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A Monte Carlo Method for Generating Side Chain Structural Ensembles
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We present a new Monte Carlo side chain entropy (MC-SCE) method that uses a physical energy function

inclusive  of  long-range  electrostatics  and  hydrophobic  potential  of  mean  force,  coupled  with  both

backbone  variations  and  a  backbone  dependent  side  chain  rotamer  library,  to  describe  protein

conformational ensembles. Using the MC-SCE method in conjunction with backbone variability, we can

reliably  determine  the  side  chain  rotamer  populations  derived  from  both  room  temperature  and

cryogenically  cooled  X-ray  crystallographic  structures  for  CypA and  H-Ras  and  NMR  J-coupling

constants for CypA, Eglin-C, and the DHFR product binary complexes E:THF and E:FOL. Furthermore,

we  obtain  near  perfect  discrimination  between  a  protein’s  native  state  ensemble  and  ensembles  of

misfolded  structures  for  55  different  proteins,  thereby  generating  far  more  competitive  side  chain

packings for all of these proteins and their misfolded states.
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INTRODUCTION

Anfinsen’s thermodynamic hypothesis(Anfinsen, 1973) states that the native protein ensemble resides in a

global minimum free energy basin that defines its functional state whether it be binding, catalysis, or

signaling.  This  has  been traditionally  interpreted as  a  free  energy basin  dominated by  O(~1) unique

conformations, an interpretation heavily influenced by X-ray crystallographic protein structures that have

proven to be invaluable for providing functional insight. Nonetheless, the perspective of considering just

one native conformation opposes evidence that proteins are highly flexible(Kohn et al., 2010), especially

at  the  level  of  backbone  displacements(Friedland  et  al.,  2008) that  aid  side  chain  packing

rearrangements(Fenwick et al., 2014; Moorman et al., 2012; Schnell et al., 2004; Tzeng and Kalodimos,

2012). For example, new analysis of weak electron density features in X-ray crystallographic data has

shown that a large percentage of PDB structures have alternate rotameric side chains(Lang et al., 2014;

Lang et al., 2010). Furthermore, X-ray crystallographic structures that are cryogenically cooled also tend

to overemphasize a level of uniqueness in native state structures that are too small and overpacked, and

miss important catalytic side chain conformers that are present in room temperature crystallographic data

(Fraser et al., 2009; Fraser et al., 2011). 

The  thermodynamic  manifestation  of  conformational  flexibility  is  encompassed  in  entropic

effects(Baldwin and Rose, 2013), with statistical fluctuations of side chain packing arrangements playing

a  dominant  role.  NMR  groups  have  made  quantitative  progress  on  equating  Lipari-Szabo  order

parameters, S2, to conformational entropy for both the backbone and side chains(Fenwick et al., 2014; Lee

et  al.,  2000;  Mittermaier  et  al.,  1999;  Stone,  2001).  For  example,  NMR  experiments  on

calmodulin(Frederick et al., 2007) and CAP(Tzeng and Kalodimos, 2012) proteins have shed light on this

‘residual’ free energy arising from the alternate conformations a side chain can take. A good percentage of

side chains were found to have the side chain order parameter in the range 0.3<S2<0.7 which indicates

that  these  side  chains  may  be  populating  alternate  rotameric  wells  on  the  nanosecond-microsecond
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timescale,  although  the  fast  motions  measured  by  S2 are  not  always  probing  side  chain  rotamer

transitions(Tuttle et al., 2013). Instead, three bond J-coupling constants  3JCγN  and 3JCγCO  that report on χ1

dihedral  angle  fluctuations  in  the  broad  picosecond-millisecond  timescale  have  enabled  quantitative

estimation of different rotamer populations in solution(Tuttle et al., 2013). In addition, recent work using

relaxation experiments have also highlighted the dynamic nature of side chains up to the millisecond, and

longer, timescale (Farès et al., 2009; Henzler-Wildman et al., 2007). 

Although it is true that the conformational flexibility of an unfolded protein compared to a folded

protein is increased,  numerical studies have shown that the number of possible ways of packing side

chains on the backbone of a folded protein is by no means small or unique. Zhang and Liu reported that

the total number of self-avoiding (i.e. with just hard sphere interactions) side chain conformations for the

17-residue protein 1ebx is of the order of 1011 (Zhang and Liu, 2006),  and this number would be expected

to be larger for larger proteins. However theoretical approaches for sampling the low energy alternative

side  chain  arrangements  of  a  protein  is  a  difficult  problem,  and  while  molecular  dynamics  (MD)

simulations give  a  good description of  side  chain  conformational  change on the  nanosecond to  sub-

microsecond level(Li and Brüschweiler, 2009), the experimental estimates indicate that the timescales are

much longer. While it is true that distributed computing paradigms such as Folding@Home (Shirts and

Pande, 2000) and special purpose hardware like the Anton computer  (Shaw et al., 2008) can reach the

millisecond  timescale  for  MD,  we  assert  that  computing  the  side  chain  populations  and  the

thermodynamic entropy for tens to hundreds of native proteins and hundreds of their misfolded states, ad

we have done in this study, is well beyond a comfortable scale for MD even using these two powerhouse

computing platforms. 

Therefore  to  circumvent  the  sampling issues  imposed by MD,  many groups have  resorted to

advanced Monte Carlo (MC) schemes(DuBay and Geissler, 2009; Friedland et al., 2008; Zhang and Liu,

2006) which are designed to more exhaustively sample the Boltzmann weighted populations of side chain
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conformations of the protein on the NMR timescale of ns to ms or even longer. In this work we develop a

new MC approach for calculating side chain entropy (SCE) by introducing several new features that make

our  MC-SCE  method  more  quantitative  compared  to  past  efforts,  including  a  better  convergent

Rosenbluth sampling scheme(Rosenbluth and Rosenbluth,  1955),  the  use of  an  augmented Dunbrack

library(Shapovalov and Dunbrack, 2011), a very robust physics-based energy function(Lin et al., 2007;

Lin  and  Head-Gordon,  2008,  2011),  and  side  chain  rotamer  sampling  on  an  ensemble  of  backbone

structures. 

Here we use our MC-SCE algorithm to generate ~20,000 different side chain packings for native

X-ray  crystal  backbones,  and  the  same  number  for  perturbations  to  the  backbone  using  short  MD

simulations and so-called “backrub motions” by Friedland et al.(Friedland et al., 2008), for 60 different

proteins. As a first test of our MC-SCE algorithm, we use it to quantify the side chain rotamer populations

on backbones derived from cryogenically cooled (CC) and room temperature (RT) X-ray crystallographic

structures for CypA, and the Ser99Thr mutant (Fraser et al., 2009) and for H-Ras(Fraser et al., 2011). We

also compare directly to NMR J-coupling data for CypA(Fraser et al., 2009), Eglin-C(Clarkson et al.,

2006),  and the  DHFR binary complexes of E:THF and E:FOL  (Tuttle  et  al.,  2013).  We find overall

excellent agreement across the full range of X-ray and NMR data. Finally we consider alternative rotamer

packings for 55 native proteins and each of the hundreds of misfolded structures from a difficult Rosetta

set  that  exhibit  near-native  features  in  their  backbone  fold(Tsai  et  al.,  2003).  We use  our  MC-SCE

approach to  provide  the  thermodynamic  functions  of  energy (enthalpy),  side  chain  entropy,  and free

energy to discriminate the native state of a protein from its misfolded states. This large validation suite

shows that we can nearly perfectly discriminate between a protein’s native state ensemble and ensembles

of misfolded structures, and provide for an even more competitive decoy set with better optimized side

chain packings. 
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RESULTS

Overview. We present results below based on a new and more robust MC side chain growth method to

evaluate side chain entropy, MC-SCE, to estimate structural ensemble properties of proteins. Details are

given in the Methods section, but the important points are highlighted here to better present the following

results. Backbone structures are provided by either an X-ray crystal structure or a given backbone from a

misfolded decoy library. Additional backbone variability on these starting structures is introduced in two

independent ways: through so-called “backrub motions”  (Friedland et al.,  2008),  which lead to  small

backbone RMSD with respect to the crystal structure of ~0.1-0.7 Å, and from snapshots generated from a

thermalized  molecular  dynamics  simulation  with  explicit  solvent  that  lead  to  slightly  larger  RMSD

changes of ~0.6-1.3 Å. 

Given these different backbones, the side chains atoms beyond the Cβ position are stripped away,

and then all are regrown using the MC-SCE algorithm to generate an ensemble of ~20,000 different side

chain packings, allowing us to evaluate both the side chain entropy at each residue position and rotamer

populations. Table S1 provides the definition of the side chain dihedral angles sampled. One of the key

features of this work is the use of well-tested physics-based energy function based on Generalized-Born

electrostatics and a hydrophobic potential of mean force (Lin et al., 2007; Lin and Head-Gordon, 2008,

2011) to perform the Boltzmann weighting, and which is used to define the potential energy rank of all

20,000  structures.  Here  we  demonstrate  our  ability  to  reliably  reproduce  and  predict  the  side  chain

rotamer  ensembles  of  the  following class  of  problems:  (1)  cryo-cooled  vs.  room temperature  X-ray

crystallography for CypA and H-Ras, (2) both X-ray and NMR data taken on CypA, Eglin-C and the

product  binary  complexes  of  DHFR,  E:THF and  E:FOL,  and  finally  (3)  native  vs.  misfolded  state

discrimination using a difficult Rosetta decoy set. All components of the MC-SCE approach (including

the energy function) have been implemented into our in-house version of the TINKER(Ponder, 2009)

software package.  As an example of the cost of the MC-SCE method,  we can generate  a side chain
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ensemble of CypA (164 residues) with 20,000 structures in ~12 hours using an MPI implementation that

distributes  work  across  16  cores;  this  timing  uses  our  in-house  computing  cluster  with  the  AMD

Opteron(TM) Processor 6274 (2.2 Ghz) cores.

Comparison with X-ray crystallography and NMR for CypA and H-Ras. Recently, Fraser et

al. found population shifts in side chain rotamer states when comparing X-ray structures obtained under

cyro-cooling vs. room temperature crystallization conditions for the proteins CypA (Fraser et al., 2009;

Fraser et al., 2011). Given that the backbone differences between the CC and RT structures are negligible

(RMSD ~ 0.1 Å), a good test of our MC-SCE algorithm would be to determine if we can predict the major

and minor side chain rotamer populations that are reported in the CC and RT crystallographic data for

CypA and H-Ras. 

Experiments on CypA showed that alternate side chain conformations for Arg55 and Met61 were

found with RINGER in the CC data, and additional side chain rotamer changes were evident for Leu98,

Ser99  and  Phe113  in  the  RT  data,  helping  to  explain  the  catalytically  competent  and  incompetent

conformations of the active site  residues  (Fraser et  al.,  2009).  Table 1 reports  the CC and RT X-ray

experimental χ rotamers and their populations and the corresponding MC-SCE values for WT CypA and

the Ser99Thr mutant. The MC-SCE calculations were done on the CC backbone, as well as an average

over  two  RT  backbones  based  on  so-called  major  and  minor  conformers  reported  for  the  room

temperature crystal structure (RT-M or RT-m). The 20,000 structures of the generated side chain packing

ensemble for each backbone allow us to report MC-SCE population percentages. We also averaged over

the 20,000 side chain ensembles generated for each backbone relevant to RT backbone variations: two

backrub  ensembles  of  10  structures  each  based  on  the  starting  RT-M  and  RT-m  backbones,  and  3

backbones generated from MD snapshots at  0.2 ns,  2.0 ns and 4.0 ns.  For side chain conformations

predicted from the MC-SCE algorithm, the χ rotamers were binned as is done conventionally with bin

centers on 60°, 180° and -60.
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When performed on the  CC X-ray  backbone,  our  MC-SCE method predicts  the  same major

conformer for residues Leu98(χ1), Phe113(χ1), Arg55(χ3), and Met61(χ2), as well as detecting the minor

rotamer states for the latter two residues that was found from the RINGER analysis of weak electron

density features.  When performed on the RT X-ray backbone, our MC-SCE method also predicts the

major and minor conformer for all four same residues. Furthermore, we determined an increase in SCE

(using Eq. 7) when going from the CC to RT backbone as was observed in (Fraser et al., 2011), in which

the RT backbone allows for greater conformational flexibility of the side chains. Even better agreement

with reported X-ray rotamer populations is found with a thermalized backbone (i.e. side chains grown on

backrub and MD backbone ensembles) for these same residues as shown in Table 1. We also perform our

MC-SCE calculations on the Ser99Thr mutant, which through active site interactions stabilizes the minor

rotamers for Phe113(χ1), Arg55(χ3), and Met61(χ2) compared to the WT form, which is exactly what we

observe in our simulations (Table 1).

In all cases, regardless of method for creating the backbone, we do not predict the 180° rotamer

for Ser99(χ1), and we do not find the same 180° dominant rotamer for the Thr99(χ1) mutant (although we

do predict it as a minor conformation). One possibility is that the energy function, and possibly the use of

an implicit solvent model for water,  accounts for this discrepancy, although our energy function with

implicit  solvent  has  been extensively validated(Lin et  al.,  2007;  Lin and Head-Gordon,  2008,  2011).

When we perform MD with explicit solvent using the CC crystal as the start state, the 180° rotamer flips

to the 60° rotamer and maintains that value for the entirety of the simulation run. Hence the very different

energy functions and sampling methods (implicit vs. explicit solvent and MC vs. MD) favors an alternate

rotamer to the major rotamer seen experimentally. Therefore we believe that overall the energy function

used with MC-SCE is performing well.  The fact that  we are able  to  correctly  predict  the change in

rotameric states for Phe113(χ1), Arg55(χ3), and Met61(χ2) when going from WT to the SerThr99 mutant

for CypA, indicates that the adoption of the 180° rotamer at position 99 for WT and mutant CypA is not
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necessary, suggesting that we are seeing a similar cooperative network effect among residues that were

analyzed in the NMR relaxation experiments(Fraser et al., 2009).

To provide for better contact with NMR solution data for CypA and the Ser99Thr mutant, Table 2

reports  3JCγN and  3JCγC values evaluated from our MC-SCE ensemble populations and compared to the

same experimentally measured values for various aromatic residues(Fraser et al., 2009). We evaluated our

J-couplings using the Karplus equation parameterization values found in both (Schmidt 2007) and (Tuttle

et al.,  2013), and they are also reported in Table 2.  To put the comparison in some context,  we also

calculate  the  difference  between  the  experimental  J-coupling,  

J XY
(i,exp)

and the  average  scalar  coupling

calculated from a given MC-SCE structural ensemble,  

J XY
(i)

for each residue (Eq. (9)), normalizing it by

the uncertainty of the Karplus parameters and any experimental error, to generate  J
2 values (Eq. (10)).

We use a conservative uncertainty value due to the Karplus equation of  J = 0.5 Hz for both types of

scalar couplings, estimated from the difference in calculated J-couplings using the two Karplus equation

parameterizations  that  use  the  same  underlying  structural  ensemble.  Any  dominant  error  due  to  the

underlying structural ensembles themselves would then correspond to values of  J
2 > 1.  Our calculated

deviations are 2
JCγN =0.53 and 2

JCγC =0.99 indicating that the underlying structural ensembles are sound.

As such, we also observe a change in J-coupling values for Phe113 which confirms a switch in rotameric

state from 60° to -60° as per the experiment.

Table  3  reports  the  CC and RT X-ray  crystallographic  and MC-SCE generated  side  chain  χ

rotamers  and  their  populations  for  H-Ras.  Again,  the  MC-SCE  calculations  were  done  on  the  CC

backbone  and  its  backrub  variation,  and  the  20,000  structures  of  the  generated  side  chain  packing

ensembles allow us to report MC-SCE population percentages. However the RT variations of the reported
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9 individual side chains involved more than two rotameric states, and in combination would result in a

large combinatorial number of RT crystal backbones that are inconvenient for performing the backrub

motions. Instead we represent backbone variability using 3 MD snapshots at 0.2 ns, 2.0 ns and 4.0 ns to

analyze the higher temperature data, given its consistency with backrub motions for CypA and for the

Rosetta data sets described further below. 

When performed on the CC X-ray backbone, or its backrub variant, our MC-SCE method predicts

the  same  major  conformer  for  residues  Asp30(χ1),  Glu62(χ1),  Ser65(χ1),  His94(χ1),  Val103(χ1),

Arg97(χ3), Glu98(χ2), and Gln99(χ2), with the only exception being Gln61(χ2) in which the MC-SCE

algorithm predicts it to be a minor ( up to 25%) population. What is most interesting is that the MC-SCE

method using the CC backbone can also determine the minor side chain conformation detected in the RT

crystal structure for Glu62(χ1), His94(χ1), Val103(χ1), Arg97(χ3), Glu98(χ2), as well as Gln61(χ2) which

samples all three rotameric states. This suggests that the cryogenic backbones are not completely deficient

for accommodating alternate rotamers,  but apparently their electron density features are either far too

weak to detect, or possibly that crystalline contact interactions favor certain rotamers. The MD results are

also interesting, showing the time evolution of the rotamer populations for these residues as the backbone

varies, flipping between the major and minor rotamer states. 

However,  although  the  MC-SCE  does  predict  the  major  conformer,  it  does  not  predict  the

alternative rotamer preference observed in the RT X-ray data for either Asp30(χ1) or Ser65(χ1) on any

backbone. Given that these residues are surface residues,  they may be more prone to crystal packing

artifacts that bias the populations of a particular rotamer class. Figure 1 shows that there are stabilizing

interactions for these two residues with the surrounding lattice that favor the RT major rotamer that is

experimentally observed; in particular Asp30 interacts with arginine and Ser65 shows very close approach

to  glutamic  acid.  Since  we  do  not  represent  the  crystal  lattice,  these  favorable  hydrogen-bonding
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interactions would not be present, and thus would not preferentially stabilize the experimentally observed

RT major rotamer.   

Comparison to NMR data for Eglin-C, E:THF, and E:FOL. We next analyze the MC-SCE

approach against solution-based NMR scalar coupling constants 3JCγN and 3JCγC generated by Clarkson et al

on Eglin-C (Clarkson et al., 2006) and by Tuttle and co-workers for the DHFR binary product complexes

E:THF and E:FOL  (Tuttle  et  al.,  2013).  To calculate  the scalar coupling constants,  we again use the

standard Karplus equation, Eq. (8), with Karplus parameters from (Tuttle et al., 2013).  Figures 2 shows

the  agreement  between  the  experimental  coupling  values  and  the  generated  from  the  MC-SCE

ensembles, taken on both the CC and MD backbones, for C-Eglin. The overall J
2 values for 3JCγN is 0.36

and for 3JCγC is 0.84 on the CC backbone, and these values change to 2
JCγN=0.20 and 2

JCγC=1.44 on the

averaged molecular  dynamics backbones,  indicating that the structural  ensembles are  in overall  good

agreement with the rotamer populations for the 12 residues. Table S2 in the Supplementary materials

provides a more detailed rotamer assignment for Eglin-C, and we note that although our J-coupling values

for  two  of  the  residues,  Thr  17  and  Thr  26,  are  in  excellent  agreement  with  the  experimental

measurements,  we  do  not  agree  with  the  experimental  study  in  the  assigned  rotameric  populations,

suggesting that the experimental rotameric populations may be flawed. 

We  next  consider  the  J-coupling  constants  for  E:THF  and  E:FOL,  requiring  us  to  develop

parameters for the bound ligand on which the NMR data was taken; the introduction of the ligand means

that we can’t generate backrub ensembles from the server(Friedland et al., 2008), and hence we use MD

data to provide for backbone variations. Figures 3 and 4 show the agreement between the experimental

coupling  values  and  the  generated  from  the  MC-SCE  ensembles,  taken  on  the  averaged  MD

J XY
(i)

J XY
(i)
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backbones, for the E:THF complex and E:FOL complex, respectively. The overall  J
2 values on the CC

backbone is small (2
JCγN = 0.45 to 0.64) for both proteins, while the deviation in  3JCγC is larger when

measured on the MD generated backbones (2
JCγC = 2.71 to 3.06). The large J

2 value for the 3JCγC coupling

for E:THF is due to genuine disagreement for what is the major rotamer for only three residues: Val40,

His114, Thr123, although for His114 we find it to be a minor rotamer instead (Table S3). For the DHFR

complex E:FOL we again find disagreement for the major rotamer for two residues: Val10, Val40, and

Thr123. It is noteworthy that Val40 and Thr123 are among one of the few residues that have different

major rotamers in the multiple DHFR complexes studied in (Tuttle et al., 2013). 

For E:THF the MC-SCE structural ensembles show overall very good agreement across 46 of the

49 residue  NMR measurements,  with  2
JCγN = 0.65 and  2

JCγC =  1.62,  in  which the  major rotamer is

correctly selected for all of these residues. For E:FOL the MC-SCE structural ensembles show overall

very good agreement across 20 of the 22 residue NMR measurements, with 2
JCγN = 0.23 and 2

JCγC = 1.33,

in  which the  major rotamer is correctly selected for all  of  these  residues.  Problems in the  structural

ensembles that gives rise to disagreement with the 3JCγC  measurement for the two protein complexes are

due to differences in the assignment of the minor rotamer for a smaller subset of residues, i.e. no minor

rotamer detected, detected with a much smaller population, or assignment of a different minor rotamer

state (Table S4). 

Discrimination of native folded vs. misfolded states.  Given the very good agreement between

X-ray and NMR data and the MC-SCE ensembles,  we next test  our ability for selecting native state

structures when compared to  the 2007 Rosetta decoy set(Qian et  al.,  2007) generated by the popular

fragment assembly folding program ROSETTA(Leaver-Fay et al., 2011). We define a traditional energy

rank,  Esingle, as the energy of the  provided side chain packing on a given backbone which is either the

native X-ray PDB structure or the Rosetta decoy structures. Next we consider a free energy rank, F, based

on ensembles of alternative side chain packings for the given backbones for all 55 native proteins and



Protein Structural Ensemble Characterization                                                                                                 12

misfolded structures using our MC-SCE method that evaluates the side chain entropy. This free energy

function is defined as

F  Ebest TSSC    (1)

where Ebest is the structure whose side chain packing for a given backbone (native or decoy) is the lowest

energy in the generated ensemble, and –TSSC is the temperature weighted side chain entropy (Eq. (7) in

Methods). We also judge the quality of these thermodynamic metrics through calculation of a Z-score, the

free energy (or Esingle or Ebest) difference between the native state quantity and the same quantity averaged

over the misfolded states. A larger value of the Z-score signals better separation of the native structure

from the misfolded conformers. All detailed data is reported in Table S4 in the SI material, in order for us

to highlight the important points here.

The traditional rank based on our physics-based energy function,  Esingle, does a very good job of

discrimination of the given native state from all of the members of a given decoy set, in which 40/55

proteins are ranked 1st with a Z-score of -3.76 for this subset (-2.95 over all proteins). Our energy function

comfortably outperforms many recent popular statistical potentials like DFIRE(Zhou and Zhou, 2002)

(21/58), DOPE(Shen and Sali, 2006) (21/58), and EPAD(Zhao and Xu, 2012) (34/58), and is competitive

with other reported energy functions like EPAD2(Zhao and Xu, 2012) (46/58) and PM6  (Faver et al.,

2011) (49/49). 

However,  the  free  energy  is  the  true  thermodynamic  quantity,  and  given  that  our  MC-SCE

algorithm can generate an ensemble of side chain conformer packings, we compare the native side chain

ensembles and the respective decoy ensembles, based on the evaluation of the free energy, F, using Eq.

(1).  Using  the  free  energy  thermodynamic  metric,  the  absolute  native  state  discrimination  improves

modestly to 42/55 natives identified (Z-score for natives of -3.62),  with the Z-score over all proteins

improving slightly to -3.07. Even so, for 8 proteins whose native states were not selected, the ensemble F

rank improved native state ranking, significantly in most cases, compared to using Esingle: 1ail (rank 62 to
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3), 1c8c (rank 47 to 2), 1enh (rank 81 to 13), 1hz6 (rank 7 to 3), 1rnb (rank 93 to 89), 1utg (rank 94 to 75),

1vcc  (rank  4  to  2),  1ubi  (rank  9  to  5),  while  1pgx  and  1dhn  were  2nd ranked  by  either  single  or

thermodynamic ensemble metrics (Table S4). A breakdown of the free energy shows that selection of the

native conformation using the F rank is largely driven by Ebest, since the Z-score based on the side chain

ensemble best energy alone is lowered to -3.94 for all native states selected, and -3.27 over all proteins.

This clearly indicates that the original native PDB structure and provided Rosetta misfolded structures

have not optimized side chain arrangements for the given backbone. Furthermore, these lower energy side

chain packings  are  providing sharper  discrimination  of  folded vs.  misfolded states.  These  results  are

consistent with a number of recent studies that have shown that weak features in the electron density maps

from X-ray protein crystallography support alternate  side chain packings that differ from the original

reported side-chain rotamers  (Fenwick et al., 2014; Fraser et al.,  2011; Lang et al., 2014; Lang et al.,

2010; Tyka et al., 2011). 

In order to push toward better native state discrimination, we also considered additional ensemble

characterizations involving the native state backbone, with the expectation that small perturbations to the

backbone might allow for new side chain rotamer packings. These backbone changes may remove overly

unique side chain rotamer states that arise from cryo-cooling (Fraser et al., 2009; Fraser et al., 2011), as

well  as  crystal  contacts,  oligomeric  packing,  or  ligand-binding  interactions(Tyka  et  al.,  2011).  For

example, 1ail has been crystallized as a dimer, while 1c8c has a bound peptide, and thus are illustrative of

perhaps why many of their decoys, generated independently from the original crystallization conditions

but with near-native features, are energetically better than the crystallized native state (Tyka et al., 2011).

Therefore to  test  how the  backbone perturbations  influence the  free energy ranking,  we used

backrub motions  (Friedland et al.,  2008) that minimize repositioning of the backbone, but which can

drastically affect side chain rotamer populations due to reorientation of the Cβ atoms, for the 13 proteins in

which  the  native  state  was  not  selected  or  very  poorly  predicted  by  the  free  energy  function.  We
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performed backrub motions on the X-ray backbone for each of these proteins, generating 10 different

backrub structures. We then removed the side chains atoms beyond the Cβ position for each, and then used

our MC-SCE approach to generate side chain packing ensembles, in order to calculate thermodynamic

rankings using Ebest, and the free energy F, and their corresponding Z-scores (Table 4). In addition we also

do  the  same  MC-SCE  procedure  for  backbones  derived  at  the  end  of  a  short  molecular  dynamics

simulation in  explicit  water at  ambient temperature and pressure as an independent way to relax the

crystalline constraints of the X-ray native structure. In both cases the native backbones were found to

change by a little less than 1.0Å RMSD compared to their PDB structure, on average. The relative RMSD

of the final thermalized native backbone with respect to the decoy set was unchanged on average, i.e.

making the decoys no more or no less competitive for determining the native state ensemble. 

The  resulting  drastic  improvement  in  ranking 53/55  proteins  native  states  are  now  well

distinguished from the misfolds suggests that the initial failure of the free energy to identify the native

state cannot be attributed primarily to the limitation of the energy function or MC-SCE sampling protocol.

Instead, the small changes in backbone flexibility, consequences of which were also examined by Tyka

and co-workers(Tyka et al.,  2011), highlights the sensitivity of SCE to subtle effects of the backbone

configuration, which improved the discrimination for 11 of the 13 problematic proteins. Since the native

state  is  selected  for  in  ~96%  proteins  of  the  best  available  Rosetta  decoy  set,  considered  to  be  a

challenging test of any new sampling method, statistical potential, physical force field or scoring function,

MC-SCE appears to provide an excellent standard for native state prediction. Two proteins for which we

did not discriminate for the native were 1hz6 (whose rank remained 3rd whether using the PDB or MD

backbone) and 1utg (whose 75th native rank with the PDB structure rose to 10th with the backrub motions),

and would require more careful consideration of available NMR data.

In  order  to  check  the  similarity  between  the  best  energy  native  structure  in  our  free  energy

ensemble with the deposited PDB crystal structure, the χ1 torsional angles between the 2 structures were
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compared for each of the 55 proteins we analyzed. A residue was said to have had a change in torsional

angle if the absolute value of their difference exceeded 40°, which is similar to the convention adopted by

Bower and co-workers(Bower et al., 1997), and the fraction of the total residues that changed the χ1 angle

is listed in the final column of Table S4. On an average, our MC-SCE algorithm found an alternate χ1

dihedral angle in the best free energy native structure compared to the crystal structure 25% of the time,

consistent with the ~18% of alternate side chain rotamers on reexamination of electron density from 402

high resolution X-ray crystal structures(Lang et al., 2010). Since Lang and co-workers only considered

unbranched  side  chains  in  their  electron  density  analysis,  as  well  as  ignoring  density  fitting  with

combinations of χ1, χ2, χ3 etc., it would likely explain the quantitative discrepancy with what we have found

since we considered all residues and the full rotameric set of χ values for any given amino acid. Figure 5

shows the typical distribution of side chain entropy on the 2CHF PDB backbone, where the side chain

conformations that showed most variability did not exclusively select surface residues, but core positions

as well.

CONCLUSIONS

In summary, we have introduced a new MC-SCE algorithm for generating side chain packing ensembles,

allowing us to predict side chain rotamer populations and side chain entropy, which we have compared to

extensive  data  sets  from both  NMR and X-ray  crystallographic  experiments.  We have  validated our

approach by making direct contact with X-ray crystallography and NMR data on side chain rotamer

populations for CypA and its  Ser99Thr mutant(Fraser et  al.,  2009),  HRas(Fraser et  al.,  2011),  Eglin-

C(Clarkson et  al.,  2006),  and the  DHFR complexes  E:THF and E:FOL  (Tuttle  et  al.,  2013).  For  all

proteins  we  find  overall  excellent  agreement  of  rotamer  values,  their  populations,  and calculated  J-

couplings when compared to crystallographic data and with NMR experimental J-couplings. 

We  have  shown  that  the  side  chain  populations  measured  depend  significantly  on  the  given

backbone structure, and hence our MC-SCE technique is aided by introducing small deviations (~1.0 Å
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RMSD)  from  the  crystallographic  backbone  structures  using  both  backrub  motions  and  thermalized

explicit solvent molecular dynamics simulations. For the case of CypA and its Ser99Thr mutant we found

all of the major and minor rotamers of all reported residues except for Ser(Thr)99. However, it had no

discernable influence on our successful ability to predict the Phe113 catalytic rotameric state for WT as

well as stabilizing the minor rotamers for Phe113(χ1), Arg55(χ3), and Met61(χ2) in the active site of the

mutant form(Fraser et al., 2009). 

For the protein H-Ras,  we found that we can detect the minor or alternate  rotamer state  of a

sidechain when the ensemble is generated on the CC backbone and its backrub variants, although the

experimental density is only evident in the RT X-ray data(Fraser et al.,  2011). In addition, we do not

observe the same minor rotameric states that are experimentally found for Asp30 and Ser65. In both cases,

i.e. our ability to detect new rotamers on the CC backbone or observing alternate minor rotamers to that

found in the RT data, can be explained by the fact that the surrounding crystal lattice is not present in our

approach.  Previous work has shown that  stabilizing packing interactions often arise  from polar-polar

interactions  with  the  surrounding crystal  lattice,  and thus  can  influence  the  experimentally  observed

rotamer populations(Dasgupta et al., 1997). We found that such specific interactions with the surrounding

lattice are present for Asp30 and Ser65, for example, and hence would not be predicted with our MC-SCE

approach that instead represents aqueous solution conditions.

We have also compared our MC-SCE rotamer populations to those estimated from solution phase

NMR data. Our calculated agreement with scalar coupling measurements for CypA, C-Elgin, and the two

DHFR complexes E:THF and E:FOL were found to be overall excellent. The calculated scalar couplings

using our MC-SCE method was well within experimental and Karplus parameter uncertainty for 3JCγN for

all four proteins, and for 85-100% of residues for the  3JCγC measurement across the four data sets. The

primary error for the E:THF and E:FOL complexes was the failure to predict the major rotamer for Val40
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and Thr123, although these same residues were found to sample alternate rotameric states in the full series

of DHFR complexes(Tuttle et al., 2013). 

Finally,  we have  a  highly  reliable  method for  discrimination  of  native  states  from misfolded

structures based on a difficult Rosetta decoy set. One consequence of our MC-SCE algorithm is that we

find better side chain rotamer and packing representations of both the native state and the decoy set. This

can be quantified for the decoy set by the Z-score between the PDB structure, i.e. the single backbone and

side chain rotamers of the X-ray structure, and the Ebest from the decoy set ensembles, which shrinks to –

2.77. We have provided this new decoy set, Berkeley-SC-Ensemble, which we have made available at our

web site http://thglab.berkeley.edu. It also includes the ensemble of new side chain packing arrangements

on native PDB backbones that will be of interest to X-ray crystallographers and NMR groups. 
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MATERIALS AND METHODS

We introduce a new and more robust MC chain growth method to evaluate side chain entropy, MC-SCE,

to estimate structural ensemble properties of proteins. We use an augmented Rosenbluth chain growth

algorithm(Batoulis  and  Kremer,  1988;  Rosenbluth  and  Rosenbluth,  1955;  Zhang  and  Liu,  2006) to

generate an ensemble of side chain packings for a given (and fixed) protein backbone. The algorithm

starts with a PDB file of the enzyme, and all the side chain atoms, except the C atom, and any existing

water molecules are eliminated. Backbone mobility is provided by a decoy library, backrub motions, or

captured during a MD simulation. The side chain ensemble that can populate a provided bare backbone is

then realized by growing side chains of each residue in a sequential manner with dihedral angle inputs

from  a  backbone  dependent  rotamer  library(Shapovalov  and  Dunbrack,  2011) to  approximate  the

http://thglab.berkeley.edu/
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continuous nature of side chain dihedrals. We have augmented the rotamer library selection based on

probabilities of occurrence in the PDB and by allowing for dihedral angle variations that are Gaussian

distributed about a given rotamer value. All of the χ1 and χ2  torsional angles of all residues, except for

arginine and lysine, were expanded by including a standard deviation, resulting in 3 values, χ i and χi ± σ.

After expansion,  all  the rotamers were further perturbed by about 0.5° to  place them optimally with

respect to the backbone. This is necessary because of the sensitivity of the energy function to  slight

changes in the protein that could distort statistics and increase the number of dead end chain growths. In

our model, alanine and glycine have no dihedral degrees of freedom and hence no side chain entropy, and

all residues are grown with ideal bond lengths and angles. 

From the initial condition (step 0) of a bare backbone conformation m, for subsequent steps i, we

develop a MC scheme whereby the residue k that has the lowest side chain partition function 

Qk  e
Ek

(m,k)

{k}


       (2)

is considered for the next side chain growth. For residue k, a side chain conformation νk is defined by the

resulting set of dihedral angles selected from the rotamer library, i.e. (χ1, χ2, ….). Each side chain rotamer

rk is selected according to the following probability 

                                          

k
(m,rk) 

Prk
(pdb)e

Ek
(m,rk)

Pk
(pdb)e

Ek
(m,k)

k 


                     (3)

where {νk} are the possible side chain conformations for residue k,  Ek
(m,rk)

is the energy of interaction of

side chain k with the backbone and all protein side chains grown so far using Eq. (3) only, and Prk
(pdb)

 is

the probability of the side chain conformation calculated using the values reported in the recent backbone-

dependent Dunbrack library(Shapovalov and Dunbrack, 2011). The reason for including this knowledge
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based  Prk
(pdb)

 is to guide the growth process especially early on when very few side chains have been

placed and to minimize picking rotamers which are known to occur infrequently in the PDB database;

conformations with probability less than 0.001 in the library were ignored.  Once the side chain of a

residue is placed, the process is repeated until all the side chains are grown, thereby creating one complete

protein  structure.  This complete  chain  growth procedure  for  one  N-residue  enzyme structure  is  then

repeated ~20,000 times to give an ensemble of structures. Each structure  m is then assigned a weight

W(m) in order to get correct statistics in the canonical ensemble. 

W(m)  eFsolv

Pk
(pdb)e

Ek
(m,k)

{k}


Prk

(pdb)
k1

N


(4)

This is defined on the basis of our chain growth probabilities as well as now including the Boltzmann

factor using the GB-HPMF implicit solvent model(Lin et al., 2007; Lin and Head-Gordon, 2008, 2011).

When the chain growth is unsuccessful because of unresolvable clashes, the partially grown structure is

considered dead and its weight is set to zero. 

The side chain entropy of a given residue k is evaluated using the Gibbs probabilistic definition of

entropy.

S(k)  kB pk
(k)

{k}

 log pk
(k)

(5)

where the probability pk
(k)

 of a conformational state νk of residue k is calculated using the weights of the

structures in the ensemble

pk
(k) 

W(m)rk,k
(m)

m1

M



W(m)
m1

M


(6)
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The sum in Eq.  (6) is over all  of the successful structures grown by the Rosenbluth procedure.  The

Kronecker delta  is 1 if  the side chain conformation  rk that was picked for the residue  k in  the m-th

structure is νk and 0 otherwise. The weights of each structure ensure that the probabilities are Boltzmann

weighted. The total side chain entropy of a protein is calculated by summing over the individual entropy

values

SSC  S(k)

k

# residues


                                             (7)                

NMR  J-coupling  calculations:  Three-bond  J-coupling  values  between  the  Cγ atom  and  the

backbone carbonyl carbon (3JCγCO) and amide nitrogen (3JCγN) of the same residue can be calculated using 

                               (8)

where θ represents the dihedral angle between atoms (Y-Cα-Cβ-X). The Karplus parameters (A,B,C,δ) are

amino-acid specific and were taken from the original experimental sources. For Valine, 3J values for only

Cγ1 have been reported in this paper.

The J-coupling value,  for residue k in the m-th structure of our side chain ensemble was

calculated from Eq. (8). These values were then used to calculate the average J-coupling value with 

                                                  (9)

where W(m) are the weights given in Eq. (4). We also calculated χ2 values defined as

                                             (10)

J XY  Acos2 ( )Bcos( )C

J XY
(k)(m)

J XY
(k)


W(m)

m1

M

 J XY
(k)(m)

W(m)
m1

M



XY
2  1

N
(J XY

(i)
 J XY

(i,exp))2

 i
2

i{k}

N


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where N is the number of residue measurements taken. We have assumed that the primary source of

experimental  uncertainty is the Karplus parameters themselves;  we assume an average uncertainty of

=0.5 Hz given the differences found for these same scalar couplings for CypA. 

Rosetta decoy set calculations. The single side chain native structure (the PDB) and the provided

Rosetta decoy structures (with a given side chain arrangement) undergo local optimization, and are sorted

in ascending order based on their  energy in order to  determine the  Esingle rankings.  These  minimized

structures are then stripped of their side chains beyond the C position, and 20,000 alternate side chain

packings with no steric clashes (which signals a failed chain growth) are generated on the native backbone

and each Rosetta decoy backbone. The lowest energy structure for each ensemble is then minimized (to

relax residual geometric artifacts arising from the fixed bond and bond angles assumed in the MC-SCE

sampling using the rotamer library), and these minimized native and decoy structure for each protein are

sorted in ascending order based on their energy in order to determine the  Ebest rankings. The side chain

ensemble of structures generated for each backbone, native or decoy, shows a Gaussian distribution of

energies, and we define the side chain entropy of the protein, SSC in Eq. (7), based on Boltzmann weighted

structures, Eq. (6), with energies below two standard deviations from the mean energy. We find that this

subset of ~200 structures typically underestimates the entropy by ~5-10%, but since it is systematically

applied across the protein and decoy sets, it suffices for this study. 
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TABLES

Table 1. X-ray crystallographic and MC-SCE generated side chain  rotamers for active site residues of
CypA.  Experimental  rotamer  populations  (Fraser  et  al.,  2009) are  the  occupancies  reported  in  the
deposited PDB files for CypA and mutant (CC: 3k0m, RT: 3k0n, Ser99Thr: 3k0o). In certain cases, the
minor rotamer was identified in the CC structure using the software Ringer (Lang et al., 2010). MC-SCE
calculations were done on the backbone of the cryo-cooled structure (CC) as well as an average over the
backbone conformers M and m reported for the room temperature crystal structure (RT-M and RT-m).
MC-SCE calculations were also performed on a RT backbone ensemble comprised of backrub motions
and MD simulations (RT ensemble). 

CypA X-ray 
Population

MC-SCE population using CC, 
RT, and Ensemble backbones

CypA Mutant 
Ser99Thr

Res  Class CC RT CC 
backbone

RT (M, m)
backbone 

RT 
ensemble

X-ray RT MC-SCE
RT

Leu98
(χ1)

60
180 100.0 63.0 100.0 50.0 57.5 100.0 19.0
-60 37.0 50.0 42.5 Ringer 74.7

Ser99 (Thr99)
(χ1)

60 37.0 50.0 22.4 Ringer 44.3
180 100.0 63.0   100.0 3.8

-60 100.0 50.0 77.6 51.9
Phe113
(χ1)

60 100.0 63.0 100.0 50.0 75.0
180
-60  37.0 50.0 25.0 100.0 100.0

Arg55
(χ3)

60 3.5 17.3
180 100.0 63.0 78.6 45.2 53.0 Ringer 25.3
-60 Ringer 37.0 21.4 51.3 29.7 100.0 74.7

Met61
(χ2)

60 40.0 37.0 1.8 0.7 9.0 100.0 83.5
180 60.0 63.0 98.2 99.3 91.0 1.3
-60 15.2

Table 2: J-coupling data for CYPA calculated using MC-SCE on the cryo-cooled backbone of wild type
CYPA (3k0m) and Ser99Thr mutant (3k0p). The experimental values are taken from(Fraser et al., 2009).
Two sets  of Karplus parameters have been used to generate  the MC-SCE scalar couplings:  (Schmidt
2007) CC(S),  and  (Tuttle  et  al.,  2013),  CC(T).  Using either parameters,  we observed a  change in  J-
coupling values for Phe113 which confirms a switch in rotameric state from 60° to -60°. 

WT Ser99Thr

Residu
e

3JCC(Hz) 3JNC(Hz) 3JCC(Hz) 3JNC(Hz)
Exp
t

CC 
(S)

CC 
(T)

Exp
t

CC 
(S)

CC 
(T)

Exp
t

CC 
(S)

CC 
(T)

Exp
t

CC 
(S)

CC 
(T)

Phe25 3.6 3.91 4.36 0.8 0.36 0.37 3.7 3.91 4.37 0.7 0.36 0.37
Tyr79 3.3 3.78 4.39 1.0 0.44 0.42 3.4 3.79 4.40 0.7 0.41 0.41
Phe88 3.6 3.91 4.41 0.8 0.39 0.37 3.3 3.92 4.39 0.5 0.39 0.37
His92 3.6 4.22 5.06 1.0 0.57 0.47 3.9 4.22 5.06 1.2 0.57 0.51
Phe113 1.1 0.43 0.38 0.9 0.51 0.41 2.8 3.9 4.41 0.8 0.46 0.39
Phe145 3.3 3.91 4.39 0.9 0.36 0.37 3.5 3.91 4.38 0.2 0.44 0.37
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Table 3. X-ray crystallographic and MC-SCE generated side chain  rotamers for active site residues of
H-Ras.  Experimental rotamer populations are the occupancies reported in the deposited PDB files (CC:
1ctq, RT: 3TGP). In certain cases, the minor rotamer was identified using the software Ringer (Lang et al.,
2014; Lang et al., 2010). MC-SCE calculations were done on the cryo-cooled backbone (CC), backrub
ensemble of the cryo-cooled backbone (BR-CC) as well as on RT MD snapshots generated at 0.2, 2 and 4
ns time points to incorporate backbone flexibility. 

H-Ras X-ray Populations MC-SCE using 
CC backbone

MC-SCE using RT MD 
backbone

Res  Class CC  RT  CC BR-CC 0.2ns 2.0 ns 4.0 ns
Asp 30
(χ1)

60 55.0
180 100.0 45.0 100.0 58.3 90.0 100.0 50.0
-60 41.7 10.0 50.0

Glu 62
(χ1)

60 1.5
180 100.0 7.7 41.6 24.2 66.7

-60 100.0 92.3 58.4 100.0 74.3 33.3
Ser 65
(χ1)

60 100.0 88.5 50.0 65.2 9.1 66.7
180 100.0
-60 11.5 50.0 34.8 90.9 33.3

His 94
(χ1)

60 100.0 48.0 61.6 50.0 11.6 7.6 100.0
180 52.0 34.6 50.0 88.4 22.7
-60 3.8   69.7  

Val 103
(χ1)

60 Ringer 1.5
180 38.0 38.5 58.3
-60 100.0 62.0 61.5 41.7 100.0 98.5 100.0

Gln 61
(χ2)

60 66.0 23.1 25.0 1.5
180 100.0 34.0 3.8 25.0 30.4 90.9 66.7
-60 Ringer 73.1 50.0 68.1 9.1 33.3

Arg 97
(χ3)

60 Ringer 3.8  97.1 1.5  
180 100.0 100.0 96.2 83.3 0.0 98.5 100.0
-60  16.7 2.9   

Glu 98
(χ2)

60  16.7 10.2 7.6  
180 100.0 80.8 75.0 73.9 1.5 83.3
-60 100.0 19.2 8.3 15.9 90.9 16.7

Gln99
(χ2)

60 Ringer  8.3  39.4  
180 100.0 100.0 84.6 83.3 92.7 54.6 66.7
-60 15.4 8.3 7.3 6.1 33.3



Protein Structural Ensemble Characterization                                                                                                 27

Table  4. Thermodynamic  rankings  and  Z-scores  of  the  native  X-ray  structure  and  MD  and
Backrub(Friedland et al., 2008) relaxed backbones. 
Protein RMS

D (Å)
Ebest 
Ran
k 

Ebest 
Z-score

F 
Rank

F 
Z-
score

Protein RMSD
(Å) Ebest 

Rank
Ebest 
Z-score

F 
Rank

F 
Z-score

1ail 0.00 9 -1.22 3 -1.73 1pgx 0.00 3 -2.29 2 -2.23
Backru

b 0.26 1 -2.01 1 -2.33
Backru

b 0.70 1 -3.08 1 -3.22
MD 1.13 1 -3.58 1 -3.36 MD 1.13 1 -2.72 1 -2.71

1c8c 0.00 3 -2.01 2 -2.34 1rnb 0.00 90 1.18 89 1.17
Backru

b 0.33 3 -2.22 1 -2.59
Backru

b
0.73

1 -3.87
1

-3.87
MD 0.56 3 -2.35 1 -2.96 MD 1.23 1 -4.07 1 -4.01

1dhn 0.00 2 -2.40 2 -2.01 1ubi 0.00 10 -1.23 5 -1.38
Backru

b 0.41
1 -3.47 1 -2.82 Backru

b 0.35 1 -2.66 1 -2.46
MD 0.94 1 -3.70 1 -3.34 MD 0.68 1 -2.92 1 -2.66

1enh 0.00 14 -1.03 13 -1.02 1utg 0.00 81 0.94 75 0.73
Backru

b
0.31

1 -2.66 1 -2.47
Backru

b 0.56 10 -1.29 10 -1.24
MD 0.60 1 -2.44 1 -2.32 MD 1.29 15 -0.99 26 -0.78

1gvp 0.00 21 -0.81 18 -1.04 1vcc 0.00 3 -1.99 2 -2.06
Backru

b 0.65 1 -3.57 1 -3.67
Backru

b 0.26 1 -3.38 1 -3.20
MD 1.14 1 -4.04 1 -3.86 MD 0.85 1 -3.77 1 -3.60

1hz6 0.00 3 -2.03 3 -2.22 1vls 0.00 75 0.45 98 2.11
Backru

b 0.04 7 -1.76 6 -1.86
Backru

b 0.93 1 -2.16 1 -1.81
MD 0.68 3 -2.11 3 -2.27 MD 1.02 1 -3.39 1 -2.58

256b 0.00 1 -2.07 3 -1.65
Backru

b 0.42 1 -2.81 1 -2.32
MD 1.31 1 -4.02 1 -3.57
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FIGURE CAPTIONS

Figure 1. The PDB backbone and crystallization conditions  for  H-Ras.  The residues represented are

Asp30 (olive) and Ser65 (orange). They are important catalytic residues studied for H-Ras in which both

the  cryogenically  cooled structure  (1CTQ)(Scheidig et  al.,  1999) and the  room temperature  structure

(3TGP)(Fraser et al., 2011) were crystallized with a bound GTP ligand bound (purple). MC-SCE could

not predict the major rotamer reported in the room temperature crystal structure for these 2 residues. The

meshes represent the crystal elements nearby as reported in the room temperature crystal structure(3TGP).

The figure was generated using the PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger,

LLC. 

Figure 2. J­coupling constants (a) 3JCγN and (b) 3JCγCO for Eglin-C. The red symbols are the experimental

data from  (Clarkson et al., 2006). The blue symbols are calculated from the MC­SCE ensemble using

backbones from molecular dynamics and the Karplus parameterization from (Tuttle et al., 2013).

Figure 3. J­coupling constants (a) 3JCγN and (b) 3JCγCO for the DHFR binary product complex E:THF. The

red symbols are the experimental data from (Tuttle et al., 2013). The blue symbols are calculated from the

MC­SCE ensemble using backbones from molecular dynamics and the Karplus parameterization from

(Tuttle et al., 2013).

Figure 4. J­coupling constants (a) 3JCγN and (b) 3JCγCO for the DHFR binary product complex E:FOL. The

red symbols are the experimental data from (Tuttle et al., 2013). The blue symbols are calculated from the

MC­SCE ensemble using backbones from molecular dynamics and the Karplus parameterization from

(Tuttle et al., 2013).

Figure 5. The PDB native backbone of  the Mg2+-bound form of CheY(Stock et al., 1993) (2CHF). The

regions colored red are the side chain positions where alternate rotameric states was found by the MC-

SCE algorithm compared to the PDB side chain packing. It is notable that side chain repacking occurs for

both interior and surface residues. The Figure was generated using Chimera(Pettersen et al., 2004). 
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