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Modeling agile and versatile spatial behavior remains a challenging task, due to the
intricate coupling of planning, control, and perceptual processes. Previous results have
shown that humans plan and organize their guidance behavior by exploiting patterns
in the interactions between agent or organism and the environment. These patterns,
described under the concept of Interaction Patterns (IPs), capture invariants arising from
equivalences and symmetries in the interaction with the environment, as well as effects
arising from intrinsic properties of human control and guidance processes, such as
perceptual guidance mechanisms. The paper takes a systems’ perspective, considering
the IP as a unit of organization, and builds on its properties to present a hierarchical model
that delineates the planning, control, and perceptual processes and their integration. The
model’s planning process is further elaborated by showing that the IP can be abstracted,
using spatial time-to-go functions. The perceptual processes are elaborated from the
hierarchical model. The paper provides experimental support for the model’s ability to
predict the spatial organization of behavior and the perceptual processes.

Keywords: guidance, perception, decision making, visual attention, dynamics

1. INTRODUCTION
Spatial control tasks require comprehensive planning and control
strategies to deal with the uncertainties and disturbances in the
immediate surroundings, while accounting for and anticipating
various known and unknown elements in the larger task environ-
ment. Examples of such tasks are as varied as piloting in confined
environments or performing surgery. Most of these tasks require
similar basic skill components. These include the ability to con-
trol a dynamical system (the limb, body, surgical instrument, or
aircraft) to achieve useful movements or maneuvers, as well as
planning how these maneuvers should be deployed in relation-
ship to task elements. While engaging in these activities, a pilot or
operator also has to mitigate effects of disturbances, uncertain-
ties in the task conditions, uncertainties in the system’s dynamics,
as well as contingencies affecting the larger task elements and
goal (Mettler et al., 2010; Mettler, 2011).

Consequently, human versatility and agility in guidance must
rely on harmonious integration of sensory and control functions
with high-level cognitive planning processes. Taken as a whole,
this system involves both continuous and discrete processes, as
well as deterministic and probabilistic ones. Besides this system
complexity, there is also a behavioral complexity, which arises from
the high-dimensional, stochastic, and non-linear dynamics. In
transportation, these dynamics combine the interactions between
vehicles or agents with the task environments. Spatial perfor-
mance under these conditions is an emergent phenomenon. This
makes such systems difficult to understand and challenging, if not
impossible, to model via traditional modeling techniques, such
as those used in robotics or control engineering. Therefore, any

theory of human guidance behavior must first address the system
and behavioral complexities.

The fundamental questions that motivate this research involve
establishing a correct, high-level description of behavior. For
example, can behavior be described in terms of subgoal sequence?
What are the principles that govern high-level descriptions such
as subgoals? How can these principles be used to generate plans?
What are the perceptual functions, how do they relate to behav-
ioral components, and how are they integrated with the control
and planning functions?

To be effective, the control, perceptual, and planning pro-
cesses must be structured enough to function in a systematic,
organized fashion, while allowing for enough flexibility for con-
tinuous and efficient adaptation. When controlling agile vehicles
or movements, human operators must learn behaviors that can
be efficiently described or codified and are simple to implement.
It is reasonable to assume that in order to mitigate complexity, the
brain relies on spatial and temporal structures inherent to guid-
ance behavior. It is also reasonable to assume that these structural
forms are closely related to physical and biological constraints at
play in the larger system.

Elucidating principles that underlie the organization of behav-
ior is an old problem in cognitive sciences (Miller et al., 1960).
The concept of motor equivalence has long remained an influ-
ential idea (Hebb, 1949), however, it is often used without clear
principle (Munhall, 1986). The problem gained some clarity
with the motor control perspective. Behavioral complexity has
been described as the “degree of freedom” problem (Bernstein,
1967) by Bernstein, who proposed that joint and muscle behavior
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are organized in a low-dimensional subspace, which he called
muscle synergies. Consequently researchers have been interested
in decomposing behavior into elemental components, which
could help elucidate the principles of macroscopic organiza-
tion of behavior, as well as the organization of the system
itself.

Similar issues have come up in early motion programming
and trajectory optimization (Bryson, 1996). Bellman’s “curse of
dimensionality” (Bellman and Dreyfus, 1962) describes the com-
plexity arising from brute force discretization of motion, as it
is typically found in numerical trajectory optimization (Betts,
2001). Therefore, in the engineering field, researchers have
been interested in finding motion primitives that can efficiently
describe motion (see e.g., Frazzoli et al., 2002). However, both
behavioral sciences and engineering generally tend to focus on
the individual control, sensing, or planning processes, without
considering the larger system interactions, in particular the larger
agent-environment coupling.

In summary, when humans operate in natural environments,
such as piloting in complex terrains or performing surgery, they
have to learn the patterns of interaction between the environment
and motion, as well as learning how to extract useful visual cues.
Interaction Patterns (IPs), which are structural features emerging
from the dynamical interactions in the agent-environment sys-
tem, have recently been proposed as a way to formalize these
concepts (Kong and Mettler, 2013). In addition, humans need
to learn to exploit the structure these patterns confer, in order
to organize behavior in ways that mitigate the various sources of
complexity. Therefore, a key modeling task is to delineate between
these levels and detail the organization of the system. Invariants
in this larger system are expected to play a central role in shaping
the architecture responsible for integrating controls, perception,
and planning processes.

The paper builds on the concept of IPs to give a compre-
hensive systems’ perspective on the integration of the planning,
control, and perceptual processes. The rest of the paper is orga-
nized as follows: Section 2 provides a brief overview of related
work in the fields of cognitive and neurosciences, robotics, and
machine learning. Section 3 describes and illustrates the con-
cept of IPs and introduces the experiment used throughout this
paper. In Section 4 the properties of IPs are used to delineate
a hierarchical model that unifies planning, perceptual guidance,
and control, while detailing the different information elements
and control functions. Section 5 describes how the behavior asso-
ciated with IPs can be abstracted and used to realize efficient
motion planning. Section 6 then uses the functional understand-
ing gained from the model to detail the perceptual mechanisms.
Supporting evidence is provided by investigating patterns found
in experimental gaze tracking data. Finally, Sections 7 provides
a discussion of the relevance of the key results to the study of
human spatial behavior and 8 provides general conclusions.

2. BACKGROUND
The present research is primarily motivated by the persisting gap
between the capabilities of skilled human operators, or pilots,
and automation. This section provides background from various
relevant disciplines.

2.1. HUMAN CONTROL ENGINEERING
The theory of human control behavior goes back to the 1930–
40s, when Tustin characterized the human as a feedback servo
element (Tustin, 1947). The feedback theory was soon applied
to modeling pilot/vehicle system. The most significant result was
McRuer’s crossover model, which describes human feedback con-
trol behavior as a linear transfer function (McRuer and Krendel,
1974). McRuer showed that for a large variety of controlled sys-
tems, the plant under the effect of the human control results
in the same general loop transfer function L(s) = K/s (McRuer,
1980). These models focus on tracking and pursuit tasks, in which
subjects track a given visual stimuli.

More comprehensive models have been proposed, such as the
multi-loop model. That model describes pilots’ manual rotor-
craft control in approaches to hover (Heffley, 1979). The feedback
loops are organized hierarchically starting with the low-level atti-
tude stabilization to tracking and goal-directed maneuvering.
However, these models still assume knowledge of a goal state
and therefore don’t provide a complete theory for spatial control
behavior.

One of the most studied domains of human control behavior
encompassing the larger control hierarchy is driving. In driving,
a significant part of the behavior takes place within a well-
defined traffic and driving rule structure. This structure allows
researchers to formalize the problem in terms of explicit quan-
tities (traffic signs, driving lanes, etc) and helps to model the
control, perceptual, and planning processes. In Michon (1985),
the authors exploit the structure in the environment and traffic
system to model the human driver, delineating cognitive func-
tions from a human problem-solving perspective. In another
example Macadam (2003), authors have been able to incorpo-
rate biophysical limitations related to visual, control delay, and
information processing. More recent research has emphasized
data-driven approaches. For example, in Terada et al. (2010) a
hierarchical identification scheme is used to model driver behav-
ior without predefined behavioral modes.

2.2. FORMAL MOTION MODELS AND ABSTRACTIONS
In engineering, various discrete abstractions have been proposed
to enable more efficient robot motion planning and control.
Brockett’s motion description language (MDL) (Brockett, 1990,
1993) represents the classic formal language for robot program-
ming. It combines discrete modes with behaviors described by
dynamic models. With these types of models, the emphasis is
mainly on the mathematical and computational formulation.
Models emphasizing the dynamics, for example, for application
of agile vehicle guidance, include the motion primitive automa-
ton (MPA) (Frazzoli et al., 2002). The motion primitives in this
type of MPA correspond to a quantization of the vehicle dynam-
ics, i.e., equilibrium trajectories and maneuvers. The interaction
with the environment is solved during the generation of the
trajectories. There are also methods that are derived from dis-
cretizations of the environment (Belta et al., 2005) and typically
rely on nested control policies. As these examples illustrate, typ-
ical forms of abstractions focus either on the agent’s dynamics
or the environment and therefore don’t capture the important
agent-environment interactions.
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2.3. PERCEPTION AND ATTENTION IN GUIDANCE
The school of ecological psychology was the first to emphasize
agent-environment coupling, going back to Gibson, who high-
lighted the mutuality between perception and action (Gibson,
1979). The idea was that both response to action and perception
of the environment obey lawful principles and that their mutual
or reciprocal effect is exploited to achieve effective perceptual
control mechanisms. Researchers have explained so-called law-
ful relationships between movement and perception and between
action and movement (Turvey and Carello, 1986).

The most broadly established theory of perception in the con-
text of guidance is tau theory (Lee, 1998). This theory, which
originates from Gibson’s ecological psychology, provides a direct
link between perceived quantities and control action. It has been
validated in various animal behaviors, as well as more recently in
pilots (Padfield et al., 2003, 2012). The strength of this mechanism
is its simplicity, which enables real-time implementation. A gen-
eral shortcoming of perceptual theories, however, is that they do
not provide an understanding of the larger planning and reason-
ing processes. In the following experiments, perceptual guidance
mechanisms can viewed as constraints in spatial behavior, associ-
ated to human perceptual mechanisms, and manifest as invariants
in behavioral patterns.

In humans, attention models have primarily focused on still
images (see for e.g., the benchmark eye movement datasets Borji
and Itti, 2013). Visual attention in the context of guidance behav-
ior represents another research direction. Significant progress
has been made in understanding insect sensory guidance sys-
tems (Srinivasan et al., 2006; van Breugel and Dickinson, 2012),
however, these creatures occupy vastly different environments
than humans and are confronted with more restricted planning
and adaptation challenges.

The author’s investigation of the lower-level coupling between
control action and visual gaze, in remote control tasks using
miniature rotorcraft, has been described in Andersh et al. (2014).
The results demonstrate the role of gaze in providing both mea-
surement updates for estimating the rotorcraft state necessary
for accurate tracking and anticipatory information for goal inter-
ception. These results are consistent with the perceptual process
described in Section 6.

2.4. EMBEDDED DYNAMICS’ VIEW
Guidance involves a range of dynamical interactions, starting with
those inherent to the vehicle or body and then extending into
the dynamics of the entire human-machine or agent-environment
interactions. Principles from dynamics and control are in opera-
tion across the entire system. Inspired in part by the ecological
view, researchers have formalized behavior as the embedded,
closed-loop, agent-environment interaction (Warren and Fajen,
2004). Taking a larger systems view, information is extracted and
fed back at multiple levels.

Following the ecological psychology movement, researchers
have grown interested in a more formal dynamics and control-
based theory of perception and action. A notable example is
Warren’s control theory that integrates the dynamics of action
and perception (Warren and Fajen, 2004; Warren, 2006). Warren’s
model assumes that the necessary information for the control

action regulation is extracted from the environment, with no need
for a fully developed environment model. Four main ideas are
integrated: (i) the agent is embedded in the environment, (ii) con-
trol is determined with information about the agent-environment
state, (iii) control actions are specific to the current task, and (iv)
behaviors result from agent-environment interactions.

Applications of this model have mostly focused on simple
tasks such as balancing an object, bouncing a ball on a racket,
or walking. A well-known example is the catching of a fly ball
by a baseball outfielder (McBeath et al., 1995). The analysis of
behavior as an embedded dynamical system, along with its asso-
ciated closed-loop model (Equation 1), also leaves many details
to be elucidated. These include information extraction laws and
the type of control structures and their associated input, output,
and state variables. Due to the systems complexity, these are not as
simple to identify in an embedded dynamical model as they are in
traditional feedback control systems.

2.5. INVARIANTS IN MOTOR AND PERCEPTUAL BEHAVIOR
Given the variability and often apparent lack of structure in
human behavior, it is often useful to determine which aspects of
behavior are invariant and which are variable. An early concept
related to these questions was referred to as motor equivalence.
Its original meaning was that the same outcome can be achieved
through different motor actions (Hebb, 1949). The concept is also
associated with Bernstein’s degree of freedom problem. Bernstein
suggested that muscles are organized in so-called synergies, i.e.,
patterns of activations that provide low-dimensional descrip-
tions. Modeling efforts have primarily been successful at describ-
ing simple movement characteristics in motor control, such as
speed/accuracy properties (Fitts, 1954; Bullock and Grossberg,
1988) and invariant features in the movement kinematics (Flash
and Hogan, 1985).

The concept of motor equivalences can be extended to the
problem of control of spatial behavior in general, such as the
flight trajectories, as well as the control of vehicles and other
mechanisms. In analogy to “muscle synergies” in motor behavior,
the goal is to identify “guidance synergies” that mitigate com-
plexity and provide a structure for adaptation. The mappings of
perceptual invariants to movement kinetic invariants, as identi-
fied by Kugler and Turvey (1987), represent an example of such
low-dimensional subspaces in the agent-environment dynamics.
However, these synergies have to be investigated from the perspec-
tive of the larger behavior organization and planning. Therefore,
investigating spatial and temporal regularities and other char-
acteristic structures can unveil more details about the various
system processes and their organization.

2.6. NEURO-COGNITION OF INTERACTIVE BEHAVIOR
The paper’s questions of parameterization of high-level behav-
ior specifications and planning mechanisms are closely related to
classic as well as recent perspectives in cognitive neuroscience.

A common principle of human information processing is that
of chunking. Identifying subgoals, and more generally, decom-
posing tasks into subtasks or stages, constitute a common prin-
ciple in planning across various domains (Newell, 1994). The
existing concepts of subgoals, however, do not explain how these
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are actually determined. Subgoals are also commonly used in
robotic flight, where many navigation algorithms rely on the
insertion of way points. These subgoals, however, are typically
determined from heuristics, such as visibility graphs (de Berg
et al., 2008).

Hierarchical principles still appear preeminently in the neuro-
cognitive literature, such as the hierarchical process of the
perception-action cycle (Badre, 2008) or the cerebral mechanisms
of reaching motion (Kalaska and Crammond, 1992). While many
brain processes and sub-systems are well-defined within this
framework, there are also many interactions between these pro-
cesses. One example is the interaction between visual processing
and goal specification and planning, for which “massive reentrant
circuits” call for more definition (Mountcastle, 1978). Cisek and
Kalaska (2010) give a comprehensive description of the neuro-
cognition of interactive behaviors and challenge the traditional
serial information processing model. The authors advocate inves-
tigating the process of attention and action selection/specification
from interactions in brain activities.

2.7. MACHINE LEARNING
The primary objective of machine learning has generally been
to replicate human behavior. The multiple processes and bio-
logical constraints of guidance, however, make it challenging to
formulate the problem as a reinforcement learning process. So
far, results have been reported about specific aspects, such as
maneuvering (Abbeel et al., 2007). One promising direction has
been to exploit hierarchical characteristics of behavioral trajecto-
ries (Barto and Mahadevan, 2003). Similarly, in the field of deep
learning, researchers are developing methods to extract more
dynamic and useful information by automatically learning fea-
ture hierarchies (Hinton et al., 2006; Bengio, 2009), which directly
relate to the concepts of equivalences, and if applied to behavioral
data, could provide valuable insights.

3. PATTERNS IN AGENT-ENVIRONMENT DYNAMICS
This section provides a formal definition of patterns in guidance
behavior which will be used as building blocks for the systems
level analysis. The section also defines a representative example
and describes the experimental data used throughout the paper
to illustrate various aspects of the material. The section concludes
with remarks on the significance of these results from a cognitive
standpoint.

3.1. REPRESENTATIVE HUMAN SPATIAL CONTROL TASK
A typical spatial control problem is piloting a helicopter in a
challenging environment, such as the problem a medevac pilot
is confronted to when operating in an urban or other confined
terrain1. The helicopter dynamics are given by the equations of
motion ẋ = f (x, u), where x ∈ X ⊆ R

n is the state of the agent
and u is the control action. X is the state space, which in the inter-
est of conciseness is assumed to be finite or countable. The state

1Note that this example is representative of a range of spatial control problems
that combine the agent dynamics, an environment, and some goals. These
elements can be substituted for those corresponding to another problem
domain

of an agent is a minimal set of variables that can determine the
behavior of the agent. In this example, the state x of the pilot-
helicopter system can be the position, orientation, linear, and
angular velocity of the helicopter.

A typical engineering approach would solve this problem as a
minimum-time trajectory optimization problem Bryson and Ho
(1975). In the medevac example, x0 could be the patient pickup
location and xg the location of the hospital. The minimum-time
control u∗(x0, xg) with these two boundary conditions minimizes
Txg (x0), the time it takes from x0 to xg . This example represents
a typical two-point boundary value problem found in trajectory
optimization.

In this example, T∗xg
(x0) is the pilot’s minimum flight time to

the hospital and u∗xg
(x0) is a description of the state and action

sequence, e.g., where to turn, how aggressively, at what speed,
etc. Similarly, given a goal state xg , an optimal time T∗xg

(x) can be

defined for any state x ∈ X . The set {T∗xg
(x)|x ∈ X } is called time-

to-go (TTG) map Mettler et al. (2010). For the medevac example,
X could represent the city’s entire airspace and the associated
TTG map gives the optimal flight time to reach the designated
goal xg from each location x in the city’s airspace. Computing the
TTG map can be computationally heavy and is most likely not
how human pilots solve the guidance problem.

3.1.1. Definition of guidance behavior
Guidance behavior is defined as the collection of all closed-loop
state trajectories resulting from the agent’s interaction with the
environment (Kong and Mettler, 2011, 2013). These state trajec-
tories can be written as follows:

ẋ = f (x, k(x, h(g(x)))) (1)

The above definition of guidance behavior is inspired by the
ecological perspective on perception and action (Turvey and
Carello, 1986) and more specifically Warren effort to formalize
the relationship between action and perception (Warren, 2006).
It captures the following key processes: g(.) describes how the
agent affects the environment state, h(.) describes how the agent
abstracts information from the environment, and k(., .) is the
control policy used by the agent. Notice that the output of func-
tion g(.), which captures the physical interaction between the
agent and the environment, is different from the output of func-
tion h(.), which captures how the agent perceives the interaction.
We call the output of function g(.) the environment state, i.e.,
e(t) = g(x(t)), where e(t) ∈ E , with E as the environment state
space.

Consider the pilot in the example, who is controlling the heli-
copter to the hospital landing pad. e or g(x) is some environment
state that is affected by the motion of the helicopter, for example
the distance between the helicopter and the landing pad. h(g(x)) is
the pilot’s perception of the helicopter-environment interaction,
which can be optical flow or tau (Lee, 1998). u = k(x, h(g(x))) is
then the pilot’s control, based on his or her perception of the envi-
ronment and his or her own motion. Finally f (x, k(x, h(g(x))))
are the dynamics of the helicopter, which determine how the state
evolves, given the current state x and a control input u.
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3.1.2. Mechanisms for mitigating complexity
Complexity (Bellman’s “curse of dimensionality” and Bernstein’s
“Degree of Freedom problem”) makes computing solutions to
the planning problem intractable for rapid decision making and
adaptation. Complexity can be mitigated by exploiting structure
in the problem space, as well as process constraints, e.g., account-
ing for how humans guide and control motion, how the visual
system processes environment cues, etc. Important classes of
structural elements in any problem are similarities or equivalence
classes. For example, the way a pilot or driver negotiates a partic-
ular obstacle is similar to how he negotiates other obstacles. This
similarity pattern, combined with properties of symmetry group,
e.g., the invariance of this obstacle avoidance strategy under rota-
tion and translation, makes it possible to decompose the problem
space into a sequence of obstacle avoidance maneuvers.

3.2. EQUIVALENCES AND CONCEPT OF SUBGOALS IN GUIDANCE
BEHAVIOR

To formalize the notions of “invariances” and “equivalences” in
spatial control, as well as the associated notion of “subgoal,” it
is necessary to define two forms of equivalences as they relate to
guidance behavior. The description uses formalisms from com-
putational mechanics (Shalizi and Crutchfield, 2001). Further
details are available in Kong and Mettler (2013).

Following the definition of guidance behavior an extended
state space S is defined as the product space of the previ-
ously introduced state space X and environment state space
E , i.e., S := X × E . The following explanation uses the nota-
tions used in computational mechanics.←−. and −→. represent the
temporal direction of a state sequence. The subscript denotes
the time index. For instance, ←−si := . . . si− 2si− 1si and −→si :=
sisi+ 1si+ 2 . . . with s ∈ S . Finally

←−S and
−→S are the collections of

all state sequences in the form of←−si and −→si , respectively. Notice
that in reality both←−si and−→si are of finite length.

The first equivalence relationship ∼s is defined using the con-
cept of causal state (Shalizi and Crutchfield, 2001):

←−si ∼s
←−sj ⇔

(−→s |←−si
) = (−→s |←−sj

)
(2)

for all −→s = s0s1 . . .. This equation states that if starting from the
state s0, the two trajectories ←−si and ←−sj follow the same trajec-
tory −→s , then these two trajectories are equivalent in the sense of
∼s, i.e.,←−si ∼s

←−sj . Furthermore, the state s0 is called the subgoal
associated with trajectories←−si and←−sj .

The second equivalence relationship ∼g is based on the sym-
metry group associated with rigid-body dynamics. In the present
case, the symmetry group is in the form of a finite-dimensional
Lie group M. The action (read: transformation) of this Lie group

M on
←−S is � : M ×←−S →←−S . Two trajectories,←−si and←−sj , are

equivalent in the sense of∼g ,←−si ∼g
←−sj , if there exists an element

m ∈ M and control histories←−u i and←−u j such that:

(
�

(
m,←−s i

)
,
←−u i

) = (←−s j,
←−u j

)
. (3)

Most vehicles are built around certain symmetry groups. For
instance, the symmetry group of a helicopter is SE(2), which cor-
responds to a two-dimensional translation and a rotation with

respect to the gravity direction. Such a symmetry group means
that if a helicopter is flown with the same control at two different
locations and in two different directions, the trajectories can be
superimposed through a two-dimensional translation and a rota-
tion about the vertical axis. The above definition similarly defines

symmetry groups over the space
←−S .

3.3. EQUIVALENCE CLASSES AND INTERACTION PATTERNS
These two equivalence relationships, one defined based on sym-
metry groups (Equation 3) and the other one defined based on
subgoals (Equation 2), formally define the Interaction Patterns
(IPs) concept. The IPs represent the equivalence classes of guid-

ance behavior
←−S , which can be understood as the quotient sets of←−S by∼s and∼g . To be more specific, for a specific individual his-

tory←−s ∈ ←−S , an IP containing←−s can be defined as [[←−s ]] (Kong
and Mettler, 2013), where

[[←−s ]] =
{[←−s ]′ ∈ [←−s ] : [←−s ]′ ∼g

[←−s ]}
(4)

and

[←−s ] =
{←−s ′ ∈ ←−S : ←−s ′ ∼s

←−s
}
. (5)

We call [←−s ] a candidate IP. The reason is that in reality, a perfect
superimposition of two candidate IPs, as defined by∼g , is impos-
sible, due to various uncertainties and noises that are inherent in
any human’s sensori-motor system, as well as the vehicle under
control.

An essential consequence of the IP definition is that it leads
to a parsimonious representation of the extended state space S .
Since the dynamics in Equation 1 are deterministic, i.e., an initial
condition s0 and the specific control law k(.) result in one unique
trajectory. Therefore, it is possible to equate s0 with the trajectory−→s0 . Thus, the following equivalence can be defined over states in
S , based on the IP definition (Equation 4):

si ∼ sj if and only if
[[−→si

]] = [[−→sj
]]
, (6)

i.e., two states si and sj are equivalent with respect to each other,
if and only if the two trajectories −→si and −→sj starting from these
states belong to the same IP. Consequently, such an equivalent
relationship results in an equivalence class set over S . In the
following, with a slight abuse of terminology, these equivalence
classes will also be called IPs.

3.4. EXPERIMENTAL ILLUSTRATION OF INTERACTION PATTERNS
These concepts of equivalence classes have been applied to ana-
lyzing human guidance behavior. The guidance experiments were
conducted at the Interactive Guidance and Control Lab (IGCL)
shown in Figure 1 using miniature helicopters. The guidance
experiments consist of precision goal interception tasks in an
obstacle field. Entire trajectory ensembles are collected to cover
the entire task space. This is achieved by using a grid of start-
ing points and then running repeated trials from each starting
point. The helicopter state at the goal must satisfy a position and
terminal velocity tolerances (Mettler and Kong, 2013).
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These aircraft enable broad expression for a subject’s spa-
tial guidance skills and hence are ideal to investigating the
agent-environment interactions. The experiments are treated
as a planar guidance problem where the agent’s state is x =
[sx, sy, v, ψ]′, where sx and sy are the helicopter positions and
v and ψ are its speed and course angle, respectively. The
measurements are obtained from a Vicon motion tracking
system.

Figure 2A shows trajectories collected from the guidance
experiments and highlights candidate IPs extracted, based on the
equivalence classes (see Kong and Mettler, 2013 for details).

FIGURE 1 | Picture of the experimental facility. Human guidance
capabilities are investigated using experiments with miniature helicopters in
an obstacle field. The helicopter motion is recorded using a Vicon motion
tracking system and the operator gaze is recorded using SensoMotoric eye
tracking glasses.

Together, the IPs fully describe the guidance behavior.

η : S → � := {π1, π2, . . .} (7)

The set of IPs can be combined under the concept of guid-
ance primitives, with � describing the guidance primitives
library (Kong and Mettler, 2013).

Figure 2B shows the overlaid IP candidate obtained by apply-
ing symmetry transformation (rigid-body translation and rota-
tion). The matching between the candidate IPs underscores the
similarities in strategies, i.e., human operators exploit the equiv-
alence in the problem to organize the guidance behavior. In other
words, the similarity among the candidate IPs π0, . . . , π3 (for-
mally π0 ∼g π1 ∼g π2 ∼g π3) means that for this experiment
they can be considered as belonging to the same IP.

3.5. SIGNIFICANCE FOR COGNITION AND PLANNING
The IPs make the operator’s organization visible. In particular, the
IPs make it possible to decompose the larger guidance task into a
sequence of sub-tasks, each characterized by an IP and its associ-
ated subgoal (Mettler and Kong, 2012; Kong and Mettler, 2013).
Therefore, to make an analogy with muscle synergies, the hypoth-
esis is that the brain organizes and adapts patterns of trajectories,
instead of the low-level dynamics.

In regard to chunking, the IPs describe how otherwise unre-
lated trajectories are aggregated, based on the equivalence prin-
ciple. The principle of equivalence elaborated here suggests how
the process of chunking of behavior may serve to improve infor-
mation processing. The significance of IPs from a cognitive stand-
point is that they make it possible to use only partial information
for planning, i.e., they abstract the details associated with sensing
and control to achieve more efficient planning and organization
of behavior.

A B

Extracted candidate IPs Matching between candidate IPs

FIGURE 2 | (A) Trajectories highlighted based on corresponding candidate IPs
(π0, . . . , π3). The candidate IP determines the partitioning of behavior and
associated subgoal areas. (B) Overlay between extracted candidate IPs

obtained through rotation and translation of π0, . . . , π3. The matching indicates
the degree of equivalence in behavior patterns, i.e., for this experiment, the
candidate IP π0, . . . , π3 can be regarded as belonging to the same IP.
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With regard to subgoals, the IP shows that the subgoals are
an emergent phenomenon that follow from operators exploit-
ing invariants in the agent-environment dynamics. This emergent
phenomenon involves mutual bottom-up and top-down effects.
The IPs result from the reciprocal effects between the perceptual
and control constraints responsible for the implementation that
take place at the motor level and the association process responsi-
ble for formation of behavior units that take place at the cognitive
level. This system is essentially motivated by the necessity of
achieving efficient and adaptive plans with limited computational
and storage resources.

In summary, the IPs provide general principles governing
coordinated patterns of behavior in complex, unstructured envi-
ronments, and furthermore, suggest details of the hierarchical
model associated with guidance behavior.

4. SYSTEMS INTEGRATION AND HIERARCHICAL MODEL
Hierarchical structures play a central role in many complex sys-
tems (Simon, 1962). IPs properties already establish their role
as units of organization of behavior. In this section they are
used as primary elements in the systems’ integration, where they
help delineate the hierarchy of control, perceptual, and planning
functions.

4.1. HIERARCHICAL MULTI-LOOP MODEL
The general closed-loop model of behavior in Equation 1 is in
reality a multi-loop system, composed of a planning mecha-
nism, a perceptual guidance mechanism, and at the lowest level,
a tracking/pursuit system used for motion implementation. This
architecture unifies the planning model with two levels that have
both been investigated and validated in human behavior: percep-
tual guidance (Lee, 1998; Padfield et al., 2012) and tracking or
pursuit (McRuer and Jex, 1967).

The remaining modeling tasks are to detail each of these layers.
The general idea is that each layer has its own respective environ-
ment models, information extraction laws, and control policies.
The block diagram of the multi-loop architecture is illustrated in
Figure 3. Complementary work investigating the lower levels of
human guidance behavior is presented in Andersh et al. (2014).

4.1.1. Planning: mapping of interaction pattern
Planning organizes the guidance behavior in terms of an arrange-
ment of IPs. It represents the highest-level process in the model.
By being used as a modeling language, IPs capture the complete
control and perceptual interactions, suggesting that a mapping
process exists which can transform current task configuration
into a sequence of subgoals gk:

γ : S → � := {
g1, g2, . . .

}
(8)

This mapping process can be seen as a type of pattern extraction
mechanism, in which the basic principle is to associate the invari-
ants in guidance behavior with the available modes of control and
perceptual interactions (n.b. Gibson’s affordances Gibson, 1979).
Given the current system state x and partitioning of extended
state-space S associated with the plan �, the output of this system
is an active subgoal gk. The subgoal switching can be described by

g
kf

Perceptual Guidance

Tracking and Pursuit 

Planning

Control principle: 
-perceptual control (Tau theory) 

Output: 
-position and velocity reference

Controlled variable: 
-active and subsequent subgoal

Control principle: 
-approximate dynamic programming

Control principle: 
-e.g. dynamic inverse

Controlled variable: 
-motion gap

Output: 
-active subgoal

Output: 
-physical control action

Controlled variable: 
-vehicle/motion state: 

FIGURE 3 | Hierarchic multi-loop model of human guidance behavior.

The top level describes the planning level based on the decomposition of
the task and environment in terms of the IPs. The plan is described as a
subgoal sequence gk . The currently active subgoal defines the reference for
the perceptual guidance. The latter extracts the current motion gap, which
is used to determine a state reference trajectory xref. At the lowest level, a
tracking feedback system implements the desired motion for the vehicle.

a state machine. One such planning mechanism is elaborated in
Section 5.1.

4.1.2. Perceptual guidance system
At mid-level, the active subgoal provides the environment repre-
sentation e = g(x) = x − gk. Given the value of this gap, the agent
implements an appropriate guidance policy to close the gap τk.
This task corresponds with an interception or coordination task,
which can be modeled using a perceptual mechanism such as tau
theory. The information-extraction mechanism determines the
gap i = τk = h(g(x)) = τ (x − gk) associated with an active sub-
goal gk. This is similar to the mechanisms proposed as part of the
perceptual guidance theory, but here the gap is based on the sub-
goal that is emerging from an IP-based decomposition. At this
level, the control policy function is to generate a velocity reference
that can be used by the tracking system.

4.1.3. Tracking and pursuit system
At the bottom level is the control implementation. This sys-
tem can be described by traditional feedback systems, such as
determined from a dynamic inverse control design. Here it is
specified by a feedback control gain ki and the equilibrium state
associated with the subgoal gk. The environment of the tracking
system involves the speed and position perturbation associated
with the reference and vehicle state. The information extraction
consists of an error cue transformed into a desired acceleration.
Finally, the control action from the feedback system is responsi-
ble for implementing the desired acceleration needed to close the
motion gap.
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5. ABSTRACTION OF INTERACTION PATTERNS AND
PLANNING

This section illustrates how the IP can be used to plan guidance
behavior efficiently. The general idea is that given a goal state in an
environment with obstacles, the overall guidance behavior can be
planned as a sequence of subgoals. These subgoals are determined
by using partial information associated with the IP.

5.1. PLANNING PROBLEM AND GENERATION ALGORITHM
Returning to the example in Section 3, the concept of IP can be
used to simplify the TTG map generation and the guidance pro-
cess given in Equation 8. First, instead of using the entire dynamic
envelope of the piloted helicopter, the IP constrain the dynamics
to the particular form of behavior associated with the agent envi-
ronment interactions. The behavior in each IP can be abstracted
by a TTG function. The global TTG map can then be obtained by
using these TTG functions. Similar as with the muscle synergies,
the IP provides a low-dimensional subspace for the pilot’s orga-
nization of guidance behavior. Second, the construction of a TTG
map, given a particular environment and IP set, can be decom-
posed into a sequence of sub-tasks, where each corresponds to
the realization of an IP.

In the medevac example, IPs correspond to the set of maneu-
vers that the pilot performs when negotiating the various task
and environment elements, e.g., circling around a building cor-
ner or bopping-up above a ground obstacle. The overall medevac
mission can be achieved by a concatenation of these IPs and
the typical“unconstrained” trajectories and maneuvers such as,
straight and level flight and turning maneuver, respectively. These
IPs are specific to the particular pilot’s skill level.

Building on these ideas, an IP-based planning algorithm for
predicting human guidance behavior can be conceived as follows.
First, assume that a particular human’s IP set is fixed and learned
from his or her former experiences. Second, given a task with

obstacles and a goal, the organization of IPs can be predicted by a
wavefront algorithm (see Kong and Mettler, 2014 for details). The
wavefronts describe how the TTG function propagates through an
environment, interacts with obstacles, and how new wavefronts
are generated through these interactions.

As a wavefront starts from the goal, the TTG level lines prop-
agate according to the behavior associated to the IP (see e.g., the
learned TTG in Figure 4A). As the wavefront collides with the ver-
tex of an obstacle, a subgoal is created and a new wavefront starts
from this subgoal. The multiple wavefronts interact. Colliding
wavefronts form a ridge-like structure in the TTG map. This ridge
defines locations where the trajectories can bifurcate, yet arrive at
the goal in the same amount of time. The subgoals and ridges
describe the organization associated with the IP.

5.2. EXPERIMENTAL EVALUATION OF THE SUBGOAL PREDICTION
Figure 4 illustrates the prediction of the guidance behavior, given
in terms of sequence of subgoals, for the guidance experiment
using the IP-based wavefront algorithm with TTG functions
learned from IP.

The TTG for the IP is learned from the data collected from the
trajectory segments associated with the IP extracted in Figure 2A.
In this example, a single IP is sufficient to capture the pilot’s
skills (Kong and Mettler, 2013). A forward method with cross-
validation was used to select the features needed to accurately
learn the TTG map from the experimental data (Kong and
Mettler, 2014). Figure 4A shows the IP’s trajectory segment and
learned TTG function.

The comparison between the extracted subgoals and parti-
tion shown in Figure 2A and the predicted subgoals and partition
shown in Figure 4B, indicates that abstracting behavior using
TTG functions and using these functions as part of a wavefront
algorithms provides a relatively accurate and very efficient plan-
ning mechanism. This approach therefore provides a practical

A

Learned TTG

B

Predicted partitions

FIGURE 4 | (A) TTG function learned from candidate IPs extracted from task in Figure 2A. The dashed line shows the boundary of the IP, assuming
constrained normal acceleration and uniform motion. (B) Predicted organization of IPs based on the wavefront algorithm and the learned TTG.
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computational implementation incorporating necessary elements
and information needed for planning.

5.3. PLANNING RESULTS DISCUSSION
The present experiment is based on stationary task elements.
A single IP is sufficient to describe the overall performance.
This is due to the relatively constant speed, hence subgoals have
essentially the same terminal state. In more challenging tasks,
the behavior may overlap with different subgoal values. More
extensive investigations are needed, however, the same general
approach and algorithm are expected to remain valid.

Human planning mechanisms, however, may be quite differ-
ent. For example, they may not implement wavefront algorithms
to determine the subgoal sequence. The main points are as fol-
lows. First, the IP is a finite-state representation similar to motion
primitives that enable abstraction of the combined effects of
human sensory, control, and perceptual capabilities. Compared
with classic trajectory optimization, instead of learning the behav-
ior over the entire space X , the IP make it possible to process
the environment elements within a lower dimensional subspace,
which results in a sequence of subgoals. Second, the abstrac-
tion of behavior in terms of IPs suggests structured mechanisms
where behavior is adapted at the level of subgoals and within
the IP. These mechanisms are primarily driven by perceptual
information and are described next.

6. EXPERIMENTAL INVESTIGATION OF PERCEPTUAL
HIERARCHY

Planning, guidance, and control of behavior must be coupled effi-
ciently with the perceptual processes used to extract necessary
information. Perceptual guidance theory already provides precise
understanding of this coupling for goal-directed guidance. When
it comes to the larger system, however, we expect perception to be
involved, both at the global situational awareness level, as well as
the lower control implementation level.

The extracted IPs capture the overall agent-environment inter-
actions, and are the by-product of the entire decision-making
hierarchy, from perception, control, and guidance to higher-level
planning. Investigation of visual attention provides the opportu-
nity to understand these processes and their integration, i.e., to
determine what information is used and exchanged at the differ-
ent levels and how these different components of information are
acquired.

Figure 5 shows an overview of the hierarchy of perceptual
functions in guidance with the corresponding control functions.
The following section describes the derivation of this percep-
tual model from the hierarchical model and provides preliminary
experimental validation.

6.1. VISUAL ATTENTION IN GUIDANCE BEHAVIOR
Visual attention is the fundamental process associated with visual
perception of the environment. Gaze is closely associated with
attention and has several functions, including compensating for
body movement, acquiring location data of a specific target, and
providing information for visuo-motor control. Therefore, when
processing gaze, it’s important to distinguish these functions.

The fact that visual attention cannot be divided, combined
with the typically dynamic and uncertain task elements, make

FIGURE 5 | Attentional model derived from the hierarchic model

delineating the roles of the perceptual system ranging from the

low-level visual tracking to the classic perceptual guidance and the

higher-level perception. The subgoal, motion gaps, and state (shown in
shaded ovals) describe the information element that mediates between the
perceptual and control functions.

attention allocation a fundamental aspect of human guidance
behavior. While it has been well-documented that visual atten-
tion is driven by a combination of top-down and bottom-up
perceptual processes, few investigations have elucidated their
integration (Navalpakkam and Itti, 2006).

Existing literature indicates that gaze activity is proactive, typ-
ically seeking out information required to complete a task or
action in the seconds preceding it Land et al. (1999); Hayhoe and
Ballard (2005). Navigation tasks, like most planning problems,
are a form of dynamic program (DP) (Bertsekas, 1995), i.e., pre-
dictions of the future actions, ideally all the way to the goal, are
needed to determine current actions.

6.2. ATTENTIONAL MODEL AND EXPECTED VISUAL ATTENTION
PATTERNS

The model in Figure 5 provides a systematic description of
the coupling between perceptual and control processes. The
model describes the Attention Elements, Perceptual Functions, and
Control Functions for the three hierarchic levels. The Control
Functions are used at each level to determine necessary informa-
tion mediating their operation. In turn, this information is used
to define the Perceptual Functions and Attention Elements.

Starting from the top, the planning level’s Control Function
involves determining the current active subgoal gk from the sub-
sequent subgoals, all the way to the goal, i.e., gk+ 1, . . . ggoal. Since
humans have limited working memory and attention, they are
constrained in their ability to attend to many stages in the future
and elements. The planning level’s Attention Elements are the
global environment elements and task elements. The model sug-
gests that the Perceptual Functions process the environment and
task elements to extract “IP affordances” associated with the IPs.
At the guidance level, perceptual guidance theory is formulated
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in terms of the motion gap, which represents the information
element. In related research (Andersh et al., 2014), it was found
that the operator performs anticipatory saccades to determine the
motion gap to targets. Regarding the control level, guidance also
requires relatively continuous attention to the vehicle and imme-
diate environment, in order to maintain control and modulate
the response to changes in the local task or environment ele-
ments. Finally, for each of the three levels, the model also defines
the adaptation/modulation mechanisms (shown as dashed boxes
in Figure 5). The adaptation mechanisms are properties of the
model but will need to be further investigated.

The primary Control Functions involve the determination and
organization of IPs, motion guidance to the active subgoal, and
the execution and modulation of the control response. The for-
mer requires perception of the larger environment and task
elements. The latter focuses on the more immediate environ-
ment and task and how they relate to the active and subsequent
subgoals. Regarding attention, the hypothesis is that IPs mediate
top-down perception. Bottom-up perception is most likely medi-
ated by saliency of the environment and task elements, including
goal, obstacles, and vehicle. Based on these insights, the expected
attention patterns should include anticipatory saccades directed
at current and subsequent subgoals and smooth pursuit focusing
on the helicopter. Figure 6 summarizes the gaze pattern expected
in the guidance task.

6.3. GAZE TRACKING SYSTEM
The Eye Tracking Glasses (ETG) from SensoMotoric Instruments
(SMI, 2012) comprise binocular eye-tracking cameras, which
automatically compensate for parallax and make gaze tracking
accurate over a range of distances. A scene camera (1280 × 960
resolution at 24 frames per second) captures the operator’s view.
The ETG tracking covers a range of 80◦ horizontally and 60◦ ver-
tically, with an accuracy of 0.5◦. The scene camera field of view is
60◦ horizontally and 46◦ vertically.

Gaze-tracking data and video are streamed in real-time to a
ROS-based data acquisition system (Quigley et al., 2009), where
all the data (ETG gaze, ETG scene video, vehicle motion, pilot
control inputs) are synchronized and stored.

FIGURE 6 | Expected gaze pattern associated with the hierarchic

multi-loop model.

6.4. PROCESSING AND REGISTRATION OF GAZE TRACKING DATA
The ETG provide a gaze vector relative to the pose of the opera-
tor’s head. A registration procedure is used to bring the operator’s
head, as well as helicopter, environment, and task elements, into
the common reference frame shown in Figure 1. This data then
allows investigation of the interactions between vehicle motion,
operator control inputs, and visual attention.

The measurements provided by the ETG system include
images captured by the forward-facing camera and gaze location
coordinates, represented by pixel location w.r.t. to scene image.
The gaze direction is converted to a vector in the ETG refer-
ence frame. Combining the gaze-tracking glasses with the Vicon
motion-tracking system allows for mapping 2D gaze into 3D
world and vice versa, taking tracked objects in the 3D world,
and projecting their location onto the ETG’s scene camera image
plane.

The pose of the pilot’s head is tracked by the Vicon system
using reflective markers on the ETG. It’s used in real-time to
transform the gaze vector into the Vicon reference frame. Once
expressed in the Vicon reference frame, the 3D location of the
gaze is calculated from the intersection of the gaze vector with a
horizontal plane, coinciding with the helicopter’s current height.

6.5. EXTRACTING AND CLASSIFICATION OF GAZE PATTERNS
Basic eye movements include saccades, fixations, and smooth
pursuit. Saccades are fast eye movements (about 200–
600 ◦/s Boghen et al., 1974) that redirect the eye to a new
location. Their duration ranges from 20 to 200 ms (reading
typically involves saccades of 20–30 ms). There is usually a
time delay between the appearance of a visual stimulus and
the ensuing saccade, as well as a minimal time period between
saccades. Fixations are the intervals when the gaze is stabilized
on a typically stationary point of interest. The fixation is used
to acquire relevant information about the environment. The
duration of eye-fixations varies within a range of 150–600 ms.
Smooth pursuits are eye-movements used to track moving visual
stimuli. The pursuit motion can only occur in the presence of a
moving target. Smooth pursuit employs a mechanism to stabilize
the retina and coordinate with the body movement (mainly head
movement). Micro saccades usually accompany smooth pursuit
as a correction mechanism for eye position. It’s during fixations
and smooth pursuits that high-quality visual information is
acquired. Gaze stability is required to prevent blur, due to the
relatively large retinal photoreceptors’ time constant (Land,
1999). Because of the high velocity of saccades, the visual system
is blind during those eye motions.

These three basic eye-movements, saccades, fixations, and
smooth pursuit, are classified using their specific kinematic char-
acteristics. Figure 7 shows typical scenes from the ETG’s cameras
during pursuit and fixation. These scenes show the interac-
tion between helicopter and gaze motion in the surrounding
environment. In the following results, gaze classification was
achieved by specifying the respective thresholds of gaze velocity
and duration. Density plots for the gaze, classified into fixa-
tion and pursuit over a small trajectory sample, are shown in
Figures 8A,B. Figures 9A,B show the fixation/pursuit distribu-
tions of a sample IP.
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A B

Fixations Pursuits

FIGURE 7 | Typical fixations and smooth pursuits, as seen from the

ETG’s camera. The fixations tend to be discrete points driven by saccadic
motions. During pursuits the gaze follows the helicopter, and its center
remains within a 15◦ sector around the fovea (shown by the circle). This
region represents the region of high acuity and seems to play an important
role in visuo-motor control.

A B

Fixations Pursuits

FIGURE 8 | Spatial density distributions of gaze fixation and pursuit in

the task global reference frame for a sample of trajectories. Dark cells
represent areas favored by the gaze.

A B

Fixations Pursuits

FIGURE 9 | Spatial distributions of gaze fixation and pursuit in the task

global reference frame for the corresponding extracted IP. The markers
are gaze location samples, and the blue lines are trajectory segments
associated with this particular IP.

6.6. RESULTS: FIXATION AND PURSUIT GAZE PATTERNS
The fixation density plot (Figure 8A) shows that fixations are pri-
marily concentrated around starting locations and the NE corner
of obstacle A. This data is consistent with the definition of fix-
ation. When superimposed with the helicopter’s trajectories, it
can be seen that these areas coincide with the subgoal regions
associated with the IP.

The smooth pursuit gaze-density plot (Figure 8B) shows that
gaze pursuit motion coincides with the helicopter trajectories.
However, it’s unclear whether the eye is tracking the helicopter
to determine location and speed, or if it’s engaging in visuo-
motor control. Further investigation will be required to under-
stand the dynamic relationship between the gaze and helicopter
control (Andersh et al., 2014).

6.7. RESULTS: AGREEMENT BETWEEN GAZE PATTERNS AND
ATTENTIONAL MODEL

Based on the hierarchic model, switching between IPs occurs at
subgoals. If subgoals play a central role in the organization of
behavior, anticipatory gaze patterns can be expected at these loca-
tions. The fixations in Figure 9A, extracted for a sample IP, show
significant overlap between fixation points and subgoal region.

On the whole, the operator spends the majority of the time
attending to the helicopter via smooth pursuit, as shown by the
respective number of gaze samples in Figures 9A,B. Intermittent
operator eye saccades are observed at locations ahead of the heli-
copter. These fixations coincide with the subgoal areas or obstacle
corners. Furthermore, as expected from the attentional model,
when the helicopter is approaching a subgoal, the gaze makes
anticipatory saccades toward the subsequent subgoal region.

7. DISCUSSION
This section returns to the topics that were introduced in
Sections 2 and 3.5.

The proposed model describes how behavior is decomposed
into discrete elements, i.e., the IPs, and therefore provides a link
to the important concept of chunking and subgoals. The present
work makes no assumption about the process generating sub-
goals. The IPs are extracted using a data-driven process. The
paper demonstrates that (1) human operators, indeed, organize
behavior following subgoals and (2) the use of equivalence is a
fundamental principle driving this process. Existing strategies to
determine subgoals, such as visibility graphs, are not necessarily
feasible given the constraints of motion (vehicle) dynamics and
do not account for the perceptual and other constraints affect-
ing human process. The results demonstrate that subgoals emerge
from the brain’s need for efficient information processing. The
brain achieves this goal by exploiting the similarities/invariants in
the problem space.

The model addresses both the system and behavioral complexity
brought up in the introduction. The IP encapsulates the similari-
ties in strategies (equivalence classes) available in spatial behavior.
Together with the symmetry group property associated with rigid
body motion, they make it possible to use these IPs as units of
behavior. Together, these properties enable systematic organiza-
tion of the behavior with a large reduction in computational
complexity. One way to appreciate the reduction in complexity
is to consider the use of a DP with full state representation, com-
paring this program to a representation that uses IPs as states.
Note the dramatic reduction in the size of the state space and
hence, “curse of dimensionality.” In addition, the IPs result in a
hierarchical representation, where the control modulation is per-
formed largely independent of planning. This functional property
directly addresses issues arising from the system complexity. This
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functional hierarchy also leads to reduction in attention load
(information extraction). In the full state problem formulation,
the operator has to attend to the complete state vector. With the
IP, the operator needs to attend to the subgoal state and neces-
sary information within the IP class, needed for modulation of
the behavior.

Furthermore, it was shown that the IP can be easily abstracted
using TTG functions. The TTG provide an efficient represen-
tation for planning. As discussed previously, human planning
mechanisms may not follow wavefront algorithm, nevertheless,
the fact that behavior within IPs is coherent and easily abstracted
supports their role as a unit of behavior. This result extends
the earlier results obtained by mapping behavior for simple goal
interception tasks (Mettler and Kong, 2013).

The model also outlines how the behavior is “articulated.” The
behavior’s degrees of freedom, when described in terms of IP,
are the subgoals, and to some extent the behavior within the IP.
These subgoals could potentially be modified dynamically and the
behavior within the IPs modulated to adapt behavior to small per-
turbations. Note that the mechanisms suggested by the properties
of the model still need to be validated.

The model provides insights into how these mechanisms are
implemented perceptually. First, the hierarchic model allows a
clear delineation of the perceptual functions and the attentional
elements associated with each level of the hierarchy. The gaze-
tracking measurements taken during the guidance experiments
show it’s possible to classify eye motions according to smooth
pursuits, saccades, and fixations. The preliminary gaze pattern
analysis reveals that gaze behavior is consistent with the patterns
suggested by the hierarchic attentional model. With this addi-
tional link between attention and behavior, the concept of IP
could be regarded as a coordinated ensemble of equivalent control
behaviors, with their associated perceptual behaviors and cues.
For example, perceptual guidance could then be viewed as an
instance of IP.

Finally, the results obtained are generally dependent on the
subject’s skill level. The experiments used here were conducted
with operators of intermediate skill. In previous and ongoing
investigations, it was found that the general model is valid. As
skill levels increase, there is a better definition of the IPs and a
better-differentiated dynamic mode (see Kong and Mettler, 2013).
Similar trends should be expected for gaze patterns. For more
details on the effects of skill see Li and Mettler (2013). The model
is also currently being extended for skill analysis in surgery Li et al.
(2014).

8. CONCLUSION
The paper presented a hierarchic model of human guidance,
building on the concept of IPs, which are defined based on invari-
ants inherent to guidance behavior. The IPs provide the natural
building blocks needed for modeling the hierarchical organiza-
tion of behavior, making it possible to delineate the structural and
functional levels associated with control, guidance, and planning.
The model delineates the physical and low-level control associated
with vehicle guidance and control and the higher-level organiza-
tion of guidance behavior, in terms of the IPs and their associated
subgoals.

These results also underscore that investigating the entire
system hierarchy and interactions is key to understanding the var-
ious mental and sensory processes allowing humans to achieve
their agile and versatile guidance and control performance. More
generally, the model addresses the system and behavioral com-
plexity. Moreover, it does this without introducing undesired
constraints. This is essential, given that the research goal is to
understand principles and mechanisms underpinning versatility
and adaptability.

Overall, the results show that the model provides a system-
atic and physically grounded framework that will make it possible
to integrate attention, response modulation, and adaptation. The
benefit of this model is that it is verifiable, i.e., every element
of the model can be systematically tested. These aspects will be
further investigated using experiments that incorporate dynamic
and uncertain task elements, which will then be applied to other
domains of human control and guidance skills. The future inves-
tigation will also focus on analyzing guidance behavior and gaze
patterns together in dynamic and uncertain conditions.

The model is also relevant to a broad range of scientific and
engineering applications. The model’s explicit description of the
primary control, planning, and perceptual functions will help
build cognitive models, which are necessary for studying human
factors in spatial control task. In particular, the effects of such
issues as limitation of working memory and attention capac-
ity on behavior are critical for various forms of transportation.
The coupling with attention will assist researchers in achieving
a more detailed understanding of effects of attention limitation
and workload concepts. It will also help illuminate skill acquisi-
tion, while improving techniques based on learning from human
demonstration. Finally, the model and gained understanding will
aid the design of human-machine systems and the development
of novel guidance algorithms for autonomous vehicles.
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