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Five-dimensional Hamiltonian-Jacobi approach
to relativistic quantum mechanics

H.Rose

Lawrence Berkeley National Lab, 1Cyclotron Road, Berkeley, CA 94720

Abstract
A novel theory is outlined for describing the dynamics of relativistic electrons and positrons. By
introducing the Lorentz-invariant universal time as a fifth independent variable, the Hamilton-
Jacobi formalism of classical mechanics is extended from three to four spatial dimensions. This
approach allows one to incorporate gravitation and spin interactions in the extended five-
dimensional Lagrangian in a covariant form. The universal time has the function of a hidden Bell
parameter. By employing the method of variation with respect to the four coordinates of the
particle and the components of the electromagnetic field, the path equation and the electromagnetic
field produced by the charge and the spin of the moving particle are derived. In addition the
covariant equations for the dynamics of the components of the spin tensor are obtained. These
equations can be transformed to the familiar BMT equation in the case of homogeneous
electromagnetic fields. The quantization of the five-dimensional Hamilton-Jacobi equation yields a
five-dimensional spinor wave equation, which degenerates to the Dirac equation in the stationary
case if we neglect gravitation. The quantity which corresponds to the probability density of
standard quantum mechanics is the four-dimensional mass density which has a real physical
meaning. By means of the Green method the wave equation is transformed into an integral
equation enabling a covariant relativistic path integral formulation. Using this approach a very
accurate approximation for the four-dimensional propagator is derived. The proposed formalism
makes Dirac’s hole theory obsolete and can readily be extended to many particles.

1. Introduction

It is widely believed that the effect of the spin on particle motion cannot be accurately described
within the frame of validity of geometrical charged-particle optics. However, if the wave property
of the particle can be neglected, there is no convincing reason which prevents one from
incorporating the spin into the formalism of relativistic mechanics if an appropriate interaction
Hamiltonian is found. To achieve a proper covariant formalism, it is advantageous to introduce a
five-dimensional Hamiltonian-Jacobi approach for calculating the motion of particles in
Minkowski space. Using x, = ict as the fourth “spatial” coordinate of the four-dimensional
Euclidian space, we avoid difficulties in constructing relativistic covariant Lagrangians and
Hamiltonians. The dynamics of the particle is described by considering its coordinates x,, u = 1, 2,
3, 4, as functions of the independent Lorentz-invariant variable T, which can be conceived as the
“world” time or universal time, respectively. As a result, the time-like position coordinate x4 need
not to increase monotonically, as in classical mechanics.

Since the relativistic Lagrangian L, is a scalar function, it must contain terms which are of entirely

scalar nature such as a scalar function, scalar products formed by polar 4-vectors, second-rank 4-



tensors, axial 4-vectors and pseudo-scalar quantities. To be in accordance with non-relativistic
classical mechanics, L, must vanish for a particle at rest in Minkowski space. So far an

appropriate Lorentz-invariant interaction term for the coupling of the spin with the electromagnetic
field has not been given in the literature. Such a term will also allow one to consider the effect of
the spin which acts as an additional source for the electromagnetic field.

2. Covariant Hamilton formalism for spin-1/2 particles

For reasons of simplicity we first consider the motion of a spin-1/2 charged particle in external
fields. So far no satisfactory relativistic formulation for an interacting multi-particle system has
been proposed for classical mechanics. However, by employing a covariant Hamilton’s principle
for the dynamics in the four-dimensional Minkowski space, the extension from a single particle
system to a multi-particle system is straightforward.

The Lagrangian treatment of classical mechanics is based on Hamilton’s principle which states that
the action along the true path of a particle is an extremum, in general a minimum.

The action

S = Exf’ L.drt (1)
is the time integral of the Lagrangian

L =T~V )

”

along the true path of the particle traveling from its initial position at universal time t, to its

position at time of observationt ,. The kinetic energy
T:Ttr+Tr0t (3)

is composed of two terms, the translational energy

T,==2%° (4)

and the kinetic energy of rotation

1
Trot = EzSuv(’Opv * (5)
[TRY

The definition (4) of the translational energy is a straightforward extension of the classical kinetic
energy of a point-like particle; m 1is its rest mass. Dots denote derivatives with respect to the
universal time 1. The translational energy in Minkowski space (4) is always negative regardless of
the sign of x, . A negative time-like component of the velocity 4-vector describes an electron which
travels backwards in time. According to Feynman this can be conceived as a positron traveling



forward in time. The expression —imcx, is generally defined as the total energy of the particle.
This energy is positive for the electron and negative for the positron. Within the frame of our
considerations this energy represents the fourth component of the kinetic moment 4-vector apart
from a factor c. Although this vector is Lorentz invariant, its components are not. On the other
hand our formulation requires the total energy to be a Lorentz-invariant scalar quantity.

By going from three to four dimensions, axial vectors are described by anti-symmetric second-rank
tensors because a four-dimensional cubic volume has 12 surfaces, twice as many as the three-
dimensional cube. Hence the four-dimensional angular velocity of the particle is defined by its 12
components® ,, (), each of which is the projection of the angular velocity onto the normal of the

surface element do , . Since the normals of conjugate top and bottom surfaces have opposite
directions only 6 independent components ®,, = -, exist. The same relations hold true for the
components S, = S (t) of the angular momentum tensor or spin tensor, respectively. Since the

absolute value of the spin is a constant of motion, the relation
1 » R’
-Nysg == 6
PR ©)

holds. In the rest frame of the particle the time-like components S, =-S,, and ©,, =-w, are

zero. These components are purely imaginary. For the spin they can be considered as an electric
moment induced by the motion of the magnetic moment. Since an elementary particle can be
assumed as spherically symmetric, its spin and its angular frequency have the same direction in
Minkowski space. Assuming that the absolute value of the angular velocity of the particle is a
constant of motion, the rotational energy of the particle is found as

1 .
T, =EZSW@”V =56 =hw/2, (7)
[TRY

wheres andw denote the spin vector and the angular velocity vector, respectively, in the rest
frame. The absolute value o of the angular velocity is obtained from the condition that the total
kinetic energy in Minkowski space must be zero in the absence of external fields:

T=T, +T

rot

=-mc*/2+hw/2=0. (8)

Hence the angular velocity of the particle o = mc’ /i = k.c = w,. is identical with the Compton
frequency, A. =2n / k. is the Compton wave length. It readily follows from (8) that the rotational

energy is half the rest energy mc” . In the following we postulate that this behavior remains also
true in the case of interacting external fields.
In the following we construct the covariant interaction energy V for a charged particle in external
fields by neglecting terms which involve tensors of rank higher than two. In this case the potential
energy

V=V,+V, +V, 9)



consists of a scalar coupling described by V,, =V, (x,,t), a vector coupling

Vi=e) A5, (10)
vl
and a tensor coupling
V,=———3F,.S,, . (11)
2mc
The gyromagnetic ratio
e/2mc (12)

between the magnetic moment and the mechanic angular momentum of the electron equals that of
a classical magnetic dipole. The Lande factor g = 2 need not to be considered because it is
implicitly taken into account by the double summation in equation (11). The three spatial
components 4, = 4, ()cH ,T), 1,v = 1,234, of the electromagnetic 4-vector potential are real while

the time-like component A4, is purely imaginary. The components

_ oAy o4, (13)
Yoox, o,

define the electromagnetic field tensor. The potentials V; and V, are of entirely electromagnetic
nature, while the potential ¥ is not since it describes the coupling of two scalar quantities, for

example masses. Accordingly, if we suppose that this potential energy accounts for the gravitation,
it may be written as

V, =-m®, (14)

where ® = ®@(x, ,t) is the gravitation potential. The potential energy V, is gauge-invariant,
whereas the potential energies V,and V, are not. However, the equations of motion of the particle

are invariant under gauge transformations of the potentials ® and A, respectively, although the
Lagrangian (2) and hence the action (1) will change. Employing the gauges

O ->D+D, A— A+ GradA, (15)

the action (1) alters to

S>S+md;(x,)-D,r,)]+q[Ax, (x,) - Alx, ()] (16)



Here Grad denotes the four-dimensional gradient. The result (16) demonstrates that the action is
not changed by any gauge transformation if the particle has performed a closed orbit in Minkowski
space and @, (t,) =D (t,).

The path equations are obtained most conveniently from the action integral (1) by employing
Hamilton’s principledS = 0. This condition states that among all possible paths along which the
particle may move from one point to another in four-dimensional space within a certain time
intervalt | —1,, the actual path yields an extremum for the action. By employing the standard
calculation of variation, we readily obtain from (1) the Euler-Lagrange equations for the particle
motion

S ) (17)

Considering the relations for the kinetic and the potential energies, the Lagrangian (2) adopts the
form

m. .
L =Z[Exu2—equ“]—Vo—V2. (18)
18

The components of the momentum 4-vector are derived from this equation as

oL, )
D, za:mxH —ed, (19)

These quantities are the canonical conjugate variables of the spatial coordinates x,, . By inserting

the expression (18) into the equation (17) and considering the relation (13), we eventually obtain
the path equations

04 ov, oV.
mi =—e) x,F —e—H - —0_ "2
3 Z v ot Ox, oOx

n 0

. p=1234. (20)

If we multiply this equation with X, and sum subsequently over the index p, we find

— (=D x, =+ V V=) X, — 2. 21
dr{z[;“ 14V, + 73} qgu& =t 1)
This equation can be written in the familiar form
dH oL
drr T (%r ’ 22)

where



. 0oL | ,  mc’ e
X ~—L =— —-ed ) ——+V,+—)> S F 23
~ n ax“ r 2m ;(pll H) 2 0 2m ; TAVRNTAY ( )

H

—

is the relativistic four-dimensional Hamiltonian which should not be mixed up with the classical

three-dimensional Hamiltonian H. If the potentials A and G are conservative, they do not depend
on the universal time explicitly. In this case the terms on the right hand side of (21) vanish
provided that

ov. .
8_r2 - KZSHV Fuv =0. (24)
[TRY

As a result the Hamiltonian is then a constant of motion and equal to the total energy

Hr:Zr_Trot+V0+V2:EO:_mcz' (25)
The last relation is obtained by considering the special case where the particle is at rest in field-free
space. It should be noted that the covariant energy E, does not depend on the sign of x, . Hence this

energy must be the same for a particle and its anti-particle. Therefore, their masses are identical
and positive definite. As a result the gravitational force between particles must always be
attractive. It should be noted that covariant Hamiltonians suggested so far in the literature only

consider the electromagnetic vector potential [1]. Moreover, the energy is either zero or—mc” /2,
respectively. Hence both Hamiltonians cannot be attributed to a specific energy. Our result
explains the scalar nature of the covariant Hamiltonian (24) because the total energy is identical
with the rest energy of the particle. This energy is a Lorentz scalar and can be conceived as the
canonic conjugate “variable” of the universal time z. Therefore, we can conclude that 7 is not some
meaningless Lorentz-invariant parameter, but may have a realistic physical meaning in the context
of creation and annihilation of particles. Moreover, the universal time becomes obsolete or
meaningless, respectively, for mass-less particles. The constraint (25) is considered as a true
dynamical constraint that confines the motion of the particle to a particular three-dimensional
surface in the four-dimensional non-Euclidian space. Our supposition differs from the
conventional assumption that the absolute value of the velocity 4-vector is a constant of motion
and equal to c. This condition is used as a definition of the parametert , which is considered as the
proper time of the particle [1, 2]. In contrast to this procedure, we assume the existence of a true
universal time which governs the dynamics of particles in four-dimensional space.

It is shown in the context of classical mechanics that the action S is a solution of the Hamilton-
Jacobi equation apart from an arbitrary constant. By extending the formalism from three to four
dimensions and considering 7 as the equivalent time, the resulting five-dimensional equation is
found as

oS oS
—+H,(x,,—.1)=0. 26
5 HH (Ko =) (26)

n



The canonical momentum variables in H, = H,(x,, p,,t)have been replaced by means of the

transformations

Dy = 5 u=1L234. (27)
ﬁxu

The Five-dimensional Hamilton-Jacobi equation (26) has the remarkable property to be both
Lorentz-invariant and linear in the universal time z. Hence we shall consider this equation as the
short-wavelength limit of a covariant Schroedinger equation.

If H, does not involve the universal time explicitly, this variable can be separated by assuming the

solution
S=W-Et (28)
resulting in the Hamilton-Jacobi equation of the reduced action W:

o
“’ﬁxu

H (x )=E. (29)

This equation does no longer involve the universal time.

3. Spin precession

The equations for the spin precession cannot be derived from Hamilton’s principle. Therefore, we
must try to construct these equations by imposing the constraints (6) and (24). In addition we
require that the equations reduce to the standard form if the electric field strength vanishes,

As a suitable set of equations for the dynamics the spin in Minkowski space, we propose

= _z {SH}\.F}\.V - Fku} M)V = 1727374' (30)

The equations do not alter if we exchange the subscripts ¢ and v and consider S|, =-S,, . To
prove the validity of the constraint (24), we multiply the equation (30) with £, and sum over the

indices ¢ und v, yielding

Z SWFHV ZFMFHVSM=ZFHVFMS = ZF F,S,, =0. (31)
pyv uv,A TRV TRV

Subsequent relations have been obtained by exchanging two indices. Since this procedure is
merely a change of notation, it does not affect the value of the summation. Assuming the validity
of the equations (30), the result (31) demonstrates that (24) is automatically fulfilled and, hence,
need not to be imposed as a constraint.

Multiplying (30) with S, and employing the same procedure as in (31), we readily obtain



ZSW w =7 dt ZSW =0. (32)

Hence the relation (6) is also fulfilled. The spin tensor has the same structure as the
electromagnetic field tensor because both tensors are Lorentz-invariant. Hence we can construct

from the spatial components of the spin tensor a three-dimensional axial vector S ., with

components S, =S,,,5, =85;,,5,. =5,, and from the imaginary time-like components a real

my
electric axial vector §e with components S, =iS,,,S,, =iS,,,S,. =iS,;. The Vectorge accounts
for the electric dipole moment induced by the motion of the magnetic dipole. If we also express the

components of the electromagnetic field tensor by the components of the electric and magnetic
field strengths, the equations (30) can be written as

S, =4S, xB+S.xElcy, S, =2{S,xB-S, /). (33)
m m

The coordinates of the electric and magnetic fields are given by the position of the particle.
Hence the four path equations (19) and the 6 equations (30) or (33), respectively, form a coupled
system of ten differential equations for the position of the particle and the orientation of its spin in
the Minkowski space as functions of the universal time z.

The equations (30) can be conceived as an alternative to the so-called BMT equation [3] which
employs the spin 4-vector

S, =(1/2c)e™" %, S,, =%(—)*“2x S . (34)

K™ pv
p

Here £ " is the totally anti-symmetric fourth-rank unit tensor; denotes the cyclic permutation of
the indicesk, p,v . These indices and A differ from each other and each defines one of the four
numbers 1, 2, 3, 4. It readily follows from the relation (34) that the scalar product S, X, vanishes

identically. Hence this relation does not need to be considered as a constraint. To derive the
equation for the precession of the spin, we take the derivative of the (34) with respect to the
universal time T and replace X_ by means of the path equation (19). Assuming both G=0 and

0.4, =0, we eventually derive at

. . 1 OV
SK=(—)“Z{xK uv+xKSw}/c——Z S, %(_)“zaTZS‘”' (35)
4 K

The last term accounts for the gradient forces. Neglecting this term, we obtain the BMT equation
for a charged particle with Lande factor g = 2.

The vectors §e and gm transform from the system at rest of the particle to a system moving with

velocity v =dr /dt = [§c in the same as the electric and magnetic field strengths because they are



all components of second-rank tensors. Considering that S, =0 and S = § in the system at rest,
we readily obtain

§e=§x[§, S, =vs—

v & _ 1
. erll3(l3S), Y —W

The vectors 56 and §m are orthogonal to each other because 565,” =0.

(36)

The number of variables can be reduced by consider the motion of the rest-frame spin s = 5(¢) as
a function of the time ¢. The corresponding equations for a Dirac particle are found as
ds y? dp

e eiBoY GGG xE cx(Gx B
E_mSX[B erl[3(BB) BXE/C]+y+1SX(B dt)' (37)

If we replace the acceleration in the laboratory frame a = cdﬁ /dt by the standard Lorentz
equation, we derive at Thomas’s equation for the spin precession in a uniform magnetic field [4].

However, we will demonstrate in the following that this substitution does not yield the complete
relativistic result.

4. Reduced relativistic Lagrangian and Hamiltonian

We have shown that the Hamiltonian (25) is a constant of motion in Minkowski space if the
potentials do not depend on the universal time 7 explicitly. This relation can be considered as a
constraint for the motion of the particle. The constraint can be used to replace the independent
variable T by one of the four coordinates x, , preferably the times = —ix, / ¢ . However, this is only

possible if we can express the rotational energy 7, and the potential energy as functions of ¢

Fortunately, this is possible by transforming the spin and the electromagnetic field strengths to the
particle’s rest frame by means of proper Lorentz transformations. In this frame the time-like
components of both the angular velocity tensor and the spin tensor become zero. On the other hand
we must consider that the rest frame rotates in Minkowski space if the velocity v is changed. The
corresponding angular velocity

2 - -
- - Yo oaxv
S e (38)

is known as Thomas precession [4]. Hence the rotational energy in this frame is found as

T

rot

. me> v S(@@xp)
S(@c +0r) > v +1 c (39)

The second term is of entirely kinematical nature. It always arises when the velocity changes for
whatever reason. The potential energy (6) can be written as



V,=-2x(S B-S.Elc)= i(g xB)E —%y{g —#ﬁ(ﬁ)}é . (40)

Here E and B are the field strengths in the laboratory frame. By employing the relations (39) and
(40), the Hamiltonian (25) can be written in the covariant form

=M G My, By = ome,
2 dt
v axp (41)
U=y, — 59 B+—s(B><E)——v{s——B(l3 )}B.
y+1 c

All quantities in these relations are functions of x, y, zand ¢. Since H, = E, = —mc?is a constant of
motion, we can use (41) to eliminate dt / df in the expression for the reduced action

W = Efopuxudr = Ex.[ {—mZx - e(vA +id,cldt = ExIL,eddt (42)
s ]

f

Since the expression (41) is quadratic indt/ dt , we obtain for the reciprocal differential quotient
two solutions which only differ in sign; ;ls is the spatial component of the 4-vector potential. It

should be noted that df/dt only coincides with y (36) in the case U=0. The positive solution can
be attributed to the electron, the negative solution to the positron. Taking into account the positive
solution for the electron, the corresponding reduced Lagrangian is derived as

L., :—mcz\/l—ﬁz\/l—i-ZU/mc2 —eVA, +e@p, A, =iplc. (43)

Here¢ denotes the electric potential. The function U vanishes if we neglect both scalar coupling
and spin effects. In this case the Lagrangian of the reduced action and the resulting relativistic path
equations adopt the well-known form listed in the literature. If we take into account the spin, the
reduced Lagrangian L, =L ,(7,v,a,t) becomes a function of the position7 , velocity v = dr / dt

and acceleration @ = d°7 /dt> of the particle and of the time . In this case the calculus of variation
applied to the condition W = 0 yields the modified Euler-Lagrange equations

oL, d oL, oL,
re Sredy | Sored ), v =123 44
( V) dr(axv) ox, 44

In this equation the dots denote derivatives with respect to the conventional time ¢. Because the
acceleration is contained in L, in the forma (v x §), each of the resulting path equations has terms

which are linear in the third derivative of the coordinates x, with respect to time and terms which

are linear in the time derivatives of the spin componentss, . So far a term v has only been



considered phenomenologically in the context to include the reactive effects of radiation in the
equations of motion for a charged particle [2]. Our covariant approach yields such terms in a
straightforward way if spin effects are incorporated. Hence we may infer that the radiative
reaction force is connected with the precession of the spin of the charged particle. This conjecture
is reasonable because the spin is accompanied with a magnetic dipole whose motion induces an
electric dipole in the laboratory frame.

The Lagrangian for the positron is obtained by changing the sign of the first term in the
corresponding expression (43) for the electron. This differs from the common procedure which
changes the sign of the charge. Because we consider in accordance with Feynman [5] the positron
as an electron moving backward in time, the sign of the charge does not alter when going from the
electron to the positron. However, a discrepancy exists because both procedures only yield the
same equations of motion in the case U=0.

4.1 Non-relativistic approximation

The reduced Lagrangian L, is rather involved and difficult to understand. In order to obtain a
crude insight of its structure, it is advantageous to investigate the non-relativistic limit in more
detail. For this purpose we expand the expression (43) in a power series with respect tol/c”.
Retaining only terms up tol/c”, we eventually find

L,,~L,+L +L,,

L, =-mc’,L, = L -V, —eﬁ;ls + e +£§E, (45)
2 m
2 oy
m 4, VY, (§sxVv)a e ... = e = .
L = v+ - - sS(VxE)+ Bxv)(s xv)].
282 2mc? 2¢? mc’ ( ) 2mcz( X )

By neglecting the constant term L, we obtain in the limitc — o the non-relativistic Lagrangian

L, of the electron in an electromagnetic field. This Lagrangian yields the corresponding path
equation

ma = —e[E +7V x B]+ igmd(EE) —gradV, =F . (46)
m

The force F' consists of three terms, the familiar Lorentz force, the gradient force acting on the
magnetic moment es /m of the electron and the gravitational force. The non-relativistic equation
for the precession of the spin is readily derived from (37) as

§xB. (47)

Hence the precise non-relativistic motion of the electron and the precession of its spin are
governed by the set (46, 47) of coupled differential equations because B = E(x(t), y(t),z(¢),t) isa

function of the position of the electron. Our approach incorporates correctly the spin of the particle
in the equations of motion without the need of a phenomenological g-factor and/or quantum-
mechanical considerations, even in the relativistic case. This result contradicts the general belief



that a microscopic consideration of the spin is beyond the scope of classical electrodynamics.
Within the frame of validity of the expansion (45), we can replace the particle acceleration a by
the expression (46) yielding

L, =—v'+ ! - ¥i5 x[E + < grad(5B) - gradV, ]} . (48)
2mc m

Using this relation together with the expressions (45) for L, and L,, we obtain an expansion of the
three-dimensional Hamiltonian

aL red

— d>
n avu re

3
H = H(F, p,t) = 3

p=l

(49)

which is correct up to order1/c” inclusively. The somewhat lengthy yet straightforward calculation
yields

H=H,+H +H,,

Hozmcz,
H = (5-edy —ep- <GB +7,, (50)
2m m
H, =- (p—ed)’ - oo 1 (B —ed) 5 x[E +-5 grad (5B) — gradV, |}
2 8mc? P 2me* 2m*ce? P mg & 07

Here p denotes the three-dimensional canonical-momentum vector. It should be noted that
H, =-H, =-E, has the same absolute value as the relativistic Hamiltonian. However, its sign is

positive for the electron and negative for the positron, because the reduced Hamiltonian is related
to the time-like component of the momentum 4-vector. Each component of this vector can be
positive or negative depending on its direction in Minkowski space. As a consequence, we do not
need Dirac’s “hole theory” which must be introduced if mcx, is conceived as the energy.

The Hamiltonian H, represents the Pauli Hamiltonian for the electron apart from the scalar
potential ¥, . The term H , coincides in the case V,, = 0 with that obtained from the Dirac equation by
means of the Foldy-Wouthuysen transformation if we disregard the so-called Darwin term [6].
This transformation reduces the Dirac spinor in such a way that it has a lower two-spinor
identically zero for the electron. Within the frame of our non-quantum-mechanical calculations,
this procedure corresponds to the transformation of the spin tensor from the laboratory frame to the
particle rest frame. This behavior stirs the conjecture that the lower two-spinor should be attributed
the time-like components of the spin in the laboratory system rather that to a positron contribution.

5. Properties of the action function
The action function (1) describes the propagation of an ensemble of identical particles in
Minkowski space. To investigate this behavior in some detail, we assume that the /7, does not

depend on the universal time explicitly. In this case the action function can be written as



<, 3
S =Y. p.%, —H,Jdv = [ PAR—E,(x, =1,) = W(R,,R,) ~ E,(x, —T)). (51)
,

T, M

Here Pand R denote the canonical momentum 4-vector and the position 4-vector, respectively.
The integration has to be taken along the path which makes each of the two integral an extremum.
Hence we have 05 =0 anddW =0 for fixed positions of the path-defining initial and end points

R,and R, , respectively. A constant action S = S, represents a continuous set of surfaces
W(R,Rl) =E,(t —1,)+ const. (52)

in the four-dimensional Minkowski space. If we vary the action S with respect to the coordinates of
the endpoint RZ =R, we readily derive from (51) the relation

GradsS = GradW =P = mé —ed. (53)

This relation demonstrates that in field-free space (;1 = 0) the trajectories of all identical particles
emanating from the initial point ﬁl are the orthogonal trajectories to the surfaces of constant

reduced action . Since this function is attributed to an ensemble of trajectories of identical
particles, it cannot distinguish the particles. As a result identical elementary particles seem to be
indistinguishable. This behavior is a consequence of eliminating the universal time .

We can consider the conditiond/” = 0 as the four-dimensional extension of Maupertuis’s principle
of least action. This analogue implies that particles which start simultaneously from a given point
in Minkowski space will intersect any surface of constant action W at the same universal time.
Although this time is steadily increasing this is not necessarily true for the time-like spatial
coordinate x, . If the particle reverses its direction of flight with respect to this coordinate it

converts to its anti-particle because an electron flying backward in the laboratory time can be
considered as a positron flying forward in this time[5]. Reversal of the time-like momentum
component implies that at least a change 2mc in momentum must be transferred to the collision
partner, which will emit subsequently a photon. In the Laboratory frame the observer records this
event as electron-positron annihilation.

It should be noted that the action function S does not contain the initial velocity coordinates as
variables explicitly. This behavior resembles the uncertainty principle of quantum mechanics
according to which it is not possible to precisely determine the position and the momentum of a
given state. In our case the initial canonical momentum can be obtained by varying (51) with

respect to the initial coordinates of the position 4-vector ﬁl resulting in
P, =-Grad,S = -Grad W . (54)

Since W is a function of R and 131 , we can use the relation (54) to obtain R = R(Rl , f’l) as a

function of the initial position and momentum of the particle, at least in principle. Owing to the
existence of the action surface, the trajectories of identical particles emanating from a common



point in the four-dimensional space are correlated since their canonical momenta are orthogonal to
this surface. It changes its shape as a function of the universal time, yet it will never be torn apart.
However, the surface can degenerate in sheets which intersect each other forming a caustic. The
caustic represents the loci of the intersections of “rays” which start with slightly different
directions from the point source. If we take into account the wave nature of the electron, the
surfaces of constant action also represent wave surfaces of constant phase. The action is a
minimum for all points located in front of the caustic and a maximum if the end points are located
behind the caustic. It should be noted that the particle description breaks down in the region of the
caustic due to pronounced interference effects.

6. Self-action

So far we have considered the action resulting from external fields. However, the particle also
produces a field. In order to guarantee that the motion of the particle is not affected by its own
field, we must postulate that the “self-action” is a constant of motion. This constant can be put to
zero because the action is only defined up to an arbitrary constant. The charge and the magnetic
moment of the electron are the sources of its accompanying electromagnetic field. Any change of
the velocity of the electron results in an additional radiation field. The entire electromagnetic field
depends implicitly on the universal timet , because the position coordinates x, = x, (t) of the

particle are functions oft . To completely describe the self-action, we must take into account both
the interaction terms and the electromagnetic field of the electron. Since this field is continuously
distributed in the four-dimensional space, we must introduce a proper four-dimensional Lagrange
density/, =/ (x,,t)and the normalized mass density p, = p,(x,,7)of the particle. The Lagrange

density
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consists of three terms. The first and the second term represent the self-interaction of the charge
and the spin of the electron with its own electromagnetic field, whereas the third comprises the
contribution of this field to the self-energy density; p, is the permeability of the vacuum. The field
term differs from that of standard field theory because we have extended the space from three to
four dimensions. Accordingly, we must define the self-action as

S = Exf{ [1,d*Ryar = Exf{ [Yleps, 4, +Z(ipstw + " F F)d'Ridt.  (56)
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The equations for the electromagnetic field associated with the electron are derived by employing
Hamilton’s principledS, = 0. Since the motion of the particle is given, the variation has to be

performed with respect to the four components 4, of the 4-vector potential, where a L 18
considered as an independent variable. Derivatives of the deviationd4, with respect tox, are

removed by partial integrations. Considering that the deviations are zero at the limitst, andt,, we
obtain
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Here j, =epx, is the four-dimensional current density. Because the variation can be taken at an
arbitrary timet, <t <7, the expression in the brackets must vanish identically. Imposing the
Lorentz gauge DivA = 0, we derive the inhomogeneous equations

’A, ¢
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for the time derivatives AH of the components of the 4-vector potential. The solution of this

differential equation is accomplished most conveniently by means of the four-dimensional Green
function

G=GR,R)=—F———, 59
(&.R) 4n*(R-R") (59)
which satisfies the equation
aG——B (R—R"). (60)
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Here & *(R — R') is the four-dimensional delta function; R'denotes the position of the point source
By employing Green’s method together with (59), we the solution
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The derivative of with respect tox', is removed by partial integration with respect to this
coordinate. Moreover, we assume a point-like particle with density

p=8*(R-R,([x)) . (62)

By employing this density and assuming that the particle is created at the initial timet, = —0, we
obtain
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(63)



The integration must be taken over the entire “life-time” of the particle starting at the initial time
up to the universal time of observationt . This time is related to the time of observationz, in the

three-dimensional laboratory frame via the relation?, = x,(t,)/ic.

Ny

Fig.1. Laboratory time ¢ of an electron as a function of the universal time .

Figure 1 shows a possible scenario for the laboratory time of an electron as a function of the
universal time. In this case an interval exists for T during which the laboratory time of the particle
t = t(t) decreases. Depending on the time of observationz,, the observer in the laboratory frame

records either a single electron or two electrons and a positron, because a negative time-like
component x, of the 4-velocity represents the anti-particle within the frame of our considerations.

The diagram illustrates an interesting phenomenon. The observer records for¢, < ¢, a single
electron. The particle seems to change the direction of its time-like velocity component at the
universal timet =t_ <7, . Att =1, the observer detects at his laboratory time¢ = ¢, the creation
of a positron and an electron pair which annihilates somewhat later at laboratory time# = ¢, . This

annihilation cannot correspond to a directional change of the time-like velocity component that had
occurred before the universal time 7, at which the direction would be reversed again because in the

time interval ¢, <t <t the observer detects three particles at different locations in three-

dimensional space. This apparent contradiction can be avoided by assuming that the positron is an
electron with a negative time-like velocity component.

The main contribution to the integral (63) is delivered by the poles of its integrand. These poles are
the zerost, of the denominators and defined by

[R-R,(x)]* =0. (64)

Accordingly, the zerost, =71, (R) are functions of the coordinates x, of the point of observation.



Depending on the path of the electron as a function t, a distinct number N of poles exists.
However, only the polest, <71, are contributing to the integral. If we assume that the integrand is

negligibly small fort =7, and ignore the polest, >t , we can extent the upper integration limit to
infinity. The components x,, (t) and S (t) of the electron’s position and spin, respectively, are

analytical functions of 7 which vanish at infinity. In this case we can perform the integration
analytically in the complex t-plane by closing the contour of the integration by an infinite half
circle in such a way that the loop comprises all polest, <t ,. Hence the value of the integral (63)

is given by the sum of the residues. In order to find the residues we must expand the integrand in a
Laurent series about each pole. The corresponding residue is given by 2ia_,w , where a_, is the

coefficient of the term a_, /(t —1, ) of the Laurent series. Taking into account these results, we
eventually obtain
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(65)
The accelerationR,, = R, (t, ) and § w (t, ) vanish if the electron moves in a field-free region. To

demonstrate the validity of the expression (65), we consider an electron in its field-free rest frame.
In this case we also havex, =x, =X, =0,x,, =ic, S,, =0 andt, =¢. Then the equation (64)
adopts the simple form

[R-RJ =(F-7) —c*(t—1)" =0 (66)

with the two solutions t, =¢— |77 - 17e| le,t,=t+ |77 - 17e| /¢ >, . The second solution, which does

not contribute to the integral (63), violates causality in the laboratory frame. In the rest frame the
spin tensor degenerates to a three-dimensional axial vectors =s €, +s € _+s_ e, with components

s,=8y,8, =8;,s, =8, By taking into account these considerations together with the relation
w,e, =1/¢*, we eventually find

¢ =icd, =— e - ey, (r=r)xs

(67)
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These familiar relations represent the electrostatic potentialg of a charge ¢ = —e and the magnetic
vector potential of a magnetic moment L = es / m, respectively. If we apply the same procedure to

a steadily moving electron and neglect the spin, we obtain the Lienard-Wiechert potentials [7 ]
which represent the electric and the magnetic field of charge moving in the laboratory frame.



7. Multi-particle system

Our covariant Lagrangian procedure is well suited for a relativistic formulation of the dynamics of
a many-particle system in Minkowsi space. In our description 7 is not considered as a meaningless
Lorentz-invariant parameter, but has the property of a steadily increasing universal time. Since it is
connected with the mass, we may conclude that it started at the big bang. Moreover, the universal
time can be considered as a hidden Bell parameter [8] with a realistic physical property. The
incorporation of the universal time as the independent Lorentz-invariant variable also avoids the
need for statistical or probability descriptions, because it becomes possible to describe the motion
of the constituent particles of an ensemble separately as long as interference effects can be
neglected. To elucidate this behavior, we consider the classical motion of particles emanating from
a point source in a static three-dimensional field. By solving the equations of motion, we obtain the
position of each particle as a function of the laboratory time . Hence if the velocity vectors of the
particles are given at some initial time# =¢,, we can precisely determine their position at any later

time¢ > ¢,. Since the forces are conservative, we can use the relation for the conservation of energy

to substitute a spatial coordinate for the time. In this case the particle ensemble is described by a
homo-centric bundle of trajectories, each of which represents the path of a particle. However, by
using this procedure, we have lost information because we can no longer distinguish particles
traveling along the same trajectory nor determine the position of the particles at a given time.
Using the number of trajectories per unit area as a measure, we can determine the probability to
find a particle at a given position if the current density of the source is known. The same situation
arises in Minkowski space if we substitute the laboratory time ¢ for the universal time 7 by means
of the relation (41) because in this space ¢ has the role of a spatial coordinate.

The universal time should not be mixed up with the proper time of a given particle. Therefore, the
universal time is the proper invariant parameter to describe the evolution of the system in the four-
dimensional space. Within the frame our approach, the time-like spatial coordinate x,, = x,, (t) of
each member 7 of an ensemble of N particles is a function of the universal time. Accordingly,
these coordinates will in general differ from each other for a given 1. Conversely, the requirement
x,, = x, will result in a universal timet, which is different for each particle n. Moreover, our
preceding results enable a straightforward treatment of covariant interactions between particles.
The corresponding Lagrangian is readily obtained by extending (18) from a-single particle to many
particles. Owing to the linearity of the Maxwell equations, the electromagnetic 4-vector potential
produced by the N particles

_- - = — N — — =
A=AR,RR,,..R,) =Y A4,(R,R,) (68)
n=1

is the sum of the 4-vector potentials (65) of all N particles. Their total kinetic energy in the four-
dimensional space is given by

T2y m (Y, (69)



wherem, denotes the rest mass of the nth particle. We suppose that the scalar potential

O =D, (ﬁ,ﬁn) can be derived in the same way as the electromagnetic potential by imposing the

condition that the gravitational self-action vanishes. We eventually obtain for a point-like particle
the result

_ iemx TJQ dr m,cK . (70)
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Herex is the gravitational constant andt _ <t represents the retarded solution of equation (64),

where we have assumed that only a single retarded solution exists. Since the gravitational force
is negligibly small, it will not be considered in the following. Then the potential energy of the
system is given by
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where ¢, denotes the charge ande, accounts for the anomalous magnetic moment of the nth

particle, respectively. The sum over the index m has to be taken over all particles m # n because
the self-action does not contribute. The variation of the corresponding Lagrangian with respect to
the coordinates x,, of each particle yields 4V equations of motion. However, since these equations

also depend on the spin motions, we must in addition incorporate the equations for the spin
precession. These equations are readily derived by applying the relation (30) to a system of many
particles. Their charges and spins produce the external field which affects the precession of the
spin of each particle. The generalization of (30) from a single-particle system to a many-particle
system yields for the spin precession the set of equations

. N N
S =D A800 D> Fppy =S D Frpubon=1L.,Nypv =1,234. (72)
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This set consists of 6N equations because the spin components are anti-symmetric. Together with
the 4N equations for the motion of the particles we have to solve /0N equations for obtaining a
deterministic description for evolution of the system in Minkowski space. Multiplying (72) with
S . and performing the same manipulations as in (31), we find that the absolute value of the spin

nuv

is a constant of motion for each particle. This behavior does not hold true for the energy since it

N
can be shown that only the total energy H, = —Z m,c” is a constant of motion provided that the
n=1
electromagnetic field does not depend on 7 explicitly. Hence it is only possible to substitute the
time-like coordinate of any single particle for the universal time 1. The N+/ conserved dynamical
quantities act as constraints for the motion of the N particles in Minkowski space. Our covariant
treatment of the multi-particle system has demonstrated that it is possible, at least in principle, to
determine the motion of relativistic particles by employing the same methods as in classical
mechanics, although the amount of expenditure increases significantly.



8. Quantization of the five-dimensional Hamilton-Jacobi equation

The Hamilton-Jacobi (HJ) equation of classical mechanics offers the most appropriate procedure
for incorporating the wave nature of the particles in the dynamics of the system. The reason for
this behavior is due to the fact that the HJ equation for a single particle represents the particle
analogue of the eikonal equation of light optics which is the wave surface or the phase,
respectively, of a monochromatic wave in the limit of an infinitely short wave length. According to
this analogue, we can assume that the action S represents the phase of the wave y associated with

the particle. Since a constant phase represents the surface which is orthogonal to all trajectories
emanating from a common point, the eikonal cannot directly be attributed to the path of a distinct
particle. The scalar optical wave equation can be retrieved from the corresponding eikonal
equation by substituting the operator —iA ,0/0x, for the partial derivativedS/ox,, pn =1,2,3,4,

whereA, =& /2n =1/k, is the vacuum wavelength. The resulting operator then acts on the
wave function y yielding the wave equation. Employing the same procedure to the three-
dimensional HJ equation together with the substitution —izdy /0t for 0S /0t and replacing the
wave number k, by 7, we readily derive the time-dependent Schroedinger equation. Since this

equation is of first order with respect to the time derivative, it only allows propagation in the
positive direction of the time. This is reasonable if the time ¢ is considered as a steadily increasing
variable.

Within the frame of our relativistic considerations, we must consider # as a fourth time-like spatial
coordinate which can adopt positive and negative values. The role of the time is taken by the
universal time t. The classical non-relativistic HJ equation does not account for the spin. As a
result the spin term must be incorporated into the Hamiltonian of the resulting Schroedinger
equation a posteriori yielding the Pauli equation. On the other hand the four-dimensional
Hamiltonian (28) contains the spin term. Its structure suggests that it must be quantized in such a
way that the resulting term coincides with that of the iterated Dirac equation [9]. By imposing this
condition we must express the wave function as a 4-component spinor
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wherey is the adjoint spinor. However, within the frame of our considerations the components
Vv, =y, (x,,7)are function of the four spatial coordinates x, and the universal time 7. Moreover,

the wave function must be normalized in four-dimensional space rather than in three-dimensional
space as in Dirac theory. According to this theory, the components of the spin tensor are operators
represented by

S =ho /2, G ==Yy (74)
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where v, 1 =1,2,3,4, are the gamma matrices. By taking into account these relations and applying

the quantization “rules” to the five-dimensional HJ equation (26) with Hamiltonian (23), we
readily derive the covariant wave equation
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This equation has a similar structure as the Schroedinger equation and it fulfills the requirement to
be linear in the time derivative. Due to the asymmetry with respect to 7, the wave equation
differentiates between past and future. As a consequence an event at time 7 can only be influenced
by events ar previous timest '<t . In order that (75) represents a suitable equation, it must be
possible to form a positive-definite scalar density. In the Schroedinger theory the wave functiony

is a complex scalar function whose adjoint is the conjugate complex functiony *. The probability

density is the product of these functions. Accordingly, it seems to be appropriate to define the
product

p =V (76)

as the probability density in Minkowski space. In order that this definition is reasonable, the
probability density must be positive definite and satisfy a continuity equation. This equation is
obtained by multiplying (75) on the left byy , the adjoint equation byy from the right and
subtracting the resulting equations from each other. It should be noted that the adjoint equation is
obtained by taking the conjugate complex of equation (75) and by placing y in front of the double

sum in the last term. This is required because y =y ,y * does not commute withc  , where

pv

v= @11* v, v, oy 4*) is the Hermitian conjugate spinor. Considering the relation
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This relation represents the four-dimensional continuity equation

% 4 pivi=0 , (79)
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where Div denotes the four-dimensional divergence and
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represents the current density which does not contain the spin. This current density coincides with
that derived from the Klein-Gordon equation and should either be interpreted as mass-current
density or as charge-current density rather than as the probability flux [10]. It should be mentioned

that a continuity equation of the form (79) does not exist fory "y . Since the current density (80)

does not vanish in the casee = 0, it is more appropriate to interpret (80) as mass-current density
and p as the mass density in four-dimensional space. In this case we should be able to incorporate
the creation or annihilation of particles in our formalism in a deterministic way.

By assuming that J vanishes on the surface of the infinite hyper-sphere, the four-dimensional
Gauss theorem applied to the continuity equation (78) or (79) yields

j(\w Yd*R = const . (81)

Accordingly, the mass density

e N e VA I T (82)

can never change sign. This result is very satisfactory because it avoids the unphysical
interpretation of p as a probability density. Moreover, it supports the conjecture that
Vv =y (x,,t)defines a “real physical situation”. Since present quantum mechanics does not

include the universal time 7, this formalism is incomplete, as argued by Einstein [11].
As a further test for the validity of our approach, we determine the evolution of the Hermitian spin
operatorsc ,, with respect to the universal time t. The expectation value of a Hermitian operator 2

in the four-dimensional space must satisfy the relation
<Q>= [JOWd'R = [yQyd'R=<Q>. (83)

By taking the derivative of this equation with respect to t and utilizing the relativistic wave
equation (75), we obtain the Heisenberg equation of motion in four-dimensional space:

@:i[}]
dt h
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We apply this equation to the spin operatorc ,, which does not depend explicitly on time. In this

case the last term in (84) vanishes. It follows from the expression (75) that all terms of the
Hamilton operator H, commute withc ,, apart from the spin term. Considering in addition the

commutation relation for the spin operators

[c 000 e 1= 2ic,, , (85)



we find

= ZF ( KAG HVGK)\. ) =
dt 4m
ie (86)
%Z[Fuk (G u)»c v _Guvcuk)_E/k (GV}\.GV],L - vu V}\. )]

A

ZA:[ N xu]

Slm

The comparison of this quantum-mechanical operator equation with the corresponding
“mechanical” equation (30) reveals that this equation forms the exact “classical” counterpart to
(86).

9. Free-particle solutions
For a free particle (4, =0,V = 0) the wave equation (75) reduces to
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which has the stationary solution ¢y =e v ., E, =—-mc”. The function y , =y (x,)depends

only on the four spatial coordinates and satisfies the field-free Klein-Gordon equation
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This equation has plane-wave solutions

\'VS =\|]e+\|/p’ (89)
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where the wave 4-vector fulfills the relation
K=k, +k*=—k.’. (90)

The time-like component of this vector

k,=p,/h=ik,=iE/ch==+ik>+k. (91)

is purely imaginary and proportional to the “conventional” energy E, which is defined by the time-
like component p, of the momentum 4-vector.Accordingly, the two terms of the wave function y
have phases
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The surfaces of constant phase ®, = @, = 0 taken at different universal times

T, =nAt,n=12,..., form two sets of hyper-planes in four-dimensional space, one associated with
particles moving forward in time #, the other with particles moving backward in this time. The
paths of the particles, which are the orthogonal trajectories to these planes, form straight lines.
According to these considerations we can attribute the termy , to the electron and the term v , to

the positron. It should be mentioned that the phase ®, for the positron part of the wave function
(89) differs from that given in the literature by the minus sign in front of the last term .

In order to determine the unknown “constants” C; and C, , we must consider that both electron and
positron are spin-1/2 particles whose wave functions must also satisty the Dirac equation. Hence
these factors are spinors rather than scalars. Since the direction of the momentum 4-vector of the
electron is opposite to that of the positron, we suppose that v, andy , satisfy separate equations
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Here summation has to be taken over equal indices. The first equation is the familiar Dirac
equation which is supposed to describe both the electron and the positron. We do not follow this
route and propose a slightly different equation for the positron. It should be noted that the mass is
positive definite for both particles. By adding and subtracting the two equations we get two
coupled first-order differential equations for y =y, +y , andy , =y, —y ,, respectively.

Eliminating y , yields directly the Klein-Gordon equation fory .

In order to determine the constant four-component spinors, we insert each of the wave functions
(89) into the corresponding equation (93). Since we consider positron as an electron with a
negative time-like momentum component, the spinors are the same for both particles contrary to
the results found in textbooks [10]. Moreover, because we consider p (82) as mass density, it
cannot adopt negative values. Therefore, the factors C, and C, must have the form

C, =au™(K)+a,u®(K). C, =au(K)+a,u®(K), (94)

where each of the four coefficientsa,, is a complex scalar constant. The two spinors are

normalized eigen-vectors which are orthogonal to each other. They are found as



1 0
: k 1k
k —1i k, +k
u® =N/ ——— | u? =N — F|N= -2 -C. 95
ko +k, ko + k. 2k, ©3)
k, +ik, —k,
ko + k. ko + k.

These spinors coincide with those given in the literature for the electron [10]. Our approach
enables us to attribute the lower two components of the spinors to the time-like components of the
expectations values <o ,, > of the spin operators for the electron and the positron. Moreover, the

mass density is positive definite for both particles.
The wave equation (75) governs the evolution of the wave functiony =y (R,t) in Minkowski
space with respect to the universal time. Since this equation is of first order in t, the wave function

at time © > 1, can be derived from the wave equation (75) ify is known at any previous timert .

This equation can be considered formally as a four-dimensional inhomogeneous diffusion equation
with an imaginary diffusion coefficient D. In order to demonstrate this equivalence, we rewrite
(75) as follows:
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where 4, are the components of an arbitrary constant 4-vector potential. The “source term”

Y=oy =(2m/h*)H z with operator
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accounts for the interaction Hamiltonian H.
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The form (95) of the wave equation offers the
possibility to transform (96) to an integral equation by employing the Green’s method for solving
the diffusion equation [12]. The Green function G = G(ﬁ,r :R',t") is the solution of (96) for a
point sourceX , = —0 (R—R")3(t —t') which is turned on at time ©’ at position ﬁo . The solution for
T >1' is found as
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is the solution of the field-free relativistic Hamilton-Jacobi equation (26) in the case of a non-
vanishing constant 4-vector potential for trajectories originating at the common pointfé =R'. The
gauge of the constant 4-vector potential is chosen such that ;10 = Z(ﬁ') . The four-dimensional van
Vleck determinant
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represents the trajectory density apart from a constant factor. The solution (98) is the elementary
four-dimensional wave emanating from the point R' at universal timet'. Since the total energy

E, =—§=—ﬁ(M+EJ (101)
ot 2 t—-1")

is not conserved, the elementary wave cannot be attributed to a single particle with a fixed rest
energy. To survey the property of this wave, we investigate the propagation of its wave surface

S=0 in the case ;10 = 0. The resulting equation
-ty -F-7) =@ -1"’. (102)
describes hyperboloids which propagate from the point #',7' in opposite z-directions. At the

starting timet =1' the wave surface degenerates to the light cone. Each trajectory starts from the
apex of this cone. Its starting direction is given by the initial momentum

f":—Gmd'S:mR—R'. (103)
T -1
Hence each path forms a straight line
13:1?45(1 —1') (104)
m

in radial direction originating at the starting point. This equation demonstrates that for a given
starting point either the end point or the initial momentum must be given in order to define the
actual path. Since the wave surface is a function of the starting point and the point of observation,
the solution of the wave equation defines the path by these points.



10. Integral equation and path integral

The Green function (98) is an elementary wave which has the same structure as the Fresnel
propagator of light optics. According to the Huyghens principle the wave at time ¢ = #'+A¢ is
formed by the sum of all elementary waves, each of which originates from a point of the wave at
time ¢. Since the Feynman path integral has the same property, we suppose that the Green function
(98) transforms the four-dimensional wave function given at time t' to the wave function at time t
in field-free space. To prove this conjecture, we transform the differential wave equation to an
integral equation. Since the boundary conditions are incorporated in this equation, it yields a
unique solution. Extending the Green’s function method for the diffusion equation [12] from three
to four dimensions, we eventually derive the integral equation

v (R,1) =%—:IG(1§—I§',1 —r,.)q/(E',ri)d“éwjjc(ﬁ—é',r —tHE(R' W (Rt )d*R'dt'. (105)
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The volume integration has to be taken over the entire four-dimensional space. The source is
turned on at the initial timet'=7t, . Therefore, the integration overt' in the second term has to be

taken from the initial time up to the time of observation 7. The first term on the right describes the
“non-scattered” incident wave at the point of observation R,t , whereas the second term accounts

for the scattered wave. Hence we can conceive (105) as the equivalence of the Lippman-Schwinger
equation [13] for the Minkowski space.

We can also utilize this equation to obtain a covariant path integral representation for the evolution
of the wave function in Minkowsi space in the case of interactions. Our procedure will yield a
straightforward derivation of the path integral without the need of employing Feynman’s
“intuitive” procedure. According to a remark by Dirac, he assumed that the operator

exp(iAS / i) transforms the wave at time ¢ to the wave at time ¢ + A¢. Unfortunately, Feynman’s
space-time approach is non-relativistic [14]. So far a covariant approach has not been found. In
order to derive a covariant path-integral representation, we subdivide in accordance with Feynman
the time interval T —t, = NAt into N infinitesimally short time “slices” of duration At . This
approach resembles the multi-slice method employed for calculating the propagation of fast
electrons in crystalline objects [15].

Employing this method, it suffices to derive the transformation of the wave function after
propagating through a single slice. The final wave function is then obtained by successive
iteration.

In the limitAt =t —t, — 0, the Green function (98) approaches a four-dimensional delta function:

At—0

lim G(R—R',Ar)=2’—h54(1§—1§'). (106)
m

By inserting this relation into (105) and consideringc, (R'") =0, we readily derive at



W Ry =v (Roe) 4 [0 (Rew (Re s (107)
m .
This integral equation has the solution
. . ih 5 .
W(R,'C) ZW(RaTi)eXPL_J.GZ(RBT')dT 'Ja (108)
2m :

which is obtained by differentiating (107) with respect to t and integrating the resulting rather
simple first-order differential equation. We can use this result to obtain an improved

approximation for the wave function at time t + At by substituting (108) fory (R',t") and by
replacing G(R-R';1-1')> G[R-R';t —1 ;) in the second integral of equation (105). We further

assume that the 4-vector potential does not change appreciably along a distance AR < +/2hAT /m .
In this case we can putc, = 0and perform the integration overt' analytically:

\y(ﬁ,ti +Ar)zz.—mj‘\y(ﬁ',ri)G(ﬁ—k',Ar)exp ijcz(ﬁ',r')dr' ‘R
ih 2m:

m’ R IAS 4
~ irmAt) [y R, )eXp( h de'

This result proves the validity of Dirac’s conjecture and can be considered as a relativistic
extension of Feynman’s non-relativistic path integral. The wave function at timet =7, + NAt is

(109)

obtained by successive iteration of (109) through all N slices. The differential action is given by

S
Aszﬂ@
2 AT

TR TRY

—eA(R'Y(R - R') + At [£+—Zc F +Vj (110)

This covariant expression differs significantly from the non-relativistic expression which does not
account for the spin and gravitation.

If the interaction Hamiltonian does not depend explicitly on 1 the wave function becomes
stationary with respect to this time. In this case the solutions of the wave equation (75) adopt the
stationary form

v (R1) =y, (R)exp(iHt /1), H, = mc*. (111)

Stationary conditions imply a steadily radiating source which has been turned on at the initial
timet; = —oo. In this case we can perform the integration with respect tot' in (105) analytically.

Considering the relations (98) and (99) for the Green function G and inserting the expression (111)
in the integrand, we obtain
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Here H,'” (x)and H," (x) are the first-order Hankel functions of second and first kind,
respectively [16]. The result has been derived by substituting # = c(t —t'") fort' as integration
variable. The variable

25 7 1
H, (ske)=—H," (=sk) === [—exp
Y OM

ik,
2

s =+/—(R-R")’ (113)

is real for time-like separations of the points RandR', it is imaginary for space-like separations.
The positive sign has to be taken fors > ¢', the negative sign forz < ¢'. By considering relation
(111) for the total wave function, the asymptotic form

lim H,"” (x) i exp(—ix) (114)
X—>00 len:

demonstrates that the expression (112) represents an outgoing hyper-spherical elementary wave in
the case for 7 > ¢'.and an incident hyper-spherical wave in the other case. Hence we can attribute
the positive sign to the electron, the negative sign to the positron part of the total wave function.

For space-like separations of the points R and R' the variable s becomes imaginary s = —i‘ﬁ - E"
fort>1¢', s= +i‘1§ - 13" for? < ¢'. In this case the Hankel functions decrease exponentially if s
increases. As a result the charge density is non-vanishing in the space-like region violating

causality for space-like distances ‘R — R" <Ae.

If we insert the relation (112) into the integral equation (105) and put the ;10 =0, we eventually
obtain the integral equation for the stationary wave

- - >0=t>1
W?(R) :\V?[(R)_

. H (2)
ZMkC I 1 (SkC)H (115)
S

Shzn im(R')q]s(R')d“R"S :{

<0=>t<t"

The first factor of the integrand represents the four-dimensional Green function for stationary
conditions. In this case the mass is conserved. It is interesting to note that the integration (112)
alters the phase S /7% of the Green function G according to a Legendre transformation of S that
replaces the variable 7 by the energy H . This energy should not be mixed up with the time-like

component of the momentum 4-vector. Within the frame of our considerations stationary in 7 does
not imply stationary in the laboratory time 7. Hence equation (115) also accounts for time-
dependent interactions in a covariant form. This equation is completely equivalent to that obtained
by Feynman based on the Dirac wave equation [17].



If the interaction Hamiltonian does neither depend on the universal time nor on the time t,
H, =H, (7),the system is defined as static. In this case the energies £, and

E =—ichK, = —imcx, = —ic(hk, +eA,) (116)
are conserved. Accordingly, the wave function adopts the form
y(Rt)=eMy,(F),y =ckea +K,x, =—(Eg + Et)/ 1. (117)

If we insert this expression into the integral equation (105) and consider thatX is only a function
of 7 , we can perform the integrations overt' and x', analytically. In order to simplify the

calculations, it is advantageous to integrate over x', first and subsequently overu =c(t —1').
Putting ;10 =0 and considering the integral representation of the Hankel functions of order '2 [16],

we eventually find

T ® A o , 1 ' © . = on\2 K 2 +k 2
J' jGezK4X4ezckcr dx'4 dt'= — mc elx.[u—3/2 expé(kc (I" r ) —u 4 C Jdu
u

4t \ 2ifim k
—00—00 B 0 C (1 18)
1 . eik‘r—r"
=—e" ——.
4 |17 - 77'|

The wave number

k

+\— (K, +k.') = i—% E* —m?c* (119)

is positive for £>( and negative for £<(. Using the result (118), we readily derive from (105) the
integral equation

1 k|7 =F

G R G R e GV GO (120)
TC

P

for the three-dimensional spatial part y . (7) of the total wave function (117). The second term on
the right represents the elastically scattered wave. If we substitute the expression (120) fory . (¥)

in (117), it readily follows that in the three-dimensional subspace the scattered wave represents an
outgoing wave for both the electron (E>() and the positron (E<(). The equation (120) is formally
identical with the Lippmann-Schwinger equation for elastic electron scattering derived from the
Schroedinger equation. However, a decisive difference exists in so far that the interaction
Hamiltonian 2(7'") is a covariant operator comprising spin interactions. Sincey , is a four
component spinor, the integral equation (120) represents a set of four coupled integral equations
for the four components v, of the spinory , .



11. Eikonal approximation of the relativistic propagator.

The eikonal approximation of light optics is the equivalent of the WKB approximation of wave
mechanics. The Greek word gikov means image and the eikonal governs the course of the rays
emanating from a common point. An ideal image is formed at the position where these rays
intersect each other again. In this case the eikonal approximation fails because the eikonal can no
longer be attributed to a distinct ray of the homo-centric bundle of rays. Since a plane partial wave
can be attributed to each ray, strong interference effects occur in the region of the caustic. The
caustic degenerates to a point in the case of ideal imaging. In the region outside the caustic, the
eikonal approximation describes the particle wave rather accurately. In this case it is possible to
evaluate approximately the path integral for the propagator. The propagator is a hyper-spherical
elementary wave in the absence of fields. If the wave propagates into the field region the wave
surfaces will be deformed. As long as the curvature of the wave surface does not diverge at any
point, we can employ the propagator for determining the propagation of an arbitrary wave from its
initial timet, to the time of observationt . In this case we can evaluate the Feynman path integral

approximately because only a single classical path connects any two given pointsﬁ and R'. Since
this path satisfies8S(R,t; R',t ;) =0, paths which only slightly deviate from the classical path

contribute the most to the path integral. For all other paths its integrand strongly oscillates yielding
no significant contribution to the integral.

Therefore, it suffices if we add all differential phases AS/% along the classical path. The resulting
total phase S/7 is an operator because the differential phases (110) depend on the spin matrices

G, - The propagator O = O(R,t;R,,t,) represents an elementary wave which emanates from the

point R, of the initial wave function at timet, in the presence of external fields. It transfers the
initial wave to the wave at time 7 in the same way as the Green function in the field-free case:

v (R1) = QR Rt W (Rt )d R, (121)

The semi-classical approximation for the propagator has the form

Q=Texp(iS/h), (122)
where the action
S=8+S,,
S, :][Z[%xuz —eAqu]erTcz—Vonr', (123)
SR

eh | ,
S, =EJ.ZGHVFHVCIIT =hchva’pv

T, By 8%

consist of a scalar term S, connected with the trajectories and an operator term S, which effects the
orientation of the spin. The integration overt' has to be performed along the classical path. This is



achieved by substituting in the integrands the solutionsx, (t') of the path equations for the

coordinate x,, . The exponential operator exp(iSS / h) can be written as

exp(iS, /1) = exp[iZocwc v J =cosO + éZG w0, SINO, (124)
[ThY [ThY
where
O=>oa,’. (125)
TRY

The representation (124) is most appropriate for applying the exponential operator.
The deformation of the wave surfaces S, = const. by the external fields is connected with a
variation of the propagator amplitudeI” = I'(R,t ;Ei ,T,;). To determine this amplitude, we utilize

the fact that the absolute value of the wave propagator is proportional to the square root of the
mass density (82). For obtaining this density along the classical path, we consider the differential
volume element

4 4
8V, = (At)* R38R 8Q, :(A—Tj [T8(p,. +ed,) (126)
m Hzl

formed at timet'=1, + At by the trajectories of particles which start from the point Ei at timert,
on the cone of the four-dimensional differential solid angle6€2, . The enclosed initial volume
elementdV, travels with the particles thereby changing its volume in such a way that the enclosed

differential mass
dm; = p, 0V, =08g = pdV = p(t )dx,0x,0x,0x, = const. (127)

1s conserved at any later timet >, at which the variable volume element is located at the point

R = R(t) . The conservation of the mass is a consequence of the continuity equation (79). The time
interval At at the start is chosen such that the propagator can be approximated in this region with
a sufficient degree of accuracy by the undisturbed propagator (98) up to a factor 2m /i . In this
case the initial mass density is found as

2 4
4m |2 m (128)

=y, =l = Gat)| =———.
p, =y, =T . G(Ar) i)’

Using this result together with the relations (109) and (110) and considering that p , = —0S, /0x
and04,,/0x, =04, (R,)/ox, =0, we readily obtain
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eta t( 3 l).
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This relation determines I" up to a constant phase factor. This factor must coincide with that of the
field-free propagator (98) in the absence of external fields. As a result we find

. D
F(R’T;Ria’ci) ~ 4 2" (128)
i(2hm)

By inserting this result and the relation (123) for S into the expression (121), we obtain a very
accurate approximation for the propagator O provided that the point of observation is located in
front of the caustic. If this point is located on the far side of the caustic, we must employ two
propagators, one for the propagation of the initial wave to a hyper-plane in front of the caustic and
the other for the propagation from each point of this hyper-plane to the point of observation
located on the far side of the caustic. Subsequently we must integrate over all points of the hyper-
plane. Hence even in this case we can avoid the numerous integrations required by the path-
integral procedure.

11. Conclusion

The introduction of the universal time opens a new avenue for describing the dynamics of
elementary particles in a deterministic way. The resulting five-dimensional approach enables a
better understanding of the physical situation on an atomic scale, such as the motion of the spin in
an electromagnetic field. Moreover, our approach does not require an infinite sea of negative
energy states because the standard energy corresponds to the fourth component of the momentum
4-vector whose components can have arbitrary signs. In classical three-dimensional mechanics the
position and the momentum variables are conjugate quantities, while the energy £ is conjugate to
the time ¢. In the frame of quantum mechanics each pair of conjugate variables must satisfy the
uncertainty relation. By extending the three-dimensional space to the four-dimensional Minkowski
space, the universal time 7 takes over the role of the conventional time ¢ and the rest energy £, the

role of the standard energy E. Therefore, an additional uncertainty relation

|AE,At|> 1 (129)

must exist between the conjugate quantities £, = —mc’ or the mass,respectively, and 1. As a
consequence, the universal time becomes meaningless without any mass. Moreover, all radiation

would then be confined to the hyper-surface R? = 7% — ¢?¢> = 0. This scenario may have been the
case at the “big bang”. We can speculate that this event represents the origin of the universal
time.

The five-dimensional Hamilton-Jacobi approach enables an improved physical understanding of
relativistic quantum mechanics and yields the Schroedinger, Pauli and Dirac equations as special
cases. Contrary to the Dirac equation, the five-dimensional single-particle wave equation (75) can
readily be extended to a many-particle equation in the same way as the Schroedinger equation.
This extension may prove to be a promising alternative to present quantum field theory because the



creation and annihilation of particles can be considered in the frame of our approach as “inelastic”
scattering in Minkowski space. By including the electromagnetic field energy in the five-
dimensional formalism, it should be possible to describe the annihilation and creation of particles
as inelastic scattering where mass energy is transferred into radiation energy and vice versa. Such
effects can only be described by the non-stationary solutions of the five-dimensional wave
equation. These solutions are not attainable with the present “stationary” formalism which relies
on creation and annihilation operators in order to incorporate the effect of the non-stationary
processes. Since the method of second quantization cannot distinguish between individual
particles, it must describe a many-particle system in terms of the occupation number of a particular
state. On the other hand the proposed five-dimensional formalism describes the many-particle
system in the configuration space without the need of creation and annihilation operators
introduced by second quantization.
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