Lawrence Berkeley National Laboratory
Recent Work

Title
EFFECTS OF BEAT-WAVE ELECTRON TRAPPING ON STIMULATED RAMAN AND THOMSON
SCATTERING

Permalink

https://escholarship.org/uc/item/19191454

Author
Cohen, B.I.

Publication Date
1977-09-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1g19145t
https://escholarship.org
http://www.cdlib.org/

Yl ow U d 9 a0 b6 6 5

| | u¢-3¢ /

Submitted to Physics of Fluids LBL-6832 &
Preprint

RECEIVED
LAWTENCE

BERKELTY LABCRATORY
0CT 181977

LIBRARY AND
DOCUMENTS SECTION

e ~ ™
For Reference

Not to be taken from this room
e _
and Environment Division

%«W Effects Of Beat-Wave Electron
@ Trapping On Stimulated Raman
% s <2 And Thomson Scattering

@% §\\‘\<\\§ Bruce 1. Coben and Allan N. Kaufman

September 1977

7
¢ . . . .
% . € Berkeley Laboratory University of California/Berkeley
Us. Energy Research and Development Administration under Contract No. W-7405-ENG-48

/ 2C¢89-TdT



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



EFFECTS OF BEAT-WAVE ELECTRON TRAPPING ON
STIMULATED RAMAN AND THOMSON SCATTERING

Bruce I. Cohen* and Allan N. Kaufman

Physics Department and Lawrence Berkeley Laboratory'
University of California, Berkeley, California 94720

ABSTRACT

The influence of electron trapping on a large amplitude plasma
oscillation driven by the nonlinear interaction of two:é1e§fromagnetic
waves (stimulated Raman scattering) is studied analytically and by
means of numerical simulation. When the p1asmé oscillation is resonantly
excited to sufficiently large amplitude and electron trapping occurs,
there ensues considerable modifitation of the electron velocity distributfon
function. The stimulated scattering ceases to be a resonant three-wave
process but continues as’induced scattering by resonant electrons (stim-

ulated Thomson scattering).

* .
Present Address: Lawrence Livermore Laboratory, University of
California, Livermore, California 94550.
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In Section II, we shall review prior studies of three-wave decay,
as they relate to the present work, and shall discuss our conc]usions

" from our previous paper.'>

In Section III, we present the analytical
theory associated with the nonlinear brocess under investiggtion.. The
e]ectromagnetic waves and their coupling aré'adequately treated by a
cold-fluid model, but the beat;wave response_demand§ a fully kinetic
treatment. Since‘the iatter is not yet amenable to analytic solution,
computer simulation is used to study the process. Sectioh‘IV is devoted
to a presentation of simulation results and to thefr detailed interpre-

tation. The final section summarizes our conclusions and discusses

practical implications.

II. Literature Survey

Three-wave interactions are encountered in many branches of physics.
Conséquent1y, there is a large literature associated wifh the study of
these processes. We shall draw attention to a number of bapers];_38 whiéh
are relevant to the present discussion, but shall review Reference 15 in
some detail because of its specific interest to this study.':

Much of the early work on stimulated scattering of e1ectromaghetic
waves_has come from researchers in solid-state physics and nonlinear

1-4,20,22

optics. Many classic papers on three-wave interactions have

been written by workers in those fields. An apparently universal feature
22-26

of these processes is the emergence of a Manley-Rowe condition.
~Generally speaking, the Manley-Rowe condition can be formulated as a

conservation law for wave action or quanta. Our present study illustrates
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I. Introduction

The nonlinear processes known as three-wave decay and induced
scattering are closely related. The présent study shows how particle
trapping can cause the former process to er]ve into the latter.

To be specific, we consider two electromagnetic plasma Waveé (w1, wz)"
subject to the decay process, whereby the ponderomotive poténtia],at the
beat frequency (w1 - wy = QO) drives a Langmuir wavev(gd ~ wp), thereby
inducing Raman decay. This process has beenbextensively studied in many
contextsl,]']4 but the waves ‘have usually been treated aﬁ_being of smé]]
amplitude. When one of the waves (the Langmuir wave) iS'of_sufficient]y 4
large amplitude so as to trap electrons, the process is greatly modified.

15 we developed analytical tools for interpreting

In a previous paper,
computer-simulation results of the process, by_considering the more
tractable model where the electromagnetic-wave amplitudes were held fixed.
Our. conclusions from that study will be discussed in the following section,
as an introduction to the present study in which those amplitudes evolve
appropriately from the nonlinear wave coup]ingf

In the course of the three-wave decéy, energy is deposited irreversibly
into the plasma electrons by trapping. The consequent increase in electron
kinetic energy and momentum changes the plééma response, at'the'beat»
frequency,vfrom beihg a nearly resonant collective wave (resonance meaning
w, - wé ~ wp) to being a non-collective particle résqnance [w] - w, ™
(ky - Ez) . V1. Sucha response is sometimes described as a "quasi-mode,"
and the associated electromagnetic-wave evd]ution is called induced

scattering;5’16'19
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how the wave action of two of the waves part1c1pat1ng in a three -wave decay
or 1nduced scatter1ng is conserved independent of the details of the o
dynamics of the third wave (Langmuir wave) or quasi-mode 1nvo]ved. Tﬁe'
Man]ey-Rowe condition dictates important constraints on the‘energy and
momentum transferred in these processes. | ’ |

The 1ineaf aspects of three-wave intecactions and induced scattering,
so- ca]]ed parametric- 1nstab111t1es, have been recent]y rev1ewed in Reference
21. A particularly comprehens1ve study of the parametric instabilities
-associated with the stimulated . scattering of'e1ectromagnet1c waves in a
hdmogeheous, unmagnetized piasma appears in'Referehce'S. The.calcuiatioh
of the nonlinear aspects,of~three-waves:interactiohs.have evolved from the
early considerations of Sagdeev and Ga1eev;27 who desccibed the cyc]ic.
behavior of three coup]ed modes in the absence of dié;ipafien, toﬂfhevuée
of the sophiét{cated inverse scattering method,28 which has a]iowed the
space-time descripticn of coupled convecting pu]ses;'vRecently, Reimén,
Bers, and Kaup have extended the epp1ication of tﬁe 1atter»methdd to'the
solution of coub]ed modes with no ]inear dissibation in an inhomogeneous
medidm.29 | | o

The three-wave decay ceases to be reversible when the Waves are subject :
to d1ss1pat1on (or 1nstab111ty) There have been mahy ihteresting studies
of the influence of Tinear dissipation on three ~wave interactions in both

homogeneous and 1nhomogeneous media. 9-12, 30 31

The present work deals
with a specific examp]e of irreversible three-wave decay in which there
is (nonlineér) diésipation,owing to a ane-partic]e resonance and trapping.

When the damping is severe the three-wéy interaction is described as
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5,16-19

nonlinear Landau damping or induced scattering. Litvak and

18

Tr‘akhtengerts,]6 Johnston, ~ and Johnston and Ku]srud]9 have contributed

important papers on induced scattering. The further decay of a decay-product

wave can also provide the initial decay process a source of dissipation.

This is called mu]tip]e scattering32

(759511,12,15,38

or cascading.7
Our own wor in this area has been partially motivatéd
by the possibi]ity of using stimu]ateo scattering as a means of heating a
plasma with lasers. Beat heating and optical mixing have been areas of
active research for some time.6"12’33'38 Reference 38 contains.a}review of
research on various aspects of beat heating in homogeneoos‘or inhomooeneous
p]asmas, and for linear and nonlinear beathavé. The present study aod
Reference 15 aké outgrowtos of Reference 38, and address themselves to

the effects of trapped particies on beat heating. In Reference 38 are
presented quantitative arguments supporting the possibility of electron
trapping in'p1asma waves resonantly excited by the beating of C02 lasers

in a 6-pinch plasma. The present study and that of Reférence 15 aiso
analyze the more fundamental problem of driven nonlinear piasma waves.

While there has been considerable study of nonlinear, freely propagating

plasma waves,39'41

much less attention has been given to the driven
15,42,43

case. _
In order to follow thevnon1inear orbit modifications of the electrons
in their own self-consistent 1oogitudina1 fields, we have performed
computer simulations describing the evo]utioo of the scattering. The
authors ot.References 13,14, and 17vhave aiso,nomerica11y simulated the

effects of trapping on indUced_scattering and Raman scattering. Litvak
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Petrukhina, and frakhtengerts studied the induced séattering of two .
transverse waves by resonant partic1es.]7 Their numerical calculations .
exc]ude.p]asma collective effects, i.e., the se]f-consistent Cdu]omb L
potential is ignbred, We include collective effects in our simu]atibns
by so]ving‘Poisson's_equation in ordér to_éxaminé Raman and induced )
scattering together.. | -

We also eXtend the work of References 13 and 14, in which eléctkon,
trabping accounté for the nonlinear saturation of stimulated Raman
scaftering in uniform or nonuniform plasma. Our study differs_
in various respecté. We have chosen the initial amplitudes of the
e]ectromagnetic waves to be comparable. This serves to immediately excite
a large amp]itude plasma wave which rapidly traps electrons. We can
therefore‘ignore ijon effects which presumably occur on a.much'ionger,

38 We then follow the scattering over many bounce periods of

time scale.
the trapped electrons in order to examine the long-term evolution of the
scattering proéess and the substahtia] modification of the electron velocity
distributioh»function which occurs.

This paper is the logical conclusion of our ear]iér study described
in Reference 15. This earlier work focused on the nonlinear{p]asmq_response
to resonant excitation near the electron plasma frequenqy byva constant
amplitude, finite-wavelength, external force. The exciting field represented
a ponderomotive force, and the principal nonlinear feature of the plasma
response was particle trapping. The.non1inear dielectric response of the

plasma was described in terms of a nonlinear frequency Shift and a dis-

sipation rate. The effects of trapped partiéles were7éna1yzed in detail.
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In our simu]ations,vwe observed large negative frequency shifts and a
time-dependent damping rate initially in excess'of tnat predicted byllinear
theory, both due to extensive trapping (Figures 2 and 4 of Reference 15).
The frequency misnateh between the ponderomotive driving frequency and
the nonlinear normal mode frequency gave rise to a modulation of the
amplitude and phase of the p]aSme'response} Particle tnappingxprodueed
further modulation at a higher frequency, the trapped-panticle bounce
frequency. Energy and momentumVCOnservation laws were presented which
illustrated the. re]ationships of the nonlinear phenomena |

The present study extends the calculation of Reference 15 by 1nc1ud1ng
the self-consistent determ1nat1on of the ponderomot1ve force for st1mu1ated
Raman and Thomson scattering We shall analyze the evo]ution of the
e]ectromagnet1c wave amplitudes and the plasma mod1f1cat1on by again ut111z1ng
the concept of .a nonlinear dielectric function. We also 1ntroduce the
hybrid simulation of the scattering, wherein coupled-mode equations’describing
the electromagnetic waves are ‘combined with a one-dimensional e]ectrostetic
particle code.*?

Many of the features observed in the simu]ations in Reference 15 are
also found here. However, because the ponderomotive force is now cé]culated
se1f-consistent1y and not held constant, there is a finite amount of energy
aVai1ab1e to the‘electromagnetic waves and the plasma. We observe appreciable
depletion of the higher frequency transverse wave and consequent plasma |
heating. Because of nonlinear effects, the excited electron p1asma wave
becomes neavi1y damped; and induced scattering supercedes Raman decay. Ourv
results are thns pafticu]ar1y relevant to the understanding of trapping

effects on beat heat1"ng7'12 and on optical mixing for use.as a p]asma-1aser
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amp]ifier.45 Similar nonlinear effects should be important in schemes

proposed for the generation of microwaves by re]ativisticve1ectrpn

46,47 and for the free-electron 1aser,48

beams which also employ stimu]ated

scattering processes.

IIT. Theoretical Formulation

For the sake of simplicity we considér aﬁ unmagnetized, uniform
electron plasma of warm, mobile é]ectfons with a fixed, neutralizing ion
“background. = Furthermore, we treat the transverse wave amplitudes as
spatially uniformband consider fhe development: of the scattering in time

only. The entire analysis may be generalized to a weakly inhomogeneous

p]asma.]z’38

‘We represent the electromagnetic waves, linearly polarized in the 'y
~ direction and propagating in the *x direction, by their transverse oscillation
velocities,

(t)exp(-iw,t -vik x) ¥ c.c., (1)

(x;t) = u, (t)exp(-iw 2 2 2

+ i +
uy ]t 1k]x) u
with slowly varying amplitudes Uy and 02 of the two opposed transverse
waves (w] > wz); the wavenUmbers'satisfy the dispersion relation k22 =

w2 - w 2, where Wy is the unperturbed plasma frequency..

P
We cast the density perturbation in a beat representation

sn(x,t) = : ﬁ£(t)exp(—12®) +c.c. =

vﬁ](t)exp(-iwot‘+,ikox) tee to. o (2)
where 0 = th-' kOX’ wg T Wy Wy is the beat frequency, and k0 z k] + k2
is the beat wavenumber. (Henceforth, we shall drop the subscript on. the

ampTlitude of the fundamental.) The neglect of the density perturbations
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at the sum frequencieé (w] * wos 2w1, and 2w2) has been discussed in
Reference 12. |

5,12

We adopt a cold f]uid.model for the transverse velocity;

the éurrent density is thus jy(x,t) = uy(x,t)[h0 + 6n(x,t)]. The density
perturbation &n is not necessarily small compared to Ng» and its calculation
will be fully kinetic. We follow Reference 12 and obtain from Maxwell's

equations and the fluid dynamical equations

duy/dt = -(i/2) (0 %/07) (i/ng) uy

dup/dt = =(i/2) (u,%/up) (7 /ng) uy, o ®
where only slow temporal variations are kept in the nonlinear coupling
terms. We note on the right sides of Equations (3) that the coupling
strength is independent of No» which cancels, and that n may be arbitrarily
- large. -Multiple scattering and the couplings to other transverse waves
arising from the density perturbations at the harmonics of the beat
frequency and beat wavenumber are ignored. We a]sq neglect collisional
damping throughout the analysis.

We introduce $O(t), the slowly varying (comp]ex) amp]ftude of the

ponderomotive potentia], ‘ |

dp(t) = (m/e)uluz*-._ |
The electron charge is taken‘to be e. The ponderomotive force associated
with this potential is just the beat-fréquency component of the longitudinal
v X B force on fhe eTectrons due to the hfgh frequency waves. .The amplitude
of the ponderomotive fie]d is given by.Eo(t) =-ik050(t). The ponderomotive

force drives the density perturbations.
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The wave-action density of each transverse wave 1‘s.g1'ven]2

by
J = m(m/e)2|u|2/2ﬁ, and the wave energy density is wJ. The conservation

law for transverse-waveQaction density is obtained directly from Equation (3)
(d/dt) (3, + J,) = 0. : (4a)

‘Use of the continuity equation,

-ugen(t) + ikgd, (t) = 0,
(where jx(t) is the s]owTy varying amplitude of the beat-wave current)
yie]ds_the action transfer rate

dd,/dt =‘-2Re(ﬁojx*)/w0. _ (4b)
We introduce the wave-amplitude phases o6 defined by u:5‘|u|exp(—ie) and
determine from Equation (3) the additional re]atién, |

Jéw = Re(eﬁ*$o), ' . (5)

for sw = de/dt, the nonlinear frequency shift of each transverse wave.
Equations (4) and (5) are valid for linear or. nonlinear density perturbations,
and can be geneka]ized to the case of a nonuniform magnetized b]asma and

to the'inc1usidn of the spatial dependénces and convection of the

transverse-wave amph”cudes.]2

Conservation of transverse-wave action density implies that transverse-
> >
wave energy and momentum densities, W = wJ and P = kJ, are not conserved.

Their (non-)conservation laws are deduced from Equatioh 4b;
(d/dt) (g +4,) = wyddy/dt + wpddp/dt
N
= (w1 --wz)dJ]/dt = wodJ]/dt = -2Re(EOJX) (6)

and
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(d/dt)(P] + P2) = —(ko/mO)ZRe(Eij'). _ (7)
Equations (6) and (7) state that the rate of energy and moméntum lost
or gained by the transverse waves equals the rate at which energy and
momentum are deposited into or withdrawn from the plasma by the pondero-
motive force.

We deduce from Equations (4), (6), and (7) that the rate of action
transfer, and hence of energy and momentum transfer, is zero when EO and
jx (or n) are 90° out of phase. From Poisson's eduation for the self-
consistent potential, ¢(x,t) = % 52(t)exp(-ize)+ c.c. = &(t)exp(-io)”+

c.c. + .;., we obtain ¢ = 4nﬁe/k02 and conclude that there is no action
transfer when ¢ and 50 have a relative phase of 0° or 180°. There is then

no momentum transfer nor wbrk done by the ponderomotfve force,.and_the
transverse waves acquire steady nonlinear frequency shifts as the conse-

- o -
quence of the coupling: dw = J 1Re(en ¢0). Any eventual steady state must

be consistent with these conditions and relations.

15 that the (possibly nonlinear) dielectric

We have shown elsewhere
responée to the ponderomotive potential can be expressed as ¢(t) =
ef](ko,wo + idt) -1] éo(t). We describe the plasma response to be "quasi-
steady" when we can set d/dt =0 in evaluating the dielectric function, i.e.,
 €(k0,90 +.idt) [$(t) + $b(t)]+ e(ko,wo)[$ + 30}. Use of the Poisson equation
and the quaéi—steady Timit of the dielectric function in Equations (4).and
(5) gives | |
dJ1/d{; = -dd,/dt = In(e™)|Ey|2/2n (8

and

Swd =‘_Re(e-] - 'I)‘]EOF/IM ' (9)
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In the quasi-steady 1limit, the nonlinear dielectric function,
evaluated near a resonance, is given approximately by

e(kgsug) * Eluy)ug = ang) = Elap,)[a + 1), (10)
where the nonlinear eigenfrequency Wogs satisfiesve(ko,wnl) = 0, and
e = 9e/dw. The frequency mismatch A andthe dissipation rate v are defined
by A = wg - Re w , and v =-Imw . For weakly nonlinear waves, e(wnz) ~

2wp-] if koxe <<1,wherexe = ve/mp is the electron Debye Tength. The
justification of the quasi-steady approximation in Equation (10) requires
that [ug - u | >> |d/dt]. |
We can use Equation (10) to express the right sides of Equations (8)
and (9) gs'-(va/2A2)|E0|2/2n and (wp/2A)|EO|2/4n, respectively, for
|v|<<|A|<<(up. It is evident that irreversible action, energy, and
momentum transfer require finite dissipation in the plaSmd dielectric
response. . The reversible action transfer that three coupled linear normal
modes exhibit (described by Sagdeev and Ga]eev27) does not occur here,
because of heavy damping. HOWever, if the dissipation of the density
perturbation oscillates about zero, because of the bouncing of trapped
particles, for example, the action transfer will also oscillate. _Only if
the dissipation asymptotically were to vanish, and the frequency shift
to approach a finite value would action transfer cease. The transverse
waves would then exhibit constant nonlinear frequency shifts also [Equations
(5) and (9)].
We define the total response potential ¢ as the sum of the Coulomb ¢

~ and ponderomotive ¢0‘potentials:
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a(x,t) = o(x,t) + ¢0(x,t) = 5(t)exp(—im0t + ikox) +C.C. * ...
In References 15 and 38 we have demonstratéd that the time-depehdent

complex eigenfrequency w_, can be constructed from a knowledge of &(t)

ng
and $o(t) by utilizing a Taylor series expansion of the nonlinear dielectric

function. To lowest order in Iwo - w ot i(d/dt)|/|mn2|<<1, we have

obtained

(09 = gy + T(A/dE)[6(t) = 49(t)/Z(0p,). -

The nonlinear frequency shift 6o = Re(w_, - wg) [the Tinear eigen-

ng
frequency w, is determined from the Tinear dielectric function: ez(wz’ko) =

0] and the nonlinear dissipation v = hnwng are deduced]5 from the simulation
-1 '

results, using Equation (11) with E(wnz) ~ pr Only for Weak1y nonlinear,

freely prbpagating plasma waves, has perturbation. theory been successfully

nz,énd~wn1’ when to good approximation the

wave amplitude could be assumed constant in calculating the perturbed
41

used to analytically construct ¢
particle orbfts. The phenomenbn considered here is domihant]y nonlinear
and deménds a fully self-consistent, non-pefturbative description.' This
encourages the use ofvpartiCTe simulation, a discussion of which follows in
the next section.

To further eﬁphasizelthe degree of nonlinearity in the'phendmena-

considered hefé, we formally integrate Equation (11):

t : t
§(t) = .-1'/dt'§(t')' do(t exp[d dt"s L], (12)
0 t!

where Apg =90 " Yng- The plasma response is secular near the resonance

Bog = 0; however, the interaction of the beat-wave potential ¢0(x,t) with

the plasma is shifted away from resonance by the nonlinear electron
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dynamics. There is induced a finite, complex-valued A, Equation (12)

.
describes the ensuing modulation of the total potential ¢(t) at the

ne’ There 1is m0du1ation also at the bounce frequency,
15,41

mismatch frequency A
if there is trapping. When the nonlinear frequency shift or
dissipation becomes appreciable in magnitude compared to the plasma
frequency W the Taylor-series expansion 1ead1ng to Equatibn (11) is no
longer valid. | |

When the three-wave decay becomes nonresonant we must re-examine
the neglect of the density perturbations at the frequehcies Zw], 2w2, and
W + wo as’compared to the low frequency-beat perturbation. The. former
perturbations have high phase velocities for which there are few resonant
particles. Consequently, Ime ~ 0 and Re ¢ = 1; the plasma response is
essentially reactive. As these density perturbations contribute to the
nonlinear transverse current, there are additional nonlinear couplings
~which afe additive to the right sides of Equations (3-9). However, becausé
the plasma response is reaqtjve, these couplings only induce small frequency
shifts in the transverse waves. '’ These shifts scale as ]u_/cl2 and are

49 which have been ignored

therefore the same order as relativistic effects
throughout. This justifiés thé continued neglect of the high frequency
density perturbations. ‘

On the other hand, the low frequency beat-wave can continue to
interact with the plasma in an interesting and significant fashion, even
when electron plasma waves are no longer resoﬁant]y excited. A wave-particle
resonance remains accessible to the beat-wave: w, - w, = (?] - KZ)-V. When

this resonance condition is satisfied by a large number of electrons and

the distribution function has finite slope at the resonant velocity,
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stimulated Thomson scattering occurs, > 16-19

Im ¢ is then appreciable,
and the plasma response is consideraB]y resistive. In fact; the. beat-
wave can be heavily damped, with action transfer continuing nevertheless.
Therefdre,‘in our simu]atipns we have followed the temporal development
of the scattering well into regimes.in which the beat-wave‘is heavily

damped.

IV.. Computer Simulations
Numerical simulations were performed to investigate the back-reaction

of trapping on the scattering of the transverse waves in a regime'of non-

Tinearity where analytical perturbation theory fails. This regime4]

corresponds to vtw-o/kO =>v 2,"wheré the trapping ve]bcity v, is defined as

e t
1/2 (T/m)]/z. The simulation plasma was taken to be

v, = |2ed/m| and v,
periodic and injtia]]y uniform. The equations for the transverse-wave
amplitudes, Equations (3), were adjoined to a one dimensional, electrostatic

particle code44

(ES1); integrations were performed forward in time,

treating the stimulated scattering as a time-dependent initial value

prob]em.. At each time-step, the transverse wave amplitudes were}inére@enta]]y
changed according to Equation (3), using a first-order Euler differenéing
scheme. The ponderomotivé potential ¢O(x,t) was then constructed, and thé
electron velocities and positions‘advanced'using the gradient of the
ponderomotive and self-consistent Coulomb potentials. Ions were treated

as a fixed charge-neutralizing background. The self-consistent Coulomb
potential was obtained from solution of Poisson's equatién given the charge
density. Finally, from the Fourier component of the density perturbation,

at the beat wavenumber and frequency, the coupling of the transverse waves

was calculated using Equation (3).
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By adjoining the CoupTed mode equations to an electrostatic
simulation, there is then no restriction on the time?stepbof the inte-
gration due to the high fyequency waves, which would otherwise require

that wjAt << 1 1in addition to w At << 1. In practice, the time step

P
satisfied prt < 0.2. Energy, momentum and action were all conserved‘
within a few percent. _

This simulation scheme precludes the possibility of the two trans-
verse waves scattering further into any other electromagnetic waves.32
Immobilizing the ions prevents interactions of the transverse waves and
the excited plasma wave with thevions, for example, the parametric
decay of the electron plasma wave into anothek plasma wave and an ion
acoustic wave.50v Reference 38 describes the range of parameters for which
electron trapping can occur well before parametric instabilities involving
ions are significant. | | |

In our simulations, we chose the following parameters:

‘ wy = wp, w..I = 5wp, wy = 4wp, u](O) = UZ(O)’ and wo/ko = 3Ve = ¢/9.

This choice pf beat-wave phase ve]ocity re]afive to the electron thermal
velocity causes the resonantly excited plasma wave to be weakly damped
according'to linear theory. However, with mo/ko = 3ve there is a reasonable
number df simulation particles.at vV~ mo/kO even With only a modest total
number (4000) of simulation particles. The range of transverse wave |
amplitudes considered was 0.3 < |u](0)/ve] < 0.9, which induced ponderomotive
potentials of magnitude 0.09 < |e$O/T| < 0.9. |

Results typica1 of §imu1ations exhibitiné considerable trapping are

shown in Figures 1-5. The (total) electric field response E = -(3/0x)8(x,t),
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longitudinal phase space, and the longitudinal velocity distribution
function are disp1ayed in Figure 1 at wpt/Zn =6, 68, and 125. At early
times there is a large amplitude response driven nearly in phase with
. the ponderomotive force (Figure 1a); longitudinal phase space hés a hole
~centered over the bbttom of the potential well (Figure 1b); and the
distribution function has a distended, nonmaxwellian taf] for v = wo/kO
(Figure 1c). At later times the electric field response and the pondero-
motive force are both wéaker than at early times and out of phase. The
total potential well is not so deep as before, and the hole in phase space
(related to the separatrix between trapped and untrapped electrons) is
reduced. The distribution function is further deformed concomitant with
the continued écattering.

In Figures 2a and 2b are plotted the (real) amplitudes of the pondero-
' mbfivé potential and response, and their respective phasés, as functions
of time. Thé plasma response builds rapidly to a relatively large amplitude
.in a few plasma periods. Initially the phase of the résponse re]ativevto
the ponderomotive potential is w/2, which is the appropriate phase for a
maximum rate of action transfer out of the high frequency transverse wave.
Later in time, as a consequehce of nonlinear effects, the response amplitude
and phase are modulated dominantly on the time scale of the mismatch
lwo -'wn£|§0.1wp as described by Equation (12). 1In addition, the response
amplitude has superimposed a finer scale, more rapid oscillation at the
directly observed bodnce frequency of trapped e]ettrons di ~ 0.5 wp. (The
phase-space trajectories of individual electrons were followed in the

rest frame of the beat wave.) This bounce frequency is slightly less than
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the standard bounce frequency of a deeply trapped particle di z kOVt’

“which is calcu1ated'ffom,the time-averaged amplitude of o(x,t). The

| S <y
consistent with particles not being trapped near the bottom of the

teﬁdehéy for was observed and discussed in Reference 15, and is
:potential well, for whicﬁ the hole in 10ngitudinaT phase.space is good
evidgnce (Figure 1b)7.‘Bécausé |w0 - wnll << Ji, J; therevcah'exist
trapped~partic1es:which,fespond more or less adiébatica]]y to the modulation
of thépbtential‘prodqced by the mismatch. However, partié]es near fhe
sepafaffix.do nof respond adiabatically and are observed to suffer recurrent
_trapping and:detrapping.; |
The pénderomoti?e potential, as well as the response, oscillates on

the mismatch and trapping'time scales, due to the reaction of the density
“perturbation back on the;coup]ing of the transverse waves according to
Equétion (4).  However; the oscillations of %O(t)'are of lesser degree
than for o(t). The Qenefa] decrease of |$0| is'due to depletion of the
high frequency transverse wave. After the early period of considerable
laétion transfér and strong plasma response, the relative phase 6 - 94
“oscillates faif1yvstead11y but with large excursion (+ n/2) around zero
with frequency'approximafe]y equal to the mismatch Anz(t)’ One recalls
from Equatioh (4).that'é'relatiVe'phase of zero cdrresponds to no action
- transfer, and +w/2 corresponds fo relative ektrema of the aétion transfer
rate for fixed |E0[ and |j*|.

In Figure 3 are shown the nonlinear frequency shift ¢ and the total
diséipation rate v as déduced using Equation (11). Initially thé damping
rate far éxceeds the 1inéar Landau damping rate, vl/wp = 0.03.” In the

~small amplitude 1imit, only resonant particles (v ~ wo/ko) contribute to -
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the dampfng of the wave. HoWeyer, whén.the wave amplitude is finite,
the résohaﬁce width is brbadenéd; The nonlinearvdampfhgzcan.be quite
large dependihg»on,th'ﬁucﬁ}of the velocity distribution function is
resonant énd.tﬁe relative preponderance pf resonant particles with
velocities v < wo/ko;‘:This phenomenon has been observed in experiments

51

and simulations, and understood theaoretically. As our simulation

progresses the dissipation exhibits fairly large oscillations around zero

at the mismatch frequency and smaller, more rapid variations at the

trapping frequency.w%. The frequency shift a150uexhibits moduTation

effects and is negative in keeping with fhe presence of trapped paftic]es.4]
A detailed discussion of the time dependence of the deduced frequency shift

~and dissipation rate, andit§ relation to the modulation and trapped-parti¢1e
effects, is éontained-in‘Reférence‘15.-

Later in the simu]ation; we observe a general increase of the mismatch
lwo - wnz{’ and,hence decrease of lé/éol. This {s closely related to the
continued déformation of the ve]ocify diStributioh‘function as implied by
momentum and energy conservation laws, Equations (3) aﬁd (4) of Reference 15.
The conservation laws illustrate the dependences:of thé nonlinear dissipation
on the momenta of the resonant electrons, and of the nonlinear frequency
shift on their kinetic energy. The deduced frequency'shift and dissipation

'&ré not showhvpast'wpﬁ/éw =_25 in Figure 3 becaﬁse of the breakdown of the
“expansion procedure 1eadfng to Equation (11) when the (éomp]exéva1ued)
frequency mismatch is 1ar§e. At this boint,.the e]ectrdn'plasma wave

ceases to be resonantly excited; but action transfer continues as a nonlinear

form of induced Thomson scattering. Many particles satisfy the condition
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wy = wy ¥ (K] - FZ)-V, i.e.s ug z:'I\<0v and have orbits which have been
strongly perturbed 0ver a trapp1ng reg1on vV = (mo/k ) Vo the distri--'
bution funct1on has finite, time-dependent s]ope (see F1gure 1c) Late in
time, when not much action is transferred on average the s1gn of the slope
and the direction of act1on transfer osc111ate 18,19

In Figure 4 appear the amplitudes and phases of the three 1nteract1ng
waves Uj, U,, and n as functions of time. As descr1bed earlier, the
amplitude of the density perturbation oscillates principa]ly et the
mismatch frequency and also at the trappingvfrequency Ji. It decreases
in magnitude due to dissipation, the increase Of,lAnll and the,decrease of
the ponderomotive potential. The phase of the density perturbatfon seems
to be modu]ated at the mismatch frequency and not s1gn1f1cant]y]5 at Ji.
The s1ow1y varying wave phase 8, is fa1r1y constant over thevduration
of the simulation, but 8, is significantly modulated at the frequency
ReAn2 once there is much Tess wave action associated with it [see Equations
(5) and (9)]. | |

The energy of.the higher frequency transverse Wave depletes by
approximately 90%, and the'energy transfer is essentially complete
after fifteen Langmﬁir osci]1ation periods (mpt/ 27 = 15). Although the
action transfer is rapid, it neverthe]ess occurs over many trapped-partic1e
bounce periods, viz. eight periods (d%t/Zn ~ 8). Hence, the stimulated
scattering does not immediately terminate with the Onsetbof tr‘apping.]B’]4

On' the bounce time scale, the amplitudes [u;| and luy| have slight variations

in accordance with Equations (4) and (8).
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The relative energy.transfer (from the w]-wave) to plasma oscillations
and 1ongftudina1 kinetic energy is given by_0.9 (wo/w])b= 0.9 (1/5) =
0.18. This 18% of the higher frequency transverse-wave energy deposited
in the plasma reSu1ts in'a five-fold increase of the plasma therma] energy
relative to its inifial value. Very little energy ends up in‘a coherent
oscillation (BGK wave). The action transfer AJ/J1(O) ~ 0.9 also accounts
for a relative momentum transfer to the plasma kOAJ/k]J](O) ~ 1.8, and the
plasma acquires a longitudinal drift velocity equal to 1.2 ve(O). |
The spatially averaged longitudinal kinetic and electric field
energy densities are displayed in Figure 5 as functions of time up to
wpt/Zn = 40. Accompanying the extitation of the large amplitude electron
plasma wave and transfer of action early in the simu}ation is a large.
increase in p]asmd kinetic energy, which soon exceeds the field energy
by more than an order of magnitude. Although there is significant damping
of the 1ongitudﬁna1 field energy, it remains well above the thermal
fluctuation level. [For our one-dimensional éimulatidn plasma, the
fluctuation level is reduced by the use of finite-sized particles to a
value which is given initially by <(a¢/8x)2/8n/ < (NAe/L)']nOT(O)/Z ;
0.25 x 10'2n0T(0), where N is the number of simulation particles (4000)
and Ae/L ~ 0.05 is the ratio of the initial Debye length to the length of
the plasma]. -For later times not shown in Figure 5, the field energy
density continqes to slowly decrease and the kinetic energy very slightly
increases. Both continue to exhibit}some modulation.
The disparity between the longitudinal field energy and the kinetic

energy demonstrates that the ponderomotive force of the transverse waves
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deposits most of the available'energy into the p]asma'and not into
1ong-1ived plasma waves. ‘The mechanism for this is furnished by the
early onset of trapping ahd the associated démping'with‘a rate in excess
of the 1inéar rate. One might have>expected a sfgnificant fraction of
the enéfgy to end up in"a large émp]itude BGK wave. This would seem
especially 1fke1y in the case studied here, because our choicé of the
fundamental wavelength of'the simulation for the beat-wave has precluded
the sideband instability, a favokite.mechanism for the break-up of BGK
waves.52 Nevgrtheless, there is no evidence of a BGK wave late in time
in our simulations. . |

In other simulations different values of the initié]vtrénsVerse wave
amplitudes or frequencies were chosen. Large wave amb]itudes tendéd to
shorten the time scales for the onset of nonlinear effects without
qualitatively altering the physical phenomeha. By a]terfng the choice
of the wave frequencies, the linear mismatch frequency wg - w, Was varied.
For weaker transverse wave amplitudes the nonlinear bhenonena were more
sensitive to the linear mismatch, i.e. trapping and efficient energy/momentum
transfer to the plasma demanded smaller mismatch frequencies for smaller
|u]| and |ué[ so that stimulated Raman scattering would be more nearly
resonant. On.the other hand, for,]arger.values of-lu]lvand ]u2| trapping
effects and the fate and amount of irreversible action transfer were less
sensitive to the linear mismatch. |

We have observed, both here and in the simulations describéd in
Reference 15, the approximate éonstancy in time of “the obsefved trapping
frequency di, despite the significant modulation of and the general decrease

in the amplitude of the plasma wave. This has also been observed in many
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simulations and experiments in which the propagation of a single large

53

amplitude electron plasma wave has been studied. A decrease in the

depth of the pbtentia] well ought to reduce the trapping frequency, -
di«lél]/z. In our simulations this seems to be counterbalanced by the ' .
falling of the trapped electrons toward the bottom of the potential well,

which is evidenced by the filling in of the hole in phase space (Figure 1c).

IV. Summary

Our simulations of Raman scattering have exhibited extensive electron
tkapping and deformation of the velocity distribution function, relatively
large nonlinear frequency shifts and dissipation, considerable energy and
momentum transfer, and a transition to induced Thomson scattering. By use
pf coupled-mode equations for the electromagnetic waves:and a ponderomotive
potential to describe their non]inéar interaction, together with a standard
one-dimensional electrostatic particle code, economically efficient and
conceptually simple simulations were performed on the electron plasma wave
time scale.

Various nonlinear effects due to electron trapping were observed and
interpreted self-consistently in the longitudinal field response, the
nonlinear frequency shift and dissipation, and the reaction of the density
| perturbation back on the coupled transverse waves. The simulations have
demonstrated the application of a prescription for ana]yzing the nonlinear
dielectric response proposed in Reference 15, which we have found useful
in understanding the self-consistent interplay of the nonlinear effects.

We have derived general re]ations,‘Equations'(4) and (5), describing

stimulated Raman and Thomson scattering in terms of.wave-action transfer .-
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and nonlinear frequency shifts. We have found in simulation that an
electron plasma wave can be resonantly excited to large amplitude and
then can nonlinearly shift its normal mode frequency. The interaction
of the transverse waves with the plasma Wave is thus shffted away from
resonance. The ponderomotive beat-wave can diréct]yvresonate with
partic]es,‘and much'of the energy in the higher frequehcy transverse wave
can thus be rapid]y dep]eted. We conclude from our computer simulations
that the plasma can ab§orb most of the available energy as kinetic energy'
with only a small fraction residing in the ]ongitddina] electric field.
The Tower frequency transverse wave is amplified consistent with the
conservation of transverse-wave action.

Our simulations thus support the contention that the ultimate
efficiency of plasma beat-heating and plasma-laser amplification is
Timited oniy by the Manley-Rowe relation. :Hence, our bresent results
concerning the effects of electron trapping on stimulated Raman and
Thomson scattering are encouraging for these practical applications. How-
ever, the continued stimulated backscattering of laser light after the

onset of trapping may be discouraging for laser-fusion.

NOTICE

“This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research & Development Administration, nor any
of their employees, nor any of their contractors, -
subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy,
completeness or usefulness of any information,
apparatus, product or process disclosed, or
represents  that its use would .not infringe
privately-owned rights.”
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Figure Captions

Figure.1. Simulation of the resonant response of a maxwellian electron
plasma [thermal speed Vo = (T(m)l/z] to a ponderomotive plane-wave driving
force, of freqUehcy @0 (chosen equal to wp) and phase velocity wb/kO

(chosen equal to 3ve), induced by the vVxB coupling of two opposed electro-
magnetic waves with oscillation velocity amp]itudes‘u] and Uy (chosen
initially equal to 0.2 wo/k0 = 0.6 ve). Initia]]y the linear normal mode

frequency is Re w_ = 1.17 Wy and the linear Landau damping'raté is

L

-Im w, = 0.03 Wy The transverse waves have frequencies wy = 5wp and

wy = wy -‘mo = 4wp. For a typical simu1ation,.we exhibit at wpt/zn =
6, 68, and 125 the following:
(a) the longitudinal driving field E0 = -3¢y/3x and the total longitudinal

field E = -3¢/9x as functions of x, in natural units;
(b) the Tongitudinal electron phase space;
(c) the longitudinal velocity distribution, with different scales and

arbitrary units.

Figure 2. For the simulation in Figure 1, shown as functions of time are
(a) the magnitudes of the total and ponderomotive potentials in natural

. g2 2
units, e@/(mv¢ ) and e¢0/(mv¢) where v¢
(b) their respective phases o and 003 defined by

= wp/kgs

o(x,t) = o(t) cos (wot - kox + 6) and ¢0(x,t) = ¢0(t) cos (wot - kox + eo).

Figure 3. For the simulation in Figure 1, shown schematically as functions

of time (up to wpt/2ﬂ = 25) are
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(a) the deduced nonlinear frequency shift sq = Re(wnz - wz)’ with the

linear mismatch A2 = wy = w, indicated for reference;

(b) the nonlinear dissipation rate v = -Im W
Figure 4. For the simulation in Figure 1, shown as functions of time

are

(a) the magnitudes of the coupled-mode amplitudes |u]|/v¢,[u2|/v¢, and

InI/n0 where v = wg/kq;

¢

(b) their respective phases 015 055 and 0,

Figure 5. The spatia]iy averaged longitudinal kinetic and field energy
densities, <nmvi/2> and <(a¢/ax)2/8w> R
vs. time (up to wpt/Zn = 40) for the simulation shown in Figure 1. The

initial thermal fluctuation level for<((a¢/3x)2/8n> is less than 0.25 x

2

10 nOT(O)v.
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