provides a novel test that is appli-
cable for all types of audits (including financial audits). Our test only assumes that the discrepancy
of a unit can be bounded from above before drawing a sample—in financial auditing, it is com-
monly assumed that the maximum discrepancy in a unit is no more than the book value of the unit;
in election auditing, a count of the number of ballots can be used to obtain an upper bound on the
maximum discrepancy. This work currently provides the sharpest one-sided nonparametric test for
the population mean when units are drawn using stratified random sampling, and is currently the
only such test that incorporates information about the values of the responses when deriving the
sampling distribution of the test statistic.

We show that computing a p-value for this substantive test is equivalent to solving a 0–1 knap-
sack problem (KP). KP is one of Karp’s 21 NP-Complete problems (Karp 2010). However, the
size of most auditing problems, and special structure related to stratified random sampling of units,
allows for p-values to be compute in fractions of a second. Properties of KP can be exploited
to derive good upper-bounds for this p-value very quickly and to improve methods for selecting
sample sizes for an audit.

1This article can be found at:
http://www.degruyter.com/view/j/spp.2011.2.issue-1/issue-files/spp.2011.2.issue-1.xml

http://www.degruyter.com/view/j/spp.2011.2.issue-1/issue-files/spp.2011.2.issue-1.xml
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Chapter 2

Optimal Blocking by Minimizing the
Maximum Within-Block Distance

2.1 Introduction
Since each additional observation in an experiment sometimes comes at considerable cost, it is

desirable to find more efficient estimators than the simple difference-in-means estimator to measure
treatment effects. Blocking, which is when experimenters first partition their units into blocks and
then randomize treatment within these blocks, can greatly reduce variance compared to the simple-
difference estimator if the strata differ from each other. This idea goes back to Fisher (1926),
and Neyman offers a treatment of blocking under his potential outcomes model in the appendix
of Neyman (1935). In recent work, Abadie & Imbens (2008) and Imai (2008) analyze matched
pairs under the Neyman model, Imai et al. (2009) do so for matched pairs of clusters, and Imbens
(2011) considers various designs. We extend some of these results to the case of an arbitrary
number of treatments. More importantly, we offer the first polynomial time approximately optimal
blocking algorithm for when there are more than two treatment categories.1 In the absence of such
a computationally feasible blocking method, some researchers have turned to other approaches,
such as re-randomization (Lock Morgan & Rubin 2012).

Consider a controlled experiment with n units and two or more treatments. Each unit is as-
signed to exactly one treatment. After applying treatment, a response for each unit is measured.
These responses are used to make statements about the effectiveness of the treatments. Pretreat-
ment covariates may be measured for each unit before treatment is assigned. Suppose the units are
partitioned into blocks on the basis of some subset of covariates. The collection of blocks is called
a blocking, the covariates used to create these groups are called block covariates, and the number
of units contained in a block is called the size of the block.

In this paper, we consider the following method for blocking: Choose a set of block covariates.
Select a metric that measures the similarity of the values of block covariates between any two

1 In the case of only two treatments, researchers sometimes use optimal nonbipartite matching (e.g., Greevy et al.
2004; Lu & Rosenbaum 2004; Lu et al. 2011). Moore (2012) discusses a number of blocking methods such as optimal-
greedy blocking.
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units—e.g. Mahalanobis distance. Choose a threshold for the minimum block size. Block units
so that the size of each block is at least this threshold, and so that the maximum within-block
distance—the maximum distance between any two units within a block—is minimized. We will
call any set of blocks that satisfy these criteria an optimal blocking.

When the goodness of a blocking is determined by how small the maximum within-block
distance is, setting a threshold for the minimum block size seems preferable to fixing the number of
units in a block (as is done, for example, in matched-pair designs), especially in small experiments.
For instance, consider an experiment with a treatment group and a control group and six subjects,
three men and three women. A matched pair design will necessarily pair one of the men to one
of the women, which could lead to increased variability in estimated treatment effects if the sex
of subject strongly affects response. An optimal blocking with a minimum block size of two,
however, may have one block containing the three men and one block containing the three women.

Setting this threshold also seems be preferable to fixing the number of blocks in the experiment,
which can create very small blocks. Imbens (2011) advocates applying each treatment to at least
two units within each block to estimate conditional variances. An optimal blocking with minimum
block size equal to two times the number of treatments will allow for each treatment to be applied
twice within each block. This treatment assignment suggestion may not be possible when fixing
the number of blocks.

Finding an optimal blocking is an NP-hard problem (Hochbaum & Shmoys 1986). However,
in small experiments, an optimal blocking can be found by brute force. Moreover, we give a
polynomial time algorithm that can find a blocking with maximum within-block distance within a
factor of four of the smallest maximum within-block distance possible.

We then discuss estimation of the sample average treatment effect (SATE) under the Neyman-
Rubin Causal Model when units are blocked before treatment assignment. We derive variances
for two unbiased estimators of the SATE—the difference-in-means estimator and the Horvitz-
Thompson estimator— and give conservative estimates of these variances. We then give a descrip-
tion of when blocking is beneficial in controlled experiments.

2.2 Optimal blocking
Rosenbaum (1989) observed a connection between optimal matching in causal inference and

matching in graph theory. We solve our optimal blocking problem by making a similar connection.
Each experimental unit can be viewed as a vertex in a graph. If two units can be placed in the same
block, there is a corresponding edge drawn between these two vertices in the graph. Weights are
assigned to each edge in the graph; if two units have similar values of block covariates, the edge
joining the corresponding vertices in the graph has a small weight. Thus, our desired optimal
blocking, or approximately optimal blocking, can be found using existing machinery in graph
theory.

For this paper, we focus on blockings where the size of each block is equal to or greater than
some prespecified threshold. Of these blockings, we wish to find one which minimizes the max-
imum within-block distance. The algorithms presented only require the edge weights to satisfy
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Figure 2.1: The figure on the left is a plot of heights and weights for twelve hypothetical people. The figure
on the right is a plot of these same twelve people when viewed as vertices in a graph; all information about
the original heights and weights is summarized by the values of the edge weights.

the triangle inequality (see Section 2.2.1); any metric applied to the block covariates can be mini-
mized by our method. For example, edge weights may be Mahalanobis (or weighted Mahalanobis)
distances of block covariates between units.

2.2.1 Optimal blocking as a graph theory problem
We begin by giving the following conventions for our notations. Lowercase letters will either

denote constants or indices. Parameters of interest will always be denoted by greek letters. Esti-
mates of these parameters are random variables denoted by careted (∧) greek letters. Capital letters
will either be used for graph theory notation or to denote random variables that are not parame-
ter estimates. Vectors are denoted by bold lowercase letters. Sets are denoted by bold uppercase
letters.

Let G = (V,E) denote a graph, where V is a set of n vertices and E is a set of edges. Suppose
that G is complete—between any two vertices {i}, {j} ∈ V , there is an edge (i, j) ∈ E joining
these two vertices. Suppose each edge (i, j) has a weight wij , and suppose that these weights
satisfy the triangle inequality:

wij + wjk ≥ wik ∀{i}, {j}, {k} ∈ V, {i} 6= {j} 6= {k}. (2.1)

A partition of V is a collection of blocks of vertices (V1, V2, . . . , Vk) that separates the orig-
inal set of vertices; each vertex {i} ∈ V belongs to exactly one block V`. Formally, a partition
(V1, V2, . . . , Vk) satisfies:
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1. V` ⊂ V , ` = 1, . . . , k.

2. V` ∩ V`′ = ∅ when ` 6= `′.

3.
⋃k
`=1 V` = V .

The size of a block V`, denoted |V`|, is the number of vertices contained in that block. When
vertices denote experimental units, each partition of V can be viewed as a blocking of units: two
experimental units are in the same block if and only if their corresponding vertices are in the same
block of the partition.

It follows that our original optimal blocking problem can be posed as the following optimal
partition problem: Let V denote the set of all partitions, let t denote a size threshold, and let

Vt ≡ {(V1, . . . , Vk) ∈ V : |V`| ≥ t, 1 ≤ ` ≤ k} (2.2)

denote the set of partitions that have at least t vertices within each block. We are interested in
finding a partition v† = (V †1 , V

†
2 , . . . , V

†
k†

) ∈ Vt satisfying:

max
1≤`≤k†

max
{i},{j}∈V †`

wij = min
(V1,...,Vk)∈Vt

(
max
1≤`≤k

max
{i},{j}∈V`

wij

)
≡ λ. (2.3)

That is, across all partitions that contain only blocks with t or more vertices, we are searching for
the partition which minimizes the maximum within-block edge weight—the maximum weight of
an edge that joins two vertices within the same block of the partition.

Finding such a partition v† is NP-hard (Hochbaum & Shmoys 1986). However, when the set
of vertices V is small, an optimal partition can be found by brute force. Also, as we now show, a
polynomial-time algorithm can find an approximately optimal partition (V ∗1 , V

∗
2 , . . . , V

∗
k∗) that has

a maximum within-block edge weight of at most 4λ,:

max
1≤`≤k∗

max
{i},{j}∈V ∗`

wij ≤ 4λ. (2.4)

In simulations, this approximately optimal partition can be found in a matter of seconds, even when
the set of vertices is large.

To reduce ambiguity in future procedures and algorithms, we assume that there is an ordering
on the vertex set V , and we make the convention that an edge between vertex {i} and {j} is written
(i, j) if and only if {i} is ordered before {j}. Under this convention, all procedures and algorithms
are completely non-random given G. If edge weights are Mahalanobis distances between block
covariates of units, for example, an ordering can be placed on vertices by ordering the distances
from each unit’s block covariates to the origin.

2.2.2 Notation and framework
We now introduce notation and structure that will be used to show approximate optimality of

the partition produced by our algorithm. Our approach closely follows (Hochbaum & Shmoys
1986).
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Figure 2.2: The figure on the left gives the best matched-pair blocking for the graph of twelve heights and
weights in Figure 2.1. The figure on the right shows the optimal blocking with size threshold t = 2 for the
same graph. Edge weights are Mahalanobis distances of heights and weights between the units. Note that
the maximum within-block distance for the graph on the right is smaller than that for the graph on the left.

Let G∗ = (V,E∗) denote an arbitrary subgraph of G (Note: for this paper, all subgraphs G∗

use the same vertex set V as the original complete graph G; only edge sets E∗ differ between
subgraphs). Vertices {i} and {j} are adjacent in G∗ if the edge (i, j) ∈ E∗. A set of vertices
{{i1}, {i2}, . . . , {im}} ⊂ V is independent in G∗ if no vertices in V are adjacent to each other:
@ {`}, {`′} ∈ {{i1}, {i2}, . . . , {im}} such that (i`, i`′) ∈ E∗. This set is a maximal independent
set in G∗ if, for any additional vertex {im+1} ∈ V , the set {{i1}, . . . , {im}, {im+1}} is not in-
dependent: ∀ {im+1} ∈ V \ {{i1}, {i2}, . . . , {im}},∃ {`} ∈ {{i1}, {i2}, . . . , {im}} such that
(im+1, i`) ∈ E∗.

The degree of a vertex {i} ∈ V is the number of edges in E∗ that have {i} as an endpoint:

deg({i}) ≡ #{(i, j) ∈ E∗ : j ∈ V, j 6= i}. (2.5)

Note that, in a complete graph on n vertices, each vertex has degree n− 1.
The rth power of G∗ is a subgraph (G∗)r = (V, (E∗)r) of G where the edge (i0, im) ∈ (E∗)r if

and only if there is a path from {i} to {j} in G∗ with at most r edges:

(E∗)r ≡
{
(i, j) : ∃i = i∗0, i

∗
1, . . . , i

∗
m−1, i

∗
m = j s.t. (i∗q−1, i

∗
q) ∈ E∗, q = 1, . . . ,m,m ≤ r

}
. (2.6)

If {(iq−1, iq)}mq=1 is a path from {i} to {j} with m edges, then by (2.1),

wij ≤ m max
1≤q≤m

(wiq−1iq). (2.7)
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Let Bw(G) = (V,Ew) denote the bottleneck subgraph of G of weight w; this subgraph has an
edge (i, j) ∈ Ew if and only if wij ≤ w:

Ew ≡ {(i, j) ∈ E : wij ≤ w}. (2.8)

Since there are at most n(n − 1)/2 different values of the edge weights wij , there are at most
n(n− 1)/2 different bottleneck subgraphs Bw(G).

Given a partition v ∈ V, let G(v) = (V,E(v)) denote the subgraph of G generated by v—the
subgraph where (i, j) ∈ E(v) if and only if vertices {i} and {j} are contained in the same block
in the partition:

E(v) ≡ {(i, j) ∈ E : ∃V` ∈ v s.t. {i}, {j} ∈ V`} . (2.9)

Note that, if a block in the partition v contains ` vertices, then every vertex {i} contained in that
block has deg({i}) = `− 1 in the subgraph G(v).

We are now ready to state and prove some lemmas:

Lemma 1 If w ≥ λ, then the degree of each vertex in the bottleneck graph Bw(G) is at least t−1.

Proof: Recall that each block of an optimal partition v† has at least t vertices. Thus, in the
subgraph G(v†), each vertex {i} ∈ V has deg({i}) ≥ t− 1.

By definition of λ, two vertices {i}, {j} placed in the same block of v† must have wij ≤ λ. It
follows that all edges (i, j) in the set E(v†) must have weight wij ≤ λ. Thus, G(v†) is a subgraph
of Bλ(G); every edge in the set E(v†) is also in the set Eλ (and Eλ may have even more edges).
Since, for each vertex {i} ∈ V , there are at least t− 1 edges in E(v†) that have {i} as an endpoint,
there must also be at least t − 1 edges in Eλ that have {i} as an endpoint. That is, each vertex
{i} ∈ V has degree deg({i}) ≥ t− 1 in Bλ(G).

Similarly, if w ≥ λ, then Bλ(G) is a subgraph of Bw(G), and by the same argument as above,
each vertex {i} in Bw(G) has degree deg({i}) ≥ t− 1.

The following corollary follows from this lemma:

Corollary 2 If in Bw∗(G) there is a vertex {i∗} with deg({i∗}) < t− 1, then w∗ < λ.

Lemma 3 All edges (i, j) in subgraph (Bw(G))r = (V, (Ew)r) have weight wij ≤ rw.

Proof: Recall, the edge (i, j) ∈ (Ew)r if and only if there is a path of r or fewer edges connecting
{i} to {j} in Bw(G). Since all edges in Bw(G) have weight at most w, it follows immediately
from (2.7) that all edges (i, j) in (Bw(G))r have weight wij ≤ rw.

Lemma 4 Suppose that G∗ = (V,E∗) is a subgraph of a complete graph G = (V,E). A maximal
independent set of G∗ can be found in polynomial time.

We will prove this lemma by presenting a polynomial-time procedure that obtains a maximal in-
dependent set. Though this lemma holds for all arbitrary graphs G–not just for those that are
complete–our procedure exploits the completeness of G. This procedure will be used as part of
our algorithm to find an approximately optimal partition.
Proof:
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1. (Initialize) Initialize the maximal independent set M = ∅. Initialize I = {1, 2, . . . , n}.

2. (Find maximum edge weight) Find an edge (i∗, j∗) ∈ E∗ satisfying:

wi∗j∗ = max{wij : (i, j) ∈ E∗}. (2.10)

3. (Order vertices in G∗) Set i(1) = i∗, and for k = 2, . . . , n, set i(k) to the index j∗ that
corresponds to the (k − 1)th largest value of (wi∗j)j 6=i∗ .

4. (Find first non-connected vertex). If I = ∅, set s =∞. Otherwise, set s = min(I).

5. (Add vertex to M) If s < ∞: Set M = M ∪ {i(s)}; Remove s from I; Remove all s∗ with
(i(s), i(s∗)) ∈ E∗ from I; Go to Step 4.
If s =∞: Stop.

We now show, by proof by contradiction, that when the procedure terminates, M is a maximal
independent set.

Suppose that M is not a maximal independent set. Thus, M is either not independent or not
maximal. or there is a vertex in {{1}, {2}, . . . , {n}} \M that is not adjacent to any other vertex
in M. If M is not independent, then there are vertices {i(s)}, {i(s∗)} ∈ M, with {i(s)} added to
M before {i(s∗)}, such that (i(s), i(s∗)) ∈ E∗. However, once {is} is added to M in Step 5, {s∗} is
subsequently removed from I; i(s∗) cannot be added to M. Thus, M is independent. If M is not
maximal, then there is a vertex {i(s∗)} ∈ {{1}, {2}, . . . , {n}} \M that is not adjacent to any other
vertex in M. Step 5 of the procedure does not eliminate s∗ from I. The subsequent iteration of
Step 4 finds min(I) ≤ s∗ <∞, and so, the procedure will not terminate. However, since I is finite,
and at least one element of I is removed at each iteration of Step 5, the procedure must terminate.
Thus, M is maximal.

Note that there are O(n2) edges in the graph G. Step 2 takes O(n2) time. Step 3 takes
O(n log n) time. Each iteration of Steps 4 and 5 takes O(n) time, and these steps will be per-
formed at most O(n) times. Thus, this entire procedure requires, at most, O(n2) time.

2.2.3 An algorithm for approximately optimal partitions
We now give our algorithm for finding a partition v∗ ∈ Vt satisfying (2.4).

1. (Sort edge weights) Sort edge weights in increasing order. Denote the kth largest edge weight
by w(k).

2. (Initialize) Set k = d(t− 1)n/2e (a subgraph on n vertices with fewer than (t− 1)n/2 edges
will have at least one vertex with degree less than t− 1).

3. (Obtain bottleneck graph) Obtain the bottleneck subgraph Bw(k)
(G).
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4. (Identify suboptimality of w(k)) If at least one vertex has degree less than t−1, then λ > w(k)

(by Corollary 2); set k = k + 1 and go to Step 3. Otherwise, advance to Step 5. Note that,
since λ = w(`) for some ` ∈ {1, . . . , n}, and since all vertices {i} ∈ V have deg({i}) ≥ t−1
in Bλ(G) (by Lemma 1), it follows that w(k) ≤ λ when the algorithm advances to Step 5.

5. (Obtain maximal independent set) Using the procedure given in the proof for Lemma 4, find
a maximal independent set M in the subgraph (Bw(k)

(G))2 = (V, (Ew(k)
)2). Note that, for

any two vertices {i}, {j} ∈M, there is no path in Bw(k)
(G) from {i} to {j} of two or fewer

edges.

6. (Bloom from the maximal independent set) For each {i} ∈ M, form a block of vertices
V ∗i comprised of vertex {i} and all vertices adjacent to {i} in Bw(k)

(G). Step 4 guarantees
that deg({i}) ≥ t − 1 in this subgraph, so |V ∗i | ≥ t. Since no path of two edges or less in
Bw(k)

(G) connects any two vertices in M, it follows that V ∗i ∩ V ∗j = ∅ for all {i}, {j} ∈M.

7. (Assign remaining vertices) Some vertices may not be assigned to a block yet. These vertices
are at most a path of two edges away from a vertex {i} ∈M (otherwise, it would contradict
M being a maximal independent set). For each unassigned vertex {j}, choose an {i} ∈M
such that (i, j) ∈ (Ew(k)

)2 and wij is as small as possible; assign {j} to V ∗i .

After Step 7, the blocks v∗ = (V ∗i )i∈I, form a partition of V; Steps 6 and Step 7 enusre that
blocks are disjoint, and Step 7 forces every vertex to be assigned a block. We now prove our main
theorem:

Theorem 5 The algorithm above finds an approximately optimal partition v∗ ∈ Vt in polynomial
time.

Proof: By Step 6, every block V ∗i in the partition v∗ has |V ∗i | ≥ t. Thus, v∗ ∈ Vt. By Step 7,
for any vertex {i} ∈ M, and for any two vertices {j}, {`} ∈ V ∗i , there is a path of at most two
edges from {j} to {i} and from {i} to {`} in Bw(k)

(G). Combining these paths, we form a path of
four edges or less that connects {j} to {`}. That is, any two vertices in the same block of v∗ are
at most a path of four edges away from each other in Bw(k)

(G). Thus, G(v∗) = (V,E(v∗)) is a
subgraph of (Bw(k)

(G))4. By Lemma 3, and since w(k) ≤ λ, all edges (j, `) ∈ E(v∗) have weight
wj` ≤ 4w(k) ≤ 4λ. That is, for any two vertices {j}, {`} in the same block V ∗i ∈ v∗, the edge
(j, `) has weight wj` ≤ 4λ. Approximate optimality of v∗ follows immediately.

Step 1 of the algorithm can be completed in O(n2 log n) time. Each iteration of Step 4 requires
at most O(n2) operations; there will be at most O(n2) iterations of this step. From Lemma 4,
Step 5 requires O(n2) time. Steps 6 and 7 also require O(n2) time. Thus, the entire algorithm is
performed in O(n4) time.

Although the partition v∗produced by our algorithm satisfies (2.4), additional processing may
yield a partition with an even smaller maximal within-block edge weight. We now give a simple
procedure to find such a partition from a given v∗.
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Figure 2.3: We demonstrate our approximate algorithm for the graph in figure 2.1. Each block of the
partition obtained by the algorithm is denoted by a unique color. The upper-left graph is the bottleneck
subgraph used in Step 5. The highlighted vertices in the upper-right graph are a maximal independent set of
vertices for this subgraph. The lower-right graph demonstrates blooming from the maximal independent set
in Step 6 . The remaining unassigned vertex is assigned to the “green” block in the lower-right graph. The
size threshold t = 2, and edge weights are Mahalanobis distances of heights and weights between units.
Note that, for these twelve observations, the approximate algorithm yields the desired optimal blocking in
figure 2.2. In general, this will not be the case.
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2.2.4 Improvements to approximately optimal partitions
Given a partition v∗ obtained by the algorithm in 2.2.3, we now find an “improved” approxi-

mately optimal partition ṽ∗ by locating all blocks of size at least 2t, and splitting them into smaller
blocks, each with size less than 2t.

Formally, for a block V ∗i ∈ v∗, define ⌊
|V ∗i |
t

⌋
≡ m∗i . (2.11)

When m∗i = 1, our procedure places the block V ∗i into ṽ∗. Otherwise, our procedure divides V ∗i
intom∗i smaller blocks, and places these smaller blocks into ṽ∗. The partition ṽ∗ is an improvement
to v∗ in the sense that the maximum within-block edge weight of ṽ∗ will be as smaller or smaller
than that of v∗—our procedure ensures that G(ṽ∗) is a subgraph of G(v∗).

1. (Initialize) Let k∗ denote the number of blocks in v∗. Initialize i = 1. Initialize ṽ∗ = ∅.

2. (Obtain block from v∗) Initialize m = 1. Set Ṽ ∗i = V ∗i .

3. (Find maximum edge weight for Ṽ ∗i ) Find {j∗}, {`∗} such that

wj∗`∗ = max{wj` : {j}, {`} ∈ V ∗i }. (2.12)

4. (Create a block of size t∗) In G(v∗), find the t − 1 vertices {`} that correspond to the t − 1
smallest values of wj∗`. Denote these vertices by {`(1)}, {`(2)}, . . . , {`(t−1)}. Create a block

Ṽ ∗i,m = {j∗, {`(1)}, {`(2)}, . . . , {`(t−1)}}. (2.13)

and remove all vertices in Ṽ ∗i,m from Ṽ ∗i .

5. (Assign remaining vertices) If, after removing vertices from Ṽ ∗i , 0 < |Ṽ ∗i | < t, place all
remaining vertices in V ∗i in V ∗i,m.

6. (Increment m) If m < m∗i , increment m and go to Step 3. Otherwise, set

ṽ∗ = ṽ∗
m∗i⋃
j=1

Ṽ ∗i,j. (2.14)

7. (Increment i) If i < k∗, increment i and go to Step 2. Otherwise, terminate.
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2.3 Blocking estimators under Neyman-Rubin model

2.3.1 Notation and preliminaries
There are n units, numbered 1 through n. There are r treatments, numbered 1 through r.

Each unit i has a vector of block covariates xi. A distance between block covariates (such as the
Mahalanobis distance) between each pair of distinct units is measured.

Suppose the units are partitioned into b blocks (for example, by our algorithm), numbered 1
through b, with each block containing at least t∗ units. For now, we assume t∗ ≥ r. Let nc denote
the number of units in block c. Assume that the units within each block c are ordered in some way:
let (k, c) denote the kth unit in block c. Let n ≡ (n1, . . . , nb).

Complete and block randomization

When we say that treatment is completely randomized we refer to the following randomization
scheme: Each unit is assigned exactly one treatment.

1. When r divides n, each treatment is assigned to n/r units. Each of the

r−1∏
i=0

(
n− i(n/r)

n/r

)
(2.15)

possible treatment assignments are equally likely.

2. Otherwise, let z denote the remainder of n/r. Of the r treatments, z treatments are replicated
bn/rc+ 1 times, and r − z of the treatments are replicated only bn/rc times. Each of the(

r

z

) z−1∏
i=0

(
n− i(bn/rc+ 1)

bn/rc+ 1

) r−z−1∏
i=0

(
n− z(bn/rc+ 1)− ibn/rc

bn/rc

)
(2.16)

possible treatment assignments are equally likely.

Treatment is block randomized if treatment is completely randomized within each block and treat-
ment is assigned independently across blocks. Given a block c, let zc denote the remainder of
nc/r.

The Neyman-Rubin Causal Model

Let Tkcs denote treatment indicators for each unit (k, c):

Tkcs =

{
1, unit (k, c) receives treatment s,
0, otherwise. (2.17)
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Let #Tcs =
∑nc

k=1 Tkcs denote the number of units in block c that receive treatment s, and let
#Ts =

∑b
c=1 #Tcs denote the number of units in total assigned to s. Under block randomization,

#Tcs has distribution

#Tcs =

{
bnc/rc+ 1 with probability zc/r,
bnc/rc with probability (r − zc)/r.

(2.18)

Note that, if t∗ ≥ r, then #Tcs ≥ 1. Under complete randomization, #Ts has distribution

#Ts =

{
bn/rc+ 1 with probability z/r,
bn/rc with probability (r − z)/r. (2.19)

For the following calculations, we assume responses follow the Neyman-Rubin Causal Model
(NRCM) (Splawa-Neyman et al. 1990; Rubin 1974; Holland 1986). Let ykcs denote the potential
outcome of unit (k, c) given treatment s—the hypothetical observed value of unit (k, c) had that
unit received treatment s. Under the NRCM, the potential outcome ykcs is non-random, and the
value of this outcome is observed if and only if (k, c) receives treatment s; exactly one of {ykcs}rs=1

is observed. The observed response is:

Ykc ≡ ykc1Tkc1 + ykc2Tkc2 + · · ·+ ykcrTkcr. (2.20)

Inherent in this equation is the stable-unit treatment value assumption (SUTVA): the observed Ykc
only depends on which treatment is assigned to unit (k, c), and is not affected by the treatment
assignment of any other unit (k′, c′).

2.3.2 Parameters of interest and estimators
Given any two treatments s and t, we wish to estimate the sample average treatment effect of s

relative to t (SATEst), denoted µst. The SATEst is a sum of differences of potential outcomes:

δst =
1

n

b∑
c=1

nc∑
k=1

(ykcs − ykct). (2.21)

For this paper, we consider two estimators of the µst: the difference-in-means estimator:

δ̂st,diff =
b∑
c=1

nc
n

nc∑
k=1

(
ykcsTkcs
#Tcs

− ykctTkct
#Tct

)
, (2.22)

and the Horvitz-Thompson estimator:

δ̂st,HT =
b∑
c=1

nc
n

nc∑
k=1

(
ykcsTkcs
nc/r

− ykctTkct
nc/r

)
. (2.23)
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Before discussing the properties of these estimators, it will be helpful to break µst into block-
level components. For any block c and distinct treatments s and t, define the following block-level
means:

µcs ≡
1

nc

nc∑
k=1

ykcs, (2.24)

δcst ≡
1

nc

nc∑
k=1

ykcs − ykct. (2.25)

Note that

δcst = µcs − µct, (2.26)

δst =
b∑
c=1

nc
n
δcst. (2.27)

The block-level variance of the potential outcomes for treatment s is:

σ2
cs =

nc∑
k=1

(ykcs − µcs)2

nc
(2.28)

=
nc∑
k=1

y2
kcs

nc
−

(
nc∑
k=1

ykcs
nc

)2

. (2.29)

The block-level covariance between the potential outcomes for treatments s and t is:

γcst =
nc∑
k=1

(ykcs − µcs)(ykct − µct)
nc

(2.30)

=
nc∑
k=1

ykcsykct
nc

−
nc∑
k=1

ykcs
nc

nc∑
k=1

ykct
nc

. (2.31)

Two block-level estimators for µcs are:

µ̂cs,diff ≡
nc∑
k=1

ykcsTkcs
#Tcs

, (2.32)

µ̂cs,HT ≡
nc∑
k=1

ykcsTkcs
nc/r

. (2.33)

These estimators satisfy:

δ̂st,diff =
b∑
c=1

nc
n

(µ̂cs,diff − µ̂ct,diff), (2.34)

δ̂st,HT =
b∑
c=1

nc
n

(µ̂cs,HT − µ̂ct,HT). (2.35)
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By linearity of expectations:

E(δ̂st,diff) =
b∑
c=1

nc
n

(E(µ̂cs,diff)− E(µ̂ct,diff)), (2.36)

E(δ̂st,HT) =
b∑
c=1

nc
n

(E(µ̂cs,HT)− E(µ̂ct,HT)), (2.37)

and by independence of treatment assignment across blocks under block randomization:

Var(δ̂st,diff) =
b∑
c=1

n2
c

n2
[Var(µ̂cs,diff) + Var(µ̂ct,diff)− 2cov(µ̂cs,diff, µ̂ct,diff)] ,

(2.38)

Var(δ̂st,diff) =
b∑
c=1

n2
c

n2
[Var(µ̂cs,HT) + Var(µ̂ct,HT)− 2cov(µ̂cs,HT, µ̂ct,HT)] .

(2.39)

Thus, when deriving expectations and variances of the difference-in-means and Horvitz-Thompson
estimators, it suffices to derive expectations, variances, and covariances of their corresponding
block-level estimators. We now make these derivations.

Lemma 6 Under block randomization, for s 6= t,

E(µ̂cs,diff) = µcs, (2.40)

Var(µ̂cs,diff) =
(r − 1)nc(nc + r − 2zc) + zc(r − zc)

(nc − 1)(nc − zc)(nc + r − zc)
σ2
cs, (2.41)

cov(µ̂cs,diff, µ̂ct,diff) =
−γcst
nc − 1

. (2.42)

Lemma 7 Under block randomization, for s 6= t,

E(µ̂cs,HT) = µcs, (2.43)

Var(µ̂cs,HT) =
n2
c(r − 1)− zc(r − zc)

n2
c(nc − 1)

σ2
cs +

zc(r − zc)
n2
c

(
nc∑
k=1

ykcs
n

)2

,

(2.44)

cov(µ̂cs,HT, µ̂ct,HT) =
−γcst
nc − 1

− zc(r − zc)
(r − 1)n3

c(nc − 1)

nc∑
k=1

∑
`6=k

ykcsy`ct. (2.45)
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These lemmas are proven in Appendix A.1.
From Lemmas 6 and 7, and using (2.36) and (2.39), we can show that both the difference-

in-means estimate and the Horvitz-Thompson estimate of the SATEst are unbiased, and we can
compute the variance of these estimates.

Theorem 8 Under block randomization, when s 6= t:

E(δ̂st,diff) = δst, (2.46)

Var(δ̂st,diff) =
b∑
c=1

n2
c

n2

(
(r − 1)nc(nc + r − 2zc)

(nc − 1)(nc − zc)(nc + r − zc)
(σ2

cs + σ2
ct) + 2

γcst
n− 1

)

+
b∑
c=1

n2
c

n2

(
zc(r − zc)

(nc − 1)(nc − zc)(nc + r − zc)
(σ2

cs + σ2
ct)

)
. (2.47)

Theorem 9 Under block randomization, when s 6= t:

E(δ̂st,HT) = δst, (2.48)

Var(δ̂st,HT) =
b∑
c=1

n2
c

n2

(
r − 1

nc − 1
(σ2

cs + σ2
ct) + 2

γcst
nc − 1

)

−
b∑
c=1

n2
c

n2

zc(r − zc)
n2
c

σ2
cs + σ2

ct

(nc − 1)
−

(
nc∑
k=1

ykcs
nc

)2

−

(
nc∑
k=1

ykct
nc

)2


+
b∑
c=1

n2
c

n2

(
2zc(r − zc)

(r − 1)n3
c(nc − 1)

nc∑
k=1

∑
` 6=k

ykcsy`ct

)
. (2.49)

Note that, when r divides each nc, then µ̂st,diff = µ̂st,HT and

Var(δ̂st,diff) = Var(δ̂st,HT)

=
b∑
c=1

n2
c

n2

(
r − 1

nc − 1
(σ2

cs + σ2
ct) + 2

γcst
nc − 1

)
. (2.50)

2.3.3 Estimating the variance
Variance estimation of both the difference-in-means estimate and the Horvitz-Thompson es-

timate is complicated by the existence of the γcst term. This term is not directly unbiasedly es-
timable; such an estimate requires knowledge of potential outcomes under both treatment s and
treatment t within a single unit. Only one potential outcome is observed for each unit.

We first discuss estimating the block-level variances Var(µ̂cs,diff) and Var(µ̂cs,HT). We then
describe how to use these block-level estimates to obtain conservative estimates for Var(µ̂st,diff)
and Var(µ̂st,HT).
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Block-level variance estimates

Let

σ̂2
cs,diff =

n∑
i=1

Tis

(
yis −

∑n
i=1

yisTis
#Ts

)2

#Ts − 1
. (2.51)

Consider the following two variance estimates:

V̂ar(µ̂cs,diff) ≡
(r − 1)nc(nc + r − 2zc) + zc(r − zc)

nc(nc − zc)(nc + r − zc)
σ̂2
cs,diff, (2.52)

V̂ar(µ̂cs,HT) ≡
r(r − 1)

n2

n∑
i=1

y2
isTis

−
(
nr2(r − 1)− r2z(r − z)
n4 − n3r + n2z(r − z))

) n∑
i=1

∑
j 6=i

yisyjsTisTjs. (2.53)

These estimates are unbiased for their respective block-level variances.

Lemma 10 Under block randomization:

E
[
V̂ar(µ̂cs,diff)

]
= Var(µ̂cs,diff), (2.54)

E
[
V̂ar(µ̂cs,HT))

]
= Var(µ̂cs,HT). (2.55)

This lemma is proven in Appendix A.2.

Variance estimates of SATEst estimates

We use the fact that

−
√

Var(X)Var(Y ) ≤ cov(X, Y ) ≤
√

Var(X)Var(Y ) (2.56)

to obtain conservative variance estimates of µ̂st,diff and µ̂st,HT. These estimates are conservative
in the sense that we find an upper-bound for the variance of these estimates that is a function of
block-level variances, and we plug in our estimates of the block-level variances from Section 2.3.3.
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From (2.38), (2.39), (2.56), and the arithmetic mean-geometric mean inequality, it follows that:

Var(δ̂st,diff) ≤
b∑
c=1

n2
c

n2

[
Var(µ̂cs,diff) + Var(µ̂ct,diff) + 2

√
Var(µ̂cs,diff)Var(µ̂ct,diff)

]

≤
b∑
c=1

n2
c

n2

[
Var(µ̂cs,diff) + Var(µ̂ct,diff) + 2

Var(µ̂cs,diff) + Var(µ̂ct,diff)

2

]

≤
b∑
c=1

2n2
c

n2
[Var(µ̂cs,diff) + Var(µ̂ct,diff)] , (2.57)

Var(δ̂st,HT) ≤
b∑
c=1

n2
c

n2

[
Var(µ̂cs,HT) + Var(µ̂ct,HT) + 2

√
Var(µ̂cs,HT)Var(µ̂ct,HT)

]

≤
b∑
c=1

2n2
c

n2
[Var(µ̂cs,HT) + Var(µ̂ct,HT)] . (2.58)

These variance bounds can be estimated unbiasedly:

V̂ar(δ̂st,diff) ≡
b∑
c=1

2n2
c

n2

[
V̂ar(µ̂cs,diff) + V̂ar(µ̂ct,diff)

]
, (2.59)

V̂ar(δ̂st,HT) ≡
b∑
c=1

2n2
c

n2

[
V̂ar(µ̂cs,HT) + V̂ar(µ̂ct,HT)

]
. (2.60)

On a final note, when blocks contain several replications of each treatment, and when potential
outcomes satisfy some smoothing conditions with respect to the block covariates, a good estimate
of the covariance γcst may be obtained. For details, see Abadie & Imbens (2008); Imbens (2011).

2.3.4 Comparing block randomization and complete randomization
We now describe precisely the conditions under which the variance of SATEst estimates un-

der block-randomized treatment assignment is smaller than those under complete randomization
(without blocking). For the ease of demonstration, we assume in this subsection that r divides each
nc. After identifying these precise conditions, we then show that these conditions are met (in ex-
pectation) when the assignment of units into blocks of fixed size is completely randomized. Thus,
unless block covariates are worse than random chance at predicting potential outcomes, blocking
will only improve precision of SATEst estimates. These results are a generalization of those found
in Imai (2008).

Define the completely randomized estimator for the SATEst as:

δ̂st,cs ≡
b∑
c=1

nc∑
k=1

ykcsTkcs − ykctTkct
n/r

. (2.61)
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Define the following domain-level parameters:

µs ≡
1

n

b∑
c=1

nc∑
k=1

ykcs, (2.62)

σ2
s =

b∑
c=1

nc∑
k=1

(ykcs − µs)2

n
, (2.63)

γst =
b∑
c=1

nc∑
k=1

(ykcs − µs)(ykct − µt)
n

. (2.64)

Following the approach in Appendix A.1, we find that

E(δ̂st,cr) = µst, (2.65)

Var(δ̂st,cr) =
r − 1

n− 1
(σ2

s + σ2
t ) + 2

γst
n− 1

=
b∑
c=1

n2
c∑
c n

2
c

(
r − 1

n− 1
(σ2

s + σ2
t ) + 2

γst
n− 1

)
. (2.66)

Estimators under both block randomization and complete randomization are unbiased for the
SATEst. The variance under block randomization will be as small or smaller than that under
complete randomization precisely when

b∑
c=1

n2
c∑
n2
c

(
r − 1

n− 1
(σ2

s + σ2
t ) + 2

γst
n− 1

)
− n2

c

n2

(
r − 1

nc − 1
(σ2

cs + σ2
ct) + 2

γcst
nc − 1

)
≥ 0

(2.67)

We can write this condition in terms of a comparison between block-level and sample-level
variances. Let

σ2
c(s+t) =

1

nc

nc∑
k=1

(ykcs + ykct − µcs − µct)2 (2.68)

σ2
s+t =

1

n

b∑
c=1

nc∑
k=1

(ykcs + ykct − µs − µt)2 (2.69)

It follows that the variance under block randomization will be as small or smaller than that under
complete randomization if and only if

δcr,blk ≡
b∑
c=1

n2
c

(
(r − 2)(σ2

s + σ2
t ) + σ2

s+t

(n− 1)
∑

c n
2
c

−
(r − 2)(σ2

cs + σ2
ct) + σ2

c(s+t)

(nc − 1)n2

)
≥ 0

(2.70)
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This formula gives some insight as to what properties of a blocking are helpful in reducing
variance. Terms of δcr,bl will be positive (and thus, will favor estimates under block randomization)
if and only if

(r − 2)(σ2
cs + σ2

ct) + σ2
c(s+t)

(r − 2)(σ2
s + σ2

t ) + σ2
s+t

≤ (n− 1)
∑

c n
2
c

(nc − 1)n2
(2.71)

Since this fraction gets smaller as nc gets larger, it follows that blocking helps most when the
block-level variance in the largest-sized blocks is small.

We now show that, when units are randomly assigned to blocks, the variances of estimates of
the SATEst under block randomization will not be greater in expectation than those under complete
randomization. We say that an assignment of n units into blocks of sizes n = (n1, . . . , nb) is a
completely randomized blocking with block sizes n if each possible blocking with those block sizes
is equally likely. Under completely randomized blocking, the block-level variances σ2

cs, σ
2
ct, and

σ2
c(s+t) are random variables; sample-level variances σ2

s , σ2
t , and σ2

s+t and block sizes are constants.
We now give the following result:

Theorem 11 Under completely randomized blocking,

E(δcr,blk) = 0. (2.72)

That is, even when units are assigned to blocks randomly, the variance of estimates of the SATEst
under block randomization will not be larger than that under complete randomization. When block
covariates predict potential outcomes better than at random, blocking will increase the precision of
SATEst estimates. A proof of this theorem is given in Appendix A.3.
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Chapter 3

Sharper p-Values for Stratified Election
Audits

3.1 Introduction
Votes are often tallied by machines, but—at least in many jurisdictions—the correct electoral

outcome of an election is defined to be the outcome that a full hand count of the audit trail would
show. There are many reasons a hand count might show a different electoral outcome than a
machine count, including defects in the hardware or software of the machines, accidental mis-
configuration, voter error, pollworker error, or malfeasance. Even if the vote tabulation machines
function “correctly,” the machine interpretation of a voter-marked paper ballot may differ from
how a human would interpret the ballot in a hand count.

In post-election audits, also known as “vote-tabulation” audits, batches of ballots are selected
and counted by hand. The hand-count subtotals are compared with the machine-count subtotals
for each audited batch, and any differences between the machine count and hand count are noted.
Most mandated post-election audits stop here.

In contrast, risk-limiting audits (Stark 2008a,b, 2009a,b,c; Miratrix & Stark 2009) guarantee
a large chance of a full hand count whenever the machine outcome is wrong, no matter why the
outcome is wrong. A full hand count reveals the true outcome (by definition), thereby correcting
the machine outcome if the machine outcome was wrong. The risk is the largest chance that the
audit will fail to correct an outcome that is wrong.

Risk-limiting audits generally proceed by taking an initial sample that is big enough to give
strong evidence that the outcome is correct, provided the sample does not find much error in the
machine count. If the initial sample does not turn out to give strong evidence (because it finds too
much error), the sample is enlarged. This continues until either there is sufficiently strong evidence
that the outcome is correct, or until all the votes have been counted by hand.

Evidence is measured by the p-value of the hypothesis that the machine-count outcome is
incorrect. The p-value is the maximum chance that the audit would reveal “as little” error as it did
reveal, on the assumption that the machine outcome is wrong. The maximum is taken over all ways
that the outcome could be wrong. Smaller p-values are stronger evidence. A risk-limiting audit
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stops short of a full hand count only if the p-value becomes less than the risk limit α. This approach
to auditing amounts to a sequential test of the hypothesis that the outcome is wrong. Defining “as
little” amounts to specifying the test statistic for the hypothesis test. Many test statistics lead to
tractable p-value calculations; see, e.g., Stark (2009c).

Risk-limiting audits are widely considered best practice1 and have been endorsed by the Ameri-
can Statistical Association, The Brennan Center for Justice, Common Cause, the League of Women
Voters, and Verified Voting, among others. California AB 2023, passed in 2010, requires a pilot of
risk-limiting audits in 2011. Colorado Revised Statutes §1-7-515 calls for risk-limiting audits by
2014. As of this writing, there have been ten risk-limiting audits: nine in California (two in Marin
County, three in Yolo County, and one each in Orange, Monterey, San Luis Obispo, and Santa Cruz
counties), and one in Boulder County, Colorado. California and Colorado received grants from the
Election Assistance Commission in 2011 to develop and implement risk-limiting audits.

Risk-measuring audits are related to risk-limiting audits. They do not necessarily expand un-
til the p-value is small. But they quantify the evidence that the machine outcome is correct by
reporting the p-value of the hypothesis that the machine outcome is wrong.

States with election audit laws generally require each jurisdiction to audit the votes cast in a
simple random sample of precincts. For example, California Elections Code §15360 requires each
county to take a 1% sample of precincts and hand count all ballots within those precincts; if this
misses any contest in any county, the sample is augmented to include at least one precinct with each
contest. Minnesota Elections Law S.F. 2743 (2006) requires a sample of 2, 3, or 4 precincts from
each county, depending on the size of the county. This results in a stratified random sample for
contests that cross jurisdictional boundaries: The strata are jurisdictions. Even when the law does
not require it, there may be logistical reasons to use stratified samples. For instance, scheduling
the audit may be easier if batches of ballots cast in-person are audited separately from batches of
vote-by-mail ballots and from batches of provisional ballots. Audit samples might also be stratified
by the machine used to cast or count votes.

The first work on risk-limiting audits (Stark 2008a) addressed stratified samples, developing a
crude upper bound on the p-value when the test statistic is the maximum observed margin over-
statement across audited batches (more generally, the maximum of monotone transformations of
the overstatements in each audited batch). This paper constructs sharper bounds on the p-value
for stratified samples for the same family of test statistics. The improvement, which can be sub-
stantial (the sharper p-value is just over 1/3 of the crude upper bound on the p-value for the 2006
U.S. Senate race in Minnesota), is largest when the sampling fractions vary across strata.

This paper also gives methods to choose sample sizes within strata to reduce the p-value for
a given sample size and presumed value of the test statistic. This can substantially reduce the
counting burden of a risk-limiting audit when the machine outcome is correct.

1See http://electionaudits.org/principles.html (last visited 23 September 2011).

http://electionaudits.org/principles.html
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3.2 Audits using stratified simple random samples

3.2.1 Notation and framework
If a and b are real numbers, a ∨ b denotes the maximum of a and b and a ∧ b denotes their

minimum. For instance, (1 ∨ 2) = 2 and (1 ∧ 0) = 0. The symbol ≡ denotes a definition:
f(x) ≡ x2 defines f(x) to be x2. For any proposition s,

1(s) ≡
{

1, if s is true,
0, otherwise. (3.1)

For example, 1(1 > 0) = 1 and 1(1 > 2) = 0. If a ≡ (aj)
N
j=1 and b ≡ (bj)

N
j=1 are vectors of the

same length N , the inner product of a and b is

a · b ≡
N∑
j=1

ajbj. (3.2)

The sum of an empty list is defined to be zero and the product of an empty list is defined to
be one:

∑0
j=1 aj ≡ 0,

∏0
j=1 aj ≡ 1. The product 0 ×∞ ≡ 0 and the exponential 00 ≡ 1. The

minimum of any function over an empty domain is ∞, and the maximum of a function over an
empty domain is −∞.

“Apparent outcome” and “machine outcome” are synonymous, as are “apparent vote total”
and “machine vote total.” “Hand-count outcome,” “correct outcome,” and “true outcome” mean
the same thing, as do “hand-count vote total” and “actual vote total.” An apparent winner wins
according to the machine count; a true winner would win according to a full hand count. The
apparent outcome is correct if the apparent winners are the true winners.

We consider auditing one contest at a time. There are I candidates in the contest. The contest is
of the form “vote for up to W candidates,” and there are W apparent winners and I −W apparent
losers. (In more general scenarios, which we do not consider here, the voter may vote for a number
of candidates that differs from the number of winners to be determined by the election.) The ballots
are grouped into N batches spread across C strata, which are numbered 1 through C. There are
Nc batches in stratum c. The kth batch in stratum c is denoted (k, c).

The total number of ballots cast in batch (k, c) is bkc. The apparent vote total for candidate i
in batch (k, c) is vkci. The actual vote total for candidate i in batch (k, c) is akci. The values of bkc
and vkci are known for every batch, but akci is known only if batch (k, c) is audited. The apparent
vote total for candidate i is

Vi ≡
C∑
c=1

Nc∑
k=1

vkci.

The actual vote total for candidate i is

Ai ≡
C∑
c=1

Nc∑
k=1

akci.
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Let IW denote the apparent winners of the contest and IL denote the apparent losers. Note that
#IW = W . We assume that there is no loser whose apparent vote total was equal to that of any
winner. As a practical matter, such ties are rare in large contests. But if there were a tie, a risk-
limiting audit would demand a full hand count, which is not the most interesting case statistically.

The apparent margin in votes between candidate w ∈ IW and candidate ` ∈ IL is

Vw` = Vw − V` > 0.

The true margin in votes between candidates w and ` is

Aw` = Aw − A`.

The apparent outcome is correct if every winner actually got more votes than every loser: if for all
w ∈ IW and ` ∈ IL,

Aw` > 0, (3.3)

or equivalently, if

Vw` − Aw` =
C∑
c=1

Nc∑
k=1

[vkcw − vkc` − (akcw − akc`)] < Vw`. (3.4)

The apparent outcome is wrong if and only if [3.4] fails for some w ∈ IW and ` ∈ IL.
Let eHkc denote a measure of the difference between the machine count and the hand count in

batch (k, c). The value of eHkc is known only if batch (k, c) is audited. We call the values eHkc
“differences” because they are functions of

{vkci − akci}Nc C I
k=1 c=1 i=1.

The vector eH ≡ (eHkc)
Nc C
k=1 c=1 is the true allocation of differences. We require eHkc to be defined so

that there exists a known constant µ for which:

If the apparent election outcome is wrong, then
C∑
c=1

Nc∑
k=1

eHkc ≥ µ. (3.5)

The difference eHkc (and the resulting constant µ) can be defined many ways. A reasonable choice
is the maximum relative overstatement (MRO) introduced by Stark (2008b):

eHkc ≡ max
w∈Iw,`∈I`

vkcw − vkc` − (akcw − akc`)
Vw`

. (3.6)

For the MRO, [3.5] holds with µ = 1.
Testing statistically whether

C∑
c=1

Nc∑
k=1

eHkc ≥ µ (3.7)
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generally requires an a priori upper bound ωkc for eHkc, for each batch (k, c), known before the audit
begins. Stark (2008b) shows that if difference is measured by the MRO,

eHkc ≤ max
w∈Iw,`∈I`

vkcw − vkc` + bkc
Vw`

≡ ωkc. (3.8)

Without loss of generality, we assume that within each stratum c, the batches are ordered so that

ωkc ≥ ωk′c if k < k′. (3.9)

An allocation of differences or allocation is a vector

e = (ekc)
Nc C
k=1 c=1 ∈ RN such that ekc ≤ ωkc, k = 1, . . . , Nc, c = 1, . . . , C. (3.10)

Let E be the set of all such allocations, and let

Eµ ≡

{
e ∈ E :

C∑
c=1

Nc∑
k=1

ekc ≥ µ

}
. (3.11)

If the apparent outcome is wrong, eH ∈ Eµ.

3.2.2 Computing the p-value
This section sets out the precise problem we solve: finding a sharper (but still conservative)

p-value for the null hypothesis2 that the apparent outcome is incorrect from a stratified random
sample. Let Jncc be a simple random sample of nc elements from {(1, c), . . . , (Nc, c)}, and let
{Jncc }Cc=1 be independent random samples. Let ~n ≡ (nc)

C
c=1, and let

J~n ≡
C⋃
c=1

Jncc .

Then J~n is a stratified random sample of batches. We want to test the hypothesis that eH ∈ Eµ

using
T ≡ max

(k,c)∈J~n
eHkc (3.12)

as the test statistic. If T is surprisingly small on the assumption that eH ∈ Eµ, we will conclude
that the outcome is correct.

Instead of using the maximum MRO as the test statistic, we could use the maximum of a set of
more general monotone transformations of the observed differences: Let {wkc}Nc C

k=1 c=1 be a set of
N monotone increasing functions. We could base the audit on the test statistic

Tw ≡ max
(k,c)∈J~n

wkc(e
H
kc),

2http://xkcd.com/892/ (last visited 23 September 2011).

http://xkcd.com/892/
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where eHkc is not necessarily the MRO. For instance, in Section 3.5, we consider taint. Using the
maximum of monotone transformations of the observed differences as the test statistic leads to
tractable probability calculations for a stratified sample; in contrast, using the sum of the observed
differences does not. For discussion, see Stark (2008a). To simplify the exposition, we focus on
the MRO. Section B.3 lists the other changes to definitions required to use more general monotone
weight functions.

The hypothesis eH ∈ Eµ does not completely specify the sampling distribution of T . That
distribution depends on all components of eH . We only know eHkc if batch (k, c) is audited, so to
have a rigorous test, we assume the worst: If the maximum difference in the sample is t, then eH

is the element of Eµ that maximizes the probability that T ≤ t. Let e ∈ E be an allocation of
differences. Define

PJ~n(e) ≡ PJ~n(e; t) ≡ P

(
max

(k,c)∈J~n
ekc ≤ t

)
. (3.13)

This is the probability that the maximum observed difference in the stratified random sample of
batches J~n will be no greater than t if the allocation of differences is e; that is, Pre{T ≤ t}.

Suppose that, for the actual audit sample, the maximum observed difference is T = t. Then
the exact p-value of the hypothesis that the apparent outcome is wrong is

P# = P#(t;~n) ≡ max
e∈Eµ

PJ~n(e; t). (3.14)

Any P+ = P+(t;~n) for which
P+ ≥ P# (3.15)

is a conservative p-value.
We now compute PJ~n(e; t) for an arbitrary e ∈ E and t ∈ R. For e ∈ E, let

G(e) = G(e; t) ≡ {(k, c) : ekc > t} (3.16)

be the set of batches with difference greater than t, and let

#cG(e) ≡ #{k : (k, c) ∈ G(e)}

be the number of batches within stratum c with difference greater than t.
Let e ∈ E. IfNc−#cG(e) < nc, then a simple random sample of size nc from the set of batches

{(1, c), . . . , (Nc, c)} is guaranteed to contain a batch with difference ekc > t, so PJncc (e) = 0. If
Nc −#cG(e) ≥ nc, the probability that Jncc does not contain any batch with difference ekc > t is

PJncc (e) =

(
Nc−#cG(e)

nc

)(
Nc
nc

) .

The samples from different strata are drawn independently, so the probability that a stratified
random sample of batches does not include any batch with ekc > t is

PJ~n(e) =


C∏
c=1

(
Nc−#cG(e)

nc

)(
Nc
nc

) , Nc −#cG(e) ≥ nc, c = 1, . . . , C,

0, otherwise.

(3.17)
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The exact p-value P# [3.14] is the maximum of PJ~n(e) over all allocations e ∈ Eµ.
For large cross-jurisdictional contests, finding the exact p-value by brute force is prohibitively

expensive. The following sections show that [3.14] has special structure that allows us to find the
exact p-value quickly.

3.3 Stratified audits and the 0-1 knapsack problem
You are packing a knapsack with food for a camping trip. You have available N food items,

each of which has a weight and a caloric value. You want to pack the combination of food items
that has at least M calories and weighs the least. This is a version of the 0-1 knapsack problem
(KP), an NP-complete problem (Karp 2010) with a long history and large literature (Pisinger 1995;
Pisinger & Toth 1998).

We show in this section that there is a “small” set Ẽµ such that

P# ≡ max
e∈Eµ

PJ~n(e) = max
e∈Ẽµ

PJ~n(e). (3.18)

We then show that maximizing PJ~n over allocations in Ẽµ can be couched as KP.3 Even though
the problem is NP-complete, the maximum can be found in a matter of seconds, even for large,
multi-jurisdictional contests. Good upper bounds can be calculated even faster.

3.3.1 Characterizing optimal allocations of differences
Recall that PJ~n(e), the chance that the maximum difference in a stratified sample with sample

sizes ~n is no larger than t, depends on e only through (#cG(e))Cc=1, the number of batches in each
stratum that have differences greater than t. Smaller values of #cG(e) lead to bigger values of
PJ~n(e).

Given an allocation e, we can produce another allocation ẽ that has at least as much difference
in each stratum and for which PJ~n(ẽ) ≥ PJ~n(e) by concentrating the difference in each stratum c in
the batches k that have the largest upper bounds ωkc. That is, ẽ has at least as much total difference
as e an is at least as likely to produce a sample with no difference greater than t.

The values κc(e), defined below, limit how far this can go: An allocation must have at least
κc(e) batches in stratum cwith difference exceeding t to have at least as much difference in stratum
c as the allocation e has. For e ∈ E, let

κc(e) ≡ min

{
k′ ≥ 0 :

k′∑
k=1

ωkc +
Nc∑
k′+1

(ωkc ∧ t) ≥
Nc∑
k=1

ekc

}
.

3Rivest (2007) shows that when batches are audited independently, finding

max
e∈Eµ

P
(

Not auditing any batch (k, c) with difference ekc > 0
)

can be cast as KP. However, stratified random sampling does not select batches independently.
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For any e ∈ E, let ẽ ≡ (ẽkc)
Nc C
k=1 c=1 be the vector with components

ẽkc ≡
{
ωkc, k ≤ κc(e),
ωkc ∧ t, otherwise.

Note that
ẽ ∈ E and ˜̃e = ẽ. (3.19)

By definition of κc,
Nc∑
k=1

ẽkc ≥
Nc∑
k=1

ekc.

Hence,
if e ∈ Eµ then ẽ ∈ Eµ. (3.20)

By [3.9],
if k < k′, [ωkc − (ωkc ∧ t)] ≥ [ωk′c − (ωk′c ∧ t)]. (3.21)

It follows from the rearrangement theorem (Hardy et al. 1952), and the fact that ekc ≤ ωkc that

#cG(e)∑
k=1

ωkc +
Nc∑

#cG(e)+1

(ωkc ∧ t)

=
Nc∑
k=1

[ωkc − (ωkc ∧ t)]1(k ≤ #cG(e)) +
Nc∑
k=1

(ωkc ∧ t)

≥
Nc∑
k=1

[ωkc − (ωkc ∧ t)]1(ekc > t) +
Nc∑
k=1

(ωkc ∧ t)

≥
Nc∑
k=1

[ekc − t]1(ekc > t) +
Nc∑
k=1

t1(ekc > t) +
Nc∑
k=1

ekc1(ekc ≤ t)

=
Nc∑
k=1

ekc. (3.22)

Thus, κc(e) ≤ #cG(e), so for c = 1, . . . , C,

#cG(ẽ) = κc(e) ≤ #cG(e).

It follows from [3.17] that
PJ~n(ẽ) ≥ PJ~n(e). (3.23)

That is, compared with e, ẽ has at least as much difference and at least as large a chance of yielding
a sample with no difference larger than t: It does at least as much damage to the election outcome
and is at least as hard to detect using a stratified random sample.
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Since [3.19], [3.20], and [3.23] hold for all e ∈ E, it follows that

max
e∈Eµ

PJ~n(ẽ) = max
e∈Eµ

PJ~n(e). (3.24)

Thus, if we define
Ẽ ≡ {ẽ : e ∈ E}, (3.25)

and let
Ẽµ ≡ Ẽ ∩ Eµ, (3.26)

then [3.18] holds for this definition of Ẽµ.
The set of allocations Ẽµ is much smaller than the original set Eµ. Maximizing PJ~n over

allocations in this smaller set can be reduced to KP, as we now show.

3.3.2 Maximizing PJ~n
as a 0-1 knapsack problem

We write the 0-1 knapsack problem more precisely. There areN items. Item j has value uj ≥ 0
and cost qj ≥ 0. The value and cost are analogous to the caloric value and weight in the example
in section 3.3. We want to find the combination of items that has minimal total cost among all
combinations with total value above some threshold. In the example of section 3.3, this is like
finding the combination of food items that has minimal total weight among all combinations with
total caloric value above some threshold. Let M ≥ 0 and let

X ≡
{
(xj)

N
j=1 : xj ∈ {0, 1}

}
.

Define x ≡ (xj)
N
j=1, u ≡ (uj)

N
j=1, and q ≡ (qj)

N
j=1. The 0-1 knapsack problem (KP) is to find

λ ≡ min
x∈X
{q · x : u · x ≥M} .

Recall that the minimum of a function over an empty domain is∞, so if {x ∈ X : u · x ≥ M} is
empty, λ =∞. A vector x† ∈ X satisfying

q · x† = λ and u · x† ≥M

is called an exact solution; λ is the exact value. Finding λ can be expensive; often it is substantially
easier to find a lower-bound λ− ≤ λ, an approximation to the exact value.

We show below that finding the exact p-value P# also amounts to solving KP. To do so, we
relate the constraint u · x ≥ M to the condition e ∈ Eµ and the objective function q · x to PJ~n .
Moreover, we show that it is not necessary to search all of X for the minimum: We find a much
smaller set X̃ ⊂ X for which

logP# = log max
e∈Ẽµ
{PJ~n(e)} = min

e∈Ẽµ
{− log(PJ~n(e))} = min

y∈X̃
{q · y : u · y ≥M} . (3.27)

We then show that

λ = min
x∈X
{q · x : u · x ≥M} = min

y∈X̃
{q · y : u · y ≥M} . (3.28)
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Hence, any algorithm for solving KP can find the exact p-value P# = e−λ. But algorithms that
restrict the search to vectors x ∈ X̃ can be faster than algorithms that search all of X.

Variables: It is helpful to switch between doubly-indexed terms and singly-indexed terms. The
double index k, c corresponds to the single index

j = j(k, c) ≡ k +
∑
c′<c

Nc′ , k = 1, . . . , Nc, c = 1, . . . , C. (3.29)

Conversely, the single index j corresponds to the double index k, c with

c = c(j) ≡ min

{
d :

d∑
i=1

Nd ≥ j

}
, k = k(j) ≡ j −

c(j)−1∑
d=1

Nd, (3.30)

Recall that G(e) is the set of batches (k, c) for which ekc > t [3.16]. For e ∈ E, define

gkc(e) ≡ 1((k, c) ∈ G(e)), (3.31)

g(e) ≡ (gkc(e))
Nc C
k=1 c=1 ∈ X, (3.32)

and
X̃ ≡

{
y ∈ X : y = g(e) for some e ∈ Ẽ

}
. (3.33)

Constraint: Let
ukc ≡ ωkc − (ωkc ∧ t). (3.34)

Note that
ukc = 0 if and only if ωkc ≤ t. (3.35)

By [3.21],
ukc ≥ uk′c if k < k′. (3.36)

Let

M ≡

[
µ−

C∑
c=1

Nc∑
k=1

ωkc ∧ t

]
∨ 0. (3.37)

Observe that if M = 0, then
ω ∧ t ≡ (ωkc ∧ t)Nc C

k=1 c=1 ∈ Ẽµ

and
PJ~n(ω ∧ t) = 1.

Thus, if M = 0, then the exact p-value P# = 1: There is an allocation of difference that causes
the election outcome to be wrong, and for which the probability is 100% that the sample will not
contain any batch with difference greater than t.
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Subtracting
∑C

c=1

∑Nc
k=1(ωkc∧t) from both

∑C
c=1

∑Nc
k=1 ekc and µ shows that for e ∈ Ẽ, e ∈ Ẽµ

if and only if
u · g(e) ≥M. (3.38)

Thus,
{g(e) : e ∈ Ẽµ} = {y ∈ X̃ : u · y ≥M}. (3.39)

We assume {y ∈ X̃ : u · y ≥M} is non-empty; otherwise, [3.39] shows that the apparent outcome
must be correct, so the p-value is 0.

Objective function: Choose e ∈ E. If for c = 1, . . . , C, Nc −#cG(e) ≥ nc, then

PJ~n(e) =
C∏
c=1

(
Nc−#cG(e)

nc

)(
Nc
nc

) =
C∏
c=1

#cG(e)∏
k=1

(
Nc−k
nc

)(
Nc−k+1

nc

)
=

C∏
c=1

#cG(e)∏
k=1

Nc − nc − k + 1

Nc − k + 1
. (3.40)

If instead there exists c such that Nc − #cG(e) < nc, then PJ~n(e) = 0: If the true allocation is
e, the sample is guaranteed to contain a batch with difference greater than t. Combining this with
[3.40] shows that for any e ∈ E,

PJ~n(e) =
C∏
c=1

#cG(e)∏
k=1

(
Nc − nc − k + 1

Nc − k + 1
∨ 0

)
. (3.41)

Let

pkc ≡
(
Nc − nc − k + 1

Nc − k + 1
∨ 0

)
. (3.42)

Note that
pkc ≥ pk′c if k < k′. (3.43)

Recall our convention that 00 = 1. If e ∈ Ẽ, then

PJ~n(e) =
C∏
c=1

#cG(e)∏
k=1

pkc =
C∏
c=1

Nc∏
k=1

p
gkc(e)
kc . (3.44)

That is, for allocations e ∈ Ẽ, batch (k, c) has a fixed contribution pkc to PJ~n . This is the key to
writing P# as KP. Let

qkc ≡
{
− log(pkc), pkc > 0,
∞, pkc = 0.

(3.45)

Note that qkc ≥ 0 for all batches (k, c). By [3.43],

qkc ≤ qk′c if k < k′. (3.46)

From [3.44] and [3.45], for e ∈ Ẽ,

− log(PJ~n(e)) = q · g(e). (3.47)

Equations [3.39] and [3.47] yield equation [3.27]. We prove [3.28] in appendix B.1.
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3.4 Approximate and exact solutions to KP
Dynamic programming algorithms and branch and bound algorithms can solve KP (Pisinger

& Toth 1998). Appendix B.2 describes a branch and bound algorithm for finding P# that restricts
the search to X̃ to improve efficiency. That algorithm can calculate the exact p-value in a matter
of seconds, even for large elections. R code is available in the CRAN archive in the package
elec.strat.

The solution to KP can be bounded from below in O(N) time by solving the linear knapsack
problem (LKP), the continuous relaxation of KP (Pisinger & Toth 1998). We use this LKP bound,
λLKP ≤ λ, in the bound step of the branch-and-bound algorithm in appendix B.2. We call PLKP ≡
e−λLKP ≥ P# the LKP conservative p-value. For some election audits, PLKP is almost exactly equal
to P#, the exact p-value.

LKP relaxes the constraint that each item either is or is not in the knapsack to the constraint
that between 0 and 100% of each item is in the knapsack: The discrete set {0, 1} is replaced by the
continuous set [0, 1]. Define

Xrel ≡
{
(xj)

N
j=1 : xj ∈ [0, 1]

}
⊃ X. (3.48)

The LKP is to find
λLKP ≡ min

x∈Xrel
{q · x : u · x ≥M} . (3.49)

The value λLKP is the LKP bound. Since X ⊂ Xrel, λLKP ≤ λ, and

PLKP ≡ exp(−λLKP) ≥ P#.

LKP can be solved using linear programming, but Dantzig (1957) shows that the value of λLKP

can be obtained very simply, as follows. Sort the ratios

rkc ≡
qkc
ukc

(3.50)

into increasing order, and put the cost vector q into the corresponding order. Find the smallest B
so that the sum of the values of the first B batches is at least M . The LKP bound is the sum of the
first B − 1 components of the cost vector q and a fraction of the Bth component of q.

We now explain the LKP bound in more detail. Equations [3.36] and [3.46] show that

rkc ≤ rk′c if k < k′. (3.51)

Recall [3.29] and [3.30], the mappings between double indices and single indices. Let
π : {1, 2, . . . , N} → {1, 2, . . . , N} be a permutation such that

rπ(1) ≤ rπ(2) ≤ · · · ≤ rπ(n). (3.52)

That is, π maps j to the index of the jth smallest value of (rj)
N
j=1. For instance, if π(1) = j,

then rj = min(ri)
N
i=1. The inverse of π, denoted π−1, maps j to the rank of rj . For instance, if

rj = min(ri)
N
i=1, then π−1(j) = 1.

If there are ties among the ratios (rj)
N
j=1, we impose two additional conditions on π:
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1. When rkc = rk′c and k < k′,

π−1(j(k, c)) < π−1(j(k′, c)). (3.53)

2. When rkc = rk∗c∗ , c 6= c∗, and Nc > Nc∗ ,

π−1(j(k, c)) < π−1(j(k∗, c∗)). (3.54)

The first condition, together with [3.51] and [3.52], ensures that π preserves the order of batches
within a stratum. The second condition breaks ties between ratios in different strata by putting the
ratio in the stratum with fewer batches first.

For any j′ ∈ {1, . . . , N} with uπ(j′) > 0,(
1[π−1(j) ≤ j′)]

)N
j=1
∈ X̃. (3.55)

That is, any allocation that assigns as much difference as possible to batches with the smallest
ranks and difference ω ∧ t to larger ranks is in Ẽ. To see this, consider the allocation e∗ with
components

e∗π(j) =

{
ωπ(j), 1 ≤ π−1(j) ≤ j′,
ωπ(j) ∧ t, otherwise.

By [3.52] and [3.53], if π−1(j(k′, c)) ≤ j′ and k < k′, then π−1(j(k, c)) < j′. That is, if e∗k′c = ωk′c
and k < k′, then e∗kc = ωkc. Thus, e∗ ∈ Ẽ. By [3.33] and [3.35],

g(e∗) =
(
1[π−1(j) ≤ j′)]

)N
j=1
∈ X̃.

Define

B ≡

{
1, M = 0 and uπ(1) = 0,

N ∧min
{
B′ > 0 :

∑B′

j=1 uπ(j) ≥M
}
, otherwise.

Then B is the smallest number of batches that must have difference greater than t for the election
outcome to be wrong, if those differences are allocated in the order π. Note that, if {q · y : u · y ≥
M} is non-empty then uB > 0. Dantzig (1957) shows that

λLKP =

{
0, M = 0 and uπ(1) = 0,∑B−1

j=1 qπ(j) +
M−

PB−1
j=1 uπ(j)

uπ(B)
· qπ(B), otherwise.

(3.56)

The vector xrel ∈ Xrel that attains this maximum has components

xrelπ(j) ≡


1, j < B,

M −
∑B−1

j=1 uπ(j)

uπ(B)

, j = B,

0, otherwise.

(3.57)
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Observe that u · xrel = M , and λLKP = 0 when M = 0. If
∑B

j=1 uπ(j) = M , then xrel actually
solves KP, not just LKP:

If
B∑
j=1

uπ(j) = M then λ =
B∑
j=1

qπ(j). (3.58)

Note that (1[π−1(j) ≤ B)])
N
j=1 ∈ X̃. If {q · y : u · y ≥M} is non-empty, then∑B

j=1 uπ(j) ≥M , and so

λ+
LKP ≡

B∑
j=1

qπ(j)

is an upper bound for λ: LKP lets us bracket the value of KP. Observe that

λLKP +

(
1−

M −
∑B−1

j=1 uπ(j)

uπ(B)

)
qπ(B) = λ+

LKP. (3.59)

Thus,

λ− λLKP ≤ λ+
LKP − λLKP =

(
1−

M −
∑B−1

j=1 uπ(j)

uπ(B)

)
qπ(B) ≤ qπ(B), (3.60)

and so
exp(−λLKP)

exp (−λ)
≤ 1

pπ(B)

. (3.61)

That is, PLKP is guaranteed to be within a factor of 1/pπ(B) of the exact p-value P#.

3.5 Results: comparing p-values
This section gives exact and conservative p-values for the hypothesis that the apparent outcome

of the 2006 U.S. Senate race in Minnesota was wrong. Amy Klobuchar was the apparent winner;
Mark Kennedy was the runner-up. There were a total of 2,217,818 ballots cast in 4,123 precincts
spanning 87 counties. Klobuchar’s reported margin of victory over Kennedy was 443,196 votes.

Many Minnesota counties are small; only ten had more than 75 precincts in 2006. Counties
audited 2 to 8 precincts selected at random, depending on the size of the county. Hennepin County,
which has the most precincts (426), audited 8 precincts. In all, 202 precincts were audited. For
more information about the election and audit, see Halvorson & Wolff (2007).

We consider tests based on two measures of difference: MRO and taint. The taint of a batch is
the difference in the batch expressed as a fraction of the maximum possible difference in the batch.
Taint is related to MRO through a weight function wkc: If ekc is the MRO in batch (k, c), the taint
in batch (k, c) is

wkc(ekc) =
ekc
ωkc

.
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Table 3.1: Conservative and exact p-values for the hypothesis that the apparent outcome of the 2006
U.S. Senate race in Minnesota was wrong, based on Minnesota’s audit of a stratified random sample of
202 precincts. Values are given for two test statistics: maximum MRO and maximum taint. Column 2:
conservative p-value using the method of Stark (2008b). Column 3: LKP conservative p-value. Column 4:
exact p-value obtained by solving KP.

Stark PLKP P#

MRO 0.042 0.01591 0.01590
Taint 0.047 0.01892 0.01890

The largest overstatement of Klobuchar’s margin over Kennedy in the audit sample was 2 votes,
so the maximum MRO was 2/443,196. The largest taint found by the audit was 9.17× 10−3, a one
vote overstatement of Klobuchar’s margin in a precinct in Cottonwood county containing 149
ballots. For MRO,

M = 1−
87∑
c=1

Nc∑
k=1

(ωkc ∧ (2/443196)).

For taint,

M = 1−
87∑
c=1

Nc∑
k=1

(ωkc × 9.17× 10−3).

Table 3.1 gives conservative p-values using the method of Stark (2008b) and LKP, and the exact
p-value obtained by solving KP. The exact p-values are less than half the conservative values based
on the method in Stark (2008b). The LKP conservative p-value is nearly equal to the exact p-value.

Figure 3.1 shows conservative and exact p-values corresponding to some possible values of
the maximum MRO and maximum taint. The LKP conservative p-values are essentially identical
to the exact p-values; both are much smaller than the conservative p-value based on the method
of Stark (2008b).

If the test statistic is maximum MRO, the exact p-value is less than 0.05 if the largest overstate-
ment less than than 26 votes. The conservative p-value from the method of Stark (2008b) is less
than 0.05 only if the largest overstatement is less than 8 votes. If the test statistic is the maximum
taint, the exact p-value is less than 0.05 if the observed maximum taint is less than 0.040; while
the conservative p-value using the method of Stark (2008b) is less than 0.05 only if the observed
maximum taint is less than 0.011: KP and LKP give substantially more powerful tests.

3.6 Selecting sample sizes
So far, we have assumed that the sample sizes in each stratum were given in advance, for in-

stance, by law. Finding the best sample sizes—those that can confirm correct outcomes with the
least hand counting—seems to be computationally intractable, but it is not hard to improve on the
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Figure 3.1: Exact and conservative p-values for hypothetical maximum observed overstatements (left) and
hypothetical maximum observed taints (right) for the 2006 Minnesota Senate race. The LKP conservative
p-values (PLKP) are nearly identical to the exact p-values (P#). Both are substantially smaller than bounds
using the method in Stark (2008b).

sample sizes used in Minnesota, for instance. In this section we pose optimization problems to de-
fine “optimal” sample sizes and give several methods for selecting sample sizes. Section 3.7 shows
that selecting sample sizes to be proportional to the number of batches, which is how California
currently sets sample sizes, performs well in examples using data from real elections.

Recall that, for any choice of sample sizes ~n = (nc)
C
c=1, J~n is a stratified random sample that

selects nc batches from stratum c, c = 1, . . . , C. For fixed α > 0 and t∗ > 0, let N(α, t∗) denote
the set of all sample sizes ~n such that, if the maximum observed difference is t∗ or less, the exact
p-value obtained using sample sizes ~n will be less than α. That is,

N = N(α, t∗) ≡
{
~n = (nc)

C
c=1 :

P#(t∗;~n) ≤ α,
nc ∈ {0, 1, . . . , Nc}, c = 1, . . . , C.

}
We define a vector of sample sizes ~n† = (n†c)

C
c=1 to be optimal (for α and t∗) if

C∑
c=1

n†c = min

{
C∑
c=1

nc : (nc)
C
c=1 ∈ N(α, t∗)

}
. (3.62)

By this definition, a vector of sample sizes is optimal if it minimizes the number of batches that
must be counted to confirm the outcome at risk limit α on the assumption that the value of the test
statistic turns out to be no larger than t∗. There can be more than one optimal vector of sample
sizes.
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There are other sensible definitions of optimality. If the vector of sample sizes is ~n, the expected
number of ballots that need to be hand counted is

C∑
c=1

nc
Nc

Nc∑
k=1

bkc. (3.63)

We might define a vector of sample sizes to be optimal if it minimizes the expected number of
ballots that must be counted to confirm the outcome at risk limit α, again on the assumption that
the value of the test statistic turns out to be no larger than t∗. Or the expectation could allow t∗ to be
random (for instance, based on a hypothetical allocation of difference), and could take into account
the costs of expanding the audit if the p-value is larger than α. If batches are about the same size, a
sample size vector that minimizes the number of batches audited will also minimize the expected
number of ballots audited. In practice, there are costs to retrieve batches of ballots and to hand-
count the votes on each ballot in a batch, so defining optimality in terms of a weighted combination
of the number of batches and the expected number of ballots is appealing; weights might depend
on how a jurisdiction organizes its ballots, on labor costs, etc. The methods described below can be
modified to work for these optimality criteria, but we focus on minimizing the number of batches.

Optimal sample size vectors can be found by brute force when the contest spans few counties
and the margin of victory is large. We give three simple algorithms for finding sample sizes that
can improve on statutory allocations even when a brute-force solution is impossible. The core of
each algorithm takes the total sample size n ≡

∑
c nc to be fixed and selects ~n to make P#(t∗;~n)

small. The algorithms increment n until P#(t∗;~n) ≤ α.

3.6.1 Sample sizes proportional to stratum size
A simple rule for allocating the sample across strata is to take sample sizes proportional to

stratum size (PSS). California Elections Code §15360 requires sample sizes that are close to PSS
sample sizes: Each county audits a random sample of 1% of its precincts, plus one precinct for
each contest not included in the 1% sample.

PSS does not take advantage of information about the amount of difference batches can contain.
In some cases, PSS sample sizes are close to optimal. However, when strata are not similar—for
example, when one stratum has a disproportionately high number of batches that can hold large
differences—PSS sample sizes can be far from optimal.

When nNc/N is an integer for all c = 1, . . . , C, the PSS sample sizes are nc = nNc/N . When
nNc/N is not an integer for some c, we might define PSS sample sizes to be nc = dnNc/Ne. In
that case, PSS sample sizes would satisfy

∑C
c=1 nc ≥ n. Alternatively, we might define PSS sample

sizes to satisfy
∑C

c=1 nc = n as follows: Sort the ratios {fkc ≡ (k − 1)N/Nc}, k = 1, . . . , Nc,
c = 1, . . . , C, in ascending order, listing fkc before fk∗c∗ if fkc = fk∗c∗ andNc > Nc∗ . Consider the
smallest n such ratios. The sample size nc is the number of those n ratios that came from stratum
c. We use this latter definition of PSS sample sizes in section 3.7.
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3.6.2 first.r and next.r
We now present two algorithms to find sample sizes—first.r and next.r—that use infor-

mation about stratum sizes and the amount of difference individual batches can hold. This can
produce sample sizes that are smaller than PSS sample sizes when strata are dissimilar.

The algorithms are related. Both start with an empty sample size vector ~n = (0)Cc=1 and incre-
ment the sample size in the stratum c that contains the batch with the largest value of r (in some
pool of batches) until the total sample size is n. The difference between the algorithms is whether
the batch with the largest value of r at one iteration is kept in the pool (first.r) or excluded
from consideration in subsequent iterations (next.r). After each increment, the costs [3.45] are
updated based on the current value of ~n. The ratios (rj)

N
j=1 are updated, and the permutation π

that sorts these ratios into increasing order is found.4 Both algorithms use π to determine which nc
to increment, but they use different rules to make that determination. The algorithms are as follows.

Step 1: (Initialize)

Set ~n = (nc)
C
c=1 = (0)Cc=1.

Compute (uj)
N
j=1.

Set S = {1, . . . , N}.

Step 2: (Update q, r, and π)

Using the current value of ~n, compute (qkc)
Nc C
k=1 c=1.

Set qkc = min(qkc, log(nc + 1)).
Compute (rj)

N
j=1.

Find the permutation π satisfying [3.52], [3.53], and [3.54].

Step 3: (Choose which nc to increment)

Find j = min{j′ : π(j′) ∈ S}.
Increment nc(π(j)) (see equation [3.30]).

Step 4: (Update the search set.)

If next.r, set S = S \ π(j).
Else if first.r, do nothing.

4next.r requires the cost to be defined slightly differently:

qkc ≡ − log(pkc) ∧ log(nc + 1).

This only matters if more than half of the batches in a stratum need to be sampled, which can occur in a closely
contested race. The permutation π is not affected by this change, since qkc = ∞ if and only if k > Nc − nc. For
k ≤ Nc − nc, by [3.46],

qkc = − log
(
Nc − nc − k + 1
Nc − k + 1

)
≤ log(nc + 1)

with equality if and only if k = Nc − nc. Thus, the ordering in [3.46] continues to hold.
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Step 5: (Terminate?)

If
∑C

c=1 nc < n, go to Step 2.
Else stop.

By [3.52] and [3.53], we know that the minimum in Step 3 is one of only C values; this restriction
can be exploited to decrease the computational time of the algorithm dramatically.

3.6.3 Constructing sample size vectors in N(α, t∗).
Constructing a vector of sample sizes ~n ∈ N(α, t∗) is straightforward:

Step A: Set n = 1.
Step B: Given n, use PSS, first.r, or next.r to construct a vector of sample sizes ~n with∑

c nc = n.
Step C: Find the exact p-value P#(t∗, ~n) on the assumption that the observed value of the test
statistic is t∗. (A conservative p-value P#(t∗, ~n) ≥ PJ~n(e; t

∗) could be used instead of the exact
p-value.)
Step D: If P# > α, increment n and go to Step B. Otherwise, ~n ∈ N(α, t∗).

The next section gives numerical examples based on data from Minnesota and California.

3.7 Sample sizes for Minnesota and California contests
We use the data from the 2006 Minnesota Senate race to demonstrate how selecting sample

sizes using PSS, first.r, or next.r can dramatically reduce the counting necessary for an audit.
We then use data from the 2008 California U.S. House races to compare the performance of these
methods.

3.7.1 The 2006 Minnesota U.S. Senate race
The statutory audit of the 2006 Minnesota election examined 202 precincts. As discussed

in section 3.5, counties audited between 2 and 8 precincts each, depending on the size of the
county. For the U.S. Senate contest, the largest observed overstatement of the margin in a single
precinct was 2 votes; the corresponding exact p-value for the hypothesis that the apparent outcome
is incorrect is 0.0159. The largest taint in a single precinct was 9.17 × 10−3. The corresponding
exact p-value is 0.0189.

To study the effectiveness of the statutory sampling rates, we find the sample sizes that would
be required to get p-values at least as small for sampling vectors chosen using first.r, next.r,
and the version of PSS that satisfies

∑C
c=1 nc = n. The calculations assume that the observed value

of the test statistic would be the same for all samples. The results are in Table 3.2, along with the
expected number of ballots that would need to be tallied by hand.

All three new methods require auditing dramatically fewer batches and ballots than the statu-
tory method: selecting sample sizes more efficiently would reduce the number of batches by 80
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Table 3.2: Statutory, PSS, first.r, and next.r sample sizes for the 2006 Minnesota Senate contest.
Number of batches to audit and expected number of ballots to audit to obtain p-values no larger than the
exact p-values in Table 3.1 (0.0159 for maximum MRO and 0.0189 for maximum observed taint), for the
same observed values of the test statistics. PSS, first.r, and next.r all improve markedly on the statutory
sample sizes.

Statutory PSS first.r next.r

Overstatement
Number of batches 202 122 109 110
Expected ballots 90,691 59,611 55,787 56,940

Taint
Number of batches 202 122 108 109
Expected ballots 90,691 59,611 55,228 55,851

(almost 40%) and would reduce the expected number of ballots to audit by one third (see equa-
tion [3.63]). The new methods draw more than 8 precincts from Hennepin county and only one
precinct from the smallest counties, instead of two.

Figure 3.2 compares the total sample sizes and expected number of ballots to tally by hand for
PSS, first.r, and next.r to get p-values no larger than 0.05, for observed maximum overstate-
ments of 0 to 30 votes. The analogous graphs using taint as the test statistic are nearly identical.

first.r and next.r perform best in these examples: only 100 batches need to be audited
when the maximum overstatement is zero, and 113 batches or fewer need to be audited for a
30-vote overstatement of the margin. The total number of precincts and the expected number
of ballots to audit are uniformly smaller for first.r and next.r than for PSS. The difference
between first.r and next.r sample sizes and PSS sample sizes is greatest when the observed
overstatement is large.

3.7.2 The 2008 California U.S. House of Representatives races
The November 2008 election in California included 53 U.S. House of Representatives contests.

The California Statewide Database (SWDB) has precinct-level voting data for these contests5 The
SWDB does not give the results of the statutory 1% audit.

Of these 53 contests, two had third-party candidates who received a substantial proportion of
the vote; the SWDB did not provide vote totals for these third-party candidates. In nine of the
contests, a single candidate was running unopposed. We omitted these 11 contests from our study.

Of the remaining 44 contests, 23 crossed county lines. Of those, 20 were contained in 5 coun-
ties or fewer, allowing us to find optimal sample size vectors by brute force.

We find PSS, first.r, next.r, and optimal sample sizes and expected ballots to audit to
attain p-values no larger than 0.05 provided the audit does not uncover any overstatement of the
margin (that is, sample size vectors in N(0.05, 0)). We exclude precincts (k, c) with ωkc = 0,
because differences in those precincts could not have overstated the apparent margin. Table 3.3
lists the results, along with summary statistics such the number of counties and precincts in the

5See http://swdb.berkeley.edu/pub/data/G08/state/state_g08_sov_data_by_g08_svprec.dbf.

http://swdb.berkeley.edu/pub/data/G08/state/state_g08_sov_data_by_g08_svprec.dbf
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Figure 3.2: Number of batches to audit and expected number of ballots to audit to get p-values no larger
than 0.05 for 2006 Minnesota Senate race, as observed maximum overstatements range from 0 to 30 votes,
using sample size vectors selected by PSS, first.r, and next.r. In these simulations, PSS requires more
auditing than first.r and next.r, which have nearly identical workloads.

contest and the margin of victory as a percentage of votes cast in the contest. Figures 3.3 and 3.4
plot the results.

PSS sample sizes are optimal in 8 contests and within 2 batches of optimal in 14 contests.
Sample sizes from first.r are optimal in 9 contests and within 2 batches of optimal in 15 contests.
Sample sizes from next.r are optimal in 12 contests and within 2 batches of optimal in 19 contests.

For 11 of the contests, PSS required auditing the most batches. For 10 contests, PSS had the
largest expected number of ballots to audit. The PSS sample sizes were far from optimal for the
District 11 and the District 44 contests.

next.r never required auditing the largest number of batches nor the largest expected number
of ballots. However, it required auditing far more than the optimal number of batches and ballots
in District 44.

All three approximate methods find sample sizes very quickly, even for large contests. Given a
threshold value of the test statistic t∗ and risk limit α, one can apply all three methods and choose
whichever requires auditing the fewest batches or the fewest expected ballots. This is legitimate
because the choice takes place before the sample is drawn. (In contrast, one cannot draw the
samples all three ways and decide which of the samples to use after looking at the audit results—
with “data snooping” of that kind, the nominal p-value could differ substantially from the true
p-value.) For many contests, the methods perform similarly. The simplest—PSS—is typically
quite good. For small contests, it can be close to optimal.



3.7. SAMPLE SIZES FOR MINNESOTA AND CALIFORNIA CONTESTS 44

Table 3.3: Summary of 20 multi-jurisdiction 2008 California U.S. House of Representative contests and
audit workload for several methods of selecting sample sizes. Column 1: legislative district. Column 2:
number of counties containing the contest. Column 3: number of precincts in the contest. Column 4:
largest number of precincts in the contest in any single county. Column 5: total votes cast in the contest.
Column 6: margin of victory as a percentage of valid votes cast. Columns 7–10: number of batches to audit
if sample size vectors are selected using PSS, first.r, next.r, or optimally. The optimal choice is not
unique. Columns 11–13: expected number of ballots to audit if sample size vectors are selected using PSS,
first.r, or next.r.

Contest summary Precincts to audit Expected ballots to audit
CD C N max Votes M PSS f.r n.r Opt PSS f.r n.r

Nc (%)
12 2 599 385 293,469 51.5 13 11 11 11 6,454 5,775 5,775
6 2 1,110 732 336,749 45.3 15 15 15 15 5,224 5,224 5,224
7 2 535 293 252,898 47.3 15 15 15 15 8,210 8,210 8,210
14 3 940 530 296,795 43.6 17 16 16 16 6,465 6,227 6,227
51 2 844 628 219,232 45.1 16 16 16 16 4,863 4,863 4,863
17 3 766 368 240,205 45.7 19 18 18 18 7,227 6,989 6,989
23 3 818 392 266,259 34.1 20 21 20 20 7,535 7,857 7,481
10 4 728 430 318,243 31.5 23 21 22 21 11,275 10,580 10,927
20 3 1,152 420 131,708 46.2 22 23 23 22 3,791 3,928 3,928
21 2 1,056 568 225,375 34.2 26 25 25 25 6,822 6,556 6,554
42 3 669 307 289,757 18.4 38 40 34 33 19,060 23,199 17,968
41 2 1,688 1,222 277,945 21.6 41 42 41 41 11,659 11,872 11,659
49 2 1,152 730 263,844 19.0 42 41 41 41 13,066 12,818 12,864
24 2 1,176 932 322,001 15.1 51 51 50 50 18,606 18,914 18,427
25 4 1,151 777 275,404 14.0 63 62 61 60 19,130 18,997 18,742
11 4 1,167 782 318,195 9.8 85 65 61 61 28,351 23,171 22,576
26 2 1,000 650 296,714 10.9 64 67 65 64 22,671 23,810 23,011
46 2 660 402 307,160 8.7 77 74 73 71 38,346 38,721 37,121
3 5 829 696 339,812 5.1 130 122 122 121 56,969 54,158 54,380
44 2 811 712 274,349 2.2 355 289 315 270 142,882 122,564 129,325
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Figure 3.3: Number of batches to audit so that the p-value of the hypothesis that the outcome is incorrect
will be less than α = 0.05 if the sample finds no difference that overstated a margin. Bar graphs plot the
ratio of the number of batches to audit for sample size vectors chosen using PSS, first.r, and next.r to
the number of batches an optimal sample-size vector requires. first.r and next.r tend to require fewer
batches than PSS. For many contests, the differences among methods are small.
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Figure 3.4: Expected number of ballots to audit so that the p-value of the hypothesis that the outcome is
incorrect will be less than α = 0.05 if the sample finds no difference that overstated a margin). Bar graphs
plot the ratio of the expected number of ballots for PSS and first.r to the expected number of ballots for
next.r. first.r and next.r tend to require fewer ballots than PSS. For many contests, the differences
among methods are small.
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3.8 Conclusions and Future Work
Risk-limiting post-election audits guarantee that if the apparent outcome of a contest is wrong,

there is a large chance of a full hand count to set the record straight. The risk is the maximum
chance that the audit will not correct an apparent outcome that is wrong. A risk-limiting audit can
be thought of as a hypothesis test: The null hypothesis is that the apparent outcome is wrong. A
type I error corresponds to failing to correct a wrong outcome. The chance of a type I error is the
risk. The p-value of the null hypothesis quantifies the evidence that the outcome is correct: smaller
p-values are stronger evidence.

Previous work on risk-limiting audits using stratified samples found upper bounds on p-values
that were extremely conservative when sampling fractions varied widely across strata. We have
shown here how to find a sharp p-value based on a stratified sample by solving a 0-1 knapsack
problem (KP). KP can be solved efficiently using a branch and bound algorithm. The linear knap-
sack problem (LKP) bound gives an inexpensive upper bound on the p-value that is almost sharp:
For the 2006 U.S. Senate contest in Minnesota, the exact p-value found by KP is nearly identi-
cal to the LKP conservative p-value, and both are dramatically smaller than conservative p-value
computed using the method in Stark (2008a,b).

Sampling rates within strata have a large effect on workload. We show that in Minnesota, an
audit could have obtained the same p-value by sampling 80 fewer precincts and counting a third
fewer ballots, if the maximum difference observed by the audit remained the same. Simulations
based on the 2008 U.S. House of Representatives contests in California suggest that choosing
sample sizes to be proportional to the number of batches in each stratum can be close to optimal.
Minnesota’s stratification is far from proportional.

The legal requirement to use stratification makes some aspects of auditing more complex, and
some simpler. It would be interesting to study how stratification affects the cost of audits and to
understand when stratification increases statistical efficiency. McLaughlin & Stark (2011) com-
pare the expected number of ballots that must be audited for proportionally stratified, optimally
stratified, and unstratified audits using data from the 2008 U.S. House of Representatives contests
in California. If MRO is the test statistic, optimal stratification can entail less hand counting than
unstratified audits, depending on contest details. However, even optimal stratification tends to have
a higher hand-counting workload than methods that sample batches with probability proportional
to the amount of difference each batch can hold and that use a better test statistic than the maximum
MRO.

It might be possible to reduce the audit workload for stratified audits (when the outcome is cor-
rect) by using a test statistic other than the maximum MRO or a maximum of monotone functions
of the MRO. So far, there seems no analytically tractable, more powerful alternative for stratified
random samples, but this is an area of active research.

In contrast, workload can be reduced dramatically (when the outcome is correct) by using
smaller audit batches (Neff 2003; Stark 2010; McLaughlin & Stark 2011). Unfortunately, most
current vote tabulation systems do not report subtotals for batches smaller than precincts. Improv-
ing “data plumbing” to allow smaller batches to be audited—ideally, individual ballots—would be
a powerful contribution to election integrity.
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Appendix A

Appendix for Chapter 2

A.1 Proof of Lemmas 6 and 7
To help the reader, we suppress the block index in the following derivations, identifying units

by a single index. The variance calculations for the difference-in means estimators follow Miratrix
et al. (2013) closely. These proofs also uses methods found in Cochran (1977) and Lohr (1999).

Note that the following expectations hold under complete randomization:
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We first compute the expectation of the block level estimator µ̂s,diff.
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We now derive the variance of this estimator. Observe that:
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yisyjs

(
1

n(n− 1)
− 1

n(n− 1)
E
(

1

#Ts

))

=
1

n
E
(

1

#Ts

) n∑
i=1

y2
is

+

( n∑
i=1

yis

)2

−
n∑
i=1

y2
is

( 1

n(n− 1)
− 1

n(n− 1)
E
(

1

#Ts

))

=
1

n(n− 1)

(
n∑
i=1

yis

)2

− 1

n(n− 1)

n∑
i=1

y2
is

+E
(

1

#Ts

)( 1

n
+

1

n(n− 1)

) n∑
i=1

y2
is −

1

n(n− 1)

(
n∑
i=1

yis

)2


=
1

n(n− 1)

(
n∑
i=1

yis

)2

− 1

n(n− 1)

n∑
i=1

y2
is

+E
(

1

#Ts

) 1

n− 1

n∑
i=1

y2
is −

1

n(n− 1)

(
n∑
i=1

yis

)2


=
1

n(n− 1)

(
n∑
i=1

yis

)2

− 1

n(n− 1)

n∑
i=1

y2
is

+E
(

1

#Ts

) 1

n− 1

n∑
i=1

y2
is −

n

n− 1

(
n∑
i=1

yis
n

)2

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Continuing on:

1

n(n− 1)

(
n∑
i=1

yis

)2

− 1

n(n− 1)

n∑
i=1

y2
is

+E
(

1

#Ts

) 1

n− 1

n∑
i=1

y2
is −

n

n− 1

(
n∑
i=1

yis
n

)2


=
1

n(n− 1)

(
n∑
i=1

yis

)2

− 1

n(n− 1)

n∑
i=1

y2
is

+E
(

1

#Ts

) 1

n− 1

n∑
i=1

y2
is −

n

n− 1

(
n∑
i=1

yis
n

)2


=
1

n(n− 1)

(
n∑
i=1

yis

)2

− 1

n(n− 1)

n∑
i=1

y2
is

+
1

n− 1
E
(

1

#Ts

)( n∑
i=1

y2
is − nµ2

s

)

=
1

n(n− 1)

(
n∑
i=1

yis

)2

− 1

n(n− 1)

n∑
i=1

y2
is +

1

n− 1
E
(

1

#Ts

) n∑
i=1

(yis − µs)2

(A.6)
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It follows from the property that Var(X) = E(X2)− (E(X))2 that:

Var(µ̂s,diff) = E(µ̂2
s)− (E(µ̂s))

2

=
1

n(n− 1)

(
n∑
i=1

yis

)2

− 1

n(n− 1)

n∑
i=1

y2
is

+
1

n− 1
E
(

1

#Ts

) n∑
i=1

(yis − µs)2 −

(
n∑
i=1

yis
n

)2

=
n

n− 1

(
n∑
i=1

yis
n

)2

− 1

n(n− 1)

n∑
i=1

y2
is

+
1

n− 1
E
(

1

#Ts

) n∑
i=1

(yis − µs)2 −

(
n∑
i=1

yis
n

)2

=
1

n− 1

(
n∑
i=1

yis
n

)2

− 1

n(n− 1)

n∑
i=1

y2
is +

1

n− 1
E
(

1

#Ts

) n∑
i=1

(yis − µs)2

=
1

n− 1
E
(

1

#Ts

) n∑
i=1

(yis − µs)2 −

 1

n(n− 1)

n∑
i=1

y2
is −

1

n− 1

(
n∑
i=1

yis
n

)2


=
n

n− 1
E
(

1

#Ts

) n∑
i=1

(yis − µs)2

n
−

 1

n− 1

n∑
i=1

y2
is

n
− 1

n− 1

(
n∑
i=1

yis
n

)2


=
n

n− 1
E
(

1

#Ts

)
σ2
s −

1

n− 1
σ2
s

=
n

n− 1
σ2
s

(
E
(

1

#Ts

)
− 1

n

)
(A.7)

Since, under complete randomization:

E
(

1

#Ts

)
=

z

r

(
1

bn/rc+ 1

)
+
(
1− z

r

)( 1

bn/rc

)
=

zbn/rc
r(bn/rc)(bn/rc+ 1)

+
(r − z)(bn/rc+ 1)

r(bn/rc)(bn/rc+ 1)
(A.8)



A.1. PROOF OF LEMMAS 6 AND 7 54

it follows that:

Var(µ̂s,diff) =
n

n− 1
σ2
s

(
E
(

1

#Ts

)
− 1

n

)
=

n

n− 1
σ2
s

(
nr + r2 − 2rz

(n− z)(n+ r − z)
− 1

n

)
=

n

n− 1

n2r + nr2 − 2nrz − (n− z)(n+ r − z)
n(n− z)(n+ r − z)

σ2
s

=
nr(n+ r − z)− nrz − (n− z)(n+ r − z)

(n− 1)(n− z)(n+ r − z)
σ2
s

=
n2r + nr2 − nrz − nrz − n2 − nr + nz + nz + zr − z2

(n− 1)(n− z)(n+ r − z)
σ2
s

=
n2r + nr2 − 2nrz − n2 − nr + 2nz + zr − z2

(n− 1)(n− z)(n+ r − z)
σ2
s

=
n2(r − 1)− 2nz(r − 1) + nr(r − 1) + z(r − z)

(n− 1)(n− z)(n+ r − z)
σ2
s

=
(r − 1)n(n+ r − 2z) + z(r − z)

(n− 1)(n− z)(n+ r − z)
σ2
s (A.9)

Now we work on computing covariances of this estimator. Note that:

E

(
n∑
i=1

yisTis
#Ts

n∑
i=1

yitTit
#Tt

)

= E

(
n∑
i=1

∑
j 6=i

yisyjtTisTjt
#Ts#Tt

)
+ E

(
n∑
i=1

yisyitTisTit
#Ts#Tt

)

=
n∑
i=1

∑
j 6=i

yisyjtE
(

TisTjt
#Ts#Tt

)
+

n∑
i=1

yisyitE
(

TisTit
#Ts#Tt

)

=
n∑
i=1

∑
j 6=i

yisyjt
1

n(n− 1)
+ 0 =

n∑
i=1

∑
j 6=i

yisyjt
n(n− 1)

(A.10)
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Now, recall the property cov(X, Y ) = E(XY )− E(X)E(Y ). It follows that:

cov(µ̂s,diff, µ̂t,diff) = E

(
n∑
i=1

yisTis
#Tis

n∑
i=1

yitTit
#Tit

)
−

n∑
i=1

yis
n

n∑
i=1

yit
n

=
n∑
i=1

∑
j 6=i

yisyjt
n(n− 1)

−
n∑
i=1

yis
n

n∑
i=1

yit
n

=
1

n(n− 1)

n∑
i=1

yis

n∑
i=1

yit −
1

n(n− 1)

n∑
i=1

yisyit −
1

n2

n∑
i=1

yis

n∑
i=1

yit

=
1

n2(n− 1)

n∑
i=1

yis

n∑
i=1

yit −
1

n(n− 1)

n∑
i=1

yisyit

=
−1

n− 1

(
n∑
i=1

yisyit
n
−

n∑
i=1

yis
n

n∑
i=1

yit
n

)
=
−γst
n− 1

(A.11)

Note that the expressions for the variance and covariance of the difference-in-means estimator are
slightly different than those in Miratrix et al. (2013) by a factor of n−1

n
.

We now turn our attention to the Horvitz-Thompson estimator. Note the following expecta-
tions:

E(TisTjs) =
n(n− r) + z(r − z)

r2n(n− 1)
(A.12)

E(TisTjt) =
n2(r − 1)− z(r − z)
r2(r − 1)n(n− 1)

(A.13)

Under complete randomization, the expectation of the Horvitz-Thompson estimator is:

E(µ̂s,HT) = E

(
n∑
i=1

yisTis
n/r

)
=

n∑
i=1

yisE(Tis)

n/r
=

n∑
i=1

yis(1/r)

n/r
=

n∑
i=1

yis
n

= µs (A.14)
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The variance of this estimator is derived as follows. Note that:

E(µ̂2
s,HT) = E

( n∑
i=1

yisTis
n/r

)2


=

(
r2

n2

)(
E

(
n∑
i=1

y2
isT

2
is

)
+ E

(
n∑
i=1

∑
j 6=i

yisyjsTisTjs

))

=

(
r2

n2

)(
E

(
n∑
i=1

y2
isTis

)
+ E

(
n∑
i=1

∑
j 6=i

yisyjsTisTjs

))

=

(
r2

n2

)( n∑
i=1

y2
isE(Tis) +

n∑
i=1

∑
j 6=i

yisyjsE(TisTjs)

)

=

(
r2

n2

)( n∑
i=1

y2
is

r
+

n∑
i=1

∑
j 6=i

yisyjs
n(n− r) + z(r − z)

r2n(n− 1)

)

=

(
r2

n2

) n∑
i=1

y2
is

r
+

(
n(n− r) + z(r − z)

r2n(n− 1)

)( n∑
i=1

yis

)2

−
n∑
i=1

y2
is


=

(
r

n2
− n(n− r) + z(r − z)

n3(n− 1)

) n∑
i=1

y2
is

+

(
n(n− r) + z(r − z)

n3(n− 1)

)( n∑
i=1

yis

)2

=

(
rn(n− 1)− n(n− r)− z(r − z)

n3(n− 1)

) n∑
i=1

y2
is

+

(
n(n− r) + z(r − z)

n(n− 1)

)( n∑
i=1

yis
n

)2

(A.15)
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It follows that:

Var(µ̂s,HT) = E(µ̂2
s,HT)− (E(µ̂s,HT)

2

=

(
rn(n− 1)− n(n− r)− z(r − z)

n3(n− 1)

) n∑
i=1

y2
is

+

(
n(n− r) + z(r − z)

n(n− 1)

)( n∑
i=1

yis
n

)2

−

(
n∑
i=1

yis
n

)2

=

(
rn(n− 1)− n(n− r)− z(r − z)

n3(n− 1)

) n∑
i=1

y2
is

+

(
n(n− r) + z(r − z)− n(n− 1)

n(n− 1)

)( n∑
i=1

yis
n

)2

=

(
rn2 − nr − n2 + nr − z(r − z)

n3(n− 1)

) n∑
i=1

y2
is

+

(
n(1− r) + z(r − z)

n(n− 1)

)( n∑
i=1

yis
n

)2

=

(
n2(r − 1)− z(r − z)

n2(n− 1)

) n∑
i=1

y2
is

n

−
(
n(r − 1)− z(r − z)

n(n− 1)

)( n∑
i=1

yis
n

)2

(A.16)
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We can simplify even further:(
n2(r − 1)− z(r − z)

n2(n− 1)

) n∑
i=1

y2
is

n
−
(
n(r − 1)− z(r − z)

n(n− 1)

)( n∑
i=1

yis
n

)2

=
r − 1

n− 1

 n∑
i=1

y2
is

n
−

(
n∑
i=1

yis
n

)2
− z(r − z)

n2(n− 1)

n∑
i=1

y2
is

n
+
z(r − z)
n(n− 1)

(
n∑
i=1

yis
n

)2

=
r − 1

n− 1

 n∑
i=1

y2
is

n
−

(
n∑
i=1

yis
n

)2
− z(r − z)

n2(n− 1)

 n∑
i=1

y2
is

n
−

(
n∑
i=1

yis
n

)2


+

(
z(r − z)
n(n− 1)

− z(r − z)
n2(n− 1)

)( n∑
i=1

yis
n

)2

=
r − 1

n− 1
σ2
s −

z(r − z)
n2(n− 1)

σ2
s +

(n− 1)z(r − z)
n2(n− 1)

(
n∑
i=1

yis
n

)2

=
n2(r − 1)− z(r − z)

n2(n− 1)
σ2
s +

z(r − z)
n2

(
n∑
i=1

yis
n

)2

(A.17)

Now we compute the covariance. Note that:

E

(
n∑
i=1

yisTis
n/r

n∑
i=1

yitTit
n/r

)

= E

(
n∑
i=1

∑
j 6=i

yisyjtTisTjt
(n/r)2

)
+ E

(
n∑
i=1

yisyitTisTit
(n/r)2

)

=
n∑
i=1

∑
j 6=i

yisyjt
(n/r)2

E (TisTjt) +
n∑
i=1

yisyit
(n/r)2

E (TisTit)

=
n∑
i=1

∑
j 6=i

yisyjt
(n/r)2

n2(r − 1)− z(r − z)
r2(r − 1)n(n− 1)

+ 0

=
n∑
i=1

∑
j 6=i

yisyjt(n
2(r − 1)− z(r − z))

(r − 1)n3(n− 1)

=
n∑
i=1

∑
j 6=i

yisyjt
n(n− 1)

−
n∑
i=1

∑
j 6=i

yisyjtz(r − z)
(r − 1)n3(n− 1)

(A.18)
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Thus, using the covariance calculation from the difference-in-means estimator, we have:

cov(µ̂s,HT, µ̂t,HT) = E

(
n∑
i=1

yisTis
n/r

n∑
i=1

yitTit
n/r

)
−

n∑
i=1

yis
n

n∑
i=1

yit
n

=
n∑
i=1

∑
j 6=i

yisyjt
n(n− 1)

−
n∑
i=1

∑
j 6=i

yisyjtz(r − z)
(r − 1)n3(n− 1)

−
n∑
i=1

yis
n

n∑
i=1

yit
n

=
−γst
n− 1

−
n∑
i=1

∑
j 6=i

yisyjtz(r − z)
(r − 1)n3(n− 1)

(A.19)

This proves the two lemmas.

A.2 Proof of Lemma 10
To help the reader, we suppress the block index in the following derivations, identifying units

by a single index.
Note that, under complete randomization and when i 6= j, the following expectations hold:

E
(

Tis
#Ts − 1

)
= E

[
E
(

Tis
#Ts − 1

∣∣∣∣#Ts)]
= E

(
#Ts
n

#Ts − 1

)
=

1

n
E
(

#Ts
#Ts − 1

)
=

1

n
E
(

#Ts − 1

#Ts − 1

)
+

1

n
E
(

1

#Ts − 1

)
=

1

n
+

1

n
E
(

1

#Ts − 1

)
(A.20)

E
(

Tis
#Ts(#Ts − 1)

)
= E

[
E
(

Tis
#Ts(#Ts − 1)

∣∣∣∣#Ts)]
= E

(
#Ts
n

#Ts(#Ts − 1)

)
=

1

n
E
(

#Ts
#Ts(#Ts − 1)

)
=

1

n
E
(

1

#Ts − 1

)
(A.21)

E
(

TisTjs
#Ts(#Ts − 1)

)
= E

[
E
(

TisTjs
#Ts(#Ts − 1)

∣∣∣∣#Ts)]
= E

(
#Ts
n

#Ts−1
n−1

#Ts(#Ts − 1)

)

=
1

n(n− 1)
E
(

#Ts(#Ts − 1)

#Ts(#Ts − 1)

)
=

1

n(n− 1)
(A.22)



A.2. PROOF OF LEMMA 10 60

We first show that E(σ̂2
s,diff) = n

n−1
σ2
s . The fact that E

[
V̂ar(µ̂s,diff)

]
= Var(µ̂s,diff) follows immedi-

ately.
First, note that:

n∑
i=1

Tis

(
yisTis −

n∑
i=1

yisTis
#Ts

)2

=
n∑
i=1

Tis(yisTis)
2 − 2

n∑
i=1

Tis

(
yisTis

n∑
i=1

yisTis
#Ts

)
+

n∑
i=1

Tis

(
n∑
i=1

yisTis
#Ts

)2

=
n∑
i=1

y2
isTis − 2

n∑
i=1

(
yisTis

n∑
i=1

yisTis
#Ts

)
+

n∑
i=1

Tis

(
n∑
i=1

yisTis
#Ts

)2

=
n∑
i=1

y2
isTis − 2#Ts

(
n∑
i=1

yisTis
#Ts

)2

+ #Ts

(
n∑
i=1

yisTis
#Ts

)2

=
n∑
i=1

y2
isTis −#Ts

(
n∑
i=1

yisTis
#Ts

)2
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Thus,

E(σ̂2
s,diff) = E

 n∑
i=1

Tis

(
yis −

∑n
i=1

yisTis
#Ts

)2

#Ts − 1


= E


∑n

i=1 y
2
isTis −#Ts

(∑n
i=1

yisTis
#Ts

)2

#Ts − 1


=

n∑
i=1

y2
isE
(

Tis
#Ts − 1

)
− E

(
(
∑n

i=1 yisTis)
2

#Tis(#Tis − 1)

)
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Now:
n∑
i=1

y2
isE
(

Tis
#Ts − 1

)
=

1

n

n∑
i=1

y2
is +

1

n
E
(

1

#Ts − 1

) n∑
i=1

y2
is (A.25)
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And:

E

(
(
∑n

i=1 yisTis)
2

#Tis(#Tis − 1)

)

= E
( ∑n

i=1(yisTis)
2

#Tis(#Tis − 1)

)
+ E

(∑n
i=1

∑
j 6=i yisyjsTisTjs

#Tis(#Tis − 1)

)

=
n∑
i=1

y2
isE
(

Tis
#Tis(#Tis − 1)

)
+
∑
j 6=i

yisyjsE
(

TisTjs
#Tis(#Tis − 1)

)

=
1

n
E
(

1

#Ts − 1

) n∑
i=1

y2
is +

1

n(n− 1)

n∑
i=1

∑
j 6=i

yisyjs

=
1

n
E
(

1

#Ts − 1

) n∑
i=1

y2
is +

1

n(n− 1)

(
n∑
i=1

yis

)2

− 1

n(n− 1)

n∑
i=1

y2
is

(A.26)

So it follows that:

E(σ̂2
s,diff) =

n∑
i=1

y2
isE
(

Tis
#Ts − 1

)
− E

(
(
∑n

i=1 yisTis)
2

#Tis(#Tis − 1)

)

=
1

n

n∑
i=1

y2
is +

1

n
E
(

1

#Ts − 1

) n∑
i=1

y2
is

− 1

n
E
(

1

#Ts − 1

) n∑
i=1

y2
is −

1

n(n− 1)

(
n∑
i=1

yis

)2

+
1

n(n− 1)

n∑
i=1

y2
is

=
1

n− 1

n∑
i=1

y2
is −

1

n(n− 1)

(
n∑
i=1

yis

)2

=
n

n− 1

n∑
i=1

y2
is

n
− n

n− 1

(
n∑
i=1

yis
n

)2

=
n

n− 1
σ2
s . (A.27)
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Now we show that E
[
V̂ar(µ̂cs,HT)

]
= Var(µ̂cs,HT). Note that the following expectations hold:

E
(
(#Ts)

2
)

=
z

r
(bn/rc+ 1)2 +

(
1− z

r

)
(bn/rc)2

=
z

r

(
(bn/rc)2 + 2bn/rc+ 1

)
+
(
1− z

r

)
(bn/rc)2

= (bn/rc)2 +
2z

r
bn/rc+

z

r
= (bn/rc+ z/r)2 + (z/r − (z/r)2)

= (n/r)2 + z/r(1− z/r) (A.28)

E ((TisTjs)) = E [E (TisTjs|#Ts)] = E
(

#Ts
n

#Ts − 1

n− 1

)
=

E ((#Ts)
2)− E(#Ts)

n(n− 1)

=
(n/r)2 + z/r(1− z/r)− n/r

n(n− 1)
(A.29)

Starting from (A.16), we can write the block variance of the Horvitz-Thompson estimator as:

Var(µ̂s,HT) =

(
n2(r − 1)− z(r − z)

n2(n− 1)

) n∑
i=1

y2
is

n
−
(
n(r − 1)− z(r − z)

n(n− 1)

)( n∑
i=1

yis
n

)2

=

(
n2(r − 1)− z(r − z)

n2(n− 1)

) n∑
i=1

y2
is

n
−
(
n(r − 1)− z(r − z)

n2(n− 1)

) n∑
i=1

y2
is

n

−
(
n(r − 1)− z(r − z)

n3(n− 1)

) n∑
i=1

∑
j 6=i

yisyjs

=

(
n(n− 1)(r − 1)

n2(n− 1)

) n∑
i=1

y2
is

n
−
(
n(r − 1)− z(r − z)

n3(n− 1)

) n∑
i=1

∑
j 6=i

yisyjs

=
r − 1

n2

n∑
i=1

y2
is −

(
n(r − 1)− z(r − z)

n3(n− 1)

) n∑
i=1

∑
j 6=i

yisyjs (A.30)
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It follows that:

r − 1

n2

n∑
i=1

y2
isTis
1/r

−
(
n(r − 1)− z(r − z)

n3(n− 1)

) n∑
i=1

∑
j 6=i

yisyjsTisTjs
(n/r)2−(n/r)+z/r(1−z/r)

n(n−1)

=
r(r − 1)

n2

n∑
i=1

y2
isTis

−
(

n(r − 1)− z(r − z)
n2((n/r)2 − (n/r) + z/r(1− z/r))

) n∑
i=1

∑
j 6=i

yisyjsTisTjs

=
r(r − 1)

n2

n∑
i=1

y2
isTis −

(
nr2(r − 1)− r2z(r − z)
n4 − n3r + n2z(r − z))

) n∑
i=1

∑
j 6=i

yisyjsTisTjs

(A.31)

is an unbiased estimate of the Horvitz-Thompson block-level variance.

A.3 Proof of Theorem 11
Consider a block of size nc. Let Snc denote an arbitrary subset of {1, . . . , n} of size |Snc | = nc.

Let 1(i ∈ Snc) denote an indicator function: 1(i ∈ Snc) = 1 if i ∈ Snc; otherwise, 1(i ∈ Snc) = 0.
Possible values of the within-block variance σ2

cs are

1

nc

∑
i∈Snc

y2
is1(i ∈ Snc)−

1

n2
c

∑
i∈Snc

yis1(i ∈ Snc)

2

(A.32)

and possible values of the variance σ2
c(s+t) are

1

nc

∑
i∈Snc

y2
is1(i ∈ Snc) + y2

it1(i ∈ Snc)

− 1

n2
c

∑
i∈Snc

yis1(i ∈ Snc) + yit1(i ∈ Snc)

2

(A.33)
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Under completely randomized blocking, the probability that block c is comprised of the units in
Snc is

(
n
nc

)
. Thus, the expectation of σcs is

E(σ2
cs) =

(
n

nc

)−1∑
Snc

 1

nc

∑
i∈Snc

y2
is1(i ∈ Snc)−

1

n2
c

∑
i∈Snc

yis1(i ∈ Snc)

2
=

(
n

nc

)−1∑
Snc

 1

nc

∑
i∈Snc

y2
is1(i ∈ Snc)−

1

n2
c

∑
i∈Snc

y2
is1(i ∈ Snc)


−
(
n

nc

)−1∑
Snc

1

n2
c

∑
i 6=j∈Snc

yisyjs1(i ∈ Snc)1(j ∈ Snc)

=

(
n

nc

)−1
nc − 1

n2
c

∑
Snc

∑
i∈Snc

y2
is1(i ∈ Snc)

−
(
n

nc

)−1
1

n2
c

∑
Snc

∑
i 6=j∈Snc

yisyjs1(i ∈ Snc)1(j ∈ Snc)

=

(
n

nc

)−1
nc − 1

n2
c

n∑
i=1

∑
Snc

y2
is1(i ∈ Snc)

−
(
n

nc

)−1
1

n2
c

n∑
i=1

∑
j 6=i

∑
Snc

yisyjs1(i ∈ Snc)1(j ∈ Snc)

=

(
n

nc

)−1
nc − 1

n2
c

n∑
i=1

y2
is

(
n− 1

nc − 1

)
−
(
n

nc

)−1
1

n2
c

n∑
i=1

∑
j 6=i

yisyjs

(
n− 2

nc − 2

)
(A.34)

Now since (
n−1
nc−1

)(
n
nc

) =

(n−1)!
(nc−1)!(n−nc)!

n!
nc!(n−nc)!

=
nc
n

(A.35)(
n−2
nc−2

)(
n
nc

) =

(n−2)!
(nc−2)!(n−nc)!

n!
nc!(n−nc)!

=
nc(nc − 1)

n(n− 1)
(A.36)



A.3. PROOF OF THEOREM 11 65

It follows that

σ2
cs =

(
n

nc

)−1
nc − 1

n2
c

n∑
i=1

y2
is

(
n− 1

nc − 1

)
−
(
n

nc

)−1
1

n2
c

n∑
i=1

∑
j 6=i

yisyjs

(
n− 2

nc − 2

)

=
nc
n

nc − 1

n2
c

n∑
i=1

y2
is −

nc(nc − 1)

n(n− 1)

1

n2
c

n∑
i=1

∑
j 6=i

yisyjs

=
nc − 1

n(nc)

n∑
i=1

y2
is −

nc − 1

n(n− 1)nc

n∑
i=1

∑
j 6=i

yisyjs

=
nc − 1

n(nc)

n∑
i=1

y2
is −

n(nc − 1)

(n− 1)nc

n∑
i=1

∑
j 6=i

yisyjs
n2

=
nc − 1

n(nc)

n∑
i=1

y2
is −

n(nc − 1)

(n− 1)nc

(
n∑
i=1

yis
n

)2

+
nc − 1

n(n− 1)nc

n∑
i=1

y2
is

=
nc − 1

n(nc)

n∑
i=1

y2
is −

n(nc − 1)

(n− 1)nc

(
n∑
i=1

yis
n

)2

+
nc − 1

n(n− 1)nc

n∑
i=1

y2
is

=
(n− 1)(nc − 1)

n(n− 1)nc

n∑
i=1

y2
is −

n(nc − 1)

(n− 1)nc

(
n∑
i=1

yis
n

)2

+
nc − 1

n(n− 1)nc

n∑
i=1

y2
is

=
n(nc − 1)

n(n− 1)nc

n∑
i=1

y2
is −

n(nc − 1)

(n− 1)nc

(
n∑
i=1

yis
n

)2

=
n(nc − 1)

(n− 1)nc

n∑
i=1

y2
is

n
− nc(nc − 1)

n(n− 1)

(
n∑
i=1

yis

)2

=
n(nc − 1)

(n− 1)nc
σ2
s (A.37)

Likewise, substituting yis + yit in for yis, we obtain:

σ2
c(s+t) =

n(nc − 1)

(n− 1)nc
σ2
s+t (A.38)

Therefore

E
(

n2
c

(nc − 1)n2
[(r − 2)(σ2

cs + σ2
ct) + σ2

c(s+t)]

)
=

n2
c

(nc − 1)n2
[(r − 2)(E(σ2

cs) + E(σ2
ct)) + E(σ2

c(s+t))]

=
n2
c

(nc − 1)n2

[
(r − 2)

(
n(nc − 1)

(n− 1)nc
σ2
s +

n(nc − 1)

(n− 1)nc
σ2
t )

)
+
n(nc − 1)

(n− 1)nc
σ2
s+t

]
=

n2
c

(nc − 1)n2

n(nc − 1)

(n− 1)nc

[
(r − 2)(σ2

s + σ2
t ) + σ2

s+t

]
=

nc
n(n− 1)

[
(r − 2)(σ2

s + σ2
t ) + σ2

s+t

]
(A.39)
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Finally, it follows that the expected difference in variances is:

E

[
b∑
c=1

n2
c

(n− 1)
∑
n2
c

[(r − 2)(σ2
s + σ2

t ) + σ2
s+t]

]

−E

[
b∑
c=1

n2
c

(nc − 1)n2
[(r − 2)(σ2

cs + σ2
ct) + σ2

c(s+t)]

]

=
b∑
c=1

n2
c

(n− 1)
∑
n2
c

[(r − 2)(σ2
s + σ2

t ) + σ2
s+t]

−
b∑
c=1

nc
n(n− 1)

[
(r − 2)(σ2

s + σ2
t ) + σ2

s+t

]
=

(r − 2)(σ2
s + σ2

t ) + σ2
s+t

n− 1

(∑
n2
c∑
n2
c

−
∑
nc
n

)
=

(r − 2)(σ2
s + σ2

t ) + σ2
s+t

n− 1
(0) = 0 (A.40)

That is, in expectation, the variance of estimates of the SATE under block randomization with
random blocks be the same as those under complete randomization.
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Appendix B

Appendix for Chapter 3

B.1 Proof of [3.28]
Choose x ∈ X, and let

#cx ≡
Nc∑
k=1

xkc

and

Kc(x) ≡ min

{
k′ ≥ 0 :

k′∑
k=1

ukc ≥
Nc∑
k=1

ukcxkc

}
.

By [3.36] and the rearrangement theorem (Hardy et al. 1952), Kc(x) ≤ #cx.
Let x̃ ≡ (x̃kc)

Nc C
k=1 c=1 be the vector with components

x̃kc ≡
{

1, k ≤ Kc(x),
0, otherwise. (B.1)

If x̃kc = 1, then ukc > 0, and by [3.35], ωkc > t. Let e∗ be the allocation with components
e∗kc = ωkc if x̃kc = 1 and e∗kc = ωkc ∧ t if x̃kc = 0. Then e∗ ∈ Ẽ and g(e) = x̃. Hence,

x̃ ∈ X̃. (B.2)

By definition of Kc(x),

u · x̃ =
C∑
c=1

Nc∑
k=1

ukcx̃kc ≥
C∑
c=1

Nc∑
k=1

ukcxkc = u · x. (B.3)

Since Kc(x) ≤ #cx and qkc ≥ 0, it follows from [3.46] and the rearrangement theorem (Hardy
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et al. 1952) that

q · x̃ =
C∑
c=1

Nc∑
k=1

qkc1(k ≤ Kc(x)) ≤
C∑
c=1

Nc∑
k=1

qkc1(k ≤ #cx)

≤
C∑
c=1

Nc∑
k=1

qkcxkc = q · x. (B.4)

By [B.2], [B.3], and [B.4], for any x ∈ X satisfying u · x ≥ M , there is a y ∈ X̃ such that
u · y ≥M and q · y ≤ q · x. Equation [3.28] follows immediately.

B.2 Branch and bound description
We describe a branch and bound algorithm for finding exact p-values by finding a vector x† ∈

X̃ ⊂ X that satisfies
q · x† = λ = min{q · x : u · x ≥M, x ∈ X}.

The exact p-value is P# = exp (−q · x†).
The branching step recursively splits the minimization problem into subproblems that fix the

components of x corresponding to the first m elements of π (that is, they assign differences to the
batches with the smallest values of r) and leave the remaining components free. Each branch is
thus characterized by a vector y•m ∈ {0, 1}m, where m is the number of fixed components. For a
given branch y•m, define xm0 to be the vector in X for which

xm0
π(j) =

{
y•mj , j = 1, . . . ,m
0, otherwise.

That is, the components of xm0 corresponding to the smallest m values of r are equal to the cor-
responding values of y•m and the rest of its components are zero. We call the elements xm0

π(j),
j = 1, . . . ,m, the fixed components of xm0, and the remaining N −m elements the free compo-
nents. Note that if xm0 /∈ X̃, then no x ∈ X with xπ(j) = y•mj is in X̃.

Each branch y•m satisfies one of four sets of conditions:

1. If xm0 ∈ X̃ and u · xm0 ≥ M , then no vector x that agrees with with the fixed components
of xm0 can have q · x < q · xm0. In this case, xm0 is kept as a potential solution, the value of
q · xm0 is saved, and the branch is not split further.

2. If u · xm0 < M and there is no x ∈ X̃ that agrees with the fixed components of xm0 and has
at least one additional component equal to 1, there is no way that splitting the branch will
lead to a feasible element of X̃. In this case, the branch is pruned.

3. Solving LKP for the free components shows that all vectors x ∈ X derived from this branch
that satisfy u · x ≥M have a value of q · x greater than the smallest value saved in step 1. In
this case, the branch is pruned.
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4. If the branch does not satisfy any of conditions (1)–(3), it is split into two branches by
extending y•m to make two {0, 1}m+1-vectors, one with m + 1st component equal to 0 and
the other with m+ 1st component equal to 1. If no element of X̃ matches the resulting fixed
components, the corresponding branch is pruned.

Branches can be split at most 2N times, so eventually each branch is pruned or satisfies condition
set (1). Once that has happened, the solution to the original problem is the vector that satisfies
condition set (1) and has the smallest value. We now explain the calculations in more detail.

The test in condition set (1) needs no explanation. The test in condition set (2) and the pruning
in condition set (4) rely on a set of indicator variables z ≡ (zc)

C
c=1 for each branch. Initially,

z = (1)Cc=1. For any j with y•mj = 0, zc(π(j)) is set to 0. If z = (0)Cc=1 and u · xm0 < M , the branch
satisfies condition set (2) and is pruned.

Suppose a branch y•m satisfies condition set (4). If zc(π(m+1)) = 0, then the branch with 1 in its
m+ 1st component is pruned, because it can never lead to an element of X̃.

We now discuss the lower bound used in condition set (3). For any vector a ∈ RN , and for any
m ∈ {1, . . . , N}, define ma ≡ (aπ(j))

m
j=1. For any vector y•m ∈ {0, 1}m, define

λy ≡ min{q · x : x ∈ X, mx = y•m, u · x ≥M}.

That is, λy is the smallest value of q · x for vectors x ∈ X that satisfy u · x ≥ M and have
components xπ(j) = y•mj , j = 1, . . .m, or ∞ if no vector satisfies those constraints. This is the
smallest value that can be obtained along the branch y•m.

If mu · y•m ≥ M , then λy = mq · y•m. If mu · y•m < M , we can find a lower bound for λy by
solving LKP in RN−m:

λyLKP ≡ min{q · x : x ∈ Xrel, mx = y•m, u · x ≥M} ≤ λy.

For any y•m ∈ {0, 1}m, define

By ≡ (N + 1) ∧

{
B′ ≥ 1 : mu · y•m +

m+B′∑
j=m+1

uπ(j) ≥M

}
.

Note that By = 1 when mu · y•m > M . When B = N + 1, λyLKP =∞. When B ≤ N , the explicit
solution for λyLKP (Dantzig 1957) is

λyLKP =m q · y•m +
m+By−1∑
j=m+1

qπ(j) + 0 ∨

(
M − mu · y•m −

m+By−1∑
j=m+1

uπ(j)

)
qπ(m+By)

uπ(m+By)

.

Note that

M −

(
mu · y•m +

m+By−1∑
j=m+1

uπ(j)

)
≤ 0

if and only if mu · y•m ≥ M . If no x ∈ X with components xπ(j) = y•mj , j = 1, . . .m satisfies
u · x ≥M , then λyLKP =∞ and the branch y•m is pruned.
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We now give pseudo-code for a recursive branch and bound algorithm.

Initialize:
x = (0)Nj=1

z = (1)Cj=1.
m = 0.
x†
′
= NULL.

λmin =∞.

The first three variables (x, z and m) are local; x†′ and λmin are global.

When the algorithm stops, x†′ = x† and λmin = λ.

BaB(x, z,m):
If m 6= 0:

Set y•m = mx.

If mu · y•m ≥M :

Subproblem can be trivially solved.
If λmin > mq · y•m:

Set λmin = mq · y•m.
Set x†′ = x.

Return.

Else If z = (0)Cj=1:

The only branches that lead to elements of X̃ have xπ(m′) = 0, ∀m′ > m.
Return.

Else If λyLKP > λmin :

This branch does not contain the minimum λ.
Return.

If zc(π(m+1)) = 1:

Set xπ(m+1) = 1.
BaB(x, z,m+ 1).
Set xπ(m+1) to 0 and zc(π(m+1)) to 0.

BaB(x, z,m+ 1).
Return.
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B.3 More general monotone weight functions
As mentioned above, the derivations generalize from the maximum MRO to the maximum of

more general monotone weight functions of the observed differences by changing various defini-
tions, as follows.

The test statistic Tw becomes the maximum of the weighted observed differences:

Tw ≡ max
(k,c)∈J~n

wkc(e
H
kc).

The probability that the sample will show a maximum weighted difference no greater than any
fixed value t if the allocation of difference is e is

PJ~n(e) ≡ P

(
max

(k,c)∈J~n
wkc(ekc) ≤ t

)
.

To construct an outcome-changing difference that is as hard as possible to detect, we rely on

G(e) = G(e; t) ≡ {(k, c) : wkc(ekc) > t}.

Within each stratum, instead of using condition [3.9], order the batches so that if k > k′ then

[ωkc − (ωkc ∧ w−1
kc (t))] ≥ [ωk′c − (ωk′c ∧ w−1

k′c(t))].

Define

κc(e) ≡ min

{
k′ ≥ 0 :

k′∑
k=1

ωkc +
Nc∑
k′+1

(ωkc ∧ w−1
kc (t)) ≥

Nc∑
k=1

ekc

}
,

ẽkc ≡
{
ωkc, k ≤ κc(e),
ωkc ∧ w−1

kc (t), otherwise,

ukc ≡ ωkc − (ωkc ∧ w−1
kc (t)),

and

M ≡ µ−
C∑
c=1

Nc∑
k=1

(ωkc ∧ w−1
kc (t)).

Then the proofs go through mutatis mutandis.
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