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Pediatric radius torus fractures in
x-rays—how computer vision
could render lateral
projections obsolete
Michael Janisch1*, Georg Apfaltrer2, Franko Hržić3,
Christoph Castellani4, Barbara Mittl4, Georg Singer4,
Franz Lindbichler2, Alexander Pilhatsch2, Erich Sorantin2

and Sebastian Tschauner2

1Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology,
Medical University of Graz, Graz, Austria, 2Department of Radiology, Division of Pediatric Radiology,
Medical University of Graz, Graz, Austria, 3Department of Computer Engineering, Center for Artificial
Intelligence and Cybersecurity, University of Rijeka Faculty of Engineering, Rijeka, Croatia,
4Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria

It is an indisputable dogma in extremity radiography to acquire x-ray studies in
at least two complementary projections, which is also true for distal radius
fractures in children. However, there is cautious hope that computer vision
could enable breaking with this tradition in minor injuries, clinically lacking
malalignment. We trained three different state-of-the-art convolutional
neural networks (CNNs) on a dataset of 2,474 images: 1,237 images were
posteroanterior (PA) pediatric wrist radiographs containing isolated distal
radius torus fractures, and 1,237 images were normal controls without
fractures. The task was to classify images into fractured and non-fractured. In
total, 200 previously unseen images (100 per class) served as test set. CNN
predictions reached area under the curves (AUCs) up to 98% [95%
confidence interval (CI) 96.6%–99.5%], consistently exceeding human expert
ratings (mean AUC 93.5%, 95% CI 89.9%–97.2%). Following training on larger
data sets CNNs might be able to effectively rule out the presence of a distal
radius fracture, enabling to consider foregoing the yet inevitable lateral
projection in children. Built into the radiography workflow, such an algorithm
could contribute to radiation hygiene and patient comfort.

KEYWORDS

wrist, fracture, radiography, artificial intelligence, radius

Introduction

In adults and children, the distal radius is the most common site for fractures.

Injuries around the wrist are typically examined by digital radiography (DR).

Standard DR procedures include two orthogonally-oriented projections of the wrist

joint and the adjacent structures. Sometimes, additional projections are performed.

The resulting images aggregate into a complete examination for interpretation by

emergency physicians or radiologists.

Prior studies demonstrated that Artificial Intelligence (AI) is able to successfully

detect fractures in radiographs (1–3). Radiological AI models usually originate from
01 frontiersin.org
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annotated image data, also known as supervised AI (4). With

few exceptions, they fall into the domain of deep learning

(DL) through convolutional neural networks (CNN) (5, 6).

DL models commonly build upon large training image sets

for robust outcomes (7, 8), often containing thousands,

hundred-thousands, millions or more different samples.

Corresponding radiological datasets (9) are typically

magnitudes smaller because building and maintaining

comprehensive DL data collections still is a major obstacle (7).

Buckle fractures—often found at the distal radius—

represent a frequent type of incomplete fracture in pediatric

patients. Although adequate therapeutic management remains

a matter of debate, temporary immobilization of the affected

wrist remains standard practice for patient comfort and

prevention of secondary injury (10). Accurate detection of

these, sometimes very subtle fractures can potentially be very

challenging for human readers. We aimed to examine whether

state-of-the-art CNNs are able to discriminate between

incomplete distal metaphyseal radius fractures [AO

classification (11) code “23r-M/2.1”] and normal bones in

posteroanterior (PA) wrist radiographs of children. The main

hypothesis was that AI could exceed human experts in

recognizing these fractures in a single PA projection. We were

also interested to find out, if there would be potential to

forego the routinely acquired lateral x-ray projection through

computer vision applications in the future.
Materials and methods

We queried our local pediatric wrist radiography dataset

(total number of images n = 20,330) for studies containing

isolated incomplete metaphyseal distal radius fractures in PA

projection (AO classification code “23r-M/2.1”). Overall, 1,337

radiographs fulfilled this criteria. All images had been

acquired between 2008 and 2018. We matched the

radiographs to normal PA wrist studies of patients with same

age and sex, sampled from a pool of 2,641 images. As part of

the matching procedure, two reference radiologists with 8

(S.T.) and 29 years (E.S.) of experience in pediatric trauma

radiology revisited all negative cases, identified images in

doubt for pathology, and replaced them if necessary. After

this quality checking step, the dataset contained 1,337

pediatric PA wrist radiographs with, and 1,337 without

isolated incomplete metaphyseal distal radius fracture.

Mean patient age of both groups (positive and negative for

incomplete distal radius fractures) was 10.4 ± 3.3 years, ranging

from 0 to 17 years of age. The final dataset (n = 1,337), as well as

all sub-sets contained the same number of female andmale patients.

We randomly separated 100 images per group to serve as

test set. The remaining 1,237 images were used for training

CNN models, divided into 90% training data (n = 1,113 per

group), and 10% validation data (n = 124 per group). As it is
Frontiers in Pediatrics 02
nearly impossible to definitely exclude a fracture in

radiographs, particular attention was directed to the test set

creation. Apart from the reference radiologists’ readings, we

decided to inject studies into the negative test set which

almost never contain fractures, specifically hand bone age x-

rays. The pool of these images was 11,946 acquired between

2008 and 2018. We decided to replace half of the negative

wrist test set (n = 50) by a random selection of hand bone age

radiographs, manually cropped to typical wrist fields of view.

The replaced wrist radiographs were (1) manually chosen

because fractures could not be ruled out entirely by the

reference radiologists (n = 9); and (2) randomly selected to fill

the residual number up to fifty cases (n = 41). Due to the

random selection, test set age in negative cases was altered to

10.8 ± 3.7 years vs. 10.3 ± 3.4 years in positive test set

radiographs. To summarize, as it is depicted in Figure 1, the

training set contained 2,226 images, the validation set had 248

images, and the test set had 200 images.
Image acquisition

Radiographs had been acquired on different computed (CR)

or digital radiography (DR) equipment by radiological

technologists of the Division for Pediatric Radiology,

Department of Radiology, Medical University of Graz,

Austria. The studies had been stored as Digital Imaging and

Communications in Medicine (DICOM) images in the local

Picture Archiving and Communication System (PACS).
Image processing

We retrieved the DICOM studies from PACS and converted

them to portable network graphics (PNG) format. DICOM

images featured 12-bit or 16-bit in grayscale values and

different image dimensions. We converted the DICOMs to

16-bit PNGs through the “pydicom” and “cv2” packages in

Python, initially normalizing their underlying grayscale

spectrum to 16-bit and keeping original pixel dimensions.

Furthermore, the images were post-processed with the

“exposure” module of the Python “scikit-image” package. The

16-bit inputs were converted to float64 by dividing their

grayscales through 65,535. Afterwards intensity rescaling was

applied, cropping the lower and upper 0.05th percentiles of

the image histograms. On top of that, local contrast

enhancement “exposure_adapthist” with standard settings was

applied. The float64 image data was converted to 8-bit

outputs and saved to disk for further analyses. Throughout

the described steps, images kept their original height and

width. The processed images were re-scaled to the required

input sizes on-the-fly while training. Figure 2 shows the

image processing steps.
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FIGURE 1

Flowchart depicting the datasets and the performed steps of obtaining training, validation, and testing subsets.
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CNN models and training

Convolutional neural networks (CNN) are used in

computer vision for complex pattern recognition and regularly

achieve excellent results in various tasks. CNN input data is

fed into the multi-layer model and output after being

processed via hidden layers. It consists of convolutional layers,

pooling layers and fully connected layers, which are formed

into a CNN in a certain manner (12).

We arbitrarily selected three common CNN models that we

were able to train on consumer hardware available at the

authors’ institutions, namely EfficientNet-B4, ResNet-152, and

VGG16. We could not assess the performance of the

potentially more powerful EfficientNet-B7 due to graphics

memory restrictions. All three CNN models were pre-trained

on the comprehensive Imagenet dataset, meaning that we

used the principles of transfer learning in our experiments.

With transfer learning only the last few network layers

important for predicting an image are trained, whereas the
Frontiers in Pediatrics 03
more basic lower levels of the CNN are not altered. With this

approach, training times are substantially reduced (8). “Very

Deep Convolutional Networks for Large-Scale Image

Recognition (VGG16)” was published in 2014 and is still a

widely used CNN. Due to the very high number of

parameters, training is time-consuming compared to newer

networks. Since 2015, deeper networks have been deployed

that can be grouped together as ResNet CNNs while

exhibiting lower complexity than previous CNNs. One of the

latest state-of-the-art CNNs, EfficientNet, which was

published in 2019, stands out for an even higher accuracy and

faster processing on publicly available comparative data sets.

By utilizing a compound scaling method for width, depth and

resolution (EfficientNet-B0–EfficientNet-B7), even higher

accuracies have been achieved (13–15).

We trained the above mentioned neural networks on a

Linux personal computer, including a graphics card with 11

Gigabytes of memory. We used the Fastai Python library to

load and train the CNN models. Images were fed into the
frontiersin.org
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FIGURE 2

Image processing steps. DICOM images served as input, 8-bit PNG images as output used in training neural networks and human expert rating.
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training process after the previously described image processing

steps. Furthermore, we have applied data augmentation to make

models more robust to the data variability. The applied data

augmentation is a fastAI module “aug_transforms” that is

applying following augmentation on each image: image is

randomly flipped with probability p ¼ 0:5, randomly rotated

to a maximum of 10� with a probability of p ¼ 0:75, the

brightness and contrast are enhanced by a factor 0:2 with a

probability of p ¼ 0:75, and last, but not least, we are

zooming into a random part of the image (zoom ratio is

between 1.0 and 1.1) with a probability of 0.75.

All models were trained for 100 epochs. After each epoch,

the model was evaluated on the validation set where the
Frontiers in Pediatrics 04
combination of the best-performing weights was saved.

Namely, the experiments have shown that models achieved

the best validation score around epoch 40, which means that

100 epoch was more than enough to obtain the best possible

result for given hyperparameters. Furthermore, the optimizer

was Adam with a learning rate a ¼ 0:0001.
Test interpretation by humans

The radiographs were interpreted in darkened reading

rooms on radiology workstations with color-calibrated

radiology monitors RX240, RX440, or RX650 (Eizo, Ishikawa,
frontiersin.org
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Japan). Human raters assessed the radiographs in full pixel

resolution. The studies were hosted and displayed via the

Supervisely artificial intelligence online platform (Deep

Systems LLC, Moscow, Russia). Seven human expert raters

with varying degrees of professional experience in interpreting

pediatric trauma radiographs assessed the test set and were

asked to carry out a binary classification as to whether a distal

radius fracture was present or not.
Test metrics

We calculated commonly accepted and widely used

performance parameters for artificial intelligence including

sensitivity (TPR), specificity (TNR), F1-score (F1) and

Youden’s Index (J ) (16). The foundation of the test metrics is

the confusion matrix in which positive and negative

predictions are compared to true conditions in the way of a

2 × 2 cross table containing true positives (TP), false positives

(FP), true negatives (TN) and false negatives (FN):

Sensitivity: TPR ¼ TP
TPþ FN

Specificity: TNR ¼ TN
TNþ FP

Positive predictive value: PPV ¼ TP
TPþ FP

Negative predictive value: NPV ¼ TN
TNþ FN

Accuracy: ACC ¼ TPþ TN
TPþ TNþ FPþ FN
TABLE 1 Binary classifications for CNN models and human experts in test da
P-values for pairwise comparison of ROC curves, using the DeLong method
negative predictive value; F1, F1-score; P*, McNemars test P-values with Effi

AUC (95% CI) PΔ TPR TN

CNN

EfficientNet-B4 0.935 (0.895–0.975) – 91.0 96.

ResNet-152 0.930 (0.889–0.971) 0.781 88.0 98.

VGG16 0.900 (0.852–0.948) 0.144 88.0 92.

Human Experts

Rater 1 0.840 (0.781–0.899) 0.001 70.0 98.

Rater 2 0.810 (0.747–0.873) 0.001 69.0 93.

Rater 3 0.855 (0.799–0.911) 0.001 71.0 100

Rater 4 0.870 (0.816–0.924) 0.018 83.0 91.

Rater 5 0.790 (0.725–0.855) 0.001 70.0 88.

Rater 6 0.850 (0.793–0.907) 0.001 74.0 96.

Rater 7 0.800 (0.736–0.864) 0.001 74.0 86.

Frontiers in Pediatrics 05
F1-Score: F1 ¼ 2TP
2TPþ FPþ FN

Youden0s Index: J ¼ TPR � (1� TNR)

We generated heatmaps with the Grad-CAM method to

highlight the image regions that caused to a certain

classification (17).
Statistical analyses

We performed statistical calculations with IBM SPSS

Statistics version 21 (IBM, Armonk, New York, United States)

including descriptive statistics and non-parametric tests.

McNemar’s test served as a comparison parameter between

CNN models and human raters for paired nominal data,

constructed from the respective correct and incorrect ratings.

To correlate the prediction of human raters and computer

vision with patients’ age, Pearson correlation coefficient was

calculated. ROC analysis was conducted for binary fracture

classification (yes or no) in computer vision models and all

human experts individually. A ROC curve with continuous

distribution was also calculated, using the CNN models’

output probabilities, and expanded by the mean of the human

expert ratings. To compare areas under the ROC curves the

DeLong method (18) was performed, using MedCalc Software

Version 19.6.4 (Ostend, Belgium). P values below 0.05 were

assumed to be statistically significant.
Ethical statement

The institutions ethics committee gave an affirmative vote

for the retrospective data analyses (No. 31-108 ex 18/19).
taset (n = 200). AUC with 95% confidence intervals in parentheses); PΔ,
; TPR, sensitivity; TNR, specificity; PPV, positive predictive value; NPV,
cientNet-B4 as reference.

R PPV NPV ACC F1 P*

0 95.8 91.4 93.5 0.93 Reference

0 97.8 89.1 93.0 0.93 0.286

0 91.7 88.5 90.0 0.90 0.210

0 97.2 76.6 84.0 0.81 0.002

0 90.8 75.0 81.0 0.78 0.001

.0 100.0 77.5 85.5 0.83 0.003

0 90.2 84.3 87.0 0.86 0.031

0 85.4 74.6 79.0 0.77 0.001

0 94.9 78.7 85.0 0.83 0.003

0 84.1 76.8 80.0 0.79 0.001
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Informed patient or legal representative consent was waived. All

experiments were performed in accordance with the local legal

regulations and the declaration of Helsinki.
Results

Pairwise McNemar comparisons showed significantly better

performances of EfficientNet-B4 and ResNet-152 compared to

all reference human readers (compare Table 1) VGG16

overperformed 4 raters out of 7 (P-values, 0.002–0.050), while
FIGURE 3

Confusion matrices of the test dataset (n= 200) for CNN models and the me
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statistical analysis did not show significant differences to Rater 3,

Rater 4, and Rater 6 (P = 0.163, 0.418, and 0.134, respectively).

Comparing the performance of radiologists (Rater 1–4) and

pediatric surgeons (Rater 5–7) McNemar test showed statistically

significant differences between Rater 4 and Rater 5 (P = 0.018),

Rater 4 and Rater 7 (P = 0.034), as well as Rater 3 and Rater 5

(P = 0.026). Otherwise, no significant differences could be

observed, comparing reference readers. Confusion matrices of

the models and of human readers are shown in Figure 3.

EfficientNet-B4 achieved the highest sensitivity, NPV, and

accuracy, whereas ResNet-152 had a higher specificity and a
an rating of human experts (A) as well as individual performances (B).
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FIGURE 4
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higher PPV. VGG16 was outperformed by the other CNN

models, showing lower values in all metrics. The calculated

F1-score as an overall measure for accurate binary

classification was 0.93 for EfficientNet-B4 and ResNet-152,

and 0.9 for VGG16. Human raters had sensitivities and

specificities ranging from 69% to 83% and 86% to 100%,

respectively. Related F1 scores were set between 0.77 and 0.86.

Detailed results of binary classification are given in Table 1.

While for VGG16, Rater 6 and Rater 7 the majority of false

positives were assigned to the subgroup of the bone age

dataset (63%, 100% and 85%, respectively), Rater 1, Rater 2

and Rater 4 have predominantly suspected fractures in

inconspicuous wrist x-rays (100%, 57% and 78%, respectively).

False positives of EfficientNet-B4, ResNet-152, and Rater 5

were equally distributed between the two subgroups (50%

each). Rater 3 did not produce false positives.

Continuous data ROC analysis of the three CNN model

predictions achieved AUCs between 0.945 and 0.980 (CI 95%:

0.914–0.995) on the previously unseen test set (n = 200), with

EfficientNet-B4 demonstrating the highest value. The AUC of

human experts’ results, when averaged, were significantly

lower than EfficientNet-B4 (P = 0.009), based on the method

by DeLong. Pairwise AUC comparison of human raters with

ResNet-152 and VGG16 respectively did not yield significant

differences (P-values > 0.05). Detailed results of ROC analysis

for CNN based models and human raters are illustrated in

Table 2. ROC curves are displayed in Figure 4.

For all three AI models as well as for all human raters, a

negative correlation of prediction and patient age, with values

between -0.207 and −0.102, was observed, although only the

results for VGG16 and human raters turned out to be

statistically significant (P-values of 0.033 and 0.003,

respectively). Example studies of false positives and false

negatives are featured in Figures 5, 6.

Binary (A) and continuous (B) data ROC analysis of diagnostic
performance for CNN models and human experts in the test
dataset (n= 200).
Discussion

We assessed three selected computer vision models in

detecting acute distal radius torus fractures based on single

projection (PA) pediatric wrist radiographs, comparing them
TABLE 2 Continuous data ROC analysis of CNN model predictions in
percent and averaged human expert ratings for detection of
pediatric distal radius torus fractures in PA wrist radiographs. AUC,
area under the curve; 95% CI, confidence interval; J, Youden’s Index;
P*, P-values relate to the comparison with EfficientNet-B4, using the
DeLong method.

AUC 95%CI J P*

EfficientNet-B4 0.980 0.966–0.995 0.88 Reference

ResNet-152 0.968 0.943–0.993 0.86 0.309

VGG16 0.945 0.914–0.975 0.81 0.018

Human experts (mean) 0.935 0.899–0.972 0.79 0.009
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to radiologists and pediatric surgeons. AI models

outperformed human readers, who combined 99 cumulative

years of experience in pediatric trauma radiography.

Results of ROC comparisons with continuous data as well as

binary classifications showed statistically significant better

performances of AI models, primarily EfficientNet-B4, than

reference radiologists and pediatric surgeons. The calculated

F1 score was also higher for CNN based models (0.90–0.93)

than for human experts (0.77–0.86), confirming the more

accurate fracture detection in the test set (n = 200). The

substantially higher sensitivity of computer vision is

particularly noteworthy, as fractures that are apparently more

difficult for human experts to detect have also been correctly

identified. Comparing the results among human raters, the
frontiersin.org
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FIGURE 5

Example studies featuring the most common false negative cases. Lateral projections, if available, have been added to the figure to provide evidence
for the presence of the fracture, but have not been part of the test set. (A) Distal radius fracture (red boxes) missed by all CNN models, but seen by 3 of
7 human raters. (B) Subtle dorsal distal radius fracture, missed by all CNN models and human experts. (C–E) Incomplete distal radius fractures missed
by all raters but detected by the three CNN models.

Janisch et al. 10.3389/fped.2022.1005099
highest F1 scores and AUCs were achieved by experienced

pediatric radiologists although only Rater 4 obtained

significantly better results, compared to reference pediatric

surgeons (Rater 5 and 7).

Previous studies showed the potential of CNN based deep

learning models assisting clinicians in the emergency

department by detecting fractures on x-ray images accurately

(2, 19–21). Thian et al. (22) have trained deep learning
Frontiers in Pediatrics 08
models for unspecifically detecting different kinds of fractures

on not only pediatric but also adult wrist radiographs in PA

and lateral projections. Since the appearance of pediatric and

adult fractures differ substantially due to the presence of

growth plates, from our point of view models exclusively

designed for pediatric patients are obligatory (23). In contrast

to (24), we used a larger training data set. Although they

achieved similar accuracy for the detection of distal radius
frontiersin.org
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FIGURE 6

Example studies featuring the most common false positive cases. (A) EfficientNet-B4 and ResNet-152 predicted a fracture in a case categorized as
negative by the reference radiologists. There is subtlest buckling next to the asterisk (*), so a fracture cannot be ultimately ruled out. (B) VGG16 and 3
of 7 human experts predicted a fracture in this asymptomatic patient’s cropped hand x-ray (these studies do not include lateral projections). (C) A
negative case rated positive for fracture by 3 of 7 human experts. The PA projection on the right was taken two years later. The arrows point at
cortical irregularities commonly encountered in the pediatric distal radius, which are atypical for a fracture. The plus symbol (+) marks a discrete
thickening of the distal radius, which is not moving away from the growth plate in the follow-up on the right. Therefore, a healed fracture is also
unlikely in that location.

Janisch et al. 10.3389/fped.2022.1005099
fractures in posteroanterior radiographs, we believe that our

results are even more convincing because we only included

torus fractures in our study which are more difficult to detect

due to the discrete changes in plain radiographs and hence

the expected accuracy for correct predictions were lower by

nature. To underline the models’ results and to put this aspect

in perspective, we have validated the AI models’ performances

vs. human experts, while this comparison is missing in the

referred study.

Our goal for the CNN based models was to detect the very

common changes caused by torus fractures of the distal radius.

These changes can be subtle and are also often overlooked by

human readers (25). To the best of our knowledge AI-assisted

detection of pediatric torus fractures has not been investigated
Frontiers in Pediatrics 09
and reducing the number of radiographs obtained to a single

PA wrist x-ray in pediatric patients has not been approached

yet. The results of our study underline the potential of deep

learning algorithms in supporting medical experts in the

management of pediatric wrist trauma. Adequate

interpretation of the carpal bones and metacarpal bases

requires PA or oblique views (26, 27), while lateral projections

are typically insufficient to diagnose fractures located in these

areas. Therefore, we believe that it is unavoidable to acquire at

least the PA view of the wrist. We could imagine a computer

vision system, when trained on larger amounts of radiographs,

being able to rule-out fractures of the distal radius in PA

projections only in a high percentage of cases. If directly

implemented into a radiography workflow, performing the
frontiersin.org
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FIGURE 7

Random selection of radiographs positive for fracture with resNet-152 class activation maps (CAMs). The left column displays the source images, the
middle column illustrates CAMs, and the right depicts fusions of source and sample images. Note that the classes are activated in the distal forearm
region, even though the fields of view differ in the presented radiographs.
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lateral projection might not be necessary in lots of pediatric

wrist trauma cases, in order to reduce the radiation doses,

avoid pain and stress caused by positioning, and also in terms

of time savings for radiological technologists. Still, training

such a model would require multitudes of the cases available

in the current study.

Differentiating torus fractures from more severe wrist

fractures should be investigated in future studies as it is highly

important for adequate patient management (28). Displaced

or complex fractures require a different management

extending beyond cast immobilization, and often requiring

surgical intervention (29).

As we assembled the negative test set (representing images

without fractures) of hand radiographs for bone age

determination and wrist x-rays to equal parts, we verified that

there were no systematic differences between these sub-

groups. Similar distributions of false positives were seen in

both sub-groups by both CNN models and human raters. We

consider that as a confirmation of labeling validity and

working quality control procedures.

Some study limitations need be taken into consideration.

This retrospective single center study had only access to a

limited amount of data, and selection bias influencing the

results cannot be ruled out. The ability to generalize to

radiographs obtained at other institutions is yet unknown. A

future large-scale multi-center study is believed to further

improve the model’s performance with the help of a more

comprehensive training set. Further we arbitrarily selected three

exemplary computer vision algorithms for this study. There

might be models that perform better or worse on the current

data. The underlying dataset was created and validated with the

help of additionally obtained projections, follow-up

examinations and further CT and MRI examinations

(in limited number where available). The group of radiographs

with normal appearance was also compiled carefully by using

the second orthogonally-oriented projection and clinical data,

but due to the lack of follow-up examinations in most cases,

occult fractures cannot be ruled out with absolute certainty. By

excluding all ambiguous cases in which we could not rule out a

fracture with certainty, this risk was reduced to a minimum.

Further, the distribution of false positives between wrist x-rays

and cropped hand radiographs for bone age determination

offers no indication of labeling errors. Lastly, we did not

include other types of traumatic wrist injuries such as complete

distal radius and ulna fractures. This downsized the training

data set but also let us focus on subtle but common traumatic

changes of the pediatric wrist.

There is still an issue with AI in medicine, since CNNs are

regarded black-boxes with difficulties in explaining their

underlying decision-making. According to Guidotti et al. (30),

a possible way to get insight into the black-box model is to

explain outcomes. In classification models this means to find

the most important regions of interest that contributed to the
Frontiers in Pediatrics 11
final decision. For that purpose, we have used Grad-CAM

class activation maps, proposed by Selvaraju et al. (17),

“highlighting” the most relevant pixels in the images. The

Grad-CAM is an enhanced version of Zhou et al. (31) that

can work on any CNN without modifying the CNN. The

method’s idea is to backpropagate the weights from the end

of the model towards the last convolutional layer of the

model. The backpropagated gradients represent pondering

factors to the feature maps of the last convolutional layer.

Upscaled summed feature maps to the input image size

result in an attention heatmap that marks the regions that

contributed most towards the final outcome of the CNN. This

way, we can inspect why CNN predicted a particular result

and explain our models. The resulted heatmaps are presented

in Figure 7 and are showing that the focus of the CNNs is on

the distal forearm region, which is precisely the region where

the radiologist focuses during the fracture detection.

Therefore, the CNNs mimic the radiologist by sharing the

same attention field during the decision-making process.

In conclusion, we developed three CNN based deep learning

models for the detection of distal radius torus fractures on single

projection PA oriented radiographs. In the test performed, the

models not only demonstrated accurate fracture detection, but

also outperformed experienced radiologists and pediatric

surgeons.
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