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EFFECTS OF BEAT-WAVE ELECTRON TRAPPING ON 
STIMULATED RAMAN AND THOMSON SCATTERING 

Bruce I. Cohen* and Allan N. Kaufman 

Physics Department and Lawrence Berkeley Laboratory 
University of California, Berkeley, California 94720 

ABSTRACT 

The influence of electron trapping on a large amplitude plasma 

oscillation driven by the nonlinear interaction of two electromagnetic 

waves (stimulated Raman scattering) is studied analytically and by 

means of numerical simulation. When the plasma oscillation is resonantly 

excited to sufficiently large amplitude and electron trapping occurs, 

there ensues considerable modification of the electron velocity distribution 

function. The stimulated scattering ceases to be a resonant three-wave 

process but continues as induced scattering by resonant electrons (stim­

ulated Thomson scattering). 

* Present Address: Lawrence Livermore Laboratory, University of 
California 9 Livermore, California 94550. 
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In Section II, we shall review prior studies of three-wave decay, 

as they relate to the present work, and shall discuss our conclusions 

from our previous paper. 15 In Section III, we present the analytical 

theory associated with the nonlinear process under investigation. The 

electromagnetic waves and their coupling are adequately treated by a 

cold-fluid model, but the beat-wave response demands a fully kinetic 

treatment. Since the latter is not yet amenable to analytic solution, 

computer simulation is used to study the process. Section IV is devoted 

to a presentation of simulation results and to their detailed interpre­

tation. The final section summarizes our conclusions and discusses 

practical implications. 

II. Literature Survey 

Three-wave interactions are encountered in many branches of physics. 

Consequently, there is a large literature associated with the study of 

these processes. We shall draw attention to a number of papers 1- 38 which 

are relevant to the present discussion, but shall review Reference 15 in 

some detail because of its specific interest to this study. 

Much of the early work on stimulated scattering of electromagnetic 

waves has come from researchers in solid-state physics and nonlinear 

t . 1 -4, 20, 22 M l · h · · h op 1cs. any c ass1c papers on t ree-wave 1nteract1ons ave 

been written by workers in those fields. An apparently universal feature 

of these processes is the emergence of a Manley~Rowe condition. 22- 26 

Generally speaking, the Manley-Rowe condition can be formulated as a 

conservation law for wave action or quanta. Our present study illustrates 

• 
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I. Introduction 

The nonlinear processes known as three-wave decay and induced 

scattering are closely related. The present study shows how particle 

trapping can cause the former process to evolve into the latter. 

To be specific, we consider two electromagnetic plasma waves (w1, w2) 

subject to the decay process, whereby the ponderomotive potential at the 

beat frequency (wi - w2 :: w0) drives a Langmuir wave (w0 ::::::: wp), thereby 

inducing Raman decay.· This process has been extensively studied in many 

contexts, 1-14 but the waves have usually been treated as being of small 

amplitude. When one of the waves (the Langmuir wave) is of sufficiently 

large amplitude so as to trap electrons, the process is greatly modified. 

In a previous paper, 15 we developed analytical tools for interpreting 

computer-simulation results of the process, by considering the more 

tractable model where the electromagnetic-wave amplitudes were held fixed. 

Our conclusions from that study will be discussed in the following section, 

as an introduction to the present study in which. those amp 1 i tudes evo 1 ve 

appropriately from the nonlinear wave coupling. 

In the course of the three-wave decay, energy is deposited irreversibly 

into the plasma electrons by trapping. The consequent increase in electron 

kinetic energy and momentum changes the plasma response, at the beat 

frequency, from being a nearly resonant collective wave (resonance meaning 

w1 - w2 ::::::: wp) to being a non-collective particle resonance [w1 - w2 ::::::: 
-+ -+ -+ 

(k1 - k2) • v]. Such a response is sometimes described as a 11 quasi-mode, 11 

and the associated electromagnetic-wave evolution is called induced 

scattering. 5,16-19 
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how the wave action of two of the waves participating in a three-wave decay 

or induced scattering is conserved independent of the details of the 

dynamics of the third wave (Langmuir wave) or quasi-mode involved. The 

Manley-Rowe condition dictates important constraints on the energy and 

momentum transferred in these processes. 

The linear aspects of three-wave interactions and induced scattering, 

so-called parametric instabilities, have been recently reviewed in Reference 

21. A particularly comprehensive study of the parametric instabilities 

associated with the stimulated scattering of electromagnetic waves in a 

homogeneous, unmagnetize~ plasma appears in Reference 5. The calculation 

of the nonlinear aspects of three-waves interactions have evolved from the 

early considerations of Sagdeev and Galeev, 27 who described the cyclic 

behavior of three coupled modes in the absence of dissipation, to the use 

of the sophisticated inverse scattering method, 28 which has allowed the 
: . . 

space-time description of coupled convecting pulses. Recently, Reiman, 

Bers, and Kaup have extended the application of the latter method to the 

solution of coupled modes with no linear dissipation in an inhomogeneous 

medium. 29 

The three-wave decay ceases to be reversible when the waves. are subject 

to dissipation (or instability). There have been many interesting studies 

of the influence of linear dissipation on three-wave interactions in both 

homogeneous and inhomogeneous media. 9-l 2,JO,Jl The present work deals 

with a specific example of irreversible three-wave decay in which there 

is (nonlinear) dissipation owing to a wave-particle resonance and trapping. 

When the damping is severe the three-way interaction is described as 
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nonlinear Landau damping or induced scattering. 5' 16- 19 Litvak and 

Trakhtengerts, 16 Johnston, 18 and Johnston and Kulsrud19 have contributed 

important papers on induced scattering. The further decay of a decay-product 

wave can also provide the initial decay process a source of dissipation. 

This is called multiple scattering32 or cascading. 7 

Our own work7' 9,ll,l 2,l 5,38 in this area has been partially motivated 

by the possibility of using stimulated scattering as a means of heating a 

plasma with lasers. Beat heating a~d optical mixing have been areas of 

active research for some ti.me. 6-12 , 33-38 Reference 38 contains a review of 

research on various aspects of beat heating in homogeneous or inhomogeneous 

plasmas, and for linear and nonlinear beat-wave. The present study and 

Reference 15 are outgrowths of Reference 38, and address themselves to 

the. effects of trapped particles on beat heating. In Reference 38 are 

presented quantitative arguments supporting the possibility of electron 

trapping in plasma waves resonantly excited by the beating of co2 lasers 

in a e-pinch plasma. The present study and that of Reference 15 also 

analyze the more fundamental problem of driven nonlinear plasma waves. 

While there has been considerable study of nonlinear, freely propagating 

plasma waves, 39-41 much less attention has been given to the driven 

case.l5,42,43 

In order to follow the nonlinear orbit modifications of the electrons 

in their own self-consistent longitudinal fields, we have performed 

computer simulations describing the .evolution of the scattering. The 

authors of References 13,14, and 17 have also.numerically simulated the 

effects of trapping on induced scattering and Raman scattering. Litvak 
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Petrukhina, and Trakhtengerts studied the induced scattering of two , 

transverse waves by resonant particles. 17 Their numerical calculations 

exclude plasma collective effects, i.e., the self-consistent Coulomb 

potential is ignored. We include collective effects in our simulations 

by solving Poisson•s equation in order to examine Raman and induced 

scattering together. 

We also extend the work of References 13 and 14, in which electron 

trapping accounts for the nonlinear saturation of stimulated Raman 

scattering in uniform or nonuniform plasma. Our study differs 

in various respects. We have chosen the initial amplitudes of the 

electromagnetic waves to be comparable. This serves to immediately excite 

a large amplitude plasma wave which rapidly traps .electrons. We can 

therefore ignore ion effects which presumably occur on a much longer 

time scale. 38 We then follow the scattering over many bounce periods of 

the trapped electrons in order to examine the long-term evolution of the 

scattering process and the substantial modification of the electron velocity 

distribution function which occurs. 

This paper is the logical conclusion of our earlier study described 

in Reference 15. This earlier work focused on ~he nonlinear. plasma response 

to resonant excitation near the electron plasma frequency by a constant 

amplitude, finite-wavelength, external force. The exciting field represented 

a ponderomotive force, and the principal nonlinear feature of the plasma 

response was particle trapping. The nonlinear dielectric response of the 

plasma was described in terms of a nonlinear frequency shift and a dis-
-sipation rate. The effects of trapped particles were analyzed in detail. 
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In our simulations, we observed large negative frequency shifts and a 

time-dependent damping rate initi~lly in excess of that predicted by linear 

theory, both due to extensive trapping (Figures 2 and 4 of Reference 15). 

The frequency mismatch between the ponderomotive driving frequency and 

the nonlinear normal mode frequency gave rise to a modulation of the 

amplitude and phase of the plasma response. Particle trapping produced 

further modulation at a higher frequency, the trapped-particle bounce 

frequency. Energy and momentum conservation laws were presented which 

illustrated the relationships of the nonlinear phenomena. 

The present study extends the calculation of Reference 15 by including 

the self-consistent determination of the ponderomotive force for stimulated 

Raman and Thomson scattering. We shall analyz~ the evolution of the 

electromagnetic-wave amplitudes and the plasma modification by again utilizing 

the concept of a nonlinear dielectric function. We also introduce the 

hybrid simulation of the scattering, wherein coupled-mode equations describing 

the electromagnetic waves are combined with a one-dimensional electrostatic 

particle code. 44 

Many of the features observed in the simulations in Reference 15 are 

also found here. However, because the ponderomotive force is now calculated 

self-consistently and not held constant, ther~ is a finite amount of energy 

available to the electromagnetic waves and the plasma. We observe appreciable 

depletion of the higher frequency transverse wave and consequent plasma 

heating. Because of nonlinear effects, the excited electron plasma wave 

becomes heavily damped; and induced scattering supercedes Raman decay. Our 

results are thus particularly ~elevant to the understanding of trapping 

effects On beat heat,• ng7 -l 2 d t · 1 · · · f 1 1 an on op 1ca m1X1ng or use as a p asma- aser 
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1 "f" 45 amp 1 1er. Similar nonlinear effects should be important in schemes 

proposed for the generation of microwaves by relativistic electron 

beams46 ,47 and for the free-electron laser,48 which also employ. stimulated 

scattering processes. 

III. Theoretical Formulation 

For the sake of simplicity we consider an unmagnetized, uniform 

electron plasma of warm, ~obile electrons with a fixed, neutralizing ion 

background .. Furthermore, we treat the transverse wave amplitudes as 

spatially uniform and consider the development of the scattering in time 

only. The entire analysis may be generalized to a weakly inhomo~eneous 

plasma. 12 , 38 

We represent the electromagnetic waves, 1 i nearly po 1 ari zed in the 'y 

direction and propagating in the ±x direction, by their transverse oscillation 

velocities, 

with slowly varying amplitudes u1 and u2 of the two opposed transverse 

waves (w1 > w2); the wavenumbers satisfy the dispersion relation k2c2 ·= 

2 2 w - wp , where wp is the unperturbed plasma frequency. 

We cast the density perturbation in a beat representation 

on(x,t) = t n£(t)exp(-i£8) + c.c. = 

nl(t)exp(-iwot + ikox) + c.c. + ... 

where e = w0 t - k0x, w0 = w1 - w2 is the beat frequency, and k0 = k
1 

+ k2 
is the beat wavenumber. (Henceforth, we shall drop th~ subscript on. the 

amplitude of the fundamental.) The neglect of the density perturbations 

(2) 



-8-

at the sum frequencies (w1 + w2, 2w1, and 2w2) has been discussed in 

Reference 12. 

We adopt a cold fluid model 5' 12for the transverse velocity; 

the current density is thus jy(x,t) = uy{x,t)[n0 + on(x,t)]. The density 

perturbation on is not necessarily small compared to n0, and its calculation 

will be fully kinetic.· We follow Reference 12 and obtain from Maxwe11•s 

equations and the fluid dynamical equations 

2 du1/dt = -(i/2) (wp /w1) (n/n0) u2 

du 2/dt = -(i/2) (wp 2!~2 ) (~*/n0 ) u1, (3) 

where only ·slow temporal variations are kept in the nonlinear coupling 

terms. We note on the right sides of Equations (3) that the coupling 

strength is independent of n0, which cancels, and that ~may be arbitrarily 

large. Multiple scattering and the couplings to other transverse waves 

arising from the density perturbations at the harmonics of the beat 

frequency and beat wavenumber are ignored. We also neglect collisional 

damping throughout the analysis. 

We introduce ~0 (t), the slowly varying (complex) amplitude of the 

ponderomotive potential, 

- * ~0 (t) = (m/e)u1u2. 

The electron charge is taken to be e. The ponderomotive force associated 

with this potential is just the beat-frequency component of the longitudinal 
-+ -+ v x B force on the electrons due to the high frequency waves. The amplitude 

of the ponderomoti ve fie 1 d is given by E0 ( t) = -i ka~o ( t) . The ponderomoti ve 

force drives the density perturbations. 
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The wave-action density of each transverse wave is given12 by 

J = w(m/e) 2 1ul 2/2~, and the wave energy density is wJ. The conservation 

law for transverse-wave-action density is obtained directly from Equation (3) 

( 4a) 

Use of the continuity equation, 

-iw0e~(t) + ik0]x(t) = 0, 

(where Jx(t) is the slowly varying amplitude of the beat-wave current) 

yields the action transfer rate 

We introduce the wave-amplitude phases e defined by u - lulexp(-ie) and 

determine from Equation (3) the additional relation, 

-*-Jew = Re(en cp0), (5) 

for ow = de/dt, the nonlinear frequency shift of each transverse wave. 

Equations (4) and (5) are valid for linear or nonlinear density perturbations, 

and can be generalized to the case of a nonuniform magnetized plasma and 

to the inclusion of the spatial dependences and convection of the 

transverse-wave amplitudes. 12 

Conservation of transverse-wave action density implies that transverse-
-+ -+ 

wave energy and momentum densities, W = wJ and P = kJ, are not conserved. 

Their (non-)conservation laws are deduced from Equation 4b; 

(6) 

and 
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(7) 

Equations (6} and (7} state that the rate of energy and momentum lost 

or gained by the transverse waves equals the rate at which energy and 

momentum are deposited into or withdrawn from the plasma by the pondero-

motive force. 

We deduce from Equations (4}, (6), and (7) that the rate of action 

transfer, and hence of energy and momentum transfer, is zero when E0 and 

Jx (or n} are 90° out of phase. From Poisson•s equation for the self­

consistent potential, ~(x,t) = i ~1 (t)exp(-i1G)+ ~.c. = i(t}exp(-ie) + 

c.c. + ... ,we obtain¥= 4~ne/k02 and conclude that there is no action 
transfer when~ and ~O have a relative phase of 0° or 180°. There is then 

no momentum transfer nor work done by the ponderomotive force, .and the 

transverse waves acquire steady nonlinear frequency shifts as the conse-
-1 ~*-quence of the coupling: ow= J Re(en ~0 ). Any eventual steady state must 

be consistent with these conditions and relations. 

We have shown elsewhere15 that the (possibly nonlinear) dielectric 

response to the ponderomotive potential can be expressed as i(t) = 

[s-1(k
0

,w0 + idt) -1] ¢0(t). ~Je describe the plasma response to be 11 quasi­

steady11 when we can set d/dt = 0 in evaluating the dielectric function, i.e., 

dka,wo + idt) [ ;(t) + i 0 (t)] -r E:(k0, w
0

)[ cP + ; 0 ]· Use of the Poisson equation 

and the quasi-steady limit of the dielectric function in Equations (4) and 

(5) gives 
-1 fY 2 = Im(s )lEal 12~ (8) 

and 

(9) 

... 
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In the quasi-steady limit, the nonlinear dielectric function, 

evaluated near a resonance, is given approximately by 

E(k0,w0) ~ ~(wn1 )[w0 - wn1 ] ~ ~(wn1 )[h + iv], 

where the nonlinear eigenfrequency wn!' satisfies E(k0,wni) = 0, and 

( 10) 

~ ~ 8E/aw. The frequency mismatch hand the dissipation rate v are defined 

by h ~ w0 - Re wn
1 

and v ~ -Im.wn
1

. For weakly nonlinear waves, £(wn
1

) ~ 

2wp-1 if ko>-e << 1, where "e ~ v / wp is the e 1 ectron De bye 1 ength. The 

justification of the quasi-steady approximation in Equation (10) requires 

that lw0 - wn1 1 >> jd/dtj. 

We can use Equation (10) to express the right sides of Equations (8) 

and (9) as -(vwp/2h2)iE0 i2 /2rr and (wp/2h)jE0i2/4rr, respectively, for 

lvl<<lhl<< wp. It is evident that irreversible action, energy, and 

momentum transfer require finite dissipation in the plasma dielectric 

response. The reversible action transfer that three coupled linear normal 

modes exhibit (described by Sagdeev and Galeev27 ) does not occur here, 

because of heavy damping. However, if the dissipation of the density 

perturbation oscillates about zero, because of the bouncing of trapped 

particles, for example, the action transfer will also oscillate. Only if 

the dissipation asymptotically were to vanish, and the frequency shift 

to approach a finite value would action transfer cease. The transverse 

waves would then exhibit constant nonlinear frequency shifts also [Equations 

(5) and (9)]. 

We define the total response potential ~ as the sum of the Coulomb ~ 

and ponderomotive ~O potentials: 
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~(x,t) _ ~(x,t) + ~0 (x,t) = ~(t)exp(-iw0t + ik0x) + c.c. + 

In References 15 and 38 we have demonst~ated that the time-dependent 

complex eigenfrequency w can be constructed from a knowledge of ~(t) 
n~ 

and ~0 (t) by utilizing a Taylor series expansion of the nonlinear dielectric 

function. To lowest order in iw0 - wn~+ i(d/dt)i/lwn~l«l, we have 

obtained 

(11) 

The nonlinear frequency shift oQ = Re(wnR. - wR.) [the linear eigen­

frequency W~ iS determined from the linear dielectriC function: ER,(w~,k0 ) = 

0] and the nonlinear dissipation v = ImwnR. are deduced15 from the simulation 

results, using Equation (11) with c(wn~) ~ 2wp-l. Only for weakly nonlinear, 

freely propagating plasma waves, has perturbation theory been successfully 

used to analytically construct En~ an~ wn!' when to good approximation the 

wave amplitude could be assumed constant in calculating the perturbed 

particle orbits. 41 The phenomenon considered here is dominantly nonlinear 

and demands a fully self-consistent, non-perturbative description. This 

encourages the use of particle simulation, a discussion of which follows in 

the next se~tion.~ 
To further emphasize the degree of nonlinearity in the phenomena 

considered here, we formally integrate Equation (11): 

t t 
~(t) = ,..i j dt'~(t•r 1 ~0 (t')exp[i .J dt 11 6n~(t .. )j, (12) 

0 t• 
where 6n~ = w0 - wn

1
• The plasma response is secular near the resonance 

6n~ ~ 0; however, the interaction of the beat-wave potential ~0 (x,t) with 

the plasma is shifted away from resonance by the nonlinear electron 
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dynamics. There is induced a finite, complex-valued fln!l." Equation (12) 

describes the ensuing modulation of the total potential ~(t) at the 

mismatch frequency fln~· There is modulation also at the bounce frequency, 

if there is trapping. 15 ,41 When the nonlinear frequency shift or 

dissipation becomes appreciable in magnitude compared to the plasma 

frequency wp' the Taylor-series expansion leading to Equation (11) is no 

longer valid. 

When the three-wave decay becomes nonresonant we must re-examine 

the neglect of the density perturbations at the frequencies 2w1, 2w2, and 

w1 + w2 as compared to the low frequency-beat perturbation. The former 

perturbations have high phase velocities for which there are few resonant 

particles. Consequently, Im e: ~ 0 and Re e: ~ 1; the plasma response is 

essentially reactive. As these density perturbations contribute to the 

nonlinear transverse current, there are additional nonlinear couplings 

which are additive to the right sides of Equations (3-9). However, because 

the plasma response is reactive, these couplings only induce small frequency 

shifts in the transverse waves. 12 These shifts scale as lu/cl 2 and are 

therefore the same order as relativistic effects49 which have been ignored 

throughout. This justifies the continued neglect of the high frequency 

density perturbations. 

On the other hand, the low frequency beat-wave can continue to 

interact with the plasma in an interesting and significant fashion, even 

when electron plasma waves are no 1 onger resonantly excited. A wave-particle 

( ~ ~ ) -+ resonance remains accessible to the beat-wave: w1 - w2 = R1 - R2 ·v. When 

this resonance condition is satisfied by a large. number of electrons and 

the distribution function has finite slope at the resonant velocity, 
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stimulated Thomson scattering occurs. 5' 16- 19 Im sis then appreciable, 

and the plasma response is considerably resistive. In fact, the beat­

wave can be heavily damped, with action transfer continuing nevertheless. 

Therefore, in our simulations we have followed the temporal development 

of the scattering well into regimes in which the beat-wave is heavily 

damped. 

IV. Computer Simulations 

Numerical simulations were performed to investigate the back-reaction 

of trapping on the scattering of the transverse waves in a regime of non­

linearity where analytical perturbation theory fails. This regime41 

corresponds to v tw0/k0 ~ ve 2, where 

vt:: l2ei/ml 112 and ve = (T/m) 112. 

the trapping velocity vt is defined as 

The simulation plasma was taken to be 

periodic and initially uniform. The equations for the transverse~wave 

amplitudes, Equations (3), were adjoined to a one dimensional, electrostatic 

particle code44 (ESl}; integrations were performed forward in time, 

treating the stimulated scattering as a time-dependent initial value 

problem. At each time-step, the transverse wave amplitudes were incrementally 

changed according to Equation (3}, using a first-or.der Euler differenCing 

scheme. The ponderomotive potential ~0 (x,t) was then constructed, and the 

electron velocities and positions advanced using the gradient of the 

ponderomotive and self-consistent Coulomb potentials. Ions were treated 

as a fixed charge-neutralizing background. The self-consistent Coulomb 

potential was obtained from solution of Poisson's equation given the charge 

density. Finally, from the Fourier component of the density perturbation, 

at the beat wavenumber and frequency, the coupling of the transverse waves 

was calculated using Equation (3). 



0 .. - u·· ~J 7 ·~ 

-15-

By adjoining the coupled mode equations to an electrostatic 

simulation, there is then no restriction on the time-step of the inte-

gration due to the high fpequency waves, which would otherwise require 

that w1At << 1 in addition to wpAt << 1. In practice, the time step 

satisfied w At.;;;; 0.2. Energy, momentum and -action were all conserved p . 

within a few percent. 

This simulation scheme precludes the possibility of the two trans­

verse waves scattering further into any other electromagnetic waves. 32 

Immobilizing the ions prevents interactions of the transverse waves and 

the excited plasma wave with the ions, for example, the parametric 

decay of the electron plasma wave into another plasma wave and an ion 

acoustic wave. 50 Reference 38 describes the range of parameters for which 

electron trapping can occur well before parametric instabilities involving 

ions are significant. 

In our simulations, we chose the following parameters: 

wo = wp' wl = 5wp, w2 = 4wp' ul(O) = u2(0), and wolko = 3ve = c/9. 

This choice of beat-wave phase velocity relative to the electron thermal 

ve 1 oci ty causes the resonantly excited plasma wave to be weakly damped 

accordin~ to linear theory. However, with w0/k0 = 3ve there is a reasonable 

number of simulation particles at v ~ w0/k0 even with only a modest total 

number (4000) of simulation particles. The range of transverse wave 

amplitudes considered was 0.3.;;;; lu1(0)/vel.;;;; 0.9, which induced ponderomotive 

potentials of magnitude 0.09.;;;; le$0/TI .;;;; 0.9. 

Results typical of simulations exhibiting considerable trapping are 

shown in Figures 1-5. The (total) electric field response E = -(a/ax)~(x,t), 
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longitudinal phase space, and the longitudinal velocity distribution 

function are displayed in Figure 1 at wpt/2n = 6, 68, and 125. At early 

times there is a large amplitude response driven nearly in phase with 

the ponderomotive force (Figure la); longitudinal phase space has a hole 

centered over the bottom of the potential well (Figure lb); and the 

distribution function has a distended, nonmaxwellian tail for v ~ w0!k
0 

(Figure lc). At later times the electric field response and the pondero­

motive force are both weaker than at early times and out of phase. The· 

total potential well is not so deep as before, and the hole in phase space 

(related to the separatrix between trapped and untrapped electrons) is 

reduced. The distribution function is further deformed concomitant with 

the continued scattering. 

In Figures 2a and 2b are plotted the (real) amplitudes of the pondero-

motive potential and response, and their respective phases, as functions 

of time. The plasma response builds rapidly to a relatively large amplitude 

in a few plasma periods. Initially the phase of the response relative to 

the ponderomotive potential is n/2, which is the appropriate phase for a 

maximum rate of action transfer out of the high frequency transverse wave. 

Later in time, as a consequence of nonlinear effects, the response amplitude 

and phase are modulated dominantly on the time scale of the mismatch 

jw0 - wn£1~0. lwp as described by Equation (12). In addition, the response 

amplitude has superimposed a finer scale, more rapid oscillation at the 

directly observed bounce frequency of trapped electrons w~- 0.5 wp. (The 

phase-space trajectories of individual electrons were followed in the 

rest frame of the beat ·wave.) This bounce frequency is slightly less than 
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the standard bounce frequency of a deeply trapped particle w~ = k0vt' 

which is calculated from the time-averaged amplitude of ~(x,t). The 

tendency for w0t < wst was observed and discussed in Reference 15, and is 

consistent with pa·rticles not being trapped near the bottom of the 

potential well, for which the hole in longitudinal phase space is good 

. ( ) I I o s evidence Figure lb . Because w0 - wn£ << wt' wt there can exist 

trapped particles which respond more or less adiabatically to the modulation 

of the pote-ntial produced by the mismatch. However, particles near the 

separatrix do not respond adiabatically and are observed to suffer recurrent 

trapping and detrapping. 

The ponderomotive potential, as well as the response, oscillates on 

the mismatch and trapping time scales, due to the reaction of the density 

perturbation back on the coupling of the transverse waves according to 

Equation (4). However, the oscillations of ~0 (t) are of lesser degree 

than for ~(t). The general decrease of l~ol is due to.depletion of the 

high frequency transverse wave. After the early period of considerable 

action transfer and strong plasma response, the relative phase e- e0 
oscillates fairly steadily but with large excursion (± n/2) around zero 

with frequency ·approximately equal to the mismatch lin£ (t). One recalls 

' from Equation (4) .that a relative phase of zero corresponds to no action 

transfer, and ±n/2 corresponds to relative extrema of the action transfer 
- -

rate for fixed IE0 1 and ljxl· 

In Figure 3 are shown the nonlinear frequency shift oQ and the total 

dissipation rate vas deduced using Equation (11). Initially the damping 

rate far exceeds the linear Landau damping rate, v
2
/w = 0.03. In the 

p . 

small amplitude limit, only resonant particles (v- w0/k0) contribute to 
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the damping of the wave~ However, when the wave amplitude is finite, 

the resona~ce width is broaden~d. The nonlinear damping can be quite 

large depending on how'much of the velocity distribution function is 

resonant and the relative preponderance of resonant particles with 

velocities v < w0!k0. :This phenomenon has been observed in experiments 

and simulations, and understood theoretically. 51 As our simulation 

progresses the dissipation exhibits fairly large oscillations around zero 

at the mismatch frequency and smaller, more rapid variations at the 

trapping frequency w~. The frequency shift also exhibits modulation 

effects and is negative in keeping with the presence of trapped particles. 41 

A detailed discussion of the time dependence of the deduced frequency shift 

and dissipation rate, and its relation to .the modulation and trapped-particle 

effects, is contained in Refe.rence 15. · 

Later in the simulation, we observe a general increase of the mismatch 

lw0 - wn
2

1, and hence decrease of li/;0!. This is closely related to the 

continued deformation of the velocity distribution function as implied by 

momentum and energy conservation laws, Equations (3) and (4) of Reference 15. 

The conservation laws illustrate the dependences of the nonlinear dissipation 

on the mOmenta of the resonant electrons, and of the nonlinear frequency 

shift on their kinetic energy. The deduced frequency shift and dissipation 

are riot shown past wp t/2TI = 25 in Figure 3 because of the breakdown of the 

expansion procedure leading to Equation (11) when the (complex-valued) 

frequency mismatch is large. At this point, the electronplasma wave 

ceases to be resonantly excited; but action transfer continues as a nonlinear 

form of induced Thomson scattering. Many particles satisfy the condition 
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w1 - w2 ~ (R1 - ~2 )·V, i.e., w0 ~ k0v, and have orbits which have been 

strongly perturbed. Over a trapping region v = (w0!k0 ~ ± vt' the distri­

bution function has finite, time-dependent slope (see Figurelc). Late in 

time, when not much action is transferred on average, the sign of the slope 

and the direction of action transfer oscillate. 18 ,19 

In Figure 4 appear the amplitudes and phases of the threa i~teracting 

waves u1, u2, and n as functions of time. As described earlier, the 

amplitude of the density perturbation oscillates principally at the 

mismatch frequency and also at the trapping frequency w~. It.decreases 

in magnitude due to dissipation, the increase of It- n 1 and the. decrease of . n.x. 

the ponderomotive potential. The phase of the density perturbation seems 

to be modulated at the mismatch frequency and not significantly15 at w~. 

The slowly varying wave phase e2 is fairly constant over the duration 

of the simulation, but e1 is significantly modulated at the frequency 

Ret.nt once there is much less wave action associated with it [see Equations 

(5) and (9)]. 

The energy of the higher frequency transverse wave depletes by 

approximately 90%, and the energy transfer is essentially complete 

after fifteen Langmuir oscillation periods (wpt/ 2n = 15). Although the 

action transfer is rapid, it nevertheless occurs over many trapped-particle 

bounce periods, viz. eight periods (w0tt/2n ;_ 8). Hence, the stimulated 

scattering does not immediately terminate with the onset of trapping. 13 , 14 

On· the bounce time scale, the amplitudes lu1 I and lu21 have slight variations 

in accordance with Equations (4) and (8). 
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The relative energy transfer (from the w1-wave) to plasma oscillations 

and longitudinal kinetic energy is given by 0.9 (w0/w1) = 0.9 (1/5) = 

0. 18. This 18% of the higher frequency transverse-wave energy deposited 

in the plasma results in a five-fold increase of the plasma thermal energy 

relative to its initial value. Very little energy ends up in a coherent 

oscillation (BGK wave). The action transfer ~J/J 1 (0) ~ 0.9 also accounts 

for a relative momentum transfer to the plasma k0~J/k 1 J 1 (0) ~ 1.8, and the 

plasma acquires a longitudinal_ drift velocity equal to 1.2 ve(O). 

The spatially averaged longitudinal kinetic and electric field 

energy densities are displayed in Figure 5 as functions of time up to 

wpt/21T = 40. Accompanying the excitation of the large amplitude electron 

plasma wave and transfer of action early in the simulation is a large 
., 

increase in plasma kinetic energy, which soon exceeds the field energy 

by more than an order of magnitude. Although there is significant damping 

of the longitudinal field energy, it remains well above the thermal 

fluctuation level. [For our one-dimensional simulation plasma, the 

fluctuation level is reduced by the use of finite-sized particles to a 

value which is given initially by <(a~/ax) 2/81T/ < (NAe/L)-1n0T(0)/2 ~ 
-2 ( 0.25 x 10 n0T 0), where N is the number of simulation particles (4000) 

and Ae/L ~ 0.05 is the ratio of the initial Debye length to the length of 

the plasma]. For later times not shown in Figure 5, the field energy 

density continues to slowly decrease and the kinetic energy very slightly 

increases. Both continue to exhibit some modulation. 

The disparity between the longitudinal field energy and the kinetic 

energy demonstrates that the ponderomotive force of the transverse waves 

·-
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deposits most of the available energy into the plasma and not into 

long-lived plasma waves. The mechanism for this is furnished by the 

early onset of trapping and the associated damping with a rate in excess 

of the linear rate. One might have expected a significant fraction of 

the energy to end up in-a large amplitude BGK wave. This would seem 

especially likely in the case studied here, because our choice of the 

fundamental wavelength of the simulation for the beat-wave has precluded 

the sideband instability, a favorite mechanism for the break-up of BGK 
52 waves. Nevertheless, there is no evidence of a BGK wave late in time 

in our simulations. 

In other simulations different values of the initial transverse wave 

amplitudes or frequencies were chosen. Large wave amplitudes tended to 

shorten the time scales for the onset of nonlinear effects without 

qualitatively altering the physical phenomena. By altering the choice 

of the wave frequencies, the linear mismatch frequency w0 - wt was varied. 

For weaker transverse wave amplitudes the nonlinear phenomena were more 

sensitive to the linear mismatch, i.e. trapping and efficient energy/momentum 

transfer to the plasma demanded smaller mismatch frequencies for smaller 

ju1 I and ju21 so that stimulated Raman scattering would be more nearly 

resonant. On the other hand, for. larger values of.ju1 1 and ju21 trapping 

effects and the rate and amount of irreversible action transfer were less 

sensitive to the linear mismatch. 

We have observed, both here and in the simulations described in 

Reference 15, the approximate constancy in time of'the observed trapping 

frequency w~, despite the significant modulation of and the general decrease 

in the amplitude of the plasma wave. This has also been observed in many 
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simulations and experiments in which the propagation of a single large 

amplitude electron plasma wave has been studied. 53 A decrease in the 

depth of the potential well ought to reduce the trapping frequency, 

w~~1~1 112 . In our simulations this seems to be counterbalanced by the 

falling of the trapped electrons toward the bottom of the potential well, 

which is evidenced by the filling in of the hole in phase space (Figure lc). 

IV. Summary 

Our simulations of Raman scattering have exhibited extensive electron 

trapping and deformation of the velocity distribution function, relatively 

large nonlinear frequency shifts and dissipation, considerable energy and 

momentum transfer, and a transition to induced Thomson scattering. By use 

of coupled-mode equations for the electromagnetic waves and a ponderomotive 

potential to describe their nonlinear interaction, together with a standard 

one-dimensional electrostatic particle code, economically efficient and 

conceptually simple simulations were performed on the electron plasma wave 

time scale. 

Various nonlinear effects due to electron trapping were observed and 

interpreted self-consistently in the longitudinal field response, the 

nonlinear frequency shift and dissipation, and the reaction of the density 

perturbation back on the coupled transverse waves. The simulations have 

demonstrated the application of a prescription for analyzing the nonlinear 

dielectric response proposed in Reference 15, which we have found useful 

in understanding the self-consistent interplay of the nonlinear effects. 

We have derived general relations, Equations (4) and (5), describing 

stimulated Raman and Thomson scattering in terms of wave-action transfer . 

. -
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and nonlinear frequency shifts. We have found in simulation that an 

electron plasma wave can be resonantly excited to large amplitude and 

then can nonlinearly shift its normal mode frequency. The interaction 

of the transverse waves with the plasma wave is thus shifted away from 

resonance. The ponderomotive beat-wave can directly resonate with 

particles, and much of the energy in the higher frequency transverse wave 

can thus be rapidly depleted. We conclude from our computer simulations 

that the plasma can absorb most of the available energy as kinetic energy 

with only a small fraction residing in the longitudinal electric field. 

The lower frequency transverse wave is amplified consistent with the 

conservation of transverse-wave action. 

Our simulations thus support the contention that the ultimate 

efficiency of plasma beat-heating and plasma-laser amplification is 

limited only by the Manley-Rowe relation. Hence, our present results 

concerning the effects of electron trapping on stimulated Raman and 

Thomson scattering are encouraging for these practical applications. How-

ever, the continued stimulated backscattering of laser light after the 

onset of trapping may be discouraging for laser-fusion. 

NOTICE 

"This report was prepared as an account of work 
sponsored by the United States Government. Neither 
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Figure Captions 

Figure 1. Simulation of the resonant response of a maxwellian electron 

plasma [thermal speed ve = (T{m) 112] to a ponderomotive plane-:-wave driving 

force, of frequency w0 (chosen equal to wp) and phase velocity w0!k0 
(chosen equal to 3ve), induced by the v x B coupling of two opposed electro­

magnetic waves with ,oscillation velocity amplitudes u1 and u2 (chosen 

initially equal to 0.2 w0!k0 = 0.6 ve). Initially the linear normal mode 

frequency is Re w
2 

= 1.17 wp' and the linear Landau damping rate is 

-Im w2 = 0.03 wp. The transverse waves have frequencies w1 = 5wp and 

w2 = w1 - w0 = 4wp. For a typical simulation, we exhibit at wpt/2n = 

6, 68, and 125 the following: 

(a) the longitudinal driving field E0 = -acp0/ax and the total longitudinal 

field E = -a~/ax as functions of x, in natural units; 

(b) the longitudinal electron phase space; 

(c) the longitudinal velocity distribution, with different ·scales and 

arbitrary units. 

Figure 2. For the simulation in Figure 1, shown as functions of time are 

(a) the magnitudes of the total and ponderomotive potentials in natural 

~... units, e<P/(mv~ ) and ecp 0/(mv~) where vcp = w0/k0, 

(b) their respective phases e and e0, defined by 

~(x,t) = ~(t) cos (w0t- k0x +e) and cp0(x,t) = cp 0(t) cos (w0t- k0x + e0). 

Figure 3. For the simulation in Figure 1, shown schematically as functions 

of time (up to wpt/2n = 25) are 
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(a) the deduced nonlinear frequency shift a~= Re(wn~- w~), with the 

linear mismatch~~= w0 - w~ indicated·for reference; 

(b) the nonlinear dissipation rate v = -Im wn~· 

Figure 4. For the simulation in Figure 1, shown as functions of time 

are 

(a) the magnitudes of the coupled-mode amplitudes iu1 l/v~,Ju2 l/v~, and 

lnl/no where v~ = wo/ko; 

(b) their respective phases e1, e2, and en. 

Figure 5. The spatially averaged longitudinal kinetic and field energy 

densities, (nmv~/2) and ({a~/ax) 2 /8n), 

vs. time {up to wpt/2n = 40) for the simulation shown in Figure 1. The 

initial thermal fluctuation level for({a~/ax) 2/8n) is less than 0.25 x 

10-2 n0T(O). 
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