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   Five-dimensional Hamiltonian-Jacobi approach 
to relativistic quantum mechanics 

                                                      
                                                               H.Rose            
 
      Lawrence Berkeley National Lab, 1Cyclotron Road, Berkeley, CA 94720  

 
                                                   Abstract 
A novel theory is outlined for describing the dynamics of relativistic electrons and positrons. By 
introducing the Lorentz-invariant universal time as a fifth independent variable, the Hamilton- 
Jacobi formalism of classical mechanics is extended from three to four spatial dimensions. This 
approach allows one to incorporate gravitation and spin interactions in the extended five-
dimensional Lagrangian in a covariant form. The universal time has the function of a hidden Bell 
parameter. By employing the method of variation with respect to the four coordinates of the 
particle and the components of the electromagnetic field, the path equation and the electromagnetic 
field produced by the charge and the spin of the moving particle are derived. In addition the 
covariant equations for the dynamics of the components of the spin tensor are obtained. These 
equations can be transformed to the familiar BMT equation in the case of homogeneous 
electromagnetic fields. The quantization of the five-dimensional Hamilton-Jacobi equation yields a 
five-dimensional spinor wave equation, which degenerates to the Dirac equation in the stationary 
case if we neglect gravitation. The quantity which corresponds to the probability density of 
standard quantum mechanics is the four-dimensional mass density which has a real physical 
meaning. By means of the Green method the wave equation is transformed into an integral 
equation enabling a covariant relativistic path integral formulation. Using this approach a very 
accurate approximation for the four-dimensional propagator is derived. The proposed formalism 
makes Dirac’s hole theory obsolete and can readily be extended to many particles.   
 
1. Introduction 
It is widely believed that the effect of the spin on particle motion cannot be accurately described 
within the frame of validity of geometrical charged-particle optics. However, if the wave property 
of the particle can be neglected, there is no convincing reason which prevents one from 
incorporating the spin into the formalism of relativistic mechanics if an appropriate interaction 
Hamiltonian is found. To achieve a proper covariant formalism, it is advantageous to introduce a 
five-dimensional Hamiltonian-Jacobi approach for calculating the motion of particles in 
Minkowski space. Using x4 = ict as the fourth “spatial” coordinate of the four-dimensional 
Euclidian space, we avoid difficulties in constructing relativistic covariant Lagrangians and 
Hamiltonians. The dynamics of the particle is described by considering its coordinates xµ, µ = 1, 2, 
3, 4, as functions of the independent Lorentz-invariant variable τ, which can be conceived as the 
“world” time or universal time, respectively. As a result, the time-like position coordinate x4 need 
not to increase monotonically, as in classical mechanics. 
Since the relativistic Lagrangian  is a scalar function, it must contain terms which are of entirely 
scalar nature such as a scalar function, scalar products formed by polar 4-vectors, second-rank 4- 
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tensors, axial 4-vectors and pseudo-scalar quantities. To be in accordance with non-relativistic 
classical mechanics,  must vanish for a particle at rest in Minkowski space. So far an 
appropriate Lorentz-invariant interaction term for the coupling of the spin with the electromagnetic 
field has not been given in the literature.  Such a term will also allow one to consider the effect of 
the spin which acts as an additional source for the electromagnetic field. 
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2. Covariant Hamilton formalism for spin-1/2 particles 
For reasons of simplicity we first consider the motion of a spin-1/2 charged particle in external 
fields. So far no satisfactory relativistic formulation for an interacting multi-particle system has 
been proposed for classical mechanics. However, by employing a covariant Hamilton’s principle 
for the dynamics in the four-dimensional Minkowski space, the extension from a single particle 
system to a multi-particle system is straightforward.  
The Lagrangian treatment of classical mechanics is based on Hamilton’s principle which states that 
the action along the true path of a particle is an extremum, in general a minimum. 
The action 
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is the time integral  of the Lagrangian 
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along the true path of the particle traveling from its initial position at universal time τ i   to its 
position at time of observationτ . The kinetic energy o
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is composed  of  two terms, the translational energy    
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and the kinetic energy of rotation 
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The definition (4) of the translational energy is a straightforward extension of the classical kinetic 
energy of a point-like particle;  is its rest mass. Dots denote derivatives with respect to the 
universal time τ. The translational energy in Minkowski space (4) is always negative regardless of 
the sign of . A negative time-like component of the velocity 4-vector describes an electron which 
travels backwards in time. According to Feynman this can be conceived as a positron traveling 
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forward in time. The expression  is generally defined as the total energy of the particle. 
This energy is positive for the electron and negative for the positron. Within the frame of our 
considerations this energy represents the fourth component of the kinetic moment 4-vector apart 
from a factor c. Although this vector is Lorentz invariant, its components are not. On the other 
hand our formulation requires the total energy to be a Lorentz-invariant scalar quantity. 
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By going from three to four dimensions, axial vectors are described by anti-symmetric second-rank 
tensors because a four-dimensional cubic volume has 12 surfaces, twice as many as the three-
dimensional cube. Hence the four-dimensional angular velocity of the particle is defined by its 12 
components , each of which is the projection of the angular velocity onto the normal of the 
surface element . Since the normals of conjugate top and bottom surfaces have opposite 
directions only 6 independent components ω  exist. The same relations hold true for the 
components  = of the angular momentum tensor or spin tensor, respectively. Since the 
absolute value of the spin is a constant of motion, the relation 
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holds. In the rest frame of the particle the time-like components   and are 
zero. These components are purely imaginary. For the spin they can be considered as an electric 
moment induced by the motion of the magnetic moment. Since an elementary particle can be 
assumed as spherically symmetric, its spin and its angular frequency have the same direction in 
Minkowski space. Assuming that the absolute value of the angular velocity of the particle is a 
constant of motion, the rotational energy of the particle is found as 

µµ 44 SS −= µµ ωω 44 −=
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where  andω  denote the spin vector and the angular velocity vector, respectively, in the rest 
frame. The absolute value ω of the angular velocity is obtained from the condition that the total 
kinetic energy in Minkowski space must be zero in the absence of external fields: 
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Hence the angular velocity of the particle ω  is identical with the Compton 
frequency, λ  is the Compton wave length. It readily follows from (8) that the rotational 
energy is half the rest energy .  In the following we postulate that this behavior remains also 
true in the case of interacting external fields. 
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In the following we construct the covariant interaction energy V for a charged particle in external 
fields by neglecting terms which involve tensors of rank higher than two. In this case the potential 
energy  
                                                             V                                                                    (9) 210 VVV ++=
 



consists of a scalar coupling described byV , a vector coupling  ),(00 τνxV=
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and a tensor coupling 
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The gyromagnetic ratio  
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between the magnetic  moment and the mechanic angular momentum of the electron equals that of 
a classical magnetic dipole. The Lande factor g = 2 need not to be considered because it is 
implicitly taken into account by the double summation in equation (11). The three spatial 
components , of the electromagnetic 4-vector potential are real while 
the time-like component  is purely imaginary. The components 
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define the electromagnetic field tensor. The potentials V  and V  are of entirely electromagnetic 
nature, while the potential V  is not since it describes the coupling of two scalar quantities, for 
example masses. Accordingly, if we suppose that this potential energy accounts for the gravitation, 
it may be written as 
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0
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whereΦ  is the gravitation potential. The potential energy V  is gauge-invariant, 
whereas the potential energies V and V  are not. However, the equations of motion of the particle 

are invariant under gauge transformations of the potentials  and , respectively, although the 
Lagrangian (2) and hence the action (1) will change. Employing the gauges 
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the action (1) alters to 
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Here Grad  denotes the four-dimensional gradient. The result (16) demonstrates that the action is 
not changed by any gauge transformation if the particle has performed a closed orbit in Minkowski 
space andΦ . )()( 2010 ττ Φ=
The path equations are obtained most conveniently from the action integral (1) by employing 
Hamilton’s principleδ . This condition states that among all possible paths along which the 
particle may move from one point to another in four-dimensional space within a certain time 
intervalτ , the actual path yields an extremum for the action. By employing the standard 
calculation of variation, we readily obtain from (1) the Euler-Lagrange equations for the particle 
motion 
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Considering the relations for the kinetic and the potential energies, the Lagrangian (2) adopts the 
form   
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 The components of the momentum 4-vector are derived from this equation as 
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These quantities are the canonical conjugate variables of the spatial coordinates . By inserting 
the expression (18) into the equation (17) and considering the relation (13), we eventually obtain 
the path equations 
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If we multiply this equation with  and sum subsequently over the index µ, we find µx&
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This equation can be written in the familiar form 
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is the relativistic four-dimensional Hamiltonian which should not be mixed up with the classical 
three-dimensional Hamiltonian H. If the potentials 

r
 and G are conservative, they do not depend 

on the universal time explicitly. In this case the terms on the right hand side of (21) vanish 
provided that  
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As a result the Hamiltonian is then a constant of motion and equal to the total energy 
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The last relation is obtained by considering the special case where the particle is at rest in field-free 
space. It should be noted that the covariant energy does not depend on the sign of . Hence this 
energy must be the same for a particle and its anti-particle. Therefore, their masses are identical 
and positive definite. As a result the gravitational force between particles must always be 
attractive. It should be noted that covariant Hamiltonians suggested so far in the literature only 
consider the electromagnetic vector potential [1]. Moreover, the energy is either zero or , 
respectively.  Hence both Hamiltonians cannot be attributed to a specific energy. Our result 
explains the scalar nature of the covariant Hamiltonian (24) because the total energy is identical 
with the rest energy of the particle. This energy is a Lorentz scalar and can be conceived as the 
canonic conjugate “variable” of the universal time τ. Therefore, we can conclude that τ is not some 
meaningless Lorentz-invariant parameter, but may have a realistic physical meaning in the context 
of creation and annihilation of particles. Moreover, the universal time becomes obsolete or 
meaningless, respectively, for mass-less particles. The constraint (25) is considered as a true 
dynamical constraint that confines the motion of the particle to a particular three-dimensional 
surface in the four-dimensional non-Euclidian space. Our supposition differs from the 
conventional assumption that the absolute value of the velocity 4-vector is a constant of motion 
and equal to c. This condition is used as a definition of the parameterτ , which is considered as the 
proper time of the particle [1, 2]. In contrast to this procedure, we assume the existence of a true 
universal time which governs the dynamics of particles in four-dimensional space. 
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It is shown in the context of classical mechanics that the action S is a solution of the Hamilton-
Jacobi equation apart from an arbitrary constant. By extending the formalism from three to four 
dimensions and considering τ as the equivalent time, the resulting five-dimensional equation is 
found as 
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The canonical momentum variables in have been replaced by means of the 
transformations 
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The Five-dimensional Hamilton-Jacobi equation (26) has the remarkable property to be both 
Lorentz-invariant and linear in the universal time τ. Hence we shall consider this equation as the 
short-wavelength limit of a covariant Schroedinger equation. 
If does not involve the universal time explicitly, this variable can be separated by assuming the 
solution   

rH
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resulting in the Hamilton-Jacobi equation of the reduced action W: 
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This equation does no longer involve the universal time.   
 
3. Spin precession 
The equations for the spin precession cannot be derived from Hamilton’s principle. Therefore, we 
must try to construct these equations by imposing the constraints (6) and (24). In addition we 
require that the equations reduce to the standard form if the electric field strength vanishes, 
As a suitable set of equations for the dynamics the spin in Minkowski space, we propose 
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The equations do not alter if we exchange the subscripts µ and υ and consider . To 
prove the validity of the constraint (24), we multiply the equation (30) with  and sum over the 
indices µ und υ, yielding 
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Subsequent relations have been obtained by exchanging two indices. Since this procedure is 
merely a change of notation, it does not affect the value of the summation. Assuming the validity 
of the equations (30), the result (31) demonstrates that (24) is automatically fulfilled and, hence, 
need not to be imposed as a constraint.   
Multiplying (30) with  and employing the same procedure as in (31), we readily obtain µνS
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Hence the relation (6) is also fulfilled. The spin tensor has the same structure as the 
electromagnetic field tensor because both tensors are Lorentz-invariant. Hence we can construct 
from the spatial components of the spin tensor a three-dimensional axial vector 

r
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components  and from the imaginary time-like components a real 

electric axial vector  with components  The vector  accounts 
for the electric dipole moment induced by the motion of the magnetic dipole. If we also express the 
components of the electromagnetic field tensor by the components of the electric and magnetic 
field strengths, the equations (30) can be written as 
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The coordinates of the electric and magnetic fields are given by the position of the particle. 
Hence the four path equations (19) and the 6 equations (30) or (33), respectively, form a coupled 
system of ten differential equations for the position of the particle and the orientation of its spin in 
the Minkowski space as functions of the universal time τ.  
The equations (30) can be conceived as an alternative to the so-called BMT equation [3] which 
employs the spin 4-vector 
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Here ε  is the totally anti-symmetric fourth-rank unit tensor; denotes the cyclic permutation of 
the indicesκ .  These indices and  differ from each other and each defines one of the four 
numbers 1, 2, 3, 4. It readily follows from the relation (34) that the scalar product vanishes 
identically. Hence this relation does not need to be considered as a constraint. To derive the 
equation for the precession of the spin, we take the derivative of the (34) with respect to the 
universal time τ and replace by means of the path equation (19). Assuming both G=0 and     

, we eventually derive at 
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The last term accounts for the gradient forces. Neglecting this term, we obtain the BMT equation 
for a charged particle with Lande factor g = 2.  
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all components of second-rank tensors. Considering that  and in the system at rest, 
we readily obtain 
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 The number of variables can be reduced by consider the motion of the rest-frame spin  as 
a function of the time t. The corresponding equations for a Dirac particle are found as  
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If we replace the acceleration in the laboratory frame  by the standard Lorentz 
equation, we derive at Thomas’s equation for the spin precession in a uniform magnetic field [4]. 
However, we will demonstrate in the following that this substitution does not yield the complete 
relativistic result.   

dtcda /β
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4. Reduced relativistic Lagrangian and Hamiltonian 
We have shown that the Hamiltonian (25) is a constant of motion in Minkowski space if the 
potentials do not depend on the universal time τ explicitly. This relation can be considered as a 
constraint for the motion of the particle. The constraint can be used to replace the independent 
variable τ by one of the four coordinates , preferably the time t . However, this is only 
possible if we can express the rotational energyT  and the potential energy as functions of t  

µx −=

rot

Fortunately, this is possible by transforming the spin and the electromagnetic field strengths to the 
particle’s rest frame by means of proper Lorentz transformations. In this frame the time-like 
components of both the angular velocity tensor and the spin tensor become zero. On the other hand 
we must consider that the rest frame rotates in Minkowski space if the velocity v is changed. The 
corresponding angular velocity 
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is known as Thomas precession [4]. Hence the rotational energy in this frame is found as 
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The second term is of entirely kinematical nature. It always arises when the velocity changes for 
whatever reason. The potential energy (6) can be written as  
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Here  and  are the field strengths in the laboratory frame. By employing the relations (39) and 
(40), the Hamiltonian (25) can be written in the covariant form 
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All quantities in these relations are functions of x, y, z and t. Since is a constant of 
motion, we can use (41) to eliminate in the expression for the reduced action 
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Since the expression (41) is quadratic in , we obtain for the reciprocal differential quotient 
two solutions which only differ in sign;

r
 is the spatial component of the 4-vector potential. It 

should be noted that dt  only coincides with γ (36) in the case U=0.  The positive solution can 
be attributed to the electron, the negative solution to the positron. Taking into account the positive 
solution for the electron, the corresponding reduced Lagrangian is derived as 
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Hereϕ  denotes the electric potential. The function U vanishes if we neglect both scalar coupling 
and spin effects. In this case the Lagrangian of the reduced action and the resulting relativistic path 
equations adopt the well-known form listed in the literature. If we take into account the spin, the 
reduced Lagrangian becomes a function of the position r , velocity  
and acceleration  of the particle and of the time t. In this case the calculus of variation 
applied to the condition δ  yields the modified Euler-Lagrange equations  

),,,( tavrLL redred
rrr

=
22 / dtrd r

0=W

r dtrdv /rr
=

ar =

 

                       ,0)()(2

2

=
∂
∂

+
∂
∂

−
∂
∂

ννν x
L

x
L

dt
d

x
L

dt
d redredred

&&&
            .3,2,1=ν                                            (44) 

 
In this equation the dots denote derivatives with respect to the conventional time t. Because the 
acceleration is contained in  in the form , each of the resulting path equations has terms 
which are linear in the third derivative of the coordinates  with respect to time and terms which 

are linear in the time derivatives of the spin components . So far a term  has only been 
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considered phenomenologically in the context to include the reactive effects of radiation in the 
equations of motion for a charged particle [2]. Our covariant approach yields such terms in a 
straightforward way if spin effects are incorporated. Hence we may infer that the radiative 
reaction force is connected with the precession of the spin of the charged particle. This conjecture 
is reasonable because the spin is accompanied with a magnetic dipole whose motion induces an 
electric dipole in the laboratory frame.  
The Lagrangian for the positron is obtained by changing the sign of the first term in the 
corresponding expression (43) for the electron. This differs from the common procedure which 
changes the sign of the charge. Because we consider in accordance with Feynman [5] the positron 
as an electron moving backward in time, the sign of the charge does not alter when going from the 
electron to the positron. However, a discrepancy exists because both procedures only yield the 
same equations of motion in the case U=0.  
 
4.1 Non-relativistic approximation 
The reduced Lagrangian  is rather involved and difficult to understand. In order to obtain a 
crude insight of its structure, it is advantageous to investigate the non-relativistic limit in more 
detail. For this purpose we expand the expression (43) in a power series with respect to1 .  
Retaining only terms up to1 , we eventually find 
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By neglecting the constant term , we obtain in the limit c  the non-relativistic Lagrangian 

 of the electron in an electromagnetic field. This Lagrangian yields the corresponding path 
equation 
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The force  consists of three terms, the familiar Lorentz force, the gradient force acting on the 
magnetic moment e  of the electron and the gravitational force. The non-relativistic equation 
for the precession of the spin is readily derived from (37) as 
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Hence the precise non-relativistic motion of the electron and the precession of its spin are 
governed by the set (46, 47) of coupled differential equations because

rr
 is a 

function of the position of the electron. Our approach incorporates correctly the spin of the particle 
in the equations of motion without the need of a phenomenological g-factor and/or quantum-
mechanical considerations, even in the relativistic case. This result contradicts the general belief 
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that a microscopic consideration of the spin is beyond the scope of classical electrodynamics. 
Within the frame of validity of the expansion (45), we can replace the particle acceleration  by 
the expression (46) yielding 
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Using this relation together with the expressions (45) for  and , we obtain an expansion of the 
three-dimensional Hamiltonian  

0L 1L

 

                                          red
red L

v
L

vtprHH −
∂
∂

== ∑
= µµ

µ

3

1
),,( rr ,                                                     (49) 

 
which is correct up to order1 inclusively. The somewhat lengthy yet straightforward calculation 
yields 
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Here  denotes the three-dimensional canonical-momentum vector. It should be noted that 

 has the same absolute value as the relativistic Hamiltonian. However, its sign is 
positive for the electron and negative for the positron, because the reduced Hamiltonian is related 
to the time-like component of the momentum 4-vector. Each component of this vector can be 
positive or negative depending on its direction in Minkowski space.  As a consequence, we do not 
need Dirac’s “hole theory” which must be introduced if  is conceived as the energy.   
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4xmc&
The Hamiltonian  represents the Pauli Hamiltonian for the electron apart from the scalar 
potentialV . The term coincides in the caseV with that obtained from the Dirac equation by 
means of the Foldy-Wouthuysen transformation if we disregard the so-called Darwin term [6]. 
This transformation reduces the Dirac spinor in such a way that it has a lower two-spinor 
identically zero for the electron. Within the frame of our non-quantum-mechanical calculations, 
this procedure corresponds to the transformation of the spin tensor from the laboratory frame to the 
particle rest frame. This behavior stirs the conjecture that the lower two-spinor should be attributed 
the time-like components of the spin in the laboratory system rather that to a positron contribution.  
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5. Properties of the action function 
The action function (1) describes the propagation of an ensemble of identical particles in 
Minkowski space. To investigate this behavior in some detail, we assume that the does not 
depend on the universal time explicitly. In this case the action function can be written as 
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Here and  denote the canonical momentum 4-vector and the position 4-vector, respectively. 
The integration has to be taken along the path which makes each of the two integral an extremum. 
Hence we have δ  andδ  for fixed positions of the path-defining initial and end points 
r

and
r

, respectively. A constant action S =  represents a continuous set of surfaces  
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in the four-dimensional Minkowski space. If we vary the action S with respect to the coordinates of 
the endpoint

rr
, we readily derive from (51) the relation RR =2
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This relation demonstrates that in field-free space ( ) the trajectories of all identical particles 
emanating from the initial point

r
 are the orthogonal trajectories to the surfaces of constant 

reduced action W.  Since this function is attributed to an ensemble of trajectories of identical 
particles, it cannot distinguish the particles. As a result identical elementary particles seem to be 
indistinguishable. This behavior is a consequence of eliminating the universal time τ.  
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We can consider the conditionδ  as the four-dimensional extension of Maupertuis’s principle 
of least action. This analogue implies that particles which start simultaneously from a given point 
in Minkowski space will intersect any surface of constant action W at the same universal time. 
Although this time is steadily increasing this is not necessarily true for the time-like spatial 
coordinate . If the particle reverses its direction of flight with respect to this coordinate it 
converts to its anti-particle because an electron flying backward in the laboratory time can be 
considered as a positron flying forward in this time[5]. Reversal of the time-like momentum 
component implies that at least a change 2mc in momentum must be transferred to the collision 
partner, which will emit subsequently a photon. In the Laboratory frame the observer records this 
event as electron-positron annihilation.  
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It should be noted that the action function S does not contain the initial velocity coordinates as 
variables explicitly. This behavior resembles the uncertainty principle of quantum mechanics 
according to which it is not possible to precisely determine the position and the momentum of a 
given state. In our case the initial canonical momentum can be obtained by varying (51) with 
respect to the initial coordinates of the position 4-vector

r
resulting in 1R
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Since W is a function of and , we can use the relation (54) to obtain  as a 
function of the initial position and momentum of the particle, at least in principle. Owing to the 
existence of the action surface, the trajectories of identical particles emanating from a common 
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point in the four-dimensional space are correlated since their canonical momenta are orthogonal to 
this surface. It changes its shape as a function of the universal time, yet it will never be torn apart. 
However, the surface can degenerate in sheets which intersect each other forming a caustic. The 
caustic represents the loci of the intersections of “rays” which start with slightly different 
directions from the point source. If we take into account the wave nature of the electron, the 
surfaces of constant action also represent wave surfaces of constant phase. The action is a 
minimum for all points located in front of the caustic and a maximum if the end points are located 
behind the caustic. It should be noted that the particle description breaks down in the region of the 
caustic due to pronounced interference effects.    
  
6. Self-action  
So far we have considered the action resulting from external fields. However, the particle also 
produces a field. In order to guarantee that the motion of the particle is not affected by its own 
field, we must postulate that the “self-action” is a constant of motion. This constant can be put to 
zero because the action is only defined up to an arbitrary constant. The charge and the magnetic 
moment of the electron are the sources of its accompanying electromagnetic field. Any change of 
the velocity of the electron results in an additional radiation field. The entire electromagnetic field 
depends implicitly on the universal timeτ , because the position coordinates of the 
particle are functions ofτ . To completely describe the self-action, we must take into account both 
the interaction terms and the electromagnetic field of the electron. Since this field is continuously 
distributed in the four-dimensional space, we must introduce a proper four-dimensional Lagrange 
density and the normalized mass density of the particle. The Lagrange 
density 
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consists of three terms. The first and the second term represent the self-interaction of the charge 
and the spin of the electron with its own electromagnetic field, whereas the third comprises the 
contribution of this field to the self-energy density; µ  is the permeability of the vacuum. The field 
term differs from that of standard field theory because we have extended the space from three to 
four dimensions. Accordingly, we must define the self-action as 
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The equations for the electromagnetic field associated with the electron are derived by employing 
Hamilton’s principleδ . Since the motion of the particle is given, the variation has to be 
performed with respect to the four components  of the 4-vector potential, where  is 
considered as an independent variable. Derivatives of the deviationδ  with respect to  are 
removed by partial integrations. Considering that the deviations are zero at the limitsτ  andτ , we 
obtain 
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Here  is the four-dimensional current density. Because the variation can be taken at an 
arbitrary timeτ  the expression in the brackets must vanish identically. Imposing the 
Lorentz gauge , we derive the inhomogeneous equations 
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for the time derivatives of the components of the 4-vector potential. The solution of this 
differential equation is accomplished most conveniently by means of the four-dimensional Green 
function  
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which satisfies the equation 
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Here δ is the four-dimensional delta function; denotes the position of the point source 
By employing Green’s method together with (59), we the solution 
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The derivative of with respect to  is removed by partial integration with respect to this 
coordinate. Moreover, we assume a point-like particle with density                                         
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By employing this density and assuming that the particle is created at the initial timeτ , we 
obtain 
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 The integration must be taken over the entire “life-time” of the particle starting at the initial time 
up to the universal time of observationτ . This time is related to the time of observation t  in the 
three-dimensional laboratory frame via the relation . 
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Fig.1. Laboratory time t of an electron as a function of the universal time τ. 
 
Figure 1 shows a possible scenario for the laboratory time of an electron as a function of the 
universal time. In this case an interval exists for τ during which the laboratory time of the particle 

 decreases. Depending on the time of observation , the observer in the laboratory frame 
records either a single electron or two electrons and a positron, because a negative time-like 
component of the 4-velocity represents the anti-particle within the frame of our considerations. 
The diagram illustrates an interesting phenomenon. The observer records for  a single 
electron. The particle seems to change the direction of its time-like velocity component at the 
universal timeτ . Atτ  the observer detects at his laboratory time  the creation 
of a positron and an electron pair which annihilates somewhat later at laboratory time t . This 
annihilation cannot correspond to a directional change of the time-like velocity component that had 
occurred before the universal time τ at which the direction would be reversed again because in the 
time interval  the observer detects three particles at different locations in three-
dimensional space. This apparent contradiction can be avoided by assuming that the positron is an 
electron with a negative time-like velocity component. 
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The main contribution to the integral (63) is delivered by the poles of its integrand. These poles are 
the zerosτ of the denominators and defined by ν
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Depending on the path of the electron as a function τ, a distinct number N of poles exists. 
However, only the polesτ  are contributing to the integral. If we assume that the integrand is 
negligibly small forτ  and ignore the polesτ , we can extent the upper integration limit to 
infinity. The components  and  of the electron’s position and spin, respectively, are 
analytical functions of τ which vanish at infinity. In this case we can perform the integration 
analytically in the complex τ-plane by closing the contour of the integration by an infinite half 
circle in such a way that the loop comprises all polesτ . Hence the value of the integral (63) 
is given by the sum of the residues. In order to find the residues we must expand the integrand in a 
Laurent series about each pole. The corresponding residue is given by , where  is the 
coefficient of the term  of the Laurent series. Taking into account these results, we 
eventually obtain  
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The acceleration  and vanish if the electron moves in a field-free region. To 
demonstrate the validity of the expression (65), we consider an electron in its field-free rest frame. 
In this case we also have ,  andτ . Then the equation (64) 
adopts the simple form 
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with the two solutions crrt e /1

rr
−−=τ , oe crrt τ>−+= /2
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ssr =

τ . The second solution, which does 
not contribute to the integral (63), violates causality in the laboratory frame. In the rest frame the 
spin tensor degenerates to a three-dimensional axial vector r  with components  

. By taking into account these considerations together with the relation 

, we eventually find 
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These familiar relations represent the electrostatic potentialϕ  of a charge  and the magnetic 
vector potential of a magnetic moment , respectively. If we apply the same procedure to 
a steadily moving electron and neglect the spin, we obtain the Lienard-Wiechert potentials [7 ] 
which represent the electric and the magnetic field  of charge moving in the laboratory frame.  
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7. Multi-particle system 
Our covariant Lagrangian procedure is well suited for a relativistic formulation of the dynamics of 
a many-particle system in Minkowsi space. In our description τ is not considered as a meaningless 
Lorentz-invariant parameter, but has the property of a steadily increasing universal time. Since it is 
connected with the mass, we may conclude that it started at the big bang. Moreover, the universal 
time can be considered as a hidden Bell parameter [8] with a realistic physical property. The 
incorporation of the universal time as the independent Lorentz-invariant variable also avoids the 
need for statistical or probability descriptions, because it becomes possible to describe the motion 
of the constituent particles of an ensemble separately as long as interference effects can be 
neglected. To elucidate this behavior, we consider the classical motion of particles emanating from 
a point source in a static three-dimensional field. By solving the equations of motion, we obtain the 
position of each particle as a function of the laboratory time t. Hence if the velocity vectors of the 
particles are given at some initial time t , we can precisely determine their position at any later 
time t . Since the forces are conservative, we can use the relation for the conservation of energy 
to substitute a spatial coordinate for the time. In this case the particle ensemble is described by a 
homo-centric bundle of trajectories, each of which represents the path of a particle. However, by 
using this procedure, we have lost information because we can no longer distinguish particles 
traveling along the same trajectory nor determine the position of the particles at a given time. 
Using the number of trajectories per unit area as a measure, we can determine the probability to 
find a particle at a given position if the current density of the source is known. The same situation 
arises in Minkowski space if we substitute the laboratory time t for the universal time τ by means 
of the relation (41) because in this space t has the role of a spatial coordinate.  

it=
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The universal time should not be mixed up with the proper time of a given particle. Therefore, the 
universal time is the proper invariant parameter to describe the evolution of the system in the four-
dimensional space.  Within the frame our approach, the time-like spatial coordinate  of 
each member n of an ensemble of N particles is a function of the universal time.  Accordingly, 
these coordinates will in general differ from each other for a given τ. Conversely, the requirement 

 will result in a universal timeτ  which is different for each particle n. Moreover, our 
preceding results enable a straightforward treatment of covariant interactions between particles.  
The corresponding Lagrangian is readily obtained by extending (18) from a-single particle to many 
particles. Owing to the linearity of the Maxwell equations, the electromagnetic 4-vector potential 
produced by the N particles  
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is the sum of the 4-vector potentials (65) of all N particles. Their total kinetic energy in the four-
dimensional space is given by 
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where  denotes the rest mass of the nth particle. We suppose that the scalar potential 

 can be derived in the same way as the electromagnetic potential by imposing the 
condition that the gravitational self-action vanishes. We eventually obtain for a point-like particle 
the result 
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Hereκ is the gravitational constant andτ  represents the retarded solution of equation (64), 
where we have assumed that only a single retarded solution exists. Since the gravitational force  

oτ<−

 is negligibly small, it will not be considered in the following. Then the potential energy of the 
system is given by 
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where  denotes the charge and  accounts for the anomalous magnetic moment of the nth 
particle, respectively. The sum over the index m has to be taken over all particles  because 
the self-action does not contribute. The variation of the corresponding Lagrangian with respect to 
the coordinates  of each particle yields 4N equations of motion. However, since these equations 
also depend on the spin motions, we must in addition incorporate the equations for the spin 
precession. These equations are readily derived by applying the relation (30) to a system of many 
particles. Their charges and spins produce the external field which affects the precession of the 
spin of each particle. The generalization of (30) from a single-particle system to a many-particle 
system yields for the spin precession the set of equations  
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This set consists of 6N equations because the spin components are anti-symmetric. Together with 
the 4N equations for the motion of the particles we have to solve 10N equations for obtaining a 
deterministic description for evolution of the system in Minkowski space.  Multiplying (72) with 

 and performing the same manipulations as in (31), we find that the absolute value of the spin 
is a constant of motion for each particle. This behavior does not hold true for the energy since it 

can be shown that only the total energy  is a constant of motion provided that the 

electromagnetic field does not depend on τ explicitly. Hence it is only possible to substitute the 
time-like coordinate of any single particle for the universal time τ. The N+1 conserved dynamical 
quantities act as constraints for the motion of the N particles in Minkowski space. Our covariant 
treatment of the multi-particle system has demonstrated that it is possible, at least in principle, to 
determine the motion of relativistic particles by employing the same methods as in classical 
mechanics, although the amount of expenditure increases significantly.   
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8. Quantization of the five-dimensional Hamilton-Jacobi equation 
The Hamilton-Jacobi (HJ) equation of classical mechanics offers the most appropriate procedure 
for incorporating the wave nature of the particles in the dynamics of the system. The reason for 
this behavior is due to the fact that the HJ equation for a single particle represents the particle 
analogue of the eikonal equation of light optics which is the wave surface or the phase, 
respectively, of a monochromatic wave in the limit of an infinitely short wave length. According to 
this analogue, we can assume that the action S represents the phase of the wave ψ  associated with 
the particle. Since a constant phase represents the surface which is orthogonal to all trajectories 
emanating from a common point, the eikonal cannot directly be attributed to the path of a distinct 
particle. The scalar optical wave equation can be retrieved from the corresponding eikonal 
equation by substituting the operator −  for the partial derivative∂   
whereλ is the vacuum wavelength. The resulting operator then acts on the 
wave function 

µxi v ∂∂ /D µx/ ,S ∂ ,4,3,2,1=µ

vvv k/12/ == πD

ψ  yielding the wave equation. Employing the same procedure to the three-
dimensional HJ equation together with the substitution  for and replacing the 
wave number  by , we readily derive the time-dependent Schroedinger equation. Since this 
equation is of first order with respect to the time derivative, it only allows propagation in the 
positive direction of the time. This is reasonable if the time t is considered as a steadily increasing 
variable. 

ti ∂∂− /ψh t∂/S∂

vk h

Within the frame of our relativistic considerations, we must consider t as a fourth time-like spatial 
coordinate which can adopt positive and negative values. The role of the time is taken by the 
universal time τ. The classical non-relativistic HJ equation does not account for the spin. As a 
result the spin term must be incorporated into the Hamiltonian of the resulting Schroedinger 
equation a posteriori yielding the Pauli equation. On the other hand the four-dimensional 
Hamiltonian (28) contains the spin term. Its structure suggests that it must be quantized in such a 
way that the resulting term coincides with that of the iterated Dirac equation [9]. By imposing this 
condition we must express the wave function as a 4-component spinor  
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whereψ is the adjoint spinor. However, within the frame of our considerations the components 

),( τψψ νµ x= µ are function of the four spatial coordinates  and the universal time τ. Moreover, 
the wave function must be normalized in four-dimensional space rather than in three-dimensional 
space as in Dirac theory. According to this theory, the components of the spin tensor are operators 
represented by  

νx
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where γ are the gamma matrices. By taking into account these relations and applying 
the quantization “rules” to the five-dimensional HJ equation (26) with Hamiltonian (23), we 
readily derive the covariant  wave equation 
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This equation has a similar structure as the Schroedinger equation and it fulfills the requirement to 
be linear in the time derivative. Due to the asymmetry with respect to τ, the wave equation 
differentiates between past and future. As a consequence an event at time τ can only be influenced 
by events ar previous timesτ . In order that (75) represents a suitable equation, it must be 
possible to form a positive-definite scalar density. In the Schroedinger theory the wave function

τ≤'
ψ  

is a complex scalar function whose adjoint is the conjugate complex function ∗ψ . The probability 
density is the product of these functions. Accordingly, it seems to be appropriate to define the 
product 
 
                                          ψψρ =                                                                                               (76) 
 
as the probability density in Minkowski space. In order that this definition is reasonable, the 
probability density must be positive definite and satisfy a continuity equation. This equation is 
obtained by multiplying (75) on the left byψ , the adjoint equation byψ  from the right and 
subtracting the resulting equations from each other. It should be noted that the adjoint equation is 
obtained by taking the conjugate complex of equation (75) and by placing ψ  in front of the double 
sum in the last term. This is required because += ψγψ 4   does not commute withσ , where µν

( )∗∗∗∗+ = 4321 ψψψψψ  is the Hermitian conjugate spinor. Considering the relation 
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This relation represents the four-dimensional continuity equation 
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where  denotes the four-dimensional divergence and Div
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represents the current density which does not contain the spin. This current density coincides with 
that derived from the Klein-Gordon equation and should either be interpreted as mass-current 
density or as charge-current density rather than as the probability flux [10]. It should be mentioned 
that a continuity equation of the form (79) does not exist for ψψ + .  Since the current density (80) 
does not vanish in the case e , it is more appropriate to interpret (80) as mass-current density 
and ρ as the mass density in four-dimensional space. In this case we should be able to incorporate 
the creation or annihilation of particles in our formalism in a deterministic way.   
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By assuming that  vanishes on the surface of the infinite hyper-sphere, the four-dimensional 
Gauss theorem applied to the continuity equation (78) or (79) yields 
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Accordingly, the mass density 
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can never change sign. This result is very satisfactory because it avoids the unphysical 
interpretation of ρ as a probability density. Moreover, it supports the conjecture that 

),( τψψ µx= defines a “real physical situation”. Since present quantum mechanics does not 
include the universal time τ , this formalism is incomplete, as argued by Einstein [11].    
As a further test for the validity of our approach, we determine the evolution of the Hermitian spin 
operatorsσ  with respect to the universal time τ. The expectation value of a Hermitian operatorΩ  
in the four-dimensional space must satisfy the relation 
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By taking the derivative of this equation with respect to τ and utilizing the relativistic wave 
equation (75), we obtain the Heisenberg equation of motion in four-dimensional space: 
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We apply this equation to the spin operatorσ  which does not depend explicitly on time. In this 
case the last term in (84) vanishes. It follows from the expression (75) that all terms of the 
Hamilton operator commute withσ  apart from the spin term. Considering in addition the 
commutation relation for the spin operators 
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The comparison of this quantum-mechanical operator equation with the corresponding 
“mechanical” equation (30) reveals that this equation forms the exact “classical” counterpart to 
(86). 
 
9. Free-particle solutions 
For a free particle ( ) the wave equation (75) reduces to 0,0 0 == VAµ
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which has the stationary solution 2
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iE −== − ψψ τ h . The function )( µψψ xss = depends 
only on the four spatial coordinates and satisfies the field-free Klein-Gordon equation 
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This equation has plane-wave solutions 
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where the wave 4-vector fulfills the relation 
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The time-like component of this vector 
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is purely imaginary and proportional to the “conventional” energy E, which is defined by the time-
like component of the momentum 4-vector.Accordingly, the two terms of the wave function 4p ψ  
have phases 
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The surfaces of constant phaseΦ  taken at different universal times 

form two sets of hyper-planes in four-dimensional space, one associated with 
particles moving forward in time t, the other with particles moving backward in this time. The 
paths of the particles, which are the orthogonal trajectories to these planes, form straight lines. 
According to these considerations we can attribute the term

021 =Φ=
,....,2,1, =∆= nnn ττ

eψ  to the electron and the term pψ to 
the positron. It should be mentioned that the phaseΦ  for the positron part of the wave function 
(89) differs from that given in the literature by the minus sign in front of the last term .  

2

In order to determine the unknown “constants” C  and , we must consider that both electron and 
positron are spin-1/2 particles whose wave functions must also satisfy the Dirac equation. Hence 
these factors are spinors rather than scalars. Since the direction of the momentum 4-vector of the 
electron is opposite to that of the positron, we suppose that 
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Here summation has to be taken over equal indices. The first equation is the familiar Dirac 
equation which is supposed to describe both the electron and the positron. We do not follow this 
route and propose a slightly different equation for the positron. It should be noted that the mass is 
positive definite for both particles. By adding and subtracting the two equations we get two 
coupled first-order differential equations for pes ψψψ +=  and pea ψψψ −= , respectively.  
Eliminating aψ  yields directly the Klein-Gordon equation for sψ . 
In order to determine the constant four-component spinors, we insert each of the wave functions 
(89) into the corresponding equation (93). Since we consider positron as an electron with a 
negative time-like momentum component, the spinors are the same for both particles contrary to 
the results found in textbooks [10]. Moreover, because we consider ρ (82) as mass density, it 
cannot adopt negative values. Therefore, the factors C  and must have the form 1 2C
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where each of the four coefficients a  is a complex scalar constant. The two spinors are 
normalized eigen-vectors which are orthogonal to each other. They are found as  
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These spinors coincide with those given in the literature for the electron [10]. Our approach 
enables us to attribute the lower two components of the spinors to the time-like components of the 
expectations values  of the spin operators for the electron and the positron. Moreover, the 
mass density is positive definite for both particles. 
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The wave equation (75) governs the evolution of the wave function ),( τψψ R
r

=  in Minkowski 
space with respect to the universal time. Since this equation is of first order in τ, the wave function 
at time τ can be derived from the wave equation (75) if0τ> ψ  is known at any previous timeτ . 
This equation can be considered formally as a four-dimensional inhomogeneous diffusion equation 
with an imaginary diffusion coefficient D. In order to demonstrate this equivalence, we rewrite 
(75) as follows: 
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where  are the components of an arbitrary constant 4-vector potential. The “source term” 
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accounts for the interaction Hamiltonian . The form (95) of the wave equation offers the 
possibility to transform (96) to an integral equation by employing the Green’s method for solving 
the diffusion equation [12]. The Green function G

rr
 is the solution of (96) for a 

point sourceΣ  which is turned on at time τ’ at position . The solution for 
 is found as  
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where 
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is the solution of the field-free relativistic Hamilton-Jacobi equation (26) in the case of a non-
vanishing constant 4-vector potential for trajectories originating at the common point '

rr
. The 

gauge of the constant 4-vector potential is chosen such that
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represents the trajectory density apart from a constant factor. The solution (98) is the elementary 
four-dimensional wave emanating from the point 

r
 at universal time 'τ . Since the total energy  'R
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is not conserved, the elementary wave cannot be attributed to a single particle with a fixed rest 
energy. To survey the property of this wave, we investigate the propagation of its wave surface 
S=0 in the case

r
. The resulting equation 00 =A
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describes hyperboloids which propagate from the point t  in opposite t-directions. At the 
starting timeτ  the wave surface degenerates to the light cone. Each trajectory starts from the 
apex of this cone. Its starting direction is given by the initial momentum 
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Hence each path forms a straight line 
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in radial direction originating at the starting point. This equation demonstrates that for a given 
starting point either the end point or the initial momentum must be given in order to define the 
actual path. Since the wave surface is a function of the starting point and the point of observation, 
the solution of the wave equation defines the path by these points. 
 
 



 
10. Integral equation and path integral 
The Green function (98) is an elementary wave which has the same structure as the Fresnel 
propagator of light optics. According to the Huyghens principle the wave at time t s 
formed by the sum of all elementary waves, each of which originates from a point of the wave at 
time t. Since the Feynman path integral has the same property, we suppose that the Green function 
(98) transforms the four-dimensional wave function given at time 'τ   to the wave function at time τ 
in field-free space. To prove this conjecture, we transform the differential wave equation to an 
integral equation. Since the boundary conditions are incorporated in this equation, it yields a 
unique solution. Extending the Green’s function method for the diffusion equation [12] from three 
to four dimensions, we eventually derive the integral equation 

tt ∆+= '  i
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The volume integration has to be taken over the entire four-dimensional space. The source is 
turned on at the initial timeτ . Therefore, the integration over 'τ  in the second term has to be 
taken from the initial time up to the time of observation τ. The first term on the right describes the   
“non-scattered” incident wave at the point of observation

r
, whereas the second term accounts 

for the scattered wave. Hence we can conceive (105) as the equivalence of the Lippman-Schwinger 
equation [13] for the Minkowski space. 
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τ,R

We can also utilize this equation to obtain a covariant path integral representation for the evolution 
of the wave function in Minkowsi space in the case of interactions. Our procedure will yield a 
straightforward derivation of the path integral without the need of employing Feynman’s 
“intuitive” procedure.  According to a remark by Dirac, he assumed that the operator 

transforms the wave at time t to the wave at time . Unfortunately, Feynman’s 
space-time approach is non-relativistic [14]. So far a covariant approach has not been found. In 
order to derive a covariant path-integral representation, we subdivide in accordance with Feynman 
the time interval τ  into N infinitesimally short time “slices” of duration . This 
approach resembles the multi-slice method employed for calculating the propagation of fast 
electrons in crystalline objects [15].  

)/exp( hSi∆ tt ∆+
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Employing this method, it suffices to derive the transformation of the wave function after 
propagating through a single slice. The final wave function is then obtained by successive 
iteration. 
In the limit , the Green function (98) approaches a four-dimensional delta function: 0→−=∆ iτττ
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By inserting this relation into (105) and consideringσ , we readily derive at 0)'(1 =R
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This integral equation has the solution 
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which is obtained by differentiating (107) with respect to τ and integrating  the  resulting rather 
simple first-order differential equation. We can use this result to obtain an improved 
approximation for the wave function at time τ  by substituting (108) forτ∆+ )','( τψ R

r
 and by 

replacing  in the second integral of equation (105). We further 

assume that the 4-vector potential does not change appreciably along a distance
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In this case we can putσ and perform the integration over 'τ  analytically: 01 =
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This result proves the validity of Dirac’s conjecture and can be considered as a relativistic 
extension of Feynman’s non-relativistic path integral. The wave function at timeτ  is 
obtained by successive iteration of (109) through all N slices. The differential action is given by 
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This covariant expression differs significantly from the non-relativistic expression which does not 
account for the spin and gravitation. 
If the interaction Hamiltonian does not depend explicitly on τ the wave function becomes 
stationary with respect to this time. In this case the solutions of the wave equation (75) adopt the 
stationary form 
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Stationary conditions imply a steadily radiating source which has been turned on at the initial 
timeτ . In this case we can perform the integration with respect to 'τ  in (105) analytically. 
Considering the relations (98) and (99) for the Green function G and inserting the expression (111) 
in the integrand, we obtain 
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Here and are the first-order Hankel functions of second and first kind, 
respectively [16]. The result has been derived by substituting for 'τ  as integration 
variable. The variable 
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is real for time-like separations of the points and , it is imaginary for space-like separations. 
The positive sign has to be taken for t , the negative sign for . By considering relation 
(111) for the total wave function, the asymptotic form 
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demonstrates that the expression (112) represents an outgoing hyper-spherical elementary wave in 
the case for t .and an incident hyper-spherical wave in the other case. Hence we can attribute 
the positive sign to the electron, the negative sign to the positron part of the total wave function. 
For space-like separations of the points

r
 and

r
 the variable s becomes imaginary 
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increases. As a result the charge density is non-vanishing in the space-like region violating 
causality for space-like distances
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If we insert the relation (112) into the integral equation (105) and put the , we eventually 
obtain the integral equation for the stationary wave 
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The first factor of the integrand represents the four-dimensional Green function for stationary 
conditions. In this case the mass is conserved. It is interesting to note that the integration (112) 
alters the phase of the Green function G according to a Legendre transformation of S that 
replaces the variable τ by the energy . This energy should not be mixed up with the time-like 
component of the momentum 4-vector. Within the frame of our considerations stationary in τ does 
not imply stationary in the laboratory time t. Hence equation (115) also accounts for time-
dependent interactions in a covariant form. This equation is completely equivalent to that obtained 
by Feynman based on the Dirac wave equation [17]. 
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If the interaction Hamiltonian does neither depend on the universal time nor on the time t, 
, the system is defined as static. In this case the energies and )(intint rHH r
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are conserved. Accordingly, the wave function adopts the form 
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If we insert this expression into the integral equation (105) and consider that  is only a function 
of , we can perform the integrations over 'τ  and analytically. In order to simplify the 
calculations, it is advantageous to integrate over  first and subsequently overu . 

Σ
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Putting  and considering the integral representation of the Hankel functions of order ½ [16], 
we eventually find 
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The wave number 
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is positive for  E>0 and negative for E<0. Using the result (118), we readily derive from (105) the 
integral equation 
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for the three-dimensional spatial part )(rr

r
ψ  of the total wave function (117). The second term on 

the right represents the elastically scattered wave. If we substitute the expression (120) for )(rr
r

ψ  
in (117), it readily follows that in the three-dimensional subspace the scattered wave represents an 
outgoing wave for both the electron (E>0) and the positron (E<0). The equation (120) is formally 
identical with the Lippmann-Schwinger equation for elastic electron scattering derived from the 
Schroedinger equation. However, a decisive difference exists in so far that the interaction 
Hamiltonian  is a covariant operator comprising spin interactions. Since)'(rrΣ rψ  is a four 
component spinor, the integral equation (120) represents a set of four coupled integral equations 
for the four components µψ r  of the spinor rψ . 
 



11. Eikonal approximation of the relativistic propagator. 
The eikonal approximation of light optics is the equivalent of the WKB approximation of wave 
mechanics. The Greek word εικον  means image and the eikonal governs the course of the rays 
emanating from a common point. An ideal image is formed at the position where these rays 
intersect each other again. In this case the eikonal approximation fails because the eikonal can no 
longer be attributed to a distinct ray of the homo-centric bundle of rays. Since a plane partial wave 
can be attributed to each ray, strong interference effects occur in the region of the caustic. The 
caustic degenerates to a point in the case of ideal imaging. In the region outside the caustic, the 
eikonal approximation describes the particle wave rather accurately. In this case it is possible to 
evaluate approximately the path integral for the propagator. The propagator is a hyper-spherical 
elementary wave in the absence of fields. If the wave propagates into the field region the wave 
surfaces will be deformed. As long as the curvature of the wave surface does not diverge at any 
point, we can employ the propagator for determining the propagation of an arbitrary wave from its 
initial timeτ  to the time of observationτ . In this case we can evaluate the Feynman path integral 

approximately because only a single classical path connects any two given points  and . Since 
this path satisfiesδ

rr
, paths which only slightly deviate from the classical path 

contribute the most to the path integral. For all other paths its integrand strongly oscillates yielding 
no significant contribution to the integral.  
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Therefore, it suffices if we add all differential phases ∆   along the classical path. The resulting 
total phase  is an operator because the differential phases (110) depend on the spin matrices   

.  The propagator 
rr

represents an elementary wave which emanates from the 

point  of the initial wave function at timeτ in the presence of external fields. It transfers the 
initial wave to the wave at time τ in the same way as the Green function in the field-free case:  
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 The semi-classical approximation for the propagator has the form 
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consist of a scalar term  connected with the trajectories and an operator term which effects the 
orientation of the spin.  The integration over 'τ  has to be performed along the classical path. This is 

tS sS



achieved by substituting in the integrands the solutions  of the path equations for the 
coordinate . The exponential operator exp  can be written as 
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where 
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The representation (124) is most appropriate for applying the exponential operator. 
The deformation of the wave surfaces  by the external fields is connected with a 

variation of the propagator amplitudeΓ . To determine this amplitude, we utilize 
the fact that the absolute value of the wave propagator is proportional to the square root of the 
mass density (82). For obtaining this density along the classical path, we consider the differential 
volume element 
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formed at timeτ  by the trajectories of particles which start from the point  at timeτ  
on the cone of the four-dimensional differential solid angle

ττ ∆+= i' iR
r

i

iΩδ . The enclosed initial volume 
element  travels with the particles thereby changing its volume in such a way that the enclosed 
differential mass 
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is conserved at any later timeτ  at which the variable volume element is located at the point 

. The conservation of the mass is a consequence of the continuity equation (79). The time 
interval  at the start is chosen such that the propagator can be approximated in this region with 
a sufficient degree of accuracy by the undisturbed propagator (98) up to a factor 2 . In this 
case the initial mass density is found as 
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Using this result together with the relations (109) and (110) and considering that

and∂ , we readily obtain  
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This relation determines  up to a constant phase factor. This factor must coincide with that of the 
field-free propagator (98) in the absence of external fields. As a result we find   
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By inserting this result and the relation (123) for S into the expression (121), we obtain a very 
accurate approximation for the propagator Q provided that the point of observation is located in 
front of the caustic. If this point is located on the far side of the caustic, we must employ two 
propagators, one for the propagation of the initial wave to a hyper-plane in front of the caustic and 
the other for the propagation from each point of this hyper-plane to the point of observation 
located on the far side of the caustic. Subsequently we must integrate over all points of the hyper-
plane. Hence even in this case we can avoid the numerous integrations required by the path-
integral procedure.     
  
11. Conclusion 
 The introduction of the universal time opens a new avenue for describing the dynamics of 
elementary particles in a deterministic way. The resulting five-dimensional approach enables a 
better understanding of the physical situation on an atomic scale, such as the motion of the spin in 
an electromagnetic field. Moreover, our approach does not require an infinite sea of negative 
energy states because the standard energy corresponds to the fourth component of the momentum 
4-vector whose components can have arbitrary signs. In classical three-dimensional mechanics the 
position and the momentum variables are conjugate quantities, while the energy E is conjugate to 
the time t. In the frame of quantum mechanics each pair of conjugate variables must satisfy the 
uncertainty relation. By extending the three-dimensional space to the four-dimensional Minkowski 
space, the universal time τ takes over the role of the conventional time t and the rest energy  the 
role of the standard energy E. Therefore, an additional uncertainty relation 

0E
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must exist between the conjugate quantities or the mass,respectively, and τ. As a 
consequence, the universal time becomes meaningless without any mass. Moreover, all radiation 
would then be confined to the hyper-surface

r
. This scenario may have been the 

case at the “big bang”.  We can speculate that this event represents the origin of the universal 
time.  

2
0 mcE −=

22 −= crR r 022 =t

The five-dimensional Hamilton-Jacobi approach enables an improved physical understanding of 
relativistic quantum mechanics and yields the Schroedinger, Pauli and Dirac equations as special 
cases. Contrary to the Dirac equation, the five-dimensional single-particle wave equation (75) can 
readily be extended to a many-particle equation in the same way as the Schroedinger equation. 
This extension may prove to be a promising alternative to present quantum field theory because the 



creation and annihilation of particles can be considered in the frame of our approach as “inelastic” 
scattering in Minkowski space. By including the electromagnetic field energy in the five-
dimensional formalism, it should be possible to describe the annihilation and creation of particles 
as inelastic scattering where mass energy is transferred into radiation energy and vice versa. Such 
effects can only be described by the non-stationary solutions of the five-dimensional wave 
equation. These solutions are not attainable with the present “stationary” formalism which relies 
on creation and annihilation operators in order to incorporate the effect of the non-stationary 
processes. Since the method of second quantization cannot distinguish between individual 
particles, it must describe a many-particle system in terms of the occupation number of a particular 
state.  On the other hand the proposed five-dimensional formalism describes the many-particle 
system in the configuration space without the need of creation and annihilation operators 
introduced by second quantization.  
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