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A DECAM SEARCH FOR AN OPTICAL COUNTERPART TO
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ABSTRACT

We report the results of a Dark Energy Camera optical follow-up of the gravitational-wave (GW) event
GW151226, discovered by the Advanced Laser Interferometer Gravitational-wave Observatory detectors. Our
observations cover 28.8 deg2 of the localization region in the i and z bands (containing 3% of the BAYESTAR
localization probability), starting 10 hr after the event was announced and spanning four epochs at 2–24 days after
the GW detection. We achieve s5 point-source limiting magnitudes of »i 21.7 and »z 21.5, with a scatter of
0.4 mag, in our difference images. Given the two-day delay, we search this area for a rapidly declining optical
counterpart with s3 significance steady decline between the first and final observations. We recover four sources
that pass our selection criteria, of which three are cataloged active galactic nuclei. The fourth source is offset by
5.8 arcsec from the center of a galaxy at a distance of 187Mpc, exhibits a rapid decline by 0.5 mag over 4 days, and
has a red color of - »i z 0.3mag. These properties could satisfy a set of cuts designed to identify kilonovae.
However, this source was detected several times, starting 94 days prior to GW151226, in the Pan-STARRS Survey
for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior,
PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations,
mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future
optical follow-up observations.

Key words: binaries: close – catalogs – gravitational waves – stars: neutron – surveys

1. INTRODUCTION

The Advanced Laser Interferometer Gravitational-wave
Observatory (LIGO) is designed to detect the final inspiral
and merger of compact object binaries comprised of neutron
stars (NSs) and/or stellar-mass black holes (BHs;Abbott et al.
2009). The first LIGO observing run (designated O1)
commenced on 2015 September 18 with the ability to detect
binary neutron star (BNS) mergers to an average distance of
≈75Mpc, a 40-fold increase in volume relative to the previous
generation of ground-based gravitational-wave (GW) detectors
(The LIGO Scientific Collaboration et al. 2016). On 2015
September 14, LIGO detected the first GW event ever
observed, GW150914 (Abbott et al. 2016a).

The waveform of GW150914 was consistent with the
inspiral, merger, and ring-down of a binary black hole (BBH)
system (36+29 M ; Abbott et al. 2016a) providing the first
observational evidence that such systems exist and merge.
While there are no robust theoretical predictions for the
expected electromagnetic (EM) counterparts of such a merger,
more than 20 teams conducted a wide range of follow-up
observations spanning from radio to γ-rays, along with neutrino
follow-up (Abbott et al. 2016b; Adrián-Martínez et al. 2016;
Annis et al. 2016; Connaughton et al. 2016; Evans et al. 2016;
Kasliwal et al. 2016; Savchenko et al. 2016; Smartt et al. 2016;
Soares-Santos et al. 2016; Tavani et al. 2016). This effort
included deep optical follow-up observations by our group
using Dark Energy Camera (DECam) covering 100 deg2

(corresponding to a contained probability of 38% (11%) of
the initial(final) sky maps)—making this one of the most

comprehensive optical follow-up campaigns for GW150914
(Annis et al. 2016; Soares-Santos et al. 2016). Our search for
rapidly declining transients to limiting magnitudes of
»i 21.5 mag for red - =i z 1( ) and »i 20.1mag for blue
- = -i z 1( ) events yielded no counterpart to GW150914

(Soares-Santos et al. 2016). One result of the broader multi-
wavelength follow-up campaign is a claimed coincident
detection of a weak short gamma-ray burst (SGRB) from the
Fermi-GBM detector 0.4 s after the GW event (Connaughton
et al. 2016). However, this event was not detected in
INTEGRAL γ-ray data (Savchenko et al. 2016) and was also
disputed in a re-analysis of the GBM data (Greiner et al. 2016).
A second high-significance GW event, designated

GW151226, was discovered by LIGO on 2015 December 26
at 03:38:53 UT (Abbott et al. 2016c). This event was also due
to the inspiral and merger of a BBH system, consisting of

-
+14.2 3.7

8.3
M and -

+7.5 2.3
2.3

M BHs at a luminosity distance of
= -

+d 440L 190
180 Mpc (Abbott et al. 2016c). The initial localiza-

tion was provided as a probability sky map via a private GCN
circular 38 hr after the GW detection (LIGO Scientific
Collaboration & Virgo 2015). We initiated optical follow-up
observations with DECam 10 hr later on 2015 December
28and imaged a 28.8 deg2 region in the i and z bands during
several epochs. Here, we report the results of this search. In
Section 2, we discuss the observations and data analysis
procedures. In Section 3,we present our search methodology
for potential counterparts to GW151226and the results of this
search. We summarize our conclusions in Section 4. We
perform cosmological calculations assuming =H 67.80 km s−1

Mpc−1, W =l 0.69, and W = 0.31m (Planck Collaboration et al.
2015). Magnitudes are reported in the AB system.58 NSF GRFP Fellow.
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2. OBSERVATIONS AND DATA REDUCTION

GW151226 was detected on 2015 December 26 at 03:38:53
UT by a Compact Binary Coalescence (CBC) search pipeline
Abbott et al. (2016c). The CBC pipeline operates by matching
the strain data against waveform templates and is sensitive to
mergers containing NSs and/or BHs. The initial sky map was
generated by the BAYESTAR algorithm and released 38 hr after
the GW detection. BAYESTAR is a Bayesian algorithm that
generates a localization sky map based on the parameter
estimation from the CBC pipeline (Singer et al. 2014; Singer &
Price 2016). The sky area contained within the initial 50% and
90% contours was 430 deg2 and 1340 deg2, respectively. A sky
map generated by the LALInference algorithm, which
computes the localization using Bayesian forward-modeling of
the signal morphology (Veitch et al. 2015), was released on
2016 January 15 UT, after our DECam observations had been
concluded. The LALInference sky map is slightly narrower
than the sky map from BAYESTAR with 50% and 90%
contours of 362 deg2 and 1238 deg2, respectively.

We initiated follow-up observations with DECam on 2015
December 28 UT, two days after the GW detection and 10
hours after distribution of the BAYESTAR sky map. DECam is
a wide-field optical imager with a 3 deg2 field of view
(Flaugher et al. 2015). We imaged a 28.8 deg2 region
corresponding to 3% of the sky localization probability when
convolved with the initial BAYESTAR map and 2% of the
localization probability in the final LALInference sky map.
The pointings and ordering of the DECam observations were
determined using the automated algorithm described in Soares-
Santos et al. (2016). The choice of observing fields was
constrained by weather, instrument availability, and the
available time to observe this sky region given its high
airmass. We obtained four epochs of data with each epoch
consisting of one 90 s exposure in the i-band and two 90 s
exposures in the z-band for each of the 12 pointings. The first
epoch was obtained 2–3 days after the GW event time (2015
December 28–29 UT), the second epoch was at 6 days (2016
January 1 UT), the third epoch was at 13–14 days (2016
January 8–9), and the fourth epoch was at 23–24 days (2016
January 18–19). A summary of the observations is provided in
Table 1,and a visual representation of the sky region is shown
in Figure 1.

We processed the data using an implementation of the
photpipe pipeline modified for DECam images. Photpipe

is a pipeline used in several time-domain surveys (e.g.,
SuperMACHO, ESSENCE, Pan-STARRS1; see Rest et al.
2005; Garg et al. 2007; Miknaitis et al. 2007; Rest et al. 2014),
designed to perform single-epoch image processing including
image calibration (e.g., bias subtraction, cross-talk corrections,
flatfielding), astrometric calibration, image coaddition, and
photometric calibration. Additionally, photpipe performs
difference imaging using hotpants (Alard 2000; Becker
2015) to compute a spatially varying convolution kernel,
followed by photometry on the difference images using an
implementation of DoPhot optimized for point-spread func-
tion (PSF) photometry on difference images (Schechter et al.

Table 1
Summary of DECam Observations of GW151226

Visit UT Dta á ñPSFi á ñPSFz á ñairmass á ñdepthi á ñdepthz Aeff
b

(days) (arcsec) (arcsec) (mag) (mag) (deg2)

Epoch 1 2015-12-28.11 1.96 0.97 0.99 1.95 22.39 22.23 14.4
2015-12-29.11 2.96 1.00 0.97 1.78 22.57 22.46 14.4

Epoch 2 2016-01-01.06 5.91 0.95 0.90 1.57 21.37 21.06 28.8
Epoch 3 2016-01-08.11 12.96 1.68 1.62 2.15 22.09 21.70 24.0

2016-01-09.11 13.96 1.17 1.12 1.80 22.44 22.17 4.8
Epoch 4 2016-01-18.03 22.88 1.21 1.20 1.48 22.00 22.01 12.0

2016-01-19.01 23.86 1.29 1.25 1.71 21.86 21.90 16.8

Notes. Summary of our DECam follow-up observations of GW151226. The PSF, airmass, and depth are the average values across all observations on that date. The
reported depth corresponds to the mean s5 point-source detection in the coadded search images.
a Time elapsed between the GW trigger time and the time of the first image.
b The effective area corresponds to 12 DECam pointings taking into account that ≈20% of the 3 deg2 field of view of DECam is lost due to chip gaps (10%),
threedead CCDs (5%;Diehl et al. 2014), and masked edge pixels (5%).

Figure 1. Sky region covered by our DECam observations (red hexagons)
relative to the 50% and 90% probability regions from the BAYESTAR (cyan
contours) and LALInference (white contours) localization of GW151226.
The background color indicates the estimated s5 point-source limiting
magnitude for a 90s i-band exposure as a function of sky position for the
first night of our DECam observations. The variation in the limiting magnitude
is largely driven by the dust extinction and airmass at that position. The dark
gray regions indicate sky positions that were unobservable due to the telescope
pointing limits. The yellow contour indicates the region of sky covered by the
Dark Energy Survey (DES). The total effective area for the 12 DECam
pointings is 28.8 deg2, corresponding to 3%(2%) of the probability in the
BAYESTAR(LALInference) sky map.
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1993). Last, we use photpipe to perform initial candidate
searches by specifying a required number of spatially
coincident detections over a range of time. Once candidates
are identified, photpipe performs “forced” PSF photometry
on the subtracted images at the fixed coordinates of an
identified candidate in each available epoch.

In the case of the GW151226 observations, we began with
raw images acquired from the NOAO archive59 and the most
recent calibration files.60 Astrometric calibration was per-
formed relative to the Pan-STARRS1 (PS1) p3 survey and
2MASS J-band catalogs. The two z-band exposures were then
coadded. Photometric calibration was performed using the PS1
p3 survey with appropriate calibrations between PS1 and
DECam magnitudes (Scolnic et al. 2015). Image subtraction
was performed using observations from the final epoch as
templates. The approach to candidate selection is described in
Section 3.

Our observations achieved average s5 point-source limiting
magnitudes of »i 22.2 and »z 21.9 in the coadded single-
epoch search images, and »i 21.7 and »z 21.5 in the
difference images, with an epoch-to-epoch scatter of 0.4 mag.
The variability in depth is driven by the high airmass and
changes in observing conditions, particularly during the second
epoch.

3. SEARCH FOR AN OPTICAL COUNTERPART

The primary focus of our search is a fast-fading transient.
While the merger of a BBH system is not expected to produce
an EM counterpart, it is informative to consider the possibility
of optical emission due to the presence of some matter in the
system. As a generic example, we consider the behavior of a
transient such as an SGRB with a typical beaming-corrected
energy of »E 10j

49 erg and an opening angle of q » 10j
(Berger 2014; Fong et al. 2015). If viewed far off-axis

q q4 jobs( ), the optical emission will reach peak brightness
after several days, but at the distance of GW151226
(»440 Mpc; Abbott et al. 2016c), the peak brightness will be
»i 26 mag (see Figure 5 of Metzger & Berger 2012), well

beyond our detection limit. If the source is observed
moderately off-axis or on-axis q q2 jobs( ), then the light curve
will decline throughout our observations, roughly as µn

-F t 1,
and will be detectable at »i 21–22 mag in our first observation
(see Figures 3 and 4 of Metzger & Berger 2012). We can apply
a similar argument to the behavior of a more isotropic (and
non-relativistic) outflow given that any material ejected in a
BBH merger is likely to have a low mass and the outflow will
thus become optically thin early, leading to fading optical
emission. Based on this line of reasoning, we search our data
for steadily declining transients.

We identify relevant candidates in the data using the
following selection criteria with the forced photometry from
photpipe. Unless otherwise noted, these criteria are applied
to the i-band data due to the greater depth in those
observations.

1. We require non-negative or consistent with zero (i.e.,
within 2σ of zero) i- and z-band fluxes in the difference
photometry across all epochs to eliminate any sources

that re-brighten in the fourth (template) epoch. This
provides an initial sample of 602 candidates.

2. We require s5 i- and z-band detections in the first epoch
and at least one additional s5 i-band detection in either
of the two remaining epochs (to eliminate contamination
from asteroids). This criterion leaves a sample of 98
objects.

3. We require a  s3 decline in flux between the first and
third epochs to search for significant fading.61 We
calculate σ as the quadrature sum of the flux errors from
the first and third epochs (s s s= +1

2
3
2 , where s1 and

s3 are the flux errors from the first and third epochs,
respectively). This criterion leaves a sample of 48 objects.

4. We reject sources that exhibit a significant ( s3 ) rise in
flux between the first and second epochs or the second
and third epochs to eliminates variable sources that do not
decline steadily. This criterion leaves a sample of 32
objects.

5. The remaining 32 candidates from step 4 undergo visual
inspection. We reject sources that are present as a point
source in the fourth (template) epoch that do not have a
galaxy within 20″. Sources are cross-checked against
NED62 and SIMBAD.63 This criterion is designed to
remove variable stars and long-timescale transients.

Only four events passed our final criterion. We find that two
of those events are coincident with the nuclei of known active
galactic nuclei (AGNs;PKS 0129-066 and Mrk 584), indicat-
ing that they represent AGN variability. A third candidate is
coincident with the nucleus of the bright radio source
PMN J0203+0956 ( »nF 365 MHz 0.4( ) Jy;Douglas et al.
1996), also suggesting AGN variability.
The final candidate in our search is located at

R.A.=01h42m16 17 and decl.=−02°13′42 6″ (J2000), with
an offset of 5.8 arcsec from the galaxy CGCG 386-030
(R.A.=01h42m15 6, decl.=−02°13′38 5″; J2000), at
z=0.041 or »d 187L Mpc (6dFGS;Jones et al. 2004,
2009; see Figure 2). We note that this distance is inconsistent
with the 90% confidence interval for the distance to
GW151226 based on the GW data (Abbott et al. 2016c). We
observe this source in a state of rapid decline with an absolute
magnitude of » -M 15i mag on 2015 December 28 and

» -M 14.5i mag on 2016 January 1, indicating a decline rate
of ≈0.12 mag d−1; the decline rate in the z-band is ≈0.10 mag
d−1. Additionally, the source exhibits a red i−z color of
0.3 mag. We fit these data to a power-law model typical for
GRB afterglows nµn

b aF t( ) and find a temporal index of
a = - 0.43 0.12 and a spectral index of b = - 1.8 0.8,
both of which differ from the expected values for GRB
afterglows (a » -1, b » -0.75; Sari et al. 1998). Addition-
ally, we compare our observations to a kilonova model with
ejecta parameters of =v 0.2cej and =M 0.1ej M (Barnes &
Kasen 2013). We find that the timescale of the transient agrees
with those expected for kilonovae, but the color is bluer than
the expected value of - »i z 1mag (Barnes & Kasen 2013).

59 http://archive.noao.edu/
60 http://www.ctio.noao.edu/noao/content/decam-calibration-files

61 We note that this criterion effectively requires the detection in the first epoch
to be  s5 ,producing an effectively shallower transient search. Soares-Santos
et al. (2016) quantified this effect by injecting fake sources into their
observations to determine the recovery efficiency and loss of detection depth
from analysis cuts. Here, we forego such analysis to focus the discussion on the
effects of contamination in optical follow-up of GW events.
62 https://ned.ipac.caltech.edu/
63 http://simbad.u-strasbg.fr/simbad/
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Thus, the properties of this transient differ from those of GRB
afterglows or kilonovae. The observations and models are
shown in Figure 2.

This source was previously detected as PS15cdi on 2015
September 23 by the Pan-STARRS Survey for Transients
(PSST64; Huber et al. 2015; see Figure 2). The absolute i-band
magnitude in the first PSST epoch, » -M 16.6i mag, and the
shallow decline of ≈0.6 mag over ≈70 dare consistent with a
Type IIP core-collapse supernova (SN). A likely interpretation
of the rapid decline in our observations is that PS15cdi is a
Type IIP SN undergoing the rapid transition from the hydrogen
recombination driven plateau to the radioactive 56Co-domi-
nated phase (Kasen & Woosley 2009; Sanders et al. 2015;

Dhungana et al. 2016). The red i−z color in our data is
consistent with observations of other IIP SN during this phase
of evolution (e.g., SN2013ej;Dhungana et al. 2016). This
transition typically occurs about 100 days post-explosion
(Kasen & Woosley 2009; Sanders et al. 2015; Dhungana
et al. 2016), consistent with the timing of our observations
relative to the first detection in PSST.
To mitigate the effect of excess flux from PS15cdi still

present in our template observations, we repeat the analysis
using as templates archival DES i- and z-band images from
2013 December 19. These data were processed and image
subtraction was performed as described in Section 2. We find
that flux from PS15cdi is indeed still present in our original
template image, leading to revised first epoch absolute
magnitudes of » -M 15.6i and » -M 16z mag, and a decline
rate between the first and fourth epochs of 0.04 mag d−1, in

Figure 2. Top: single-epoch images of our main candidate from all four epochs (green circle). This is the event discovered as PS15cdi in the PSST about 94 days prior
to GW151226. Bottom: light curve data for PS15cdi from PSST w- and i-band observations (green squares and yellow diamonds, respectively). Our DECam i- and
z-band data are shown as blue circles and red stars, respectively. The revised DECam analysis using pre-existing templates is shown as open symbols. Upper limits are
indicated by triangles. The inset focuses on our DECam data, indicating a rapid decline in both thei and z bands. We fit a power-law model to the data finding a
temporal index of a = -0.43 (dashed–dotted line). Kilonova models from Barnes & Kasen (2013) with =v c0.2ej and =M 0.1ej M at a distance of 187Mpc are
also shown (dashed line).

64 http://psweb.mp.qub.ac.uk/ps1threepi/psdb/candidate/
1014216170021342600/
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both the iand zbands. The transient still exhibits a red i−z
colors of ≈0.4 mag across all four epochs.

Clearly, we can rule out this candidate based on the PSST
detections prior to GW151226, but without this crucial
information this candidate would have been a credible optical
counterpart based on its light curve behavior and distance. It is
therefore useful to develop an understanding of the expected
rates for such contaminants to inform expectations in future
searches. We adopt a local core-collapse SN rate of
7×10−5 yr−1 Mpc−3 (Li et al. 2011; Cappellaro et al.
2015)and a Type IIP SN fraction of 48% of this rate (Smith
et al. 2011). The rapid decline phase typically lasts about
20 days (Kasen & Woosley 2009; Sanders et al. 2015;
Dhungana et al. 2016), so we consider events that occur
within that time frame. Last, given its apparent brightness, we
assume that PS15cdi represents the approximate maximum
distance to which we can observe these events in our data. We
thus find an expected occurrence rate of ∼0.04 events in our
search area making our detection of PS15cdi somewhat
unlikelyand indicating that 1 such events are expected in a
typical GW localization region.

Our detection of PS15cdi clearly demonstrates the presence
and impact of contaminants when conducting optical follow-up
of GW events. Core-collapse SNe are generally not considered
to be a significant contaminant due to their much longer
timescales compared to kilonovae (e.g., Cowperthwaite &
Berger 2015). However, a source like PS15cdi, caught in a
rapid phase of its evolution despite its overall long time-
scaleand exhibiting a relatively red color, could satisfy a set of
criteria designed for finding kilonovae ( Dm 0.1mag d−1 and

-i z 0.3 mag; Cowperthwaite & Berger 2015).
The most effective approach to dealing with contaminants

like PS15cdi is rapid, real-time identification. Once a candidate
is deemed interesting, optical spectroscopy and NIR photo-
metry can quickly distinguish between an SN or akilonova/
afterglow origin. Specifically, the kilonova spectrum will be
redder, with clear suppression below ∼6000Ådue to the
opacities of r-process elements (Kasen et al. 2013). By
comparison, the SN spectrum will appear bluer and dominated
by iron group opacities (Kasen et al. 2013), while the afterglow
spectrum will exhibit a featureless power-law spectrum (Berger
2014). If pre-existing templates are not available, then the
significant aspect is rapid initiation of follow-up observations at
1day that can distinguish the rising phase of a kilonova or
off-axis GRB from a declining SN.

4. CONCLUSIONS

We presented the results of our deep optical follow-up of
GW151226 using the DECam wide-field imager. Our observa-
tions cover a sky area of 28.8 deg2, corresponding to 3% of the
initial BAYESTAR probability map and 2% of the final
LALInference map. We obtained four epochs of observa-
tions starting 10 hr after the event was announced and spanning
2–24 days post-trigger, with an average s5 point-source
sensitivity of »i 21.7 and »z 21.5, with an epoch-to-epoch
scatter of 0.4 mag, in our difference images.

Using the final epoch as a template image, we searched for
sources that display a significant and steady decline in brightness
throughout our observationsand that are not present in the
template epoch. This search yielded four transients, of which
three result from AGN variability. The final event is located at a
distance of about 187 Mpc offset by 5 8 from its host galaxy. It

also broadly possesses the observational features of a kilonova in
terms of its rapid decline and red i−z color. However, this
source corresponds to the transient PS15cdi, which was
discovered in PSST about 94 days prior to the GW trigger. It
is a likely Type IIP SN, which our observations caught in the
steep transition at the end of the plateau phase. The detection of
this event indicates that careful rejection of contaminants,
preferably in real time, is essential in order to avoid mis-
identifications of optical counterparts to GW sources.
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