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Universal cognition in the context of resources and goals
Steven Phillips (steven.phillips@aist.go.jp)

National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Ibaraki, 305-8566, Japan

Abstract
The classical (symbol system) theory of cognition is supposed
to explain systematicity—the coexistence of cognitive abilities.
However, the classical theory does not explain why cognitive
systems should be symbolic, nor why cognition sometimes fails
to be systematic, so the symbol system assumption is seen by
some as ad hoc: motivated only to fit the data. A mathematical
theory is presented as a framework towards addressing these
questions in terms of the available cognitive resources and the
intended goals. A cognitive system is supposed to be resource-
dependent and goal-driven. Accordingly, systematicity, or lack
thereof follows from a universal construction principle (in a
category theory sense) in this context—systems of symbols
arise (or, fail to arise) as the “best” possible mapping given the
available resources and the intended goal.
Keywords: systematicity, language of thought, symbol system,
category theory, category, universal construction

Introduction
The classical (symbol system) view of cognition is motivated
by a need to explain systematicity properties (among other
things): why certain cognitive abilities coexist, e.g., having
the ability to understand the expression John loves Mary and
infer that John is the lover in this relationship coexists with
having the ability to understand the expression Mary loves
John and infer that Mary is the lover in that relationship (Fodor
& Pylyshyn, 1988). Such situations are supported by systems
of symbols so that the syntactic relations between constituent
symbols are consistent with the semantic relations between
corresponding constituent entities, i.e. a language of thought
(LoT, Fodor, 1975). Structurally related abilities coexist when
they are realized by the same structure-consistent processes.
Causal relations among corresponding physical states are sup-
posed to underwrite inferential relations among the symbolic
representations—LoT is realized in the form of a physical
symbol system (Newell, 1980), like a programming language
by a computer, hence LoT is a representational/computational
theory of mind (Wilson, 1999).

Although LoT was not intended to explain all forms of
cognition, recent proponents argue that LoT-like properties
in other (non-linguistic) forms of cognition show that LoT is
still the “best game in town” for explanatory coverage (Quilty-
Dunn, Porot, & Mandelbaum, 2023). However, classical the-
ory does not explain why cognition should be symbolic, nor
why cognition sometimes fails to be systematic, which some
see as ad hoc (Aizawa, 2003)—classical theory assumes only
“canonical” (symbolic) constructions that support evidential

systematicity properties and none others (McLaughlin, 2009).
Yet, such assumptions are characteristically ad hoc in being
unconnected to the core principles of the theory and only mo-
tivated to fit the data (Aizawa, 2003), which was the same
kind of problem raised against neural network theory (Fodor
& Pylyshyn, 1988; Fodor & McLaughlin, 1990).

An alternative, category theory (Awodey, 2010; Leinster,
2014) approach says that systematicity is a consequence of
universal construction (Phillips & Wilson, 2010). Category
theory affords a (meta)mathematical framework for theories
and models of cognition: a category (system) consists of a
collection of entities called objects (states), and a collection
of directed relations between objects called arrows (processes
or relations between states), also called morphisms or maps,
and an operation that combines arrows to form arrows called
composition (of processes, etc.) that together satisfy certain
laws. A category provides the context in which certain objects
and arrows are universal, in a formal sense that all objects
and arrows in that context are composed from the universal
ones (Leinster, 2014). Universal constructions act like global
optima in the given contexts, which affords a procedure for
determining such constructions (Phillips & Wilson, 2016), in
contrast to the ad hoc account of simply assuming them.

This approach does not explain systematic failures, how-
ever, beyond not obtaining a universal construction (Phillips
& Wilson, 2016). In an experiment specifically designed to
test the universal construction principle, some participants
consistently failed to induce the common structure in a series
of cue-target learning tasks (Phillips, Takeda, & Sugimoto,
2016). Post-test reports indicated that some participants did
not notice any pattern across the task instances, in which case
they did not show above chance prediction of targets for novel
cues, in contrast to participants who did observe a common
pattern. Another possibility is that participants did not deem
it necessary to induce the common structure, i.e. responding
on a task-by-task basis may have simply been their intention.
We provide a category theory account of cognitive resources
and goals to account for these possibilities, building upon the
universal construction idea. Accordingly, (lack of) system-
aticity follows from a universal construction principle (in a
category theory sense) in this context—systems of symbols
arise (or, fail to arise) as the “best” possible mapping given
the available resources and the intended goal.

Our departure from the universal construction explanation
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for systematicity (Phillips & Wilson, 2010) is to couch the
context in which a construction is universal in terms of cog-
nitive resources and goals of the system. So, systematicity
may not be present due to lack of resources or different goals.
Lack of resources is a familiar way to characterize cognitive
capacity in developmental and cognitive psychology, e.g. in
the form of counting ability (Carey, 2009), working memory
capacity (Cowan, 2001), or the complexity of relations that
can be processed (Halford, Wilson, & Phillips, 1998). The
basic theory is presented in the next section, with applications
to cognition in the section that follows. Some general remarks
on this approach are given in the last section.

Basic theory: universal constructions
The basic theory is found in many textbooks (see, e.g.,
Awodey, 2010; Leinster, 2014), including introductions for
cognitive scientists (Phillips, 2022), scientists, generally
(Spivak, 2014), and a more general audience (Lawvere &
Schanuel, 2009). Yet, the multifaceted nature of category
theory (Mac Lane, 1992) can obscure a useful interpretation
for the application at hand. For this reason, the basic theory
is presented here to help ground the interpretation in terms of
universal constructions, cognitive resources and goals.
Remark 1. Some basic concepts are assumed. Compare:
• category to (directed) graph, as consisting of:

– objects (cf. vertices),
– arrows (cf. edges/paths)—directed from a domain object

(cf. source) to a codomain object (cf. target)—with an
identity (cf. zero-length path/loop) for each object and

– a composition operation that combines pairs of arrows
to form arrows (cf. concatenation of edges) satisfying:

∗ unity (cf. concatenating loops) and
∗ associativity (cf. order of path concatenations),

• functor to graph homomorphism, and

• natural transformation to homomorphism between graph
homomorphisms.

Example 2 (sets). Set is the category of sets (objects) and
functions (arrows). The composition operation is function
composition and identity arrows are identity functions.
Example 3 (diagram). A diagram is a functor 𝐷 : 𝐽→C that
acts like an index picking out a (sub)collection of objects and
arrows in C where 𝐽 is called the shape of 𝐷: e.g., diagram
(𝐴, 𝐵) : 2→ Set references the (pair of) sets 𝐴 and 𝐵.
Example 4 (cone). A cone to a diagram 𝐷 : 𝐽→ C is a pair
(𝑉,𝜙) consisting of an object 𝑉 in C, called a vertex, and a
family of arrows 𝜙 = {𝜙 𝑗 :𝑉→ 𝐷 𝑗 } 𝑗∈𝐽 , called the legs of the
cone. The image of 𝐷 is called the base of the cone. A cone
homomorphism is an arrow ℎ :𝑉 →𝑊 making diagram

𝑉 𝐷 (𝑖)

𝑊 𝐷 ( 𝑗)

𝜙𝑖

𝜙 𝑗

ℎ 𝐷 (𝑖 𝑗 )

𝜓𝑗

𝜓𝑖

(1)

commute for each object 𝑖 and 𝑗 and arrow ij in 𝐽. For
instance, replace 𝐷 (𝑖) and 𝐷 ( 𝑗) with 𝐴 and 𝐵, respectively,
for a homomorphism of cones to a pair of objects. There is
no arrow from 𝐴 to 𝐵 when 𝐴 ≠ 𝐵 in this situation.
Remark 5. A cone acts like a view (or, perspective), 𝑉 , on a
collection of objects/arrows in a field of attention, 𝐷, so a cone
homomorphism acts like a change of perspective, ℎ :𝑉→𝑊 .
Definition 6 (product). In a category C, a product of objects 𝐴
and 𝐵 is an object 𝑃 (denoted 𝐴×𝐵) and an arrow 𝜋 = (𝜋𝐴, 𝜋𝐵)
such that for every object 𝑍 and arrow 𝑓 = ( 𝑓𝐴, 𝑓𝐵) there exists
a unique arrow 𝑢 making the following diagram commute:

𝑍

𝐴 𝑃 𝐵

𝑓𝐴
𝑢

𝑓𝐵

𝜋𝐴 𝜋𝐵

(2)

Example 7 (Cartesian product). In Set, the product of 𝐴 and
𝐵 is Cartesian product: the set 𝐴×𝐵 = {(𝑎, 𝑏) |𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}
and projections 𝜋𝐴 : (𝑎, 𝑏) ↦→ 𝑎 and 𝜋𝐵 : (𝑎, 𝑏) ↦→ 𝑏. The
unique arrow is ⟨ 𝑓𝐴, 𝑓𝐵⟩ : 𝑧 ↦→ ( 𝑓𝐴(𝑧), 𝑓𝐵 (𝑧)).
Remark 8. A product acts like an “extreme” view (limit) on
the field of attention: e.g., the closest one can get to a pair of
objects while still keeping both objects within the visual field.
Definition 9 (limit). A limit to a diagram 𝐷 : 𝐽→C is a cone
(𝐿, 𝜖) such that for every cone (𝑉,𝜙) there exists a unique
cone homomorphism 𝑢 :𝑉 → 𝐿 such that 𝜙 = 𝜖 ◦𝑢.
Remark 10. See diagram 1—replace ℎ with 𝑢, etc.
Example 11 (product—limit). A product is a limit (universal
cone) to a pair-shaped diagram, 𝐷 : 2→ C.
Remark 12. Products (and limits, generally) are instances of
universal constructions, i.e. constructions given by a unique-
existence condition, e.g., a limit is a universal cone.
Definition 13 (universal morphism). A universal morphism
from a functor 𝐹 : A→ C to an object 𝑋 is a pair (𝐴,𝛼) con-
sisting of an object 𝐴 and an arrow 𝛼 : 𝐹 (𝐴) → 𝑋 such that for
every object 𝑍 and arrow 𝑓 : 𝐹 (𝑍) → 𝑋 there exists a unique
arrow 𝑢 : 𝑍→ 𝐴 making the following diagram commute:

𝑍 𝐹 (𝑍)

𝐴 𝐹 (𝐴) 𝑋

𝑢 𝐹 (𝑢) 𝑓

𝛼

(3)

𝛼 is called the mediating arrow.
Example 14 (bounds). A partially ordered set (𝑃,≤) is a
category whose objects are the elements 𝑝 ∈ 𝑃 and arrows
are given by the partial order, i.e. there is an arrow 𝑝→ 𝑝′

whenever 𝑝 ≤ 𝑝′. The universal morphism from the inclusion
𝑃 ⊆ 𝑄 to an element 𝑞 ∈ 𝑄 is the greatest lower bound to 𝑞,
i.e. the element 𝑝 ∈ 𝑃 such that 𝑝 ≤ 𝑞 and 𝑝 ≤ 𝑝 for all 𝑝 ∈ 𝑃
(see diagram 3—replace 𝑋 with 𝑞 and 𝐴 with 𝑝, etc.).
Remark 15. 𝑝 is the closest one can get to goal 𝑞 with the
resources made available by (the inclusion of) 𝑃.
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Example 16 (limits). A limit to a diagram 𝐷 : 𝐽 → C is a
universal morphism from the diagonal functor Δ : C→C𝐽 to
𝐷. For instance, a product of 𝐴 and 𝐵 is indicated by

𝑍 Δ(𝑍)

𝐴×𝐵 Δ(𝐴×𝐵) (𝐴, 𝐵)

⟨ 𝑓𝐴, 𝑓𝐵 ⟩ Δ⟨ 𝑓𝐴, 𝑓𝐵 ⟩
( 𝑓𝐴, 𝑓𝐵 )

(𝜋𝐴, 𝜋𝐵 )

(4)

where Δ : C ↦→ C2 acts like duplicate, i.e. Δ : 𝐴 ↦→ (𝐴, 𝐴).
Definition 17 (comma category). A comma category (𝐹 ↓𝐺)
is a category constructed from a pair of functors 𝐹 : A→ C
and 𝐺 : B→ C with the same codomain that has for:

• objects the triples (𝐴, 𝐵, 𝛾) consisting of the objects 𝐴 in A
and 𝐵 in B and the arrows 𝛾 : 𝐹 (𝐴) → 𝐺 (𝐵) in C and

• arrows the pairs (𝛼, 𝛽) consisting of the arrows 𝛼 : 𝐴→ 𝐴′

in A and the arrows 𝛽 : 𝐵→ 𝐵′ in B such that the diagrams

𝐹 (𝐴) 𝐺 (𝐵)

𝐹 (𝐴′) 𝐺 (𝐵′)

𝛾

𝐹 (𝛼) 𝐺 (𝛽)

𝛾′

(5)

commute, i.e. 𝐺 (𝛽) ◦𝛾 = 𝛾′ ◦𝐹 (𝛼).

Composition is pasting of squares; the identities are (1𝐴,1𝐵).
Example 18 (cones). The category of cones to a J-shaped
diagram 𝐷 in C is the comma category (Δ ↓ 𝐷).
Definition 19 (terminal object). In a category C, a terminal
object is an object, denoted 1, such that for every object 𝑍
there exists a unique arrow ! : 𝑍→ 1, i.e. the imperative.
Example 20 (limit). The limit to 𝐷 is the terminal object in
(Δ ↓ 𝐷). See diagram 5—replace 𝐺 (𝛽) with the identity 1𝐷 ,
so the commutative square becomes a triangle (cf. diagram 4).
Example 21 (universal morphism). The universal morphism
from 𝐹 to (object) 𝑋 is terminal in (𝐹 ↓ 𝑋), where 𝑋 denotes
a constant functor sending all domain objects to the object 𝑋 .
Remark 22. Comma categories, (𝐹 ↓ 𝑋), formalize cognition
as a collection of resource-sensitive, goal-directed processes:

• each object specifies the resources 𝐹 (𝐴) for obtaining the
goal 𝑋 via a path as the arrow 𝛾 : 𝐹 (𝐴) → 𝑋 ,

• each arrow 𝛼 : 𝐴→ 𝐴′ specifies an alternative path via a
change in resources as the composition 𝛾 = 𝛾′ ◦𝐹 (𝛼) and

• the terminal in (𝐹 ↓ 𝑋) is the resource-limited path.

Example 23 (subgoal). The universal morphism from the
diagonal functor Δ : C→C2 to subgoal (𝐴,1) is indicated by

𝑍 (𝑍, 𝑍)

𝐴 (𝐴, 𝐴) (𝐴,1)

𝑓 ( 𝑓 , 𝑓 )
( 𝑓 ,!)

(1𝐴,!)

(6)

i.e. the object 𝐴 and the arrow (1𝐴, !) where 1 is the terminal,
seen as a subgoal to (𝐴, 𝐵) by ignoring the second target, 𝐵.
Remark 24. Categorical constructions generally have a dual
form that is obtained by “arrow reversal” of the primal form:
e.g., the dual of terminal is initial, i.e. an object, denoted 0,
such that for every object 𝑍 there is a unique arrow

!: 0→ 𝑍 .
The dual to limit is colimit: a universal cocone—the initial
object in the category of cocones to a diagram 𝐷, i.e. (𝐷 ↓Δ).
Example 25 (delimited resource). The universal morphism
from functor ⟨1C,0⟩ : 𝐴 ↦→ (𝐴,0) to pair (𝐴, 𝐵) is given by

𝑍 (𝑍,0)

𝐴 (𝐴,0) (𝐴, 𝐵)

𝑓 ( 𝑓 ,10 )
( 𝑓 ,

!

)

(1𝐴,

!

)

(7)

where 0 is the initial object and !: 0→ 𝐵 with ⟨1𝐴,0⟩ seen as
delimiting (constraining) resources to a single instance of 𝐴.
Remark 26. This situation extends to other limits: e.g., the
universal morphism from ⟨1C,1C,0⟩ to (𝐴, 𝐵,𝐶) is the pair
(𝐴×𝐵, 𝜋 !), where 𝜋

!

= (𝜋𝐴, 𝜋𝐵,

!), i.e. a two-object resource
for a three-object visual field (cf. remarks 5 and 8).
Remark 27. Reshaping may circumvent capacity limits: e.g.,
triple (𝐴, 𝐵,𝐶) as “pair” ((𝐴, 𝐵),𝐶). The universal morphism
from ⟨Δ,1C⟩ : 𝐴 ↦→ ((𝐴, 𝐴), 𝐴) to ((𝐴, 𝐵),𝐶) consists of the
object (𝐴×𝐵) ×𝐶 and the mediating arrow ((𝜋𝐴, 𝜋𝐵), 𝜋𝐶 ).
Definition 28 (pullback). In a category C, a pullback of a pair
of arrows 𝜙𝐴 : 𝐴→𝐶 and 𝜙𝐵 : 𝐵→𝐶 is an object 𝑃 (denoted
𝐴×𝐶 𝐵) and an arrow 𝜋 = (𝜋𝐴, 𝜋𝐵) such that for every object
𝑍 and arrow 𝑓 = ( 𝑓𝐴, 𝑓𝐵) there exists a unique 𝑢 such that

𝑍

𝐴 𝑃 𝐵

𝐶

𝑓𝐴
𝑢

𝑓𝐵

𝜙𝐴

𝜋𝐴 𝜋𝐵

𝜙𝐵

(8)

Example 29 (Constrained product). In Set, the pullback of
𝜙𝐴 : 𝐴→𝐶 and 𝜙𝐵 : 𝐵→𝐶 is the pair (𝑎, 𝑏) ∈ 𝐴×𝐵 such that
𝜙𝐴(𝑎) = 𝜙𝐵 (𝑏), i.e. the set 𝐴×𝐶 𝐵 = {(𝑎, 𝑏) ∈ 𝐴×𝐵 |𝜙𝐴(𝑎) =
𝜙𝐵 (𝑏)}, with projections 𝜋 and 𝑢 = ⟨ 𝑓𝐴, 𝑓𝐵⟩ (see example 7).
If𝐶 is the terminal object, hence 𝜙𝐴 and 𝜙𝐵 are the imperatives
!𝐴 and !𝐵, then the pullback is the product of 𝐴 and 𝐵.
Remark 30. A pullback is the equalizer of the pair of arrows
(𝜙′

𝐴
, 𝜙′

𝐵
) : 𝑃⇒ 𝐶, where 𝜙′

𝐴
= 𝜙𝐴 ◦ 𝜋𝐴, etc. (see diagram 8).

As a limit, 𝐽 = (·⇒ ·), an equalizer in Set acts like solutions
to simultaneous equations. Finite limits arise from products
and equalizers; or pullbacks and terminals (Leinster, 2014).

Cognition in context: resources and goals
Universal constructions are given with respect to a category
(context) of some kind. The available cognitive resources and
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the intended goal are supposed to determine a context in which
a construction may (or may not) be universal. This notion of
context is formalized as a comma category (𝐹 ↓𝐺) where the
functors 𝐹 and 𝐺 are the resources and goals, respectively.
Symbol(-like propertie)s follow as universal constructions in
this context and failures as constructions in the contexts of
limited resources or differing goals. Three cases are studied:
(1) compositionality of symbols, (2) complexity of relational
processes and (3) intentionality of representations. Cognitive
representations are cast in terms of presheaves, i.e. functors
on a topological space, presented first.
Definition 31 (topological space). A topological space is a
pair (𝑋,𝑇) consisting of a set 𝑋 and a set𝑇 (called the topology
of 𝑋) of subsets 𝑈 of 𝑋 called the open sets of 𝑋 such that
the empty set and 𝑋 are open sets, (finite) intersections and
(arbitrary) unions of opens sets in 𝑇 are open sets in 𝑇 . The
space or the topology is also simply denoted 𝑋 .
Example 32 (discrete). The power set P(𝑋) = {𝑈 |𝑈 ⊆ 𝑋} is
an instance of a discrete topology on 𝑋 , i.e. every subset of 𝑋
is an open set. For instance, suppose the set of colour-shape
visual feature dimensions 𝑋vis = {𝐶,𝑆}. The discrete topology
on 𝑋vis is the set {∅, {𝐶}, {𝑆}, {𝐶,𝑆}}.
Definition 33 (presheaf). A presheaf is a set-valued functor
on a topological space, F : 𝑋op→ Set, sending each open set
𝑈 of 𝑋 to the set F (𝑈) and each inclusion 𝑉 ⊆ 𝑈 in 𝑋 (i.e.
𝑈 ⊆ 𝑉 in 𝑋op) to the arrow res𝑉,𝑈 : F (𝑈) → F (𝑉), called
a restriction map. The elements 𝑠 ∈ F (𝑈) are called the
sections of 𝑈; an element of F (𝑋) is called a global section.
Example 34 (table). A presheaf on a discrete space acts like
a relational table (Abramsky & Brandenburger, 2011): e.g.,
the table of colour-shape pairs CS = {(•,□), (•,△), (•,□)} is
identified with a presheaf on 𝑋vis whose points are the attribute
names and global sections are the rows. The restriction maps
are the projections: e.g., 𝜋𝐶 : (•,□) ↦→ (•).
Definition 35 (sheaf). A sheaf is a “complete” presheaf, i.e.
(conceptually) the sheaf can be reconstructed by pasting the
sections on the open sets where they agree on overlaps.
Example 36 (complete). The table/presheaf CS (example 34)
completes to table/sheaf CS+ = {(•,□), (•,△), (•,□), (•,△)}
by adding the row/global section (•,△). As a relational table,
the sheaf is constructed by joining the one-column tables for
colour and shape along the empty column.
Remark 37. The sheaf condition is given by the equalizer of

F (𝑈) ∏
𝑖

F (𝑈𝑖)
∏
𝑖, 𝑗

F (𝑈𝑖 ∩𝑈 𝑗 ) (9)

(or, pullback) where 𝑖, 𝑗 index the open sets (cf. diagram 8).
Remark 38. A presheaf morphism 𝜙 : F → G is a natural
transformation, i.e. as tables, a restriction of a mapped row is
the same as the mapping of row restriction. The collections
of presheaves and sheaves on a topological space 𝑋 and their
morphisms constitute categories, written Psh(𝑋) and Sh(𝑋).

Example 39 (sheafification). The completion of a presheaf F
to the “nearest” sheaf, denoted F +, is a universal construction,
called sheafification, indicated by commutative diagram

F F + F +

G G

sh

𝜙
𝑢 𝑢 (10)

The completion of the colour-shape table (example 36) is an
instance, i.e. replaceF andF + with CS and CS+, respectively.
Remark 40. Sheafification is a dual form, i.e. a universal
morphism (F +, sh) from F to ℐ : Sh(𝑋) ⊆ Psh(𝑋), which is
initial in (F ↓ℐ); equivalently, terminal in (F ↓ℐ)op.
Example 41 (subobject). Presheaf CS acts like a subtable of
CS+: every row of CS is a row of CS+. The category theory
analogical abstraction of subset is subobject—a cornerstone
of topos theory (Leinster, 2011; Goldblatt, 2006; Mac Lane
& Moerdijk, 1992), linking geometry, algebra and logic. A
subfunctor is a subobject in a category of functors, hence CS
is a subpresheaf of CS+, also written CS ⊆ CS+. Subobjects
constitute a partially order set, so CS+ is the closest sheaf not
smaller than CS—cf. the ceiling function sending each real
number 𝑥 to the smallest integer not less than 𝑥, e.g. ⌈2.4⌉ = 3:
replace F and F + with 2.4 and 3 (diagram 10), respectively.
Remarks 42. The sheafification construction belies two sides
of universality, i.e. the unique-existence condition.

1. Compatible presheaf (existence): there exists at least one
row for every pair of restrictions that agree on their overlaps.

2. Separated presheaf (uniqueness): there is at most one row
that restricts to the given columns.

A sheaf is a compatible and separated presheaf. The second
condition corresponds to identifying equivalent rows as the
same row (or, put simply, as removing redundant rows)—cf.
the floor function sending each real 𝑥 to the largest integer
not greater than 𝑥, e.g., ⌊2.4⌋ = 2: replace 𝐴 and 𝑋 with 2
and 2.4 (diagram 3), respectively. Conceptually, compatibility
corresponds to filling out missing information and separability
to removing unneeded details.

Canonical compositional symbols
Renewed interest in LoT stems in part from the appearance
of symbol-like properties of non-linguistic cognitive abili-
ties, e.g., visual cognition (Quilty-Dunn et al., 2023). Three
symbol-like properties are: (1) abstract conceptual content,
where perceptual instances are stored along with their ab-
stracted concepts, (2) discreteness, where the representation
of one constituent is not affected by the representation of an-
other constituent, e.g., the constituent red in red square is the
same as the constituent red in red triangle, and (3) role-filler
independence, as in the representations of John loves Mary
and Mary loves John, where John is the same filler in the
subject or object roles, and subject is the same role when
filled by John or Mary. These properties follow as universal
constructions in resource/goal-appropriate contexts.
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Example 43 (equivalence classes). An equivalence relation
(i.e. a reflexive, symmetric and transitive relation)∼ on a set 𝐴
determines an equivalence class [𝑎]∼ = {𝑎′ ∈ 𝐴|𝑎′ ∼ 𝑎}. The
smallest set of equivalence classes induced by ∼ is a universal
construction (colimit), called coequalizer—dual to equalizer
(see remark 30)—of the projections (∼)⇒ 𝐴. For instance, a
surjective (onto) function 𝑓 : 𝑋→ 𝑌 induces the equivalence
relation (∼ 𝑓 ) = {(𝑥, 𝑥′) | 𝑓 (𝑥) = 𝑓 (𝑥′)}, hence the equivalence
classes 𝑋/∼ 𝑓 indicated by commutative diagram

(∼ 𝑓 ) 𝑋 𝑋/∼ 𝑓

𝑍

𝜋1

𝜋2

𝜅

𝜓
𝑢

(11)

i.e. the universal morphism (𝑋/∼ 𝑓 , 𝜅) from 𝜋 = (𝜋1, 𝜋2) to the
diagonal functor Δ : Set→ Set⇒, where 𝜅 assigns elements to
their equivalence classes, i.e. the colimit (universal cocone)
to the diagram 𝜋 : (·⇒ ·) → Set, which is initial in (𝜋 ↓ Δ).
For comparison, replace F and F + (diagram 10, remark 40)
with 𝜋 and 𝑋/∼ 𝑓 , respectively.
Remark 44. Equivalence classes are basic to the construction
of separated presheaves, hence sheaves (see remark 42)—the
data on a point 𝑥 ∈ 𝑋 , called the stalk of F at 𝑥, denoted
F𝑥 , is the set of equivalence classes, called germs, obtained
by taking the colimit over open sets 𝑈 containing 𝑥, i.e. two
sections are germ-equivalent if they restrict to the same datum
as 𝑈 approaches {𝑥}, so removing unneeded details.
Example 45 (symbols). Suppose a character recognition map,
alph : A ↦→ A,A ↦→ A,𝒜 ↦→ A,B ↦→ B,B ↦→ B,ℬ ↦→ B, . . . ,
sending letters to their alphabetic characters. The coequalizer
for the equivalence relation ∼alph (i.e. 𝑓 in example 43) sends
each letter to its character class. Each class can be replaced by
a representative member (by a map 𝑢 in diagram 11), which
can be regarded as a symbol for its class.
Remark 46. Colimit (𝑋/∼ 𝑓 , 𝜅) affords abstract conceptual
content (Quilty-Dunn et al., 2023), whereby the perceptual
instances are stored with their abstract concept. The unique-
existence of a map 𝑢 from a symbol to the concept it represents
is guaranteed by the universal mapping property for colimits.
Definition 47 (section). In a category C, a section of an arrow
𝑓 : 𝐴→ 𝐵 is an arrow 𝑠 : 𝐵→ 𝐴 such that 𝑓 ◦ 𝑠 = 1𝐵.
Example 48 (compositional symbols). Compositionality of
symbols follows from the fact that every function onto a set
(space) 𝑋 , i.e. 𝑓 :𝑌→ 𝑋 , induces a sheaf of sections, denoted
Γ(𝑌/𝑋), that sends each open set 𝑈 of 𝑋 to the sections of 𝑓

restricted to𝑈, i.e. Γ(𝑌/𝑋) :𝑈 ↦→ {𝑠 :𝑈→𝑌 | 𝑓 ◦ 𝑠 = 1𝑋}. So,
the classification of visual features to their feature dimensions,
e.g., 𝑓dim : • ↦→𝐶,• ↦→𝐶,□ ↦→ 𝑆,△ ↦→ 𝑆, induces the sheaf of
sections that is 𝐶𝑆+ (example 36).
Remark 49. A sheaf F on a space 𝑋 is reconstructed from
its stalks, F𝑥 . If 𝑋 is discrete, then the sheaf is obtained
from the product of its stalks, Π𝑥∈𝑋F𝑥 , which embodies the
discreteness property of symbol systems (Quilty-Dunn et al.,

2023), i.e. each symbol is composable with other symbols
without changing their identity. (NB. Every set can be given a
discrete topology. Moreover, the discrete topology is terminal
in the category of topologies on a set 𝑋 ordered by inclusion.)
Example 50 (visual feature binding). Other authors (Phillips,
Takeda, & Singh, 2012) observed that visual feature bind-
ing can be formalized as a pullback of feature-location maps,
e.g., colour and shape. The partial information encoded by
these maps corresponds to a presheaf on a space whose points
encode feature dimensions, e.g. {𝐶,𝑆, 𝐿} for colour, shape
and location, and open sets encode binding structure, i.e.
{𝐿}, {𝐶, 𝐿} and {𝑆, 𝐿}, which says that colour and shape bind
more closely to location. Complete information is recovered
by sheafification yielding the binding of colour to shape as
constrained by location (Phillips, 2020). For our purposes,
the sheaf condition (diagram 9) involves a pullback that is the
terminal in the comma category where the resource functor is
the diagonal with shape ∨ = (· → · ← ·), i.e. Δ : Set→ Set∨,
and goal functor is the diagram pointing to the location maps,
e.g., 𝜋𝐶,𝑆 = (𝜋𝐶 , 𝜋𝑆), where 𝜋𝐶 : (𝑐, 𝑙) ↦→ 𝑙 and 𝜋𝑆 : (𝑠, 𝑙) ↦→ 𝑙,
i.e. (Δ ↓ 𝜋𝐶,𝑆). The sheaf is terminal with respect to resource
and goal functors iterated over all the open sets.
Example 51 (relations). A relation 𝑅 between sets 𝐴 and 𝐵

is a subset of their Cartesian product, 𝑅 ⊆ 𝐴×𝐵, i.e. (𝑎, 𝑏) ∈
𝑅 if 𝑎 is R-related to 𝑏, also written 𝑎𝑅𝑏. The roles of
fillers 𝑎 and 𝑏 are implicitly encoded by their position in the
(ordered) pair. For instance, John loves Mary corresponds to
the pair (John,Mary) ∈ Loves ⊆ Person×Person. Relations
represented as sheaves explicitly encode roles as points of the
topological space: e.g. the loves relation is given as a sheaf on
{Subject,Object} with the discrete topology consisting of the
sections given as the pairs (John,Mary) and (Mary,John).
Remark 52. The sheaf condition ensures the kind of role-
filler independence whereby, e.g., John can fill both subject
and object roles and the subject (or, object) role can be filled
by either John or Mary (Quilty-Dunn et al., 2023), as the
sheaf is constructed from the (Cartesian) product of the set
containing John and Mary with itself. In contrast, a presheaf
need not represent all possible combinations.

Cognitive complexity of relations
The capacity to process relational information is a significant
factor impacting cognitive ability (Halford et al., 1998): e.g.,
tasks involving (ternary) relations between three variables are
more difficult than tasks involving (binary) relations between
two variables. For instance, transitive inference—integrating
two binary relations (𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐) to construct a ternary
relation (𝑎 ≤ 𝑏 ≤ 𝑐) from which they make the inference (i.e.
𝑎 ≤ 𝑐)—is difficult for young children (around the age of five
years) who are limited to at most binary relations (Halford,
1984; Andrews & Halford, 1998). Moreover, children who
succeed vs. fail at transitive inference typically succeed vs.
fail at other tasks where the relational complexity is ternary
vs. binary, respectively, even though the goal of each task
is understood (Andrews & Halford, 1998). A capacity to
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process binary and ternary relations corresponds to a capacity
to compute binary and ternary products (Phillips, Wilson, &
Halford, 2009). And so, systematic failures arise as a universal
construction in the resource-limited comma category, where
the resource functor pertains to (binary) products and the goal
functor pertains to triples (remark 26).
Example 53 (cognitive complexity). The sheaf theory view
of relations (example 51) also affords a universal, resource-
limited account of complexity, sketched here, in terms of
presheaves on simplicial complexes—built from 0-simplexes
(points), 1-simplexes (lines), 2-simplexes (triangles), etc.
(Ghrist, 2014). The presheaf sends (co)boundary maps—
connecting points to lines, lines to triangles and so on—to
table projections. The premises are represented as a presheaf
on a complex with three points (𝐴, 𝐵 and 𝐶), three lines (𝐴𝐵,
𝐵𝐶 and 𝐴𝐶) and one triangle (𝐴𝐵𝐶), where the table attached
to 𝐴𝐵 (and 𝐵𝐶) encodes the binary relations, e.g., as two-
coloured block towers, red atop green, green atop blue, etc.
(Andrews & Halford, 1998). Inference is obtained by sheafi-
fication: the empty table attached to 𝐴𝐵𝐶 is completed by the
pullback of the two projections onto the common boundary,
i.e. 𝜋𝐵,𝐴𝐵 and 𝜋𝐵,𝐵𝐶 , obtaining the sheaf with the table on
𝐴𝐵𝐶 encoding ordered triples, e.g., red atop green atop blue,
and projection onto 𝐴𝐶 corresponds to the inferred relations,
red atop blue. The space without the triangle is a subcomplex
with three points and three lines. Sheafification in this case
is just the identity map, corresponding to the resource-limited
systematic failure of younger children.
Remark 54. The pullback corresponds to joining the premise
table with itself at the common values (Phillips et al., 2009).
Sheafification is also seen as a from of generalization from
the training trials as a presheaf morphism to the testing trials
as a sheaf morphism and failure to generalize as the situation
where the training presheaf is already a sheaf (Phillips, 2018a).

Intentional representations
Systematic failure to exhibit an intended ability may also be
attributed to differing goals, as illustrated earlier (example 23).
For instance, participants trained on a series of cue-target
maps failed to induce the underlying product structure when
the learning tasks involved a smaller number of cue pairs even
though they learned the training trials to criterion (Phillips et
al., 2016). In other words, they met the within-task learning
(sub)goal, but not the larger goal of inducing the common task
schema, which afforded target prediction on novel trials.
Remark 55. Presheaf morphisms in Psh(1) � Set correspond
to cue-target associations. Psh(1) is a subcategory of Psh(2),
the category of presheaves on the two-point space affording
product (relational) maps. So, systematic failure follows as a
universal construction relative to the within-task subgoal.
Example 56 (associative learning). Systematic learning of
cue-target associations follows as a limit to a diagram that
picks out the training set (cf. example 16, setting 𝐽 = 1). The
limit is any set isomorphic to the training set and the mediating
arrow is the corresponding bijection. This apparently trivial

example of a universal construction belies the universal nature
of associative learning.

General remarks: universal cognition
The explanatory standard for systematicity is to say why this
property (necessarily, not just possibly) follows from the core
principles and assumptions of the theory (Aizawa, 2003;
Fodor & Pylyshyn, 1988). Classical theory is problematic,
because symbol systems may not support some systematicity
properties, so assuming just those (canonical) systems that
support systematicity is ad hoc (Aizawa, 2003). The category
theory approach derives (absence of) systematicity from uni-
versal constructions given the available resources and intended
goals. Incorporating resources and goals is closely related to
making competence-performance distinctions (see Firestone,
2020). Yet, our point is that some failures are also systematic,
demanding the same explanatory standard, that also follow
from universal constructions. Goals and resources are not
ad hoc assumptions for the categorical explanation, as these
assumptions can be assessed independently of the main task,
e.g., using self-test reports on participant’s strategies—goals
(Phillips et al., 2016) and pre-test trials to assess a capacity
for binary relations—resources (Andrews & Halford, 1998).
These assumptions are motivated by more than just the need
to fit data—cognitive systems are naturally physical systems
embedded in real environments, so are resource-sensitive.

Universality is supposed to explain systematic failures, yet
duality (remark 24), in the form of adjoint functors (Leinster,
2014), is also supposed to reconcile opposing properties of
cognition (Phillips, 2018b)—sheafification (example 39) is
an adjoint functor. LoT, in particular, supposes a (physical)
symbol system, but a theory based on symbols as discrete
representational states (Quilty-Dunn et al., 2023) eventually
must be reconciled with nondiscrete, continuous aspects of
cognition. Certain functors to/from (pre)sheaf categories are
adjoints and this universal-duality (adjointness) principle is
supposed as a formal framework for reconciling symbolic vs.
nonsymbolic cognition, including the symbol-like properties
of abstract content, discreteness and role-filler independence
mentioned earlier (Phillips, 2024).

Categories with subobjects (example 41) generalize the
usual set-theoretic approaches based on discrete points to set-
like constructions with continuity and variability (see, e.g.,
Lawvere & Rosebrugh, 2003) that yield deeper links between
apparently disparate domains (see Rosiak, 2019, 2022, for an
in-depth, philosophical analysis and discussion). Likewise,
here, topos theory affords a more general notion of LoT, hence
the slogan, LoT is a topos (Phillips, 2024). A next step for
a universal theory of cognition is to marry a category/topos
theory notion of LoT(s) with an empirically informed theory
of resources and goals. This step and further exploration of
the ideas briefly presented here are topics for future work.
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