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Abstract

Simplicial distance in Bruhat-Tits buildings of split classical type
by
Xu Gao

This dissertation studies the notion of simplicial distance on Bruhat-Tits buildings.
That is a measure of proximity between vertices in the simplicial structure. The purpose
of this research is three-fold: (i). to provide a concrete characterization of the simplicial
distance; (ii). to better understand simplicial balls, and (iii). to derive a formula for the
simplicial volume and explore its asymptotic growth.

To accomplish these goals, a comprehensive examination of vertices becomes nec-
essary. They are analyzed using three frameworks: root systems, norms, and lattices.
By leveraging concave functions, we interpret simplicial balls as fixed-point sets of
Moy-Prasad subgroups and deduce a formula for the simplicial volume. Additionally,
the theory of g-exponential polynomials is developed to facilitate the asymptotic study.

Through this research, we focus on split classical types (namely, types of A, By, Cp,
D,, and any combination thereof) over a local field. The presented findings contribute

to the advancement of our understanding of Bruhat-Tits buildings.
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Chapter 1.

Introduction

From the datum of a reductive algebraic group G over a non-Archimedean valued field
K, there is an outstanding space 98(G), called its Bruhat-Tits building, capturing the
intricate structures of G and playing an essential role in the study of it. The main part of
this theory was primarily developed in the 1960s-1980s by Goldman-Iwahori [GI63],
Iwahori-Matsumoto [IM65], Hijikata [Hij75], and finally Bruhat-Tits [BT-1,BT-2, BT-
3,BT-4]. Since then, numerous advancements have emerged, such as functorial prop-
erties [Lan00, PY02, Pra20a, Pra20b], compactifications [BS73, Lan96, GR06, Wer(7],
and Moy-Prasad filtrations [MP94, MP96, Yul5, FR17,Fin21a]. Different interpreta-
tions of Bruhat-Tits buildings has been found through various approaches, including
incidence geometry of lattices [Gar97], tropical linear algebra [JSY07, Werl1 1], and ana-
lytic geometry of reductive groups [RTW15,RTW22]. In the decades since, Bruhat-Tits
buildings has become an essential tool in many areas of mathematics, such as repre-
sentation theory [SS97, Ad198, YuO1, DeB02a, DeB02c, Fin21b] and harmonic analysis
[BMO0O, DeB02b, AD02] of reductive groups, arithmetic geometry [BS76,GS92,Rag94,

Tei95, Ji08], and mathematical physics [GKP*17]. We refer to [Tit79, Yu09,Ji12] for
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surveys of Bruhat-Tits theory.

A Bruhat-Tits building 98 over a local field K is, in particular, a polysimplicial
complex. From the perspective of incidence geometry, we have a simplicial distance on
it. Specifically, given any two vertices x and y in A, a path from x to y is a sequence
of adjacent vertices xg, x1, - - - ,x; with xo = x and x; = y. The number [ is called the
length of the path. Then the simplicial distance between x and y is the length of a
shortest path from x to y, and we denote it by d(x, y). The notion of simplicial distance
plays a central role in this research, whose purpose is three-fold.

The first purpose is to provide a characterization of the simplicial distance in a Bruhat-
Tits building & of split classical type. When A is of split type A, and thus can be
realized as the building of the general linear group GL(V) of a finite-dimensional vector
space V over K, this is clear. Following [Gar97, §19.1; RTW 15, 2.22], we can interpret a
vertex in 9B as a homothety class of lattices in V. Then two vertices x and y are adjacent
if there exist representatives L and L, respectively, such that L 2 L’ 2 wL, where w is
any uniformizer of the local field K. From this interpretation of the incidence relation,
one can prove that d(x,y) < d if and only if L D L’ 2 w?L (see [Suh22, 2.1.1] for a
proof). In Bruhat-Tits buildings of other split classical types, similar interpretations of
vertices and their incidence relations are provided in [Gar97, §20.1 — 20.3]. However,
given the complexity of these descriptions, it is difficult to obtain a portrayal of the
simplicial distance directly from it.

In [BT-1, BT-2] and their extensive follow-up literature, a Bruhat-Tits building %
is constructed as a metric space equipped with a natural isometry group action. This
metric space is obtained by gluing together copies of a Euclidean affine space in a way

that respects the associated root system. This geometric description of & allows us to



analyze its simplicial structure explicitly, by utilizing the geometry of the corresponding
root system. As a result, we obtain a characterization of the simplicial distance when

A is of split classical type.

Theorem 1.1. In an irreducible Bruhat-Tits building of split classical type, two vertices
x and y have simplicial distance at most d if and only if they are separated by at most
d — 1 parallel walls. In particular, fixing a fixed special vertex o as the reference point,

for any vertex x, we have

(1.1) d(x,0) <d < ap(x—-0) <d,

where ay is the highest root relative to a Weyl chamber covering x.

The geometric description of a Bruhat-Tits building in [BT-1, BT-2] and its lattice
interpretation in [Gar97] are related through the methods of maximinorante norms
developed in [BT-3, BT-4]. By leveraging these connections, we are able to obtain a
portrayal (see Theorems 7.1, 7.3, and 7.4) of the simplicial distance in the context of
[Gar97], namely expressed in the language of lattices.

The second purpose is to sort out several notions related to simplicial balls. Let % be
a Bruhat-Tits building and x a vertex in it. The simplicial ball with center x and radius

r is the set of all vertices with simplicial distance at most r from x:

B(x,r) :={yisavertexin & |d(x,y) <r}.

The simplicial sphere with center x and radius r is the set of all vertices with simplicial

distance exactly r from x:

d(x,r) :={yisavertex in & | d(x,y) =r}.
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In a Bruhat-Tits building, a vertex is either special or adjacent to a special one. If two

vertices x and y are adjacent, then we have

B(x,r—1) C B(y,r) C B(x,r+1).

Thus, we may focus on special vertices.

In the rest of the dissertation, o will be a fixed special vertex. The set B(o,r) will
be denoted by B(r) for short, and its cardinality will be denoted by SV(r). Likewise,
the set d(o, r) and its cardinality will be denoted by d(r) and SSA(r) respectively. The
functions SV ( - ) and SSA( - ) are called the simplicial volume and the simplicial surface
area in A respectively. The lattice description (Theorems 7.1, 7.3, and 7.4) gives us
a sense about what them count. For instance, in the Bruhat-Tits building of GL(V), if
Lo is in the homothety class of lattices corresponding to the reference point o, then the
quantity SV (r) counts, up to homotheties, the lattices L between Ly and w'Ly. On the

other hand, Theorem 1.1 gives us the following geometric description of B(r).

Theorem 1.2. In anirreducible Bruhat-Tits building of split classical type, the simplicial
subset of the building % generated by the simplicial ball B(r) is precisely the fixed-point

set of the Moy-Prasad subgroups of level r at point o.

We will go into the details of Moy-Prasad subgroups in § 4.4. Here, please allow
the author to only mention that in the case of GL(V), they are precisely the principal
congruent subgroups.

The last purpose of this dissertation is to analyze the asymptotic growths of the

functions SV( - ) and SSA( - ). Note that

a(r) =B(r) \ B(r—1).

4



Therefore, for sufficiently large r, we have
Cy - SSA(r) < SV(r) < Cy - SSA(r),

where Cy, C, are positive constants. We use the asymptotic notation SV (r)= SSA(r) to
denote this fact.

One of the main theorems in this dissertation is the following.

Theorem 1.3. Let A be an irreducible Bruhat-Tits building of split classical type over
a local field K with residue cardinality q. Then the simplicial volume SV ( -) and the

simplicial surface area SSA( - ) in it have the following asymptotic dominant relation:
SV(r) < SSA(r) < réMgmr,

where €(n) and 7 (n) are shown in the following table.

Split type of B €(n) m(n)

An(nisodd) 0 ()2
Ap (n is even) 1 5(3+1)
B,(n=3) 0 5
By (n > 4) 0 e
Ca(n>2) 0 D
D, (n=4) 2 6
Dy(n>5 1 b

Table 1.1. Asymptotic dominant of SV( - ) and SSA( -)

Remark. This theorem only talks about irreducible Bruhat-Tits buildings. However, we

will see in § 6.1 that general asymptotic results can be deduced from the irreducible
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ones.

Remark. When the Bruhat-Tits building 93 is of split type A, this asymptotic dominant

relation is given in [Suh22, 2.1.2]. We refer to [Suh21, Suh22] for an application of it.

In order to analyze the asymptotic behaviors of the functions SV( -) and SSA( -),
we need formulas for them in terms of the root system @ and the ground local field K.

This is achieved by the following theorem.

Theorem 1.4. Let & be a Bruhat-Tits building of split type ® over a local field K with
residue cardinality q. Then the simplicial volume SV ( - ) and the simplicial surface
area SSA( - ) in it can be computed by the following formulas:

SV(r) :Z—qzz;fi)) >0 ] d™n

IcA x€B(r,’C,I) a(x)>0

ssa() = ) 2@ 5 g,

deg( Po:
1ca g &(Pi) x€d(r,’C,T) a(x)>0

where

[ -] is the ceiling function,

A is a basis of the root system @,

P is the Poincaré polynomial associated to the pair (®,1),

“C is a Weyl chamber of ®,

and the index sets B(r,"'C,I) (resp. 9(r,"'C,I)) consists of the vertices in o +'C

having type I with simplicial distance at most r (resp. exactly r) from o.

In order to apply the formulas, we need to find explicit descriptions of the index
sets B(r,"C,I) and a(r,"C,I). When @ is classical, such descriptions follow from

Theorem 1.1. Then we immediately see that each formula in Theorem 1.4 can be

6



expanded into a finite linear combination of multi-summations of the form

L(c1, - ,ce)+e(c, = ,ce)
q s
Cl,5Ct

where L(cy,--- ,c) is a linear form of the variables cy,--- ,c; and e(cy, -+ ,c) is a
parity function of ¢y, --- , ¢;. In order to handle such multi-summations, the notion of
(super) q-exponential polynomials is introduced and studied. Applying general result on
(super) g-exponential polynomials, we are able to prove Theorem 1.3 and the following

improvement.
Theorem 1.5. Notations are as in Theorem 1.3.

(1). Suppose B is of split type Ay, Cn, B3, or Dy. Then the simplicial volume SV ( - )

in it has the following asymptotic growth as r — oo:
SV(r) ~ C(n) - r g™,

where C(n) is a positive number that is a rational function of q. Similarly, the

simplicial surface area SSA( - ) has the following asymptotic growth asr — oo:
SSA(r) ~ C(n) - r£MWgmVr,

where C(n) is a positive number that is a rational function of q.
(ii). Suppose 3B is of split type B, (n > 4) or D, (n > 5). Then the simplicial volume

SV( -) in it has the following asymptotic growth as r — oo:

SV(2r) ~ Co(n) - r£M g2 r,

SV(Q2r+1) ~ él(n) . rf(n)qZﬂ(n)r,
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where Co(n) and C(n) are positive numbers that are rational functions of q.
Similarly, the simplicial surface area SSA( -) in % has the following asymptotic

growth as r — oo:

SSA(2r) ~ Co(n) - rEM g2 (r,

SSA(2r + 1) ~ Ci(n) - rEMW g2 (r,
where Cy(n) and Cy(n) are positive numbers that are rational functions of q.

Indeed, we will prove stronger results (see Theorems 11.1, 12.1, 12.2, 13.1, and 13.2)

and give explicit formulas for the involved leading coefficients.

Plan This dissertation is organized as follows.

Chapters 2 to 5 form Part I. In this part, we will review the theory of Bruhat-Tits
buildings and fix conventions.

Chapters 6 to 8 form Part II. In this part, we will analyze vertices in apartments
of split classical types, give a concrete characterization of the simplicial distance, and
prove the formulas of the simplicial volume and the simplicity surface area shown in
Theorem 1.4.

The rest chapters form Part III, which focuses on the asymptotic behaviors of the
functions SV( - ) and SSA( -). In Chapter 10, we will introduce the concept of (su-
per) q-exponential polynomials, providing a foundation for the subsequent chapters.
Chapters 11 to 14 then utilize this concept to analyze and understand the asymptotic
behaviors of the simplicial volume and simplicial surface area in Bruhat-Tits buildings

of split types A,,, By, Cp, and D,.
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Preliminaries



Chapter 2.

General Theory of Buildings

We begin with some generality on buildings.

§ 2.1. Projective geometry over [, and [

Back in the 1950s, Jacques Tits noticed the following interesting phenomenons [Tit57].

2.1.1. Let PF; be the projective space associated to the vector space Fy. Then its
cardinality (or equivalently, the number of one-dimensional subspaces of Fj) can be
presented by the quantum number [n]q := Z?:_Ol q'. If we pass to the limit ¢ — 1, then
we get n, the number of coordinate labels {1,2,---,n}. Recalling how we count the
cardinality of IP[F; using the coordinates, we can view the set P, = {1,2,--- ,n} as the
analogue of Py over the imaginary “prime field of characteristic one™” F;.

More generally, we can count points, lines, planes, ...in PF;. They correspond
to points of the Grassmannians Gr(l, [Fg), Gr(2, E;), Gr(3, [Fg), .... In general, the

Grassmannian Gr(k, [Fg) consists of subspaces of g having dimension k and its cardi-

*Namely, the addition collapses. For an introduction, see [Lor18] especially §1.1.

10



§2.1. Projective geometry over [y and [

nality can be presented by the quantum binomial [}] , (see 2.1.4). If we pass to the limit

q — 1, then we get (Z), which is the number of k-subsets of Pj,.

2.1.2. The above can be organized into incidence geometry: namely the combinatorial
gadget describing which proper subspace belongs to which. On the [F;-side, a nontrivial
proper subspace of F' is of color k if it is k-dimensional and two such subspaces are
said to be incident if one of them belongs to another properly. In this way, we organize
nontrivial proper subspaces of [ into a colored simplicial complex 9%(n, q), in which
a k-simplex is a flag

Fg=Vo2Vi2V2 22V 20

of subspaces of F;. On the [-side, a nonempty proper subset of P, is of color k if it
has cardinality k and two such subsets are said to be incident if one of them belongs to
another properly. In this way, we organize nonempty proper subsets of P, into a colored

simplicial complex 93 (n, 1), in which a k-simplex is a flag

of subsets of Pj,.

The two sides are related as follows. Fix a basis e of [Fg (for example, the standard
basis). Then to take a nontrivial proper subspace V of [ having a basis which is part
of e amounts to taking a nonempty proper subset I of e (which is in bijection to P,) and
V is k-dimensional if and only if I has cardinality k. Moreover, to take a flag respecting
the basis e in the sense that each V; has a basis being part of e amounts to taking a flag
of nonempty proper subsets of e.

However, different choices of bases may give the same subcomplex: for instance,

11



Chapter 2. General Theory of Buildings

when the two bases are different by a diagonal matrix. To avoid this, it is better to
keep in the region of projective geometry. So instead of fixing a basis, we fix a frame
A, that is an n-set of points {xi,x7, - ,x,} in IP[F; in general position (namely, they
do not belong to a common hyperplane), or equivalently, an n-set of one-dimensional
subspaces {Ay, -+, An} of I spanning F. Then different choices of frames do give
different subcomplexes of B(n, q).

In this way, we associate to each frame A a subcomplex &/ (A) of % (n, q) isomorphic
to % (n, 1) and the complex 9B (n, q) is the union of them. They are the prototypes of

buildings and apartments.

2.1.3. There is a natural action of G = GL([F;‘), the general linear group (but essentially,
it is the action of PGL(F;) , the projective linear group) on % (n, q). This action comes
from the action of PGL([F;) on IP[FC’; and hence on each Grassmannian Gr(k, [Fg).

Fix a frame A (for example, the one given by the standard basis), then the stabilizer
of the subcomplex &/ (A) is precisely the stabilizer of the frame itself. Let’s denote it
by N(A) (in our example of standard basis, it is the group of monomial matrices, i.e.
matrices that have precisely one nonzero entry in each row and each column). The
fixator of A acts trivially on &/ (A). Let’s denote it by Z(A) (in our example of standard
basis, it is the group of diagonal matrices). The quotient group W(A) := N(A)/Z(A) is
called the Weyl group associated to A. Then one finds that W(A) = S,,, the symmetric

group, which acts naturally on P,, and hence on % (n, 1) exactly as W(A) acts on &/ (A).

2.1.4. Let’s consider the maximal simplices in 98 (n, q). From the description in 2.1.2,

we see that a maximal simplex is nothing but a complete flag



§2.1. Projective geometry over [y and [

of subspaces of Fj. Using an induction argument, it is not difficult to see that the
number of complete flags is presented by the quantum factorial [n]g! := [T, [ilq. The

quantum factorials are related to quantum binomials by the formula

This can be seen by picking the k-dimensional subspace V,_ from a complete flag,
breaking it into a complete flag of V;,_i and a complete flag of Fg'/V,_k.

The maximal simplices in % (n, 1) are complete flags

P,=Ip 2L 20L2---21,.120

= =

of subsets of P,. There are n! such complete flags. The number n! is precisely the
q — 1 limit of [n],!.

The stabilizer of a complete flag is called a Borel subgroup of G. Note that the action
of G on complete flags is transitive. Hence, the number of complete flags is the index
of a Borel subgroup in G.

Let’s take the standard basis e = (e, - ,e,) of [F(? and let V;, = EB?;]I( Fqei. Then
we get a complete flag whose stabilizer B is precisely the group of invertible upper
triangular matrices. Straightforward computation shows that B has order q(g) (g-1"

and thus G has order q(g) (g —=1)*[n]q".
2.1.5. We summarize above as follows.

(1). On the F;-side, we have the “building” AB(n,q), which is the union of “apart-

ments” &/ (A), one for each frame A, and the number of them is

#G _ #B - #{complete flags} q® (g - 1) [n],! B g [n],!
#N(A) #Z(A) - #S, B (q— 1Dn! B n!

13



Chapter 2. General Theory of Buildings

Each “apartment” ¢/ (A) is isomorphic to %B(n, 1), the one on the [F;-side. Hence, the
“building” % (n, q) can be seen as so many copies of % (n, 1) glued together. By passing
to the limit ¢ — 1, this quantity gives 1, coinciding with the number of “apartments” in
AB(n,1).

(ii). The quantum factorial [n],! counts the maximal simplices in % (n, q), which
becomes n!, the number of maximal simplices in (n, 1) by taking the limit ¢ — 1.

(iii). The quantum binomial [Z] counts the vertices of color k in 9% (n,q), which
becomes (Z) the number of vertices of color k in % (n, 1) by taking the limit ¢ — 1.

(iv). There are more combinatorial quantities in 98(n, q) becoming ones for 9 (n, 1)

by taking the limitq — 1.

Tits’s observations are not limited to PGL([F;). In fact, he did for all semisimple
groups over . Of course, there was no [F-geometry back in Tits’ time, but it seems the
above observations inspired him to develop the theory of buildings with the following

principle:

Buildings are multifold apartments and apartments are ¢ — 1 limit case of
buildings, which can be thought as forgetting the additive arithmetic of the

base field.

§ 2.2. Abstract Buildings

Before moving on, we now give a formal definition of polysimplicial complexes.

Definition 2.2.1. An (abstract) simplicial complex is a nonempty poset S (whose

members are called simplices) satisfying

14



§2.2. Abstract Buildings

S1. any two simplices o, T have an infimum o N T;
So there is a unique smallest element in S, called the empty simplex, denoted by 0.

S2. for each simplex o the poset S¢, of simplices smaller than o (they are called faces
of o) form a Boolean lattice of rank k, namely isomorphic to the power set of
a k-set, for some finite k. In this case, we say o is of dimension k — 1 and is a

(k = 1)-simplex.

The dimension of § is the supremum of dimensions of its simplices. The minimal
nonempty simplices are of dimension 0 and are thus called vertices. Let V denote the
set of vertices. Then S can be identified with a poset of nonempty subsets of V.

A morphism between simplicial complexes is a map preserving infima, suprema and
the empty simplex (. Note that this implies that such a morphism is determined by
its restriction to vertices. So equivalently, such a morphism is a map between vertices
extending to a monotonic map preserving simplices. A morphism ¢: & — &’ is said
to fix a simplex 0 € S N S8’ pointwise if it induces an identity from S¢; to S .

A polysimplicial complex is a Cartesian product of simplicial complexes (in the
category of posets) and morphisms between polysimplicial complexes are therefore

defined.
Example 2.2.2. One can verify that % (n, q) and 93(n, 1) are simplicial complexes.
Let’s analyze how the “apartments” &/ (A) are glued into the “building” %(n, q).

Proposition 2.2.3. For any two simplices F,F’ in % (n,q), there is an “apartment”

A (A) containing both of them.

15



Chapter 2. General Theory of Buildings

Proof. We may assume F, F’ are maximal, i.e. being complete flags:

F:F;=Vo2Vi2V, 22V, 20,

=
u
=

Il
X
U
>—A<\
U
S
v
1Y)
~

Then we may view them as composition series for ;. Therefore, by the Jordan-Holder
Theorem, there is a permutation 7 of P, = {1,2,---,n} such that whenever j = 7 (i),

we have isomorphisms

Vin-i - Vp-i N V,;_j N

Vi \

Vin—i+1 ) (Vn—i+1 N Vr,l—j) + (Vn—i N Vr,z—j+1) Vr,l—j+1

4
Vi

induced from inclusions. Let A; be the one-dimensional subspace of V;,,_; N Vr’l_]. whose
image in above quotients are non-trivial. Then A = {A}, A5, -+ ,A,} is a frame with

& (A) containing both F and F’. O

Proposition 2.2.4. If o/ (A) and o/ (A") are two “apartments” containing both F and

F’, then there is an isomorphism between them fixing F and F' pointwise.

Proof. Again, we may assume F, F’ are maximal and let V;, V!, A; be as above. Then
i — A; induces an isomorphism ¢ : HB(n,1) — < (A). The inverse of it can be

described by vertices as
YA U {i € Py |UNVp_is1 #UNVni}.

Similarly, we have an isomorphism ¢-: B(n,1) — </ (A’) and its inverse P,-. Note
that the morphism ¥ (and similarly 1,-) is determined by the complete flag F, we
conclude that o and 1, coincide on the intersection of &/(A) and &/ (A’). Then

¢A © Py is an isomorphism between &/ (A) and &/ (A’) fixing F and F’ pointwise. O

16



§2.2. Abstract Buildings

Then the buildings can be defined as follows.

Definition 2.2.5. A (abstract) building is a polysimplicial complex 9 equipped with a
family A of subcomplexes of %, whose members are called apartments, such that the

following axioms are satisfied.

B0. Each apartment A € A is isomorphic to an abstract apartment & .
B1. For any two simplices F, F’, there is an apartment A containing them.
B2. If A, A’ are two apartments containing both F and F’, then there is an isomor-

phism between A and A’ fixing F and F’ pointwise.

A morphism between buildings is a morphism of the underlying polysimplicial com-

plexes which maps apartments in apartments.
Of course, one has to define what is an apartment to make this definition sense.
Example 2.2.6. 93 (n, q) is a building with apartments isomorphic to %(n, 1).
Let’s analyze what the “apartment” % (n, 1) looks like.
Proposition 2.2.7. All maximal simplices have the same dimension.
Proof. This is clear, they are precisely the (n — 1)-subsets of Pj,. O

Proposition 2.2.8. Any two maximal simplices C,C’ are connected by a sequence
(Co,C1, -+ ,Cs) with Cy = C and Cs = C’ such that for each i, C;_1 N C; has codimension

1 in both C;_1 and C;.

Proof. Note that a maximal simplex in 3(n, 1) is a complete flag, hence a sequence

(i1,1, - ,in—1), which can be identified with an ordering of P,,. Hence, any two such

17



Chapter 2. General Theory of Buildings

simplices are different by a permutation = € &,,. But any permutation can be written as
the composition of transpositions while two sequences different by a transposition meet

in a sequence with one term being removed. m|

In general, a polysimplicial complex which has above properties is called a chamber
complex and its maximal simplices are called chambers. A one-codimensional face of
a chamber is called a panel. A sequence (Cy,Cy,- - - ,Cs) connecting two chambers by
panels is called a gallery. Note that any Boolean lattice is a chamber complex with a
unique chamber: its maximal element. A chamber map between chamber complexes is

a morphism mapping chambers to chambers.

Proposition 2.2.9. There is a coloring, namely a chamber map from the complex to a

Boolean lattice.

Proof. It suffices to define colors for vertices. Then the color of a simplex would be the
set of the colors of its vertices. For instance, one can define the color of a vertex as its

cardinality as in 2.1.2. O

In general, a chamber complex which has this property is said to be colorable. 1t
is worth noticing that any two colorings are different by an isomorphism of Boolean

lattices (in other words, up to a permutation of the colors of vertices).
Proposition 2.2.10. The Weyl group acts transitively on the simplices of the same color.

Proof. Two simplices F = (I;) and F’ = (I}) are of the same color means two things:
first, they have the same number of entries; second, each pair of entries (I, Ilf) have
the same cardinality. This is precisely the condition for the existence of a permutation

7 € S, interchanging them. ]

18



§2.2. Abstract Buildings

Proposition 2.2.11. Fix a chamber C, then all the stabilizers of its panels in the Weyl
group are of order 2 and their generators sj form a generating system S of the Weyl

group with generating relations of the form (s;s;)™7 = 1.

Proof. As in Proposition 2.2.8, a chamber C is a sequence (i1, i, ,i,-1). Let i, be
the complement of this sequence in P,,. Then for each panel obtained from C by deleting
ij, let s; be the transposition (ij, i,). Then this panel’s stabilizer is precisely {1, s j} and

one can verify the system S = {sy, - - - , s, } satisfies the requirement. O

Note that it follows from Proposition 2.2.11 that the stabilizer of a face of C is generated
by those s; with j being not a color of its vertex. Furthermore, the complex % (n, 1)
can be built from the pair (W, S) of the Weyl group W = S,, and the system S = (s;) of
generators in Proposition 2.2.11. Indeed, any face of the chamber C corresponds to the
subset I of S generating its stabilizer and any simplex is translated to such a face by an
element of W, unique up to the stabilizer (I). Therefore, the simplices in 9B (n, 1) can

be identified with the cosets w(I) withw € Wand I C S.

Definition 2.2.12. A Coxeter system is a pair (W, S) of a group W and a system of its
generators S = {sy,s2,- -+, St such that all s; are of order 2 and the generating relations
for S are of the form (s;s;)™9 = 1. Its Coxeter complex %(W, S) is the polysimplicial
complex defined as the complex of cosets of the form w(I) withw € W and I C S,
where the order is given by reverse inclusion.

Then Propositions 2.2.7 to 2.2.11 shows that &(n, 1) is isomorphic to the Coxeter
complex £(S,, S), where S can be chosen to be any generating system of transpositions,
for instance S = {(1,n), (2,n),--- ,(n—1,n)}.

A morphism between Coxeter systems (W, S) and (W’, S’) is a group homomorphism

19



Chapter 2. General Theory of Buildings

f: W — W’ such that f(S) C S’. In this category, a Coxeter system (W, S) is a product
of subsystems (W;, S;)1<i<m if we have a group decomposition W = Wy X - - - X Wy, and
a set decomposition S = Sy U - - - U S;,,. A Coxeter system is irreducible if it can not be
decomposed into proper subsystems.

One can see that morphisms between Coxeter systems induce morphisms between
their Coxeter complexes and such a functor is compatible with the decomposition. In

particular, a Coxeter complex of an irreducible Coxeter system is simplicial.

Now, we can complete Definition 2.2.5 by defining an apartment to be a polysimplicial
complex isomorphic to the Coxeter complex of some Coxeter system.

A Coxeter complex X(W, S) is finite if and only if W is finite if and only if all m;; are
finite. If this is the case, this Coxeter complex is said to be spherical, otherwise it is
affine. A building is said to be spherical (resp. affine) if its apartments are isomorphic
to a spherical (resp. affine) Coxeter complex.

We have seen that 8(n, q) is such a building: its apartments are isomorphic to the
Coxeter complex X(S,, S). This is not an accident. In fact, any reductive group over an
arbitrary field gives rise to such a building. They are called the Tits buildings. We refer
to [Bourbaki, chap.IV] for the theory of Coxeter systems and [Tit74] for a treatment of

Tits buildings in the language of Coxeter complexes.

§ 2.3. Euclidean apartments

Although buildings can be defined and studied in a pure combinatorial way, it would be

more intuitive and convenient if we can also define them geometrically.

2.3.1. One way to visualize the Coxeter complex (S, S) is the follows. The group S,
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§2.3. Euclidean apartments

acts faithfully on R™ as permutations of the coordinates. For any transposition (i, j), its
set of fixed points is the hyperplane {(xo, <o, Xp—1) € R" | X; = xj}, and it thus acts as
the reflection respect to this hyperplane. Therefore, the group &, can be determined
by the reflections/hyperplanes defined by the transpositions. Moreover, the hyperplanes
partition R" into pieces of various dimensions with an obvious order relation: one such
a piece belongs to the closure of another. This gives rise to a complex isomorphic to

>(S,,S). The system S can be obtained as the reflections respect to a chamber.
With this example in mind, we make the following definition.

Definition 2.3.2. A (Euclidean) apartment < is a Euclidean affine space A equipped

with a reflection group W (called its Weyl group) on it.

Let A be a Euclidean affine space. We use “A to denote its associated vector space.
For an affine transformation f on A, we use “f to denote its vectorial part. For an affine
subspace X of A, we use "X to denote its direction.

A reflection on A is an affine isometry whose fixed points form a hyperplane. Any
hyperplane H is associated with a reflection ry with respect to it.

A reflection group W is a group of affine isometries generated by reflections and such
that its vectorial part YW is finite. W is said to be irreducible if YW acts irreducibly on
A and is said to be essential if YW acts essentially on “A (that is, there is no nonzero
fixed point). An apartment is said to be irreducible (resp. essential, trivial, etc.) if its
reflection group is so.

The kernel T = ker(W — YW) consists of translations and hence is called the
translation group. It is then a subgroup of “A. The apartment & is said to be spherical

(resp. affine, discrete) if T is finite (resp. infinite, discrete).
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Chapter 2. General Theory of Buildings

:47 X 0: a non-essential apartment A1 X Ay: anon-irreducible apartment

Ay: a spherical apartment C»: contains non-special vertices

Figure 2.1. Some examples of apartments

2.3.3. A morphism between apartments (A, W) and (A’, W’) is a continuous affine map
f: A — A’ with a group homomorphism ¢: W — W’ such that p(w).f(x) = f(w.x)
for all w € W and x € A. In this category, an apartment (A, W) is said to be a product
of apartments (A;, W;)|<i<m if we have an orthogonal decomposition A = A} X --- X A,
and a group decomposition W = Wy X - - - X W, such that each W; acts trivially on the
orthogonal complement of A;.

Any apartment & admits a decomposition [Bourbaki, chap.V, §3, no.8]
A =AgXA | X XA,
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§2.3. Euclidean apartments

where &/ is trivial and each &/; (for 1 < i < m) is irreducible.

Throughout this dissertation, all apartments are assumed to be discrete. This is
equivalent to saying that in each irreducible component of it, the translation group T is

either finite or a full-rank lattice in *A.

2.3.4. Let A = (A, W) be an apartment.

The hyperplanes of fixed points of reflections in W are called the walls in A. The set
H of walls is stable under W and completely determines it.

A half-apartment (also called an affine root in [BT-1, 1.3.3]) is a closed half-space o

of A bounded by a wall da, called its wall.

Figure 2.2. An affine root a and its wall (boundary) H

A facet in A is an equivalence class in A for the relation “x and y are contained in
the same half-apartments”. A facet F is an open convex subset of the affine subspace
(called the support of F) that it spans.

The set ¥ of facets admits an order: a facet F is said to be a face of another F’,
denoted by F < F', if F is covered by F’, namely contained in the closure of F’. Such
an order gives rise to a polysimplicial complex. To see this, first notice that facets in an
apartment are compatible with its decomposition into irreducible components. Hence,

we may assume our apartment A is irreducible and essential. Then this can be seen from
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Chapter 2. General Theory of Buildings

the fact that any triangulation of a topological space gives rise to a simplicial complex
(indeed, this is where the notion comes from). When A is discrete affine, its facets
already triangulate the ambient space. When A is spherical, its facets triangulate the

unit sphere. This is why it is called spherical.

2.3.5. The maximal facets are called chambers (or alcoves). They are the connected
components of the complement of the union of all walls in A. The Weyl group W acts

simply transitively on the set C of chambers [Bourbaki, chap.V, §3, no.2, th.1].

= c

Figure 2.3. A vertex v, a facet F, and an alcove C

Let C be a chamber. Then its closure C is a fundamental domain of W in A [Bourbaki,
chap.V, §3, no.3, th.2] and is the intersection of some half-apartments, whose walls
are called the walls of C. Equivalently, the walls of C are the supports of panels of it,
where a panel means a maximal proper face of C. Moreover, W is generated by the set
S of reflections with respect to the walls of C and the pair (W, S) is a Coxeter system
[Bourbaki, chap.V, §3, no.2, th.1]. The projection of C onto an irreducible component
A; is again a chamber in it and induces an irreducible Coxeter system (W;, S;). Then
(W, S) is the product of them. In other words, decomposition of the pair of (<, C) of an
apartment and a chamber is compatible with the decomposition of the Coxeter system

(W, S) it defines.
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§2.3. Euclidean apartments

A type function on & is a morphism T from the complex ¥ of facets to a Boolean
lattice, which maps chambers to the maximal element and is W-stable in the sense that
for any facet F and any w € W, t(F) = t(w.F). The image of this function is denoted by
7 and its members are called types. This notion is essentially the same as a coloring as
in Proposition 2.2.9 plus Proposition 2.2.10. They differ in one respect: for a coloring,
the target Boolean lattice is viewed as a power set 9 (J) with its usual order C, while
for a type function, we use the reverse order 2. In other words, a face of type I is of
color = := J\I.

The alcove C defines a generating set

S ={s1,52,53},

F where the reflections sy, s, s3 are shown in

s
> c T the picture. The facet F in the figure is
then a panel of C. It has type 1 and color

{2,3}. Hence, C; = F. The vertex v in the
figure has rype {1,2} and color 3. Hence,
Ciipy =v.

|9y}

Figure 2.4. The generating set and the type function associated to C

Since any facet is transformed by W to a unique face of C, the type function T is
completely determined by the types of its panels, which we may view as an indexing of
S. Indeed, let I be a type, then the set C; of points x € C such that the reflections s € S
fixing x are indexed by I is a face of C of type I and its stabilizer is the subgroup W; of
W generated by the reflections indexed by I [Bourbaki, chap.V, §3, no.3, prop.1]. Then

t(F) = I if and only if F is transformed to Cj.

2.3.6. A reflection group W is said to be linear if it fixes a point. This is the case if and

only if W is finite [Bourbaki, chap.V, §3, no.9]. If this is the case, we can identify W
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with its vectorial part YW by choosing the fixed point to be the origin of A.
Conversely, the vectorial part YW of the Weyl group W can be viewed as a linear
reflection group on "A. The spherical apartment '/ = (A, W) obtained in this way is
called the vectorial apartment of o/ . The walls (resp. facets, chambers) in %/ are called
the vectorial walls (resp. vectorial facets, vectorial chambers) and the set of them is
denoted by “H (resp. “F, “C). Note that the vectorial walls are precisely the directions

of walls in & .

2.3.7. Let x be a point in &f. The stabilizer W, of x is a linear reflection group whose
vectorial part YW, is a subgroup of YW. The apartment &/, = (A, W,) is called the
spherical apartment at x. The walls in &/, are precisely the walls in &/ passing through
x and the set of them is denoted by H,. The facets (resp. chambers) in &, are called
the vectorial facets with base point x (resp. vectorial chambers with base point x) and
the set of them is denoted by 7 (resp. Cy).

A point x € A is said to be special if the spherical apartment &/, is isomorphic to ',
or equivalently, the set H, is a complete set of representatives of “H. This can happen

only if x belongs to a minimal facet.

2.3.8. The minimal facets are called vertices. The set of vertices is denoted by V. When
the apartment is essential, they are points. From now on, all apartments are assumed to
be essential unless otherwise specified™.

Under this assumption, every special point is a vertex. Furthermore, any special
vertex is an extreme point of the closure of some chamber. Conversely, any chamber

admits a special point as an extreme point of its closure [Bourbaki, chap.V, §3, no.10,

*This means we will only focus on reduced buildings, rather than extended buildings.
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prop.11°s cor]. However, not all extreme points, hence not all vertices are special (see

C, in Fig. 2.1 for an example).

§ 2.4. Root systems

Before moving on to the definition of buildings, let’s look at some examples of Euclidean
apartments arising from root systems (as well as root data). They are the key examples

used in the study of reductive groups.

2.4.1. Let V be a Euclidean vector space and V* its dual space. For any a € V* \ {0},
let r, be the reflection with respect to the hyperplane H, := Ker(a) and a" the vector

orthogonal to H, satisfying a(a") = 2. So for any v € V, we have
ra(v) =v—a(v)a".

Note that r, also induces a reflection on V*, namely f +— f — f(a")a. A finite spanning

subset ® C V* \ {0} is called a root system on V if

RS1. forany a € &, r (®) = ;
RS2. forany a,b € @, a(b’) € Z,;

and is reduced if
RS3. forany a € ®, RanN ® = {+a}.

From now on, all root systems are assumed to be reduced®.
Elements of @ are called roots in ®. For a root a € ®, the vector a” is called its

coroot; they form a root system ®@" on V*, called the coroot system. A subset ¥ C @ is

*This means we will only focus on split reductive groups.
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called a subroot system if for any a € ¥, ro(¥) = ¥, and is said to be closed if for any
a,b € ¥suchthata+bisaroot,a+b € V.

Any root system @ admits the Weyl group "W (®), that is the reflection group of V
generated by r, for a € ®. Itis a linear reflection group with walls H, for a € ®. In this
way, we get a spherical apartment '/ (@) := (V,"W(®)). Note that not all spherical
apartments arise in this way (see [Bourbaki, chap.VI, §2, no.5, prop.9]) and non-
isomorphic root systems may have isomorphic Weyl groups (for instance root systems

of types B, and Cp,).

2.4.2. A root system @ is said to be irreducible if it cannot be written as the union
of two proper subsets such that they are orthogonal to each other. A root system @
is irreducible if and only if its Weyl group YW (®) is [Bourbaki, chap.VI, §1, no.2,
prop.5’s cor]. Any root system decomposes into disjoint union of irreducible ones and
such a decomposition is compatible with the decomposition of Weyl groups and hence

of apartments [Bourbaki, chap.VI, §1, no.2, prop.6 and 7].

2.4.3. Let @ be a root system. Then there is a closed subset ®* of @ such that for
any a € @, either a € ®* or —a € ®*. This set is called a system of positive roots.
Once such a set is chosen, elements in the set ®~ := —®* are called negative roots. A
positive root is called a simple root if it cannot be written as the sum of two positive
roots. The set A of simple roots form a basis of @ in the sense that any root is a
Z-linear combination of simple roots and its coefficients are either all non-negative or
all non-positive [Bourbaki, chap.VI, §1, no.6, th.3]. The cardinality of the set A is called

the rank of @ and is independent of the choice of A. Indeed, it equals dim V.
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§2.4. Root systems

Let A be a basis of ®. Then the set

C={veV|VaeA:a(v) >0}

is a vectorial chamber, called the Weyl chamber associated to A [Bourbaki, chap.VI, §1,

no.5, th.2]. Conversely, let “C be a vectorial chamber. Then for any v € “C, the sets

& ={a e ®|a(v) >0} and ® ={ae®|a(v) <0}

form a partition of ® into positive and negative roots and are independent of the choice
of v. Then one can obtain a basis A by taking the simple roots. But there is a more
geometric description: they are the roots defining the walls of “C pointing inside. As
vectorial chambers are Weyl chambers associated to some choice of basis, we call them

Weyl chambers to specify that they are chambers in the spherical apartment %o/ (®).

2.4.4. The relation between simple roots and types is the following. First, the Weyl
group YW is generated by r, for a € A as they are the roots defining walls of “C and point
inside. Therefore, a type I € 7 corresponds to a subset of A. From now on, we do not

distinguish them. Then the face of “C corresponding to I is the set

Cr={veV|Vael:a(v)=0;Yae A\I:a(v) > 0}.

Let ®; be the subroot system of ® generated by I, then the stabilizer YW; is the Weyl
group of it. The set ¥ = ®;U®* has the property that ¥ U (—¥) = @ and is closed. Such
kind of subsets of ® are said to be parabolic. Given a parabolic subset ¥ of @ containing
®*, then the simple roots in ¥ N (=¥) N ®* gives the type I. See [Bourbaki, chap.VI,

81, no.7].
Convention 2.4.5. Given a basis A = {ay,---,an}, a type is a subset of A, and is
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Chapter 2. General Theory of Buildings

identified with a subset of {1,---,n}. For a type I of A, we use t; to denote the
cardinality of A \ I and ¢;(I) (1 < i < ty) the i-th index in A \ I. We use the convention

that £y = 0. We will omit I if there is no ambiguity.

2.4.6. Given a basis A of a root system @, its Dynkin diagram is defined as follows.
The vertices are the simple roots of ® and the number of edges between two vertices is
4 cos?(0) if the angle between them is 6. Furthermore, these edges are decorated with
arrows pointing from the longer root to the shorter root. It turns out that, up to graph
isomorphisms, the Dynkin diagram is independent of the choice of the basis A.

From above description, we see that @ is irreducible if and only if its Dynkin diagram
is connected. The Dynkin diagrams of irreducible root systems are classified as follows

[Bourbaki, chap.VI, §4, no.2, th.3], where the subscription n in the notation X, denotes

the rank of it.
Ay — B, -
ai az an-1 an (n=3) @ a2 an-2  dn-1 an
Cn ————————=—9 Dn .
(n>2) @ a n2  Gnol Gy (n>4) @ a

»—A—Ia2—4—4
Eq: Fq: o o Gy =

a as ag as dg ap a as ag ai a

Figure 2.5. Dynkin diagrams of irreducible root systems

A spherical apartment is said to be of type X, if it is isomorphic to ‘o (®) for an

30



§2.4. Root systems

irreducible root system ® of type X,,. A spherical apartment is of classical type if its

every irreducible component is of type A, By, Cp, or Dj,.

2.4.7. Let A be an affine space such that “A = V with a specified point o. For any a € V*
and k € R, denote the affine function x +— a(x — o) + k on A by a + k and denote the
closed half-space {x € A | (a + k)(x) > 0} by ag4.

For each a € @, let I, be a fixed nonempty subset of R. The affine function a + k is
called an affine root if a € ® and k € T,. Let & denote the set of closed half-spaces aqx
with a + k an affine root. Then a + k — a4k gives rise to a bijection between the set of
affine roots and X. For this reason, we will not distinguish the affine root a + k and the
closed half-space a4 and will call X the affine root system*. The roots are vectorial
part of affine roots. Hence, we denote @ by "X and call it the vectorial root system of Z.

For a = a4k an affine root, let ‘o denote its vectorial part a, let da denote its boundary

{x € A|(a+k)(x) =0}, let ry denote the reflection with respect to da, let a* denote

the other affine root sharing the same boundary with a, that is A \ a, and let «; denote

the intersection of all the affine roots containing a neighborhood of «a.

2.4.8. Let X be an affine root system on a Euclidean affine space A, its affine Weyl group
W(Z) is the reflection group on A generated by r, for all @ € X. In this way, we obtain
an apartment </ (Z) := (A, W(Z)) with vectorial apartment %/ (“%). Suppose all the
subsets I, are taken to be the same discrete subgroup I' # 0 of R, then the walls in the
apartment &/ (X) are precisely the boundaries da with @ € T [Bourbaki, chap.VI, §2,
no.l1, prop.2]. For x a point in the apartment &/ (X), let , be the set of affine roots «

such that x € da and let X be the set of vectorial parts of affine roots in X,. Then X,

*Note that, there is a notion called affine root system, defined similarly as root system, but for affine
spaces. In this dissertation, this terminology is restricted to those arise from (reduced) root systems.
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Chapter 2. General Theory of Buildings

can be identified with "X, by a — “a. In particular, the roots in VX can be identified
with the affine roots in X,. Note that "X is a closed subroot system of Y. Then the

spherical apartment </, at x can be identified with %/ (*X, ).

2.4.9. Notations as before. Suppose ® = X is irreducible and all T, are the same
discrete subgroup of R. Let “C be a Weyl chamber of ® and A be the set of simple
roots it defines. Then there is a unique root ag such that ||ag|| > ||a|| for all root a
[Bourbaki, chap.VI, §1, no.8, prop.25]. This ag is called the highest root with respect

to A or YC. The set

C=(0+"%)\ a*, , =interior of (ﬂ aa) N o_gy+

—ap+
acA

is achamber in &/ (¥) [Bourbaki, chap.VI, §2, no.2, prop.5] and is called the fundamental
alcove for A.

Let A denote the set of affine roots a defining the walls of C, which means C C a and
da is a wall of C. Then A consists of the simple roots and the affine root ap = a—_g;+-
Such a set A is a basis of £ in the sense that any affine root is a Z-linear combination of
its elements and the coefficients are either all non-negative or all non-positive.

Conversely, let C be a chamber in &/(X) and x a special vertex which is also an
extreme point of C. The affine roots defining walls of C form a basis A of the affine root
system X. Among these affine roots, those vanishing at x give rise to a basis A of the
root system @ by taking their vectorial parts and the rest one gives rise to the highest
root with respect to A by taking the negation of its vectorial part. Since chambers in
g/ (%) are fundamental alcoves for some basis, we call them alcoves to avoid confusion

with Weyl chambers.
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§2.4. Root systems

2.4.10. The type function is introduced as follows. The affine Weyl group W(Z) is
generated by r, for a € A as they are the affine roots defining walls of C. Therefore, a
type I € 7~ corresponds to a proper subset of A. From now on, we do not distinguish
them. Then the face of C corresponding to I is the set
Cr=Cn (ﬂaa) \ ( U aa).
ael aeh\I
Convention 2.4.11. Given a basis A = {aj, - ,a,} of an irreducible ®, the highest

root relative to it is denoted by ap and the coefficients are denoted by h;, namely
2.4.1) apg = hja; +-- -+ hpay,.

Given a basis A = {ag, ay, - - -, otn} of T, a color of a vertex v is the index i (0 < i < n)

such that v is mapped to A \ {a;} through the type function in 2.4.10.

2.4.12. Let £ be an irreducible affine root system with A a basis. Then the extended
Dynkin diagram of it is defined similarly to Dynkin diagram except in the case of Aj,
where there is a left-right double arrow between the two vertices.

The following are the extended Dynkin diagrams of all irreducible affine root systems
[Bourbaki, chap.VI, §4, no.3, prop.4], where the notation )?n indicates the affine root
system that arises from the root system of type X,,. Note that the Dynkin diagrams
are decorated in the following way: the part consisting of bold vertices is the ordinary
Dynkin diagram and its vertices represent the simple roots a; (1 < i < n), then the extra
hollow vertex presents (the affine root ay defined by) the highest root ap and each simple
root g; is labelled by its coefficient h;.

An affine apartment is said to be of type X, (or split type X,,) if it is isomorphic to

o (£) for an irreducible affine root system % of type X,. An affine apartment is of split
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Z] I o= Zn : A En : ————r—
1 (n>2) 1 1 1 1 (n>3) 2 2 2 2
1

2
1
Cn . o———e— —e——e—=—» Dn .
(n>2) 2 2 2 2 1 (n>4) 2 2 2 2
1 1
2

2 4 6 5 4 3 2 2 3 4 3 2 1

E6 . F4 . O—e—e——»— 52 .o
12 3 2 1 2 3 4 2 2 3
Figure 2.6. Extended Dynkin diagrams of irreducible affine root systems

classical type if its every irreducible component is of split type A,,, By, Cy, Or D;,.

§ 2.5. Root data

Root systems can arise from root data. This section focus on root data.
Definition 2.5.1. A (reduced) root datum* R is a quadruple (X, ®, X", ®") in which
» X and X" are free Z-modules of finite rank in duality by a pairing
(-, ) XxX¥ = Z,

» ® and ®" are finite subsets of X \{0} and X" \ {0} respectively, in bijection by a

correspondence a <> a”,

*in the sense of [SGA3, XXI, 1.1.1].
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satisfying

RD1. forany a € @, (a,a") = 2;
RD2. for any a € @, the “reflection” ry: x — x — (x,a")a preserves ® and the
“reflection” r,: y +— y — {(a, y)a" preserves ®";

RD3. forany a € ®, Za N ® = {+a}.

Note that we do not distinguish the two kinds of “reflections” in symbols since they
form isomorphic finite groups of automorphisms on X and X" respectively, and therefore
it is better to view them as two representations of a same finite group "W (R). This

group is called the Weyl group of the root datum.

2.5.2. If R = (X, ®, X", ®Y) is a root datum, then its Weyl group acts on the real vector
space Xg, := X" ®R and there is a unique inner product on it invariant under the action.
Let V be the subspace of Xy spanned by @V, called the coroot space of R. Then @ is a
(reduced) root system on the Euclidean vector space V.

In general, V is not the entire Xﬁ. When it is, we say R is semisimple. So the
apartment associated to root systems can also be viewed as the apartment associated to
semisimple root data. As for the non-semisimple ones, they give rise to non-essential
apartments and hence are ignored in this dissertation.

The quadruple RY = (X", ®Y, X, ®) is also a root datum, called the dual root datum

of R. It is clear that dual root data give rise to coroot systems on the dual spaces.

253. Let R = (X,®,X",®") and R’ = (X, @, X"V, ®'"V) be two root data. Then a
morphism f: R’ — R between them is a linear map f: X’ — X inducing a bijection
® — @ and its transpose 'f induces a bijection @Y — ®Y. If f is a morphism of

root data, then it also induces bijections between bases, systems of positive roots and
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Weyl chambers [SGA3, XXI, 6.1.3]. As a consequence, it induces an isomorphism of
spherical apartments ‘o (®") = '/ (®) (and also an isomorphism of affine apartments
A(X) = d(2)if ® =Y and @’ = VY’ with covariant choice of T,’s).

A morphism of root data f: R’ — R is an isogeny* if the linear map f is injective

and has finite cokernel K(f). This K(f) is also called the cokernel of f.

2.54. Let R = (X, ®, X", ®Y) be a root datum. Let Xy = {x € X | {x,®") = 0} and
X = X¥/(V N XY). Then X and X; are in duality by the pairing of R and thus give
a trivial root datum (Xg, 0, Xg ,0). Tt is called the coradical of R and is denoted by
corad(R).

The dual root datum of the coradical of the dual RY = (X, ®V, X, @) is called the
radical of R and is denoted by rad(R). More precisely, let Y = {y e XY | (D, y) = 0}
and Yy = X/(V* N X), then rad(R) is the root datum (Y, 0, Yo, 0). It follows that R is
semisimple if and only if corad(R) = 0 if and only if rad(R) = 0.

Let R denote the trivial root datum (X, @, X", 0). Then the inclusion and projection

to X induce morphisms of root data

corad(R) s RO > rad(R).

And the composition corad(R) — rad(R) is an isogeny [SGA3, XXI, 6.3.4]. Its

cokernel is denoted by N(R). Note that there is a pairing:
N(R) x N(R") — Q/Z.

2.5.5. A lattice L in a R-vector space V is a discrete finitely generated Z-submodule of

V spanning V. Its dual lattice L* is the lattice in the dual space V* consisting of those

*in the sense of [SGA3, XXI, 6.2.1] and is called a central isogeny in [Mil17, 23.2]
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functionals f € V* such that f(£) C Z.

Given a root system @ on a Euclidean vector space V, there are four lattices:

Q the root lattice, which is the lattice in V* generated by the roots;
Q" the coroot lattice, which is the lattice in V generated by the coroots;
P the weight lattice, which is the dual lattice of Q" in V*;

PV the coweight lattice, which is the dual lattice of Q in V.

Suppose the root system @ is given by a root data R. Then X contains Q. If R is
semisimple, then X is a lattice in V* between Q and #. In this case, the quotient £ /X
is a finite group 7 (R), called the fundamental group of R; the quotient X/Q is a finite

group Z(R), called the centre of R.

2.5.6. Let R = (X, ®, X", ®") be a root datum.

Let Y be a submodule of X containing ® and i: Y — X the inclusion. Its transpose
is denoted by i: X¥ — Y and denote @y = ®, @y = i(®"). Then (Y, Dy, Y", DY) is
a root datum and i is a morphism of root data. It is called the root datum induced by R
on Y and is denoted by Ry.

Let YV be a submodule of X" containing ®". Then the dual root datum of the root
datum induced by RY on Y" is called the root datum coinduced by R on Y and is
denoted by RY".

The following are some special cases of above.

ad(R) the root datum induced by R on the root lattice Q;
ss(R) the root datum induced by R on V* N X;
der(R) the root datum coinduced by R on VN X";

sc(R) the root datum coinduced by R on the coroot lattice Q.
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2.5.7. We have seen various root data constructed from a given one R. They form a

diagram of morphisms of root data:

ad(R) ——— > ss(R) der(R) —— > sc(R)

ss(R) x coram > der(R) x rad(R)

Moreover, we have the following propositions [SGA3, XXI, 6.5.5 — 6.5.9].

(i). The horizontal ones are isogenies between root data.

(i1). The diagram is commutative.

(iii). ad(R) is adjoint, namely every isogeny to it is an isomorphism.

(iv). sc(R) is simply-connected, namely every isogeny from it is an isomorphism.

(v). R is semisimple if and only if the middle triangle consists of isomorphisms.

(vi). If R is semisimple, its centre Z(R) and fundamental group m;(R) are the
cokernels of the isogenies ad(R) — R and R — sc(R) respectively.

(vii). The cokernels of the isogenies ss(R) X corad(R) — R, R — der(R) X rad(R)
and ss(R) — der(R) are all isomorphic to N(R).

(viii). R is the product of a semisimple root datum with a trivial root datum if and
only if N(R) =

(ix). Allrootdatain this diagram have isomorphic root systems and hence isomorphic

apartments.

§ 2.6. Euclidean buildings

In this section, a geometric definition of buildings (the Euclidean buildings) is given,

and its properties are further discussed.

38



§2.6. Euclidean buildings

Definition 2.6.1. A (Euclidean) building is a set 9% equipped with a polysimplicial
complex ¥, whose members are subsets of 9 and are called facets, and a family A of
subsets of &, whose members are called apartments, such that the following axioms

are satisfied.

EBO. For each apartment A € A, there is a Euclidean apartment & together with a
bijection between them, exchanging the complex ¥, of facets contained in A

and the complex of facets in & .

Note that, this allows us to view apartments in 98 as Euclidean affine spaces and hence

it makes sense to talk about isometries between them.

EB1. For any two facets F, F’, there is an apartment A containing them.
EB2. If A, A’ are two apartments containing both F and F’, then there is an isomor-

phism between A and A’ fixing F and F’ pointwise.

Here an isomorphism between A and A’ is an isometry between them exchanging the

posets ¥4 and Far.

Note that, from the definition, all apartments A € A are isomorphic to an abstract
one &. Then A is said to be of type &/ and is said to be spherical (resp. discrete, affine,
etc.) if so is /. The Weyl group W of & is also called the Weyl group of 9.

Remark. The notions of walls, chambers, vertices and types in a building is defined
similarly as in an apartment, and we will use the same notations as there. Furthermore,
there is a type function t: ¥ — 7 extending the type function on an apartment to the
entire building uniquely.

Remark. We have assumed that apartments are essential. In particular, the buildings

in Bruhat-Tits theory used in this dissertation are the reduced buildings, rather than
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Figure 2.7. An example of Euclidean building (the Bruhat-Tits tree of GL,(Q3)) with
an apartment specified by blue color
extended buildings. However, this is harmless as we focus more on the polysimplicial

structure, and we do want the vertices being points.

Remark. One can see that a discrete building & is completely determined by its combi-
natorial information, which is encoded in the polysimplicial complex ¥ up to a choice
of the family A. To see this, one can compare the axioms EB0. to EB2. with B0.
to B2.. Therefore, to give a discrete Euclidean building (3, A) is equivalent to give an

abstract building (7, {Fa}aca)-

2.6.2. The apartments are Euclidean affine spaces, hence have metrics. Those metrics
are compatible in the sense that they agree on any overlap, hence are glued into a metric
d(—, —) on the entire building & consistently. Then 98 equipped with this metric is

a complete metric space having the CAT(0)-property [Rou09, 6.5], which means that
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geodesic triangles in & are at least as thin as in a Euclidean plane: saying x,y, z are
three points in % forming a geodesic triangle and X, y, Z are three points in a Euclidean
plane having the same pointwise distance as x, y, z, then for any point m in the geodesic
segment [x,y] in the triangle and m the corresponding point in the segment [i, y]

(namely, d(x,m) = d(x, m)), then d(z,m) < d(z,m).

y Yy
X m AAAAAAAAS X om
z Z

Figure 2.8. The CAT(0)-property

Consequences of the CAT(0)-property include:

(1). [Rou09, 6.6] the geodesic segments between points are unique;

(i1). [Rou09, 7.1] any group of isometries stabilizing a nonempty bounded subset has
a fixed point;

(iii). [Rou09, 7.3] the distance from a point to a nonempty closed convex subset is

achieved by a unique point.
For more details, see [Rou09, §6 and 7].

2.6.3. A morphismbetween buildings % and 8’ is a continuous map inducing a chamber
map between F and ¥’ and maps apartments in apartments. Then an automorphism
of a building is an isometry transforming a facet (resp. apartment) in a facet (resp.

apartment). Any building can be decomposed into a product of a trivial building with
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irreducible ones, similarly as in 2.3.3. However, there is no guarantee that such a

decomposition gives a good corresponding decomposition on the family ‘A.

Remark. With above definition of morphisms, we obtain an equivalence of categories

between discrete Euclidean buildings and abstract buildings.

2.6.4. An automorphism is said to be type-preserving if it leaves the type function
T invariant. For instance, any w € W is such an automorphism. A group G of
automorphisms is said to be strongly transitive if it acts transitively on the pairs (C, A)
where C is a chamber in the apartment A. This is the case if and only if G acts transitively
on apartments and in any apartment A, the following conditions for a pair of chambers

C,C’ in A are equivalent:

(i). C and C’ are conjugated by the Weyl group W;
(ii). C and C’ are conjugated by the stabilizer Ng(A) of A in G;

(iii). C and C’ are conjugated by G.

When a group G of automorphisms is strongly transitive and type-preserving, we have

W = Ng(A)/Cs(A),

where Cg(A) is the fixator of an apartment A in G.

2.6.5. Let G be a strongly transitive and type-preserving group of automorphisms and

F be a facet in an apartment A. The stabilizer (which is also the fixator)

Gr := Ng(F) = Cg(F)

of F is called a parabolic subgroup of G. The parabolic group Gr acts transitively on

the apartments containing F. Indeed, one can deduce this from the fact that Gy acts
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transitively on chambers containing F since G is strongly transitive. Here the former is
due to that G acts transitively on chambers and is type-preserving.

Moreover, we have the Bruhat decomposition [Rou(09, 6.9]
G = Gp.Ng(A).Gp.
In particular, if F = C is a chamber, then

G = |_| GewGe.

wew

2.6.6. Let x be a point in an affine building 8. The link of x is the subcomplex 7, of
the facets covering x. For any apartment A, let 7, 4 be the subcomplex ¥, N Fa, where
Fa is as in Definition 2.6.1. Then ¥ is an abstract spherical building with the system
of apartments {ﬁ A} acq- 1o see this, recall that for any vertex x in an affine Euclidean
apartment, the facets in the spherical apartment at x can be identified with the facets
covering x through a radially shrinking with center x. In this way, we obtain a spherical
building %,, called the spherical building at x. Note that the embedding %, — A is

not isometric, only conformal.

2.6.7. A bornology on a set X is a collection 8 of subsets of X such that it covers
X and is stable under inclusion and finite unions. Once such a bornology is chosen,
its members are called bounded subsets of X. For instance, any metric space has a
canonical bornology induced by its metric. Another example is any locally compact
topological space, where the bornology consists of all relatively compact subsets. A
morphism between bornological sets is a map preserving the bornologies.

A bornological group is a group G equipped with a bornology on it stable under

multiplication. For instance, let G be an isometry group on a metric space X, then there
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is a canonical bornology whose members are subsets M such that the set M.x is bounded
in X for some x € X.

Let @: G’ — G be a group homomorphism and G a bornological group. Then we
can canonically pull back the bornology on G to G’: a subset of G’ is bounded when its
image is bounded in G.

So we can talk about bounded subgroups of a group G acting on the building %
regardless its own topology or bornology. But if G is topological or bornological, it
makes sense to ask if its bornology is the same as the pullback one. It is worth to point
out that this is the case when G acts continuously on 3.

Let G be a strongly transitive and type-preserving group of automorphisms of %,

then for any subgroup H of G, the following conditions are equivalent [Rou09, 7.2].

(1). H is bounded,;
(ii). H fixes a point in 9,

(ii1). H is contained in a parabolic subgroup of G.

In particular, the maximal bounded subgroups of G are the maximal parabolic subgroups
and hence the stabilizers of vertices.

In general, even if G is not type-preserving, then maximal bounded subgroups of G
are still stabilizers of points, but: (i). not all such stabilizers are maximal; and (ii). not

all such stabilizers are stabilizers of vertices.
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Chapter 3.

Reductive Groups and Tits Buildings

Tits’ building theory [Tit74, Bourbaki] was applied to study the structure of reductive
groups over an arbitrary field, a family of linear algebraic groups which play important
roles in mathematics. We refer to [Mill7] for algebraic groups and reductive groups
over an arbitrary field and [SGA3] for group schemes and reductive group schemes over
general base.

Throughout this chapter, we fix a ground field K and an algebraic closure K¢ (resp.

separable closure K*P) of it.

§ 3.1. Algebraic groups

We first recall some basic notions on algebraic groups.

Definition 3.1.1. By an algebraic group™ (defined over K), we mean a group object in

the category of schemes of finite type over K.

*Generally, a group scheme over a base S is a group object in the category of schemes over S. The
materials covered in this section works over general base, not only over K. Just in case, we write ( - )/S
to emphasize the base S.
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3.1.2. An algebraic group is said to be affine (resp. smooth, connected, etc.) if so is
its underlying scheme.* But it is often useful to have another viewpoint: an algebraic
group is in particular a group-valued functor from the category Alg of finitely generated
K-algebras. In particular, affine algebraic groups are precisely the representable group-
valued functors.

We will use bold letters like G to denote algebraic groups defined over K. For any
K-algebra R, the group scheme obtained by base change G ®xR is denoted by Gy and
the group of R-points is denoted by G(R) (but if we use notations with parenthesis, e.g.
GL(V), to denote an algebraic group, then its group of R-points is denoted by padding
R into the parenthesis as the last parameter, e.g. GL(V, R)). Moreover, G(K) is simply
denoted by G and Gg(R) = G(R) is simply denoted by Gg. We also write g € G to mean
that g is an R-point of G for some K-algebra R.

Many group-theoretical constructions apply to algebraic groups. For G an algebraic
group and H a subgroup, we use Ng(H) (resp. Zg(H)) to denote normalizer (resp.

centralizer) of H in G. In particular, Z(G) denote the centre of G.

3.1.3. Let G be an algebraic group. Its neutral component G° is the largest connected
subgroup of G. Its component group my(QG) is the universal étale scheme under G. Then

there is an exact sequence [Mill7, 2.37]:

1 > G° > G > mo(G) —— L.

The above formations are compatible with field extensions and products.

*It is worth to emphasize that the topological terminology such as connected talks about the
underlying scheme of G, not the underlying set of G (although it may carry a topological structure). For
instance, when the ground field K is a local field, the multiplicative group Gy, (see Example 3.1.4) is
connected while the topological group K* is totally-disconnected.
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The following conditions on an algebraic group G are equivalent [Mil17, 1.36]:

(i). Gisirreducible;
(ii). G is connected;
(iii). G is geometrically connected;

(iv). mo(G) equals the trivial group 1.
Example 3.1.4. Here we give some algebraic groups presented as functors.

(i). The functor R ~» (R, +) mapping a K-algebra to its underlying abelian group
defines an algebraic group G,, called the additive group.

(ii). The functor R ~» (R*, X) mapping a K-algebra to its unit group defines an
algebraic group Gy, called the multiplicative group.

(iii). The functor R ~» {r € R | r" = 1} mapping a K-algebra to its set of n-th roots
of unity defines an algebraic group 11, called the group of n-th roots of unity.

(iv). Let G be a finite group. The constant functor R ~» G is not a scheme, but its
sheafification R ~» Map(mo(R), G), where my(R) is the set of connected components
of Spec(R), defines an algebraic group G. Such an algebraic group is called a constant
algebraic group.

(v). Let V be a finite-dimensional vector space over K, then the functor R ~» Vi :=
V ®k R defines an algebraic group W(V), called the additive group of V. Any choice of
basis of V gives rise to an isomorphism from this group to a product of copies of G,.

(vi). The functor mapping a K-algebra R to the additive group of m X n matrices with
entries in R defines an algebraic group M,,,x,.

(vii). Let V be a finite-dimensional vector space over K, then the functor R ~»

End(Vg) defines an algebraic group End(V). When V is of dimension n, any choice of
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basis of V gives an isomorphism from this group to M,,x,.

(viii). The functor mapping a K-algebra R to the group of invertible n X n matrices
with entries in R defines an algebraic group GL,, called the general linear group.

(ix). LetV be a finite-dimensional vector space over K, then the functor R ~» Aut(Vg)
defines an algebraic group GL(V), called the general linear group of V. When V is of
dimension n, any choice of basis of V gives rise to an isomorphism from this group to

GL,.
All above functors are representable. Hence, above algebraic groups are affine.

3.1.5. A representation of an algebraic group G is a homomorphism of group-valued
functors p: G — GL(V), where V is a vector space over K and GL(V) is the functor
R ~» Aut(Vg). When V is finite-dimensional, this is a homomorphism of algebraic
groups. Such a representation is faithful if p is injective.

An algebraic group is linear if it admits a finite-dimensional faithful representation.
Equivalently, an algebraic group is linear if it is isomorphic to an algebraic subgroup of

some GL,. It turns out that [Mill17, 1.43 and 4.10]:
affine algebraic group = linear algebraic group.
Example 3.1.6. Here we give some linear algebraic groups.

(i). The functor R ~» {g € GL,(R) | det(g) = 1} mapping a K-algebra R to the group
of invertible n X n matrices with entries in R and determinant 1 defines an algebraic
subgroup SL,, of GL,, called the special linear group.

(ii). The functor R ~» {(gl-j) e GL,(R) |gij =0ifi> j} mapping a K-algebra R to
the group of upper triangular invertible n X n matrices with entries in R defines an

algebraic subgroup T, of GL,,.
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(iii). The functor R ~» {(gl-j) € GL,(R) |gl-j =0ifi>jandg;=1ifi= j} map-
ping a K-algebra R to the group of upper triangular invertible n X n matrices with entries
in R and diagonal entries 1 defines an algebraic subgroup U,, of T,,.

(iv). The functor R ~» {diag(t,--- ,t,) € GL,(R)} mapping a K-algebra R to the
group of invertible diagonal nxn matrices with entries in R defines an algebraic subgroup
D, of T,. Note that D, = G}

(v). The functor R ~» {g € GL(V,R) | det(g) = 1} mapping a K-algebra R to the
group of R-automorphisms of Vz having determinant 1 defines an algebraic subgroup
SL(V) of GL(V), called the special linear group of V.

(vi). The quotient of GL,, (resp. GL(V)) by the normal subgroup of scalars is a linear
algebraic group. It is denoted by PGL, (resp. PGL(V)) and is called the projective

linear group.

Example 3.1.7. Here are more examples of linear algebraic groups. They form so-called

classical groups.

(i). Let D be a division algebra over K and V be a finite-dimensional D-vector space,
namely free right D-module of finite rank. Then the functor R ~» Autp, (V) defines an
algebraic group GLp(V), called the general linear group of V. One also have the special
linear group SLp(V), specified by the condition det(g) = 1, and the projective linear
group PGLp (V).

(i1). Let D be a division algebra over K with an involution o such that K is precisely
the o-fixed-point subfield of the center of D. Let V be a finite-dimensional D-vector
space and fix € = +1, a hermitian form onV is a K-bilinear form (- | - ): VXV — D
such that

w.E|lw.n) =& (v|w)n for all v,weV,EneD
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and that

(wlv) = e(v|w)® for all v,weV.

When V is equipped with a hermitian form, we say it is a hermitian space. Then
the functor R v {g € GLp(V,R) | (g.v|g.w) = (v |w) for all v,w € Vg} defines an
algebraic group O(V), called the orthogonal group of V. One also have the special
orthogonal group SO(V), specified by the condition det(g) = 1.

(iii). More general, if we replace the condition (g.v | g.w) = (v |w) for all v,w € Vy
by Iv(g) € Gn(R) such that (g.v|g.w) = v(g)(v|w) for all v,w € Vg, we get another

algebraic group GO(V), called the similitude group of V.
Example 3.1.8. We are more interested in the following special cases of 3.1.7.(ii):

(1). o =1idand e = —1: namely, (- | -) is alternative. We say V is a symplectic space
and the groups O(V) (equals to SO(V)) and GO(V) are denoted by Sp(V) and GSp(V)
respectively. In particular, we use the notations Sp,, and GSp,,, for the case V = K"

(we use the index set {+1,--- ,+n})and (- | - ) is given by

(X|y) =x1y-1 = X_1Y1 + - + XnYn — X_nYn-

(ii). 0 =id and € = —1: namely, (- | - ) is symmetric. We should assume that V' is

equipped with a non-degenerate quadratic form q so that
(ulv)y=qu+v)—-q(u) —qv) for all u,vev.

If this is the case, we say V is a quadratic space. In particular, we use the notations

Osn, SOy, and GO», for the case V = K" (we use the index set {+1,---,+n}) and q
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is given by

q(X) =x1x_1 + -+ XpX_p.

We also use the notations Oa,41, SOzns1, and GOa,. for the case V = K2+ (we use

the index set {0, +1,--- , +n}) and q is given by
q(x) = xé +X1X_1 F 0+ XpXep.

3.1.9. An algebraic group G is unipotent if every finite-dimensional representation

p: G — GL(V) is unipotent, namely there exists a G-stable flag

V=Vo2Vi2V 2 2Vyu 1 2V, =0,

such that G acts trivially on each factor V;/Vi;;. Equivalently, an algebraic group is
unipotent if it is isomorphic to an algebraic subgroup of some U,,.
For any g € G(K*¢), we have Jordan-Chevalley decomposition [Mil17, 9.18]: there

exist unique elements gs, g, € G(K?2) such that

8 = &s8u = uds>

and for any representation p: G — GL(V), the linear operator p(g;) is semisimple and
p(g,) is unipotent. An element g € G(K%€) is said to be semisimple (reps. unipotent)
if g = g (resp. g = gu). A smooth algebraic group G is unipotent if and only if all

elements of G(K%¢) are unipotent [Mil17, 14.12].

3.1.10. An algebraic group is a torus if it becomes isomorphic to a product of copies of
Gn, over some field containing K. A torus over K is split if it is already isomorphic to a

product of copies of Gy, over K.
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An algebraic group G is diagonalizable if its every representation is diagonalizable,
namely it is a sum of one-dimensional representations. Equivalently, an algebraic group
is diagonalizable if it is isomorphic to an algebraic subgroup of some D,,.

An algebraic group G is of multiplicative type if it becomes diagonalizable over some
field containing K. All tori are of multiplicative type. A smooth commutative algebraic
group G is of multiplicative type if and only if all elements of G(Ka'g) are semisimple
[Mill7, 12.21].

A character of an algebraic group G is a homomorphism y: G — Gy,. Let y and y’

be two characters of G, then the sum y + y’ is defined as

(x+x)(g) =x(g) - x'(g), Vg e G.

This is again a character and the set of characters is an abelian group, denoted by X(G).

The character group of G is the abelian group
X¥(G) = Hom(GKsep, Gm’Ksep)_

A cocharacter of an algebraic group G is a homomorphism 4: G, — G. Suppose

G is commutative. Then the sum A + A’ of two cocharacters of G is defined as:
A+ 1) (2) = A(2) - X (2), Vz € Gy, .
This is again a cocharacter. The cocharacter group of G is then the abelian group

X*(G) = Hom(Gm,sz, GKsep).
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Example 3.1.11. Let G = D,,. Foreach 1 < i < n, define y;: D, — Gy, as the character
diag(ty, -« ,ty) — t;
and A;: G,; — D, as the cocharacter
t — diag(l,---,t,---, 1)

with t at the i-th position. Then

(i). characters of D, are Z-linear combinations of y1,- - , Xn;

(i1). cocharacters of D, are Z-linear combinations of A, --- , A,.

Therefore, if T is a torus of dimension n, then its character group X*(T) (resp.
cocharacter group X, (T)) is isomorphic to Z" and furthermore consists of all characters
(resp. cocharacters) providing T is split.

Let y be a character and A be a cocharacter of T. Then the composition y o A is an
endomorphism t > t%4 of G, which can be identified with the integer (y, 1) € Z.

In this way, we get a perfect pairing of Z-modules
(+, ) XY(T)yxXu(T) > Z
making X*(T) and X.(T) in duality.

Example 3.1.12. Let G be a diagonalizable algebraic group. Then X(G) is a finitely

generated abelian group and (here p is the characteristic of K) [Mill7, 12.5]

(1). G is smooth if and only if X(G) has no p-torsion;
(i1). G is connected if and only if X(G) has no torsion other than p-torsions;

(iii). G is smooth and connected if and only if X(G) is free.
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Moreover, the functor G ~» X(G) gives a contravariant equivalence from the category
of diagonalizable algebraic groups to the category of finitely generated abelian groups
[Mil17, 12.9].

More general, the functor G ~» X*(G) gives a contravariant equivalence from the
category of algebraic groups of multiplicative type over K to the category of finitely
generated Z-modules equipped with a continuous action of the absolute Galois group
of K [Mill7, 12.23].

In particular, an algebraic group of multiplicative type is a torus if and only if it is

smooth and connected.

3.1.13. An algebraic group G is trigonalizable if its every finite-dimensional repre-
sentation p: G — GL(V) is trigonalizable, namely there exists a G-stable maximal
flag

V=V 2Vi2V2 2 - 2 Vgimv-1 2 Vdimv = 0.

Equivalently, an algebraic group is trigonalizable if it is isomorphic to an algebraic
subgroup of some T, [Mill17, 16.2]. All unipotent algebraic groups are trigonalizable.

An algebraic group G is solvable if it has a subnormal series

G2G)2Gi 2 2Gn=1

such that each factor G;/Gj;; is commutative. A solvable algebraic group G is split if
it has a subnormal series (G;) in which each factor G;/Gj, is isomorphic to either G,
or Gp,. Hence, split solvable algebraic groups are trigonalizable [Mil17, 16.52].

Any trigonalizable algebraic group G has a subnormal series (G;) in which Gy is

unipotent, G/G is diagonalizable and each factor G; /Gy is (G/Gp)-equivariantly em-
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bedded into G, [Mill7, 16.21]. Therefore, trigonalizable algebraic groups are solvable.
Conversely, every smooth connected solvable algebraic group becomes trigonalizable

after some finite filed extension [Mill17, 16.30].

Example 3.1.14. T, is trigonalizable and hence solvable. It has a normal series

T, 20U, =U 2u 2. 2 U™ =1,

where m = (3) and for each 0 < r < m,

UL R~ {(uij) € Up(R) |wgj = Ofor L(j—i— 1)(2n— j+i) +i <r}.

In which, U, is the largest solvable normal subgroup of T, (and is in fact smooth
and connected), the quotient U, /T, is isomorphic to D,, and each factor U,(lr) / U,(1r+1) is

isomorphic to G,.

3.1.15 (Cohomology of algebraic groups). Definition 3.1.1 is equivalent to say that
an algebraic group is a locally presentable group-valued sheaf on the site Kp,,r whose
underlying category is Alg;p and is equipped with the fppftopology*. Let R be an object
in this site, its fppf covering is a family of K-algebra homomorphisms R — R; of finite
presentation such that R — []; R; is faithfully flat. Therefore, a functor F from Algy is

a sheaf on Kp,,r if and only if it satisfies the following [Mil17, 5.65].

(1). (Local) For any K-algebras Ry, - - - , Ry,

F(Ri X+ XRp) =EF(Ry) X+ XF(Rp).

*The name fppf is short of “fidélement plate de présentation finie”, that is, "faithfully flat and of
finite presentation” in English. Note that any finitely generated K-algebra R is noetherian, hence all
morphisms of finite type in the category Alg, are actually of finite presentation. This is not true for
general base S and the two sheaf conditions (Local and Decent) need to be presented in more general
form as in [SGA3, IV, 6.3.1].
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(i1). (Descent) For any faithfully flat K-algebra homomorphism R” — R, the sequence
F(R) — F(R’) —= F(R @ R)

is exact, where the homomorphisms R” — R" @R arer —» r® landr — 1 ®r

respectively.

Saying a sequence of algebraic groups

1 > N > G > Q

~
[

is exact means N is isomorphic to the kernel of G — Q and G — Q is surjective
as a sheaf homomorphism. The latter turns out to say that G — Q is faithfully flat
[Mil17, 5.43]. When we consider homomorphisms between smooth algebraic groups,
this is equivalent to say that G — Q is surjective on closed points [Mil17, 1.71]. Hence,
to verify a homomorphism between smooth algebraic groups is surjective, it is sufficient
to verify on K*¢-points.

Hence, in general we do not have a short exact sequence of the groups of K-points.

Instead, there is a long exact sequence:
1 = N(K) = G(K) = Q(K) — H'(k,N) — H'(K,G) — H'(K,Q).

It turns out that [Mil17, 3.50], if G is a smooth algebraic group, then the group coho-
mology H' (K, G) is canonically isomorphic to the Galois cohomology H' (T', G(K*P))

with T = Gal(K*®P/K). The following are some useful results in Galois cohomology.

(). (Hilbert’s theorem 90) If L/K is a Galois extension, then H' (Gal(L/K), L*) = 0.
(i1). (Lang’s theorem [Mill7, 17.98]) If G is a smooth connected algebraic group

over a finite field K, then H' (K, G) = 0.
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(iii). ([Mill7, 25.61; BT-3, 4.3]) If G is a simply-connected semisimple group over

a local field K, then H'! (K, G) vanishes.

3.1.16. An algebraic group is vectorial if it is isomorphic to a product of copies of G,.
Let V be a finite-dimensional vector space over K, then the algebraic group W(V) is a
vectorial group. A vectorial group is in particular a vector bundle on Kg,r.

For V a vector bundle on Kp,y, let V* denote the open subscheme of V obtained by
deleting the zero section. Then the action of G, on V induces an action of G, on V*.
In particular, if L is a one-dimensional vector space over K, then W(L) is a line bundle

and W(L)™ is a homogeneous principal Gp,-bundle [SGA3, XIX, 4.3-4.4].

3.1.17. For R a K-algebra, its algebra of dual numbers is the algebra R[e]/(€?). Let @
denote the functor sending each R to its algebra of dual numbers. For X a K-scheme, the
composition X o Z is also a K-scheme, called the rangent bundle of X and is denoted
by T(X). For any point x of X, the pullback of T(X) along x < X is called the tangent
space of X at x and is dented by T, (X).

Let G be an algebraic group and e be its identity. Then both T(G) and T.(G) are

algebraic groups, and we have a split short exact sequence [SGA3, II, 3.9.0.2]

I —T(@) — TG —— G —> 1.

Let ¢: G — G’ be a homomorphism of algebraic groups, then there is a unique
morphism of Kj,,~-vector bundlesd ¢ : T.(G) — T.(G’) making the following diagram

commute

I —— Te(G) —— T(G) > G > 1.

o iT(“’) l(P
B

I — T.(G) — T(G) > G S 1.
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The morphism d ¢ is called the differential of . We will not distinguish it from the
K-linear map on K-points d @(K): T.(G,K) — T.(G/, K).

Let g denote the vector space T.(G, K), hence T.(G) = W(g). Then the action
of G on itself by conjugations induces a representation Ad: G — GL(g) of G on g:
for any g € G, the endomorphism Ad(g) is the differential of inn(g) (conjugated by
g). This representation is called the adjoint representation of G [SGA3, 11, 4.1]. Let
ad: T.(G) — End(g) denote the differential of the adjoint representation and for any

X,Y € g, define [X,Y] as ad(X).Y. Then this gives rise to a Lie bracket
gxg—g: X,Y — [X,Y].
This Lie algebra is called the Lie algebra of G and is denoted by Lie(G).

Example 3.1.18. The Lie algebras of Gy, and G, are the trivial Lie algebra K. The Lie
algebras of GL,,, SL,,, T,,, U, and D, are the Lie algebras gl of all matrices, sl,, of trace
zero matrices, 1, of all upper triangular matrices, u, of strict upper triangular matrices

and b, of all diagonal matrices respectively.

3.1.19. The above constructions give rise to an equivalence of categories between
vectorial groups and finite-dimensional vector spaces over K [Mill7, 10.9]. Moreover,
when K is of characteristic zero and G is an unipotent group over it, there is an

isomorphism of schemes (and of algebraic groups if G is further commutative)
exp: T.(G) = W(Lie(G)) — G,

called the exponential map [Mill7, 14.32].
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§ 3.2. Reductive groups

Let’s introduce the notion of reductive groups.
3.2.1. Let G be a smooth connected linear algebraic group.

(1). [Mill7,6.44] There is a largest smooth connected solvable norm subgroup % (G)
of G. It is called the radical of G.
(i1). [Mill7, 6.46] There is a largest smooth connected unipotent norm subgroup

R, (G) of G. It is called the unipotent radical of G.
Since unipotent groups are solvable, %, (G) is a subgroup of Z(G).

Definition 3.2.2. An algebraic group G is reductive (resp. semisimple) if its geometric

unipotent radical R, (Gyay) (resp. geometric radical R(Gga)) is trivial.

It turns out that the formations of %,(G) and % (G) commute with separable field
extensions [Mill7, 19.1 and 19.9]. Hence, when K is perfect, G is reductive (resp.

semisimple) if and only if %, (G) (resp. Z(Q)) is trivial.

Example 3.2.3. For any finite-dimensional vector space V, SL(V) is semisimple, while
GL(V) is reductive but not semisimple.

Since any torus becomes a product of copies of G, = GL| over a finite field extension,
it is reductive. Conversely, if G is a solvable reductive group, then since %, (Gai) is

trivial, it is a torus by [Mill17, 16.33].
Example 3.2.4. In Example 3.1.7,

(1). SLp(V), Sp(V), and SO(V) = O(V)° are semisimple;

(ii). GLp(V), GSp(V), and GO(V)° are reductive but not semisimple.
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3.2.5. Let G be a reductive group. There are various semisimple groups related to it.

(1). The radical #(G) is a central torus, namely it is contained in the centre Z(G).
Therefore, the quotient G/Z(G) is semisimple. It is furthermore adjoint, namely it is
semisimple with trivial centre, and is called the adjoint group of G with notation G,

(i1). The radical #(G) turns out to be the largest subtorus of Z(G) and hence the
formation of #(G) commute with field extensions [Mill7, 19.21]. Therefore, the
quotient G* := G/%(Q) is semisimple.

(iii). The derived group Gder is semisimple [Mill17, 19.21]. Indeed, its geometric

Kalg Kalg

radical %(Gder ) is normal in Ggae hence %(Gder ) C R(Ggae) and is central. But

Z(G) N G*" is finite hence %(Gdef

Kalg) is trivial.

Example 3.2.6. The above semisimple groups associated to G = GL,, are the following:

(). Z(GL,) = G, hence G = PGL,;
(i1). #(GL,) = Z(GL,), hence we obtain PGL,, again;

(iii). the derived group of GL, is SL,,.

3.2.7. Let G be a reductive group with Z(G) its centre, G its adjoint group, G its
derived group, GA? its abelianization and let Z(Gder) be the centre of GI*. We have the

following deconstruction of G [Mill7, 19.25]:
Z(Gder) ¢ \ Gder

Y

Z(G) « s G % Gad
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where the square is bicartesian, namely Z(Gder) =Z(G) N G* and G = Z(G) - G,
and all rows and columns are exact sequences.

Conversely, suppose we have a triple (H, D, ¢) with H a semisimple algebraic group,
D an algebraic group of multiplicative type, and ¢: Z(H) — D a monomorphism

whose cokernel is a torus T. Then the homomorphism
ZH) — HxD: 2+ (z,0(2)7)

is normal and its cokernel, denoted by G, is reductive and with the following decon-

struction [Mill7, 19.27]

Z(H) —> H

[N

D — G — HY
\»T

Namely, Z(G) = D,G* = HY G*' = Hand GA* = T.

More generally, one can start from a triple (H, D, ¢) with ¢ not necessarily injective.

Then we can replace H by the H/Ker(¢) and everything follows.

3.2.8. Let G be a reductive group with radical % (G), semisimple quotient G*°, derived

group G%" and abelianization G*®. Then by [Mil17, 12.46], G = %(G) - G*" and hence
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we have another deconstruction of G:

R(G) N GIr s Ggder
TN
R(G) < » G

\»GA"

In particular, a reductive group G is a product of a semisimple group and a torus if and

only if Z(G) N G¥" = 1

Example 3.2.9. Let G = GL,,. Then we have the following deconstruction

“’“, GL % PGL,

idet
A AT

Conversely, GL,, can be recovered from the triple (SL,, Gy, in — Gp).

Similar conclusion applies to GL(V).

3.2.10. Let G be a reductive group. It is splittable if it has a split maximal torus. A
split reductive group is a pair (G, T) of a reductive group and a split maximal torus in
it. A homomorphism between split reductive groups is a homomorphism of algebraic
group preserving the split maximal torus. It turns out that, any two maximal split tori
(hence split maximal tori if G is splittable) in G are conjugate by an element of G
[Mil17,25.10], while two (not necessarily split) maximal tori are only conjugate over a
finite separable extension [Mil17, 17.87].

Let G be a splittable reductive group. Then its rank is the dimension of one (hence
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any) split maximal torus in it and its semisimple rank is the rank of G/ £ (G). Since the
centre Z(G) is contained in every maximal torus [Mill7, 17.61], the semisimple rank

of G equals rank(G) — dim Z(G).

Example 3.2.11. D, is a split maximal torus in GL,, and it induces a split maximal
torus in PGL,, by quotienting out the scalars Gy, and a split maximal torus in SL,, by

intersecting with it. Hence, GL, is splittable with rank n and semisimple rank n — 1.

Example 3.2.12. Notations are as in Example 3.1.8. A split maximal torus in Sp,,
is Do, N Sp,,,, which consists of diagonal matrices t € D,, such that y;(t)x—;(t) = 1.
Similarly, a split maximal torus in SO, is Dy, N SO,,, which consists of diagonal
matrices t € Dy, such that y;(t)y_;(t) = 1. Finally, a split maximal torus in SOy is
D2n+1 N SO2,41, Which consists of diagonal matrices t € Dyy,41 such that y;(t)x—;(t) = 1

and that yo(t) = 1.

Example 3.2.13 ([Mill7, 17.89]). Let V be a vector space over K of dimension n.
Then the conjugacy classes of maximal tori in GL(V) are one-one corresponding to
the isomorphism classes of étale K-algebras of degree n: a maximal torus T gives a
decomposition V = P, V; into simple T-modules and thus finite separable extensions
K; = Endt(V;) and an étale K-algebra A = [[; K; of degree n; conversely, as V is a free
A-module of rank 1, it decomposes into vector spaces V;, one-dimensional over K;, and
the A-equivariant automorphisms preserving this decomposition form a maximal torus
T such that T(K) = A*.

In particular, the only conjugacy class of split maximal tori in GL(V) corresponds to

the étale algebra K".
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3.2.14. A homomorphism between smooth connected algebraic groups is said to be an
isogeny if it is surjective and has finite kernel. An isogeny of split reductive groups
(G, T") — (G, T) is a homomorphism of split reductive groups such that p: G’ — G
is an isogeny.

An isogeny is central if its kernel is central, namely contained in the centre, and is
multiplicative if its kernel is of multiplicative type. A multiplicative isogeny is central
(since every normal multiplicative subgroup of a connected algebraic group is central
[Mil17, 12.38]) and the converse is true if its domain is reductive (since the centre of a
reductive group is of multiplicative type [Mill7, 17.62]).

Let G be a smooth connected algebraic group. A wuniversal covering on it is a
multiplicative isogeny G — G universal in the sense that no other multiplicative isogeny
can factor through it. When the universal covering exists, its kernel is called the
fundamental group m1(G) of G. If this group is trivial, namely, every multiplicative

isogeny to G is an isomorphism, then we say G simply connected.

Example 3.2.15. In 3.2.7 and 3.2.8, the homomorphisms G%" — G, G — G,
Z(G) — GA® and #(G) — G”° are isogenies. In particular, the homomorphism
SL, — PGL, in Example 3.2.9 is a universal covering (hence 7| (PGL,) = p,) and it

induces a central isogeny of split reductive groups (SL,, D, " SL,) — (PGL,, D;/Gp).

§ 3.3. Root systems and root groups

Given a split reductive group, there is a root system associated to it.

3.3.1([BT-2, 1.1.2 and 1.1.3]). Let G be an affine algebraic group and T be a split torus

in it. Since T is diagonalizable, it acts (via the adjoint representation) on g := Lie(G)
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diagonalizably, and we have a decomposition:
(3.3.1) 0=80® (P 9w
aexX*(T)

where g, = g" and g, is the subspace on which T acts through a nontrivial character a.
A character a is a root if g, is nontrivial. The class of all positive real multiples of a
root is called a radical ray. The set of all radical rays is denoted by (G, T), called the
root system of the pair (G, T).

If (G, T) is a split reductive group, then gy =t := Lie(T) [Mill7, 10.34]. Moreover,
any radical ray contains exactly one root and ®(G, T) can be further identified with a

(reduced) root system, justifying its name.

Example 3.3.2. The pair (G, Gy,) is a split reductive group with Lie algebra the one
dimensional vector space K. The adjoint action of G, on K is trivial, hence the root

system of (Gy,, Gy,) is empty.

Example 3.3.3. Let’s consider the split reductive group (GL,, D). The action of D,

on gl, := Lie(GL,) is

(diag(ty,--- ,tn), (gij)ij) +— (tigijtj_l)i,j~

By Example 3.1.11, the characters of D,, are of the form cix1 + - - + cpxn. If (gij)ij is

an eigenvector of c1 x| + - - - + cyxn, then for any ty, - - - , t, € R, we have
.. -1 _ C Cn
Vi, jctigiit; = (6 6

Therefore: (i). the Lie algebra d, of D,, consists of all diagonal matrices; (ii). the

root system ®(GL,, D,) = {Xi —Xj | I1<i#j< n}; (ii1). for each a = x; — x;j, the Lie
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Chapter 3. Reductive Groups and Tits Buildings

algebra g, is generated by E;;, the matrix with 1 in the ij position and O elsewhere.

Example 3.3.4. Let’s consider the split reductive group (PGL,, D,/Gy,). A character

CiX1 + - -+ cpxn of Dy factors through D, /Gy, if and only if ¢; + - - - + ¢, = 0. Hence,
X*(Dy/Gp) ={cix1+ - +cuxnlct, - ycn € Z,c1+-+-+c, =0}

and we see that ®(PGL,, D,,/Gy,) = {Xi —Xj | I<i#j< n}.
The Lie algebra of PGL,, and D, /Gy, are pgl, := gl,/KI, and d,/KI,. For each

a = x; — xj, the Lie algebra g, is generated by E;;.

Example 3.3.5. Let’s consider the split reductive group (SL,, D, N SL,). Then two
characters c1x1 + -+ + cpxn and c¢jx1 + -+ + c;xn of Dy may give rise to the same

character of D, N SL,. This is the case precisely when c; — ¢! is a constant. Hence,
X*(Dn N SLn) = (le D---P ZXH)/Z(XI + .- +Xn)

and we see that ®(SL,,, D, N SL,) = {Z—)Tj| I<i#j< n}.
The Lie algebra of SL,, and D,, N SL,, are sl,,, consisting of matrices with trace 0, and

0, Nsl,. For each a = x; — xj, the Lie algebra g, is generated by E;;.

3.3.6. Let G be an affine algebraic group and T be a split torus in it. Then the normalizer
N = Ng(T) acts on T, hence on X*(T) by conjugations. The centralizer Zg(T) is the
neutral component of N [Mill7, 12.40]. Therefore, ro(N) acts on X*(T).

If (G,T) is a split reductive group. Then Zg(T) = T [Mill7, 17.84] and hence
mo(N) = N/T, which is constant [Mill7, 21.1]. The finite group N/T is denoted by

YW(G, T) and is called the Weyl group of the pair (G, T).

Example 3.3.7. Let’s consider the split reductive group (GL,, D). Then N consists of
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invertible monomial matrices and the regular representation of &, gives a semi-direct
product N = D, x&,,. Hence, the Weyl group "W (GL,, D,,) is isomorphic to &,,.

Similar arguments apply to (PGL,, D,/Gn) and (SL,, D, NSL,) and their Weyl
groups are "W (PGL,, D,/Gn) = S, and "W (SL,,, D,, N SL,) = S,,.

3.3.8. Let (G, T) be a split reductive group and a € ®(G, T) a root of it. Then there is
a unique homomorphism u,: W(g,) — G such that its differential d u, is the inclusion

g, — g. Let U, denote the image of u,. It is called the root group of G and satisfies

the following properties [Mil17, 21.11 and 21.19; SGA3, XX, 1.5, XXII, 1.1].

(1). Uq has Lie algebra g, and a smooth subgroup of G contains U, if and only if its
Lie algebra contains g,.

(ii). Ug is normalized by T and T acts on U, through the character a:
inn(t).uq(X) = ug(a(t)X),

forallt € Tand X € W(g,).
(iii). Let L, be the algebraic subgroup of G generated by U,, U_, and T, called the

Levi subgroup associated to a. Then the morphism
W(g—a) X T X W(ga) B I—a
defined by (Y, t,X) > u_q(Y) - t - us(X) is an open immersion.

Moreover, if m € Ng(T). Then b = a o inn(m) is a root, and we have the following
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commutative diagram [SGA3, XXII, 1.4].

W(ga) L) G

Ad(m)\L linn(m>

W(gy) —— G
Indeed, both u, and inn(m)~! o uy, o Ad(m) have the differential Gq — ¢.

Remark ([BT-2, 1.1.3 and 1.1.9]). In general, let G be an affine algebraic group and T
be a split torus in it. Then a root subgroup associated to a radical ray a € ®(G, T) is
the largest connected closed subgroup U, normalized by T and all characters appearing
in the adjoint representation on Lie(U,) belong to a. The notion of Levi subgroups still

make sense, and we have open immersion
U xTxU_, —L,.
However, U, is merely split unipotent in general, not necessary vectorial.

Example 3.3.9. Let’s consider the split reductive group (GL,, D,) anditsroota = x;—x;.
Then Uy, is the algebraic group

R~ 1,4+ REij.

The homomorphism u,: W(g,) — GL, is
XEjj ¥ In + xEjj.
For any t = diag(ty,--- ,t;) € T, we have
inn(t).ug (xEj) = In + tixt; ' Egj = ua(tit} ' xEij) = ug(a(t)xEyj).
3.3.10. Notations as in 3.3.8. Then there is a natural duality on the one-dimensional
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vectorial groups
W(g,) X W(g_q) — Ga: (X,Y) — (X,Y)
and a unique cocharacter a”: Gy, — T such that [SGA3, XX, 2.1]:

(1). forany X € W(g,) andY € W(g_,), the product u,(X) - u_,(Y) lies in the image
of the open immersion in 3.3.8.(iii) if and only if 1 + (X,Y) € Gp,;

(i1). under these conditions we have the formula
a(X) - u-a(Y) = u—a (1 + X, Y)7'Y) - @’ (1+ (X, 7)) - ua(1 +¢X, 7)) 7' X);
(iii). (a,a") = 2.
The above duality induces a pairing of G,-bundles [SGA3, XX, 2.6]:
W(g,)" X W(8_q)* — G: (X,Y) — XY,

Then for any X € W(g,)*, there is a unique X! € W(g_,)* such that XX~ = 1. This
gives rise to an isomorphism (—)~! compatible with the action of G,. Then for any

x € Gy and X € W(g,)™, we have [SGA3, XX, 2.7]:
a”(x) = u_o((x7" = DX Hua(X)u_o((x = DX Hug(—x7"X).

This cocharacter is called the coroot associated to the root a.

The root a and its coroot a* induces the following Lie algebra homomorphisms

da" d
K2yt -S4y k.

The vector H, := da” (1) is called the infinitesimal coroot vector. Then H_, = —H, and
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for any X € W(g,),Y € W(g_,) and H € W(t), we have [SGA3, XX, 2.10]:
[H,X] =da(H)X, [H,Y] = —-da(H)Y, [X,Y] = (X,Y)H,.

Hence, if H, # 0, then for any X € W(g,)*, the following define an embedding from

the Lie algebra sl5:
Ep+— X, Eyr—X',  Ej—-Exnr H,.

Remark. For each a € @, one can fix such an embedding and hence fix a choice of basis

of g, (as well as g_,). However, such choices for various roots are not independent.

Definition 3.3.11. A pinning on the pair (G, T) is a basis A of @ together with a family
of isomorphisms (ug: Gy — Ug)eea. Given a pinning, the family (ug)qen extends
uniquely to a coherent system of isomorphisms (ug)qece, called a Chevalley system. We
refer to [BT-2, 3.2.2] or [SGA3, XXIII, 6.2] for more details. Note that when such
a system is given, we ambiguously use the notation u, to denote either the inclusion

W(g,) — G or the composition G, = W(g,) — G.

Example 3.3.12. Let’s consider the split reductive group (GL,, D,,) and its root a =

xi — xj- To take the advantage of calculations on GL,, we can define a homomorphism

x y
&;j mapping a 2 X 2-matrix M = € GL»(R) to the n X n-matrix &;;(M) satisfying
z w

xe; +ze; ifk=1,

§ij(M).ex = Yye; +we; ifk=j,

ek otherwise,
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where eq, e, - - - , ey 1S the standard basis of R". Then we have

1 x 0 x
Uug(x) = & and  xE;=d§;
01 00

Also note that §;; = &;; o transpose.

Then the duality is
(XEij, YEji) = xy.

The coroot a" associated to a is A; — Aj and one can verify that

uq(x) - u-a(¥)

I x|({1 O
:fij
0 1/\y 1
1+xy x
=§&ij
y 1
¢ 1 O\[1+xy 0 I (1+xy)™!
(I+xy)™' 1 0 (I+xy)~'[\0 1

=u_((1+xy)™") - @ (1 +xy) - ua((1 +xy)7").
The differentials of a and a" are

da=dy;—dy;: diag(ty, -+ ,ty) = t; — tj,
z 0

da"=dA;—dAj:z &;
0 -2

71
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In particular, the infinitesimal coroot vector associated to a is

1 0
H, =&
0 -1

For any H = diag(ty,--- ,t,) € t, we have

0 (tiX - th)

[H, xEjj] = &; =da(H)xEy,
0 0

0 0

[H, yEji] = &;; = —da(H)yEj;,
(tiy—tiy) O
xy O

[XEij, YEji] = &;j = xyHg.

0 —xy

3.3.13. Notations asin 3.3.8 and 3.3.10. Then L, is the centralizer of the largest subtorus
of Ker(a) and the pair (Lg, T) is a split reductive group [SGA3, XIX, 1.12 and XXII,

1.1; Mil17, 21.11 and 21.23]. The Lie algebra of it admits a decomposition
Lie(Ly) =t®g,9g_,

and the Weyl group "W (L., T) contains exactly one nontrivial element r, given by the

formula
ra: x V> x =, av>a.

Moreover, for any X € W(g,)™>, let
Ma(X) = ua(X) - u—a(=X7") - ta(X).

Then we have [SGA3, XX, 3.1; Mil17, 20.39]:
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(D). mq(X) € N (T);
(ii). let M be the image of my: W(g,)* — Ni (T), then M, = T-M is a right

congruence class modulo T: indeed, for any z € G, and X € W(g,)*, we have
mq(2X) = a” (2)ma(X);

(iii). this right congruence class is precisely r,: indeed, for any t € T and X €
W(g,)”, we have

inn(me(X)).t = t - a¥ (a(t)) ™

(iv). for any X € W(g,)* andY € W(g_,)*, we have
me(X)m_q(Y) = a’ (XY).

Example 3.3.14. Let’s consider the split reductive group (GL,, D,) and its root a =

Xi — xj- Then the algebraic subgroup L, is
R ~» Dn(R) +REl‘j +REji.

Its Lie algebra is d, +KE;; + KEj;, which is precisely b, © g, © g_,.

The normalizer of D, in L, is precisely the monomial matrices belonging to L,.
Hence, the Weyl group “W(L,, T) contains exactly one nontrivial element rq = (i, j),
the permutation of i-th and j-th coordinates.

The map m, is

xEij > §&ij =&
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We have
0 X
mq(x) = &;;
—-x 10
X 0 0 1 v
=& =a" (x)mg(1).
0 —x'[\-1 0

The action of my(x) on t = diag(ty,--- ,t,) € Tis

x
inn(mg(x)).t = inn| &; .diag(ty,--- ,tn)
X710
0 1
=inn(a"(x)). inn| &; .diag(ty,--- ,tn)
-1 0

= inn(a"’ (x)). diag(te(1y, - - » to(1)) with o = (i, j)
= diag(to(1), *+ ,to(y)  Witho = (i, j)
t7't; 0

= diag(ty, - ,tn)&;; l

-1
0 tit;

= diag(ty, - - - , tp)a’ (a(t)) 7'

We also have

0 x|[0o —y!
mq(x) - m_q(y) = &
-1 ofly o0
Xy 0
=& =a’(xy).
0 (xy)™!
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83.4. Root data

§ 3.4. Root data

Definition 3.4.1. Let (G, T) be a split reductive group. Then there is a root datum

R(G,T) = (X, ®, X", ®Y) associated to it [SGA3, XXII, 1.14; Mill17, 21.c], where

the Z-module X is the character group X*(T);

* the root system @ is the root system ®(G, T);

the dual Z-module X" is the cocharacter group X, (T);

the coroot system @ is the set ®" (G, T) of coroots a" associated to the roots

ae ®(G,T).

Let V denote the subspace of X.(T) ® R spanned by ®"(G, T) equipped with a
YW(G, T)-invariant inner product, called the coroot space. Then we get a spherical
apartment o/ (G, T) with underlying Euclidean vector space V on which the Weyl group

YW(G,T) acts as its reflection group.

3.4.2. The rank of a root datum R = (X, ®, X", ®") is the rank of the Z-module X
and its semisimple rank is the dimension of the coroot space V. Let (G, T) be a split
reductive group. Then the rank (resp. semisimple rank) of the root datum R(G, T) is

the rank (resp. semisimple rank) of G.

Example 3.4.3. Let’s consider the split reductive group (Gp, Gy,). Then by Exam-
ple 3.3.2, the root datum R(Gy,, Gy,) is (Z,0, Z, 0).

Example 3.4.4. Let’s consider the split reductive group (GL,, D,)). Then by Exam-
ples 3.3.3, 3.3.9, and 3.3.12, the root datum R(GL,, D,,) is

* X=Zx1® - ®Zxn;
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Chapter 3. Reductive Groups and Tits Buildings

cd={yi-xj|1<i#j<n}
e XV =ZN® - ®ZAy;

« @V ={A-A;|1<i#j<n}
The coroot space is
V={ciAi1+--+cpAnlct, - ,cn € Rycr + -+ ¢, =0}

Example 3.4.5. Let’s consider the split reductive group (PGL,, D;,/G,). Two cochar-
acters cjAy +-- -+ cpA, and c’l)Ll + -+, A, of D, give rise to the same cocharacter of

Dn/Gm precisely when ¢; — ¢} is a constant. Hence,
X*(Dn/Gm) = (ZAI ©--- 0 ZAn)/Z(AI +--- An)
and we see that ®"(PGL,, D, /Gn) = {/1_1 - A_J‘ I<i#j< n} with coroot space

V= {c17L_1+---+cn)Ln

c1,---,cneR,c1+---+cn:0}.

Then, by Example 3.3.4, the root datum R(PGL,, D,/Gy,) is

X=Acix1+ --+caxnlcl, - ,cn€Z,c1+---+cy, =0}

@:{Xi—xj|1<i¢j<n};

XV =(ZA1 & - @ ZA)|Z(A1 + -+ + Ap);

@V:{Z—E’1<i¢j<n}.

Example 3.4.6. Let’s consider the split reductive group (SL,,, D, N SL,). A cocharacter

ciAy + - - -+ cpA, of Dy, factors through D, N SL,, if and only if ¢; + - - - + ¢, = 0. Hence,

Xi(DpNSL,) ={ciAi+ - +caln|ct, - ,cn€Z,c1+--+¢c, =0}
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and we see that ®¥(SL,, D, NSL,) = {)Li —Aj | I1<i#j< n} with coroot space
V=AciAir+--+cidnlct, - ,cn €R,ci +- -+ +¢, =0}

Then, by Example 3.3.5, the root datum R(SL,, D, N SL,) is

X=(Zx1®--®Zxn)/Z(x1+-+xn);

d={xi-x|1<i#j<n}

XY ={ciAi+--+canlct, - ,cn€Z,c1+--+cp =0}

oV ={A;-A;|1<i#j<n}

Example 3.4.7. Notations are as in Example 3.1.8.(i). Let’s consider the split reductive
group (Sp,,,, D2, N Sp,,,). Note that characters y; and —y_; of Dy, restrict to the same
character on Dy, N Sp,,,. We use y.; to denote this character. On the other hand, the
cocharacter A; — A_; of Dy, lands in Dy, N Sp,,,. We use A.; to denote this cocharacter.

Then the root datum R (Sp,,,, D2, N Sp,,,) is

 X=Z)s1 @ © LY sy

D= {txaitxa |1 <i#j<nfU{E2ps|1<i<n}

X
<
|
N
~
s
)
)
N
~
g

Example 3.4.8. Notations are as in Example 3.1.8.(ii). Let’s consider the split reductive
group (SO;,, D;, NSO,,) (Where m = 2n or 2n + 1). Note that characters y; and —y—_;
of Dy, restrict to the same character on D,,, N SO,,. We use y.; to denote this character.
On the other hand, the cocharacter A; — A_; of D,, lands in D,, N SO,,,. We use A,; to
denote this cocharacter.

Then the root datum R(SO;,, D2, N SOy,) is
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e X=Z)x 1 ® - ®ZLYsp;

@ = {typuitxaj |1 <i#j<n);

XV=ZAy @ & ZAsy;

« @V ={#A A, |1 <i#j<nf;
While the root datum R(SO2,41, D2ne1 N SO2p41) 1S

* X=ZYp1 ® ® LY iy

D= {tyuitx+j|1<i#j<n}U{txu|l<i<n)

XV:ZAil@"’@ZAtn;

« @V ={tA Ay |1 <i#j<n}U{£2A4] 1 <i<n}

349. Let @: (G, T) — (G', T') be a homomorphism between split reductive groups.
Then it induces a linear map f = @*: X*(T’) — X*(T). Then f is a morphism of root
data if and only if there is a bijection u: ®(G,T) — ®(G’, T’) such that

fw@)=qa,  f(a)=u@".

A homomorphism of split reductive groups ¢ : (G, T) — (G’, T') induces an isogeny
of root data @*: R(G’,T") — R(G,T) if and only if it is a central isogeny. Moreover,

all isogenies of root data arise in this way [SGA3, XXII, 4.2.11; Mill7, 23.25].

Example 3.4.10. Let’s consider the inclusion
t: (G, Gyn) = (GL,, Dy).
Then the linear map f = (*: X*(GL,, D;) — X* (G, Gpy) is the linear map
ZY1®- - ®Zxn —Z
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mapping yx; to 1. Then this is not a morphism of root data since it does not induce a

bijection on roots.

Example 3.4.11. Let’s consider the determinant homomorphism

det: (GLH; Dn) - (Gm; Gm)-

Then the linear map f = det”: X*(Gp,, G) — X*(GL,, D,,) is the linear map

L —Zx1® - ®Zyxn

mapping 1 to y; + - - - + x,. Then this is not a morphism of root data since it does not

induce a bijection on roots.

Example 3.4.12. Let’s consider the isogeny

@ (Gm: Gm) - (Gm, Gm): t— tn-

Then the linear map f = @*: X" (G, Gr) — X* (G, Gyy) is the linear map

Z— 7Z: 1+ n.

It is an isogeny of root data with finite cokernel p1,,.

Example 3.4.13. Let’s consider the inclusion

t: (SL,, D, NSL,) — (GL,,Dy,).

Then the linear map f = *: X*(GL,, D,) — X*(SL,, D, N SL,) is the projection

Z1® @ Zyn —>» (Zx1® -+ ®Zxn)|Z(X1+ "+ Xn)-
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This is a morphism of root data but not an isogeny since f is not injective.
Example 3.4.14. Let’s consider the quotient map
x: (GL,, D,) — (PGL,, D,/Gp).
Then the linear map f = 7*: X*(PGL,, D,,/Gn) — X*(GL,, D,) is the inclusion
{ci1++cn=0}NZ1® - ®ZYn —Z)19 - ® Zxn-

This is a morphism of root data but not an isogeny since f has infinite cokernel.
Example 3.4.15. Let’s consider the composition

®: (SLy,D,NSL,) —— (GLy, D) — =% (PGLy, Dyi/G)
of previous two homomorphisms. Then the linear map

f=¢": X*(PGL,,D,/Gn) — X*(SL,, D, NSL,)
is the following restriction of the projection x*
{fa++ea=0NnZ1® - ©Zxn — (Zx1®®Zxn) /[ Z(X1+ -+ Xn)

It turns out that this is an isogeny of root data with finite cokernel 1,y .

3.4.16. Let (G, T) be a split reductive group. Applying [Mill17,17.86]to3.2.7 and 3.2.8,
we have the following commutative diagram of split reductive groups, where the hori-

zontal arrows are isogenies, the diagonals are short exact sequences and
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s¢(G,T) — > der(G, T) ss(G,T) —— ad(G,T)

(G, T)

rad(G, T) corad(G, T)

Figure 3.1. Split reductive groups with isomorphic root systems.

ad(G,T) the adjoint group G*¢ and the image of T in it (T/Z(G));

ss(G, T) the semisimple quotient G* and the image of T in it (T/%(Q));
der(G,T) the derived group G and the preimage of T in it (T N G);
sc(G,T) the universal covering of all above;

rad(G,T)  theradical #(G) and the trivial torus 1;

corad(G, T) the abelianization G° and the trivial torus 1.
Moreover, we have [SGA3, XXII, 4.3.7, 6.2.1 and 6.2.3; Mill7, 23.a]

(). R(ad(G,T)) = ad(R(G,T));
(ii). R(ss(G, T)) = ss(R(G, T));

(iii). R(der(G,T)) = der(R(G,T));

(iv). R(sc(G,T)) = sc(R(G, T));

(v). R(rad(G,T)) = rad(R(G, T));

(vi). R(corad(G, T)) = corad(R(G, T));

(vii). the morphisms between above root data come from the homomorphisms be-

tween corresponding split reductive groups.
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Example 3.4.17. Let’s consider the split reductive group (GL,,, D,;). Then the decon-
struction in Example 3.2.9 gives the following isogenies of root data.
Example 3.4.13 Example 3.4.14
R(SLn, Da N SL,) — " R(GL,,D,) ————"— R(PGL,, D,/Gn)

Example 3.4.12
R(Grm, Gpy) —————— R(Grm, Gm)

where R(SL,, D, N SL,) is described in Example 3.4.4, R(GL,, D,) in Example 3.4.5,
R(PGL,, D;/Gp,) in Example 3.4.6, and R(Gy,, G,) in Example 3.4.3 respectively.

§ 3.5. Tits buildings

Let G be a reductive group. Associated to it, there is a spherical building “%(G)
equipped with a natural G-action, called its 7Tits building. In this section, Tits buildings
will be introduced for splittable reductive groups, and we will see that the underlying

building only depends on the root system and the ground field.

3.5.1. Let G be a reductive group. A parabolic subgroup of it is a smooth subgroup P
such that G/P is acomplete variety. A subgroup T of Gis Borel if itis smooth, connected,
solvable, and parabolic. It turns out that a smooth subgroup P is parabolic if and only
if Py contains a Borel subgroup in Gga, [Mill7, 17.16] and every parabolic subgroup
is connected and equal to its own normalizer since this is so over K2 [Mill17, 17.49].
When G has a Borel subgroup, it is said to be guasi-split. In this case, Borel subgroups
are exactly the minimal parabolic subgroups and maximal connected solvable subgroups
[Mil17, 17.19] and any two of them are conjugated by an element of G [Mil17, 25.8]. If
the Borel subgroup is furthermore split (as a solvable algebraic group, namely it admits

a normal series whose factors are isomorphic to either G, or Gy,), then G is said to be
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split. It turns out that, G is split if and only if it is splittable [Mil17, 21.64].

Let 7: G — Q be a quotient map and H a smooth subgroup of G. Then if H is
parabolic (resp. Borel), so is #(H). Moreover, every such subgroup of Q arises in
this way [Mill17, 17.20]. This allows us to reduce the study of (the poset of) parabolic
subgroups from reductive groups to simply-connected semisimple groups. The Tits

building of a reductive group is essentially this poset [Tit74, 5.2].

Proposition 3.5.2. Let (G, T) be a split reductive group. Then there are natural one-

to-one correspondences between the following sets:

(1). The set of Borel subgroups B of G containing T.
(ii). The set of Weyl chambers “C in the vectorial apartment ' .
(iii). The set of systems of positive roots ®* in the root system ®.

(iv). The set of bases A of .

The Weyl group "W acts simply transitively on each set. Moreover, after choosing a

quadruple (B,"C, ®*, A), we have the following isomorphic posets.

(1). The poset of parabolic subgroups P of G containing B.
(i1). The poset of faces F of the Weyl chamber “C.
(iii). The poset of parabolic subsets ¥ of ® containing ®*.

(iv). The poset of subsets I of A.

Proof. 1f a system of positive roots @™ is given, then B is generated by T and U, for all
a € ®* and if a Borel subgroup B containing T is given, then the set of roots a whose
Lie algebra g, is contained in the Lie algebra of T forms a system of positive roots ®*

[Mill7,21.d].
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If a parabolic subset ¥ is given, then P is generated by T and U, for all a € ¥ and if
a parabolic subgroup P containing B is given, then the set of roots a whose Lie algebra

g, is contained in the Lie algebra of P forms a parabolic subset ¥ [Mil17, 21.i]. m|

Convention 3.5.3. If (P, 'F, ¥, I) is a quadruple as above, then we say that each of them

has type I, where I is identified as a subset of {1, --- ,n} in Convention 2.4.5.

3.5.4. Fix a Borel subgroup B of G containing T. Let I be a type and P; the parabolic
subgroup corresponding to it. Then the unipotent radical of P; is generated by U, for
all a € ®* \ ¥ and the reductive quotient of P; is isomorphic to the centralizer L; of the
largest subtorus contained in Ker(a) for all a € I [Mill7, 21.91]. This reductive group
is called the Levi subgroup associated to I and (L, T) is a split reductive group with

root datum (X*, ®;, X, d)}’) and Weyl group W, [Mill17, 21.90].

Example 3.5.5. Let’s consider the split reductive group (GL,, D;). Then the sub-
group T, of upper triangular invertible matrices is a Borel subgroup containing D,. It
corresponds to the system of positive roots ®* = {)(i - Xj | I<i<j< n} with basis

A={a;=x1—x2,""" ,an-1 = Xn-1 — Xn}- The Weyl chamber corresponding to it is
UCZ{(XI,"‘ , Xn) €|Rn|X1 > Xy >+ > X}

LetI = A\{ly =k,lp=ki+kp,---,li-1 =k +ky+---+ki1} be a type on the
apartment, identified with a subset of A. Then the parabolic subgroup Py, its unipotent

radical %, (P;) and the Levi subgroup L; consist of the matrices of the following forms
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respectively
A x % I, * * Ay 0 O
0 * | 0 * 1> 0 01,
0 0 A 0 0 I 0 0 A

where A; is a k; X k; matrix. The facet corresponding to them is
1% n
F={(xt, %) € R"|x; =+ =2xp, > Xy X1, >Xp_41 =" =Xn}.

Theorem 3.1 ([Rou09, §10; Tit74, §5]). Let (G, T) be a split reductive group with Weyl
group W, coroot space V, normalizer N of T and the root groups U,. Then there
is a unique (up to unique isomorphism) G-set "“B(G) containing V and satisfying the
following.

(i). *B(G) = Ugeo g.Vs

(i1). N stabilizes V and acts on it through "W,

(iii). For every a € @, the fixator of agio := {veV |a(v) 20} isT - U,.

Then "% (G) is a building of type */ (G, T). Indeed, since N stabilizes V and preserves
its apartment structure, each g.V is endowed with such a structure and moreover they

agree on intersections.
Definition 3.5.6. The building “%(G) is called the Tits building of G.

Remark. Apartments in “%(G) are one-one corresponding to split maximal tori. In
fact, each g.V endowed with its apartment structure is precisely the spherical apartment
o (G, T?).

The action of G on “%(G) is strongly transitive and type-preserving. It is also worth

to mention that “Z(G) is further an Aut(G)-set. Indeed, if ¢ is an automorphism of
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G, then ¢(T) is also a split maximal torus and the pushforward along ¢ defines an

isomorphism from &/ (G, T) to '/ (G, @(T)).

Example 3.5.7. The simplicial complex structure on the Tits building of GL,, can be

described as in 2.1.2.

3.5.8. Let G be a splittable reductive group. Let ¢ be a homomorphism in the following

sequence.

Gsc N Gder N G N Gss s Gad

Then for any split maximal torus T in G, its image or preimage under ¢ is again a split
maximal torus T" and such a corresponding T + T’ gives rise to a bijection between
the set of maximal tori. Therefore, by 2.5.6 and 3.4.16, we see that all above reductive
groups have isomorphic Tits buildings.

Conversely, any root datum arises from a splittable reductive group [Mill7, 23.55;
SGA3, XXV, 1.2]. Hence, we see that the Tits building “% (G) depends only on the root
system @ and the ground field K and any root system gives rise to such a building. So

we can denote this building by "% (®, K).
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Bruhat-Tits Theory

The datum of a split reductive group over a local field gives rise to a root group datum
and a valuation on it [BT-2]. Bruhat and Tits [BT-1] introduced an affine building based
on such purely group-theoretical data. They also show in [BT-2] that these data come
with some extra schematic structures, which turn out to be an important ingredient in
the theory of reductive groups over local fields.

In the rest of this dissertation, the ground field K is assumed to be equipped with a
discrete valuation val( - ): K — R U {oo}. Its valuation group val(K*) is denoted by T,

and we fix the following associated notations.

Og := {x € K| val(x) > 0},
mg = {x € K | val(x) > 0},

K = @K/m[(

We also fix a uniformizer w, namely a generator of mg. Let y = val(w).
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§ 4.1. Valuations on root group data

Definition 4.1.1. Let ® be a root system and G be a group. A root group datum™ (of

type @ in G) is a system (T, (Ug, Mg)qe0), Where

* T is a subgroup of G and for each a € @,
* U, is a non-trivial subgroup of G and

* M, is a right congruence class modulo T,
satisfying the following axioms.

RGD1. For any a,b € @, the commutator group [Ug, Up] is contained in the group
generated by the U, for ¢ = ia + jb € ® with i, j > 0.

RGD2. For each a € @, the class M, satisfies U*, :=U_, \ {1} C UsM,U,.

RGD3. For any a,b € ® and each m € M,, we have inn(m).U, C U, (), where rq is
the reflection associated to a.

RGD4. Let ®* be a system of positive roots in @ and if U™ (resp. U™) is the subgroup

of G generated by the U, for a € ®* (resp. a € ®7), then TU* NU~ = {1}.

This root group datum is said to be generating when G is generated by the subgroups T

and U, for a € ®.

4.1.2. Let (T, (Ug, My)qco) be aroot group datum. We have the following consequences

of above axioms [BT-1, 6.1.2].

(). U, # U_q and U;M,U, N Ng(Uy) = 0.

k
—a®

(i1). For any u € U*_, there is a unique triple (u’,m,u”) € U, X G X U, such that

u=u'mu”, inn(m).U, = U_, and inn(m).U_, = U,. Moreover, m € M, and u” # 1.

*It is called a reduced root datum in [BT-1, 6.1.1]. We only focus on reduced root datum as we
focus on split reductive groups. As for general case, see the original papers [BT-1].
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Let m(-): U*, — M, denote the map u — m in above and put M being its image.

(iii). T normalizes U, and M,.
(iv). My = M,! = M_q and T U M, is a subgroup of G.

(v). Let L, be the subgroup of G generated by U,, U_, and T. Then
Lo =UM,U, UTU,.
(vi). Ng(U,) NLy =TU, and
M, ={g € L, |inn(g).U, = U_, and inn(g).U_, = U,}.

So M, is completely determined by U,, U_, and T. Hence, we can say (T, (Ug)qco) 1S a

root group datum without mentioning M,.

(vii). Let N be the subgroup of G generated by T and M, for all a € ®. Then, if
® is nonempty, N is already generated by M,’s and normalizes T. Moreover, there
is an epimorphism “v: N — YW(®) such that for each a € ® and m € N, we have
inn(m).U, = U, with b = Yv(m).a. In particular, we have “v(M,) = {r,}. Also note that
Ker(“v) =T [BT-1, 6.1.11].

(viii). Suppose @ is nonempty. Let N° be the subgroup of G generated by M, for all
ae ®andletT® = N°NT. Then (T°, (U, My )qe) is a generating root group datum on

the subgroup G° of G generated by U, for all a € .

Example 4.1.3 ([BT-1, 6.1.3.b; BT65]). Let (G, T) be a split reductive group over K,
(Ug)aee be the root groups associated to the root system ® of (G, T) and (Mg)qco be
the right congruence classes in 3.3.13. Then (T, (Ug, My)qeco) forms a generating root

group datum in G:
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RGD1.

RGD2.

RGD3.
RGDA4.

Let a and b be two roots in ®. Then for any i, j > 0 such that ia + jb € @,

there is a linear function [SGA3, XXII, 5.5.4]
fapiij: Q?i Ok ij — Giaq+jb
such that for any X € W(g,) and Y € W(g;), we have
[ta(X),us()] = [ | ttiarjp(fapsj(X @ Y7))
ia+jbed
where the product is taken in any order.

Leta € ®. Let U', = u_o(W(g_o)"), then U*,(K) = U*,. Taking any

X € W(g,)*, then we have X~! € W(g,)* and

U_a(X71) = ug(X)ua (=X)ua (= (=X) Mg (=X)uq (X)

= Ug(X)mq(=X)ua(X).

This follows from 3.3.8 and 3.3.13.(ii1).
There are closed immersions [SGA3, XXII, 5.5.1 and 5.6.5; Mill17, 21.68]

Txl_[Ua—>G and l_[Ua—>G,

acd* acd*

with images T-U, and U,. Where T - U, is a Borel subgroup of G corre-
sponding to the system of positive roots ®*, while U, is its unipotent radical
and is generated by the root groups U, for all a € ®*. Similarly, we have
Borel subgroup T - U_ and its unipotent radical U_. Then the Borel subgroups
T-U; and T - U_ are opposite, namely their intersection is T [SGA3, 5.9.2;

Mill7, 21.84]. Therefore, T - U, NU_ is trivial.

Moreover, G is generated by T and the root groups U, for all a € ® [Mill7, 21.11].
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We also verify the corollaries in 4.1.2:

(1). This is clear.

(ii). We have already seen in above discussion that if u = u_q(X~'), then the triple
(ug(X), mq(—X), uq(X)) satisfies the requirements. Suppose (u’, m, u”) is another triple,
then my(—X) = ug(—X)u'mu”u,(—X) € M, and hence it maps U, to U_, by conjugate.
Then u,(—X)u’ normalizes U_, and u”u,(—X) normalizes U,, hence u’ = uy(X) and
u” =uy(X) by 4.1.2.(3).

(iii). The first follows from 3.3.8.(ii) and as for the second: lett € Tand X € W(g,)™,

then we have

inn(t).mq(X) = inn(t). (te (X)u_q(-X g (X))
= (inn(t).uq (X)) (inn(t).u_q (=X ")) (inn(t) ua (X))
= ug(a(H)X) - u_a((=a) () (=X")) - ua(a(t)X)
= ug(a()X) - u_a(=(a()X)™") - ua(a(t)X)

=mg(a(t)X).
(iv). For any X € W(g,)™, we have

ma(X) ™ = (Ua(X)u_a(=X g (X))
= Ug(=X)u_o (X ")ug(=X)

=mq(-X).
By 3.3.13.(iv), we also have

ma(X) ™" =m_o(X7").
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These prove the first part. As for the second: let X,Y € W(g,)*, then we have
mq(X)me(Y) = ma(X)m—a(_Y_l) =a’((X, _Y_1>) eT.

(v). This follows from the Bruhat decomposition [SGA3, XXII, 5.7.4; Mil17, 21.73]
for L,:
L, =BuUuZ%,(B)wB,

where B is the Borel subgroup T - U, of L, with unipotent radical %, (B) = U, and w is
the only nontrivial element of "W (L, T), hence M.

(vi). The first follows from the normalizer theorem [Mil17, 17.50]. As for the second:
suppose g € L, has the property that inn(g). U, = U_, and inn(g).U_, = U,. Then
g ¢ T-Ugand hence g € U, - M, - U,. But U, N Ng(U_,) is trivial. Hence, g € M,,.

(vii). N =Ng(T) is generated by M, for all a € ®, the epimorphism “v: N — "W (®)
is the quotient map N — YW and the statement follows from 3.3.13.

(viii). By [Mill7, 21.49], Gler is generated by U, for all a € ®@. Then it is clear that

G° = G*(K), T° =T N G° and N° = Ng-(T°).

Note that the above facts already will imply Theorem 3.1 using either Tits system or

similar construction in Definition 4.2.9.

Definition 4.1.4. A valuation on the root group datum (T, (Ug, Mg)eco) is a family

@ = ((g)qeco of functions ¢, : U, — R U {oo} satistying the following axioms.

V0. For each a € @, the image of ¢, contains at least three elements.
V1. Foreacha € ® and any A € RU {co}, the set Uy 1 := @, '([4, ]) is a subgroup

of Ug and Uy oo = {1}.
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V2. For each a € ® and any m € M,, the function u — @_q(1) — @pa(mum") is
constant on U~ .

V3. For any pair a, b € ® not proportional and any A, g € R U {0}, the commutator
group [Ug,z,Up, ] is contained in the subgroup generated by Ujq.jp,iz+ju for all
i, j > O such that ia + jb € .

V4. For each a € ® and any u € Uy, u’,u” € U_, such that v'uu” € M,, we have
P-a(W) = @-_a(u”) = —a(w).
For each a € @, let I;; denote the set @,(U;) and for any k € I, let M, be the

intersection of M, and U_, ' (k)U_,.

Example 4.1.5. Let T = G].. Then (T, T) is a split reductive group with empty root
system. Then there is only one way to define a valuation on the root group datum (T, 0),

namely the trivial valuation 0.
Example 4.1.6. Let’s consider the split reductive group (GL,, D,) over K. Denote
aij = Xi —Xj € ® and define ¢ = ((paij)aijeq) as

_ -1
Pa; = valoug, .

Note that we have

1t 10
(Pa,-j El] = Val(t), Cp—a,-j El] = Val(t)'
01 t 1

Then ¢ is a valuation on the root group datum (Dy, (Ug;;, Ma;;)a;ee) With Ty, =T

V0. This clear as val is nontrivial.
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V1. Forany A € R U {co}, we have

It
Uaij,l = fij € Uaij val(t) > A ;.
01

Then Uy, 0 = {I} and for any x, y € K with val(x), val(y) > 4, we have
uaij(x) : uaij(y)_l = uaij(x _y);

and its valuation is val(x — y) > min{val(x), val(y)} > A.

V2. For any x,y,z € K* and

0 x 10 i
m= Sij S Maij, u= fij S U_aij,
y 0 z 1
we have
0 x|{1 o[ 0 y! 1 xzy™!
mum™! = &; = &ij
y 0/\z 1/{x! 0 0 1
Therefore,

P—a; (1) = Qo (mum™") = @_g (u_aij(Z)) - Qa, (uaij (xzy‘l))
= val(z) — Val(xzy_l)

= —val(x) + val(y),

independently of u.
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V3. We need the following commutator formula:

Uq, (xy) ifi#1k=j,

[ta,; (%), tay (D] = Yug, (—xy) ifi=1k#j,

I ifi#lk#j.

From which, we see that if @q,; (1) > A and g, (v) > p, then either [u, v] =T,
or a;j + ax € ® and @1, ([U,v]) > A + 11,

V4. Forany x,y,z € Kand u = ug,(x), v’ = u_q,;(y), u” = u_q;(2), we have

. I O}/l x|[1 O 1 +xz x
wuu” = & = &ij
y 1/10 1[\z 1 y+z+xyz l+xy

If Wuu” € M,,;, then we must have
l+xz=1+xy=0, and —x =y +z+xyz.

Hence, we have y = z = —x ™! and thus @_o, (1) = ¢, (u”) = —q, (1).

Now, let val(x) = A. Then we see that
t

Maij,/l = Eij t €K, Val(t) =A;.
-t 0

Example 4.1.7 ([BT-1, 6.2.3]). Notations as in Example 4.1.3. Let (ug)qep be a
Chevalley system. Then ¢ = (@, := val ou;!)4eq is a valuation on the root group datum

(T, (Ug, Mg)qee) With T, = T. The proof is basically the same as in Example 4.1.6 plus

the following facts:

(1). By 3.3.13.(ii), any m € M, can be written as m = tm,(1) for some t € T. Hence,
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for any x € K* and u = u_,(x), we have

P-a(t) = Pa(mum™") = @_a(u_a(x)) = a (inn(tmq(1)).1_(x))
= @-a(u_a(x)) = Pa (inn(t).114(~x))
= @-a(t-q(x)) = P (ua(—a(t)x))
= —val(a(t)).
(ii). For any x, y € K, we have [SGA3, XXII, 5.5.2]
[ta(),us(N] = | | ttiajp (Capijr'y?),
0t jbec

where Cq . ; € K is a constant.

4.1.8. Given a root group datum (T, (Ug)qece) in G and let ¢ be a valuation on it.
Then for any vector v in the ambient space V of @, the family ¥ = (Pq)ece given
by Pg: u > @q(u) + a(v) is a valuation [BT-1, 6.2.5] and is denoted by ¢ + v. The
valuations ¢ and ¥ = ¢ + v are said to be equipollent. The mapping (¢, V) — @ +V
defines an action of V on the set of valuations and each equipollent class is an orbit.
Let A denote the set of valuations equipollent to ¢. Then A is an affine space
with A = V and 2.4.7 applies. For a = agx witha € &, k € T, let Uy = Ugx and
Ug+ = Upsk Ugn (note that Uy, = U,, if T, is discrete). It is clear that the affine root

system X and the mapping @ — U, depends only on the equipollent class of ¢.

Example 4.1.9. Continue Example 4.1.6. The coroot space is (by Example 3.4.4)

V=AciAdi1+--+cpidnlct, - ,cn €Rcp + -+ + ¢, =0}
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Then for any v = ciA| + - - - + cyA,, the valuation ¢ + v is given by
Ug, (x) = val(x) + a;;(v) = val(x) +¢; — ¢;.

Letk € Ty, then @ +V € agir if and only if ¢; — ¢c; +k > 0.

Example 4.1.10. Notations as in Example 4.1.7. A valuation ¥ = (14)qeo is said to be

compatible with val( - ) if forallu e U, and t € T,

ba (tut'l) = o (u) + val(a(t)).

It turns out that [BT-2, 4.2.9]: a valuation 1 is compatible with val( - ) if and only if it is
equipollent to ¢ given in Example 4.1.7. Hence, A is precisely the set of all valuations

compatible with val( - ).

4.1.11. Let m € N and w = Y»(m) € YW. Then the family ¢ = (Pg)qep given by
Pa: U @1 ,(m~lum) is a valuation [BT-1, 6.2.5] and is denoted by m.¢p. We thus
obtain an action of N on the set of valuations such that forany m € N and v € V, we

have m.(@ +v) = m.¢@ + "v(m).v. Moreover, we have [BT-1, 6.2.10]:

(1). The action of N stabilizes A and for any m € N, the map v(m): @ +— m.¢ is an
automorphism of the Euclidean affine space A whose vectorial part is “v(m).

(i1). For each a € ® and k € T, the image of Mg« under v is the reflection rg«.

(iii). The automorphism »(m) maps affine roots to affine roots. For any o € X, we

have mU,m™! = v(m).a

In particular, for u € Uy, v(m(u)) = rqsqp,w) [BT-1, 6.2.12]. Therefore, the valuation ¢

is completely determined by the homomorphism v: N — Aut(A).

Example 4.1.12. Continue Examples 4.1.6 and 4.1.9.
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(1). The normalizer N is the group of monomial matrices in GL,,(K). Any m € N

can be written as

n
m = Z XkEo(k)ks
k=1

where 0 € &, is a permutation such that w = Yv(m) is identified with ¢ through

YW = &,. Then, for any u = ug,(t) € Ug;, we have

n n
m~lum = (Z X;_ll(k)Ea—l(k)k) (In + tEj) (Z XkEa(k)k)
k=1 k=1
-1
=1+ Xc—l(i)txa‘l(j)EG—l(i)U_l(j)

_ -1 3
~ o101 (XU‘I(i)tx"_l(J)) < Uaa—1<i)o—1(j> - Uw‘l-au"

Hence, the valuation m.¢ is given by
(M.@)q;; 1 U= Ug,(t) — pr—loaij(m_lum) = val(x;_ll(i)txa_1(j)).

From above computations, it is also clear that mU,m™! = Uy (m).« holds for any affine
root a.

(ii). For any v € V, one can verify that

(M. (@ + ¥))ay; (W) = (@ + V)1 g, (m~um)
= q)w_l_aij(m_lum) + (w_l.al-j) (v)
= (M.@)q,; () + a;j(w.v)

= (m.cp + w-V)aij (u)
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Also note that

(M.@)q,; (1) — @qg,;(u) = val(x;_ll(i)txofl(j)) — val(t)
_ -1\ _ -1
= vall ) vall )

= <ai]-, Z Val(x;_ll(k))/lk>.

Therefore, the affine transformation v(m): ¢ — m. has vectorial part w = “»(m) and

translation part

=

Vi = (Val(x;,ll(k)) + %Val(det(m))) Ak € V.
k=1

(iii). Ifu =ug;(x) € Ujij, then

X
m(u) = mg,;(x) = &;j
—x 10

Hence, Yv(m(u)) = (i, j) and the translation part is
Vin(u) = Val(x_l))ti +val(=x)4; = - val(x)q}; = —@a; (W)ay;.
Then we have

p(m(w).(@+v) = @ + (i, )).V - o, (Way;
=@+V-— aij(v)alyj — Pg; (u)aivj
= rai}-+qoaij (u)(Cp + V)-

Example 4.1.13. The condition of being compatible with val( - ) in Example 4.1.10 can

be interpreted as follows. Let b = (14)qco be a valuation and A the set of valuations
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equipollent to it. For any t € T, the automorphism v(t): A — A is a translation,

denoted by v¢. Then, for all a € ® and u € U,, we have

o (£7ut) — paw) = (@, v0).

Therefore, ¥ is compatible with val( - ) if and only if

(a,ve) = —val(a(t))

forallt e T and a € ®.
Now, suppose i is compatible with val( -). Then the above shows that for all
X € Xgs :=V* N X, we have

X, ve) = —val(x (t)).

This implies that v¢ € XSVS ®TI', where X;’S is the dual lattice of X and is the cocharacter

group of the semisimple quotient (G*, T/Z%(G)).

4.1.14. Let H = Ker(v) and W = v(N). Let W denote the subgroup of w generated by
re+k With a € ® and k € I,. It is a normal subgroup because N permutes Mg . Let
N’ = v~ (W). It is usually not the entire N. We say the root group datum (together
with the valuation ) is simply-connected when N’ = N. Let T = T N N’ and let G’
be the subgroup of G generated by N’ and the U, for a € ®. Since M, N N” # 0 for all
a € @, we see that (T, (Uy)qco) is a simply-connected generating root group datum in
G’ [BT-1, 6.2.11]. Recall that (4.1.2.(viii)) N° is generated by M, for all a € @, hence
N° C N’ and therefore the generating root group datum (T°, (Ug)qep) On G° is also
simply-connected.

The valuation ¢ is said to be special if 0 € T, for all a € ®. If this is the case,
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then the group W (resp. W) can be decomposed as W = W, = Ker(W — YW) (resp.
W = Wy, < v(T)) [BT-1, 6.2.19], where W, is the stabilizer of ¢.

The valuation ¢ is said to be discrete if T, is a discrete subset of R for all a € ®.
If this is the case, then W is the affine Weyl group W(Z) for the affine root system X
[BT-1, 6.2.22].

Suppose @ is irreducible and ¢ is discrete and special. This is the case we most focus
on. Then all T; are the same discrete subgroup I' of R [BT-1, 6.2.23]. So 2.4.8 applies
and we get an apartment &/ (Z). Then Ker(W — YW) = Q¥ ® " and v(T) is between

Q'®Tand PY ®T [BT-1, 6.2.20].

Example 4.1.15. Continue Example 4.1.5. Since A = {0}, we must have N’ = N =T.
On the other side, N° = {1} gives a smaller simply-connected root group datum. The

trivial valuation 0 on them is both special and discrete.

Example 4.1.16. Continue Examples 4.1.6, 4.1.9, and 4.1.12. Let m € N with related
notations as before. Then for m € Ker(v), one must have both Yv(m) = id and v,, = 0.

Hence, m is diagonal and for all 1 < k < n, val(xy) = %val(det(m)). Therefore,
H = {diag(xy, - -+, Xxn) € Dn(K) | val(xy) = - - - = val(xy)}.

It is clear from the computations above that the translation group v(T) is X ®T'. On
the other hand, the translation group of W is clearly Q¥ ® I', which has index n in the
previous one.

Let m € N with related notations as before. Then for m € N’, one must have v,, €

Q" ® T, which is equivalent to say that for all 1 < k < n, val(x;') + 1 val(det(m)) €T,
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which is the case if and only if % val(det(m)) € I'. Therefore,

N’ = {m € N | val(det(m)) € nT'}.
Therefore, we have

G' = {g € GL,(K) | val(det(g)) € nT'}.
It is worth to mention that there is a group
GLx(K)' = {g € GLa(K) | val(det(g)) = 0},

between G’ and G° = SL,(K). Hence, for this group, the generating root group datum
(D, N GLn(K)l, (Uaij)aijeq)) is simply-connected.

Example 4.1.17. Continue Examples 4.1.7, 4.1.10, and 4.1.13. Let A be the affine
space of all valuations compatible with val( -). For any m € N, the automorphism
v(m) is trivial if and only if m € T (hence “»(m) = id) and the translation vector v, = 0.
Therefore,

H={teT|val(x(t)) =0forall y € X}.

It follows from Example 4.1.13 that »(T) € X, ®T. Conversely, for any A € X, and

t € KX, we have
G Vae) = —val(x (A(t))) = —val(t){x, ).

Hence, v(T) 2 X, ®. On the other hand, the translation group of W is clearly Q¥ ®T.
One can replace T = T(K) by a suitable subgroup and obtain a different root group

datum. The discussions on valuations still hold. It is also worth to mention that
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[BT-2, 4.2.16]: there is a group
G! := {g € G(K) | val(x(g)) = 0 for all y € X(G)},

between G’ and G° = G%". Hence, for this group, the generating root group datum

(T NG, (Uy)aea) is simply-connected.

§ 4.2. Bruhat-Tits building

Given a root group datum (T, (Ug, Mg)qeq) in G with a valuation @ = (q)qeco ON it,
Bruhat and Tits [BT-1] associate an affine building equipped with natural G-action to

these data.

4.2.1. Let Q be a nonempty subset of A and let Uy denote the subgroup generated by
U, for all affine roots @ 2 Q. Then the image of N N Uqg under v: N — W is generated
by the reflections r, for affine roots o such that Q C da and is identified with the Weyl
group of @ := {a o) | da,%a = a,da 2 Q} [BT-1, 7.1.3]. Let N denote its preimage
and let P = H - Ug. Then

Nq =N N Pq.

Let N, o denote the fixator of Q in N:
Ng := {n € N|v(n).x = x forall x € Q}.
Then NQ contains Nq and normalizes Pg. Hence,
P :=Ng-Pq=Ng-Uqg

is a group having Pq and Ug as its normal subgroups. By 4.1.11, for any n € N, we
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have

inn(n).Pq = Py(n).0 and inn(n).ﬁg = 1/5,,(,1).9.

Note that the map Q +— Uq (resp. ®q, Nq, Pq, NQ, ﬁg) reverses the order of

inclusions.

Remark. For x € A a point, Ny = v~ (W,). Hence, if the generating root group datum

is simply-connected, we have ﬁx = N, and hence ﬁx = P,.

Example 4.2.2. Continue Examples 4.1.6,4.1.9,4.1.12, and 4.1.16.
First consider Q = Ug;+k € Z. Then Ug = Ugij k> Pa = 0 and

val(x) = - -- = val(xy),
Pqg=H Ugk = diag(xy, -+, x,) + tEjj € GL,(K)

val(t) — val(x;) > k
In particular, N = H. Note that we also have ﬁg = H since Q contains an open in A.
Therefore, ﬁg = Pq.
Next, consider x = ¢ +v € A. Then Uy is generated by Uy, —q,(v) for all a;; € ® and
o, = {aij ed | a;j(v) € F}. Then W, is generated by rq _q(y) for all a € @, but W, may
be larger in general: it contains rq _(y) €ven when a(v) ¢ I'. Now, suppose x is special.

Then VT/X =W, ='W and fx = P, is generated by H - Uayj—aii(v) for all a;; € ®.

Example 4.2.3. In the above example, if we instead use the root group datum (D, N

GLn(K)l, (Ual.j)aijeq)). Then for Q = a4k, we have

R val(xy) = --- =val(x,) =0,
Pg =Pg = diag(x1,~-- ,Xn)+tEij € GLn(K)
val(t) — val(x;) > k

To see what are P and P in general, we need more knowledge on such subgroups.
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Proposition 4.2.4 ([BT-1, 7.1.11]). Let Q be a nonempty subset of A. Then

Pa= P

x€Q

So in particular, 139 N ﬁg/ = ﬁgug/.

4.2.5. Let Q be a nonempty subset of A. The enclosure cl(Q) of Q is the intersection

of all affine roots a containing Q. It turns out that [BT-1, 7.1.2 and 7.1.9]

—~ —~ —~

Uci() = Uq, NCI(Q) = Nq and Pgq) = Pa-

From its definition, we see that cl(Q) must be a disjoint union of some facets in A.

With Proposition 4.2.4, we conclude that all the groups Pg are of the form
ﬂ ﬁF:
F
where F ranges over all facets in A such that F C cl(Q).

Hence, to understand the subgroups ﬁg, it suffices to understand those ﬁF.

4.2.6. Let “C be a Weyl chamber in A and @;. (resp. @,_) the system of positive (resp.
negative) roots in @ defined by “C. Let Uy (resp. U,) the subgroup of G generated

by the U, for a € @;_ (resp. a € ®,;). Then for any x € A, we have Uy.rc C U;; and

—~

Nyivc = Nysue = H. As a consequence, Py = Pyyvc. Denote it by By vc.

In general, let Q be a nonempty subset of A. Then we have [BT-1, 7.1.4]
Pa N Uuic =Uq+vc and Pqg = Nq - Uqyvc - Ug-rc.
As a consequence, we have [BT-1, 7.1.8]

13\9 N Uy;tc = Uinc, P\Q NN = NQ and P\Q = 1/\}9 . UQ+UC : UQ_UC.
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Theorem 4.1 (Bruhat decomposition [BT-1, 7.3.4]). Let “C and “C’ be two Weyl cham-

bers and x, x" be two points in A.

(1). We have

G =Byw-N - By,

(ii). More precisely, the canonical map from N to the set of double cosets induces a

bijection from W = N /H to By c\G /By vcr.

Example 4.2.7. Continue Examples 4.1.6, 4.1.9,4.1.12, 4.1.16, and 4.2.2. Let Q be a

nonempty subset of A. We claim that * (with convention that a; = 0)
Pg = {g = (&ij)i,j € GLa(K) ‘Vi,j : val(gij) — 1 val(det(g)) > —;Iel(f) aij(x)}-

Proof. Denote the right-hand side by Lg. Then it is clear that

Lo = ﬂLx.

xeQ
Therefore, it suffices to show fx = Ly.

First, we have H C Ly and for any a;; € @,
Ly N Ua; = Ugyj,—a;j(x) = Px N Uag;-

Therefore, P, C L. Let “C be any Weyl chamber, then we have B, v« € P, C L,. Hence,

by Theorem 4.1, we have
Lx = Bx,”C : (Lx N N) : Bx,”C-

Therefore, it suffices to show L, NN = ﬁx.

*Slightly different from [BT-1, 10.2.9] due to different conventions on the root group datum
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If m =27, xkEs(kyk € Ly N N with o = Yv(m), then we have
1
Val(xaq(k)) — —val(det(m)) > —ago1(x) (1 <k <n).
n

This implies that

n

Z val(xy) — val(det(m)) > 0,

k=1
which should be an equality. Therefore, for all 1 < k < n, we have

_ 1
Val(xa_ll(k)) + - val(det(m)) = Qjeo-1 (k) (x).

Then, by Example 4.1.12, we have (writing x as ¢ + v)

n
mx—-x=0vV-v+ Z Qg1 (k) () Ak
k=1

Note that
n
oO.V—V= Z(a(,f](k)k, V>Ak.
k=1

Therefore, we have

n

mx-—Xx= Z (aa—l(k)k(X) + Aio-1(k) (X)) Ax =0.
k=1

This shows L, NN C Nx.
Conversely, if m = 37, xkEo(ik € N, with 0 = Y»(m), then m.x = x. Which, by

similar argument as above, implies

_ 1
Val(xa_l,(k)) + - val(det(m)) = ayg-1x) ().
Since other entries of m are 0, the inequality holds trivially. Therefore, m € L. O

Example 4.2.8. Consider the root group datum (D, N GL,(K)!, (U )a;jew). Similar
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argument as in Example 4.2.7 shows that (note that it is simply connected)
Pa = {(g)i; € GLA(K)' | Vi, J : val(gy) > = inf (x:(x) = ()}
In particular, if we take Q to be the origin o = ¢, then we have
Po = {(gij)ij € GLa(K)" | Vi, j : val(gij) > 0} = GLA(Ok).
More generally, a special point x = ¢ + v defines a Ox-submodule
L=A{(xy, -+ ,xn) € K" [ val(x;) + xi(v) > 0}
of K", and we have P, = {g € GL,(K)! |g.L = L}.

Definition 4.2.9. The Bruhat-Tits building of a valuation ¢ on a root group datum
(T, (Ug)aeo) in G is the quotient set FB(¢) of G X A under the following equivalent

relation [BT-1, 7.4.1]:
(g,x) ~(h,y) = dneN:y=v(n).x, g 'hn e P,.
We will simply denote this set by & if there is no ambiguity.

Remark. Let (G, T) be a split reductive group over K. By Example 4.1.10, there is
essentially only one (up to equipollence) reasonable way to define a valuation on the
standard root group datum * given in Example 4.1.3. Therefore, there is a unique affine
building &(G) associated to it. It is called the Bruhat-Tits building of G.

Then following the same argument in 3.5.8, we see that the Bruhat-Tits building

depends only on the root system @ and the ground field K.

*as long as on root group data deduced from the standard one such as (T N G, (Uy)aca)-
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4.2.10. The left multiplication of G on the product G X A is compatible with above
equivalent relation, hence 9 inherits a G-action. Identifying A with the subset {1} x A

of %, we have:

®). B =Ugec8-As

(i1). each Uy fixes a € X pointwise [BT-1, 7.4.5];

(iii). for eachnonempty Q C A, its fixator is Pq, and it acts transitively on apartments
containing Q [BT-1,7.4.4,7.4.9];

(iv). the stabilizer (resp. fixator) of A is N (resp. H) [BT-1, 7.4.10].

Then one can carry the apartment structure on A to each g.A and see that they agree on
the intersections [BT-1, 7.4.18]. Hence, 9% is a building of type &/ (XZ). The action of
G on it is strongly transitively by the construction but is not necessarily type-preserving
since the affine Weyl group W of &/(Z) is usually not the entire W. The subgroup of

type-preserving automorphisms is then the group G’ = v~! (W) introduced in 4.1.14.

4.2.11. Let A: ® — R.( be a function, constant on each irreducible component, and let
v € V. Then the family u +— A(a)@q(u) + a(v) defines a valuation [BT-1, 6.2.5] which
is denoted by A¢ + v. A valuation 1 is said to be equivalent to ¢ if p = A + v for some
A and v. If this is the case, then there is a unique G-equivalent map i: AB(p) — FB(P)
such that its restriction to A is an affinié from A = ¢ +V to Y + V with homothetic ratio

A [BT-1,7.4.3].

4.2.12. Let @; be a closed subroot system of ®, N} be the subgroup generated by M,
for all a € @ and let T{ = Ny N T. In addition, let T| be a subgroup of T containing
Ty and let G; be the subgroup of G generated by U, for all a € ®; and T;. Then

(T1, (Ug, Mg .T1)qew, ) is a generating root group datum on G and ¢ induces a valuation
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on it. Let 9% be the Bruhat-Tits building associated to these data. Then the underlying
set of % is canonically identified with the quotient of the subset G1.A (as a Gi-set) of
3B by the intersection of the kernels of all a € ®; [BT-1, 7.6.4]. The image of A in %,

is denoted by A.

4.2.13. The bornology defined by ¢ is the bornology () on G induced from the action
of G on the building &(¢) as in 2.6.7. It is the smallest bornology on G containing the
bornology on N induced from the action of N on A, the subgroups U, x for all a and k
and is compatible with the group law [BT-1, 8.1.4, 8.1.8]. This bornology makes G a
bornological group and in which each U, x is bounded while each U, is not. Note that
the subgroups P are bounded but not necessarily maximal bounded. We refer last two
paragraphs of 2.6.7 for a discussion of its bounded subgroups.

Let ¢ be another valuation. Then the following are equivalent [BT-1, 8.1.10]

(i). 1 is equivalent to ¢;
(i). B(¥) = B(e);

(iii). B(1p) and B() agrees on each Uy;
(iv). B(1h) and B(¢p) agrees on N.

Example 4.2.14. Continue Example 4.2.7. Before moving on, note that all discussions
before apply if we replace G = GL,(K) by a subgroup G; obtained as in 4.2.12. So we
simply let G denote either GL, (K) or such a subgroup.

The bornology B on G defined by ¢ can be described as follows: a subset M is

bounded when the set

{val(gi;) — & val(det(g)) | g = (gij) € M, 1 <1i,j < n}
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is bounded from below. Indeed, it suffices to verify on N: for any M C N, the above
set is {—xi(vm) | m € M, 1 < i < n}, which is bounded from below if and only if it is

bounded (since y; + - - - + x, vanishes on V) if and only if M. is bounded.

§ 4.3. Concave functions

One important ingredient in Bruhat-Tits theory is the theory of various subgroups
associated to concave functions. They are refinements of parabolic subgroups and

generalizations of P, and P, in previous subsection.

Definition 4.3.1 ([BT-1, 6.4.1]). Let’s first introduce the ordered monoid of extended

real numbers R. Formally, R is the union of
R, R+ := {k+ | k € R} and {0}

The commutative addition on R is extended to R as follows:

e forallk,l € R, k+ (I4+) = (k+) + (I+) = (k+ )+;

e forall A € R, A + o0 = 0.
The total order on R is extended to R as follows:

e forall k,l € Rsuchthatk <[, k < k+ < [;

. forall/leﬁlisuchthatitioo,)t<oo.

Whenever we have a filtration {Fx},cg (for instance, the filtration {Ua, k} e Of aroot
subgroup Uy in 4.1.4), we can extend it to {F2 }, i by defining
F; = U Fy, Fm:ﬂpk.
keR, k=7 keR
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We say k € R is a jump of the filtration if Fy; # Fx. In our most usage of filtrations, the
jumps are elements of I'. For any A € R, we use the notation [1] to denote the smallest

k € T such that A < k.

Definition 4.3.2 ([BT-1, 6.4.3; BT-2, 4.5.3]). Let ® be a root system and denote O =

® U {0}. A concave function on @ is a function f: ® — R such that

C. for any finite family (a;) in @ such that 3; a; € ®, we have

Z fla) > f(Z a).

Note that the axiom is equivalent to the following:

C1. for any roots a,b € ® such that a + b € ®, we have f(a) + f(b) > f(a+b);
C2. for any root a € @, we have f(a) + f(—a) > f(0);
C3. f(0) > 0.

A concave function f on ® is said to be a concave function on ® if £(0) = 0 and
f(®) € R. Equivalently, a concave function f on @ is a function f: ® — R satisfying

C1. and C2..

4.3.3. Let f be a concave function on ®. We use Uy to denote the subgroup generated
by Uq,f(q) for all a € ®. Given a choice of positive roots ®* of @, we denote the
intersection Uf NU™ (resp. U NU™) by U;: (resp. U;). Then we have the following facts
[BT-1, 6.4.9].

(). UrNUg = Ug,f(q) for any a € @;

(i1). The homomorphisms
n Ug,f(a) — U}— and 1_[ Ug,f(a) — UJ:
acd+ acd-
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are bijective regardless of the order of factors.

We refer to [BT-1, 6.4.38] for the condition of a good filtration {Hy}; on H, under

the name prolongement de la valuation. Note that one of the requirement is
Ho) € Ho € H,

where H|q) is the subgroup of H generated by Uy U U_« [BT-1, 6.4.14].
We fix a good filtration Hy on H. Let Py denote the subgroup Hy(g) - Uy, then we have
the following multiplication map:

@3.1) [ ] Yesw x Hoy x [ | Ve — Pr-

acdt aed-

It is injective in general and moreover bijective if f(0) > 0 [BT-1, 6.4.48].

Example 4.3.4 ([BT-1, 6.4.2; BT-2, 4.6.26]). Let Q be a nonempty subset of A. Define
fa: ® - RU {oo} by

fa(a) =inf{k e R | Q C agk}.
Then fq is a concave function on ®. We then have Uy, = Uq and the group Py, is a
subgroup of Pg in general. The group Py, with F a facet in A is called a parahoric

subgroup, but this terminology usually restricts to a specific choice of Hy.

Note that fo # f(q) in general, while Uq = Ug(q) and Pq = Pgj(q)-

Example 4.3.5. To make above more clear, let’s consider the split reductive group

(GLy, Dy,) and refer Examples 4.1.6,4.1.9,4.1.12,4.1.16,4.2.2,4.2.7, and 4.2.14. Then
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we have

U,k = | §ij bt € U, | val(t) > k.
0 1
H = {diag(xy, - ,x,) € GL, | val(x;) = --- = val(x,)},
Hio) = {diag(xy, -+ ,x,) € SL, | val(x1) = - - - = val(x,,) = 0}.
We will also consider
H° := {diag(xy, - ,x,) € GL, | val(x;) = - - - = val(x,) = 0}.

Now, let Q = Uq;;+k- Then we have

UQ = Uaaij,k = U(Xal. = Uaai~+|'k'| = UCI(Q)7

el J

val(xy) = --- = val(x,),
Pq = {diag(xy, -, xp) +tE;j € GL,(K)
val(t) — val(x;) > k

On the other hand, the concave functions fq, fu(q) are

k ifa= aij, |—k-| ifa= aij,
fa(a) = feia)(a) =

oo if a # ajj. oo ifa# ajj.

Therefore, fo # fo(q) in general, while Ug, = Uq; x = Uq. Itis then clear that Pg, = Pg

if we take Hy = H. But for other choices, namely H = H® or H|g), we have
Py, = {h+tE;j € GLy(K) | h € H, val(t) > k}.

Example 4.3.6. Continue Example 4.3.5 with a general nonempty subset Q. First note
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that H N GLn(K)1 = H°. Hence, using Example 4.2.8, we have
Pys, = {(gij)i,j €G ‘ Vi, j @ val(gij) > —;ggf) (xi(x) _Xj(x))}
= {(gij)ij € G| Vi, j : val(gy) > fa (xi(x) — x;(x))},

where G = GL,(K)' if we take Hy = H° and G = SL,(K) if we take Hy = Hio.

4.3.7 (IBT-1,6.4.10; BT-2,4.5.2, 4.6.12]). Let f be a concave function on ®. Define f’
as follows:

f'(a) :==inf{k € T, | k > f(a)}.

Then f” is also a concave function on @, called the optimization of f. If f' = f, we
say f is optimal. Note that under the assumption that I, = T for all a € ®, we have
f(a) =[f(a)].

The set of roots a € ® such that f'(a) + f'(—a) = 0 is denoted by @y, called the root

system associated to f.

Remark. Note that for any a € ®, we have

fa(a) + fa(—a) = —inf a(x) — inf (—a(x)) = supa(x) — inf a(x) > 0.
X€Q X€Q xeQ X€Q

The equality holds if and only if a(x) is a constant for x € Q. Note that this constant
may not be contained within I', hence the condition merely says that Q is contained
in a hyperplane parallel to the wall dag+0. On the other side, from the definition of
optimizes, a € @, can be interpreted as Q C da for some affine root a with vectorial

part a. Therefore, @5, = ®q. Another way to see this is use the observation that

f§ = fa)-
4.3.8([BT-1,6.4.23; BT-2,4.6.9]). Let f be aconcave function on ®. Define f*: ® >R
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as follows:

f(a) if f(a) + f(-a) >0,
f(a)+ if f(a)+ f(-a) =0.

f*(a) =

Then f* is a concave function.
Let G denote the quotient P¢/Ps+ and let U, (tesp. T f) be the image of U, ¢(q) (resp.

Hf()) in Gy. Then (T, (ﬁf;a)aequ) is a generating root group datum of type ®; on Gy.

Example 4.3.9. In Example 4.3.5, we have f, = faa-j+k' Hence, Gy, . 1s the trivial
ij L aij+
group.

Example 4.3.10. Assume Q = cl(Q) in Example 4.3.6. Hence, fq is optimal. Then

f(a) ifaé¢ @q,
fala) =
f(a)+ ifae ®qg.

Take Hy to be H®. Then the group Pg: can be computed using Eq. (4.3.1):
P = I+ {(gij)ij € GLa(Ok) | Vi, j : val(gij) = f& (xi(x) = xj(x))}-
In particular, if we take Q to be the origin o, then we have
Pg = Iy + @ My (Ok).

Therefore, Pf, /Py: is nothing other than GL, (k).
Now suppose Q contains o, then for any a € ®, either fo(a) = 0 or fg(—a) = 0.
Then ¥ = {a € @ | fa(a) = 0} is a parabolic subset. We can thus choose a system

of positive roots ®* such that ®* C ¥,. Hence, we may assume a;j(x) > O for all
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§4.4. Smooth models associated to concave functions

1 < i< j < n. Then we have (identified as subgroups of GL,(k)):

Pso/(Pr: NPg) = {(gij)ij € Gla(x) | Vi, j: aij ¢ ¥o = gij =0},

PfQ/Pf;; = {(gij)i,j € GL,(x) |Vi,j 10 ¢ g = gij = 0}.
Note that: through the above identification, Py, /(P N Pg,) is (the group of k-points
of) a parabolic subgroup Py, of GLy and Py, /Py is (the group of x-points of) its Levi

subgroup L;,, where the type Ig is defined by the parabolic subset ¥g,.

§ 4.4. Smooth models associated to concave functions

In this section, we will take (G, T) to be a split reductive group and G = G(K).
Furthermore, we assume K is a Henselian field in the sense that Oy is a Henselian ring.
We also assume that the residue field « is perfect.

The second part [BT-2] of Bruhat-Tits theory says that there are more algebraic-
geometric structures on its Bruhat-Tits building. We follow [Yu15] to state such result
and deduce some properties which will be used later. We emphasize that since we focus
on split reductive group only, a lot of difficulties vanish. However, we still keep the

general statement unless we turn to specific examples.

4.4.1. Let IR denote the Néron-Raynaud model [CYO01, 3.1] of the torus T, namely
the neutral component of the standard Ift Néron model [BLLR90, 10.1.1]. In our case,
since T is split, its Néron-Raynaud model ™R can be characterized as the connected

smooth model such that TR (Ok) equals the subgroup [BLR90, 10.1.5]

H° :={te T(K) |val(x(t)) =0, forall y € X(T)}.
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Chapter 4. Bruhat-Tits Theory

The Moy-Prasad filtration {T(K)y}iso [Yul5, 4.2; MP96, 3.2] is defined as:
T(K), :={te H° | val(x(t) — 1) > k, forall y € X(T)}.

It defines a good filtration Hy := T(K); on H. There is also a Moy-Prasad filtration

{tx}xs0 of the Lie algebra t = Lie(T):
ty :={T et |val(dy(T)) > k, forall y € X(T)}.

There is a family {T};-( of connected smooth models of T such that [Yul5, §4]:

(). Tk(Og) = T(K);
(ii). the special fiber (L), is unipotent for all k > 0;

(iii). the congruence subgroup
I'(w™, Tk) := Ker(Tu(Okx) — Ti(Ok/@™))
equals T(K),, for all m > 0;

(iv). the Lie algebra of Ty equals ty.

Remark. The scheme Ty is constructed as follows [ Yul5, 4.5]. First, consider the higher
unit group

Gm(O)y. := {1 +t € G(Ox) | val(t) > k}.

It admits a smooth model of Gy, /K via a dilatation [BLR90, §3.2] in the Néron-Raynaud

X-1x'1-1
W m |

w w

model Gy,/0Ok.

(Gm/Ox)™ := Spec| O

Then T can be obtained by extension the isomorphism

(Gm(Ok) )" — T(K),
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§4.4. Smooth models associated to concave functions

to above smooth model.

Remark. The good filtration Hy can be taken fairly general, depending on which model
of T to use. See [BT-2, §4.4] for discussion on models Ty of T and [Yul5, §4 and §5]

for discussion on the filtrations Hy and Ty.

4.4.2 ([Yul5, 6.2; BT-2, §4.3]). For each root subgroup U,, the filtration {Ua,k}keR

extends to a family {ua,k}k R of connected smooth models of U, such that:

(). ua,k(@K) =Ugk;
(ii). the special fiber (U, k), is unipotent for all k;

(ii1). the congruence subgroup
F(wm: ua,k) = Ker(ua,k(@l() - ua,k(@l(/uym))

equals Ug k4my for all m > 0;

(iv). the Lie algebras ug of U x form a filtration on the Lie algebra u, of U,.

Remark. With our assumption, the scheme 2, can be obtained by extending the

isomorphism of one-dimensional free Ox-modules*
Ki = {x € K| val(x) > k} —> Uak
to an isomorphism of vectorial Og-group schemes

Ug - W@K(Kk) ;> ua,k .

*This is not the case in general where U, is merely split unipotent, not necessary vectorial.
However, the scheme U, « is still constructed explicitly. See [BT-2, §4.3] for details.
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Chapter 4. Bruhat-Tits Theory

In particular, we have
(441) uayk(@[(/wm) = K;k ® @K/’(Dm

compatible with the filtrations. In particular, 2,  (Og /™) is an m-dimensional vector

Space over K.

At this stage, we have group schemes Ty and U, i (a € ®). Such a datum is basically
Bruhat-Tits’ schematic root group datum [BT-2, 3.1.1].

The main theorem of the schematic Bruhat-Tits theory is

Theorem 4.2 ([Yul5, 8.3; BT-2, §4.6]). Fix a choice of the schematic root group datum
(Tk, Ugk)aeon). For a concave function f on ®, there is a connected smooth model & f

of G such that ®¢(Og) = Py. Moreover:

(). The schematic closure of T in ® ¢ is ).
(ii). For each a € @, the schematic closure of Ug in ® is Wy ¢(q).

(ii1). The multiplication morphism (the products can be taken in any order)

(4.4.2) [T W@ Tr): [1 Wop) — Of
ae(D:; aeq);

is an open immersion. If f(0) > 0, it induces an isomorphism on special fibers.

Remark. Note that Eq. (4.4.2) actually gives a bijection on Og-points (and more gener-

ally, Ok /I-points for any ideal I) using the Henselian property.

Definition 4.4.3 ([BT-2, 5.2.6]). Let (T, (Ugx)aco) beasin4.4.1 and4.4.2and f = fr
for some facet F. The group Py, is called the parahoric subgroup of G. When F is an

alcove, it is called an Iwahori subgroup. A parahoric subgroup Py, is also called the
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§4.4. Smooth models associated to concave functions

connected stabilizer of F in the sense that ® is a connected group scheme and Py, is

the largest subgroup of Py having this property.

Example 4.4.4. In Examples 4.3.6 and 4.3.10, the smooth model ®, can be taken as
G : R+— GL,(R).
Indeed, in this case, we have T¢)(R) = D,(R) and
W, f,(ay) (R) = {In +7Eyj | r € R}.

Remark. More generally, let (G, T) be a split reductive group and x be a special point in
its Bruhat-Tits building. Then the smooth model G, is the bare bone of the Chevalley
group scheme [BT-2, §3.2 and 4.6.15; SGA3, XXV]: it says that for the reduced root
datum R(G, T), there is a smooth affine group scheme ® over Z such that for any field

F, ®p is a split reductive group with root datum R(G, T) over F.

Definition 4.4.5. Let (T, (Wgk)qecp) be asin4.4.1 and 4.4.2 and f = fy for some facet
F. The group Py, is called the Moy-Prasad subgroup of the parahoric subgroup Py,.

When F is a vertex x, we will use P, to denote this group.
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Incidence Geometry of Lattices

In this chapter, we will review the incidence-geometric descriptions of Tits buildings
and Bruhat-Tits buildings of classical groups following [Gar97]. In which, a building

is determined by the following data:

(i). The set of vertices V.
(i1). The incidence relation ~ on V.

(i11). The set of frames A.

Given the set V and the relation ~, we can obtain a simplicial complex ¥, called its
flag complex, in which simplices are precisely the mutually incident subsets of V. Each
A € A specifies a subset V5 of V, and hence a subcomplex ¥ 5 of ¥. One can then
verify that ¥ is an abstract building with apartments (7 5)acs. We thus use the same
notation (A for both the set of frames and the set of apartments. To relate this abstract
building to a classical group, one also needs to define how the group acts on it. Finally,
a certain geometric realization of above identify this abstract building to the desired

Euclidean building.
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§ 5.1. Tits buildings of classical groups

We first consider Tits buildings. During this section, K is a field, not necessarily valued.

5.1.1 ([Gar97, chap.9]). The Tits building of type A, is essentially givenin § 2.1 and 2.2.

Let V be a K-vector space of dimension n + 1. Consider the following data:

(i). The vertex set V consists of proper, non-trivial vector subspaces of V.
(i1). The incidence relation is: x ~ y for x,y € V whenever x C y orx 2 y.

(ii1). A frame is an unordered tuple of lines in V
A= {}‘l: e ;An+l}
suchthat Aj +-- -+ A1 =A1 D B Apy =V.

We say A splits a subspace W of V if W can be expressed as a sum of members of A.

Define the subset V5 as
Va ={x eV |Asplits x}.

We thus obtain an abstract building . The action of G = GL(V, K) onitisclear: g € G
maps any proper, non-trivial subspace W of V to a proper, non-trivial subspace g.W.
Any frame A specifies a maximal torus T(A) of GL(V): it consists of the linear
transformations with eigenspaces A;. The simplicial complex ¥ 5 is identified with
the complex of facets in ‘o (GL(V), T(A)) as follows. First, each chamber in ¥, is a

maximal flag of subspaces of V:

n+l n

V= Z‘?\a(i) 2 Z‘?&a(i) 2241 20,
i= i=
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Chapter 5. Incidence Geometry of Lattices

where (Ag(1), **+ , Ag(n+1)) 18 a labeling of members of A. Such labeling are indexed by
the symmetric group S,41, i.e. the linear Weyl group of type A,. Let B(A,) be the
stabilizer of the above flag. Then B(A,) is a Borel subgroup of GL(V) containing T(A).
Furthermore, for any subflag, its stabilizer is a parabolic subgroup of GL(V) containing
B(Ay). Therefore, by Proposition 3.5.2, we obtain a morphism of simplicial complexes,
which turns out to be an isomorphism.

The actions of g € G on F and “B(GL(V)) give us the following commutative

diagram of abstract simplicial complexes:

Fa — Y (GL(V), T(A))

| I

Fon — A (GL(V), T(A)®)

Hence the abstract building ¥ is isomorphic to the Tits building "% (GL(V)).

Remark. Let D be a division algebra over K. One can replace K by D in the above

argument. This gives us the Tits building of non-split reductive groups GLp (V).

5.1.2 ([Gar97, chap.10]). The Tits building of type C, (or B,,) can be obtained similarly.
Following Example 3.1.7.(ii), let D be a division algebra over K with an involution o
such that K is precisely the o-fixed-point subfield of the center of D. LetV be a hermitian

space over D. Let’s fix the following terminology [Gar97, chap.7]:

» Two vectors v, w € V are orthogonal to each other, denoted by v_Lw, if (v |w) = 0.
Two subspaces W, W’ are orthogonal to each other, denoted by WLW’,if (- | -)
vanishes on W x W’. A direct sum of subspaces is an orthogonal sum if each

summand is orthogonal to others.
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§5.1. Tits buildings of classical groups

A vector v € V is isotropic if w L w. A subspace W of V is totally isotropic if

w1 Ww.

A subspace W of V is anisotropic if any non-zero vector in W is not isotropic.

A hyperbolic plane in V is a two-dimensional subspace admitting a basis e, e_
such that

(ex]es) =(e-]e-)=0 and (er]e-) =1

A hyperbolic space is an orthogonal sum of hyperbolic planes. It turns out that V
can be written as an orthogonal sum of a hyperbolic subspace and an anisotropic
subspace. Although such a decomposition is not unique, their dimensions are

invariants of the space V.

To obtain a building of type C,, let’s assume the dimension of maximal totally
1sotropic subspace of V is n and exclude the case when V is a hyperbolic space with a

symmetric form (- | - ). Consider the following data:

(i). The vertex set V consists of non-trivial totally isotropic subspaces of V.
(i1). The incidence relation is: x ~ y for x,y € V whenever x C y orx 2 y.

(ii1). A (hyperbolic) frame is an unordered 2n-tuple of lines in V
A={ALAL - AL AL}

which admit grouping into unordered pairs {A*, A7 } such that each A¥+A is a hyperbolic
plane H; in V and that H, := H| + - - - + H,, is an orthogonal sum. Then the whole space

V can be written as an orthogonal sum of H, and an anisotropic subspace A.

Given a frame A, one can see that any totally isotropic subspace of V can be expressed
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Chapter 5. Incidence Geometry of Lattices

as a sum of members of it. Define the subset Vy as
Va ={x eV |Asplits x}.

We thus obtain an abstract building 7. The action of G = O(V,K) onitis clear: g € G
maps any non-trivial totally isotropic subspace W of V to a non-trivial totally isotropic
subspace g.W.

A hyperbolic frame A specifies a maximal torus T(A) of O(V): it is the subgroup
of linear transformations with eigenspaces A and A. The simplicial complex F is
identified with the complex of facets in %/ (O(V), T(A)) as follows. First, each chamber

in F A is a maximal flag of totally isotropic subspaces of V:

—

n n—
€; €i €
Z)‘c(i) 2 . Aa(i) 22 Aalu) 20,

i=1 i

Il
—

where 0 € S, and each ¢; € {+, —}. We should think this is a labeling of members of the
frame A respecting its grouping. That is to say, we have a labeling (Hg(1), - - - , Hg(n))
of the hyperbolic planes, indexed by the symmetric group &,, and then in each Hy(;),
specify Af;'(l.) from the unordered pair {)‘;(i)’ A;(i)}. Therefore, the labeling is indexed
by &, ={x}", i.e. the linear Weyl group of type C,. Let B(A¢) be the stabilizer of the
above flag. Then B(A¢) is a Borel subgroup of O(V) containing T(A). Furthermore, for
any subflag, its stabilizer is a parabolic subgroup of O(V) containing B(A¢). Therefore,
by Proposition 3.5.2, we obtain a morphism of simplicial complexes, which turns out to
be an isomorphism.

The actions of g € G on F and "% (0O(V)) give us the following commutative diagram
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§5.1. Tits buildings of classical groups

of abstract simplicial complexes:

Fa — W (OV), T(A))

| I

For — Y (O(V), T(A)¥)

Hence the abstract building ¥ is isomorphic to the Tits building “ZB(0O(V)).

5.1.3 ([Gar97, chap.11]). The Tits building of type D, needs a specific construction.
Let V be a 2n-dimensional hyperbolic space with a symmetric form ( - | - ). Consider

the following data:

(1). The vertex set V consists of non-trivial totally isotropic subspaces of V with
dimension not n — 1.

(i1). The incidence relation is: x ~ y for x, y € V whenever x C y or x 2 y or both
x, y are n-dimensional and x N y has dimension n — 1.

(ii1). A (hyperbolic) frame is an unordered 2n-tuple of lines in V

A={A5A7, -, AL )

>ty tn

which admit grouping into unordered pairs {7\;', Al } such thateach AT+A is a hyperbolic

plane H; in V and that H; + - - - + H, = V is an orthogonal sum.

Defining V5 as before, we obtain an abstract building . The action of G = SO(V, K)
on it is clear: g € G maps any non-trivial totally isotropic subspace W of V to a
non-trivial totally isotropic subspace g.W with the same dimension.

A hyperbolic frame A specifies a maximal torus T(A) of SO(V): it is the subgroup
of linear transformations with eigenspaces A7". The simplicial complex ¥4 is identified

with the complex of facets in '/ (O(V), T(A)) as follows. First, each chamber in ¥ 4 is
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now not a maximal flag but a maximal oriflamme of totally isotropic subspaces of V:

n n—1

€; €; €n € €]
Z)‘om’ Z’\am Asmy 2 Z" 2 A, 20,

i=1 i=1
where 0 € S, and each ¢; € {+, —}. Then point is that there is no priority between the

n—1 9¢; —€n n-2 e,
()andz Aa(l)+)\()andthat2 A,

lives in their intersection, a totally isotropic subspace of dimension n — 1. Hence, if

maximal totally isotropic subspaces Y% A

we want to think such an oriflamme as a labeling of members of the frame A, we need
to exclude the specification of the last AZ"(n). Consequently, the labeling is indexed by
S, x{+}""!, ie. the linear Weyl group of type D,. Let B(AS) be the stabilizer of
the above oriflamme. Then B(A§) is a Borel subgroup of SO(V) containing T(A).
Furthermore, for any sub-oriflamme, its stabilizer is a parabolic subgroup of SO(V)
containing B(A). Therefore, by Proposition 3.5.2, we obtain a morphism of simplicial
complexes, which turns out to be an isomorphism.

The actions of g € G on ¥ and “%(SO(V)) give us the following commutative

diagram of abstract simplicial complexes:

Fa — Y (SO(V), T(A))

| s

Fea — @ (SO(V), T(A)¥)

Hence the abstract building ¥ is isomorphic to the Tits building “%(SO(V)).

§ 5.2. Lattices and norms

In this section, we follow [Gar97, chap.19] to describe the incidence geometry of the

Bruhat-Tits building of split type A, using the language of lattices. Then we relate it to
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what we have seen in Chapter 4 through the notion of norms.

Definition 5.2.1. Let V be a vector space over K. A lattice in 'V is a finitely generated
Ok-submodule of V spanning V. Two lattices are homothetic if they are different by a

nonzero constant factor.

5.2.2 ([Gar97, chap.19]). Consider the following data:

(1). The vertex set V consists of homothety classes of lattices in V.
(i1). The incidence relation is: x ~ y for x, y € °V whenever they admit representa-
tives L and L’, respectively, such that L 2 L’ 2 wL.

(ii1). A frame is an unordered tuple of lines in V

A= {)\1)"' :)\n+1}

suchthat Aj+---+ A1 =A1 D - DAy =V.

We say a frame A splits a lattice L in V if L can be expressed as a sum Ly + - - - + L1,
where each L; is a lattice in a member A; of A. It is clear such a property is maintained
through homotheties. We say A splits a vertex x € V if it splits a representative L of x.

Define the subset V5 as

Va ={x V| A splits x}.

We thus obtain an abstract building #. The action of G = GL(V,K) onitisclear: g € G

maps any homothety classes of lattices [L] in V to another one [g.L].

To see how this incidence geometry is related to the affine geometric description, we

need the following description of %(GL(V)) in [BT-3].
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Definition 5.2.3. A norm onV is amap a: V — R U {co} such that for any u,v € V

and any t € K,

(1). a(tu) = val(t) + a(u);
(i). a(u+v) = inf{a(u), a(v)};

(iii). a(u) = oo if and only if u = 0.

The set of norms on V is denoted by ./ (V). If a is a norm, then so is « + ¢ for any ¢ € R.
Such a norm is said to be homothetic to a. The set of homothety classes of norms on V

is denoted by X (V).
Example 5.2.4. Any lattice L in V defines a norm oy
ap: v eV — sup{val(t) | v € tL}.

It is clear that homothetic lattices define homothetic norms. We thus obtain an injective

map from V to & (V) mapping the class of lattices [L] to the class of norms [ay].

Definition 5.2.5. We say a frame A splits a norm « on V if for any tuple (vj)pea of

vectors in V, we have

a(Z v) = inf{a(vy) | A € A}.

AEA

Given a frame A, let A denote the set of norms split by A. It is naturally a real affine

space under RA: for any v = (cp)aeA € RA and any a € RA, define o + v as

a+v: Z vy — inf{a(vy) +cy | A € A}.
AeA

One can see that A is invariant under homotheties. Its homothety quotient is denoted

by Ax. The above a real affine space structure induces one on A,.
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Definition 5.2.6. Suppose L and L’ are two lattices split by A. Then we can express

them as

L=>1p and L'=) I,

AeA AeA
where each L and L] are lattices in the line A € A. The elementary index of Ly over L}

is the real number
[Ly : L}] := sup{val(t) | Ly C tL}}.

Then the elementary index of L over L’ is the sequence of real numbers

(L:L) = ((L: L)a)aea = ([La - LyDaea

Since we only care about homothety classes of lattices, we allow the sequence to be
determined up to a nonzero common factor. We will use [L : L] or [x : y] (where
x = [L] and y = [L’]) to denote the image of the sequence (L : L) in the quotient vector

space RA/R1. One can further spell out that
(5.2.1) [ar] = o] = [L:L'].

Definition 5.2.7. A basis of a frame A is a basis e = (e, - - - , eny1) of V such that each
e; spans a member of A. Given such a basis e is amount to identify the split reductive
groups (GL(V), T(A)) and (GL41, Dry1)-

Recall notations from Example 3.4.4. We further identify the coroot space V of the
pair (GLps1, Dys1) with the quotient vector space R /R1 by identifying the cocharacters

A; with the members A; of A. Then we can assign each vector v € V a norm o y:

Oey : € <Xi: V>-
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Then it is clear that

de TV =10y,

and hence we have Ay = e + V.

On the other hand, recall in Example 3.3.12, we have the following Chevalley system

(Uai)1<ij<nt:
uaij(_) = Sl]
01

Let ¢ be the associated valuation as in Example 4.1.6. Namely, ¢,; = val ougi. Then

@ +V — o,y identifies the real affine spaces A (defined in 4.1.8) with A.

5.2.8. The space (V) carries an action of GL(V, K):
,_ -1
ga:=aog .

One can see that such an action is compatible with homotheties. We thus obtain an
action of GL(V,K) on & (V). It is then clear that T(A) acts vectorially on A and its
normalizer N(A) stabilizes Ay. We are thus able to compare the abstract apartment ¥ 5

with the affine apartments

* 9/(A), with affine space A and group action as above, and

* o/ (GL(V), T(A)), with affine space A and group action following Example 4.1.12.

It is straightforward to verify that the identification in Definition 5.2.7 gives us an

isomorphism between above apartments. Moreover, the following commutative diagram
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of affine apartments is evident.

Fa —— d(A) —— d(GL(V), T(A))

L d s

For — d(gA) — d(GL(V), T(A)®)

Hence, the abstract building ¥ is isomorphic to the Euclidean building 2 (V) and is

isomorphic to the Bruhat-Tits building % (GL(V)).

§ 5.3. Primary lattices and maximinorante norms
In this section, (V, (- | -)) is a hermitian space over K, i.e. we take (D, o) to (K, id) in
Example 3.1.7.(i1). There are three cases:

e (Cytype) (- | -) is alternative.
* (D, type) (- | -) is symmetric and V is hyperbolic.

* (By type) (- | - ) is symmetric and V is not hyperbolic.
In any case, we consider the following notion:

Definition 5.3.1 ([Gar97, chap.20]). A lattice L in V is primitive if (- | - ) is Og-valued
onLandif (- | -) (mod w) is non-degenerate on the x-vector space L/wL.

The dual lattice of a lattice L in V is
L :={veV|{(L|v) € Ok}.

It is clear that L* = L if and only if L is primitive.

Remark. The existence of primitive lattices is not always automatic. In all following

cases, we assume the existence of primitive lattices.
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5.3.2 ([Gar97, §20.1]). Assume ( - | - ) is alternative. Consider the following data:

(i). The vertex set V consists of homothety classes of lattices in V which admits a

representative L with the following property: there is a primitive lattice L, such that
L, 2 L2 wlL,,

and that

(L|L)y C mg.

In other words, L/wL, is a totally isotropic subspace of L,/wL,.

(i1). The incidence relation is: x ~ y for x, y € V whenever they admit representa-
tives L and L', respectively, with the following property: there is a primitive lattice L,
such that

Lyk2L2wlL, and L,2L 2wl,

and that either L C L or L D L'.
(iii). A frame is a hyperbolic frame A = {AT, A7, -+, A}, A} inV

>t tn

Defining V5 as before. Namely,
VA :={x €V |Asplits x}.

We thus obtain an abstract building . The action of G = Sp(V, K) on itis clear: g € G
maps any primitive lattices in V primitive ones and hence the properties mentioned

above are maintained.

5.3.3 ([Gar97, §20.2]). Assume ( - | - ) is symmetric and V is hyperbolic of dimension

2n (n > 4). Consider the following data:
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(i). The vertex set V consists of homothety classes of lattices in V which admits a

representative L with the following property: there is a primitive lattice L, such that

Lo 2 L 2 wl,,

and that L/wL, is a totally isotropic subspace of L,/wL, of dimension other than 1 and
n—1.

(i1). The incidence relation is: x ~ y for x, y € V whenever they admit representa-
tives L and L’, respectively, with one of the following property: (a) there is a primitive

lattice L, such that

L, 2 L D wl, and L, 2L 2wk,

and that either L C L' or L 2 L’; (b) there is a primitive lattice L, such that the k-vector
spaces L/wL, and L’ /wL, are both 0-dimensional or are both n-dimensional, and that

all the following x-vector spaces

L L L+1/ L+1/
LNnL’ LNnL’ L’ L’

are one-dimensional.

(iii). A frame is a hyperbolic frame A = {AT, A7, -+ , A}, A} inV
Defining V5 as before. Namely,
VA :={x €V |Asplits x}.

We thus obtain an abstract building . The action of G = SO(V, K) onitisclear: g € G
maps any primitive lattices in V to primitive ones and hence the properties mentioned

above are maintained.
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Chapter 5. Incidence Geometry of Lattices

5.3.4 ([Gar97, §20.3]). Assume (- | - ) is symmetric and V is not hyperbolic. Hence, V
is the orthogonal sum of a hyperbolic subspace and a nonzero anisotropic subspace A.

Consider the following data:

(1). The vertex set V consists of homothety classes of lattices in V which admits a

representative L with the following property: there is a primitive lattice L, such that

L, 2 L 2 wl,,

and that L/wL, is a totally isotropic subspace of L,/wL, of dimension other than 1.
(i1). The incidence relation is: x ~ y for x,y € YV whenever they admit representa-
tives L and L’, respectively, with one of the following property: (a) there is a primitive

lattice L, such that

L, 2 L2 wl, and L, 2L D wlL,,

and that either L C L' or L 2 L’; (b) both L and L’ are primitive and that all the following

K-vector spaces
L L L+L L+L
LNL”’ Lnr’ L’ r

are one-dimensional.

(iii). A frame is a hyperbolic frame A = {AT, A7, -+ A%, A7} inV

Since V is not hyperbolic, the notion of splitting needs to be modified. We say a

hyperbolic frame A splits a lattice L in V if L can be expressed as

L:ZLA@Ai
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§5.3. Primary lattices and maximinorante norms

where A° is the unique™ maximal Og-valued lattice in A. Define
Va :={x € V| Asplits x}.

We thus obtain an abstract building . The action of G = SO(V,K) on it is clear:
g € G maps any primitive lattices in V to primitive ones and preserves A°. Hence, the

properties mentioned above are maintained.

To see how this incidence geometry is related to the affine geometric description, we

need the following notions.

Definition 5.3.5 ([BT-4, §2]). Let (V, (- | - )) be a hermitian space. A norm « on V is
minorante if

a(u) +a(y) < val({u|v)) for all u,vev,

and that (if q is associated with { - | - ))
a(v) < %Val(q(v)) for all vev.

A norm is maximinorante if it is a maximal element in the set of minorante norms.

The dual norm of a norm « is the norm
a':ueVi— inf{val({u|v)) —a(v) |v e V}.

If o™ = a, we say the norm « is self-dual.

We use .Z (V) to denote the subset of .4 (V) consisting of maximinorante norms.

Remark. In general, maximinorante norms and self-dual norms are not the same. To

simplify discussion, we may assume 2 is invertible in K and then the two notions

*One can try A° = {v € A| (v|v) € O}.
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Chapter 5. Incidence Geometry of Lattices

coincide.

Example 5.3.6. One can see

Hence, for any lattice L, the average
arr* = E(O(L +ag+)

is a maximinorante norm. Furthermore, a; 1+ depends only on the homothety class [L].

We thus obtain an injective map from V to (V).

Definition 5.3.7. For each hyperbolic frame A = {A*,AI, cee )\.:{,)\;}, let A denote
the subset of ./ (V) consisting of norms split by A.

Let I be an index set for the hyperbolic planes H; = AT + A_. Then A is naturally a
real affine space under R’: for any vector v = (¢;)ic; € R and any a € A A, define o + v

as follows: foreachi € I,
veA — a(v) +¢ and ver — a(v) —c,

and on A, a + v agrees with a.

Suppose L and L’ are two lattices split by A. Then Eq. (5.2.1) implies that
(5.3.1) app =y — [L: L4,
where the real vector [L : L']* is built from [L : L’] as follows: its i-th component is

(5.3.2) [L:L]7 = ([L P - (L L’]Ai—) .

| =

We call it the hyperbolic index of L over L'.
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§5.3. Primary lattices and maximinorante norms
Definition 5.3.8. A hyperbolic basis of a hyperbolic frame A is a basis

e= (6156—1: tte 7611, e—n)

of the frame A of H, such that (e; | e_;) = 1. Given such a basis e is amount to identify
the semisimple group (SO(V), T(A)) with one of the followings™: (Sp,,, D2, N Sp,,,),
(SO2n, D2n N SO2x), and (SOzn+1, Donst N SO2n41).

Recall notations from Examples 3.4.7 and 3.4.8. We can further identify the coroot
space V with the quotient vector space R’ through the assignment i € I — A.;. Then

we can assign each vector v € V a norm . y:
ei > {X+i, V) and e i — —(x+i, V), for all iel.
Then it is clear that
Ue0 +V =0y,

and hence we have Ay = a9 + V.

5.3.9 ([BT-1, 10.1.2, 10.1.13]). Suppose e = (ej,e_1,- -, en, e—y) is a hyperbolic basis.

We extend the index set I to I := I U (=I) by introducing (i) as

1 ifiel
e(i) =

e if-iel.

Let’s introduce the argument space™

Z:={(z,x) e W(A) X G, | (1+¢€)(q(z) —x) =0, (1 —¢€)z =0}.

*More precisely, we only identify a split semisimple subgroup of SO(V), which acts as G, on the
anisotropic subspace A (if it is non-trivial).
*“*Following previous footnote, such an argument space is essentially G,.
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Chapter 5. Incidence Geometry of Lattices

Consider the following linear transformations:
e foreachi e Iand (z,x) € Z:

v v—e(i){(z|vye; ifveW(A)

ui(z,x): Ye; > z+e; —e(i)xe;

ej = ej lf] £ i
o for any i, j € I such that j # +i and each x € G,:

U v ifv e W(A)

e; > e+ e(—j)xe_;
uij(x):
ej > ej —e(i)xe_;

ex > ex iftk#1i,j

Then they give the following Chevalley systems:
* (Cp type) For @ = {i)(ﬂ-i)(ij“ <i¢j<n}u{12)(ﬂ- |1 <i<n}:
£2x+i > u(0, ) and * Xi t Xxj > Usizj(—).
* (B, type) For @ = {ixﬂ-ixij“ Si#]j< n}U{iXiil 1 <i<n}:
txX2i > Usi(—,—) and £ Xai t Xxj > Usizj(—).
* (D, type) For @ = {J_r)(ﬂ- + X+j | I1<i#j< n}:
X i £ Xxj > Usizj(—).

The associated valuations ¢ following Example 4.1.7 are:
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§5.3. Primary lattices and maximinorante norms
* (Cy, type) For @ = {iXiiiXij|l <i¢j<n}u{12)(ﬂ- |1 <i<n}:
P12y, 0 U+i(0,x) > val(x) and Piyaitye; - Uszizj(x) = val(x).
* (B type) For @ = {ixiii)(ij“ Si1#]j< n}U{iXii| 1 <i<n}:
. 1 .
Py, Usi(2,X) — 3 val(x) and Piyaitys; t Usixj () = val(x).
* (D, type) For @ = {i)(ii * X+j | I1<i#j< n}:
Piyoitys+ uiiij(x) — val(x).

Then one can verify that ¢ + v — a,y identifies the real affine spaces A (defined in

4.1.8) with A4.

5.3.10. The space .# (V) carries an action of O(V, K):
o -1
ga:=aog .

It is then clear that T(A) acts vectorially on A and its normalizer N(A) stabilizes A,.

We are thus able to compare the abstract apartment ¥ 5 with the affine apartments

* 9/(A), with affine space A and group action as above, and

* o (SO(V), T(A)) given by the valuation ¢ (see 4.1.14).

It is straightforward to verify that the identification in Definition 5.3.8 gives us an

isomorphism between above apartments. Moreover, the following commutative diagram
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Chapter 5. Incidence Geometry of Lattices

of affine apartments is evident.

Fa— d(A) —— d(SO(V),T(A))

{1 L

For —> d(g.A) — 4 (SO(V), T(A)®)

Hence, the abstract building 7 is isomorphic to the Euclidean building .Z (V) and is

isomorphic to the Bruhat-Tits building B(SO(V)).
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Simplicial Distance

143



Chapter 6.

Vertices and Simplicial Distance in Apartments

The purpose of this chapter is to characterize the simplicial distance:

Theorem 6.1. In an irreducible Bruhat-Tits building of split classical type, two vertices
x and y have simplicial distance at most d if and only if they are separated by at most
d — 1 parallel walls. In particular, fixing a fixed special vertex o as the reference point,

for any vertex x, we have
6.1) d(x,0) <d < ap(x—0) <d,
where ay is the highest root relative to a Weyl chamber covering x.

In § 6.1, we will see that problems in this dissertation can be reduced to irreducible
cases. This justifies why the above theorem only mention irreducible buildings. Then,
in § 6.2, a general framework will be established. Follow which, in § 6.3 to 6.6, we give
explicit descriptions of vertices and then characterize the simplicial distance when the

Bruhat-Tits building & is of split classical type.
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Figure 6.1. The two blues vertices are separated by at most 3 parallel walls (such as the
red ones) and have simplicial distance 4 (the right-hand side displays a path
of length 4)

Figure 6.2. The blue vertex has value 3 under the highest root ag relative to the Weyl
chamber (the green cone) and is of simplicial distance 3 from the red origin
(the right-hand side displays a path of length 3)
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Chapter 6. Vertices and Simplicial Distance in Apartments

§ 6.1. Reduce to irreducible ones

The following lemma is essential for reduction purpose.

Lemma 6.1.1. Suppose B = B X B> is a decomposition of Bruhat-Tits buildings. Let
di( -, -) (i = 1,2) be the simplicial distance on 9B; and pr; the canonical projection

from B to B;. Then we have

(6.1.1) d(x,y) = di(pry(x),pr;(y)) + d2(pry(x), pro(¥)).

Proof. First, the left-hand side is no larger than the right-hand side by triangle inequality.
To show the equality, we only need to show that if x, y are adjacent, then pr;(x) = pr;(y)
holds either for i = 1 or 2. Indeed, x,y are adjacent means that the segment [x, y]

contains no vertex inside it and the set
¥Y={ae®|[x,y] Cdafor some a € X}

has rank one less than ®. Then, we must have ¥ N ®; = ®; for either i = 1 or 2. Suppose
YNP; = ;. Forany (a,a) € &, pr;(da) is either a wall in B (if a € ®) or the entire

building (if a ¢ ®@;). Therefore, pr,([x, y]) is a vertex and hence pr;(x) = pr;(y). O

Hence, the discussion of simplicial distance can be reduced to irreducible cases. The

following corollary is an example.

Corollary 6.1.2. Suppose B is decomposed into irreducible ones:

B=RB X XBn.
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§6.2. Generality on vertices and simplicial distance

Let SSA;( -) (1 < i < m) be the simplicial surface area in B;. Then, we have
SSA(r) = Z SSA; (1) - - SSAp (rm).
riterm=r
Proof. Let 9;(r) (1 < i < m) be the simplicial sphere in 9%;, then we need to show:
a(r) = |_| L) X -+ X 3™ ().
ri+e+rm=r

This follows from Lemma 6.1.1. O

In particular, in order to compute the simplicial surface area in general, it suffices to
do that for irreducible ones. Since SSA(r) = SV(r) — SV(r — 1), the same holds for the

simplicial volume.

§ 6.2. Generality on vertices and simplicial distance

Lemma 6.1.1 suggests that, in order to understand the simplicial distance on general
Bruhat-Tits buildings, we only need to do so on irreducible ones. Now, suppose A
is an irreducible Bruhat-Tits building of split type X,,. Then we can deduce explicit
characterization of the simplicial distance as follows.

We should first notice that, any two vertices are contained in a common apartment.
Therefore, instead of simplicial distance on a building, we may consider simplicial dis-
tance on an apartment. Throughout this section, we temporarily forget the background

of classical groups and focus on the affine apartment o/ (®) of split type ®.

(i). We first fix a realization of &/ (®) We start with the Euclidean space R™. Then the
underlying Euclidean space V of @ is a certain subspace of R™. We use (e}, -+ ,€;)

to denote the standard basis of R™ and (x,:- -, xm) the dual basis in (R™)*. By an
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Chapter 6. Vertices and Simplicial Distance in Apartments

abuse of notation, we do not distinguish y; from its restriction to V. The standard inner
product on R™ is denoted by ( -, -). Then the underlying Euclidean affine space of
2 (®) can be written as A = o + V. We keep the convention that any linear function on
V is also viewed as an affine function on A by taking o as the reference point.

The root system @ can be written in terms of linear functions on V, and we thus
obtain a concrete description of the coroot lattice Q" in V. This gives the translation
group of the apartment &/ (®). On the other hand, the action of the Weyl group YW has
a concrete geometric interpretation on V. Then the affine Weyl group W is obtained as

the semi-product of them.

(ii). Next, we choose a Weyl chamber “C and describe the following data:

®*, the associated system of positive roots;

A ={ay,---,a,}, the system of simple roots;

aop, the highest root,

2p, the sum of positive roots.

Note that o + UC is a fundamental domain under the Weyl group “W. We will use D (*C)

to denote it.

(>iii). The fundamental coweights w1, - - - , w, relative to A are the vectors in V such that
(6.2.1) ai(wj) = &;; for all 1 <i,j<n.

They form a basis of the coweight lattice " in V. Recall that special vertices in & (®)
are the points x € A such that a(x) €T for all a € ®. Hence, the set of special vertices
in of (®) are precisely o + P" ®7T.

The above can be found in [Bourbaki, chap.VI, §4, no. 5-9].
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§6.2. Generality on vertices and simplicial distance

(iv). The simple roots ay, - - - , a,, together with the highest root ag, give rise to a basis
A = {ag, i, ,0n} of £ as in 2.4.9. To simplify notations, we assume that val( -)
is normalized in the sense that ' = Z. Then we have ag = {x € A | —ap(x) + 1 > 0}.

Hence, the fundamental alcove C associated to A can be expressed as
(6.2.2) C:= {0+V|V€“C,ao(v) < 1}.

Let vg = o,vy, -+, Uy, be its extreme points, where each v; is opposite to the wall da;.

Then we have (recall Convention 2.4.11 for h;)
(6.2.3) aj(v;) = hy'8y;, forall 1<j<n
Therefore, v; = 0 + hl._lwi.

(v). Following Convention 2.4.11, a vertex has color i if it is conjugated to v; by the
affine Weyl group W. Let V; be the sets of vertices in &/ (®) having color i. Since W is

the semi-product of W, = YW and Q", we have

(6.2.4) Vi=Wovi +Q".

Note that for any 1 < j < n, we have

(6.2.5) raj(vi) =v; + aj(vi)a}/ =v; + hi_l&jaly.
Since W, is generated by {raj | I1<j< n}, we see that

(6.2.6) vi+Q' CViCuy+h'Q".

In particular, if v; is a special vertex, then V; = v; + Q". In general, V; can be obtained

by computing W,.v;. The set V of vertices in & (®) is then the disjoint union of V; for
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Chapter 6. Vertices and Simplicial Distance in Apartments

0 < i < n. Let h be the maximum of hy, - - - , h,. Then we have
(6.2.7) 0+P'CVco+iP.

The next steps are to apply previous results to characterize the simplicial distance.

The goal is to prove Theorem 6.1.

Definition 6.2.1. A hyperplane H is strictly between two points x and y if its intersection
with the open geodesic (x, y) is non-empty. For each a € @, let a(x,y) denote the

number of walls that are parallel to H, := Ker(a) and are strictly between x and y.

~=e
<e

Figure 6.3. Seven parallel walls between two points x and y

Since any edge intersects with a wall by a vertex, we must have
(6.2.8) dx,y) =z a(x,y)+1 for all aeod.

Therefore, to prove Theorem 6.1 amounts to construct a path between x and y whose
length is

max{a(x,y)+1|a e ®}.

Note that a(x, y) = —a(x, y) by definition. Hence, we may only focus on positive roots.

Note that the following is a parabolic subset of ®.

(6.2.9) ¥ysy i={ae®|a(x-y) > 0}.
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§6.2. Generality on vertices and simplicial distance

Hence, we may choose a system of positive roots ®* contained in ¥,,. Then we have

(6.2.10) a(x,y) =max{[a(x)] — la(y)] - 1,0}

for all a € ®*. Since we only consider the classical root systems, we always have h < 2
and hence a(x) € %Z. Consequently, —|a(y)] = [a(=y)].

We separate the discussion into three cases:

(1). Both x and y are special.
(i1). One of x and y is special.

(ii1). None of x and y is special.
For the first case, we need the following technical lemma.

Lemma 6.2.2. Suppose h;, < 2. Let x,y be two vertices such that a;(x) = a;(y) = k; €
Z forall 1 <1i< nexcepti=iyand that either a;,(x) € Z or a;,(y) € Z. Then there is

a path of length m = |al~0 (x) — aj, (y)|hi0 between them.

Proof. We may assume that a;,(y) € Z and that a;,(x) — a;,(y) > 0. Consider the
sequence X = %x +(1- %)y (0 < j < m). Then we have a;(xj) = k; forall 1 <i<n
except i = iy. Moreover, since a;,(x;) = a;,(y) + h%o we have ag(x;) € Z.

Now, we need to show that the segment [x;_1, x;] is an edge for all 1 < j < m. Since
this segment already lies in the intersection of the walls daq,—, (i # ip), it remains to
show that there is no vertex inside it. Suppose x; := txj_1+(1—-t)x; (0 < t < 1)isa vertex
inside the segment [x;_1, x;]. Then there must be another root a = cja; + - - - + cpapn

linearly independent of a; (i # ip) such that a(x;) € Z. Then c;,a;,(x;) has to be a
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Chapter 6. Vertices and Simplicial Distance in Apartments
nonzero integer. Now, we have

CiyQj (Xt) = Ci,a;, (th_l + (1 - t)Xj)

tG-1+({1-1t)j
= CiyQi, | ¥ + - (x-y)

Ci .
= iy @i, (¥) + %(J —t).
io

Therefore, we have %( j—t) € Z. By the basic property of the highest root, we must
0
since we have

have 1 < ¢;, < hy,. If ¢;, = hy,, thent € Z, a contradiction. If ¢;; < h

ig» ig»

assumed that h;, < 2, we must have ¢;, = 1. Then hl( j—t) € Zimplies thatt € Z, a
0

contradiction. O
Now, we can prove the following result:

Lemma 6.2.3. Suppose h < 2. Then, for any special vertices x and y, we have
(6.2.11) d(x,y) <d < ap(x—-y) <d,
where ay is the highest root relative to a system of positive roots ®* contained in Wys,.

Proof. Consider the sequence x; = x;—1 +a;(x — y)w; (1 < i < n) with xg = y. Then all
x; are special vertices and for the successive vertices x;—; and x; have the property that
aj(xi—1) = aj(x;) forall 1 < j < nexcept j =i. Hence, by Lemma 6.2.2, there is a path

of length h;a;(x — y) between them. In this way, we obtain a path from o to x of length

hiaj(x —y)+ -+ +hpan(x —y) = ap(x — ).

This proves the lemma. O
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6.2.4. Next, let’s assume y is special. Then we may attach the Weyl chamber “C to y by

choosing y as the reference point o. Now we have
(6.2.12) a(x,y) = max{[a(x)] - 1,0} for all ac ot

In particular, max a(x,y) + 1 = [ap(x)]. Then, what we need to do is to construct a

suitable path from x to a special vertex xo € D (“C), verifying that
(6.2.13) d(x,x0) < [ao(x)] = ao(xo)-
Indeed, if such a path exists, by Lemma 6.2.3, we have

(6.2.14)  d(x,y) < d(x,x0) +d(x0,y) < [ao(x)] — ao(xo) + ao(xo) = [ao(x)].
There is no uniform way to construct such a path. Hence, we have to do it case by case.

Remark. In the actual construction of such a path, one may find that we do not need x

being contained in D (“C).

(vi). Under the assumptions in 6.2.4, construct the desired path explicitly. The following

technical lemma will be used in our constructions.

Lemma 6.2.5. Suppose {a[i] | I1<i<g n} is a linearly independent set of roots. Let x,y
be two vertices such that aj;)(x) = afj(y) = k; € Z for all 1 < i < n expect i = iy and

that |ajiy) (x) = afig)(¥)| = h~'. Then x and y are adjacent.

Proof. We need to show the segment [x,y] is an edge. Since it already lies in the
intersection of the walls 0 ap;~k; (i # ip), it remains to show that there is no vertex

inside this segment. Suppose x; := tx + (1 —t)y (0 < t < 1) is a vertex inside the
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segment [x, y]. By Eq. (6.2.7), we have ha;,;(x;) and ha[;,;(y) € Z. But

hayiy) (x;) = hayi,) (¥) + th(afi (x) — agig) (¥)) = hayi) (y) + t.
Therefore, t € Z, which is a contradiction. O

Finally, suppose none of x and y is special. Then they are either adjacent to each
other or separated by at least one special point s in the sense that a(x) > a(s) > a(y).

Choosing s as our reference point o, we have

* both x and —y are in D(*C), and

* a(x,y) = max{[a(x)] + [a(-y)] - 1,0}.
Therefore, Eq. (6.2.14) implies:
d(x,y) < d(x,0) +d(o,y) = d(x,0) +d(0,-y) < [ao(x)]+ [ao(-Y)]

Hence, the desired path can be obtained by taking a shortest path from x to o and then

from o to y, each of which is in the case 6.2.4.

§ 6.3. Vertices in the apartment </ (A,)
(i). The underlying Euclidean vector space is the following:
(6.3.1) V= {veR™ | x1(V) + + xns1(v) = 0}.

Its dual space is V* = (Ry; & -+ - @ Ryn+1)/R(x1 + - - - + xn+1). After identifying each
xi with its restriction to V, the root system can be written as follows:
(6.3.2) D= {yi—xj|1<i#j<n+1}.
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Then the coroot lattice Q" is the restriction of the standard lattice Z™*! in R™*! to V,

and the Weyl group YW acts on V as permutations of coordinates.

(ii). We can choose the following Weyl chamber:

(6.3.3) ‘C:={veV|xi(v) > xj(v)forall 1 <i<j<n+l1}.
Then the system of positive roots associated to “C is the following:
(6.3.4) Ot = {xi-xj|1<i<j<n+1}.

Among them, the simple roots are the following:

(6.3.5) a; :=xi—xi+1- (1 <i<n)
Using the basis A = {ay, - - -, a,}, the positive roots can be written as follows:
(6.3.6) Xi—Xj=ai+---+aj-;. (1<i<j<n+1l)

Among them, the highest root a relative to A is
(63.7) aO = Xl _Xn+l = al +-..+an.

Moreover, the sum of positive roots is

n

(6.3.8) 2p:§:an+1—am.

i=1

(iii). The fundamental coweights relative to A are the following:

(6.3.9) wi=(er+--+e) — e+ +ep). (1<i<n)

Then the coweight lattice P is Zw + - - - + Zw,,.
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(iv). The fundamental alcove associated to A can be expressed as follows:

(6.3.10) C:={x e Alxi(x) > > xns1(x), x1(x) = xn+1(x) < 1}.

The extreme points of C other than vg = o are the following:

(6.3.11) vir=o+w; =0+ (e +---+e)— (e + - +ep). (1<i<n)
Note that all of them are special vertices.

(v). Since each v; is a special vertex, we have
(6.3.12) Vi=vi+Q" ={xeA|yxj(x)+-5 e Zforall 1 <j<n+1}.
In particular, all vertices are special and hence V = o+ P".

(vi). Since all vertices are special, the A, case of Theorem 6.1 follows from Lemma 6.2.3.

§ 6.4. Vertices in the apartment </ (C,) (n > 2)

(i). The underlying Euclidean vector space V is the entire R", and its dual space V*
is thus spanned by the coordinate functions xi,::-, xn. Then the root system can be

written as follows:
(6.4.1) Di={xxitx;|l<i<j<npu{£2x|1<i<n}.

Then its coroot lattice Q" is precisely the standard lattice Z" in R", and the Weyl group

YW acts on V as permutations and sign changes of coordinates.
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(ii). We can choose the following Weyl chamber:
(6.4.2) C = {V eV |)(i(v) > xj(v)>0foralll1 <i<j< n}.
Then the system of positive roots associated to “C is the following:
(6.4.3) Ot =iyl <i<j<nfu{2xll<i<n}.

Among them, the simple roots are the following:

(6.4.4) a=xi—xi+1(1<i<n-1) and an :=2xn.
Using the basis A = {ay, - - -, a,}, the positive roots can be written as follows:
Xi—Xj=ai+--+aj, (I<i<j<n)
(6.4.5) XitXxj=ai+---+aj1+2aj+---+2a,1+a,, (1<i<j<n)
2xi =2a;+ -+ -+ 2a,1 + an. (1<i<n)

Among them, the highest root a relative to A is
(6.4.6) ap:=2x1 =2a;+---+2ap-1 +ay.
Moreover, the sum of positive roots is

i n+1
(6.4.7) 2p = ; i2n+1—i)a; + ( ) )an.
(iii). The fundamental coweights relative to A are the following:

w;'=e +---+e, (1<ig<n-1)
(6.4.8)
Wy, = %(e1+---+en).
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Hence, the coweight lattice PV is Z" + Z%(el +---t+e,).

(iv). The fundamental alcove associated to A can be expressed as follows:
(6.4.9) Ci={xeA|3>xi(x)> > xalx) >0}
The extreme points of C other than vg = o are the following:

vi=o+3wi=o+3(e +---+e), (1<i<n-1)
(6.4.10)
Up = 0+wp,=0+3(e +- - +ep).
Note that v, is a special vertex, while v; (1 < i < n — 1) are not special.
(v). For each i, by (i), W,.v; consists of the points x € A whose coordinates are either 0

or J_r% and exactly i of them are nonzero. Then we have

x’...’ x ElZ
6.4.11) Vi={xecA X1 (), dn() € 2

and exactly i of them are non-integers

Hence, we have V = o0 + %Z”. In particular, we have a;(x) € %Z foralll <i<n-1
and a,(x) € Z. Conversely, if a;(x) € %Z forall1 <i<n-1anda,(x) € Z, then we

can see that x — 0 € 3Z". Let w/ denote h; 'w;. Then we have

(6.4.12) V=0+Zw|® & Zw,,.

(vi). Not every vertex is special. We thus need the following notion:

Definition 6.4.1. Let x € A be a point. Then an index j € {1,---,n} is called a jump

if aj(x) ¢ Z. The set of jumps of x is denoted by J,.

Let x be a vertex in Z)(”C ) with jumps ji, - - -, js, ordered from smallest to largest.
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Note that we must have j; < n. Let x; = x — %(wj, +---+wj) for 1 <i<s. Then the

following lemma tells us that x; and x;;; are adjacent vertices.

Lemma 6.4.2. Let x € A be a vertex and j; its smallest jump. Then y = x — %a) jisa

vertex in D (“C) adjacent to x.

Proof. Firstnote that, by (v), we have a;(x) € %Z\Z forall j € J.. Hence, J, = J,\{ji}.

We define the roots ap;) (1 < i< n)as follows. If i € Jy, let

ap) =2a; + -+ +2a,-1 +a.
Otherwise, let af;) = a;. Then ayyy, - - -, af,) are linearly independent positive roots, and
ap)(y), - ,apn)(y) are non-negative integers. Hence, y is a vertex in Z)(“C). Since

xX—-y= %wjl, we have af;(x) = af;(y) forall i except i = ji and aj,j(x) —ayj,;(y) = %

Then Lemma 6.2.5 applies to the roots a;; (1 < i < n) and the vertices x and y. O

Then the sequence (x,x, - -+ ,xs) forms a path from x to x; of length s in D(*C).

Since x; has no jumps, it is a special vertex. Moreover, we have
— 1 —
ao(x) — ao(xs) = ya0(wj, +- -+ wj) =s.

Then this x; is the expected xq verifying Eq. (6.2.13). Thus, Eq. (6.1) is proved.

§ 6.5. Vertices in the apartment </ (B,,) (n > 3)

(i). The underlying Euclidean vector space V is the entire R", and its dual space V*

is thus spanned by the coordinate functions yi,-- -, x,. Then the root system can be

159



Chapter 6. Vertices and Simplicial Distance in Apartments

written as follows:

(6.5.1) CD::{J_rXiin|1<i<j<n}u{i)(i|1<i<n}.

Then its coroot lattice is the following sublattice of the standard lattice Z" in R"™:
(6.5.2) QY :={veZ"|(v,v) €2Z}.

The Weyl group W acts on V as permutations and sign changes of coordinates.
(ii). We can choose the following Weyl chamber:

(6.5.3) C .= {V eV |Xi(V) > xj(v)>0foralll <i<j< n}.

Then the system of positive roots associated to “C is the following:

(6.5.4) Ot =iyl <i<j<ntu{xill<i<n}

Among them, the simple roots are the following:

ai=xi—xis1, (1<i<n-1)

(6.5.5)
an i= Xn.
Using the basis A = {ay, - - - , a, }, the positive roots can be written as follows:
Xi—Xj=a+---+ajq, (I<i<j<n)
(6.5.6) Xitxj=ai+---+aj_1+2a+---+2a, (1<i<j<n)
Xi=ai+---+dan. (1<i<n)

Among them, the highest root a relative to A is

(6.5.7) ap ::x1+)(2:a1+2a2+---+2an.
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Moreover, the sum of positive roots is

(6.5.8) 2p = Z i(2n - i)a;.

i=1

(iii). The fundamental coweights relative to A are the following:

(6.5.9) w; =€+ --+e¢e. (1<i<n)
Hence, the coweight lattice P is precisely the standard lattice Z".

(iv). The fundamental alcove associated to A can be expressed as follows:

xX) >+ > yn(x) >0,
(6.5.10) coleenl X X

x1(x) +x2(x) < 1

The extreme points of C other than vy = o are the following:

vVi=0+wi1=0+¢€q,
6.5.11)

vi:o+%wi:o+%(e1+---+ei). (2<i<n)

Note that v; is a special vertex, while v; (2 < i < n) are not special.
(v). First, apply the affine Weyl group W to vy, we have

(x);”. 3 n(x) e Z}
(6.5.12) Vo=lxea| X X

x1(x) + -+ xn(x) is even
Applying W, to vy, we see that W,.v; consists of the points x € A having one coordinate

being 1 or —1 and all others are 0. Then we have:

x))”') H(X)EZ’
(6.5.13) Vi=lxecA x X

x1(x) + -+ xn(x) is odd
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For each i > 1, W,.v; consists of the points x € A whose coordinates are either O or i%

and exactly i of them are nonzero. Then we have:

1
X), - yn(x) € 17
(6.5.14) Vi=lxeA X1 (), xn(x) € 5

and exactly 7 of them are non-integers

Hence, the vertices are all the point x € A such that y;(x) € %Z for all j and the number

of non-integer coordinates is not 1. In particular, we have

(6.5.15) VCo+iZ'=0+1P".

However, the equality doesn’t hold. For instance, the point o + %wl is clearly not a
vertex. Another example is o + %(wi_ 1 + w;) where all y;(x) are integers except j = i.
To better describe the vertices, we need the notion introduced in Definition 6.4.1.

Then the complement of V in o + % PV can be described as follows.

Lemma 6.5.1. A point x € o + %PV belongs to the complement if and only if either

Je ={j1, o} and jo — ji1 =1, or Jx = {1}.
We will use E to denote the set of points x € A having the property in the lemma.

Proof. First, points in E cannot be vertices. If J, = {1}, then x is not a vertex since all
xj(x) are integers except j = 1. If J, = {ji, jo} and jo — j; = 1, then x is not a vertex
since all yj(x) are integers except j = j,.

Conversely, suppose x € o + % PV and x ¢ E, then there are four cases:

(1). |Jx| = 3. Then at least two coordinates of x are non-integers.
(ii). Jx = {j1,jo} and jo — ji > 1. Then x;+1(x),- -, xj, (x) are non-integers.

(iii). J = {j1} and j; > 1. Then x1(x),---, xj, (x) are non-integers.
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(iv). x has no jumps. Then it is a special vertex.
In any of above cases, x is a vertex by our characterization. O

We illustrate the related structures of V by the following diagram, where 1 denotes

“being special”.

o+ 1PV ENo+iPY
Y ENo+1iPY
/ V;
(VT i=2EJ-~,n

Figure 6.4. The set V of vertices and related structures in &/ (B,).

(vi). Letx € D (“C ) be a vertex having jumps ji, - - - , js, ordered from smallest to largest.
To construct a path between x and a special vertex xo in D (“C) verifying Eq. (6.2.13),

we need the following lemmas.

Lemma 6.5.2. Suppose either j; — js—1 > 1 ors > 3. Theny = x — %wjl is a vertex in

D(¥C) adjacent 1o x.

Proof. SinceV C o+%?’v,wehave Jy = Je\{j1}. We define the roots aj;; (1 < j < n)

as follows. First, let

aj-1 +2aj +---+2a, if js — js—1 > 1,
arj] =
aj_,+---+aj_1 +2aj +---+2a, otherwise.
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For2 <i<s-—1,let

ajj) = aj; + -+ ajy,-

Finally, if j ¢ Jy, let ajjj = a;. Then ajy},- -, a, are linearly independent positive
roots, and ayi)(y),- - ,a[(y) are non-negative integers. Hence, y is a vertex in
D(C). Since x —y = jwj,, we have apjj(x) = ajj(y) for all j except j = j; and
agj(x) —ap(y) = % Then Lemma 6.2.5 applies to the roots aj; (1 < j < n) and the

vertices x and y. i

Lety =x— %w]-l be as in Lemma 6.5.2. Then we must have ap(y) € Z and

ap(x) —ao(y) if j1 > 1,
[ap(x)] = ao(y) =
ao(x) + 3 —ap(y) if ji=1;

1 1 ifjl > 1,
ap(x) —aop(y) = za0(wj,) =
i =1.

=

Hence, [ag(x)] — ag(y) = 1. By repeating using Lemma 6.5.2, we can reduce our
problem to the case where s = 3, or further s = 1 if we start with js — j,_1 > 1.

Now, we may assume either s < 3 with j; — js_; =1 ors = 1.

Lemma 6.5.3. Suppose s =3 and j; > 1. Then xo = x — %(ouj1 - wj, + wj,) is a special

vertex in D ('C) adjacent to x and verifying Eq. (6.2.13).

Proof. First note that aj(xg),--- ,an(xo) are non-negative integers. Hence, x is a

special vertex in D (“C). Since j; > 1, we have ag(x) € Z and
ap(x) — ap(xg) = %ao(ooj1 -wj, +wj,) = 1.

Hence, it remains to show that xq is adjacent to x.
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To do this, we define the roots aj (1 < j < n) as follows. If j # jo, j3, let ajj) = a;.

Otherwise, let

a[j] = ajy + -+ Qjp,

a[jz) =aj + -+ aj;.

Then apyy, - -+, apn) are linearly independent. Since x —xo = %(ooj1 —wj, +wj,), we have
agj)(x) = afjj(xo) forall j except j = j; and apj,;(x) —apj,j(xo0) = % Then Lemma 6.2.5

applies to the roots af; (I < j < n) and the vertices x and xj. o

Lemma 6.5.4. Supposes =3, js—jo=1and jy =1, theny = x — %(—ouj1 +wj,) isa

vertex in D ('C ) adjacent to x.

Proof. We define the roots afj) (1 < j < n) as follows. If j # jo, j3, let afj; = aj.

Otherwise, let

Ajp] = Ajy + -+ ajy,

a[j;] = aj +---+aj2+2aj3+---+2an.

Then apy), - - - , afy) are linearly independent positive roots, and af1)(y), - - - , aj () are
non-negative integers. Hence, y is a vertex in D('C). Since x — y = 3(-wj, + w},),
we have a(j)(x) = ap;(y) for all j except j = ji and afj,;(x) — afj,(¥) = —%. Then

Lemma 6.2.5 applies to the roots af;; (1 < j < n) and the vertices x and y. O

Lety =x— %(—wjl +wj,) be as in Lemma 6.5.4. Then the only jump of y is jz > 1.
Hence, ag(y) € Z and [ag(x)] — ap(y) = 1. Therefore, Lemma 6.5.4 reduces our
problem to the case where s = 1.

Note that, by Lemma 6.5.1, s = 2 and j; — j;_; = 1 contradict to each other. Therefore,
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we may assume s = 1 now. By Lemma 6.5.1 again, we must have j; > 1. Let
Xp =X — %wjl. Then it is a special vertex in Z)(”C) since aj(xgp), - , a,(xg) are non-
negative integers. Applying Lemma 6.2.5 to the simple roots ay, - - - , a, and the vertices
x and x(, we see that they are adjacent. Moreover, we have ag(x) —agp(xg) = 1 verifying

Eq. (6.2.13). This finishes the proof of Theorem 6.1.

§ 6.6. Vertices in the apartment </ (D,) (n > 4)

(i). The underlying Euclidean vector space V is the entire R", and its dual space V*
is thus spanned by the coordinate functions yi,-- -, xn,. Then the root system can be

written as follows:

(6.6.1) O={txityx;j|1<i<j<n}.

Then its coroot lattice is the following sublattice of the standard lattice Z" in R":
(6.6.2) QY :={veZ"|(v,v) €27}.

The Weyl group "W acts on V as permutations and even number of sign changes of

coordinates.

(ii). We can choose the following Weyl chamber:
(6.6.3) ’C = {V eV |)(i(v) > |Xj(v)| foralll1 <i<j< n}.
Then the system of positive roots ®* associated to “C is the following:

(6.6.4) o= {)ixxj|1<i<j<n}
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Among them, the simple roots are the following:

ai:=xi—xi+1, (1<i<n-1)

(6.6.5)
an = Xn-1* Xn-
Using the basis A = {ay, - - - , a,}, the positive roots can be written as follows:
Xi—Xj=a+ - -+ajq, (1<i<j<n)
XitXn=ai+ - +dpo+ap, (I1<i<n-1)
(6.6.6) Xi+Xno1 = Qi+ + Qo + Qo+, (1<i<n-2)
a+---+ Clj_]
Xi+tXi= (I1<i<j<n-=2)

+2aj + -+ -+ 20,2 + ap_1 + ay.

Among them, the highest root a relative to A is
(6.6.7) ap:=x1+x2=a;+2ay+---+2a,-3+ap-1 +ay.
Moreover, the sum of positive roots is
n-2 n
(6.6.8) 2p = ; i(2n—1-1i)a; + (2)(an_1 +ay).

(iii). The fundamental coweights relative to A are the following:

w; =€ +---+¢, (1<i<n—2)
(6.6.9) Wp_1 = %(el +- e _en):

wn:%(e1+---+en).

Hence, the coweight lattice PV is Z" + Z%(el +.--t+e,).
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(iv). The fundamental alcove associated to A can be expressed as follows:

(6.6.10) C={xeA X100) > o> Y1 (%) > [xa ()1,
x1(x) + x2(x) < 1

The extreme points of C other than v = o are the following:

Vi =0+w1 =0+¢€q,
vi:o+%wi:o+%(e1+---+ei), (2<i<n—2)
6.6.11)
Up1 =0+ Wp_1 =0+3(€ ++ - +ep| —e),

Up=o0+w,=0+3(er+ - +ey).

Note that vy, v,-1, U, are special vertices, while v; (2 < i < n — 2) are not special.
(v). First, apply the affine Weyl group W to vy, we have

X):”') Tl(x GZ)
(6.6.12) Vo=1xeA X Xn(x)

x1(x) + -+ xn(x) is even

Applying W, to vy, we see that W,.v; consists of the points x € A having one

coordinate being 1 or —1 and all others are 0. Then we have:

X), -, xn(x) € Z,
(6.6.13) Vi=dxeA X1 (), ()

x1(x) + -+ xn(x) is odd

Foreach 1 < i < n— 1, W,.v; consists of the points x € A whose coordinates are

either O or i% and exactly i of them are nonzero. Then we have:

(X),"' ) n(x) € lZ
(6.6.14) Vi=lxeA A1 X 2

and exactly i of them are non-integers
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Then W,.v,—1 consists of the points x € A whose coordinates are i% and odd numbers

of them are negative. Hence, we have:

Xl(x)n"' JXTI(X) € %Z\Z,

X1(x) + -+ -+ xn(x) — 5 is odd

(6.6.15) Vis1={x €A

Then W,.v,, consists of the points x € A whose coordinates are i% and even numbers

of them are negative. Then we have:

x:"‘,Xn(x)elZ\Z;
(6.6.16) v.o=leea| MO 2

X1(x) + -+ -+ xn(x) — 5 is even

Hence, the vertices are all the point x € A such that y;(x) € %Z for all j and the

number of non-integer coordinates is neither 1 nor n — 1. In particular, we have
(6.6.17) Vco+iZ"co+iPY.
Let w! = hl._lwi. Consider the following sets:

X" =0+ Zw| + + Zw),
X0l .- x00 —%(wn_l + wp),
(6.6.18)
Xll = XOO _%(wl + wn-1+ wn):
X .= x00 x10
XM .= x0ry x1t

Lemma 6.6.1. We have X©Q U X =0 + %Z”.
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Proof. Tt is clear that X(Q U XD C o + %Z”. Conversely, we have

1o _ 1
7€1 = 3W1,

1 7 1
7€2 = W, — 7 W1,

Lo — o
7€ = W; — Wiy,

1 _1 ’
75€n-1 = j(wn—l +wp) — W, 9,

%en = Wn — %(wn—l + wn)-

Then the statement follows. O

To better describe the vertices, we need the notion introduced in Definition 6.4.1.

Then the complement of V in X(© U X can be described as follows.

Lemma 6.6.2. A point x € X' is not a vertex if and only if either J. = {ji, j»} and

j2 _jl = 1, Oer = {1}
We will use 29 to denote the set of points x € A having the property in the lemma.

Proof. First, points in 2(©) cannot be vertices. If J, = {1}, then x is not a vertex since
either all y;(x) are integers except j = 1 (when a,_1(x) +a,(x) is even), or all y;(x) are
non-integers except j = 1 (when a,—;(x) + a,(x) is odd). Next, suppose Jy = {ji, j2}
and j» — j; = 1. If jo < n—1, then x is not a vertex since either all x;(x) are integers
except j = jo» (when a,_(x) + an(x) is even), or all x;(x) are non-integers except j = j,
(when a,_1(x) + a,(x) is odd). If j, = n — 1, then x is not a vertex since y,(x) ¢ %Z.
If j, = n, then J, = {n — 1, n} and we leave this situation in Lemma 6.6.3.

Conversely, suppose x € X ) and x ¢ 2. Then there are four cases:
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(1). |Jx| = 3. Then among the coordinates of x, at least two of them are integers and
two of them are non-integers.
(ii). Jx = {ji,jo}and 1 < jo — ji <n—2. Then xj+1(x),- -, xj,(x) are either all the
integer coordinates of x, or all the non-integer coordinates of x.
(iii). Jy = {ji} and 1 < j; < n—1. Then x(x),---, xj, (x) are either all the integer
coordinates of x, or all the non-integer coordinates of x.

(iv). x has no jumps. Then it is a special vertex.
In any of above cases, x is a vertex by our characterization. O
Lemma 6.6.3. A point x € XV is not a vertex if and only if J. C {n —2,n — 1,n}.

Note that x € XV implies that {n — 1,n} C J,. We will use (V) to denote the set of

points x € A having the property that {n — 1,n} C J, € {n—2,n - 1,n}.

Proof. First, points in 21 cannot be vertices. Indeed, if x € 1), then a i(x) € Zforall
j <n-—2.Hence, y1(x),- -, xn—2(x) are either all integers or all non-integers. Hence,
by Eq. (6.6.17), for x to be a vertex, we must have that 2y, (x) and 2y, (x) are integers
in the same parity. But {n — 1,n} C J, implies that they are not.

Conversely, suppose x € X andx ¢ 2. Then {n — 1, n} C J, implies that exactly
one of y,—1(x) and y,(x) is an integer. If j < n — 2 is an index in J,, then exactly one
of x;(x) and yxj.+1(x) is an integer. Hence, among the coordinates of x, at least two of

them are integers and two of them are non-integers. O

We illustrate the related structures of V by the following diagram, where § denotes

“being special”.

171



Chapter 6. Vertices and Simplicial Distance in Apartments

X©) ~(v>

U
©=0,1
/ (@) A=)
/ (V\ on’l o
Vi

U Vi
i=2, n=2

Figure 6.5. The set V of vertices and related structures in &/ (Dy,).

(vi). Letx € Z)(”C) be a vertex. We divide into two cases: x € X© orx e XV,
First, let us assume x € X© and suppose x has jumps jj,--- , js, ordered from
smallest to largest. To construct a path between x and a special vertex xo in D (*C)

verifying Eq. (6.2.13), we need the following lemmas.

Lemma 6.6.4. Suppose either js — js—1 > 1 ors > 3. Theny = x — %wjl is a vertex in

D(*C) N X adjacent to x.

Proof. Tt is clear that y € X©). Then the proof is similar to Lemma 6.5.2 except that

the root ap;) is defined as follows:

ajs_l+2ajs+---+2an_2+an_1+an ifjs_js—l > 1,
afj] =
aj_,+---+aj_1+2a; +---+2a,»+a,_1 +a, otherwise,
Hence, we omit the proof here. O

Note thatag(y) € Z and [ap(x)]—ao(x) = 1. Hence, by repeating using Lemma 6.6.4,

we can reduce our problem to the case where s = 3, or further s = 1 if we start with
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js - js—l > 1.
Now, we may assume either s < 3 with j; — j,_j = 1lors=1.

Lemma 6.6.5. Suppose s =3 and j; > 1. Then xo = x — %(wjl - wj, + wj;) is a special

vertex in D (”C) adjacent to x and verifying Eq. (6.2.13).
Proof. The proof is the same as Lemma 6.5.3. O

Lemma 6.6.6. Suppose s =3, j3—jo=1and j =1, theny = x — %(—ouj1 +wj,) isa

vertex in D (”C ) NnXx© adjacent to x.

Proof. Tt is clear that y € X©). Then the proof is similar to Lemma 6.5.4 except that

the root af;) is defined as follows:
apj, = aj, +---+aj, +2aj, +---+2a,2+ap-1 +a.

Hence, we omit the proof here. m]

Note that the only jump of y is j3 > 1. Hence, ag(y) € Z and [ap(x)] — ap(y) = 1.
Therefore, Lemma 6.6.6 reduces our problem to the case where s = 1.

Note that, by Lemma 6.6.2, s = 2 and j; — j;_; = 1 contradict to each other. Therefore,
we may assume s = 1 now. By Lemma 6.6.2 again, we must have j; > 1. Let
X0 = X — %wj,. Then it is in a special vertex in D(“C) since a;(xp), - -+ ,an(xo) are
non-negative integers. Applying Lemma 6.2.5 to the simple roots aj, - - - , a, and the
vertices x and x, we see that they are adjacent. Moreover, we have agp(x) — ag(xp) =1
verifying Eq. (6.2.13). This finishes the proof of Theorem 6.1 when x € X©.

Next, let us assume x € X Then we must have {n—-1,n} C Jy. Suppose x has
jumps ji, - -+, js,n — 1, n, ordered from smallest to largest. To construct a path between

x and a special vertex xo in D (“C) verifying Eq. (6.2.13), we need the following lemmas.
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Lemma 6.6.7. Suppose either js — js—1 > 1 ors > 2. Theny = x — %wj, is a vertex in

D(C) n XY adjacent to x.

Proof. Tt is clear that y € XY, When j; — j._; > 1 or s > 3, the proof is similar to

Lemma 6.6.4 except that we have to define af,_1} and aj,) as follows:

A[n-1] = Qj; + -+ Ap-2 + Ap-1,

] = aj; + -+ ap-—2 +a.
When s = 3 and j3 — j» = 1, the proof still works if we define a[; as follows:
a[]-3]:aj2+---+an. Oa

Note that ag(y) € Z and [ag(x)]—ao(x) = 1. Hence, by repeating using Lemma 6.6.7,

we can reduce our problem to the case where s = 2, or further s = 1 if we start with
Js — Js=1 > 1.

Now, we may assume either s < 2 with j; — j,_; =1 ors = 1.

Lemma 6.6.8. Supposes =2 and j; > 1. Then xy = x — %(a)j1 - Wj, + Wp_1 +wy) isa

special vertex in D ('C) adjacent to x and verifying Eq. (6.2.13).

Proof. First note that ag(x) € Z and
ap(x) — ap(xg) = %ao(oo]-1 - wj, + Wp_1 + wp) = 1.

Then the proof is similar to Lemma 6.5.3 except that there is no jz and that we need to
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§6.6. Vertices in the apartment f (D) (n > 4)

define a,_1] and ap, as follows:

d[p-1] = aj, ++ -+ ap—2 +ap-1,

a[n] = aj, + -+ ap_p +a.
Then the statement follows. O

Lemma 6.6.9. Suppose s =2 and j| = 1, then xo = x — %(—ouj1 +Wj, — Wn—1 +wp) isa

special vertex in D (“C) adjacent to x and verifying Eq. (6.2.13).

Proof. First note that ag(x) € % + Z and
ag(x) — ap(xo) = 3a0(—wj, + Wj, — Wp—1 + wn) = 1.
Then the proof is similar to Lemma 6.6.8 except that a, is defined as follows:
A[p) = Ay + -+ +ap.
Then the statement follows. O

Lemma 6.6.10. Suppose s = 1. Then xo = x — %(a)jl — wp—1 + wy) is a special vertex

in Z)(”C) adjacent to x and verifying Eq. (6.2.13).
Proof. First note that
ao(x) — ag(xo) = 3a0(wj, — Wp1 + wy) = sap(wj,).

Hence, [ag(x)] —ag(xp) = 1. Then the proof is similar to Lemma 6.6.8 or Lemma 6.6.9

except that there is no j, and that the root aj,) is defined as follows:

d[n] = Apn—2 + ap-1 + dpn.
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Here we need j; < n — 2, which is guaranteed by Lemma 6.6.3.

This finishes the proof of Theorem 6.1.
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Chapter 7.

Simplicial Distance and Simplicial Balls

In this chapter, we continue to discuss the simplicial distance. We will derive some

consequences of Theorem 6.1.

§ 7.1. Lattice descriptions of the simplicial distance

We begin with the following characterization.

Theorem 7.1. In the Bruhat-Tits building 9% (GL(V)), two vertices x and y have sim-
plicial distance at most d if and only if they admit representatives L € x and L € y,

respectively, such that
(7.1.1) L2 2wl

Our characterization Theorem 6.1 allows us to prove the above and further to seek its
siblings in the Bruhat-Tits buildings of other classical groups.

To better clarify the relation between Eq. (7.1.1) and the simplicial distance, let’s
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Chapter 1. Simplicial Distance and Simplicial Balls

define
(7.1.2) di(x, y) := min{d | dLex, L' eyst.LDL' D de}
First note that (notations are as in § 5.2 and 5.3).

Lemma 7.1.1. For vertices x and y contained in a common apartment & (A), we have

(7.1.3) di(x,y) = gleag[x cyla - r{?f[x : yla-

Proof. Let L and L’ be two lattices in V, that are split by a common frame A. Then we

have L 2 L’ if and only if

(7.1.4) (L:L)2 <0 for all AeA.
Hence, Eq. (7.1.1) holds if and only if

(7.1.5) —-d<(L:L),<0 for all AeA.
In particular,

max(L : L), —min(L : L) < d.
AeA AeA

This implies that

(7.1.6) I}l\’lgi([x cyla - rxnelkl[x cyla < d.

Conversely, we can always choose representatives L € x and L’ € y such that
max(L : L), = 0.

AEA

Then Eq. (7.1.4) follows and Eq. (7.1.6) is thus equivalent to Eq. (7.1.5). O
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§7.1. Lattice descriptions of the simplicial distance

Now, let’s prove Theorem 7.1

Proof. Notations are as in § 5.2. Let x and y be two vertices in it, contained in a
common apartment, saying & (A). Then by Eq. (5.2.1), the elementary index [x : y] is
identified with the vector y — x. In particular,

(7.1.7) [x:yli=[x:ylj=xi(c—y) —xi(x = y).

On the other hand, by Theorem 6.1, Eq. (6.3.2), and the fact that all vertices are

special, we have
d(x,y) =max{(xi —xj)(x—y) [ 1 <i#j<n+1}
= max x;(x —y) —min y;(x - y).
1 1
Therefore, by Eq. (7.1.7), we have

d(x,y) = max[x : y]; —min[x : y];.
1 1

(7.1.8) d(x,y) = max{()(i - xi)([x:y]) | I<i#j<n+ 1}.
Then Theorem 7.1 follows from Lemma 7.1.1. O

Unfortunately, Eq. (7.1.1) does not characterize the simplicial distance in the Bruhat-
Tits building of a general classical group. Following § 5.3, assume (V, (- | -)) is a

hermitian space over K. Let’s first get a characterization of d;.
Theorem 7.2. In the Bruhat-Tits building 9%(SO(V)), two vertices x and y admit
representatives L € x and L’ € y satisfying

L2L 2wl
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Chapter 1. Simplicial Distance and Simplicial Balls

if and only if |2xi(x — y)| < d for all the coordinates ;.

Proof. Notations are as in § 5.3. Let x and y be two vertices in it, contained in a
common apartment, saying &/ (A). By Eq. (5.3.2), the hyperbolic index [x : y]* has

components

1

(7.1.9) e 1 =5 (B vl = Bes v )

Let L € x and L’ € y be two representatives. Then we have
(L:L)y = [x:ylf+c and (L: L =~=[x:ylf +c
for some ¢ € R. Then
1;1\13{(@ (L) = mlax|[x ylE] +e,
I{gl;l([, (L) = —miax|[x :y]ﬂ +c.
Therefore, by Lemma 7.1.1, we have
(7.1.10) di(x,y) :2miax|[x:y];—'|.

By Eq. (5.3.1), the hyperbolic index [x : y]* is identified with the vector y —x € %/ (A).

Hence, we have d;(x, y) = max;|2x;(y — x)|. O
We see that there are two issues to prevent d;(x, y) = d(x,y):

(1). 2x; may not be a root, and

(i1). max{[a(x)] — la(y)] | a € ®} may not be exactly a(x — y) for some root a.

However, we have
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Theorem 7.3. In the Bruhat-Tits building B(Sp(V)), a vertex x has simplicial distance

at most d from the origin if and only if it admits representative L € x such that
(7.1.11) L, 2 L 2 w'L,,

where L, is the primitive lattice belonging to o.

Proof. This is because d(x, 0) = maxXqeq[a(x)] = max;|2y;(x)|. O

Theorem 7.4. In the Bruhat-Tits building 98 (SO(V)), a vertex x has simplicial distance

at most d from the origin if and only if in the elementary index [x : o],
(7.1.12) [[x:0]p—[x:o]y| <d

where A, A" € A satisfying

(7.1.13) Ay + @A |A) =0.

Remark. Recall that, by Lemma 7.1.1, if we drop the requirement Eq. (7.1.13), then
Eq. (7.1.12) is equivalent to Eq. (7.1.11). In the case (- | - ) is alternative, the condition
Eq. (7.1.13) is satisfied trivially, and the statement becomes Theorem 7.3. Hence, in
the proof below, we assume ( - | - ) is symmetric. Namely, the Bruhat-Tits building is

of split type B, or D,,.

Proof. Choose “C to be a Weyl chamber such that x € 2(*C). By Theorem 6.1 and

Eq. (6.5.7) (or Eq. (6.6.7)), we have

d(x,0) = [(x1+x2)(x—0)]
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Chapter 1. Simplicial Distance and Simplicial Balls

By Eq. (5.3.1), the vector x — o is identified with the hyperbolic index [x : 0o]*. Hence,
(7.1.14) d(x,0) =[[x: 0]} + [x : o]5]-

To see what does the above measure in terms of lattices, we choose L € x to be the
standard representative in 5.3.3 and 5.3.4. That is to say, there is a primitive lattice Ly

(do not be confused with the primitive lattice L, representing o) such that
Lo 2 L 2wl and (L|L) € mg.

Then we have

-1 <(L:Lyy <0 and (L : LO)); + (L : LO)A; < -1
Hence, by Eq. (7.1.9), we have

(L: Lo = [[x : [Lo]]F] -1 and (L: Lo = [—[x: [Loll¥] - 1.
Since both Lj and L, are primitive, we thus have
(L:LO);\T:[[x:o]ﬂ—l and (L2 Lo)a- =[-[x:0]f]- 1.

Therefore, by Eq. (7.1.14), we have
(7.1.15) d(x,0) = max{(L Lo — (L Lo, (L Lok — (L : LO);\l—}.
By x € 9("C), we have

[x:o]f = >[x:0]f
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Hence, Eq. (7.1.15) amounts to say
d(x,0) =max{(L : Lo)y — (L : Lo)y | A, A" € A, {(A|A") = 0}.

Here, the condition (A |A”) = 0 excludes {A, A"} = {A*,AI}. O

§ 7.2. Simplicial balls as fixed-point sets
In the rest of this dissertation, we will focus on the simplicial ball
B(r) :={xisavertex in &% | d(x,0) < r}.

This section devotes to prove the following theorem.

Theorem 7.5. In anirreducible Bruhat-Tits building of split classical type, the simplicial
ball B(r) is precisely the set of fixed-vertices under the action of the Moy-Prasad

subgroup™ P, .

Proof. We first assume x belongs to the apartment &/ (¢) we start to construct the
building in § 4.2. Then the Moy-Prasad subgroup P, is contained in the parahoric

subgroup Py if and only if
(7.2.1) fi < fotr.
But this is equivalent to
[—a(x)] <r for all aed.

By Theorem 6.1, this amounts to say d(x,0) <.

*Recall its definition in Definition 4.4.5.
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Next, for a general x, there is a g € P, such that g.x € &/(¢). Hence, x is fixed by
P, if and only if g.x is fixed by inn(g).P, . But P, , is a normal subgroup of P,, hence
inn(g).P,, = P,,. We have seen that it fixes g.x € & (¢) if and only if d(g.x,0) < d.
Since g maps a path to a path of the same length, we have d(x,0) = d(g.x,g.0) =

d(g.x,0). Therefore, x is fixed by P, , if and only if d(x,0) <. O

§ 7.3. Simplicial distance along extensions

Let E/K be a totally ramified extension. Namely,

(). the inertia degree is 1, i.e. the residue field O /mg equals «; and

(ii). the ramification index e is precisely [E : K].
But the effect we care about is:
(iii). the valuation val( - ) extends to E with [val(E*) : T] =e.

The base change G — Gg gives us an embedding of Euclidean buildings:
jek: B(G) — B(CE).

We may omit jg/x and identify points in 98(G) with their images. In particular, we may
ask how does the simplicial distance change along the extension E/K.
To compare the simplicial distances in %(G) and B (Gg), we need to denormalize

the valuation. In this section,

e [-]g and [ - |x will denote the ceiling functions with respect to the valuation
group val(E*) and val(K*) respectively, following Definition 4.3.1;

* yr and yx will denote the valuations of the uniformizers in E and K respectively;
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§7.3. Simplicial distance along extensions

* dg(x,y)and dg(x, y) will denote the simplicial distance between x and y in % (G)

and % (Gg) respectively.

Theorem 7.6. Let B be a Bruhat-Tits building of split classical type, E/K a totally
ramified extension, and B its base change along E/K. Suppose either both x,y are
special vertices in 9B or the ramification index e is odd. Then the simplicial distances

in B and Bg have the following relation:
(7.3.1) dg(x,y) = e-dg(x,y).

Proof. By Corollary 6.1.2, we may assume & is irreducible. Then Theorem 6.1 tells
us that (after denormalize the valuation)
1
de(x,y) = — max([a(x)]g + [a(=y)]p),
YE acd
1
dx(x,y) = — max(fa(x)]x + [a(=y)Tk)-
YKk acd

Since ygp = %YK, when both x,y are special vertices, Eq. (7.3.1) holds. However,
Eq. (7.3.1) is not always true: there may be some a € @ such that either a(x) or a(y)
belongs I'r while not in I'y. Since we always have a(x) € %FK for all roots a € ®, that

situation happens only if 2 | e. We thus finish proving the theorem. O

185



Chapter 8.

Formula of the Simplicial Volume

In this chapter, we will deduce the following formulas for the simplicial volume and

simplicity surface area.

Theorem 8.1. Let 9B be a Bruhat-Tits building of split type ® over a local field K with
residue cardinality q. Then the simplicial volume SV ( -) and the simplicial surface
area SSA( - ) in it can be computed by the following formulas:

svin =3, ey 3y [

ICA x€B(r,"C,I) a(x)>0

SSA(r) :Z—%”(q) >0 ] e,

deg( Po:
ica 9 g( ‘D’I) x€a(r,YC,I) a(x)>0

where

[ -] is the ceiling function,

A is a basis of the root system @,

Po.1 is the Poincaré polynomial associated to the pair (®, 1),

YC is a Weyl chamber of ®,

and the index sets B(r,'C,I) (resp. 9(r,"C,I)) consists of the vertices in o +'C
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having type I with simplicial distance at most r (resp. exactly r) from o.

The strategy is to employ a strongly transitive and type-preserving automorphism
group. Let & be a Bruhat-Tits building of split type ®. Then we can realize it as
the Bruhat-Tits building of a simply-connected splittable semisimple group G having
root system @ over the ground local field K. The group G of K-points of G is such an
automorphism group.

From now on, we fix a special vertex o in & and choose a split maximal torus T in G
such that the apartment &/ associated to (G, T) contains 0. We will follow the notations
and conventions in Chapter 4. In particular, o is the reference point of the underlying
Euclidean affine space A of & .

For any vertex x in %, it is clear that a type-preserving automorphism ¢ € G will
map a path from o to x to a path from ¢ (o) to ¢(x). Hence, G preserves the simplicial
distance. Therefore, we have

(8.0.1) SV(r) (resp. SSA(r)) = Z [P, : Po.],

X

where

e P, is the stabilizer of 0 in G,
* P, is the stabilizer of x in P,, and
* the summation is taking over the intersection of B(r) (resp. d(r)) with a funda-

mental domain & of the action of P,,.

The computation will be done as follows. In § 8.1, we break the index [Po : Py x
into two factors. In § 8.2, we will see that the first factor can be given by Poincaré

polynomials. In § 8.3, we will compute the second factor using the theory of concave
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functions. In § 8.4, we will describe a fundamental domain of the action of P, and

finally prove Theorem 8.1.

§ 8.1. Parahoric reduction

The goal of this section is to break the index [PO : Po,x] into two factors, one of which
is a power of g. For this purpose, we need some facts about concave functions, recalling

§ 4.4,

8.1.1. Let f be a concave function on ®@. Let ﬁf and 6f denote the unipotent radical
and the reductive quotient of (® ), respectively. Since « is a finite field, we have

6f (k) = ®f(x) /ﬁf(rc). Note that, by Theorem 4.2, we have [BT-2, 4.6.4]

(). (To)« is the centralizer of itself in (® ).
(ii). @ is the root system of the pair ((® )., (To)«) and for any a € @, (U f(q)) IS

the root subgroup associated to it.
Let f* be defined as in 4.3.8. Using the filtrations in 4.4.1 and 4.4.2, we have:

(iii). The unipotent radical of (T), is the image of (T, ), in it.
(iv). [BT-2,4.6.10] The intersection of the unipotent radical R 7 and the root subgroup

(Ug, £(a))x is the image of (U f(q))ic 0 (O f)y.

Remark. However, in our case, what are in the unipotent radical is clear: the congruence
property in 4.4.1 implies that To, maps to 0 in (Z),; then 4.4.2 plus the fact that W, ¢4
is one-dimensional vectorial group imply that the intersection ﬁf N(Ug, £(q) )k 18 either

trivial or the entire (U f(q))s-
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88.1. Parahoric reduction
(v). [BT-2, 1.1.11] The multiplication morphism

[1 (ﬁf m(ua,f(a));c) - Ru((Zo)e) - T1 (ﬁf m(ua,f(a));c) — R

+ _
aefbf aEfo

is an isomorphism.

Therefore, we have exact sequence
Pp e G (Og) — G ().

Moreover, let if (resp. ﬁf;a) denote the image of Ty (resp. U, f(q)) in 6f. Then,

(6f, ff) is a split reductive group with root system @ and root subgroups (ﬁf;a)aeqj =

Remark. Note that P+ is a pro-unipotent group in the following sense. First, we have a

projective system of groups

coo — G (O /™) —» G (O /') —» - —» Bp(x).

Then, by the theory of Greenberg functors, we have a projective system of algebraic

groups over k:

s —% F o i (®f) —» F,/0i(0y) S .. » (6 f)-

It induces a projective system of their unipotent radicals and for each F 4, /qi (®),
its unipotent radical is precisely the preimage of ﬁf. Therefore, Py is the limit of a

projective system of groups of x-points of unipotent algebraic groups over k.
8.1.2. Let f, g be two concave functions on ® with g > f. Then P, C Py extends to a
morphism of group schemes [BT-2, 6.4.24]

G, — 6.
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Chapter 8. Formula of the Simplicial Volume
Since g* > f*, the image of
ggu(((ﬁg)tc) c ((ﬁg)ic — (®f);<

is contained in %, ((®¢),) by 8.1.1.

Now, suppose for any a € @, either f(a) = g(a) or f(—a) = g(—a). Then

i ={ac @] f(a) =g(a)}

is a parabolic subset. The image of (U4 (q))x in (O ), is either the entire (Ug f(q))x
if a € W4 or contained in %, ((®),) if a ¢ W, So the image of (Gy), in G is
generated by T and U, for all @ € ¥. This shows that the image Ef’g is a parabolic

subgroup of 6f with parabolic subset ¥y ,.

Example 8.1.3. Let Q be a set in an apartment containing a special point x. Then we
have fq > fy and for any a € ®, either fq(a) = fy(a) or fo(—a) = fy(—a). Hence,

above applies, and we get a parabolic subgroup of 6fx-

First note that P, is a parahoric subgroup of G: it is indeed Py, using the notations in
Example 4.3.4. Then we have a generating root group datum (T,, (ﬁo’a)aeqy) of type @
in the quotient P, /Py, following 4.3.8. Moreover, using Theorem 4.2, we can see that

this datum arises from a split reductive group over k.

Lemma 8.1.4. Let f be a concave function on ®. Denote the unipotent radical and the
reductive quotient of (® ), by R fand ] r respectively. Let I 7 (resp. u f,a) be the image
of (To)k (resp. (Mg f(a))ic) in 6f. Then (6f,§f) is a split reductive group with root
system @y and root subgroups (ﬁf’a)aeq) - Moreover, the generating root group datum

(Tf, (Ef’a)aeq)f) associated to (6f, Ef) is the same as in 4.3.8.
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Proof. Applying Theorem 4.2 to f, we see that:

(). (To)x is a split maximal torus in (6 f)y, the pair ((® ), (To)x) has root system

®, and for any a € ®, (U f(q))« is the root subgroup associated to it.

We also refer to [BT-2, 4.6.4] for a direct proof.
By [BT-2, 1.1.11], the multiplication morphism

() l_[ (ﬁf ﬂ(ua,f(a))x) R ((To)) l_[ (ﬁf m(ua,f(a))x) — %y

- +
aed)f aeCDf

is an isomorphism. Hence, (i) implies that first statement of this lemma except that the
root system is ®y.

Next, applying Theorem 4.2 to both f and f*, and using the inductive systems in 4.4.1
and 4.4.2, we see that the inclusion Py+ C Py extends to a homomorphism & — 6¢

so that

(ii). through the homomorphism (®f, ). — (®f),, the unipotent group (To;)x is
mapped onto the unipotent radical %, ((To)x) of (Tp)«, and for any a € @, (Ug f+(q))x

is mapped onto the intersection of the unipotent radical ﬁf and the root subgroup

(ua,f(a))k-

We also refer to [BT-2, 4.6.10] for another proof.

Now, (ii) tells us that, through the reduction Pg« € Py = G (i), Tos (resp. Uq f+(a))
is mapped to the group of x-points of %, ((Tp)x) (resp. ﬁf N(Ug, f(a))x). Note that,
ﬁf N(Ug, f(a))x is the entire (g f(q)) if and only if f(a) = f*(a). Then, using the
isomorphism Eq. (x), the second statement of the lemma follows, and we see that the

root system of (G, T ) is @y. O
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Now, back to our situation. Let P, denote the quotient P,/Py: and P, , the image of
P, in it. Then we claim that P, is the group of x-points of a parabolic subgroup %O,x
of ®,, the reductive quotient of (& £,)x- To see this, first note that P, , is the group Py, .,

defined in Example 4.3.4. Then we consider the following lemma.

Lemma 8.1.5. Let f, g be two concave functions on ® with g > f. Suppose

Vg :={ae @] f(a) =gla)}

is a parabolic subset of ®. Then the image of (®g) in 6f is a parabolic subgroup $f,g

containing ff, corresponding to the parabolic subset ¥y g.

Proof. Since g > f, we have P, C Py, which extends to a homomorphism &, — ®;.
By the proof of Lemma 8.1.4, we have the follows. First, since g* > f*, the image
of Zu((®g)x) in (Gy), is contained in R, ((6f),). Then, for each a € ®, the image
of (Ugg(a)) in (®f), is either the entire (U, ¢(q)) if g(a) = f(a) or is contained in
R.((®),) if g(a) > f*(a). Therefore, the image of (G,), in G is generated by I

and U r,a forall a € ¥. Then the statement follows. O
The parabolic subset of @ corresponding to %O,x is
Y,y :={ae®|a(x) > 0}.

Now, we choose a Weyl chamber “C such that x € o+'C. Let ®* be the system of
positive roots corresponding to “C. Then we have ¥, , = ®* U @, ,, where @, . is the

root subsystem associated to the concave function f, ,:

CDo,x = {a €D | f{o,x}(a) er, f{o,x}(a) +f{o,x}(_a) = O} = {a €o | a(x) = O}
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The simple roots in ®* N @, , form a type I, (see Conventions 2.4.5 and 3.5.3).
Convention 8.1.6. Fix a choice of “C. We say a point x € o +"C has type I if I, = I.

At this stage, we have
(8.1.1) [Po : Pox] = [Po: Pox| - [Ps: i Pp: N Pox],

where P, is (the group of x-points of) a splittable reductive group with root system @,
P, is (the group of k-points of) a parabolic subgroup of the former having type Iy,
and P+ is a pro-unipotent group in the sense that it is a projective limit of groups, each

of them is the group of k-points of an unipotent group over k.

§ 8.2. Poincaré polynomials of parabolic subgroups

This section treats the first factor [130 : I_JO,X] in Eq. (8.1.1). That is the index of (the
group of k-points of) a parabolic subgroup in a splittable reductive group over «.

Let (G,T) be a split reductive group over k and (P,"F, ¥, I) a quadruple as in
Proposition 3.5.2. Then G(k) acts strongly transitively and type-preserving on the Tits
building 2% of G, and P(k) is the stabilizer of “F. Hence, the quotient G(x) /P (k) counts
the facets in "% having type I. Note that G(x)/P(k) = G/P(x) according to Lang’s
theorem (see, e.g. [Mill7, 17.98]).

Let W be the Weyl group of (G, T). Then the generalized Bruhat decomposition
(see, e.g. [Mill7, 21.h and 21.1]) says that

G/P= || cw= | | cw),

we'W/['W; we'W!

193



Chapter 8. Formula of the Simplicial Volume

where each C(w) (as well as C(w)) is an affine space of dimension £(w) (the length
of w in W), called the Schubert cell of w, YW; is the subgroup of YW generated by

reflections with respect to the simple roots in I, and W is a system of representatives.

Definition 8.2.1. The Poincaré polynomial of the pair (®,I) is the following:
(8.2.1) Po(z) = Z W),

When I = 0, it is denoted by P ¢ and called the Poincaré polynomial of ®.

Then we have G/P (k) = Po;1(q). Note that the image of [[,eq\y U, — G/P is the
big cell. Hence, deg(P o) = |@ \ ¥P|.

At this stage, we already know that:

Lemma 8.2.2. The index [1_30 : }_DO,X] is computed by an integral polynomial P .1 of

degree |® \ ¥|.

The rest of this section aims to deduce P¢.; from the information of (®, I).
Lemma 8.2.3. Po.; = Po/Po,, where ®j is the root subsystem of ® generated by I.
Proof. Let B be a Borel subgroup of G contained in P. Then we have
() [G:P|=[G:B| [P:B].

Let L be the Levi subgroup of P. Then (L, T) is a split reductive group with root system

®;. Moreover, BN L is a Borel subgroup of L. Then we have
P/B=BL/B=L/BnL.
Applying this to Eq. (), the statement follows. O

194



§8.2. Poincaré polynomials of parabolic subgroups

Lemma 8.2.4. Suppose ® can be decomposed into root subsystems ®1,--- , ®;. Then

we have Po(z) = Po, -+ Po,.

Proof. This is because the decomposition of split reductive groups corresponds to the

decomposition of Weyl groups and root systems. O

Hence, it suffices to know the Poincaré polynomials of irreducible root systems.

When @ is irreducible of type X,, we will denote its Poincaré polynomial by Py .

Lemma 8.2.5. Let @ be a reduced root system of rank n. Then there are positive integers

di, - ,d, depending only on the Weyl group W of @, such that

n

Po(z) = | |1d(2),

i=1

where [d](z) == 1+z+---+ 2971

Proof. Let G be a complex semisimple group, T a maximal torus in it, and B a Borel
subgroup of G containing T. Let ® be the associated root system, "W the Weyl group,

and V be the complexification of the coroot space. Then we have:

(1). The complex singular cohomology ring of G/B vanishes at odd degree and has a
basis dual to the Schubert cells (see [BGG73]).

(ii). The Borel’s theorem (see [Bor53]) says that, after dividing degree by two, the
complex singular cohomology ring of G/B is isomorphic to the coinvariant
algebra C[V]vy, which is C[V] ®c[yyow C, where C[V] is the ring of complex
polynomial functions on V and C[V]"" is the subalgebra of invariant.

(ii1). The Chevalley-Shephard-Todd theorem (see [Bourbaki, chap.VI, §3 no.3 thm.3])
says that C[V] ¥ is a polynomial algebra generated by homogeneous polynomials

onV. Letdy, - ,d, be the degrees of them.
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Chapter 8. Formula of the Simplicial Volume

Recall that the Hilbert-Poincaré series of a graded commutative C-algebra S, is
defined to be 3 ; dime(Sq)z¢. Now, considering the Hilbert-Poincaré series of above

graded algebras, the statement follows. m|

The numbers di,--- ,d, are called the degrees of YW (and of ®). When & is
irreducible, they can be found in [Bourbaki, chap.VI, §4].
For irreducible root systems of type Ay, By, Cp, and D, the explicit formulas for their

Poincaré polynomials & .; with various types I are listed in Appendix A.

§ 8.3. Concave functions

This section treats the second factor [Pf; cPee N Po,x] in Eq. (8.1.1). It has to be a
power of g since Py is a pro-unipotent group.

First, let f,«, be the following concave function:

forx:a€ d —s max{fo*(a), f{o’x}(a)} = max{0+, —a(x)}.

Then, from the definition of P¢, we have Py, = Py N P, . Note that both f,+, and f;

take the value 0+ at 0 € ®.

Lemma 8.3.1. Let f,g be two concave functions on ® such that f(0) = g(0) > 0 and

g = f. Then we have

(8.3.1) [Ps: Pe] = [ [lo2' [f(@), 2(@)]]

acd

where @ = (q)qco IS the valuation corresponding to the reference point o.

Proof. There are two ways to show this. By 4.4.1 and 4.4.2, we can extend the

decomposition Eq. (3.3.1) to obtain a Lie algebra version of Eq. (8.3.1). Hence, if the
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§8.3. Concave functions

characteristic of K is 0, the statement follows from the bijective exponential maps of
unipotent groups.

In general case, we can consider the morphism ®; — ®( obtained by extending the
inclusion P, C Py. Then the multiplicative morphism Eq. (4.4.2) induces the following

commutative diagram for all positive integer i.

[ ] Wagw (Kc’/wi) - Zg(0) (KC’/wi) ] Yasw (Kc’/wi) — G,y (K°/w)
o

[T s (K70 T (K7 /) - [ Maio (K7 /') — 64(k° /a0

acd~ acd+

By Theorem 4.2.(iii), since f(0) > 0 and g(0) > 0, the horizontals are isomorphisms.

Since f(0) = g(0), at the level of K°/w, we have
Coker((f)g(Ko /wi) - G, (K° /wi))
=~ l_[ Coker(umg(a) (Ko/wi) — Wy f(a) (K°/wi)).
acd

By 4.4.2, for each a € ®, we have

Coker(ua,g(a) (Ko/wi) — U f(a) (Ko/wi))

= Coker(Ua’g(a) ®ke K°/w' — Uq, f(a) ®ke K°/wi)

= Uy f(a)/Uag(a) ®k* K° /@' = @' [f(a),g(a)] ® K°/w',

which equals @' [f(a), g(a)] if i - val(w) > g(a) — f(a) (see Example 4.1.7).
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Now, we pass to the limit of the following projective system of homomorphisms.

% B (K /w™t) — 6, (Ko@) — - — By(x)
o —% G (K /) —» 64(K° /@) — - — Bf(k)

Then we have
Ps/P, = @Coker(®g(K°/wi) - Gf(KO/wi))

=1im [ | o2 [f(@).g@] & K/ = [ [ 07" [f(0), g(@)].

i aed acd

Then Eq. (8.3.1) follows.

Applying Eq. (8.3.1) to f,+x and f;, we have

[Pg: : P 0 Poc] = | | @' [0+, max{0+, —a(x)}]

acd

[ Tezki0+, max{o+, a(x)}1.

acd

Then by the definition of ¢ (see Example 4.1.7), we have

(8.3.2) [Prs i PN Poy] =

[max{0+, a(x)}] — [0+]
n equ( )

ed val(w)

B Pq val(w) ’

a(x)>0

where equ( -) is the exponent function with base q.
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§ 8.4. Fundamental domain and the proof of

Theorem 1.4

The following lemma gives us a fundamental domain of P, in 9.
Lemma 8.4.1. The convex cone o + 'C is a fundamental domain of P,,.

Proof. Let x be any point in 9. We need to show that there exists some g, € P,
mapping x into o +“C. First, let g.A be an apartment containing both o and x. More
precisely, suppose o = [g,0+ Vo] and x = [g, 0+V]. Then, from the equivalence relation
in Definition 4.2.9, there is an n € N, such that o + v = v(n).o and gn € P,. Letv; € V
be the vector v(n)~'.(o + v) — 0. Since C is the fundamental domain of W in V, there
isaw € YW such that w.v; € 'C. Now, let n be a preimage of w under N, —» W, = "W.
Then nin~'g~! € P, and it maps x into o + C.

On the other hand, if there are two points x, y € o +“C such that y = g.x for some

g € P,. Then, by the vectorial Bruhat decomposition [BT-1, 7.3.4], we have
g = hlnhz,

where hy, hy € B,y and n € N. Therefore, n € N,, which implies x = y since o + “C is

the fundamental domain of W,. O

We will denote o+ 'C by 2('C) to emphasize that it is a fundamental domain.
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Applying Lemma 8.4.1 to Eq. (8.0.1) and using Eq. (8.1.1), we have

(8.4.1) SV(r) = > [Po:Pox] - [Ps i Py NPoy],
xeB(r)ﬂ@(“C)

(8.4.2) SSA(M) = > [Po:Pox] - [Ps i P NPoy].
xea(r)n2 (“C)

By Lemma 8.2.2, the first factor [50 : I_DO,X] is computed by the Poincaré polynomial
Po.1,,(q), which depends only on the zype of x (see Convention 8.1.6). Hence, we can

decompose the index sets B(r) N Z(*C) and 3(r) N P (°C) according to the types:

(8.4.3) B(r,”C,I) := {x € B(r) n D(*C) | x has typeI },

(8.4.4) a(r,"c,1) == {x € 3(r) N D(“C) | x has type I }.
Then Egs. (8.4.1) and (8.4.2) become the following ones:

SV(r) = Z Po:1(q) Z [Pgr i Pr NPy,

IcA x€B(r,YC,I)
SSA() = )" Pou(@) ). [P iPr NPyl
IcA x€d(r,C,I)

Applying Eq. (8.3.2) to the above, we have

SV =3 Faate) S, [ ey 2R

ICA x€B(r,YC,I) a(x)>0
[a(x)] — [0+]
SSA(r) = Zg’cp;z(Q) Z n eXPq(T :
ICA x€d(r,YC,I) a(x)>0 vallw

Note that, the ceiling function [ - ] used here follows Definition 4.3.1. If we use the

usual ceiling function instead and note that deg(Po.,,,) = |CD \ ¥, | equals the number
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of roots a € @ such that a(x) > 0, then we obtain the following formulas:

B Po:1(Q) [a(x)]
(8.4.5) SV(r) =’ (7o) > ]
IcA x€B(r,’C,I) a(x)>0
B Po.1(q) fa(o)]
(8.4.6) SSA(r) =y~ 20D e > ]«
ICA x€d(r,VC,I) a(x)>0

This proves Theorem 8.1.

Remark. 1f the valuation val( - ) is normalized, namely val(w) = 1 and hence T equals
the additive group of integers Z, then the two versions of ceiling functions [ - ] coincide

and the formulas Eqgs. (8.4.5) and (8.4.6) can be understood in either way.

Convention 8.4.2. From now on, we assume the valuation val( - ) is normalized.

§ 8.5. Variants of the simplicial volume

Let 7: ¥V — J be a function factoring through the type function x +— I,,. Then we
can define the t-variants of the simplicial volume SV( -) and the simplicial surface
area SSA( -) as follows. For any 1 € J, the quantities SV (r) and SSA+(r) count the
following sets respectively:

Bi(r) :={x € B(r) | t(x) =1},

0:(r) = {x € a(r) | T(x) = 1.

Following Egs. (8.4.3) and (8.4.4), we can introduce the following subsets:

Bs(r,"C,I) := {x € By(r) N D(*C) | x has typeI },

9+(r,”C, 1) := {x € 3+(r) N D(*C) | x has type I }.
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Chapter 8. Formula of the Simplicial Volume

Then the same argument for Theorem 8.1 works and gives us the following formulas:

Pa.(q) *
(8.5.1) SV (r) = Z g Z n M)
ica 9 gl x€B+(r,YC,I) a(x)>0

(8.5.2) SSA%(;»):Z‘@‘D;—I((I) S g,

deg(Po
ca q eg( CD’I) x€34+(r,"C,I) a(x)>0
Such variants may be interesting when we need to focus on certain types of vertices (for
instance, when not all vertices are special). In this dissertation, we will consider § =

“being special”, although other variants are also worth considering.
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The Index Sets

The purpose of this chapter is to deduce explicit descriptions of the index sets B(r, 'C, I)
and (r, VC, I) in Theorem 8.1 from a careful study of the vertices in the affine apartments
of split type A,, Cy, B, and D, respectively.

The following example may give the reader some intuition.

S

>
a
B(2, ,a;) ={e, e}, B(2, ,a) = {e, e},
B(2, ,A) ={e}, B(2, ,0) ={e}.

Figure 9.1. Examples of index sets B(r, 'C, I) in &/ (A>).
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§ 9.1. Generalities

We will keep notations and conventions in § 6.2. Then we can describe the index set
B(r,“C,I) and 3(r,'C,I) as follows.

First, by Theorem 6.1, we see that

B(r) nD(C) = D(C) NV Na_qysr,

A(r)ND(C) =D(C) NV N(a—gger \ A—gger—1)-
For a type I, let YC; denote the face of “C having type I:
Cr:={veV|Vael,a(v)=0;Yae A\ Ia(v) > 0}.

Recall that for any pointx, its type is I, » = {a € A | a(x) = 0}. Hence, apointx € D(*C)

has type I if and only if x € o + “C;. Then we have

(9.1.1) B(r,"C,I) = (0 +"C1) NV Na_gy+r
and
(9.1.2) a(r,"C,I) = (0 +Cp) NV N(A—gpsr \ A—gpir—1)-

Similar descriptions for the f-variants can be obtained similarly.

By Convention 2.4.5, a point x has type I if and only if it is of the form

X=0+Clwy + -+ Ctwyg,.

Then the condition x € 0+"C; can be interpreted as “cy, - - - , ¢, > 0”. Next, x is a special

vertex if and only if ¢y, -+ ,¢c; € Z. Let ¥ = “being special”. Then, by Eqgs. (9.1.1)
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§9.2. Index sets in B(A,)

and (9.1.2), we have the following explicit descriptions:

C]"H ’CtEZ 0>
(9.1.3) Bi(r,"C,I) = {x =0+ ciwe, + -+ Ctwe, - ,

heci ++--+hgce <71

Cl)”' ,Ct EZ>0:
(9.1.4) 3+(r,"C,I) = {x =0+ crwe, + - + Crwy, ,

hflcl +"'+h€tCt =r

where Z. denotes the set of positive integers.

§ 9.2. Index sets in B (A,)

Let I be a type and follow Convention 2.4.5. Since all vertices are special, by Egs. (9.1.3)

and (9.1.4), we have the following explicit descriptions:

Cl:”. 7ct €Z>O,
(9.2.1) B(r,"C,I) = {x =0+ ciwe, + -+ Ctwe, ,

ci+--+¢ Sr

Cly'.. >CE eZ>OJ
(9.2.2) a(r,"C,I) =X =0+ ciwe, + - + Cry,

C1+"‘+Ct:r

§ 9.3. Index sets in &/ (C,) (n > 2)

Let I be a type and follow Convention 2.4.5. By introducing w;] = hi‘lwi, we can write

a point x having type I as follows:

o / DY 4
X=0+Ciwy + -+ Wy .
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By Eq. (6.4.12), such an x is a vertex if and only if ¢;,---,c; € Z. Therefore, by

Egs. (9.1.1) and (9.1.2), we have the following explicit description:

Cl, ", Ct eZ>OJ
(9.3.1) B(r,"C,I) =3 x :o+c1w2,l +---+ctw2,t ,
Ci1+---+c <r
v , , Cl)"')ct€Z>05
(9.3.2) ar,°C,I) =13x =0+ Clwy + 0+ Gy
Cl+-+c=r

§ 9.4. Index sets in </ (B,,) (n > 3)

Let I be a type and follow Convention 2.4.5. For any set X of points, we introduce the

following subsets:

X(I):=(+"Cr)NX,
9.4.1)
X(Lr) = (0+"Cr) N X N(ot—gysr \ A—agsr—1)-

Then we have V (I,r) = a(r,"C,I) by Egs. (9.1.1) and (9.1.2).

9.4.1. By introducing w; = hi‘lwi, we can write a point x having type I as follows:
x :o+c1w2,l +--'+ctw’€[.

Then ag(x) < rifandonlyifc; +---+¢c <.

9.4.2. Consider the set o + %PV and recall that h; = 1 while hy = --- = h, = 2. Let X°

be the set o + Zw/ + - - - + Zwy;, and X! = XO—%wl. Then we have

o+1PV=X'uX'.

This gives a superset of the V.
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By Lemma 6.5.1, the complement of V in o + % PV is the restriction of E. Inspired

by this and Definition 6.4.1, we can consider the following sets for each J C {1,--- ,n}:
Ey={xeA|J,=J} and XJ::EJOO+%PV.

Then we have

O+%Pv\(V :X{I}UX{I,Z}U"'UX{n—l,n}-

Note that, for any J, we have
(9.4.2) Xy=Xo- ) o,
jeJ

Moreover, it is clear that X is precisely o + P, the set of special vertices.

9.4.3. Next, we consider X (I) for above sets. First, if ¢; > 1, then V(I) € X°(I).
Otherwise, V(I) N X'(I) # 0. For any J, it is clear that X;(I) # 0 if and only if
INJ = 0. If this is the case, we have the following refinement of Eq. (9.4.2):
(9.4.3) X5(I) = Xo(I) - Z lo;.

jeJ

9.4.4. Finally, we consider X (I,r). First, it is clear that

Cl:”'act>03

0 ’ ’
(9.4.4) X (I,r)=3x=o0 +Clwy Wy | ¢y, 0 € Zoo,

ci+--+c=r

Also note that
(9.4.5) X' (1) =X 1) - .

Then we need to work out X;(I,r). For X¢(I,r), an explicit description is given in
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Egs. (9.1.3) and (9.1.4). For general J, we have the following refinement of Eq. (9.4.3):

Lemma 9.4.5. Suppose I N J = 0. Then we have

XﬂLr):XMLr+LH—6QD)—§:%wﬁ

jeJ

where 8(J) is defined as follows:

1 ifled
8(J) =

0 otherwise.

Proof. By Eq. (9.4.3), it suffices to show that for any x € X¢(I,r),

(*) [ao (X—Z%wjﬂ =ap(x) — |J|+86(J).

jeJ
Note that ag(x) € Z and that

2 (Z%

lJ| -1 ifled,
wj =
jeJ

|J] otherwise.

Then Eq. () follows. O

We illustrate above discussions by the following diagrams.
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0 U By
X'(I,r) J={2,3}, {n—1,n}
U X;(I,1)
(V(I’ T') J:{2,3},--~,{n—1,n} J
(VT(IJ r) = X@(I: T')
Figure 9.2. Vertices of type I in &/ (B,) (£; > 1)
U X°(,n) U By
0=0,1 J={1},{1,2},-+,{n-1,n}
(V(I,l”) U XJ(I,T')

J={1},{1,2},- {n—1,n}

Vi(l,r) =Xo(l,1)

Figure 9.3. Vertices of type I in &/ (B,) (£ = 1)
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§ 9.5. Index sets in &/ (D,) (n > 4)

Let I be a type and follow Convention 2.4.5. Using the notations introduced in

Eq. (9.4.1), we have V(I,r) = a(r,'C, I).
9.5.1. We also have introduced the sets
X0 x10 XOI,X”,X(O), and xM

in Eq. (6.6.18). Inspired Lemmas 6.6.1 to 6.6.3 and Definition 6.4.1, we consider the

following sets for each J C {1,--- ,n}:
Ey={xeA|J,=J} and XJ::EJﬁo+%Z”.
Note that o + %Z" = X@u XD, Then we have
o+ %Z”\"V

=Xy UXuop U UX (3,02

U X{n—l,n} U X{n—Z,n—l,n} .
Note that, for any J, we have

(9.5.1) Xy=Xo-) o,

jeJ

Moreover, it is clear that X is precisely o + P, the set of special vertices.

9.5.2. Next, we consider X (I) for above sets.

First, if {n — 1,n} NI # 0 then V(I) € X9 (I). Otherwise, V(I) N XV(I) £ 0. In
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each case, we have
VO XPDUuX''1)=0 = ¢ > 1.
For any J, it is clear that
X;j()#0 = INnJ=0.

If this is the case, we have the following refinement of Eq. (9.5.1):
(9.5.2) X5(I) = Xo(I) - Z Lw;.

jeJ
9.5.3. Finally, we consider X (I,r).

First, it is clear that

Cl,"‘,Ct>O,

00
(9.5.3) XTU(Lr) =qx =o0+ciwp +- - +cwp | ¢y, , ¢ € Zs,

ci+-+c=r

Then the followings follow from Eq. (6.6.18):

(9.5.4) XLy = X0, r + 1) = Hwnot + wy),
(9.5.5) X(1,r) = X%, r) - Loy,
(9.5.6) XLy = X0+ 1) = Hw) + wnmt + @p).

Then we need to work out X ;(I,r):

» For X¢(I,r), an explicit description is given in Egs. (9.1.3) and (9.1.4).

* For general J, we have the following refinement of Eq. (9.5.2).
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Lemma 9.5.4. Suppose I N J = 0. Then we have

Xy(Lr) = Xo(Lr+1J| = 8(J) = > Jawj,

jeJ
where §(J) is defined as follows:
2 if{l,n-1,n} CJ,
8(J) =40 if{l,n-1,n}NJ=0,

1 otherwise.

Proof. By Eq. (9.4.3), it suffices to show that for any x € X¢(I,r),
(%) [ao (X—Z%wjﬂ =ap(x) — |J]|+8(J).
jeJ

Note that ag(x) € Z and that

lJ| -3 if{l,n-1,n} CJ,

) |J|—=1 ifl ¢Jbut{n—1,n} CJ,

1
ao(ziwj = ) .
jeJ |[J| =5 ifleJbut{n-1,n}NJ=0,

|J] if{l,n—1,n}NnJ=0.

Then Eq. (x) follows.

We illustrate above discussions by the following diagrams.
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[1]
<

00 U
X7 (1,r) J={2,3}, {n-3,n-2}

U Xy(Lr)
(V(I’ r) J:{2,3},~~~,{n—3,n—2} !

Vi(l,r) =Xo(l,1)

Figure 9.4. Vertices of type I in &/ (D) (1 e Iand {n— 1,n} NI # 0)

0 U By
Ug=o,1 X7°(1, 1) J={1},{1,2}, {n-3,n-2}

U X;(I,7)
V(I,r) (L2 {32y

Vi(l,r) =Xo(,r)

Figure 9.5. Vertices of type I in &/ (B,,) (1 ¢ I and {n — 1, n} NI # 0)
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U By
Uozo,1 X%(1,1) J=(23} {n=3,n-2},
{n-1,n},{n-2,n—1,n}

/

U XJ (I) T')
V(I,r) J={2,3},-+,{n-3,n-2},
{n—1,n},{n-2,n—1,n}

Vi(l,r) =Xo(,r)

Figure 9.6. Vertices of type [ in &/ (D) (1 e ITand {n—1,n} N1 =0)

[1]

U J
Ug=0,1 X (I, 7) J={1},{1,2},~,{n-3,n-2},
’ {n-1,n},{n-2,n—1,n}

/

XJ(I, r)
YV(,r) J={1},{1,2}, ,{n-3,n-2},
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Vi(l,r) =Xo(I,1)

Figure 9.7. Vertices of type I in &/ (B,) (1 ¢ [ and {n — 1,n} NI =0)
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Chapter 10.

Asymptotic analysis

This chapter aims to provide tools to analyze the asymptotic behavior of the simplicial
volume and the simplicial surface area.

We have already seen that SV (r) < SSA(r) in Chapter 1, the introduction. Hence, in
order to prove Theorem 1.3, it suffices to prove the simplicial surface area part. Likewise,
the simplicial volume part of Theorem 1.5 can be deduced from the simplicial surface
area part, either by Lemma 10.1.9 or direct computation. Therefore, it suffices to
consider the asymptotic analysis of the simplicial surface area SSA( - ) only.

In the formulas Egs. (8.4.5) and (8.4.6), there are only finitely many types I C A and
each P4.1(q) is an integral polynomial. Hence, the asymptotic study of SSA( - ) can be
reduced to summations of the following form:

(10.1) Sxa@ =D, | ],
xeX(1,r) acd*
where X is a set of points, and the notations X (I) and X (I, r) follow Eq. (9.4.1).
The growth of Sx(;)(r) varies for different types I. For the purpose of asymptotic

analysis, only the dominant ones are relevant. To better analyze their growth, we
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introduce the following auxiliary functions:

(10.2) Sy = D, %,
xeX(Lr)

where 2p is the sum of positive roots. Note that

20(x) = 3 ab0) < Y TGl < ) (a(x) +1) = 2p(x) + deg(Pou).

aed+ aed+ aed+

Hence, we have Sx ;) (r) = S;(I)(r). But the later one is easier to study.

This chapter is structured as follows. In § 10.1, we will introduce q-numbers and
g-functions and discuss the discrete calculus on them. We will then only focus on the
g-functions defined by (super) q-exponential polynomials. To study them algebraically,
we will review gradings and filtrations in § 10.2. Then in § 10.3 and 10.4, we will
introduce (super) q-exponential polynomials and study the asymptotic properties of the
g-functions defined by them. Finally, with those notions in hand, we will study the

asymptotic growth of multi-summations in § 10.5 and 10.6.

§ 10.1. Discrete calculus of g-functions

It is often more convenient to treat q as a formal variable when we apply algebraic
operations to Sy (r) and S;(I)(r). But to carry out the asymptotic analysis, we need

to view g as a real number. Inspired by this, we have the following definition.

Definition 10.1.1. Let g be a formal variable and h a positive integer. Then a g-number

(of level h) is a rational function of g'/"

over Q having no poles on the half real line
R.; :={reR|r>1}. Let Q(q;h) denote the ring of g-numbers of level h. Then a

g-function (of level h) is a function defined for sufficiently large integers and valued in

217



Chapter 10. Asymptotic analysis

Q(q: h).

Example 10.1.2. Let h be a positive integer larger than 1. Then (¢'/" — 1)7! is a

g-number of level h, while (q — h)~! is not a g-number.

Remark. A rational function of g'/"

is in particular an algebraic function of q and hence
we can talk about its poles. On the half real line R, the function ql/ "has a unique real-
valued branch. This allows us to treat g-numbers as real-valued continuous functions

on R, .

Each Q(q;h) is a principal ideal domain. When the level h varies, they form an
inductive system. Let Q(q; —) denote the inductive limit. We will view it as the ring of
all g-numbers. On this principal ideal domain, we will consider the pointwise topology
inheriting from the algebra € (R.) of real-valued continuous functions on R.;. In
particular, if f is a g-function, then the /imit of f(z) as z — oo is defined pointwise:

lim £() = (Jim f(2)(@)

Then we can view each g-function f as a family of discrete functions (f;)¢>1 indexed

by the half real line R, where f;(2) := f(2)(q).

Definition 10.1.3. Let f and g be two g-functions. We say that they are asymptotically

equal and that f has asymptotic growth g, denoted by f(2)~g(z), if

lim LZ)—

= 1.
i g(2)

We also need asymptotic dominant relations of g-functions. Like the topology, these

notions are defined pointwise.
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§10.1. Discrete calculus of q-functions

Definition 10.1.4. A g-number C is said to be positive (resp. non-negative) if for all
q > 1, C(q) is a positive (resp. non-negative) real number. A g-function f is said to be
eventually positive (resp. eventually non-negative) if for all ¢ > 1, f, is an eventually
positive (resp. eventually non-negative) function, namely: f;(z) > O (resp. fy(z) > 0)

for sufficiently large z.

Definition 10.1.5. Let f and g be two g-functions. We say that f dominates g, denoted by
f(2)>g(2), if there exists a positive g-number C such that | f|—C-|g| is an eventually non-

negative g-function. We will denote f(z)=g(z) if both f(z) > g(z) and g(z) > f(2).
Then we can consider the discrete calculus on g-numbers.

Definition 10.1.6. Let f be a g-function. Its difference A f is the following g-function:

Af(z) = fz+1) - f(2).

The difference operator A is Q(q; —)-linear and satisfies the Leibniz rule:

(10.1.1) A(fg)=f -Ag+g-Af+Af-Ag.

Definition 10.1.7. A g-function f is said to be eventually strictly increasing if for all

q > 1, f4 is an eventually strictly increasing function.
Clearly, f is eventually strictly increasing if and only if A f is eventually positive.

Definition 10.1.8. A g-function f is said to be unbounded if for all g-number C, the

g-function | f| — C is eventually positive.

Lemma 10.1.9. Let f and g be two eventually strictly increasing unbounded q-functions.

Then we have f(2z) ~ g(2) if and only if A f(2) ~ Ag(2).
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Proof. Apply Stolz-Cesaro theorem (see e.g. [CN14, theorem 2.7.2]) to f; and g4 for

all ¢ > 1. Then the statement follows. |
We also need the discrete version of integrals.

Definition 10.1.10. Let f be a g-function. Then an anti-difference of f is a g-function
g such that Ag = f. Since Ker(A) consists of constant g-functions, we see that the
anti-difference is not unique but unique up to a constant g-function. By an abuse of
notation, we will use 2 f to denote an anti-difference of f. Let a be an integer in the
domain of f. Then the anti-difference of f with anchor a, denoted by %, f, is defined

as follows:
Lo f(2) = (2 f)(2) - (Zf)(a).

Note that %, f is well-defined although X f is not.

Note that, if a, b are two integers, then we have the following summation formula:

b-1
(10.1.2) Zf(Z) = (X)) - (Zf)(a) = (Za ) (D).
z=a
We will consider the following notions of g-numbers and g-functions.

Definition 10.1.11. A g-number is said to be primary if it is of level one. Then a

g-function is said to be primary if its values are primary g-numbers.

§ 10.2. Weakly graded algebras

Before moving on, let’s review gradings and then the filtrations induced by them. In
the study of (super) g-exponential polynomials, it is the filtration induced by a grading,

rather than the grading itself, will play an essential role.
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§10.2. Weakly graded algebras

Throughout this section, R is a commutative ring and I is an additive monoid. In the

applications later, T could be N, Q, [, or products of them.

Definition 10.2.1. A I'-grading on an R-module M is a decomposition into a direct sum
M = @ M,,
geT
where each M, is an R-submodule, called the homogeneous component of grade g.
Elements of M, are said to be homogeneous of grade g. A general element m of M is
decomposed into homogeneous elements m, (g € I'), each my is called its homogeneous
component of grade g. An R-module equipped with a I'-grading is called a I'-graded

module over R.

Definition 10.2.2. Let M be a I'-graded module over R and h € T'. Then an operator T
on M is said to respect the grading if T(Mg) C M, for all g € T and shift the grading

homogeneously by h if T(Mg) € Mgy, forallg € T.

Lemma 10.2.3. SupposeT is a group and h € T. Let M be aT-graded projective module
over R and T a surjective R-linear operator T on M shifting the grading homogeneously

by h. Then there is a section of T shifts the grading homogeneously by —h.

Proof. The conditions on T imply that its restriction to each M, is surjective onto M.
Since Mg,y is projective, T| M, admits a section Sy: Mg, — M,. Then the desired

section of T is the direct sum of the sections S,. O

Remark. The Grothendieck group G(T') of T is the universal Abelian group under T.
If M is a T'-graded module, then we will treat it as a G(I')-graded module by defining
M, = {0} if g € G(T') \ T. With this convention, Lemma 10.2.3 holds even without

assuming that I is a group.
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Corollary 10.2.4. Let M be a T-graded projective module over R and T a surjective
R-linear operator T on M respecting the grading. Then there is a section of T respects

the grading.

Definition 10.2.5. A T'-graded algebra over R is an R-algebra A equipped with a T'-
grading such that

AgAp C Agip, for all g, herl.

Note that A is a subalgebra and each A, (g € T') is an Ap-bimodule. The subalgebra Ay
is called the subalgebra of grade 0.
If A is a T'-graded algebra over R, then a T'-graded (left) A-module is a T'-graded

module M over R equipped with a (left) A-action such that
AgMy C Mgyp, for all g, herl.

Definition 10.2.6. Let A be an R-algebra A equipped with a I'-grading. Suppose that
Ap is a subalgebra of A and that each homogeneous component A, (g € T) is a free
Ap-module of rank one. Then the grading can be written as follows:
A= @ Aoeg,
ger
where each e; € A, is a generator of the Ap-module A; and eg = 1 € Ay. The family
(eg)ger is called a homogeneous basis of A over Ag. Note that a homogeneous basis
of A determines the I'-grading on it. Let a € A. Then its homogeneous component of
grade g is of the form ag = cye; with cg € Ag. The element c, is called the coefficient of

ag and is said to be a coefficient of a attached to e,.

Remark. The assumption in Definition 10.2.6 does not require A to be a I'-graded
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algebra.

In the rest of this section, I' is a totally ordered additive monoid (for instance, T' is a

submonoid of (R, +)).

Definition 10.2.7. A T-filtration on an R-module M is a family of R-submodules
(Mcg)ger of M such that M, C Mcp whenever ¢ < h and that Uger M<g = M.
We will use M, to denote the set of elements in M, but not in any M¢, with h < g.

A T-grading on an R-module M induces a I'-filtration as follows:
M, = @Mh. (gel)

Then we say an element m € M is of grade g if m € M. If an element is of grade g,

then its homogeneous component of grade g will be called its leading term.

Note that a nonzero homogeneous element of grade g is of grade g. For a general
nonzero element m € M, its grade is the largest g such that the homogeneous component

of grade g of m is nonzero.

Convention 10.2.8. If M is N-graded, we will say that 0 € M has grade —1. If M is

Q-graded, we will say that O € M has grade —oco.

Definition 10.2.9. Let M be a I'-graded module over R and h € T'. Then an operator T
on M is said to respect the filtration strictly if T(Mxg) C Mxg for all g € T and shift the

grading by h if T(Mxg) C Mxgyn forall g € T.

Lemma 10.2.10. Suppose T is a totally ordered group and h € T. Let M be a T-graded
module over R and T a surjective R-linear operator T on M shifting the grading by h.

Then any section of T shifts the grading by —h.
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Proof. Since M.y N My = 0 whenever g # g’, the conditions on T imply that the
preimage of M.g,, under T is precisely M.,. Hence, if S is a section of T, we have

S(Mxg+n) € Mxg as expected. O

Remark. The total order on I' can be canonically extended to its Grothendieck group

G(T). Then Lemma 10.2.10 holds without assuming that I" is a group.

Corollary 10.2.11. Let M be a T-graded module over R and T a surjective R-linear
operator T on M respecting the filtration strictly. Then any section of T respects the

filtration strictly.

Definition 10.2.12. A weakly T'-graded algebra over R is an R-algebra A equipped with

a I'-grading such that
AsgAsh C Axgih for all g, herl.

If A is a weakly I'-graded algebra over R, then a weakly T'-graded (left) A-module is a

I'-graded module M over R equipped with a (left) A-action such that
AxgMyp C© Mgy for all g, herl.

Remark. If A is a weakly I'-graded algebra over R. Then a free (left) module over A is

naturally a weakly I'-graded (left) A-module.

Example 10.2.13. The ring of polynomials R[z] over R is naturally a N-graded algebra,
where the monomials (2"),en forms a homogeneous basis of it. However, if the char-

acteristic of R is 0, then the induced N-filtration on R[z], namely the degree filtration,
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can also be induced from the following alternative grading:

where
(z) = %z(z—l)~~-(z—n+l).

In this dissertation, this grading will be called the degree. Note that this convention
is different from the usual one. In particular, this grading does not make R[z] into a

N-graded algebra over R, only a weakly N-graded algebra.

§ 10.3. g-exponential polynomials

In this section and the next, we will introduce (super) q-exponential polynomials and

study their interaction with anti-difference operators.

Definition 10.3.1. A g-polynomial is a polynomial with g-number coefficients. Follow-

ing the usual notation, we will denote the ring of g-polynomials by Q(q; —)[z].

Definition 10.3.2. A g-exponential polynomial is a finite formal sum

(103.1) f(z) =) fu(2)g”,

where v € Q and each f,,(z) is a g-polynomial. The ring of g-exponential polynomials

will be denoted by Q(q; —)[z]q%=.

Definition 10.3.3. Following Example 10.2.13, we will consider the following grading
on Q(q; —)[2] and call it the degree:

z
Q(g:-)[=] = (P e —)(n).

neN
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That is to say, an element of grade n in the sense of Definition 10.2.7 will be said to be
of degree n. However, note that this grading only makes Q(q; —)[2] a weakly N-graded
algebra over Q(q; —). Let f be a g-polynomial. We will use deg( f) to denote its degree.
The leading coefficient lead(f) of f is defined to be the coefficient of its leading term,

namely the g-number attached to (. gz( f)) in f.

Definition 10.3.4. The following grading on Q(q; —)[2]q®* will be called the order:

Qg -)[219% = P (g -) =g

veQ

That is to say, an element of grade v in the sense of Definition 10.2.7 will be said to
be of order v. Note that this grading makes Q(q; —)[2]q™®* a Q-graded algebra over
Q(q; -)[2z]. We will use ord( f) to denote the order of a g-exponential polynomial f.
Each homogeneous component Q(q; —)[2z]¢"* is a free module of rank one over the
weakly N-graded algebra Q(q;—)[z] and thus naturally a weakly N-graded module.
The degree deg(f) and the leading coefficient lead( f) of a g-exponential polynomial f
are defined to be the degree and the leading coefficient of its leading term in the order

grading.

Example 10.3.5. Let f be a g-exponential polynomial as in Eq. (10.3.1). Then its order
is the largest v € Q such that f, # 0, its degree and leading coefficient is the degree and

the leading coefficient of the g-polynomial forq(f)-

Remark. Every g-polynomial will be viewed as a g-exponential polynomial which is

homogeneous of order 0.

It is clear that a g-exponential polynomial f defines a g-function. We will use the
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same notion to denote this g-function. Then it has the following asymptotic growth:

(10.3.2) F(2) ~ lead(f) (de; (f))qud(f )z

We thus introduce the following convention.

Convention 10.3.6. Let S be a g-function and f a g-exponential polynomial. If S can
be expressed as a g-exponential polynomial whose leading term is the same as f(z),

then we will say that S(z) has asymptotic growth f(z) and write

S(2) ~ f(2)

by an abuse of language. Note that this implies that S is asymptotically equal to the

g-function defined by f.
Now, we turn to the discrete calculus.

Definition 10.3.7. The difference operator A on g-polynomials is the Q(q; —)-linear

operator vanishing on constant g-polynomials and satisfying the following:

(10.3.3) A(z):( z ) (n>1)

n n-—1

This operator extends to g-exponential polynomials as follows:

(10.3.4) A((Z)qVZ) = ((qV - 1)(2) +q"( # )) 7. (n>1,v%0)
n n n-—1

It is straightforward to verify that the difference operator A satisfies the Leibniz rule
Eq. (10.1.1). For a g-exponential polynomial f, the g-function defined by A f is precisely
the difference of the g-function defined by f.

The following lemma follows from the definition.
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Lemma 10.3.8. The linear operator A respects the order grading on Q(q; —)[z]q™.
On each homogeneous component Q(q; —)[2]q"* (v # 0), the operator A respects the
degree filtration strictly. On the subalgebra Q(q; —)|[z], the operator A shifts the degree

homogeneously by —1.
Next, we will introduce the anti-difference operators.
Lemma 10.3.9. The linear operators A admits a section X such that

(1). it respects the order;
(ii). on each homogeneous component of order v # 0, it respects the degree filtration
strictly;

(iii). on the subalgebra of order 0, it shifts the degree homogeneously by 1.

Moreover, if f is a g-exponential polynomial, then we have the following formula:

( ord(f) _ 1) -
q - 1) lead(f) iford(f) #0,
(10.3.5) lead(Z f) =

lead(f) iford(f) = 0.

Proof. First note that the restriction of the linear operator A to each homogeneous
component Q(q; —)[z]¢"* (v # 0) is bijective, while its restriction to the subalgebra
Q(q; —)[2] is surjective. In particular, the linear operator A itself is surjective. Since
Q(q; -)[2]q™ is a free module over Q(q; —), the statements on orders and degrees fol-
lows from Lemma 10.3.8 by applying Corollaries 10.2.4 and 10.2.11 and Lemma 10.2.3
to the operator A. As for the leading coefficients, ord(f) = 0 case follows from

Eq. (10.3.3). If ord(f) > 0, by Eq. (10.3.4), we have

lead(A f) = (qm“f) - 1) lead(f).
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Replacing f by X f, Eq. (10.3.5) follows. O

Definition 10.3.10. The linear operator ~ in Lemma 10.3.9 is called the free anti-
difference operator. Let a be an integer. The anti-difference operator with anchor a,
denoted by X, is the linear operator X —ev, o X, where ev, evaluates a g-exponential

polynomial f(z) at z = a.

For a g-exponential polynomial f, the g-function defined by %, f is the anti-difference
with anchor a of the g-function defined by f.

We end this section with discussions of primarity.

Definition 10.3.11. Let f be a g-exponential polynomial as in Eq. (10.3.1). Then f is

said to be primary if its coeflicients are primary g-numbers and f, = 0 for all v ¢ Z.
Clearly, primary g-exponential polynomials define primary g-functions.

Lemma 10.3.12. Let f be a g-exponential polynomial. If ord(f) > O, then the q-
functions defined by X f for all a € Z are asymptotically equal to the q-function defined
by X f. If f is a primary, then so are A f, X f, and 2, f (a € Z).

Proof. We have 2, f — Z f € Q(q; —). Note that elements of Q(q; —) have order 0 and
degree 0, while X f has nonzero order or degree by Lemma 10.3.9. Hence, we have

2q f ~ Z f. The last statement is evident. ]

§ 10.4. Super g-exponential polynomials

Definition 10.4.1. A parity function is a function which is defined on integers and
factors through the projection Z — [,. A parity function valued in g-numbers is called

a parity q-function.
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Definition 10.4.2. A super g-polynomial is a polynomial with coefficients in parity

g-functions. A super q-exponential polynomial is a finite formal sum

(104.1) f2) =) ful2)g”,
14
where v € Q and each f,(z) is a super g-polynomial.

To better understand the structure of the ring of super g-exponential polynomials, we

recall the following notions.

Definition 10.4.3. A superalgebra over a commutative ring R is a [F-graded algebra A
over R. The [F-grading A = Ag @ A is called the parity. In particular, the subalgebra
Ay is called the even part and the Ap-module A; is called the odd part. For any element
a € A, its homogeneous component of parity O (resp. 1) is called its even part (resp.

odd part). If A is a superalgebra, then an A-supermodule is a F>-graded A-module.

Convention 10.4.4. We will use (—1)* to denote the parity function mapping even

numbers to 1 and odd numbers to —1.
Then the following lemma is easy to verify.

Lemma 10.4.5. Let e(2) be a parity function. Then we have

1 1 B
e(2) = 5(e(0) +e(1)) + 5(e(0) — (D)) (=1)".
By this lemma, we have the following.

Corollary 10.4.6. The ring of parity q-functions with formal variable z is precisely the

Q(q; —)-algebra generated by (—1)* and is a superalgebra decomposed into even and
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odd parts as follows:
Q(g; ) [(=1)*] = Q(g; -) ® Q(g; -)(=1)".
Then the ring of super g-polynomials can be denoted by Q(q; —)[(—1)%, 2].

Corollary 10.4.7. The ring of super q-polynomials is a superalgebra decomposed into

even and odd parts as follows:

Q(q; ) [(=1)% 2] = Q(g; -)[2] ® Q(q; -) [z] (-1)*.

Definition 10.4.8. The degree grading on Q(q;—)[(—1)?, 2] is defined similarly to
that on Q(q; —)[2] in Definition 10.3.3 and makes it a weakly N-graded algebra over
Q(q;—)[(=1)7]. Since this weakly graded algebra is also a superalgebra, the degree
grading induces a grading on its even part and one on its odd parts. They are called
the even degree and the odd degree. Note that the even degree is precisely the degree
grading on Q(q; —)[z] defined in Definition 10.3.3, and the odd degree is precisely the
natural grading on a free module of rank one over Q(q; —)[z].

Let f be a super g-polynomial. We will use deg(f) to denote its degree. Its even
degree deg(f) (resp. odd degree deg,(f)) is the even degree (resp. odd degree) of
its even part (resp. odd part). The leading coefficient lead(f) of f is defined to be the

coefficient of its leading term, namely the parity g-function attached to ( ) in f. Its

z
deg(f)

even leading coefficient leady(f) (resp. odd leading coefficient lead; (f)) is the leading

coeflicient of its even part (resp. odd part).
Example 10.4.9. Let f be a super g-polynomial as follows:

f(2) = fo(2) + fi(2)(-1)7,
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where fj and f; are g-polynomials. Then the even degree of f is deg( fp), the odd degree
of fis f is deg(f1), and the degree of f is the larger one of them. If deg( fy) > deg(f1),
then the leading coefficient of f is precisely its even leading coefficient, which is
lead(fy). If deg(fo) < deg(f1), then the leading coefficient of f is precisely its odd
leading coefficient multiplied by (—1)?, which is lead( f1)(—1)%. If deg(fy) = deg(f1),

then the leading coefficient of f is the parity g-function lead( fy) + lead(f;)(—1).

Similarly to Definition 10.3.2, the ring of super g-exponential polynomials will be

denoted by Q(q; —)[ (1), z]q%=.

Definition 10.4.10. The order grading on Q(q; —)[(=1)?, z]q%* is defined similarly to
that on Q(q; —)[2]q"%* in Definition 10.3.4 and makes it a Q-graded algebra over the
superalgebra Q(q; —)[(-1)% 2z]. We will use ord(f) to denote the order of a super
g-exponential polynomial f.

Each homogeneous component Q(q; —)[(—1)?, z]¢"* is a free supermodule of rank
one over the weakly N-graded superalgebra Q(q;—)[(—1)%, 2] and thus naturally a
weakly N-graded supermodule. The degree deg(f), the even degree deg(f), the odd
degree deg,(f), the leading coefficient lead(f), the even leading coefficient leady(f),
and the odd leading coefficient lead;(f) of a super g-exponential polynomial f are
defined to be the degree, the even degree, the odd degree, the leading coefficient, the
even leading coefficient, and the odd leading coefficient of its leading term in the order

grading.

Example 10.4.11. Let f be a g-exponential polynomial as in Eq. (10.4.1). Then the
order of f is the largest v € Q such that f, # 0 and its leading term is the product of the

super g-polynomial foq(f) and qord(N)z,
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Remark. Every super g-polynomial will be viewed as a super g-exponential polynomial

which is homogeneous of order 0.

It is clear that a super g-exponential polynomial f defines a g-function. We will

use the same notion to denote this g-function. Then we have the following asymptotic

equalities:
f(2)~(leado(f)( ‘ )+1ead1(f)( z )(_1)z)qord<f>z
(10.4.2) dzego(f ) deg; (f)
~ lead(f) (deg(f)) o

Note that the leading coefficient lead(f) is a parity g-function rather than a g-number.
In particular, the asymptotic behaviors of f(z) along even integers and odd integers are

different if deg,(f) = deg, (f).

Convention 10.4.12. Let S be a g-function and f a super g-exponential polynomial. If
S can be expressed as a super g-exponential polynomial whose leading term is the same

as f(z), then we will say that S has asymptotic growth f and write

S(z) ~ f(2)

by an abuse of language. Note that this implies that S is asymptotically equal to the

g-function defined by f.
Now, we turn to the discrete calculus.

Definition 10.4.13. The difference operator A on super g-exponential polynomials is the
extension of the difference operator defined in Definition 10.3.7 satisfying the Leibniz

rule Eq. (10.1.1) and acts on parity g-functions as in Definition 10.1.6.
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Remark. By Lemma 10.4.5, the action of A on parity g-functions is determined by
its action on (—1)*. Note that A (—=1)* = —2(—1)*. Hence, the action of A on the

superalgebra of super g-exponential polynomials respects the parity.

For a super g-exponential polynomial f, the g-function defined by A f is precisely the
difference of the g-function defined by f.

The following lemma follows from the definition.

Lemma 10.4.14. The linear operator A respects the parity and the order grading on
Q(q; ) [(=1)?, 2]g%. On each homogeneous component Q(q; =) [(=1)%,2]q** (v £ 0),
the operator A respects the degree filtration, the even degree filtration on its even
part, and the odd degree filtration on its odd parts strictly. On the subalgebra
Q(q;—)[(=1)?, 2], the operator A shifts the even degree homogeneously by —1 and

respects the odd degree filtration strictly.
Next, we will introduce the anti-difference operators.
Lemma 10.4.15. The linear operators A admits a section X such that

(). it respects the parity and the order;

(ii). on each homogeneous component of order v # 0, it respects the degree filtration,
the even degree filtration on its even part, and odd degree filtration on its odd
part strictly;

(iii). on the subalgebra of order 0, it shifts the even degree homogeneously by 1 and

respects the odd degree filtration strictly.
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Moreover, if f is a q-exponential polynomial, then we have the following formulas:

(479~ 1) teado()  iford(f) %0,
leady (X f) =

(10.4.3) leady(f) iford(f) =0,
lead; (2 f) = — (q°rd<f> + 1)_l lead, (f).

Proof. First note that the restriction of the linear operator A to each homogeneous com-
ponent Q(q; —)[(—1)%, 2]¢"”* (v # 0) is bijective, while its restriction to the subalgebra
Q(q; -)[(=1)%, =] is surjective. In particular, the linear operator A itself is surjective.
Since Q(q;-)[(=1)%,2]q% is a free module over Q(q; —), the statements on orders
and degrees follows from Lemma 10.4.14 by applying Corollaries 10.2.4 and 10.2.11
and Lemma 10.2.3 to the operator A. The statements on even leading coeflicients fol-
lows from Lemma 10.3.9. As for the odd leading coeflicients, first note that for each

v € Q, we have

A((—l)Z(f;)q”) = - (@’ +1) <—1>Z(§)q"z - q”(—l)Z(nf 1)q"z.
Therefore, we have

lead; (A f) = — (q°fd<f> + 1) lead; ().

Replacing f by X f, Eq. (10.3.5) follows. m|

Definition 10.4.16. The linear operator ~ in Lemma 10.4.15 is called the free anti-
difference operator. Let a be an integer. The anti-difference operator with anchor
a, denoted by %, is the linear operator X —ev, o X, where ev, evaluates a super g-

exponential polynomial f(z) at z = a.

For a super g-exponential polynomial f, the g-function defined by %, f is the anti-
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difference with anchor a of the g-function defined by f.

We end this section with discussions of primarity.

Definition 10.4.17. Let f be a super g-exponential polynomial as in Eq. (10.4.1). Then

f is said to be primary if its coeflicients are primary g-numbers and f, = O forall v ¢ Z.
Clearly, primary super g-exponential polynomials define primary g-functions.

Lemma 10.4.18. Let f be a q-exponential polynomial. If ord(f) > 0 orord(f) = O with
either deg,(f) > 0 or deg,(f) > 0, then the q-functions defined by X f for all a € Z are
asymptotically equal to the q-function defined by X f. If f is primary, then so are A f,
Xf,and X, f (a € Z).

Proof. We have X, f — X f € Q(q;—). Elements of Q(q;—) have order 0 and even
degree 0, while the assumption on f implies that X f has nonzero order or degree by

Lemma 10.4.15. Hence, we have 2, f ~ 2 f. The last statement is evident. |

§ 10.5. Asymptotic growth of multi-summations

To analyze the growth of the g-functions Sx ;) (r) and Sf\,(l)(r), we need to write them
as g-exponential polynomials. This can be done by considering multi-summations of
homogeneous (super) g-exponential polynomials. In this section, we give some general
results.

The strategy is: we will inductively construct a sequence of (super) g-exponential
polynomials where the final one defines the desired g-function, and then we will compare
the orders, the degrees, and the leading coeflicients of them.

To better describe the results, let’s introduce some conventions.
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§10.5. Asymptotic growth of multi-summations

Convention 10.5.1. Let i be an index set. The set of functions from i to another set
X will be denoted by X*. Such a function ¢ will be identified with a sequence (¢;)ici
indexed by i, where ¢; = ¢(i). The constant sequence mapping all i € i to 1 will be
denoted by 1. If g and ¢ are two sequences of real numbers indexed by i, then 1 - ¢

denotes their dot product, namely »;c; 1;c;.

Lemma 10.5.2. Let S be the q-function defined by the following multi-summation

S = >, ¢

ceZ"‘)O: 1l-c=2z

where 11 is a sequence of non-negative rational numbers. Define the following notations:

* lmax IS the maximum of y;

* imax IS the set of indices i € 1 such that y1; = fipax-

Then S can be expressed as a q-exponential polynomial so that

S(z) ~ 1_[ (gmaHi 1)—1 ) (l z )qymaxz.

i -1
Moreover, if u takes integral values, then the q-exponential polynomial is primary.

Remark. Note that the g-function S is eventually positive since the leading coefficient

of the g-exponential polynomial defining it is positive.

Proof. First note that the condition on the sequence ¢ of variables is stable under
reindexing. Hence, we may assume i = {1,--- ,t} and i = {1, - , ip} by reindexing

the sequence p if necessary. We change the variables from ¢ to b as follows:

bi :=ci+--+¢;. (1<i<t)
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Then we can write S(z) as follows:

z—1 br—1
_ iz Vi_1bi— vib
S(Z)—qt Z qtltl"'qul,
bi_1=t-1 bi=1

where v; = p; — pip for 1 <i<t—-1andv, = p,.

To analyze the growth of S(z), we define fi, - - -, f; inductively as follows:

fl (Z) = qylz’

fi(z) = ¢"* Zin1 fie1(2). (1<i<t)

Then each f; is a g-exponential polynomial, and we can analyze them by induction.
In particular, f; defines the g-function S by Eq. (10.1.2). Moreover, if py,-- -, p; are
integers, then every f; is primary by Lemma 10.3.12.
For 1 < i < ip, repeatedly applying Lemma 10.3.9.(i), we have
0 ifi < i(),
ord(f;) =v;+ord(fi-1) =v; =
Hiy — Hig+1  1f 1 =1p.

By Lemma 10.3.9.(iii), we have the following recurrence relations:

deg(f;) =deg(fi-1) + 1, lead(f;) = lead(fi_1).

In particular, we have ord(fi,) = mi, — Hio+1, deg(fi)) = io — 1, and lead(f;,) = 1.

For ip < i < t, repeatedly applying Lemma 10.3.9.(i), we have

My, — i ifi<t,
ord(f;) = vi+ord(fi-1) = vi + Hi, — Bi =
Hi, ifi =t.

In particular, they are positive. Then by Lemma 10.3.9.(i1), we have the following
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recurrence relations:

deg(f;) = deg(fi-1), lead(f;) = (g0 — 1) lead(fi_1).

In particular, we have ord(f;) = p;,, deg(f;) = ip — 1, and lead( f;) equals the product of
(g0 M — 1) forig+1 <i<t.
Therefore, we have the following:
t
S(z) ~ izli(:lrl (qMo~Hi — 1)L (ioz— l)qmoz-

This proves the lemma. O

In the rest of this section, we will consider multi-summations involving parity func-

tions. We first extend Definition 10.4.1 to the following definition.

Definition 10.5.3. A multivariable parity function (indexed by 1) is a function defined

on Z' factoring through the projection Z* — [F;.

Convention 10.5.4. By an abuse of notation, we will use the same notation to denote
a multivariable parity function indexed by i and a function on defined on [F;. In other
words, we will treat any sequence in [, as a sequence in Z by viewing 0 € F, and 1 € [,

as their standard representatives 0 € Z and 1 € Z.

Lemma 10.5.5. Let S be the q-function defined by the following multi-summation

S@ = ), ¢,
ceZLO:Lc:z

where 1 is a sequence of non-negative rational numbers and e is a multivariable parity

function. Define the following notations:
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* lmax IS the maximum of p;

* imax IS the set of indices i € t such that p; = pipax.

Then S can be expressed as a super q-exponential polynomial so that

S(6) ~ (Gt Guea (17 (5 Ja

|imax| -1
where the constants Cy .o and Cy .1 are defined as follows:
Cp e,0 = C]J . Z qC(S)+(pmax—P)'S, C}J e,] «— C].l . Z(—l)l.sqe(s)"'(UmaX_p)’s’

se[Fé se[F%
where [1m.x — 11 denotes the sequence ([1max — Hi)iei and Cy the following the constant:

. 1 Z(Vmax_lli) -1
Cu = 2limax| 1—[ (q - 1) '

1€imax

Moreover, if p and e take integral values, then the super q-exponential polynomial is

primary.

Remark. Note that the even leading coeflicient Cp ¢ is positive and the odd leading
coeflicient Cy, ¢ 1 satisfies |Cp,e,1| < Cu,e,0- Hence, the g-function S is eventually positive.
Note that Cy 1 could be 0, in which case the asymptotic growth of S(z) along even

integers and odd integers coincide.

To prove Lemma 10.5.5, we begin with some special cases.

Lemma 10.5.6. Let S be the q-function defined by the following multi-summation

S = >, (=

ceZio: 1-c=2

where s is a sequence of integers. Define the following notations:
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. i (resp. i! ) is the set of indices i € i such that s; is even (resp. odd).

Then S can be expressed as a primary super q-polynomial so that

sie)~ (1) (Ii“lz— 1) (4" (Iillz— 1)(_1)2'

Proof. First, if either s contains no even numbers or no odd numbers, then the statement
follows from Lemma 10.5.2. We may assume that the sequence s contains at least one
even number and one odd number. Since the condition on the sequence ¢ of variables
is stable under reindexing, we may assume i = {1,--- ,t} and i° = {2,--- ,ig+ 1} by

reindexing the sequence s if necessary. We change the variables from ¢ to b as follows:
biji=ci+---+¢;. (1 <i<t)

Then we can write S(z) as follows:

z—1 by—1
S(z)= (=1 ) (=D =,
bi_1=t—1 bi=1

where r; =s; — siy) for 1 <i<t—1andr, =s,. Then our assumption implies that r; is
even wheneveri ¢ {1,ip+ 1,t}.

To analyze the growth of S(z), we can define f1, - - -, f; inductively as follows:

fi(z) = (=)™,
fi(z) = (=D Zi_y fi-1(2). (I<i<p)

Note that f fails the condition of Lemma 10.4.18. But we can compute X, f; directly:
51 fi(z) = =1 = (-1~

Then each f; is a primary super g-polynomial by Lemma 10.4.18. Moreover, f; defines
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the g-function S by Eq. (10.1.2).

Fori ¢ {1,ip+ 1,t}, since r; is even, by Lemma 10.4.15.(iii), we have the following

recurrence relations:

deg(fi) = degy(fi-1) +1, deg,(f;) = deg;(fi-1),

leado(f;) = leado(fi-1), lead; (f;) = —% lead; (fi_1).
On the other hand, when r; is odd, we have

degy(fi) = deg;(fi-1), deg,(f;) = degy(fi-1) + 1,

leado(f;) = -5 lead; (fi-1), lead; (f;) = leado(fi-1)-

If ip =t — 1, then r = ri41 = s; is also even, and we have

degy(fy) = dego(fi1) +1= -+ = degg(f2) £~ 2= -2,
deg,(f;) = deg(fe-1) =--- =deg;(f2) =0,

leado(f;) = leado(fi_1) = - - - = leado(fo) = —1,

lead, () = 4 lead (fiy) =+~ = (~4)  leadi (£ = (-4) .
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Otherwise, both r; and r;,, are odd, and we have

degy(fi) = deg(fi-1) == degl(fioH)
=degy(fi,) +1="--=degy(fo) +ip—2+1=ip— 1,
deg; (f;) = degy(fir1) +1=--- =degy(fips1) +t —ip—2+1
:degl(ﬁ0)+t—i0— 1=--- :degl(f2)+t—i0— l=t—ip—1,
| A
leado(f;) = ~4lead) (fi-) =+ = =4 (~4) " lead (fin)
t—ip—1 t—ip—1 t—ip
= (-3) 7 teads(fi)) == (-3) T teado(f) = (-3)
lead; (f;) = leado(fi-1) = - - - = leado(fio+1)
ip—2 io
= —1lead(f;)) =---=-1 (—%) lead; (f2) = (—%)
Then the lemma follows. O

Next, we consider the following situation.

Lemma 10.5.7. Let S be the q-function defined by the following multi-summation
S = > (=D
ceZ! ;) l-e=2
where s is a sequence of integers and 1 is a sequence of non-negative rational numbers.

Define the following notations:

Hmax IS the maximum of u;

* imax IS the set of indices i € t such that p; = fipax,

0

O (resp. il ) is the set of indices i € imax such that s; is even (resp. odd);

o i

i¢ (resp. il ) is the set of indices i € 1\ imax Such that s; is even (resp. odd).

243



Chapter 10. Asymptotic analysis

Then S can be expressed as a super q-exponential polynomial so that

S(z) ~ (fs,p,O(Z) + fs,p,l (Z)(_l)z) qﬂmaxz’

where fsun(2) (O =0, 1) is the following q-polynomial:

foms(@) = [ ] ((=1)omsgimre—1)7. (_%)lfr‘n‘&l ( :

i#imax

:0
|1max| -

)

Moreover, if p takes integral values, then the super q-exponential polynomial is primary.

Remark. Note that the leading coefficient may be negative. However, if s contains no

even numbers (resp. odd numbers), then the even (resp. odd) leading coefficient is zero

and the odd (resp. even) leading coeflicient is positive.

Proof. First note that the condition on the sequence ¢ of variables is stable under

reindexing. Hence, we may assume i = {1,---,t}, imax = {1,---,i0}, and iV =

{ip+1,---,i;} by reindexing the sequences u and s if necessary. We change the

variables from c to b as follows:

bi =Cc1+:--+¢.

Then we can write S(z) as follows:

z—1 big+1-1

(ip<i<t)

S(z) = (~1)q® Y ()igete s B (<l Tetegto e Sy, (b,

bi_1=t—1 biOZiO

where

eri=si—sippforip+1 <i<t-—1landr =s;

e vi=u;— Hip forig <i<t—1andv, = pg;
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* Sli,,, is the subsequence of s indexed by imax and the g-function Sy, is defined

as follows:

SSlimax (2) = Z (_1)S|imax-c.

ceZMmaX : 1.c=¢
>0

By Lemma 10.5.6, the g-function Sy, ~ can be expressed as a primary super g-

polynomial f, for which we have

degO(f) = |i0max| - 13 deg] (f) = |i[1naxl - 1:
1 |iflﬂﬁX| 1 |i?nax|
leado(f) = (-3) ™, lead) () = (-3) ™.
To analyze the growth of S(z), we can define f;,, - - - , f; inductively as follows:

fig(2) = (=1) 70" #¢"0* f(2),

fi(z) = (=1)"*q"* Zi_1 fi-1(2). (ip <i<t)

Then each f; is a super g-exponential polynomial, and we can analyze them by induction.
In particular, f; defines the g-function S by Eq. (10.1.2). Moreover, if puy, - -, p, are
integers, then every f; is primary by Lemma 10.4.18.
For each iy < i < t, repeatedly applying Lemma 10.4.15.(i), we have
by, — i ifi<t,
ord(f;) =v;+ord(fi-1) =vi + p;, — p; =
Hi, ifi =t.
When i ¢ {i},t}, since r; is even, by Lemma 10.4.15.(ii), we have the following

recurrence relations:

degy(f;) = degy(fi-1), deg(f;) = deg;(fi-1),

leado(f;) = (g0~ — 1) leado(fio1), lead;(fi) = (—g"0 ™ — 1)"" lead; (fi-1).
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On the other hand, when r; is odd, we have

degy(f;) = deg;(fi-1), deg,(f;) = degy(fi-1),

leado(f;) = (=g — 1) lead; (fi-1), lead;(f;) = (¢"0 " — 1)"" leado(fi-1).

If i} = t, namely i! = 0, then both Sip+1 and r¢ = s; are even, and we have

dego(f) = dego(fie1) = -+ = degy(fiy) = |i%x] = 1=t -1,
deg,(f;) =deg;(fi-1) =---= degl(fio) = |irlnax| -1=-1,

leado(f;) = (¢"o 7P — 1) - leadg(fi_1) = - --

] b
H (¢*0™ — 1)" - leado fi)) = H (g =17 (=)

i=ip+1 i=ip+1

If i} = ip, namely i’ = 0, then both Sip+1 and r; = s, are odd, and we have

degy(fe) = deg(fi-1) =--- = deg, (fio) = |i9naxl -1=-1,
deg, (f) = degy(fie1) = -+ = degy(fiy) = |ima] 1=t~ 1,

lead; (f;) = (¢"o7" — 1) -leadg(fi_1) = - --

_ |max
H (¢*0™ — 1" leado fi,) = H (g - )7 (=)

i=ip+1 i=ip+1
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If ip < ij < t, then s;y41 is even while r;; and r; = s; are odd. We thus have

degy(fi) = deg, (fi-1) = = deg; ()
= deg(fiy-1) = -+ = dego(fiy) = [tmar| = 1> 0,
deg, (i) = dego(f-1) = - -+ = degy(fi,)
= dego(fuy-1) = -+ = dego(fiy) = [imax| =120,
leady(f,) = (—g"0 ™" — 1) -lead| (fiu1) = -+ = ﬁ (—=g"o7i = 1)~" - lead (f;,)

i=i;+1
t

=[] (=g =17 (g0 — 1) - leady (fiy-1) = - -
i=i1+1
t

i
— (—qFo™Hi — 1)—1 . 1—[ (qtoHi — 1)—1 . leado(fio)

i=ij+1 i=ip+1
= (=g"o™H 1) l_[ (qMo™H —1) '(—z) ,
i=ij+1 i=ip+1
t
tead; (£) = (g% — 1) -Teado(fior) =+ = [ | (@0 = 1) leado(fy

i=i+1
t

= [T (g0 =1)"". (=g"0~"1 — 1) . lead, (fio1) =+
i=ii+1

t

i
=[] @ =07 ]| (=g - 17" - leads (£i)

i=i1+1 i=ig+1
L 1 il 1 1 |i?nax|
_ Hig—ti _ 1\~ . Al _ 1yl (1
=[] @ =07 ] (g (=3) ™
i=iy+1 i=ip+1
Then the lemma follows. |

To deduce Lemma 10.5.5 from Lemma 10.5.7, we need the following notions.

Definition 10.5.8. Let e be a multivariable parity function indexed by i. Then its Fourier
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transform é is the following:
a—y:§:4@p4fi
seF
Convention 10.5.9. It is often the case that the index set i admits a partition i = t; U i5.
For any sequence ¢ indexed by i, we will use ¢; and ¢, to denote the subsequences of
c indexed by i; and i, respectively. Conversely, if ¢; and ¢; are two sequences indexed
by i; and i, respectively, then we will use ¢; LI ¢, to denote the sequence indexed by t

obtained from them.
We have the following multivariable version of Lemma 10.4.5.

Lemma 10.5.10. Let e be a multivariable parity function indexed by t. Then we have
e(©) = == > &(s) (1)
2l £u '
selF;
Moreover, if t admits a partition t = i] U1, then we have

1

Z e(si Uey)(-1)% = ol Z é(er Usy) (1),

Slé[F;1 SzG[F;z
Proof. This follows from the general theory of Fourier transforms on finite Abelian
groups (see e.g. [Lang, chap. XVIII, §5 and §6]). To verify the lemma directly, note

that for any index set i and any sequence c¢ indexed by i, we have

2 ife =0,
D (D=
seF! 0  otherwise.
Then the statement follows by straightforward computations. O

We are now able to prove Lemma 10.5.5.

248



§10.5. Asymptotic growth of multi-summations

Proof of Lemma 10.5.5. By Lemma 10.5.10, we can write S as follows:
S = 2= 3 O (5) Si(2)
2|i| | S )
selF,
where each Sg is defined as follows:
Ss(z) = Z (=1)¥egHe,
ceZ! : 1-e=z

By Lemma 10.5.7, each Sg can be expressed as a super g-exponential polynomial of

1
max

0

max | — 1 (see there for the notations).

order pim,x, even degree |i | —1, and odd degree |i
Moreover, if pu takes integral values, then these super g-exponential polynomials are
primary.

Note that the degree of Sg achieves its maximum || — 1 if and only if s contains
no odd numbers or no even numbers. Furthermore, in that case, both the even and odd
leading coeflicients of Sg are non-negative (indeed, one is zero and another is positive).

Therefore, S can be expressed as a super g-exponential polynomial of order pipax
and degree |imax| — 1, and if p and e take integral values, then this super g-exponential
polynomial is primary. Moreover, we have
L
2lil

E(z)( o )qﬂmz,

|1max| -1

(*) S(z) ~

where the parity g-function E is given as follows:

E@ = . ¢O0us) [] (-Drgmt- 1

SE[F;\ imax igimax
S -1
+ Y Oy [ ((nsgmm—t) -1y
S€|Fi \imax i¢imax
2
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To deduce the formula in Lemma 10.5.5 from above one, note that

n (q2(umax—ui) _ 1) 1—[ ((=1)%igHmasPi — 1)—1

i#imax i#imax

- 1—[ ((=1)%igHm>"Hi +1) = Z (=1)5% g(Hma—)s"

1¢imax S/G[F;\imax

and similarly

-1 ’ ’
1—[ (qz(ﬂmax—ui) _ 1) 1_[ ((_1)1+Siqllmax—l1i _ 1) — Z (_1)(1+S)'S q(umax—ﬂ)'s )

1€1max i#imax S/EF;\imax

Therefore, we have

l_[ (qZ(umax—ui) _ 1) “E(z)

igimax
PRICIE NS Y C A

se[F; \imax s’ e[F;\ imax
+ Z ) (1Us) Z (=1) W) g(Hmn—p)'s’ ()2
se [F; \ imax g€ [F; \ tmax

Z Z (;(:'(\—) (0 L s)(_l)s's’ q(pmax_p)'s/

’ 1 \ imax ‘ \ imax
S e[F2 se[F2

F Y Oaus) - g s,

s et \ tmax i\ tmax
s’€l, sel,
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By Lemma 10.5.10, we have

1 2(Mmax—Hi)
2N ] [ (q B 1) E(2)

i#imax

— Z Z qe(SUS/)(_l)S'O q(l-lmax_ll)'sl

7 et \ imax imax
s’el, selF,

" Z Z qe(sus’)(_l)sl q(ymax—p)s’ . (_1)z+1-s’

e Vimax | gepi \imax
2 2

= Z qe(5)+(ﬂmax—ll)'s (1 + (_1)z+1~s) )

i
se[F2

Apply this to Eq. (x), then Lemma 10.5.5 follows. O

§ 10.6. Asymptotic growth of non-balanced
multi-summations

This section aims to apply the results in § 10.5 to get asymptotic growth of multi-
summations which are non-balanced in the sense that the summation condition of
variables is no longer 1 - ¢ = z. In our applications, the coefficients in the summation
condition can only be either 1 or 2, see § 9.2 to 9.5. Hence, we will assume that the

index set i admits a partition i = i; LI i, and then follow Convention 10.5.9.

Lemma 10.6.1. Let S be the q-function defined by the following multi-summation

S(z) = >

ceZio: 1-¢;+2(1-¢p)=2

where p is a sequence of non-negative rational numbers. For O = 1,2, define the
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Chapter 10. Asymptotic analysis

following notations:

* Upmax IS the maximum of pg;

* iomax IS the set of indices i € tg such that 11; = g max.
Then S can be expressed as a super q-exponential polynomial.

(1). If 2111 max > H2max, then we have

Z

S(Z) ~ CP . Z q(plmax_phl\ilmax)s . (

i\
S€|F21\ 1 max

H1maxZ
|ilmax| - 1)q ’

where 11 max — Hli,\i, .. denotes the sequence (H1max — Hi)ici, \ijm @Nd the
constant C,, is defined as follows:
2 -2 -1 2 —n; -1
C}l = l_[ (q Himax—<«Hi __ 1) 1—[ (q Himax—Hi __ 1) .
iEil \ilmax i€i2

(i1). If 2111 max < H2max, then we have

l z
$(2) ~ (Guo+ G (= 1)%) - ( )quzmx ,

|i2max| -1
where the constants Cy o and Cy 1 are defined as follows:
(1112 —m1)-s 1s (ll.lz —Hp)-s
Cro=Cp- Z 2 G =G Z (1) g2t
SG[F;] se[F;'

where %IJZmaX — M1 denotes the sequence (%pZmax — Hi)iei, and the constant Cy is

defined as follows:

1 R T -1 ax—Hi -1
C].l = 2|i2max| 1—[ (qPZmax Hi _ 1) 1—[ (qIJZmdx Hi _ 1) .

iEil i€ty \i2max
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§10.6. Asymptotic growth of non-balanced multi-summations

(ii1). If 2111 max = H2max, then we have

Z

S(Z) ~ CP . Z q(plmax_phl\ilmax).s . (

i \i
S€|F21\ 1 max

. . )qplmaxz,
|11max| + |12max| -1

where 1 max — Hli,\i, .. denotes the sequence (H1max — Hi)ici, \ijmy @Nd the
constant C,, is defined as follows:
C,, = 1 1—[ (qulmax_zlli _ 1)_1 1_[ (qzlllmax_lli _ 1)_1 .
B 2|i2max| L. .
i€tr \ i1 max i€iz \ 12 max
Moreover, if both p; and %pz take integral values, then the super q-exponential polyno-

mial is primary.

Remark. Note that the even leading coefficient Cy; is positive and the odd leading
coefficient Cy; satisfies [Cy1| < Cuo. Hence, the g-function S is eventually positive.
Note that Cy,; could be 0, in which case the asymptotic growth of S(z) along even

integers and odd integers coincide.

In the proof of above lemma and its many applications, a fundamental trick is to
extend the domain of a g-function to include non-integers. If this g-function is defined
by a (super) g-exponential polynomial, then it is clear how to do this: simply evaluate
this (super) g-exponential polynomial. On the other hand, when the g-function is given
by a (multi-)summation, it is natural to define its value at non-integer points being
zero. However, keep these two conventions may cause confusions especially when
an asymptotic equality connecting a (multi-)summation and a (super) g-exponential
polynomial is provided. Hence, we will abandon the second convention and use the

following one instead.

Convention 10.6.2. Suppose S is a g-function such that it can be expressed as a (super)
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Chapter 10. Asymptotic analysis

g-exponential polynomial f. When we write S(%n), where n € Z, we actually mean
the evaluation of f(z) at z = %n. Note that this may cause S having nonzero value at a
half-integer even though S may be given by a (multi-)summation.

Then by Lemma 10.4.5, the g-function that gives S(%z) when z is even and 0 when

z 1s odd is the following one:
L1+ (=1)%) S(%z).

Proof of Lemma 10.6.1. By introducing new variables s € [F; and replacing ¢ by 2¢; —s,

we can write the g-function S as follows:

S(z) = Z g HrsHemum)-e

. il
ceZ selF,
2(1-¢c)=z+1-s

Consider the following g-function:
S'(z) = Z ¢,
ceZiO: 1-c=2
where pt’ is the sequence 2u; U 1. Then we have
S(z) = Z q_’”'SS’(%(z+1-s)).
se[F;l : z+1.5€27

Note that the summation only takes over those sequence s € [F;‘ satisfying z+1-s € 2Z.

Hence, following Convention 10.6.2, we have

() S(z)= . 4 (1 + (—1)Z+1'S) g S'(%(z +1- s)).

i
se[F2

By Lemma 10.5.2, the g-function S’ can be expressed as a g-exponential polynomial
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§10.6. Asymptotic growth of non-balanced multi-summations

f which is primary when p’ only contains integers. Moreover, we have

’ ’ -1 Z ’
S, ~ | | ( Hmax—H; _ 1) . I‘Imaxz,

Py max
l¢tmax

’

max 18 the set of indices i € i such

where p .. is the maximum of the sequence 1’ and i

that p1} achieves this maximum. Applying this to Eq. (+) and noticing that

5

1 5
= . , 1 -1 1 ’ 1,
(2(2 + 1 S))qpmaXZ(Z"'l's) ~ (%)hmaxl qEUmaxl's( z )qumaxZ
o/
| -1 [thax] — 1

| i;nax

we obtain the following asymptotic equality:

) -1
S(z) ~ 2|i§111ax| 1_[ (qllmax Hi — 1)

i o
s\ (SHf—)s z L 2
. Z (1+(_1) )q 2 Fmax . . 1 q2 max*®
i |1max| -
sel,

In the sequence pr’, the maximum p},,, i max{211] max, H2max }, and we have

ilmax if 2Illmax > H2max.
i2max if 2Illmax < H2max,

t1max Ui2max 1f 2111 max = H2max-

In the first and the third case, the sequence % Hiax — H1 contains a zero. Hence, we have
Z (_1)z+1'5q(%y;nax_pl)'s - 0.
sel]:;1

Then the asymptotic relations in the lemma follows. Note that the proof of Lemma 10.5.2

also shows that f (%z) is a primary g-exponential polynomial if g’ only contains even

integers. Then the last statement follows. O
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Chapter 10. Asymptotic analysis

The following lemma will not be used in this dissertation. It can be deduced from

Lemma 10.5.5 similarly to Lemma 10.6.1

Lemma 10.6.3. Let S be the q-function defined by the following multi-summation

S(z) = Z grere(©

CGZLO: 1-c;+2(1-¢2)=2
where 1 is a sequence of non-negative rational numbers and e is a multivariable parity

function. For O = 1, 2, define the following notations:

* Upmax IS the maximum of pg;

* tomax IS the set of indices i € ig such that p; = g max-
Then S can be expressed as a super q-exponential polynomial.

(1). If 211 max > H2max, then we have

Z

S(2) ~ (G0 + Cpet (—1)7) - ( )qp

|i1max| -1

where the constants Cy 0 and Cy .1 are defined as follows:

Cpe0 =Cpy - Z qz(plmax_lllil Vit max)S1

Sle[Fél\ilmax
qe(SoLJsz)+(ll1max—nl)'50+(2111max—ﬂz)'sz
J
socFl s,€F2
o€, ,S2€l,

Cupe1 =Cy - Z q2(u1max—uli1 Vil max )51

ip\i
Sle[le\ 1 max

Z (- 1)1'Soq€(50|—|52)+(ﬂ1 max—H1)-So+(211 max_FZ)'SZ’

i iy
soE[F2 ,sze[F2
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§10.6. Asymptotic growth of non-balanced multi-summations

where H1lmax — plil \ 11 max denotes the sequence (plmax - Ili)ieil \t1max> Hlmax — H1
the sequence (111 max — Hi)ici;» 211 max — H2 the sequence (2111 max — Hi)ici,» and
Cy the following constant:

1 4 . -1 . -1
- Himax—41; _ A max—2H1; _
Cp = 211 max] n (q 1) l_[ (q 1)

i€i) \ t1 max i€iy

(i1). If 211 max < H2max, then we have

l b4
S(z) ~ (Cp,e,o +Cp,e,l(_1)z) . ( )qzl-]Zmax ,

|i2maX| -1
where the constants Cy .0 and Cy .1 are defined as follows:
1-so+1-s1+1-s
Gun=Ge 3, (1eprn)|
so,sle[F;' ,sze[inz

q
Cpel =Cu- Z ((—1)1'50 + (—1)1'Sl+1~sz) (

i i
so,s1€F," s2€F,?

J

1 1
6(50U52)+(§u2max—ul)'So+2(jllzmax—ul)'sl+(H2max—ﬂz)'sz)

1 1
qe(50u52)+(§U2max_lll)'50+2(EPZmax‘Pl)'Sl+(p2max_ﬂ2)‘52)

J

1 1
where 5112 max — H1 denotes the sequence (ipgmax — Hi)iei;» H2max — H2 the se-

quence (2 max — Hi)iei,, and Cy the following the constant:

| , - -l
. 12 max—41; _ 2112 max—2H; _

iEil i€i2 \ i2 max
(iii). If 2111 max = H2max, then we have

Z

S(z) ~ (Cp,e,o +Cp,e,l(—1)z) . (|i1max| + [i2max] — 1

2z
)q.ulmax s
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where the constants Cy 0 and Cy .1 are defined as follows:

Cre0 =Cp - Z qz(plmax_plil\ilmax)'sl

ip\i
SIE[FZI\ 1 max

Z qe(SoI-ISz)+(u1 max—H1) 80+ (12 max—H2)-S2
)

i i
soel,' s2€F,?

Cuye,1 =Cpy - Z GPH 1 mx Bl iy )1

S]Gﬂ:;] \il max
Z (_l)l'soqe(sol—lsz)+(ll1max—lll)'so+(2ﬂlmax—llz)'sz
3
soE[Fi',sze[F;2
where Hlmax — P'il \ 11 max denotes the sequence (plmax - pi)ieil \ 11 max> Hlmax — H1
the sequence (111 max — lJi)ieip H2max — M2 the sequence (112 max — I»Ii)ieizy and Cp

the following constant:
1 4 4 -1 -1
C, = _ . n ( Himax—“4Hi __ 1) 1—[ ( 2112 max—2H; _ 1) .
H 2|11 max|+2|12 maxl q q
i€i1 \ i1 max i€i2 \i2max

Moreover, if both py and %],12 take integral values, then the super q-exponential polyno-

mial is primary.

Remark. Note that the even leading coefficient Cy ¢ is positive and the odd leading
coefficient Cy, ¢ | satisfies |Cp,e,1| < Cu,e,0- Hence, the g-function S is eventually positive.
Note that Cy 1 could be 0, in which case the asymptotic growth of S(z) along even

integers and odd integers coincide.
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Simplicial volume in buildings of A, type

In this chapter, we will prove the A, part of Theorems 1.3 and 1.5. More precisely, we

will prove the following stronger theorem.

Theorem 11.1. Let 9B be a Bruhat-Tits building of split classical type A, over a local
field K with residue cardinality q. Then the simplicial volume SV ( - ) and the simplicial
surface area SSA( - ) in it can be defined by primary q-exponential polynomials whose

leading terms are of the form:
SV(r) ~ é(n) . rs(n)qﬂ(n)r’ SSA(r) ~ C(n) - re(n)qn(n)r’

where €(n) = 0 and m(n) = (”T“)2 if nis odd, while e(n) = 1 and w(n) = 5(5 + 1) ifn

is even.

Moreover, we will obtain explicit formulas for the constants C(n) and C(n).
By the discussion at the beginning of Chapter 10, this can be done as follows. First,

we will compute the asymptotic growth of S, (r) for each type I € A. This allows us
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Chapter 11. Simplicial volume in buildings of A, type

to find the dominant ones. On the other hand, by Eq. (8.4.6), we have
P,
(11.0.1) SSA(r) = ) L@ Sy (r).
ICA qdeg(‘%‘“‘l)

Then we can obtain the asymptotic growths of SSA(r) and SV(r).

§ 11.1. Asymptotic growth of S+, (r)

Now, let I be a type and follow Convention 2.4.5. We are going to compute the
asymptotic growth of Sq(;)(r). Since all vertices are special, we have
Sy =Sy = ) @
xeV(1,r)

Then by Egs. (6.3.8) and (9.2.2), we have

Ztl Li(n+1-ti)c;
Sy = >, g :

ci€Z+
c1+-4c=r

Now, we apply Lemma 10.5.2 to above summation, where the index set i is {1,--- ,t}

and the sequence p is
pi=tin+1-1¢). (1<i<t)

Since all members of p are integers, S/ (1) can be defined by a primary g-exponential
polynomial. Note that, by Eq. (11.0.1), this already implies that SV( - ) and SSA( -)
can be defined by primary g-exponential polynomials.

The knowledge of quadratic function shows that either i, is a singleton {ip} or it
consists of two consecutive indices {ip, io + 1}.

If imax = {lO} Then Hmax = gio(n +1- €i0)7 Hmax — Hi = (€i0 - gi)(n +1- €i() - €i)’
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§11.2. Dominant types

and we have
-1
(11.1.1) Sy (r) ~ 1—[ (q(&o—&)(n+1—a0—€i) B 1) . qlo(m+1=tg)r
[E3N)
In particular, Sq/(;) has order ¢;;(n + 1 — ¢;,) and degree 0.
If inax = {iO; io+ 1}~ Then Hmax = gio(n'i' 1 _gio)’ Hmax —Hi = (fio _ei)(n+ 1 —eio _gi),
and we have
-1
(11.1.2) Sy (r) ~ 1_[ (q(eio—ei)(n+1—ei0—ei) _ 1) - rqlo(m+1=ty)r
i#10,i0+1

In particular, Sy has order £;(n + 1 — ;) and degree 1.

§ 11.2. Dominant types

Now, we are able to figure out for which type I, the g-function S/ (;) is dominant among
its siblings. We will say that such a type is a .

When n 1s odd, we have

n+1
Hmax = fi()(n +1- ei()) < ( B )2'
The equality achieves exactly when ¢;, = HTH Therefore, S4/(;) is dominant exactly
when %1 ¢ 1. In this case, we have i, = {ip} and ¢;, = %1

When n is even, we have

n/n
Hmax = 8y (n+1 =€) < E(E”)'

The equality achieves exactly when €, = 5 or 5 + 1. Therefore, Sq/(;) is dominant

only if {%, 5+ 1} ¢ I. There are three cases: if {g, 5+ 1} NI = {% + 1}, we have
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Chapter 11. Simplicial volume in buildings of A, type

imax = {io} and €, = 3;if {3, %+ 1} NI = {2}, we have imax = {io} and €, = & + 1; if
5,5+ 1} NI =0, we have tmax = {io,io + 1}, €, = 5, and £;41 = 5 + 1. Among them,
the last one gives the dominant type since Sq,(;) has degree 1 in that case while it has

degree O in the first two cases.

§ 11.3. Asymptotic growths of SSA(r) and SV (r)
We are now going to obtain the asymptotic growth of SSA(r). By Eq. (11.0.1), we have

P a:1(q)
SSA(r) ~ E A Sy (r).
. g deg(g’An;I)
Iis dominant 4

When n is odd, by § 11.2 and Eq. (11.1.1), we see that SSA( - ) can be defined by a

primary g-exponential polynomial so that
(11.3.1) SSA(r) ~ C(n) - ¢,

where the constant C(n) is defined as follows:

) -1
(11.3.2) C(n) = Z o (@) n (q("i“)—%) _1) ,

qdeg(g’An;I)

ICA 1<i<ty
n+l
2l a(n#L

As a consequence, we see that SV(-) can be defined by a primary g-exponential

polynomial so that

ntl )2
2

(11.3.3) SV(r) = > SSA(z) ~ —er—C(n) - ¢,
z=0 q 1

(5?2 _

When n is even, by § 11.2 and Eq. (11.1.2), we see that SSA( - ) can be defined by a
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§11.3. Asymptotic growths of SSA(r) and SV (r)

primary g-exponential polynomial so that
(11.3.4) SSA(r) ~ C(n) - rq2(2*Dr,

where the constant C(n) is defined as follows:

. n n -1
(11.3.5) Cn) = Y Paitl@) ['] (q“f(”—f)“f“)-z—”-1) :

deg( Py, .
q &(Pans) 1<i<t;
+iel t(D)#5,5+1

As a consequence, we see that SV(-) can be defined by a primary g-exponential
polynomial so that

r qg(%ﬂ) 8241
(11.3.6) SV(r) = ZSSA(Z) ~ 1c:(n) g2 GHhr
z=0 q

53+ _
Since all vertices are special, we have SSA:(r) = SSA(r) and SV (r) = SV(r), where
T denotes “being special”.
By Eqgs. (11.3.1) to (11.3.6), we have proved Theorem 11.1. Moreover, by Eq. (A.1.4),

we have the following explicit formulas for the first factor of C(n):

n+1
6D, &) — 6, -, &) — & (D), n+ 1 = £(D)
(")
q(€12<1))q(€z(1);€1 (1)) o q(ml)_g[_l(1))q(n+1_2€[(1))

-

Pa1(q) = (@),

deg(‘@AnJ) —

q

See Eq. (A.1.3) for the definition of the symbol [

>
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Simplicial volume in buildings of C, type

In this chapter, we will prove the C,, part of Theorems 1.3 and 1.5. More precisely, we

will prove the following stronger theorem.

Theorem 12.1. Let B be a Bruhat-Tits building of split classical type C,, over a local
field K with residue cardinality q. Then the simplicial volume SV ( - ) and the simplicial
surface area SSA( -) in it can be defined by primary super q-exponential polynomials
whose leading terms are of the form:

n(n+1) n(n+l1)

a— ——A I

SV(r)~C(n)-q~ 2, SSA(r) ~C(n)-q~ 2,
where C(n) and C(n) are primary q-numbers, not just parity q-functions.

Moreover, we will obtain explicit formulas for the constants C(n) and C(n).

By the discussion at the beginning of Chapter 10, this can be done as follows. First,
we estimate the asymptotic growth of S« (r) for each type I C A using the auxiliary
function va(l) in § 12.1. This allows us to find the dominant ones in § 12.3. Then we

can compute the leading coefficient of S,(j)(r) for dominant ones in § 12.5. Finally, by
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§12.1. Asymptotic growth of S(XVU) (r)

Eq. (8.4.6), we have

P, P
(120.)  SSA() =) % Sy~ Y W,
ca q B\ Cnit I is dominant 4 eg( Cn;l)

Then we can obtain the asymptotic growths of SSA(r) and SV(r).
Along the discussion, we will also consider the asymptotic growths of SSA;(r) and
SV.(r), where 1 denotes “being special”’. Namely, we will also prove the following

theorem (in § 12.2 and 12.4).

Theorem 12.2. Let 9 be a Bruhat-Tits building of split classical type C,, over a local
field K with residue cardinality q. Then the special simplicial volume SV+( -) and
the special simplicial surface area SSA+( -) in it can be defined by primary super
g-exponential polynomials whose leading terms are of the form:

n(n+1) n(n+l)

I — T —

SVi(r) ~C¢(n)-q~ 2 ', SSA+(r) ~C¢(n)-q 2 7,
where C+(n) and C:(n) are primary q-numbers, not just parity q-functions.

Moreover, we will obtain explicit formulas for the constants C;(n) and C;(n).

§ 12.1. Asymptotic growth of S, ) (r)

Now, let I be a type and follow Convention 2.4.5. We are going to estimate the asymptotic
growth of Sy (r) up to the leading coeficient.
By Eqgs. (6.4.7) and (9.3.2), we have

|
= Z Efi(2n+l—€i)ci
Sy = E q=! :

Ci€Z>0
C1+e4ce=r
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Chapter 12. Simplicial volume in buildings of C,, type

Now, we apply Lemma 10.5.2 to above summation, where the index set i is {1,--- ,t}

and the sequence p is

pi = 36(2n+1-¢). (1<i<t)

Since all members of p are integers, S’V(I) can be defined by a primary g-exponential
polynomial. The knowledge of quadratic function shows that i,x = {t} with pp.x =
%é’t(2n + 1 —¢;). Then we have

t—1
Lo —t—p:
S:V(I) (T') - n (q2(€t &) (2n+1-6—-;) 1

i=1

-1
. q%ft(2n+1—€t)r

Since Sy (r) = STV(I) (r), we see that Sq(jy has order %&(Zn + 1 —¢;) and degree 0.

§ 12.2. Asymptotic growth of S, ) (7)

Next, we are going to compute the asymptotic growth of Sq,. ) (7).

If ¢, < n, then by Eqgs. (6.4.6), (6.4.7), and (9.1.4), we have

zt: €i(2n+1—€i)cl-
Sy.(r) = Z q=! .

Ci€Z>0
2ct+42¢=r

Now, we apply Lemma 10.6.1 to this summation, where the index set i is {1,--- ,t},

the partitioni =i; Uiy is {1,--- ,t} =0 U {1,--- ,t}, and the sequence p is
pi:Ei(2n+1—€i). (1<i<t)

Since all members of p are even integers, S . (5) can be defined by a primary super

g-exponential polynomial. The knowledge of quadratic function shows that iy, =
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{2 max = {t} With fimax = H2max = € (2n + 1 — €;). Then by Lemma 10.6.1.(ii), we have

t—1

-1 Lo onsl-
Sy, (1) () ~ H (q(ft—a)(znﬂ—&—&) _ 1) (14 (<1y) - g2t
i=1

In particular, it has order %&(Zn + 1 — ¢;) and degree 0.
If ¢, = n, then by Egs. (6.4.6), (6.4.7), and (9.1.4), we have

t—1
S gnri—g)e B
Sv.y(r) = > g :
ci€Z+
2c1++2¢_1+ce=r

Now, we apply Lemma 10.6.1 to this summation, where the index set i is {1,--- ,t},

the partitioni =) Uiy is {1,--- ,t} ={t} U {l,--- ,t — 1}, and the sequence p is

g =62n+1-1¢), (I1<i<t)
1 = n(n2+1).

Since p; is an integer and all members of p; are even integers, S (5) can be defined
by a primary super g-exponential polynomial. The knowledge of quadratic function
shows that iy max = {t — 1}, omax = €1 (2n+ 1 —€_1), and 21| max > H2max. Then by

Lemma 10.6.1.(1), we have

t—1 1

(12.2.1) S%(I)(r)Nl_l(q(n—fi)(nﬂ—&)_l) T
i=1

In particular, it has order @ and degree 0.

§ 12.3. Dominant types

Now, we are able to figure out which type is dominant.
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We begin with S/ (j), since £; < n, we have

Hmax = 36 (2n+ 1 - £) < 22D

The equality achieves exactly when ¢, = n. Therefore, Sq,(;) is dominant exactly when
n ¢ I. In this case, we have ip,x = {t} and ¢, = n.
Next, we consider S, (). Then similar argument shows that it is dominant exactly

whenn ¢ I.

§ 12.4. Asymptotic growths of SSA:(r) and SV (r)

We are now able to obtain the asymptotic growths of SSA;(r) and SV (r).
By Eq. (12.0.1), Eq. (12.2.1), and § 12.3, we see that SSA;( - ) can be defined by a
primary super g-exponential polynomial so that

n(n+1)

I —

(12.4.1) SSA:(r) ~Cs(n)-q 2 7,

where the constant C+(n) is defined as follows:

Pe:1(q) = (n—€:(I)) (n+1-£,(I)) !
(12.4.2) Ci(n) = Z —deg(;ﬁc B) 1—[ (q l T 1) '
nel 4 =1

As a consequence, we see that SV ( - ) can be defined by a primary super g-exponential

polynomial so that

n(n+1) (ns1)
n(n

Ci(n)-q 2 .
-1

(12.4.3) SVi(r) = Z SSA:+(z) ~

n(n+l1)
2=0 qT
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§ 12.5. Asymptotic growth of dominant S« ;) (r)

Let I be a type and follow Convention 2.4.5. We are going to compute the asymptotic
growth of Sq/(;)(r) when I is dominant.

First, we need to write Sq(;y(r) into a multi-summation. To do this, we pick an
arbitrary x € V(I) and investigate the difference between 2p(x) and the sum of [a(x)]

for a(x) > 0. To better describe this sum, we introduce the following conventions.

Convention 12.5.1. For any j € {I,---,n}, we will use £='(j) to denote the index

ie{l,---,t+1}suchthat {;_| < j < ¢;, where ;| = n.

Convention 12.5.2. We will use z to denote standard parity function mapping even

numbers to 0 and odd numbers to 1. Note that [%z] = %(z +32).
Convention 12.5.3. The summation c; + - - - + ¢;j is read to be O when i > j.

Now, suppose x = o + clwz,l +-+ th'gt € V(I). By Eq. (6.4.5), we have

(XJ —Xj/)(x) = % (Cg—l(j) b +Cg—l(j/)_1) , (1 < ] < j/ < Tl)
(XJ +Xj/)(X) = % (Ct”l(j) +-- +C€—1(j/)_1) +C€—1(jr) +--+ G (1 <j< j, < Tl)
2xj(x) = co-ijy + - F e (I<j<n

Therefore, we have

Dilat)l= > (GG =)+ +x) (1) + > [2x5(0)]
j=1

acdt I<j<j’<n

:2P(X)+ Z Cg—l(j)+"'+C€—l(j/)_1.

1<j<j’<n
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Chapter 12. Simplicial volume in buildings of C,, type

From above analysis, we can define the parity function e; as follows:

(12.5.1) er(ct, o hc) =y (b= ) (b = by )G F e

1<i<i’<t+1

Then we have

D Ta(0)1=2p(x) +erler, -+ o).

acd*

Now, we apply Lemma 10.5.5 to the following summation.

|
2 7 ti(2n+1-t)cirer(c1,- sce)
Sy = >, g :

Ci€Z50
Ct e =T

Note that the index set i is {1, - - - , t} and the sequence p is
pi=36(2n+1-6). (I<i<t)

Since all members of p are integers and e; is valued in integers, Sq(j) can be defined by a

primary super g-exponential polynomial. Note that, by Eq. (12.0.1), this already implies

that SV( - ) and SSA( - ) can be defined by primary super g-exponential polynomials.
Now, let I be a dominant type, namely n ¢ I. Then we have iy = {t}, £, = n, and

Hmax = n(n2+l). Therefore,

n(n+1)

Sym(r) ~ (Cro+Cri(-1)")-q~ 2,

where the constants C; and Cj ; are defined as follows:

Cro:=Cr- Z E;(s), Cr1:=Cr- Z(—l)l's E;(s),

t t
se[F2 se[F2
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where the constant C; and the function E;: F5 — Q(q; —) are defined as follows:

|

t—1
15 -1 (9)+ 3 3 (n-6)(n+1-)s;
(12.52)  C;:= n (q(n—ei)<n+1—e,») 3 1) Es) = qef Z 3=t (ne1-tsc
i=1
From the definition Eq. (12.5.1) of ey, it is clear that
El(sla e ,S[_],O) = EI(Sl) cr 5 St—1, 1)

Therefore, C; 1 = 0 and we thus have

n(n+1)

(12.5.3) Sym(r) ~Cr- ), 2E(su0)-q 2 ',

t—1
se[F2

where s LI 0 is the sequence sy, - - - , s¢—1, 0.

§ 12.6. Asymptotic growths of SSA(r) and SV (r)

We are now going to obtain the asymptotic growth of SSA(r).
By Eq. (12.0.1), § 12.3, and Eqgs. (12.5.1) to (12.5.3), we see that SSA( - ) can be
defined by a primary super g-exponential polynomial so that

n(n+l)

— A I

(12.6.1) SSA(r) ~C(n)-q 2 7,

where the constant C(n) is defined as follows:

!@ ) ti—1 -1
(12.6.2) C(n) := Z L(q) n (q(n—ei(l))(nﬂ—fi(l)) _ 1) Z Ec,.1(s) |,
i=1

n¢l qdeg(gjc“ 1)
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where the function E¢,.;: [F;’ T Q(g; —) is defined as follows:

2 (D=t (D) (Ey (D= Ly (D)si+Fsy 1
(126.3) ECn;I = ql<1<l’<t1

tr—1

3 Lt (nr1-61)s,

.qL:I

As a consequence, we see that SV( - ) can be defined by a primary super g-exponential

polynomial so that

n(n+1)

(12.6.4) SV(r) = Y SSA(2) ~ ?—2
2z=0

n+l)

qg 2 -1

n(n+l)

C(n)-q 2 ".

By Eqgs. (12.6.1) to (12.6.4), we have proved Theorem 12.1. Moreover, by Eq. (A.2.2),

we have the following explicit formulas for the first factor of C(n):

n2

@CH;I(Q) =— [2n]!!(q) ) qdeg(g’cn;l) — t[q(]ﬂ'
] [€:(1) = &i-1 (D] (q) 11 )

1 i=1

12

See Egs. (A.1.2) and (A.2.1) for the definitions of the symbols [ - ]! and [2 - ]!!.
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Chapter 13.

Simplicial volume in buildings of B,, type

In this chapter, we will prove the B, part of Theorems 1.3 and 1.5. More precisely, we

will prove the following stronger theorem.

Theorem 13.1. Let B be a Bruhat-Tits building of split classical type B, over a local
field K with residue cardinality q. Then the simplicial volume SV ( - ) and the simplicial
surface area SSA( - ) in it can be defined by super q-exponential polynomials whose

leading terms are of the form:*
SV(r) ~ C(n) - "™, SSA(r) ~ C(n) - """,

where m(n) = ”72 whenn > 4 and n(3) = 5. The leading coefficients C(3) and C(3) are
primary q-numbers, not just parity q-functions. Moreover, the four q-functions SV(2 -),

SV(2 - +1), SSA(2-), and SSA(2 - +1) can be defined by primary q-exponential

*The leading terms may give an impression that these g-functions can be defined by primary
g-exponential polynomials when n = 3. However, we will see this is false in § 13.1.
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Chapter 13. Simplicial volume in buildings of B, type

polynomials whose leading terms are of the form:

SV(2r) ~ Co(n) - ¢, SSA(2r) ~ Co(n) - ¢?*Vr,

SV(2r+1) ~ G (n) - 27T, SSA(2r + 1) ~ G (n) - g7

We will obtain explicit formulas for the parity functions C(n) and C(n), and the
constants Cy(n), Co(n), C;(n), and C1(n).
But before proving Theorem 13.1, we will first analyze the asymptotic growths of

SSA+(r) and SV;(r), where T denotes “being special”. We will prove the following.

Theorem 13.2. Let 9B be a Bruhat-Tits building of split classical type B, over a local
field K with residue cardinality q. Then the special simplicial volume SV+( -) and the
special simplicial surface area SSA+( -) in it can be defined by super q-exponential

polynomials whose leading terms are of the form:*
SV (r) ~ C,(n) - """, SSA+(r) ~ C,(n) - ¢"™"",

where m(n) = ”—22 when n > 4 and n(3) = 5. The leading coefficients C+(3) and C+(3)
are primary q-numbers, not just parity q-functions. Moreover, the four q-functions
SVi(2-), SV4+(2 - +1), SSA+(2-), and SSA+(2 - +1) can be defined by primary q-

exponential polynomials whose leading terms are of the form:

SVT(ZI‘) ~ CTO(n) _qZﬂ(n)r’ SSAT(2r) - CTO(n) . q271'(n)r’

SVi(2r +1) ~ Cs1(n) - @™, SSA:+(2r + 1) ~ Ci1(n) - ¢V,

We will also give explicit formulas for the parity functions C+(n) and C;(n), and the
constants Cio(n), Cyo(n), C+1(n), and Cs1(n). The proof of Theorem 13.2 turns out to

play an essential role in the study of SSA(r) and SV(r).
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§13.1. Asymptotic growth of S (1)(r)

This chapter is structured as follows. In § 13.1, we will compute the asymptotic growth
of S, (1) (r) for each type I C A. This allows use to find the dominant ones of Sq,. (1) (),
which will be done in § 13.2. Then in § 13.3, we will obtain the asymptotic growths of
SSA;(r) and SV4(r). In § 13.4, we will analyze S, (1) (2r) and Sy, (1) (2r + 1). Combine

§ 13.3 and 13.4, we finish proving Theorem 13.2. After that, in § 13.5, we will estimate

XO(n)
Note that V is between V' and X OuU X!, Therefore, we can combine § 13.1

the asymptotic growths of S Xo(l)(r) and S XI(I)(T') using the auxiliary functions S
and S;l 0"
and § 13.5 to estimate the asymptotic growth of each Sy (r) and find the dominant
ones, which will be done in § 13.6. Once we found the dominant types, we can proceed
to compute the asymptotic growth of dominant S (r). This will be done in three
steps: in § 13.7, we will compute the asymptotic growths of S Xo(I)(r) and S XI(I)(T');
in § 13.8, we will deduce the asymptotic growth of Sx ;) (r) from that of S ;) (r);
finally in § 13.9, the asymptotic growth of Sq,(;)(r) will be deduced from them. Then
in § 13.10, we will obtain the asymptotic growths of SSA(r) and SV(r). In § 13.11,
we will analyze Sy, (;)(2r) and Sy, (;)(2r + 1). Combine § 13.10 and 13.11, we finish
proving Theorem 13.1.

Throughout this chapter, we will heavily use the various index sets V, V+, X9, X!,

and X ;. We refer to Figs. 9.2 and 9.3 for the structure of them.

§ 13.1. Asymptotic growth of S, ;) (r)

Now, let I be a type and follow Convention 2.4.5. We are going to compute the
asymptotic growth of Sq,.(7)(r). We will separate the discussion into two cases: (i)

¢y >1land (i1) ¢ = 1.
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Chapter 13. Simplicial volume in buildings of B, type

@i). If ¢; > 1, then by Egs. (6.5.7), (6.5.8), and (9.1.4), we have

3 £:(2n-t)c;
Sy, = ), q :

Ci€Z+0
2¢y++2¢=r

Now, we apply Lemma 10.6.1 to this summation, where the index set i is {1,--- ,t},

the partitioni =1, Uiy is {1,--- ,t} =0 U {1, -- ,t}, and the sequence p is
pi = 6i(2n - &;). (1<i<i)

The knowledge of quadratic function shows that iax = t2 max = {t} With fimax = 2 max =
£:(2n — ¢;). Then by Lemma 10.6.1.(ii), we have

t—1

-1 1
(13.1.1) s(vj_(,)(r)~n(q<&—m<2n—&—€i>_1) L1+ (=1 - g2l

i=1
In particular, it has order %&(Zn — ¢;) and degree 0.

(@ii). If ¢; = 1, then by Egs. (6.5.7), (6.5.8), and (9.1.4), we have

5 6(2n-8)c;
Sy, = > ¢ -

CiEZ>0
c1+2co++2¢c,=r

Now, we apply Lemma 10.6.1 to this summation, where the index set i is {1,--- ,t},

the partitioni =i, Uiy is {1,--- ,t} = {1} U{2,--- ,t}, and the sequence p is
]lefl(2n—€l) (1 <l<t)

The knowledge of quadratic function shows that iy nax = {t} and po max = & (2n — £;).
Depending on n and ¢, there are two possibilities: 2(2n — 1) > £/(2n — ¢;) and
2(2n — 1) < &(2n — ¢;). Note that 2(2n — 1) = €,(2n — £;) is impossible since the

left-hand side has remainder 2 modulo 4 while the right-hand side is either odd or a
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§13.2. Dominant types for S« (1) (r)

multiple of 4.
If2(2n—1) > £,(2n — ¢;), then by Lemma 10.6.1.(i), we have
t
-1
(13.1.2) S, (1) ~ l_[ (q2(2n—1)—€i(2n—€i) _ 1) _q(2n—1)r_
i=2
In particular, it has order 2n — 1 and degree 0.

If2(2n - 1) < €:(2n — ¢;), then by Lemma 10.6.1.(ii), we have

~1 t—1 ~1

(13.13) Sq. (1) ~ (q€[(2n—€[)—2(2n—1) _ 1) l—[ (q(a—a)(zn—a—a) _ 1)
i=2

1 1
) % ((1 + qut(Zn—ft)—(Zn—l)) + (1 _ qut(Zn—ft)—(Zn—l)) (_1)r)

1

. q2€[(2n—£’[)r

In particular, it has order %Et(Zn — ¢;) and degree 0.

§ 13.2. Dominant types for S/ ;) (r)

Now, we are able to figure out for which type I, S, ) (r) is dominant.
When n = 3, we have ¢;(I) < 3 for all I. Therefore, 2(2n — 1) > €,(I)(2n — ¢:(I)).
Hence, S, (1)(r) is dominant exactly when 1 ¢ I. Note that, such a type I must be

one of the following: {2,3}, {2}, {3}, and 0. Using Eq. (13.1.2), we can deduce the
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Chapter 13. Simplicial volume in buildings of B, type

asymptotic growth of dominant S, (1) (r) as follows.

(13.2.1) Sy, ((23p (1) = q(2n—1)r _ q5r,
-1
(13.2.2) Sy g2y (1) ~ (@Dt _p) T gCebr
1 r
= -q”,
(g—1)
-1
(13.2.3) S g3y (1) ~ (q2(2n—1)—£’2(2n—€2) _ 1) gD
1 5r
3 —
(13.2.4) Sv.()(r) ~ l—[ (q2(2n—1)—€i(2n—€i) _ 1) L q@nbr
i=2
1 Sr
= . q .
(q-1)(¢?-1)

If n > 4, then we have 2(2n — 1) < €.(I)(2n — €,(I)) when £;(I) > 4. On the other

hand, since £;(I) < n, we have

H2max = ft(I)(zn - ft(l)) < n2.

The equality achieves when £, (I) = n. Hence, S, (1)(r) is dominant exactly whenn ¢ I.

In that case, its asymptotic growth is given by Eq. (13.1.3).

§ 13.3. Asymptotic growths of SSA:(r) and SV (r)

We are now able to obtain the asymptotic growth of SSA;(r). By Eq. (8.5.2), we have

@BH;I(Q)

_ ‘@Bn;f(q)
g2t (Fa) Sy~ ), s Sy ().

deg(ggn;[)

(133.1)  SSA(r) = Z

ICA I is dominant 4
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§13.3. Asymptotic growths of SSA+(r) and SV+(r)

Then by the discussion in § 13.2, we see that

C:(3)- ¢ ifn=3,
(13.3.2) SSA;(r) ~ ,

n

Ci(n)-q2" ifn>4.

When n = 3, by Egs. (13.2.1) to (13.2.4), the constant C+(3) is defined as follows:

Ppy{2,31(Q) . Ppy:(21(Q) . Ppy.31(q)
qdeg(gss;{z,s}) (-1 qdeg(933;{2}) ( 2 1) qdeg(933;{3))

@B3;0(q)
(q=1) (g2 - 1) g*ee(Fms0)

CT(3) =
q

+

Moreover, by Eq. (A.2.2), we have

@-1 @-NE'-1 (@-1@-1)
(@-D@ (2-1)(q-1D*q¢ (@-1*(2-1)g
+(q6—1)(q4—1)(q2—1)

(1333)  C:(3) =

(- D*(2-1)¢°
_ (@+q+1)(®?—q+1)(g+1) ( S ad s +1)
As a consequence, we have
5
(13.3.4) SVi(r) = Z SSA+(z) ~ = —Ci(3) - 7

When n > 4, by Eqgs. (13.1.1) and (13.1.3), C:+(n) is a parity g-function defined as
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follows:
P I(Q) ()2 -1 1
13.3.5 C+(n)(even) := i ( (n=t:(D)) ) —_—
( ) Ci(n)(even) 1;1 ee(Pr) L gP2n=h)
+ Z ‘%n’(q) ( (n—6(D)* _ )‘1
lel,ngl qdeg(%” I) ’
n2
Pra(q) ] £(1))? -1 gz
(133.6)  Ci(n)(odd) := n: (n=6:(D)) —_
1;1 qdeg(@Bnl) ) ( ) qri-2(n=1) _ |
As a consequence, we have
r . 2
(13.3.7) SVi(r) = Z SSA:(z) ~ Ci(n)q 2",
z=0

where the parity g-function C;(n) is defined as follows:

(13.3.8)
. @B I(q) . 2 -1 qn2_(2n—1) +qn2
C+(n)(even) := ((n (D) ) :
+(n)(even) 12 e (Foa) )1 (¢ — 1) (gm—2n=D) 1)
+ Z . I(q) ( (n=6:(D)? _ )'1. q"
1€l ngl qdeg(‘%nf) g -1
(13.3.9)
P ( ) 1 ﬁ—(211—1) n_2
- _ B,:1(q (b)) _ )‘ o’ *tq2
Ci(n)(odd) := Z deg(%n )1 ( (q% — 1) (q©-2Cn=D — 1)
n2
2

vy EZRIOR ((nw)ﬁ )‘1. q

1€0ngl qdeg(%”’) qv -1

By Eqgs. (13.3.2) to (13.3.9), we have proved the asymptotic relations in Theorem 13.2,
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where

Cio(n) = Ci(n) (even), Cs1(n) = C+(n) (0dd) - *,

Cio(n) = C+(n) (even), Cs1(n) = C+(n)(0dd) - ¢

Moreover, by Eq. (A.2.2), we have the following explicit formulas:

n2

Pru(q) = ~ [2n]1(q) ) qoce(Pona) = fe?lea)
Ell[gi(l)_gi—l(f)]!(q) [Ilq(l 217 )

See Egs. (A.1.2) and (A.2.1) for the definitions of the symbols [ - ]! and [2 - ]!!.

§ 13.4. Analysis of S+, (;)(2r) and S, (1) (2r + 1)

Now, let I be a type and follow Convention 2.4.5. We are going to show that Sq/, 1) (2 - )
and Sq,()(2 - +1) can be defined by primary g-exponential polynomials. We will

separate the discussion into two cases: (i) ¢; > 1 and (ii) ¢; = 1.

(). If £; > 1, then by Egs. (6.5.7), (6.5.8), and (9.1.4), we have

3 £(2n-t)c; 3 6:(2n-t)c;
Sy.n(2r) = Z q=! = Z q=! ,

Ci€Z50 Ci€Z50
2cy++42¢=2r Cl+--+ce=r
t
2 ti(2n—t;)c;
S(VT(I)(2T' +1) = Z qi=! =0
Ci€Z50

2ci+-+2¢=2r+1
Now, we apply Lemma 10.5.2 to S, (1)(2r), where the index set i is {1, --- ,t} and the

sequence I is
;i =4 (2n—¢;). (1<i<t)
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Since all members of p are integers, Sq,(;)(2-) can be defined by a primary super

g-exponential polynomial.

(ii). If £; = 1, then by Eqgs. (6.5.7), (6.5.8), and (9.1.4), we have (noticing the involved

change of variables)

2(2n—1)01+é Ei(2n—€i)cz‘
Syan@ = ), a - ’

Ci€Z>0
c1+cp+--+cr=r

(2n—1)(2c1—1)+zt: £ (2n—t;)c;
S(VT(I)(ZT' + 1) = Z q = :

Ci€Z50
crtcat+e=r+1

Now, we apply Lemma 10.5.2 to these summations, where the index set i is {1,--- ,t}

and the sequence p is

g1 =2(2n-1),

pi:€i(2n—€i). (2<l<t)

Since all members of p1 are integers, the g-functions S, (1)(2 - ) and Sy, (;(2 - +1) can

be defined by primary super g-exponential polynomials.

By Eq. (13.3.1), the g-functions
SV+(2-),SV+(2 - +1),SSA;(2-), and SSA+(2 - +1)

are Q(q; 1)-combinations of Sq,.(;(2 ) and S, (;(2 - +1). We thus finish proving

Theorem 13.2.
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X()( )
§ 13.5. Asymptotic growths of S~ X0 )(r) and S~ X' (r)

Now, let I be a type and follow Convention 2.4.5. We are going to estimate the asymptotic
growths of S Xo(I)(r) and S XI(I)(T') up to the leading coefficient. We will separate the

discussion into two cases: (i) £ > 1 and (ii) £; = 1.

@i). If ¢; > 1, then by Eqgs. (6.5.8) and (9.4.4), we have

Z €(2n €)cl
XO(I) (r) Z ql 1

i€+
Cl+te=r

Now, we apply Lemma 10.5.2 to above summation, where the index set i is {1,--- ,t}

and the sequence p is
pi = 36:(2n - ). (1<i<t)

The knowledge of quadratic function shows that i,,x = {t} with g = %€t(2n —4).

Then we have

t—1 -1
Lty 2ty
S0 (1) ~ 1—[ (qzm ten-t-t) 1| Fantor,

Since SXO(I)(r) =S (r), we see that Sxo(y) has order %ft(Zn — ¢;) and degree 0.

X0
(>ii). If ¢; = 1, then by Egs. (6.5.8), (9.4.4), and (9.4.5), we have

(1
(2n-Der+ % 56:(2n—t)c; -5 (2n-1) ¢=
Swp®= 2, 4 - - S =4 2o 'S (1)

Ci€Z>0
Cte-tc =1

Now, we apply Lemma 10.5.2 to above summation, where the index set i is {1,--- ,t}
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and the sequence p is

],11:21’1—1,

pi:%&-(Zn—&-). (1 <i<t)

Depending on n and ¢;, there are two possibilities: 2n — 1 > %Et(Zn —¢)and2n—-1 <
$6(2n—€). If 2n — 1 > $£,(2n — ¢,), then we have tmax = {1}, ftmax = 2n — 1, and

t

-1
o _
S;(o(l)(r) N 1—[ (q(zn D-56(2n—;) _ 1) gD

i=2
If2n-1< %€t(2n — ¢;), then we have tax = {t}, Hmax = %ft(2n —¢;), and

1 el oy -y
S;om(r) N (qut(Zn—&)—(Zn—l) 3 1) (qz(et—ei)(zn—et—ei) 3 1) 280t

1
i=2

Lo iy
Since Sxo(ry (r) =< S:\,O(I)(r), Sxi(n (r) < S:\,I(I)(r), and S;<1(1) (r) =q 5(2n-1) S:\,o(l)(r)’

we see that S(X()UXI)(I) has order max{2n -1, %ft(Zn - Et)} and degree 0.

§ 13.6. Dominant types for S ) (r)

We are going to estimate the asymptotic growth of each S (r) and figure out the
dominant types, namely the types for which S (j)(r) is dominant.

Let I be a type and follow Convention 2.4.5. If £; > 1, then V(I) is between V+(I)
and X°(I) by Fig. 9.2. Therefore,

Sxor)(r) > Sy (r) > S, (1) (r).

From § 13.1 and 5.0.(i), we see that both S« () and S o ;) have order %t’t(Zn —¢;) and
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degree 0. Note that

le@n-) <%,

where the equality holds exactly when ¢; = n. We thus see that I is dominant among
those satisfying £;(I) > 1 if and only if n ¢ I. In that case, Sq(;)(r) has order "72 and
degree 0.

If ¢; = 1, then V(I) is between V;(I) and X°(I) U X'(I) by Fig. 9.3. Therefore,

Depending on n and ¢;, there are two there are two possibilities: 2n — 1 > %&(Zn —t)
and 2n -1 < %&(Zn — ¢). From § 13.1 and 5.0.(ii), we see that S, (p), SXO(I)’ and
Sy D have the same order and degree. Hence, S4/(;)(r) has the same order and degree
with them. If n = 3, then we must have ¢; < 3 and hence2n—-1=15 > %€t(2n —4).
Then Sq,(;)(r) has order 5 and degree 0. In this case, all types I satisfying £1(I) = 1 are

dominant. If n > 4, then we may have 2n — 1 < %Et(2n — ¢;). Note that

le@n-) <%,

where the equality holds exactly when ¢, = n. We thus see that I is dominant if and only
if n ¢ I. In that case, Sq/(1)(r) has order % and degree 0.
To summarize, when n = 3, a type I is dominant if and only if 1 ¢ I; whenn > 4, a

type I is dominant if and only if n ¢ I.
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Chapter 13. Simplicial volume in buildings of B, type

§ 13.7. Asymptotic growth of dominant S ,. 0 (r) and

le(l) (T‘)

Now, let I be a type and follow Convention 2.4.5. We are going to compute the

asymptotic growths of S yo (r) and S (I)(r) when I is dominant.

To do this, we pick an arbitrary x € X°(I) (or x € (X°UX")(I) if ¢, = 1) and

investigate the difference between 2p(x) and the sum of [a(x)] for a(x) > 0. To better

describe these sums, we follow Conventions 12.5.1 to 12.5.3. We will separate the

discussion into two cases: (i) £; > 1 and (i) ¢; = 1.

(i). We begin with the £; > 1 case. Suppose x =0 +c; - %wgl +dcp e %a)gr e X°(D).

By Eq. (6.5.6), we have

(Xj—x)(x) =3 (Ce—l(j) +oe
(xi+xp)(x) =3 (Cef'(j) +oe
+C€_1(j’) o

xi(x0) =3 (Ce—l(j) +oe

Therefore, we have

+C€-1<j')—1), (I<j<j<n
foga)  (<j<i<n)
+ ¢,

+ ct) ) (I1<j<n)

Dila)l= > (GG =261+ [0 +x7) (1) + D T (0]
j=1

acd* 1<j<j’<n

n
:2p(x)+ Z Cf*](.’)+-+C€71(J/)_1+Z%CE,1(])+..+ct.

1<j<j'<n
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§13.7. Asymptotic growth of dominant S yo (r) and S y 0 (r)

From above analysis, we can define the parity function eyo;, as follows:

(13.7.1) exo(ct, oo, ce) = Z (6 = Cic1) (b = Co_p)ci+ -+ iy
I<i<i<t+]
t
+ Y Sl-tgT e
i=1

Then we have

D Ta(x)] = 2p(x) + exogy(er, -+ o).

aed+

Now, we apply Lemma 10.5.5 to the following summation.

t
1
> Eei(zn_gi)ci"'exO(I) (Cla'“ ,Ct)

Spp™M= > ¢

Ci€Z>0
Cl+e4ce=r

Note that the index set i is {1, - - - , ¢t} and the sequence p is
pi:%fi(2n—€i). (1<i<t)

Now, let I be a dominant type, namely n ¢ I. Then we have i« = {t}, { = n, and

2
Umax = ”7 Therefore,
2

(1372) SX()(I)(T')"’CXO(I)' ZEXO(I)(S) + Z(—l)l.SEXO(I)(S) (_1)1‘ 'qTr,

t t
se[F2 se[F2

where the constant C XO(n) and the function E y.o " [Fé — Q(q; —) are defined as follows:

t—1
(= exon (943 3 (n=t)%s;
(1373 Cog =5 | [ (€™ =1) . Bap®=a""" A _
i=1

(ii). Now, we turn to £; = 1 case. Let O be either O or 1. Suppose

x=o+(ci—%-0) Wi+ swp +- -+ swp € XO(D),
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Chapter 13. Simplicial volume in buildings of B, type

By Eq. (6.5.6), we have

(1= xj)(x) = (c1 — % -0) + % (C2+"'+C€—1(]‘)_1), (1<j<n)
(X] —Xj/)(x) = % (Cg—l(j) + .- +C[—1(j/)_1) , (1 < ] < jl < n)
(X1 +xj)(x) (I<j<n)

=(c1—3-0)+% (C2+"'+Cg—1(j)_1) + o)+ F o
(xj+xj)(x) (I<j<j<n
=3 (Ce”(j) tooe s Cf*l(j’)—l) Tyt T
x1(x)=(ci =5 -O)+5(ca+-+c),
Xj(X):%(Cg—l(j)'i'""i'Ct). (I1<j<n)

Therefore, we have

n

Z fa(x)] :2p(X)+ZCZ+"'+C€—1(j)_1 -0+ Z Ce—l(j)+"'+Cg—l(j/)_1

acd* j=2 2<j<j’<n

n
1 1
+§C2+"'+Ct—D+Z§CE—IU)+"'+Ct.
j=2

From above analysis, we can define the parity function exs(;) (O = 0, 1) as follows:

t
(13.7.4)  exoqpler, -+, c) = Z(fm —{i)ep+--+c¢—O
i=1

+ Z (&= i) (b — Cr—1)ci+ -+ ey
2<i<i’<t+1
t
1 1 —
+562+"'+Ct—D+Zg(fi—fz‘-l)ci+"'+ct-
i=2

288



§13.7. Asymptotic growth of dominant S yo (r) and S y 0 (r)

Then we have

D Ta(0)1 =2p(x) +exaqpy(er, -+ ,co).

acd*

Now, we apply Lemma 10.5.5 to the following summation (0 = 0, 1).

1 LS|
(2n—1)(c1—§-|:|)+z zt’i(Zn—fi)cﬁeXnm(c1,~~-,ct)
Sxop(r) = E q =2 .

CiEZ>0
Clte-+ce=r

Note that the index set i is {1, - - - , t} and the sequence p is

],11=2Tl—1,

i = 36:(2n - &). (l<i<t)

Now, let I be a dominant type. Depending on n, there are two cases: (ii-a) n = 3 and

(ii-b) n > 4.

(ii-a). Whenn = 3, thismeans 1 ¢ I. Then we have i;,,x = {1} and pmax = 5. Therefore,

foro =0, 1, we have

Sxe(r) ~ Cxe(py ZEXD(I)(S) + Z(—l)l'sExDu)(S) (-D"|-q7,

t t
se[F2 se[F2

where the constant C o ;) and the function Eyo ;) : [F; — Q(q; —) are defined as follows:

t

1 _3. e -1
(13.7.5) wawzzqzﬂr]@UOM6ML_w ,
i=2

¢ 1
exﬂ(l) (S)+Z 5-‘&(6-&') Si
(13.7.6) EXD(I)(S) = q 122( 2 ) .

From the definition Eq. (13.7.4) of exo(;), we have
Exoy (0,52, ,8) = Exo (1,82, ,50).
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Chapter 13. Simplicial volume in buildings of B, type

Therefore, we have

(13.7.7) Sxomy(r) ~ Cxopy - Z Exoy(s) |-,

se[Fé
(ii-b). When n > 4, I is dominant means n ¢ I. Then we have i« = {t}, {; = n, and

Hmax = ”7 Therefore, for 0 = 0, 1, we have

(13.7.8) Sxo((r) ~ Cxop) - ZEXD(I)(S) Z(—I)I'SEXD(D(S) (=0’

selF; sel;
where the constant Cxs(;y and the function Eyo(jy : F5 — Q(q; —) are defined as follows:

1 1 t—1 -1
(1379) CXD(I) = Eq_2(2n—1)-|:| (qn2_2(2n—1) ) ( (n— 5)2 ) ’
i=2

exm()(s)+( —(2n- l))s1+2 5 (n—£;)%s;
(13.7.10) Exo(s)i=q .

§ 13.8. Asymptotic growth of dominant Sy ;) (r)

Now, let I be a type and follow Convention 2.4.5. We are going to analyze Sx, (7).
Suppose x € X;(I,r), where I N J = (. Since X¢9 = V+, by Lemma 9.4.5, we can
write x as xo — ., %wj, where xo € V+(I,r +|J| — 8(J)). Then we have

jeJ

D Ta(x)]=2p(x0) + Y|

aed+ aed+

—Za(%wj)}.

jeJ

Note that the last summation gives an integral constant. Then we have

2 [ Za( 5 ;)
(1381) SXJ(I)(r) — qaetb jeJ

Sy (r +|J| = 8(J)).

290



§13.8. Asymptotic growth of dominant Sx 1) (r)

Now, we assume I is dominant. We will separate the discussion into two cases: (i)

n =3 and (ii) n > 4.

(i). When n = 3, this means ¢; = 1. Then the following J appears in Fig. 9.3:
{1},{1,2}, {2, 3}. In those cases, by Eq. (6.5.6), we have

{1} - 8({1}) =0, D [—aGwn]=0,
acdt
(1,2} -8({1,2) = 1, > [-a(iwr +3wy)] = -4,
acd+
{23} - 8({2,3}) =2, > [a(3ws + fws)] = -6.
acdt

Then by Egs. (13.1.2) and (13.8.1), we have

t
-1
(13.8.2) Sx () ~ n(qlo ot ) ki
i=2
t
-1
(13.8.3) Sxunm) ~q- ﬂ( 0RO - ) 7,
i=2
t
-1
(13.84) Sxpsay (0 (F) ~ ¢ 1—1( 10-£:(6-) _ ) .
i=2

(ii). Now, we assume n > 4. Then I is dominant means ¢; = n. Depending on ¢;, there

are two cases: (ii-a) £; > 1 and (ii-b) £; = 1.

(ii-a). If ¢; > 1, then the following J appears in Fig. 9.2: {2,3},--- ,{n—1,n}. In
those cases, we have |J| — §(J) = 2 and by Eq. (6.5.6),

(13.8.5) Z {—a(%wj + %wﬂl)] =—j2n-1-j). (1<j<n)

aedt
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Chapter 13. Simplicial volume in buildings of B, type

Then by Egs. (13.1.1) and (13.8.1), we have (1 < j < n)

t—1

n?—j(2n-1-j n—£;)? - r n_zr
(1386)  Sx,,,y () ~ @ T (¢ = 1) L+ (-1))-q 7"
i=1

(ii-b). If ¢; = 1, then the following J appears in Fig. 9.3: {1}, {1,2}, ---, {n—1,n}.
When J = {1}, we have |{1}| - §({1}) = 0 and

Z [—a(%wl)] =0.

acd+
Then by Egs. (13.1.3) and (13.8.1), we have

(13.8.7) SX{I}(I)(T') - (qn2_2(2n—1) _ 1)_1 ﬁ (q(n—fi)Z B 1)—1

1=
2

n2 n2 n
= ((1 +q2 ‘<2”‘1>) + (1 —~ q7—<2n—1>) (_1)r) q2".
When J = {1, 2}, we have |[{1,2}| — 6({1,2}) = 1 and

Z [—a(%wl + %wz)] =—-(2n-2).

acd*

Then by Egs. (13.1.3) and (13.8.1), we have

! 1

ey

i=2

n? n? n?
. % ((1 +q7—(2n—1)) + (1 _ q7_(2n_l)) (_1)r) . qu.

When J = {j,j+ 1} (1 < j < n), we have |J| — §(J) = 2 and Eq. (13.8.5). Then by

le
(13.8.8)  Sx, (1) ~ qj—(2n—2) ) (qn2_2(2n—1) B 1)
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§13.9. Asymptotic growth of dominant S« p)(r)

Eqgs. (13.1.3) and (13.8.1), we have

~1 t—1 ~1

n?—j(2n-1-j n?-2(2n- n—t;)?
(13.8.9)  Sx,u,(n (1) ~ q" 7 11).(q 22 1>_1) ]—[(q< &) _1)
i=2

2 o 2o Aoz,
-%((qu @ 1>)+(1—qz @ ”)(—1))-q2.

§ 13.9. Asymptotic growth of dominant S« ;) (r)

We are now able to compute the asymptotic growth of Sq,(;) () when I is dominant. We

will separate the discussion into two cases: (i) n = 3 and (ii) n > 4.

(i). When n = 3, the dominant types are {2, 3}, {2}, {3}, and 0. By Fig. 9.3, we have

(where zero summations are omitted)

Sv23) (r) = SXO({273})(7‘) + SXI({2,3})(r) - SX{I}({2,3})(7”);
Sy (r) = Sxocq2y) (1) + St g2y (1) = Sx (21 (1),
Svan(r) = Sxoap () + Sy 3y (1) = Sx (3 (1) = Sx o, (@3H (1),

Sy )(r) = SXO(@)(T') + le(@)(r) - S/\’{l}(@)(r) - SX{I,Q}((D)(T') - SX{2,3}(0)(7”)-
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Chapter 13. Simplicial volume in buildings of B, type

Therefore, by Egs. (13.7.7) and (13.8.2) to (13.8.4), we have

(13.9.) Svian() ~(1+1-1)¢" =q”,
2+1 1)-1 2 1
q-1 q-1

(@+D+(@+D-1-qg5 g¢'+1 5
13.9.3 S ~ o4t s
( ) N P a" =

QP+ + 1)+ (> +2q+1) - 1—q—q* 5
13.9.4 S N .
Y o @- D@ -1 .

_q4+2q2+q+1 5
(@-D(-1 "~

(ii). Now, we assume n > 4. Then I is dominant exactly when n ¢ I. Depending on ¢y,

there are two cases: (ii-a) £; > 1 and (ii-b) £ = 1.

(ii-a). If £; > 1, then by Fig. 9.2, we have (including the zero summations)

n—1

Sy (1) = Sxo0y (1) = >~ Sy 0 (7).
j=2

Therefore, by Egs. (13.7.2), (13.7.3), and (13.8.6), we have

t—1 2

I ) n
(13.9.5) Sy ~ 5 [ [ (¢ =1) " (Cro+Cua(=1") a7,

1=

where the constants Cr o and Cy are defined as follows:

t—1 1
e (9)+ X 5 (n—t)s; ; .

(13.9.6) Cro := Z q X0 &2 _ Z qnz—J(Zn—l—J)’

selF;} I<j<n

{j,j+1}NI=0
t—1 1
e (9)+ X 5(n—t)>s; : .

(13.9.7) Cr1 = Z(—l)l'sq XOmTE 2 _ Z qn2—1(2n—1—])'

se[Fé 1<j<n

{j,j+1}NI=0

Note that the multivariable parity function e XO(1) is defined in Eq. (13.7.1).
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§13.9. Asymptotic growth of dominant S« p)(r)

(>ii-b). If ¢; = 1, then by Fig. 9.3, we have (including the zero summations)

n—1

Sq(1) (1) = Sxo01)(r) + S0y (1) = Sy 1 (1) = D~ Sy ().
j=1

Therefore, by Egs. (13.7.8) to (13.7.10) and (13.8.7) to (13.8.9), we have

1 =1 2

| A o2 -1 n-
(13.98) Sy(r) ~ 5 (720 = 1) [ (¢4 =1) -(Cro+Cra(=1) 47",
i=2

where the constants Cy o and Cy are defined as follows:

1 le t—1 1
exo (s)——(2n—1)~|:|+(——(2n—1))s +3 5 (n—£;)2s;
(1399) Cro= » g "2 2 =k

0=0,1 seF}

n? ) _ 2
— 1+51(2)q7—(2n—2) + Z qnz—J(Zn—l—J) (1 +q7—(2n—1)) ’

l<j<n
{j,j+1}nI=0
(13.9.10)
exon (5)—% (2n-1) u+(”—2 (2n 1))31+E11(n &)
) O - -1 - - —ti)Si
Criz= ), ) (=" ’ ’ EN

0=0,1 se[Fé

n? ) . 2
11+ 61(2)(]7_(271—2) + Z qn2—1(2n—1—1) (1 _ qj—(Zn—l)) ,
l<j<n
{j,j+1}nI=0

where 8;(i) = 0if 1 € I'and 1 if not. Note that the multivariable parity functions exo

(0 =0,1) are defined in Eq. (13.7.4).
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§ 13.10. Asymptotic growths of SSA(r) and SV (r)
We are now able to obtain the asymptotic growth of SSA(r). By Eq. (8.4.6), we have

P P
(13.10.1) SSA(r):ZL(q)va(I)(F)’V > Tt g ),

deg( Pg, .. deg( Pg,..
IcA g eg( Bn'l) I is dominant 9 eg( Bn’l)

What remains is to plug in the asymptotic growth of dominant Sq,;)(r). We will

separate the discussion into two cases: (i) n = 3 and (ii) n > 4.

(i). When n = 3, the dominant types are {2,3}, {2}, {3}, and 0. By Egs. (13.9.1)
to (13.9.4) and (A.2.2), we have

(13.10.2) SSA(r) ~C(3) - ¢,

where the constant C(3) is defined as follows:

(13.10.3)

C(3) = Pps:2,31(Q) N P42 (q) ¢ +q+1 . Ppy:31(q) gt +1
qdeg(%3;{2,3}) qdeg(@B3;{2}) q-1 qdeg(933;{3)) 21
Pa0(q) ¢*+2¢% +q+1
22 (@n0) (@ D(@ - 1)
_ =) @-D(@f-(@+a+l) (-1 (e - 1) (@' +1)
(@-1¢ (@-1)(g-1)1*q (@-1*(¢?-1)¢
(@°=1)(¢*~1)(¢*=1) (¢" +2¢° +q +1)
(@-D*(2-1)¢
(q2+q+1) (qz—q+1) (g+1)
(q-1)¢°

-(q8+q7+3q6+q5+5q4+3q3+4q2+q+1).

+
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§13.10. Asymptotic growths of SSA(r) and SV (r)

As a consequence, we have

(13.10.4) SV(r) = ZSSA(z)~ —C(3)- q"

(ii). Now, we assume n > 4. Then I is dominant exactly when n ¢ I. By Egs. (13.9.5)
and (13.9.8), we have

2

(13.10.5) SSA(r) ~ C(n) - q 2",

where the parity g-function C(n) is defined as follows:

(13.10.6)
‘@Bn I(q) (n—¢; (I))2 -1 % (C[’() + C[,l(—l)r)
C(n)(r) = .
(m)(r) 1;1 deg(%u) ( ) qn2—2(2n—1) —1
'@Bn I(q) (n—¢; (1))2 -1 1
* Z deg(@Bn,) ( ) -5 (Cro+Cri(=1)7).
lel,ngl 4

As a consequence, we have

(13.10.7) SV(r) = > SSA(z) ~ C(n)g 2,
z=0
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Chapter 13. Simplicial volume in buildings of B, type

where the parity g-function C(n) is defined as follows:

13.108) () = Z Ppa(Q) T ( (n-6:(D)? _ )—1

g] qdeg((@gn 1)
% ((1 +q7)C1,0 +(1- qj)cl,l(—l)r)
(qn2 _ 1) (qn2—2(2n—l) _ 1)

4 Z eq’BnI(Q) ( (n—;(1)? _ )_1

lel,ngl qdeg(’%n 1)

0 waBic (1 -a5ia 1]

g -1

Remark. Note that the constants C;n (0 = 0,1) depends onI. When 1 € I and n ¢ I,
they are defined in Eqgs. (13.9.6) and (13.9.7). When 1,n ¢ I, they are defined in
Egs. (13.9.9) and (13.9.10).

By Egs. (13.10.2) to (13.10.8) we have proved the asymptotic relations in Theo-

rem 13.1, where

Co(n) = C(n)(even), C1(n) = C(n)(odd) - 7",

Co(n) = €(n)(even), Ci1(n) = €(n)(odd) - ¢"™

One can see they are primary g-numbers by either § 13.11 or direct verification using
Egs. (13.10.6) and (13.10.8). Moreover, by Eq. (A.2.2), we have the following explicit

formulas:

n2

(13.10.9) @BH;I(Q): t [2n]!!(q) , qdeg(g’Bn;I) = — :f[)_g' —.
[T[&(I) = -1 (D] (q) Mgt 2"

.:1 l=1

~

See Egs. (A.1.2) and (A.2.1) for the definitions of the symbols [ - ]! and [2 - ]!!.
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§13.11. Analysis of Sx,1)(2r) and Sx,)(2r + 1)
§ 13.11. Analysis of Sx,)(2r) and Sy, )(2r + 1)

Now, let I be a general type and follow Convention 2.4.5. We are going to show that
Sx,)(2r) and Sy, ;)(2r + 1) can be defined by primary g-exponential polynomials.

Suppose I N J = 0. By Eq. (13.8.1), we have (0 =0, 1)

3 [— S a(30))

Sx,n(2r +0) = g S,y (2r + T+ | = 8(J)).

We have seen that the g-functions Sqs,. (2 -) and Sq,(;)(2 - +1) can be defined by
primary super g-exponential polynomials in § 13.4. The exponent ZJ— )y a(%w j)w is
an integer. Therefore, Sy, (;)(2 - +0) can be defined by a primarya;q;per i]e—Jexponential
polynomial.
Note that the proof of Lemma 6.5.1 implies
V(I,r) = U Xy (I,r).
J#{1},{1,2},- {n—1,n}

Hence, the g-function Sq,;)(2 - +0) (@ = 0,1) is clearly a Q(q;1)-combination
of Sx,)(2 - +0). On the other hand, by Eq. (13.10.1), the g-functions SV(2-),
SV(2 - +1), SSA(2-), and SSA(2 - +1) are Q(q; 1)-combinations of S (2 -) and

Sa)(2 - +1). We thus finish proving Theorem 13.1.
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Chapter 14.

Simplicial volume in buildings of D, type

In this chapter, we will prove the D, part of Theorems 1.3 and 1.5. More precisely, we

will prove the following stronger theorem.

Theorem 14.1. Let 9B be a Bruhat-Tits building of split classical type D, over a local
field K with residue cardinality q. Then the simplicial volume SV ( - ) and the simplicial
surface area SSA( -) in it can be defined by primary super q-exponential polynomials

whose leading terms are of the form:

SV(r) ~ C(n) - (g (rn))q“”)r, SSA(r) ~ C(n) - (g(rn))qm)r,

where e(n) = 1 and m(n) = w when n > 5, while €e(4) = 2 and n(4) = 6. The
leading coefficients C(n) and C(n) are primary q-numbers, not just parity q-functions.
We will obtain explicit formulas for the parity functions C(n) and C(n).

But before proving Theorem 14.1, we will first analyze the asymptotic growths of

SSA:(r) and SV;(r), where T denotes “being special”’. We will prove the following.

Theorem 14.2. Let 9B be a Bruhat-Tits building of split classical type D, over a local

field K with residue cardinality q. Then the special simplicial volume SV+( -) and
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the special simplicial surface area SSA+( -) in it can be defined by primary super

g-exponential polynomials whose leading terms are of the form:

SV(r) ~ C,(n) - (8 (rn))qﬂ(n”, SSA(r) ~ G, (n) - (E(rn))qm)r,

where €(n) = 1 and m(n) = @ when n > 5, while €(4) = 2 and n(4) = 6. The

leading coefficients C:(n) and Cs(n) are primary q-numbers, not just parity q-functions.

We will also give explicit formulas for the constants C:(n) and C;(n). The proof of
Theorem 14.2 will play an essential role in the study of SSA(r) and SV (r).

This chapter is structured as follows. In § 14.1, we will compute the asymptotic
growth of Sq, () (r) for each type I C A. This allows use to find the dominant ones of
Sq/T(I) (r), which will be done in § 14.2. Then in § 14.3, we will obtain the asymptotic

growths of SSA:(r) and SV+(r). After that, in § 14.4, we will estimate the asymptotic

XE\W(I)'
V is between V+ and XOUuXOu XU X! Therefore, we can combine § 14.1 and

growth of S yav(;) (r) (3, © being 0 or 1) using the auxiliary function S Note that
§ 14.4 to estimate the asymptotic growth of each Sq,(;)(r) and find the dominant ones,
which will be done in § 14.5. Once we found the dominant types, we can proceed to
compute the asymptotic growth of dominant S,y (r). This will be done in three steps:
in § 14.6, we will compute the asymptotic growth of each S ycv () (r); in § 14.7, we will
deduce the asymptotic growth of Sy, (;)(r) from that of Sq,.(;)(r); then in § 14.8, the
asymptotic growth of Sq,(;)(r) will be deduced from them. Finally, in § 14.9, we will
obtain the asymptotic growths of SSA(r) and SV(r).

Throughout this chapter, we will heavily use the various index sets V, V+, X 00 x10,

XU XU and X ;. We refer to Figs. 9.4 to 9.7 for the structure of them.
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§ 14.1. Asymptotic growth of S+, ;) (7)

Now, let I be a type and follow Convention 2.4.5. We are going to compute the
asymptotic growth of Sy, (1) (r). We will separate the discussion into the following six

cases:

{n-1Ln}CcI|{n=-1Ln}nIl=1|{n-1,n}NnI=0

lel ) (ii) (1i1)
1¢1 @iv) ) (vi)

(i). Suppose 1 € I and {n — 1,n} C I. By Egs. (6.6.7), (6.6.8), and (9.1.4), we have

S 6(2n-1-£)c;
Sy.(r) = Z q=! .

C,‘EZ>()
2c1+42¢=r

Now, we apply Lemma 10.6.1 to this summation, where the index set i is {1,--- ,t},

the partitioni =iy Uiy is {1,--- ,t} =0 U {l,--- ,t}, and the sequence p is
i =42n-1-1¢). (1 <i<t)

Since all members of u are integers, S ;) can be defined by a primary super g-
exponential polynomial. The knowledge of quadratic function shows that t;n,x = 12 max =
{t} with pimax = H2max = €:(2n — 1 — €;). Then by Lemma 10.6.1.(ii), we have

t—1
Sy, ~| ] (q("’f‘m(z”‘l“’f“’i) - 1) L4 (-1 g2t
i=1

In particular, it has order %Et(Zn — 1 —¢;) and degree 0.

(ii). Suppose 1 € I'and {n — 1,n} NI is asingleton. By Egs. (6.6.7), (6.6.8), and (9.1.4),
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§14.1. Asymptotic growth of S (1)(r)

we have 1
t- -1
Z den—l—t’Qc&%ct
Sv.in(r) = Z q=! -
ci€Z+g
2¢t+-42ci—1+c =T

Now, we apply Lemma 10.6.1 to this summation, where the index set i is {1,--- ,t},

the partition i = iy Uiy is {1, - ,t} ={t} u{l,--- ,t — 1}, and the sequence p is

pi:€i(2n—1—€i), (1<l<t—1)
1 = n(nz—l).

Since all members of p are integers, S ;) can be defined by a primary super g-
exponential polynomial. The knowledge of quadratic function shows that iy n,x =
{t =1}, pomax = €—1(2n — 1 = €—1), and 21| max > H2max- Then by Lemma 10.6.1.(1),

we have
t-1 -1 n(n-1)
Sy ~ [ [ (¢ 00 -1) g2
i=1

In particular, it has order # and degree 0.

(iii). Suppose 1 € I and {n—1,n} NI = (0. By Egs. (6.6.7), (6.6.8), and (9.1.4), we

have

t-2 —

% n-1-6)e 2 (¢, gy

Sv,n(r) = > q-! :
Ci€Z50

2c1++2¢_o+Cr_ 1 HCe=T

Now, we apply Lemma 10.6.1 to this summation, where the index set i is {1,--- ,t},

the partitiont =ty Uiy is {1,--- ,t} ={t = 1,t} {1, --- ,t — 2}, and the sequence p is

pi:&-(Zn—l—&), (1<l<t—2)
I'It—l = #7
1 = n(nz—l).
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Since all members of p are integers, S . () can be defined by a primary super g-
exponential polynomial. The knowledge of quadratic function shows that iy max =
{t =2}, tomax = &—2(2n— 1 — €;_), and 21| max > H2max. Then by Lemma 10.6.1.(1),

we have

t=2

(14.1.1) S(VT(I)(’”) ~ 1—[ (q(n—&)(n—l—&) — 1) rq” 2 r
i=1

In particular, it has order @ and degree 1.

(iv). Suppose 1 ¢ I and {n — 1,n} C I. By Egs. (6.6.7), (6.6.8), and (9.1.4), we have

3 &(2n-1-£)c
Sv.ay(r) = Z q-! :

Ci€Z>0
c1+2¢p+-+2¢=r

Now, we apply Lemma 10.6.1 to this summation, where the index set i is {1,--- ,t},

the partitioni =1, Uiy is {1,--- ,t} = {1} U{2,--- ,t}, and the sequence p is
p,;:f,;(Zn—l—t’i). (1<l<t)

Since all members of u are integers, S . () can be defined by a primary super g-
exponential polynomial. The knowledge of quadratic function shows that iy m.x = {t}
and p1p max = &:(2n — 1 — ¢;). On the other side p11 max = (2n — 2).

Depending on n and ¢, there are three possibilities.

If 2111 max > H2max, then by Lemma 10.6.1.(1), we have

t

-1
Sy, (r) ~ 1—[ (q2(2n—2)—€i(2n—1—£’i) _ 1) ) q(zn—Z)r_
i=2

In particular, it has order 2n — 2 and degree 0.
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§14.1. Asymptotic growth of S (1)(r)

If 2111 max < H2max, then by Lemma 10.6.1.(ii), we have

1

(q(a—fﬁ)(zfl—l—a—fi) _ 1)'1

Sep, (1) () ~ ( gle@n-1-0)-2(2n-2) _ 1)

1 =

i=2

1 1
. % ((1 " qzt’[(Zn—l—&)—Qn—Z)) + (1 _ qzé’t(Zn—l—ft)—(Zn—2)) (_1)r)

1

.q2 6 (2n—1-¢)r

In particular, it has order %Et(Zn — 1 —¢;) and degree O.

If 2111 max = M2 max, then by Lemma 10.6.1.(iii), we have

t—1

-1
S, (1) ~ %n (q(é’[—{’i)(Zn—l—ft—fi) _ 1)  rg2n=?r,
i=2

In particular, it has order 2n — 2 and degree 1.

(v). Suppose 1 ¢ I and {n — 1,n} NIis asingleton. By Egs. (6.6.7), (6.6.8), and (9.1.4),

we have
el n(n-1)

3 6 (2n—1-£)ci+
Sy, n(r) = > q-!

ci€Z+g
c14+2co+ - +2c—1+c=r

Ct

Now, we apply Lemma 10.6.1 to this summation, where the index set i is {1, - ,t},

the partition i = i; Uiy is {1, - ,t} ={1,t} u{2,---,t — 1}, and the sequence p is

pi:€i(2n—1—€i), (1<l<t—1)
1 = n(nz—l).

Since all members of u are integers, S ;) can be defined by a primary super g-
exponential polynomial. The knowledge of quadratic function shows that iy n,x =
{t = 1} with o ax = €—1(2n — 1 = €,_;) and that t € 1] pax With 2 max = n(n—1) >

H2 max-
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Depending on n, there are two possibilities.
If n = 4, then 1y max = (2n — 2) and hence i) max = {1,t}. By Lemma 10.6.1.(i), we

have
t—1 1

Syoy (1) ~ | ] (4750 - 1) -rq”.
i=2

In particular, it has order 6 and degree 1.
If n > 5, then pymax > (2n — 2) and hence it max = {t}. By Lemma 10.6.1.(i), we

have

-1 M) o)

-1 1+ 2

N (=) (n=1-€) _ T4 .

Sy (1) l_[ (q 1) qn(n=1)-2(2n-2) _ | q 2
i=2

In particular, it has order @ and degree 0.

(vi). Suppose 1 ¢ I and {n — 1,n} NI = 0. By Egs. (6.6.7), (6.6.8), and (9.1.4), we have

t-2 -1

5 tn-1-e)er M5 (¢ ey

Sy, (r) = Z q=! :
C,'EZ>()

c14+2cp++2¢i_p+Ce_ 1 +Ce=T

Now, we apply Lemma 10.6.1 to this summation, where the index setiis {1,--- ,t}, the

partitioni = i; Uiris {1,--- ,t} ={1,t = 1,t} LU {2,--- ,t — 2}, and the sequence p is

i =6(2n—-1-4¢), (1<i<t=-2)
Hi-1 = n(nz_l))
1 = n(nz—l)

Since all members of u are integers, S5y can be defined by a primary super g-
exponential polynomial. The knowledge of quadratic function shows that tym.x =

{t =2} with pymax = &—2(2n — 1 — €,_») and that {t — 1,t} C ijmax With 21| max =
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n(n - 1) > H2 max-
Depending on n, there are two possibilities.
If n =4, then 1 max = (2n—2) and hence ijmax = {1,t — 1,t}. By Lemma 10.6.1.(i),

we have

=2 oy
(14.1.2) S(VT(I)(”) ~ l—[ (q(4—€i)(3—€i) _ 1) . ( )q6r'

i=2
In particular, it has order 6 and degree 2.
If n > 5, then 11 max > (2n — 2) and hence i) max = {t — 1,t}. By Lemma 10.6.1.(i),

we have

(n=1)
=2 -1 1+qn n2 -(2n-2) n(n=1)

- (=€) (n—1-;) _ .
(14.13)  Sqr,((r) ];[(q 1) e M

In particular, it has order @ and degree 1.

Note that, in all cases, Sy, () can be defined by a primary super g-exponential
polynomial. Then by Egs. (8.5.1) and (8.5.2), we see that SV ( - ) and SSA;( - ) can be

defined by primary super g-exponential polynomials.

§ 14.2. Dominant types for S/ ;) (r)

Now, we are able to figure out for which type I, S, (;)(r) is dominant. First, we

summarize the asymptotic results in § 14.1 as follows.
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{n-1,n} CI {n-1,n}nIl=1|{n-1Ln}NnI=0
ter| (3a(n-1-10),0) (252,0) (252,1)
(2n-2,0)
(6,1) (6,2)

el | (3e(n-1-10),0) (252, 0) (22 1)

(2n-2,1)

In the table, the pair in each cell tells us the possible order and degree of S, ().

When n = 4, we have ¢,(I) < 4 for all I. Therefore,
(2n-2) > 1e.(D(2n - 1 - &(D)).

Hence, S, (1)(r) is dominant exactly when 1 ¢ I and {n — 1,n} NI = 0. Note that, such
a type I must be either {2} or 0. By Eq. (14.1.2), the asymptotic growth of dominant

S.(1) (r) are as follows:

r
(14.2.1) S (r) ~ (2)q6r

-1 (r 1 r
1422 S0y () ~ (@O —1) Tt = ——— 7 g
( ) v, () ~ (g 2)T =71 (o)t

If n > 4, then we have (2n — 2) is no longer the highest order. When {n — 1,n} C I,

we have ¢;(I) < n — 1 and thus
Le(D(2n -1 - €.(I)) < Ml
bt t 2 -

Therefore, S, (1)(r) is dominant exactly when {n —1,n} NI = 0. In that case, its

asymptotic growth is given by Eqs. (14.1.1) and (14.1.3).
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§ 14.3. Asymptotic growths of SSA:(r) and SV (r)

We are now able to obtain the asymptotic growth of SSA:(r). By Eq. (8.5.2), we have

“@Dn;l(q)

[ e g)Dn;I(q)
qlez(Zou1) Sy~ D s Sy (1),

deg(@[)n;l)

(143.1)  SSA«(r) =)

ICA I is dominant 9

Then by the discussion in § 14.2, we see that

r

Ci(4) - (2

)q6r ifn =4,
(14.3.2) SSA:(r) ~
n(n—l)r

Ci(n)-rq 2 ifn > 5.

When n = 4, by Egs. (14.2.1) and (14.2.2), the constant C;(4) is defined as follows:

@D4;{2} (Q) + g’D4;®(q)

Ci(4) = :
T qdeg(@n4;{z}) (qz _ 1) qdeg(9D4;0)

Moreover, by Eq. (A.3.2), we have

@-D@-10" (@-1-1

(1439 G = (g-1)*g" (- 1)*q2
B (> +q+1) (qz—q+1)2 (q2+1)2(q+1)3
- (q-1)q" '

As a consequence, we have

r 6
(14.3.4) svf(r):;oss/x?(z)fv 1 CT(4)-(;)q6r-

q® -1
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When n > 5, by Egs. (14.1.1) and (14.1.3), the constant C;(n) is defined as follows:

(14.3.5)
n(n-1)
—(2n=2
Ci(n) = Z 9’13,11(61) ( (n=:(D) (n=1-£,(1)) _ 1)_1_ l+q 2z &2
' -1)-2(2n-2) _
1L,n—1,n¢l qdeg(%”’) i=2 qrn--20Gn2) — ]
-2
; Pput(@) (g1t 1)‘1'
lel,n—1,n¢l qdeg(gpn ) i=1

As a consequence, we have

(14.3.6) SVi(r) = Z SSA:(z) ~

By Egs. (14.3.2) to (14.3.6), we have proved Theorem 14.2. Moreover, by Eq. (A.3.3),

we have the following explicit formulas:

[2(n —D]!1(2) - [n](2) (o) L_
H [gl(I) - fi—l(I)] '(Z) tl:ll q(ei(m’gi—l(l))

i=1 i=1

Pp,1(q) =

See Lemma 8.2.5 and Egs. (A.1.2) and (A.2.1) for the definitions of the symbols [ - |,

[-]!%and [2- ]!

§ 14.4. Asymptotic growths of S7. | (r)

Now, let I be a type and follow Convention 2.4.5. We are going to estimate the asymptotic
growth of S yav ;) (r) (0, © being 0 or 1) up to the leading coefficient. We will separate

the discussion into the following six cases:
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{n-Ln}yCIl||{n=-Ln}nIl=1|{n-1,n}NnI=0

lel (i) (ii) (iii)
l¢l (iv) (v) (vi)

(i). Suppose 1 € I and {n—1,n} C I. By Fig. 9.4, we only need to consider X*(I).
By Eqgs. (6.6.8) and (9.5.3), we have

t
1
Z Et’i(Zn—l—fi)ci

S;OO(I) (r) = Z qi:l

Ci€Z50
Clt-+Cr=T

Now, we apply Lemma 10.5.2 to above summation, where the index set i is {1,--- ,t}

and the sequence p is
pi=36(2n—1-1¢). (1<i<t)

The knowledge of quadratic function shows that i;,,x = {t} with p10x = %ft(Zn —1-4).

Then we have

t—1

l —{ Ry [
S;-oo(l)(r) ~ l—[ (qz(f’z €)(2n-1-t—) _

1=

-1 ]
. q§€[(2n—l—€t)r

Since SX()()(I)(r) =S (r), it has order %&(Zn — 1 —¢;) and degree 0.

;(00 (I)

(ii). Suppose 1 € I and {n — 1,n} NI is a singleton. By Fig. 9.4, we only need to

consider X%(I). By Egs. (6.6.8) and (9.5.3), we have

t—1 _
B Z 5 Len-1-g)es 2D
- — i=1
S(\/OO(I) (r) q .
Ci€Z50
Cl4+Ce=r

Now, we apply Lemma 10.5.2 to above summation, where the index set i is {1,--- ,t}
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and the sequence p is

pi=36(2n-1-1¢), (I<i<t-1)
Pt:@-

The knowledge of quadratic function shows that iy, = {t} with . = ”("2_1). Then

we have
t-1 -1
) n(n-1)
Xoo(I)(r) I [(qz(n R | IR
i=1

n(n 1)

Since S Xoo(l)(r) =< S (r), it has order and degree 0.

:YOO( )
(iii). Suppose 1 € I'and {n — 1,n} NI = 0. By Fig. 9.6, we only need to consider X% (1)
and X°!(I). By Egs. (6.6.8), (9.5.3), and (9.5.4), we have

( 1)
Z 26’(2n 1-€;)ci+——— (ce—1+ct)
XOO(I) (r) Z ql ! >
Ci€Z>O
Cl4+c=r
n(n—l) _ _
XOI(I)(r) 2 S;(OO(I)(r) = S;(OO(I)(r)'

Now, we apply Lemma 10.5.2 to the first summation, where the index setiis {1,--- ,t}

and the sequence p is

pi=16(2n—1-1¢), (1<i<t=2)
Hi-1 = n(n2_1)7
1 = n(n2—l) )
The knowledge of quadratic function shows that imax = {t — 1, t} with g = n(nz_l).
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Then we have

t-2 -1 n(n-1) 1)

N
XOO([)(r) l—[ (qz(n n-1-6) -1 *rq T2
i=1

n(n 1)

In particular, it has order and degree 1. We then know that S, (r) also has the

XOI( )
same order and degree. Since Sy ) (r) < ST . (r) and S Xm(l)(r) =< ST

n n(n-1)

(r), we

X()() (I) X()l (I)

see that S yoo, yory g (r) has order n and degree 1.

(iv). Suppose 1 ¢ I and {n — 1,n} C I. By Fig. 9.5, we only need to consider X°(I)
and X'°(I). By Egs. (6.6.8), (9.5.3), and (9.5.5), we have

(2n=2)c1+ 3 Te2n-1-t)c
Z q i=2

X()()(I) (r) )
Ci€Z50
C1t+--+Cr=r
XIO(I)(r) = (2n 2 S;(oo(l)(r) = Sj\;oo(l) (r).

Now, we apply Lemma 10.5.2 to the first summation, where the index setiis {1,--- ,t}

and the sequence p is

p1:2n—2,

pi=36(2n—-1-1¢). (2<i<t)
The knowledge of quadratic function shows that i,,.x C {1, t} with
Hmax = max{2n -2, 36(2n - 1 — &) }.

Depending on n and ¢, there are three possibilities.
If2n-2> %€t(2n — 1 —¢), then we have ipmax = {1}, Imax = 2n — 2, and

t -1

L, n 1 0 _
XOO(I) (r) 1—[( (2n-2) 2£’l(2n 1-¢;) 1 . q(2n 2)r.
i=2
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Then we can deduce that Sy, y10y()(r) has order 2n — 2 and degree 0.
If 2n — 2 < 36(2n — 1 — &), then we have imax = {t}, fmax = 38 (20— 1 — £), and

-1 t=1

1 1 -1 1
S;OO(I) (T') N (qit’t(Zn—l—{’t)—Qn—Z) _ 1) rl (qi(ft—(fi)(Zn—l—é’t—fi) _ 1) . qift(2n—l—€t)r.
i=2

Then we can deduce that S yo0 ; y10y ) (r) has order %t’t(Zn — 1 —¢;) and degree 0.
If2n-2= %ft(2n —1—¢;), then we have i, = {1, t} and

t—1

1 -1

= 5 (6=0)(2n—1-£—¢; -

SXO()(])(r) ~ | | (qZ( Jent /- 1) : rq(Zn 2,
i=2

Then we can deduce that Sy, y10y()(r) has order 2n — 2 and degree 1.

(v). Suppose 1 ¢ I and {n—1,n} NI is a singleton. By Fig. 9.5, we only need to
consider X%(I) and X'°(I). By Egs. (6.6.8), (9.5.3), and (9.5.5), we have

t—1 —
~ (2n-2)c;1+ 3, %ei(zn-l-fi)ci+”(”2 D,
- = i=2
S{\/OO (I) (r) § q )
Ci€Z>0
Cl+--+ce=r

_1

Sj\;mm (r)=q 2(n-2) Sz

X()o([)(r) = Sj\;oo(l)(r)-

Now, we apply Lemma 10.5.2 to the first summation, where the index setiis {1,--- ,t}

and the sequence p is

pp=2n-2,
pi=1602n—1-¢), 2<i<t=1)
1 = n(nz—l).

The knowledge of quadratic function shows that t € i € {1, t} with pax = n(n2—1) .

Depending on n, there are two possibilities.
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If n = 4, then we have i, = {1, t} and

t—1

-1
XOO([) (r) n ( 2(4_€i)(3_[i) - 1) _rq6r.

i=2
Then we can deduce that S xo , x10 ) (r) has order 6 and degree 1.

If n > 5, then we have iy, = {t} and

n(n-1)
2

-1 t-1 n(n-1)
- 7.

-1
-(2n-2) _ 1) n (q%(n_fi)(n_l_fi) _ 1) - q 2

i=2

S50 1) ~ (3

n(n-1)

Then we can deduce that S (X0 U X19)(1) (r) has order © and degree 0.

(vi). Suppose 1 ¢ I and {n — 1,n} NI = 0. By Fig. 9.7, we have to consider all the sets
X%(1), X°' (1), X'°(1), and X' (I). By Egs. (6.6.8) and (9.5.3) to (9.5.6), we have

3] (ce-1+ct)

Z (2n- 2)c1+2 2€(2n 1-€;)ci+ (
q

XOO(I) (r) b)
Ci€Z50
Ci+e+ee=T
n(n—l)
Xm([)(r) =q 2 XOO(I) (r) < Xoo(l)(r):
XIO(I) (r) = (2n 2) S;(OO(I) (r) = S;OO(I) (r),
Ln)- (”2 D

S;n(l)(r) =q 2 Xoo(l)(r) Xoo(l)(r)-

Now, we apply Lemma 10.5.2 to the first summation, where the index set i is {1, -- -, t}

and the sequence p is

py =2n-2,
pi=36(2n—-1-1¢), 2<i<t=-2)
Pt:@-
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The knowledge of quadratic function shows that {t — 1,t} C ipmax € {1,t — 1,t} with

Hmax = n(nz—l) .

Depending on n, there are two possibilities.

If n = 4, then we have i« = {1,t — 1,t} and

t—2 -1
@G-ty _ 1) [T} 6r
S ooy (1) ~ l_[( 2 1) (2)‘1 -

i=2

Then we can deduce that S yo0 ; yo1  x104 x11)(p) (r) has order 6 and degree 2.

If n > 5, then we have i = {t — 1, t} and

~ nn-1) ., _
Sy 1) ~ (a5 1

Then we can deduce that S yo ; xo1 , x10, x11)() (7) has order

-1 t-2 n(n 1)

-1
1
(qzm—m(n—l—m_l) .
i=2

"(" D and degree 1.

§ 14.5. Dominant types for S, (r)

We are going to estimate the asymptotic growth of each Sq,(;)(r) and figure out the
dominant types, namely the types for which S (j)(r) is dominant.
Let I be a type and follow Convention 2.4.5. Depending on I, the set V (I) is contained

in various sets X" (I), where

X%(1) ifleland{n—1,n}NI#0,
XV = X1 u X°L(1) ifleland {n—1,n}NI=0,
X1 u X'°(1) ifl¢land {n—1,n}NI%0,
X0 ux"uxmuxa) ifl¢land{n-1,n}NI=0
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Refer to Figs. 9.4 to 9.7. Then we have

SXU(I)(I‘) > S"V(I)(r) > S(VT(I)(T)-

We summarize § 14.4 as follows.

{n-1,n} CI {n-1,n}NnIl=1|{n-1,n}NnI=0
ter| (ba@n-1-6),0) (22,0) (22, 1)
(2n - 2,0)
(6,1) (6,2)

1¢l (%&(271— 1 ‘gf)’o) (%0) (%1)

2n-2,1)

In the table, the pair in each cell tells us the possible order and degree of S yu () ().

Comparing this table with the discussion in § 14.2, we see the followings.

(1). When n =4, a type I is dominant if and only if {1,n — 1,n} NI = (. In that case,
Sq(1) has order 6 and degree 2.
(i)). When n > 5, a type I is dominant if and only if {n — 1,n} NI = 0. In that case,

n(n

S(7) has order T_l) and degree 1.

§ 14.6. Asymptotic growth of dominant S yov ;) (1)

Now, let I be a type and follow Convention 2.4.5. We are going to compute the
asymptotic growths of S Xo(I)(r) and Sy ) (r) when I is dominant. To do this, we pick
an arbitrary x € X"%(I) and investigate the difference between 2p(x) and the sum of
[a(x)] for a(x) > 0. To better describe these sums, we follow Conventions 12.5.1

to 12.5.3.
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By § 14.5, a necessary condition for I being dominant is {n — 1,n} NI = 0. We will
assume that I satisfies this condition. Depending on 1 € I or not, we will separate the

discussion into two cases: (i) and (ii).

(i). Suppose 1 € I. By Fig. 9.6, we only need to consider X°°(I) and X°'(I). Let © be
pp y y

either O or 1. Suppose

1 1
x:o+c1-Ewg1+---+ct_2-§wgt_2

+ (o1 — 5 9) - wpot + (e — 1 0) - w, € XV(D).
By Eq. (6.6.6), we have

(xj = x5)(x) (I1<j<j<n-1)
=3 (Cfflo') Tt Ce*l(j’)—l) 5

(xj+xj)(x) (I1<j<j<n-1)
=3 (Ce-'o) +eee +C€-'(j’>—1) Feign T ta =9,

(Xj = xn) () (I1<j<n-1)
:%(cg_l(j)+---+ct_2)+ct_1—%-Q?,

(xj + xn)(x) (I<j<n-1)

_1 1
Z(Cf’l(j)+"'+cf 2)+Ct_§ - Q.
lherelore, we have

Dila)l= >0 (0 =261+ [0+ x5 (01)

acd+ 1<j<j’'<n
n—1
:2p(x)+ Z Cg—l(j)+"'+C€—1(j/)_1+ZC[—1(j)+"'+Ct_2—Q7.
1<j<j’<n—-1 j=1
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§14.6. Asymptotic growth of dominant S yov ) (r)

From above analysis, we can define the parity functions e yo ;) (¥ = 0, 1) as follows:

(14.6.1) exoop(Cr, oo, ce) = Z (6 = Cic1) (b = C_p)ci+ -+ iy

I<i<i’<t—1

t—1
+ Z(fl — fi_l)ci + -+ Ct—2— 0.
i=1

Then we have

Z [a(x)] = 2p(x) + exoo(p (c1, o).

acd*

Now, we apply Lemma 10.5.5 to the following summation (¥ =0, 1).

=21 n(n-1
> Lean-1-006t 25 (e =9 e oo g (et o)

Sxo@(l) (T‘) = Z qi:I

ci€Z+g
i+t =r+9

Note that the index set i is {1, - - -, t} and the sequence p is

pi=16(2n—1-1¢), (1<i<t=2)
pl’—l = n(nz_])ﬁ
1, = n(nz—l).

Since all members of p are integers, S Xm(l)(r) can be defined by a primary super

g-exponential polynomial. The knowledge of quadratic function shows that i, =

{t = 1,t} with f1pax = n(nz_l). Therefore, for © = 0, 1, we have
1s r+9 n(n—l)r
SXOv(I)(T) ~ C{\/OQ?(I) . Z EXOO(I)(S) + Z(—l) EXOV(I)(S) (—1) . rq 2 ,
se[Fé se[Fé

where the constant C X0 (1) and the function EXOO(I): [Fé — Q(q;-) are defined as
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follows:
= -1
(14.6.2) Coop) = 7 n (q(n—fi)(n—l—fi) _ 1) ,
i=1
t-2 1
€00 (9)+ X 5 (n—€) (n—1-€)s;
(14.6.3) EXOO(I)(S) =g X0 a2 .

From the definition Eq. (14.6.1) of exov(p), We see that EX()o(I) (s1,---,s¢) does not

depend on s;_; and s;. Therefore, we have

n(n—l)r
(14.6.4) SXoW(I) (r) ~ C{\fOV(I) : Z E(\fOV(I) (S) * T”q 2 .

t
sel;

(ii). Suppose 1 € I. By Fig. 9.7, we have to consider all the sets X*°(I), X°' (1), X'°(I),

and X'!(I). Let O, ¥ be either 0 or 1. Suppose

1 1 1
Xx=0+(c1—5-0) W +C2+ 50+ +C2 50,

+(C1 = 3 9) - Wt + (¢ — 3 Q) - w, € XU(D).
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By Eq. (6.6.6), we have

(X1 = xn)(x)
:(c1—i-D)+%(c2+~--+ct_2)+ct_1—%-@,

(X1 + xn) (x)
:(cl—z-D)+%(c2+~--+ct_2)+ct—%~Q7,

(x1 = x5)(x) (I<j<n-1)
:(cl—z-D)+%(c2+---+c5_1(j)_l),

(1 +x;) () (I<j<n-1)
:(cl—%-I:l)+%(c2+--~+c€71(j)_1)+c€71(j)+~~-+ct—@,

(Xj = xn)(x) (I<j<n-1)
= % (C[—I(j) + ---+ct_2) +C—1 — % -0,

(X + xn)(x) (I<j<n-1)
:%(Cg-l(j)+--~+ct_2)+ct—%-O,

(xj = xj7) () (I1<j<j<n-1)
=3 (Crl(j) Tt Cf*l(j’)—l) )

(xj+xy)(x) (I<j<j<n-1

_1
=3 (Cg—l(j) + -+ Cf‘l(j’)—l) +C€—1(]~/) + -4+ — Q.
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Therefore, we have

Dla)l= > (106G =x) 61+ [0 +x) (1)

acd* 1<j<j’'<n
n—1
:2p(x)+c2+'-'+ct_2—E|—<7+Zc2+--~+cg71(j)_1 - O
=2

n—1
+ZC[—1(]~)+"'+C1-_2—©+ Z Cg—l(j)+"'+Cg—1(j/)_1.
j=2

I<j<j’<n—-1

From above analysis, we can define the parity functions eyav ;) as follows:

(14.6.5) eXm?(I) (Cl, sy Cl’) =Cc+--+cp—0O- Q

-1
+ Z(f’i —ti-)ea+- - +ciop - O
i=2

t—1
+ Z(f’i —Ci)cit o2 —©
i=2

+ Z (& =€) (b = Cr_y)ci+ - +ci—q.

2<i<i’ <t—1

Then we have

D Ta(0)] = 2p(x) +exepy(er, -+ o).

acd*

Now, we apply Lemma 10.5.5 to the following summation (0, = 0, 1).

1 .t=21 n(n—-1
(2n—2) (Cl—§~l:|) 22 E{fi(Zn—l—Ei)ci+—( 2 ) (Ct_1+C[—Q?)+€XDQ7(I) (Cl,"' ,Ct)
i=

quO(I)(r) = Z q

Ci€Z>0
C1+e+c=r+9
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§14.6. Asymptotic growth of dominant S yov ) (r)

Note that the index set i is {1, - -- , t} and the sequence p is

pp =2n-2,

pi=36(2n—-1-1¢), 2<i<t=-2)
He-1 = n(nz_l),

1 = n(n2-1)

Since all members of p are integers, Sxov () (1) can be defined by a primary super g-

exponential polynomial. The knowledge of quadratic function shows that {t — 1,t} C

imax € {1, = 1,6} With g = 251

Depending on n, there are two possibilities.

If n = 4, then we have i« = {1,t —1,t}and (O, =0, 1)

. r
le]Q?(I)(r)"’CXDW(I)' ZEXD(?(I)(S) + Z(_I)ISEXD@(I)(S) (_1)r+Q? '(2)q6r’

t t
se[F2 se[F2

where the constant Cyoo(;) and the function Exeo(py: F; — Q(q;—) are defined as

follows:
| (=2 B
(1466) CX‘:‘V([) = gq—S-D l_[ (q(4—€i)(3—€i) _ 1) ,
i=2
t—2 1
ooy (8)+ 2 5 (4=6)(3-8)s;
(146.7) EXDW(I) (S) = le (@) i=2 2 S )

From the definition Eq. (14.6.5) of exov(r), We see that EXav(I)(sl, -+, s¢) does not

depend on sy, s;_1, and s;. Therefore, we have

T\ 6r
(14.6.8) SXDW(I)(r) NC{\’DQ(I) . ZEXDO(I)(S) . (2)q .

t
se[F2
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If n > 5, then we have i = {t — 1,t} and (O,v =0, 1)

n(n-1)
S(\’DO(I)(r)NCXDV(I)' ZE)(DU(I)(S) + Z(_I)ISE(\/DO(D(S) (_1)r+Qj -rq 2 r,

t t
sel]:2 se[F2

where the constant Cyov(p) and the function E oo : F; — Q(q;-) are defined as

follows:
1

1 q—§(2n—2)-|:| =2 ettt »

(1469 Caean ':an(n—l)—zun—z)_] . (q _1) :
i=2
t-2 1

exoo (S)+( —(2n 2))5 +3 5 (n=)(n-1-t;)s;

(14610) EXDO(I) (s) =q XBY(1) 1 Pt 2 .

From the definition Eq. (14.6.5) of ex=v (), We see that EXW(I)(SI, -+, s;) does not

depend on s;_; and s;. Therefore, we have

n(n—l)r
(14.6.11) Sxo0(n () ~ Cxoviry - | D Bxoogny(s) |- rq 2 .

t
sele

§ 14.7. Asymptotic growth of dominant Sy ;) (r)

Now, let I be a type and follow Convention 2.4.5. We are going to analyze Sx, (7).
Suppose x € X (I,r), where I N J = (. Since X9 = V+, by Lemma 9.5.4, we can
write x as xo — 2, %wj, where xg € V+(I,r + |J| — 8(J)). Then we have

jeJ

D Ta(x)]=2p(x0) + Y

acd* acd*

—Za(%wj)}.

jeJ

Note that the last summation gives an integral constant. Then we have

Z*j Za( w})
(14.7.1) Sx,m(r) =q*® el

Sv.ay(r+1J[ = 8(J)).
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§14.7. Asymptotic growth of dominant Sx 1) (r)

In particular, each Sy, ;) can be defined by a primary super g-exponential polynomial.
Since V (I, r) is a disjointed union of various X (I, r), we see that Sq,(;) can be defined
by a primary super g-exponential polynomial. Then by Eqgs. (8.4.5) and (8.4.6), we see
that SV( - ) and SSA( - ) can be defined by primary super g-exponential polynomials.
Now we assume that I is dominant. We will separate the discussion into two cases:

(i)n=4and (ii)n > 5.

(i). Suppose n = 4. Then we have {1, 3,4} NI = (. The following J appears in Fig. 9.7:
{1}, {1, 2}, {3,4}, {2, 3,4}. In those cases, by Eq. (6.6.6), we have

{1} - 8({1}) =0, %}j—a(%wlﬂ =0,
(1,2} - 8({1,2) =1, Z};j—a(%wl +1wy)] = -5,
(3,4} - 8({3,4) =1, Z@[—a(%wg +1wy]=-3,
12,3,4}] - 8({2,3,4}) = 2, Z};j—a(%wz + 1wy + Lwg)] = -8.

Then by Egs. (14.1.2) and (14.7.1), we have

t-2 -1 r
(1472) SX{l}(I) (r) = ﬂ (q(4—€i)(3_€i) _ 1) . (2)q6r’
i=2
6-5 7 (4-6)(3-) )6
(14.7.3) Sxuym() =g (q l 1_1) 2)T
i=2
6-3 7 (4-)(3-) )6
(14.7.4) Sxam() =g (q l 1_1) 2)T
i=2
12-8 7 (4-6)(3-) T
(14.7.5) Sxpsm@() =g (q o _1) 2)T
i=2

(ii). Suppose n > 5. Then we have {n — 1,n} NI = (. Depending on ¢}, there are two
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cases: (ii-a) £; > 1 and (ii-b) £ = 1.

(ii-a). If £; > 1, then we consider Fig. 9.6 and the following J: {2,3},---,{n—3,n -2},
{n-1,n},and {n—2,n—1,n}. When J = {j,j+ 1}, where 2 < j < n — 3, we have
|J| — 8(J) =2 and by Eq. (6.6.6),

> [~a(iw; + fwp)] = —j(2n - j).

acd+

Then by Egs. (14.1.1) and (14.7.1), we have

oo 13 -1 nln=D)
(1476) S/\’U,jﬂ}(I) (T) — qn(n—l)—J(ZH—J) n (q(n—fi)(l’l—l—fi) _ 1) rq” 2 r

i=1

When J = {n — 1, n}, we have |J| — §(J) = 1 and by Eq. (6.6.6),

3 [~a(bwnot + Swg)] = -~

aed+
Then by Egs. (14.1.1) and (14.7.1), we have
n(n-1) (n-D(n-2) =2 -1 nan-1)

(1477 Sxp () =q 2 2 l_[(q(n-&)(n—l—el—)_l) T
i=1

When J = {n —2,n — 1,n}, we have |J| — §(J) = 2 and by Eq. (6.6.6),

> a(bwna + o1 + fon)] = —(n - 1)2.
acd*

Then by Egs. (14.1.1) and (14.7.1), we have

t—-2
1V (n_1)2 /. 1. -1 H(Tl—l)r
(14.7.8)  Sx, () =g " 70D n(q(n €)(n-1-6) _ 1) o
i=1
(ii-b). If ¢; = 1, then we consider Fig. 9.7 and the following J: {1}, {1,2}, {2,3},---,

{n-3,n-2},{n—1,n},and {n—2,n—1,n}. When J = {1}, we have |J| —6(J) =0
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§14.7. Asymptotic growth of dominant Sx 1) (r)

and by Eq. (6.6.6),

Z [—a(%wl)] =0.

acd*

Then by Egs. (14.1.3) and (14.7.1), we have

n(n-1)

[\S)

t— -(2n-2) n(n—-1)

-1 1+ 2 mr=2
_ (n=)(n-1-8) _ -4 : '
(14.7.9)  Sx,,m(r) = (q o 1) gn(n=D-2(2n-2) _ | rg 2o

Il
\S)

i

When J = {1, 2}, we have |J| — §(J) = 1 and by Eq. (6.6.6),

Z [—a(%wl + %wz)] =—(2n-13).

aed+

Then by Egs. (14.1.3) and (14.7.1), we have

n(n—1) 23 t=2 -1
(14.7.10) Sxyym(@=q 2 ¢ Tl—)l—[(q(n—é’i)(n—l—&-)_l)
i=2

-1
1+qn(n2 )—(2n—2) n(n-1)

. ‘rq 2 .
qn(n—l)—2(2n—2) -1

When J = {j, j+ 1}, where 2 < j < n — 3, we have |J| — §(J) = 2 and by Eq. (6.6.6),

Z [—a(Gw;j+ 3wj01)] = —j(2n - j).

acd*
Then by Egs. (14.1.3) and (14.7.1), we have

)
o -1
(14.7.11) SX e () (1) = @D [ (gt oot )
i=2
n(n-1)
l1+q 2
' (=D-2n=2) _ g

-(2n-2) n(n_l)r

2

When J = {n — 1,n}, we have |J| — §(J) = 1 and by Eq. (6.6.6),

Z [—a(Rwn-y + Lw,)] = - ==D,

acd*
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Then by Egs. (14.1.3) and (14.7.1), we have

n(n-1) (n-1)(n-2) {=2 -1
(14712) SX{nfl,n}(I) (r) =q 2 2 rl (q(n—fi)(n—l—fi) _ 1)
i=2

(n-1)
1+ qn n2 -(2n-2) n(n-1)

.
D22 T 2

When J = {n —2,n — 1,n}, we have |J| — §(J) = 2 and by Eq. (6.6.6),

Z [_a(%wn—z + %wn_l + %wn)] ——(n-1)>

acdt

Then by Egs. (14.1.3) and (14.7.1), we have

t=2
-1
7. 0 (r) = gt=D=(=1)? (=€) (n=1-8) _ |
(14.7.13) S ppanrm (1) = 7DD q
=2
-1
4q" T2 aaey)

2

D20 —p

§ 14.8. Asymptotic growth of dominant S« ;) (r)

We are now able to compute the asymptotic growth of Sq,(;)(r) when I is dominant. We

will separate the discussion into two cases: (i) n =4 and (ii) n > 5.
(i). Suppose n = 4. Then the dominant types are {2} and 0. By Fig. 9.7, we have
S(V({Z}) (I”) = SXOO({Z})(T‘) + SXOI({Z}) (r) + SXIO({Z})(T‘) + SXl] 2 (r)
= Sx iy 2n (1) = Sx 54 (12 (1),

- SX{])(@) (r) - S(\’“,z}(@) (T') - SX{3,4} (0) (r) - SX{2,3,4} (0) (T')
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§14.8. Asymptotic growth of dominant Sy (r)

Therefore, by Egs. (14.6.5) to (14.6.8) and (14.7.2) to (14.7.5), we have

(14.8.1) Sy (1) ~ (1 P lag—1- q3) : (r)qﬁr =(g+1)- (r)qﬁr,
2 2
(14.8.2) Sy o) (r) ~ ((1 +@)+ (@ +q)+(1+q) +(1+q%)

_1 r -
-1-q-¢ —q4) (q2 - 1) : (2)q6

_q5+q2+q+1 r\ e
T 21 2)T

(ii). Now, we assume n > 5. Then I is dominant exactly when {n—1,n} NI = 0.

Depending on £y, there are two cases: (ii-a) £; > 1 and (ii-b) ¢; = 1.

(ii-a). When ¢; > 1, by Fig. 9.6, we have (including the zero summations)

S(V([)(r) = SXoO(I)(r) + S(\/OI(I) (T’) + leo(I)(T‘) + lel(l)(r)
n-3

- Z SX sy (1) = SX (01 (0 (1) = SX 1 p iy (1 ().
j=2

Therefore, by Egs. (14.6.2) to (14.6.4) and (14.7.6) to (14.7.8), we have

t=2 -1 n(n-1)
(14.8.3) S(V(I)(r) ~ l—[ (q(n—é’i)(n—l—é’i) _ 1) Cp-rq” 2 r
i=1

where the constant C; is defined as follows:

[—21
€00 p (51,55t-2,0,0)+ X 5 (n—&;) (n—1-¢)s;
(14.8.4) C = Z Z 200y 2

©=0,1s1,---,5:—2€F>

—i)2-n n—
- > " -+ (n -2,
2<j<n-3
{j,j+1}nI=0
where §;(i) = 0if i € I and 1 is not. Note that the definition of the multivariable parity

function ex0%(p) is in Eq. (14.6.1).
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(ii-b). When ¢; = 1, by Fig. 9.7, we have (including the zero summations)

n-3

- SX{]}(I) (r) - S(\’{])z)([) (T') - Z SX{j)jH}(I) (r)
j=2

- SX{nfl,n}(I) (r) - SX{n72,n71,n}(I) (r)'
Therefore, by Egs. (14.6.9) to (14.6.11) and (14.7.9) to (14.7.13), we have
1 = 1 n(n-1)

2 —_—
rl (q(n—fi)(n—l—fi) _ 1) Corg T T,
=2

1

(14.85) Sy () ~ (q(”_4)(”_1) _ 1)

where the constant C; is defined as follows:

(n-4)(n-1) 2]
e oo (s)—(n—1)-0+ s1+ 2 5 (n=t) (n=1-&;)s;
(14.8.6) Cr= E E q o ? =k

0,0=0,1 51, ,5;-2€F

n(n-1) .
—(1+51(2)q 7 Iy Z gy
2<j<n-3
{j,j+1}INI=0

n(n-1)
+(1+61(n—2))q"_])~(1+q 2 —<2“—2>),

Note that the definition of the multivariable parity function eyeo(; is in Eq. (14.6.5).

§ 14.9. Asymptotic growths of SSA(r) and SV (r)
We are now able to obtain the asymptotic growth of SSA(r). By Eq. (8.4.6), we have

Pp,1(q) Pp,1(qQ)
(149.1)  SSA() =) St Sy ~ > (v SO (-
1ca 9 Drit I is dominant 9 "
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What remains is to plug in the asymptotic growth of dominant Sq ) (r). We will

separate the discussion into two cases: (i) n =4 and (ii) n > 5.

(i). When n = 4, the only dominant types are {2} and (). Then by Egs. (14.8.1), (14.8.2),
and (A.3.3), we have

(14.9.2) SSA(r) ~ C(4) - (;)q6r,

where the constant C(4) is defined as follows:

Ppa0(@) @ +q*+q+1
qdeg(S”Dm@) q2 -1

‘@D4;{2} (q)
qdeg(9D4;{2})

(®=1)(¢* - 1) (g+1) . (@ =1)(¢* - 1) (@ +P +q+1)

(149.3) C(4) := (g+1)+

(q-1)°q" (q-1)*q"
B (q2+q+1) (qz—q+1)2 (q2+1)3(q+1)4
- (q-1)g" '

As a consequence, we have

r 6
(14.9.4) SV(r):;OSSA(z)»v d c(4).(;)q6f.

q° -1
(ii). Now, we assume n > 5. Then I is dominant exactly when {n — 1,n} NI = (). By

Eqgs. (14.8.3) and (14.8.5), we have

n(n-1)

e

(14.9.5) SSA(r) ~C(n)-rq 2 7,
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where the constant C(n) is defined as follows:

‘@D I(q) = —0:(I —1-0:(I -1 C[
(149.6) C(n) = Z Dl (q(n (D) (n=1-£(1)) _ 1) ,
l,n—Zl,nséI qdeg(@Dn;I) ) q(n—4)(n—1) -1
N Z ?D ;(Q) ( (=D (n=1-:(D)) _ 1) I-C,.
leln—1,n¢l 4 ee( D"’)

As a consequence, we have

n(n-1) n(ne1)

2
(14.9.7) SV(r)—ZSSA(z) —)C(n)-q .
z=0 qg 2 -1

Remark. Note that the constant C; depends on I. When 1 € Tandn— 1,n ¢ I, it is

defined in Eq. (14.8.4). When 1,n — 1,n ¢ I, it is defined in Eq. (14.8.6).

By Egs. (14.9.2) to (14.9.7) we have proved Theorem 14.1. Moreover, by Eq. (A.3.3),

we have the following explicit formulas:

_ n(n-1)
(1498)  Ppa(q) = 2O DINED @) a0
H [gl(I) - gl—l(I)] !(Z) l—I q(fi(l)—gi_l(l))
=l i=1

See Lemma 8.2.5 and Eqgs. (A.1.2) and (A.2.1) for the definitions of the symbols [ - |,
[-]!,and [2- ]!
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A. Poincaré polynomials of irreducible root

systems

In this chapter, we will work out a closed formula for the Poincaré polynomial £y .; of

each irreducible reduced root system @ of type X;, and each type I.

§ A.1. Poincaré polynomials of A,

First, it is clear that 24, (z) = Pp(z) = 1. We then assume thatn > 1.
Let @ be a root system of type A,,. Then the Dynkin diagram with the label of simple

roots in @ is the following one:

ai a an-1 Qan

Figure A.1. The Dynkin diagram with the label of simple roots in A,,.

By [Bourbaki, chap.VI, §4, no.7], the degrees of its Weyl group are d; = i + 1.

Therefore, by Lemma 8.2.5, we have

n

(A.1.1) P (2) = H[i+ 11(2).

i=1

In particular, deg(%,,) = (”;'1). Note that [1](z) is the constant 1. Hence, %, (2)
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§A.1. Poincaré polynomials of A,

equals to the following z-factorial polynomial:

n+1

(A.1.2) [n+1]!(2) = ﬂ[i](z).

i=1

We also need the following z-multinomial polynomial:

. e
(A13) [Tl(), e nk] (Z) = [nO] '(Z) ce [nk] !(z):

where ng + - - - + nx = n is a partition of n into natural numbers.
Let I be a type and follow Convention 2.4.5. Then the Dynkin diagram of the

subsystem @; with labels is the following one:

«—— * % ° ° % * —e
aj ag -1 ag, ag+1 ag-1 ag ag+1 an

Figure A.2. The Dynkin diagram of a subsystem ®; in A,.
Hence, ®; is of type
Ap—to-1 X+ X Agyy—-15

where ¢;,1 is defined to be n + 1. Note that
(& —to)+- -+ (b1 — &) =n+ 1.

Then we have

g’An(Z) _ n+1
f] _€0>”' 3€t+1 _fl'

(A14) gAn,I(Z) = 1 =
1_—[1 ‘@At’i—f-_l—l (Z)

3

(2).

In part _ oty S e
particular, deg(P4,1) = ("7 ) — X ("57).
i=1
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A. Poincaré polynomials of irreducible root systems

§ A.2. Poincaré polynomials of B,, and C,

First note that the two root systems share the same Weyl group, hence the same Poincaré
polynomial. It suffices to only consider one of them. We will consider Cj,.
Let @ be a root system of type C,. Then the Dynkin diagram with the label of simple

roots in @ is the following one:

ai az an-2 an-1 an

Figure A.3. The Dynkin diagram with the label of simple roots in C,.

When n = 0 or 1, we can see that C,, = A,. We then assume that n > 2. By
[Bourbaki, chap.VI, §4, no.5 and no.6], the degrees of its Weyl group are d; = 2i.

Therefore, by Lemma 8.2.5, we have

n

(A2.1) P (z) = ﬂ[zi] (2).

i=1
In particular, deg(%¢,) = n%. We use [2n]!!(2) to denote the right-hand side and use
the convention that [0]!! = 1.
Let I be a type and follow Convention 2.4.5. Then the Dynkin diagram of the

subsystem @; with labels is one of the following three: (focusing on position of ¢;)

*——— ————— % —————— ————— % —————— — =
ajy ag -1 ag, ag +1 ag—1 ag ag+1 dn-1 dn
*——— ———— % ——————— ———— % ——————— -
ajp ag -1 ag, ag +1 ag-1 ag ag;+1 dn-2 dn-1 dn
*—— —_——————%——————— —————%———————— — X
ajp ag -1 ag, ag +1 ag—1 ag ag+1 dn-1 dn

Figure A.4. The three possibilities of the Dynkin diagram of subsystems ®; in C,,.
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§A.3. Poincaré polynomials of Dy,

In either case, ®; is of type

Ag—y-1 X - X Ag—g_1-1 X Cpg,

(notice that Cy = Ap and C; = A;). Then we have

(A2.2) Pepi(z) = — P ()
[T Pagq - ()7 P, (2)
[2n]!(2)

l[fi —ti1]!(2) - [2(n - €)]!!(2)

t

~

t
In particular, deg(%c, 1) = n* — 3, (ei_zei“) —(n—-6&)%.
i=1

§ A.3. Poincaré polynomials of D,

Let ® be a root system of type D,,. Then the Dynkin diagram with the label of simple
roots in @ is the following one:

an—1

ap a an-3

dn

Figure A.5. The Dynkin diagram with the label of simple roots in D,,.

When n =0, 1, or 3, we can see that D,, = A,. When n = 2, we have D, = A| X A;.

We then assume that n > 4. [Bourbaki, chap.VI, §4, no.8], the degrees of W are d; = 2i
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A. Poincaré polynomials of irreducible root systems

for i < n and d,, = n. Therefore, by Lemma 8.2.5, we have

—_

n—

(A3.1) Pp,(z) = [[2i]](2) - [n](z) = [2(n = )] (=) - [n](2).

1

Il
—_

In particular, deg(%p,) = n(n —1).
Let I be a type and follow Convention 2.4.5. When ¢; < n — 2, the Dynkin diagram

of the subsystem ®; with labels is one of the followings: (focusing on position of ¢;)

*——— —————— % —————————— —_— X ————
ai ag,—1 ag, ag+1 ag,—1 ag, ag+1

. o * o o * o

aj ag -1 ag, ag 41 ag, -1 ag, agq1
*——— ——————— % —————————— —_— X ————
aj ap -1 ag, ag 41 ag, -1 ag, ag+1
*——— ——————— % —————————— —_— X ————
ai ag,-1 ag, ag;+1 ag,-1 ag, ag+1

Figure A.6. The four possibilities of the Dynkin diagram of subsystems @; in D,,.
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§A.3. Poincaré polynomials of Dy,

In the first two cases, ®; is of the type
Ap—eg—1 X - X Ag—g_ -1 X Dn—g,

(Noticing that is D¢, if n — £, < 4). Therefore, we have

(A3.2) Poi(z) = = P0,(2)

[[1 Pa e, -1 ()" Pp,_, (2)
[2(n — D]!(2) - [n](2)

l[fi —6ia]!(2) - [2(n— & - D]!(2) - [n - &](2)

Tt

~

In particular,

t
-t
deg(%p, 1) =n(n—1) - Z ( ) !

i=1

) - (n—ft)(n— gt - 1)
In the last two cases, @; is of the type
Ap —gg—1 X - XA~ r-1 X An—p,_ -1

Therefore, we have

g’Dn (2)

(A.3.3) e9’[;,“1(2) =
‘I—_Il g)Afi“’i—l-' (Z)_l ’ @A”_et—l_l (2)

20 - DINE [l
6 = £i1®) - [ 6e1] ()

i=1

In particular,

-1, ., B
deg(%p, 1) =n(n-1) - Z (Z‘ 261—1) _ (“ 2&—1).

i=1
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B. Final Remarks

Here are some possible further research.

Generalizing Theorem 6.1. However, it is already known that this characterization
fails for exceptional types. For instance, the following shows such a counterexample in

the building B(G).

WA

<]

A

<]

<]

WA

WA

<]

<]

A

A

<]

simplicial distance is 4.

.
INAVAY
U

Figure B.1. The two red vertices are separated by at most 3 parallel walls, but the
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Indeed, this is essentially due to the failure of Lemma 6.2.2. Hence, whenever we
have h < 2, namely when the root system is of classical type, we should expect the

following holds.

Conjecture 1. In an irreducible Bruhat-Tits building of classical type, two vertices x
and y have simplicial distance at most d if and only if they are separated by at most

d — 1 parallel walls.

Concave functions and fixed-point sets. In Theorem 7.5, we have seen that the
simplicial ball B(r) is precisely the set of fixed-vertices under the action of the Moy-
Prasad subgroup P, .. The key step in the proof is to interpret the statement in terms of

concave functions. More generally, we can expect:
Conjecture 2. The fixed point set of Py should be determined by f in a direct way.

More concretely, inspired by the ideas in classical differential geometry, we may think

the simplicial balls B(r) measures the simplicial curvature. Then we may expect:

Conjecture 3. The fixed point set S of Py has simplicial curvature f(0) in the sense that

the largest simplicial ball inside S has radius f(0).

Simplicial volume and (super) g-exponential polynomials. The methods developed
in Chapter 10 should contribute to the study of simplicial volume of a general fixed

point set S.
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