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Abstract

This study used XAI, which shows its purposes and attention
as explanations of its process, and investigated how these ex-
planations affect human trust in and use of AI. In this study,
we generated heatmaps indicating AI attention, conducted Ex-
periment 1 to confirm the validity of the interpretability of the
heatmaps, and conducted Experiment 2 to investigate the ef-
fects of the purpose and heatmaps in terms of reliance (de-
pending on AI) and compliance (accepting answers of AI).
The results of structural equation modeling analyses showed
that (1) displaying the purpose of AI positively and nega-
tively influenced trust depending on the types of AI usage, re-
liance or compliance, and task difficulty, (2) just displaying the
heatmaps negatively influenced trust in a more difficult task,
and (3) the heatmaps positively influenced trust according to
their interpretability in a more difficult task.
Keywords: AI; XAI; Purpose; Attention; Heatmap; Trust; Al-
gorithm aversion; Structural equation modeling

Introduction
In recent years, artificial intelligence (AI) has been entering
all aspects of life. Successful cooperation with AI requires
human users to appropriately adjust their use of AI (Lee &
See, 2004). A fundamental factor used to decide the levels at
which to use AI is considered to be trust in AI (Wiegmann,
Rich, & Zhang, 2001). Trust is defined as “the attitude that
an agent will help achieve an individual’s goals in a situation
characterized by uncertainty and vulnerability” (Lee & See,
2004). Proper use of AI is achieved when trust is appropri-
ately calibrated to its actual reliability and maximizes task
performance. This process is called trust calibration.

However, even though AI has apparently superior reliabil-
ity, people avoid using it. This phenomenon is also known as
algorithm aversion (Dietvorst, Simmons, & Massey, 2015)
defined as “a behavior of discounting algorithmic deci-
sions with respect to one’s own decisions or other’s deci-
sions.” (Mahmud, Islam, Ahmed, & Smolander, 2021). One
of the factors causing algorithm aversion is considered to
be the black-box nature of AI, that is, its lack of trans-
parency (Glikson & Woolley, 2009; Mahmud et al., 2021).

Recently, explainable AI (XAI) has been developed for
making AI processes and outputs more understandable to hu-
mans by providing explanations about them (Gunning et al.,
2019). XAI might help develop proper trust in AI and inhibit
algorithm aversion. This study investigated how people de-
velop trust and decide to use AI that shows its purposes and
attention as explanations.

Related Work

Trust in AI and algorithm aversion

Many studies have investigated trust in AI in accordance with
its performance. Basically, people increase their trust and use
of AI when AI shows high performance and decrease them
when AI shows errors (Lee & Moray, 1992). However, peo-
ple are generally sensitive to AI errors and less tolerable of
them, and therefore, even less severe AI errors cause extreme
under-trust (Dzindolet, Pierce, Beck, & Dawe, 2002) and al-
gorithm aversion (Dietvorst et al., 2015).

Useful ways of avoiding extreme under-trust and algorithm
aversion because of AI errors include displaying reasons why
AI causes certain errors (Dzindolet et al., 2002), showing
how AI algorithms can work (Kayande, Bruyn, Lilien, Ran-
gaswamy, & van Bruggen, 2009), and providing user train-
ing on understanding AI algorithms and errors (Araujo, Hel-
berger, Kruikemeier, & de Vreese, 2020). These studies
showed that making AI algorithms transparent by providing
explanations about the algorithms improves trust calibration
and inhibits algorithm aversion.

Moreover, human emotion has been considered an impor-
tant factor affecting trust in and use of AI. Emotional trust,
such as feeling secure, comfortable, and content, has been in-
vestigated and distinguished from cognitive trust, that is, peo-
ple’s rational expectation that AI has the capability to perform
well (Komiak & Benbasat, 2006; Zhang, Yang, & Robert,
Lionel Jr, 2021). Increasing the tangibility or anthropomor-
phism of AI could avoid an inappropriate decrease in emo-
tional trust (Glikson & Woolley, 2009).

XAI

In recent years, various studies have focused on XAI.
While the structures of explanations have variations including
decision-trees, rules, classifiers, and saliency maps, different
algorithms have been developed for each structured explana-
tion (Gunning, Vorm, Wang, & Turek, 2021).

At the beginning of XAI research, LIME (Ribeiro, Singh,
& Guestrin, 2016) effectively demonstrated the importance
of XAI and presented concrete XAI algorithms for classifica-
tion learning. Since then, a major approach for XAI has been
to indicate important features, including SHAP (Lundberg
& Lee, 2017) and influence functions (Koh & Liang, 2017),
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and to reevaluate the transparency of machine learning algo-
rithms (Rudin, 2019).

The most popular approach in XAI for CNN-based image
recognition is Grad-CAM (Selvaraju et al., 2017) to analyze
CNN models and generate heatmaps indicating important fea-
tures (attention) in an original image. This approach is also
called attention-based XAI. However, this XAI has disadvan-
tages in that humans have much difficulty interpreting how
AI recognizes an image with only heatmaps.

To overcome the limitation of attention-based XAI, novel
studies on XAI done to focus on human cognitive processes,
including purposes and interpretation, are beginning because
the final target of XAI is to generate good explanations with
which humans can understand an AI well. CX-ToM (Akula
et al., 2022) provides dialogue-based explanations instead of
heatmaps to explain CNN learning models. Theory of mind
(ToM) is a key concept for generating the explanations.

Sanneman and Shah (Sanneman & Shah, 2022) proposed
introducing situation awareness for designing and evaluating
XAI systems. Their assertion is that XAI systems and ex-
planations should be designed and evaluated significantly de-
pending on the situation, task, and context. These explana-
tions implemented in highly automated vehicles have been
confirmed as effective (Colley, Eder, Rixen, & Rukzio, 2021;
Colley, Rädler, Glimmann, & Rukzio, 2022).

Hypotheses
This study investigated how the purposes and attention of AI
influence trust and use of AI. A hypothetical model is shown
in Figure 1. First, this study considers two different types of
AI usage: reliance and compliance. In this study, reliance
was defined as dependence on AI, such as delegating a task
to an AI, and compliance was defined as acceptance of AI
outputs, such as following the answers of an AI, as extended
definitions from the previous studies (Kohn, de Visser, Wiese,
Lee, & Shaw, 2021; Vereschak, Bailly, & Caramiaux, 2021).

Next, regarding the purpose of AI, humans’ understanding
of AI purposes plays an important role in developing trust in
and using an AI (Akula et al., 2022). Since “goals” or “in-
tentions” are major components for ToM, the purposes of AI
are expected to be a significant factor that increases cognitive
and emotional trust (H1).

Moreover, regarding AI attention, previous studies showed
that XAI has disadvantages in that people generally have dif-
ficulty interpreting how AI recognizes a target image only
with heatmaps (Selvaraju et al., 2017; Chattopadhay, Sarkar,
Howlader, & Balasubramanian, 2018). Therefore, there is a
possibility that just displaying AI attention heatmaps would
not influence cognitive and emotional trust (H2).

In addition, there are studies that found positive relation-
ships between human interpretability of AI attention and
trustworthy AI (Sanneman & Shah, 2022; Tomsett et al.,
2020). Therefore, higher interpretability for AI attention is
assumed to increase cognitive and emotional trust (H3). The
hypotheses are summarized as follows.

Figure 1: Hypothetical model

H1: Displaying the purpose of AI positively influences
cognitive and emotional trust.

H2: Displaying AI attention does not influence cognitive
and emotional trust.

H3: The interpretability of AI attention positively influ-
ences cognitive and emotional trust.

In the following, first, we generated heatmaps indicating
AI attention. Next, we conducted Experiment 1 to confirm
the validity of the interpretability of the heatmaps. Finally,
we conducted Experiment 2 to test the hypotheses using the
validated heatmaps.

Heatmaps Indicating AI Attention
First, we prepared two different types of image datasets,
body-shape and human facial images, to conduct obesity
screening and drowsiness detection in the following experi-
ment. In recent years, AI systems related to healthcare have
been developed and used (Calisto, Nunes, & Nascimento,
2022; Kang, Chen, & Chen, 2023). Since obesity screen-
ing and drowsiness detection are general healthcare issues la-
tent in our daily lives (Abdulin & Komogortsev, 2015; Gupta,
Phan, Bunnell, & Beheshti, 2022), in this study, we created
experimental tasks related to these issues for people without
domain-specific knowledge of medicine.

The body-shape images were used from a body-shape
database (Moussally, Rochat, Posada, & der Linden, 2016),
and the human facial images were used from a drowsiness
dataset (Ghoddoosian, Galib, & Athitsos, 2019). We chose
these experimental tasks because they were related to realis-
tic healthcare problems.

Next, we prepared deep-learning models to generate AI at-
tention with Grad-CAM (Selvaraju et al., 2017) (Grad-CAM
with PyTorch 17-05-18 https://github.com/kazuto1011/grad-
cam-pytorch). A simple model composed of a four-layer
convolutional neural network and two-layer perception was
used for the obesity screening. Table 1 shows the structure of
the model. Grad-CAM visualized the attention of the conv 2
layer. The model for the drowsiness detection was Inception-
ResNet (Szegedy, Ioffe, Vanhoucke, & Alemi, 2017), which
is commonly used for face recognition (An, Deng, Yuan, &
Hu, 2018; Peng, Huang, Chen, Zhang, & Fang, 2020). Grad-
CAM referred to the Inception-ResNet-B block of the model
for attention visualization.

Moreover, we developed high- and low-interpretability
models for each task. To manipulate the interpretability of AI
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Table 1: Structure of model for obesity screening task
Layer name Output size Parameters
Input (3, 160, 160)
conv 1 (8, 77, 77) 7x7, stride=2
BatchNorm, ReLU, MaxPool (8, 25, 25) 3x3
conv 2 (8, 23, 23) 3x3, stride=1
BatchNorm, ReLU, MaxPool (8, 7, 7) 3x3
conv 3 (8, 5, 5) 3x3, stride=1
BatchNorm, ReLU, Flatten (200)
Linear, ReLU (128)
Linear, ReLU (2)

Figure 2: Original images and heatmaps with high and low
interpretability. Top three images are for obesity screening,
bottom three are for drowsiness detection.

attention, we biased the training datasets and initial weights
of the models. For the high-interpretability models, we re-
moved the backgrounds of the images in the preprocessing
because we found that the models overfit the dataset by fo-
cusing on marginal information, which was expected to lead
to low interpretability for our tasks. In addition, the high-
interpretability model for the drowsiness detection was ini-
tialized with parameters pretrained with VGGFace2 (Cao,
Shen, Xie, Parkhi, & Zisserman, 2018), a dataset for face
recognition, and trained in a transfer learning manner (Tan
et al., 2018). The original images and the heatmaps with high
and low interpretability are shown in Figure 2.

Experiment 1
An online experiment system
One-hundred heatmaps created by each high- and low-
interpretability model were selected by an experimenter for
the obesity screening and drowsiness detection tasks. Each
participant evaluated the 100 heatmaps. To evaluate the
heatmaps, the GUI for the XAI in the online experiment sys-
tem, in particular, the layout of the original image and the
corresponding heatmap, was designed on the basis of previ-
ous work (M. Lu et al., 2019; Rajaraman et al., 2020; Wehbe
et al., 2021). Actually, the original image and the heatmap
were simply located side by side.

Method

Experimental design and participants The experiment
had a two-factor between-participants design. The factors
were the interpretability (high and low) and the task (obesity
screening and drowsiness detection). A priori power analysis
with G*Power indicated that 128 participants were needed for
a medium effect size (f = .25) with the power at .80 and al-
pha at .05 (Faul, Erdfelder, Lang, & Buchner, 2007). A total
of 200 participants were recruited through a cloud-sourcing
service provided by Yahoo!. They were randomly assigned
to one of the conditions and conducted a task. However,
71 participants were detected as inattentive by the attention
check items of the Directed Questions Scale (DQS) (Maniaci
& Rogge, 2014) and were excluded from the analysis. As a
result, data of 129 participants (88 male and 41 female from
16 to 78 y/o, M = 47.04, SD = 12.04) were used.

Procedure The participants first agreed with the informed
consent and read the explanations of the experiment. The
heatmap was explained as indicating AI attention when the AI
screened for obesity or detected drowsiness. After that, they
evaluated 100 heatmaps in accordance with their conditions.
The order of the heatmaps was randomized. During the eval-
uation, the participants were asked “how much can you inter-
pret how the AI screened for obesity (or detected drowsiness)
based on the heatmap of AI attention?” and evaluated the in-
terpretability on a 5-point scale (1: not interpretable at all -
5: extremely interpretable). Right after the evaluation, they
were required to answer whether the body shape was normal
or obese in the obesity screening or whether the person was
awake or drowsy in the drowsiness detection task.

Results and discussion

Interpretability score First, the mean interpretability score
of each heatmap was calculated. On the basis of the score,
50 high-scored heatmaps in the high- and 50 low-scored
heatmaps in the low-interpretability conditions were selected
for each task. Next, using the 50 heatmaps in each condi-
tion, the mean interpretability score of each participant was
calculated, and an ANOVA was performed on the score (Fig-
ure 3). There was a significant interaction (F(1,125) =
6.13, p = .01,η2

p = .05), and significant simple main effects
showed that the score was higher for the high-interpretability
condition than for the low one in the obesity screening
(F(1,125) = 9.82, p < .01,η2

p = .07) and in the drowsiness
detection task (F(1,125) = 41.75, p < .01,η2

p = .25). From
these results, we confirmed 50 heatmaps with validated high
and low interpretability in both tasks.

Task analysis Using the 50 heatmaps selected in each con-
dition, the mean accuracy rate of each participant was cal-
culated. Also, the mean of the accuracy rate of each AI
model, indicated when the heatmaps were created in the pre-
vious section, was calculated (Figure 4). First, as a result
of an ANOVA on the mean accuracy rate of the partici-
pants in the four conditions, there was a significant main ef-
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Figure 3: Interpretability score for high- and low-
interpretability (high and low) conditions in each task. Er-
ror bars show standard errors. Values show mean scores and
standard deviations.

Figure 4: Accuracy rate of participants (human) and AI for
high- and low-interpretability (high and low) conditions in
each task. Error bars show standard errors. Values show mean
human scores, standard deviations, and AI scores.

fect on the task factor showing that the rate was higher in
the obesity screening than in the drowsiness detections task
(F(1,125) = 431.17, p < .01,η2

p = .78). Also, the results of
one-sample t-tests showed that the rates of the participants
were significantly greater than those of the AI in all the con-
ditions (ts > 4.87, ps < .01,rs > .66). Statistical powers of
higher than .80 were assured through post-hoc power analy-
ses with G*Power. From these results, we confirmed that the
obesity screening task was easier for the humans. Also, the
humans performed better than the AI in all conditions.

Experiment 2
Experimantal task
This task was conducted using the original images and
heatmaps selected in Experiment 1. The experimental factors
in this experiment were the usage-type (reliance and compli-
ance), the purpose (with and without purpose), the attention-
interpretability (high-, low-, and no-interpretability), and the
task (obesity screening and drowsiness detection).

First, regarding the usage-type factor, the task procedures
were set up according to the previous studies (Kohn et al.,
2021; Vereschak et al., 2021) (Figure 5). The procedure for
reliance was as follows: (1) An original image was displayed
at the center of the display as a screening (or detection) prob-
lem for 5 seconds. (2) The participant decided to depend on
the AI or themselves for the obesity screening (or drowsiness
detection) by clicking. (3)a If the participant decided to de-
pend on the AI, the AI showed its answer with a heatmap
(or without it). (3)b If the participant decided to depend on
themselves, they answered whether the body shape was nor-
mal or obese in the obesity screening (or whether the person

Figure 5: Examples of task procedures for reliance and com-
pliance. These examples are for high-interpretability condi-
tion without purpose in obesity screening task.

is awake or drowsy in the drowsiness detection) by clicking.
Also, the procedure for compliance was as follows: (1) An

original image was displayed at the center of the display as
a screening (or detection) problem for 5 seconds. (2) The AI
showed its answer with a heatmap (or without it). (3) The
participant decided to accept or reject the answer by clicking.

Moreover, regarding the purpose factor, in the with-
purpose condition, the AI purpose stayed displayed on the
bottom of the display during the task, stating “the purpose of
this AI is to screen for obesity based on body shape for health-
care counseling” for the obesity screening and “the purpose
of this AI is to detect a state of fatigue based on expressions
of drowsiness for healthcare counseling” for the drowsiness
detection. In comparison, in the without-purpose condition,
there was no display of the purposes.

Furthermore, regarding the attention-interpretability factor,
the heatmaps with high and low interpretability selected in
Experiment 1 were respectively used for the high- and low-
interpretability conditions in both tasks. The accuracy rates
of the AI models were reflected in the answers during the
task. Also, in the no-interpretability condition, there was no
display of the heatmaps, and the AI model for high or low
interpretability was randomly assigned.

In addition, the participants were required to achieve as
many correct answers as possible. Also, the partner AI
was explained as learning from their answers and becoming
smarter. This description was added to make participants feel
that the AI was more realistic.

Method
Experimental design and participants The experiment
had a four-factor between-participants design. A total of 250
participants were recruited through a cloud-sourcing service
provided by Yahoo!. They were randomly assigned to one of
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the conditions and conducted a task. However, 20 participants
were detected as inattentive by DQS and were excluded from
the analysis. Also, 21 participants who showed exceptional
behaviors, explained later, were excluded from the analysis.
As a result, data of 209 participants (155 male and 54 female
from 19 to 76 y/o, M = 48.72, SD = 11.27) were used.

Procedure The participants first agreed with the informed
consent and read the explanations about the task procedure.
After that, they started the task. Each participant answered re-
garding the original image 50 times. The order of the images
was randomized. During the task, after every 10 problems,
they answered two types of trust questionnaires to measure
cognitive and emotional trust.

To measure cognitive trust, the Multi-Dimensional Mea-
sure of Trust (MDMT) (Ullman & Malle, 2019) was used.
MDMT was developed to measure a task partner’s reliability
and competence corresponding to the definition of cognitive
trust. The participants rated how much the partner AI fit each
word (reliable, predictable, dependable, consistent, compe-
tent, skilled, capable, and meticulous) on an 8-point scale (0:
not at all - 7: very) with a does-not apply checkbox. More-
over, for emotional trust, we asked participants to answer how
much the partner AI fit each word (secure, comfortable, and
content) on a 7-point scale (1: strongly disagree - 7: strongly
agree) as in the previous study (Komiak & Benbasat, 2006).

In addition, in MDMT, participants could choose “does not
fit,” which prevented possibly meaningless ratings. Twenty-
one participants who chose it for all 8 words at the same time
at least once during the task were considered to display ex-
ceptional behaviors and eliminated from the analysis.

Results
SEM analyses
First, the data sets were prepared on the basis of the vari-
ables of the hypothetical model. For the usage-type (reliance
and compliance) variable, the mean reliance or compliance
rate was calculated every 10 problems. Next, for the purpose
variable, the with- and without-purpose conditions were re-
spectively represented using “1” and “0” as dummy variables.
Also, for the attention-display variable, the high- and low-
interpretability conditions were represented using “1” and the
no-interpretability condition using “0” as dummy variables.
Moreover, for the attention-interpretability variable, the inter-
pretability score rated in Experiment 1 was used as a repre-
sentative value of a heatmap. The mean interpretability score
was calculated in accordance with the displayed heatmaps ev-
ery 10 problems. Also, for the no-interpretability condition,
“0” was used since there was no interpretability. Finally, the
cognitive and emotional trust variables were treated as latent
variables based on rated scores after every 10 problems.

As a result, 5 data sets of each variable were created from
each participant. In addition, the data sets of 12 participants
who rated “does not fit” at least once on the MDMT was elim-
inated from the analysis. Using the data sets, first, we devel-
oped reliance and compliance models for the obesity screen-

ing and drowsiness detection tasks on the basis of the hypo-
thetical model. However, none of the models fit the data well.

Next, we modified the models by making a path from cog-
nitive to emotional trust as in the previous study (Komiak
& Benbasat, 2006). Also, we added the AI reliability vari-
able, the mean accuracy rate of the AI every 10 problems, to
make the path to cognitive and emotional trust. The modified
models were fitted using robust maximum likelihood estima-
tion (Rosseel, 2012). As a result, all the models fit the data
well, and the goodness-of-fit values met the criteria (Kline,
2011). Figure 6 shows the modified models and goodness-
of-fit values. Statistical power analyses with R software with
alpha at .05 revealed that the SEM performed with sample
sizes (N = 249 and 274 for reliance and compliance models
of the obesity screening, and 250 and 259 for reliance and
compliance models of the drowsiness detection) for exact-fit
tests obtained powers of .96, .98, .96, and .97, showing satis-
factory statistical powers.

Hypothesis survey
Regarding H1, which is related to AI purpose, there was a
positive influence from the AI purpose on cognitive trust for
the compliance model in the obesity screening task. Also,
there was a negative influence from the purpose on cognitive
trust for the reliance model in the drowsiness detection task.
Therefore, H1 was partially supported only for the compli-
ance model in the obesity screening task.

Next, regarding H2, which is related to AI-attention dis-
play, there was a negative influence from the AI-attention dis-
play on emotional trust for the reliance model in the obesity
screening task. Also, there were negative influences from the
AI-attention display on cognitive and emotional trust for the
compliance model in the drowsiness detection task. There-
fore, H2 was supported for the reliance and compliance mod-
els in the obesity screening task and for the reliance model in
the drowsiness detection task.

Finally, regarding H3, which is related to AI-attention in-
terpretability, there was a positive influence from the inter-
pretability of AI attention on emotional trust for the reliance
model in the obesity screening task. Also, there were pos-
itive influences from the interpretability of AI attention on
cognitive and emotional trust for the compliance model in the
drowsiness detection task. Therefore, H3 was only supported
for the compliance model and partially supported for the re-
liance model in the drowsiness detection task.

General Discussion
First of all, the obesity screening was easier than the drowsi-
ness detection for the humans as in Experiment 1. Therefore,
AI reliability was considered to be perceived more easily in
the obesity screening than in the drowsiness detection. On the
basis of this assumption, we discuss the results.

Regarding H1, in the compliance procedure, the partic-
ipants could observe all the answers of the AI, but in the
reliance procedure, they could not when they answered by
themselves. Since people tend to develop positive attitudes
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Figure 6: Modified models and goodness-of-fit values. Values in red are standardized path coefficients, which were statistically
significant. Regarding latent variables (cognitive and emotional trust), there were significant positive influences from latent
variables on all observable variables (ratings in MDMT from m1 to m8 and emotional trust questionnaire from e1 to e3) for
four models. Mean reliance or compliance rates, mean accuracy rates, and standard deviations in each task were also displayed.

toward AI when accessing information on AI performance is
easy (Kayande et al., 2009), in a situation where the task is
easy, as in the case of the obesity screening, and the AI per-
formance is always observable, people might positively ac-
cept the purpose. Contrarily, in a situation where the task is
less easy, as in the case of drowsiness detection, and the AI
performance is not always observable, the participants might
develop a negative attitude toward the AI and have doubts
about the purpose or feel that it is uninterpretable.

Moreover, regarding H2, there were negative effects from
displaying AI attention in the drowsiness detection task. Peo-
ple have a tendency to look for justification when they receive
answers or decisions from AI (J. Lu, Liang, & Duan, 2017).
However, in the obesity screening task, the participants might
not have needed to pay very much attention to the heatmaps as
justification because the reliability of the AI could be easily
perceived. In comparison, in the drowsiness detection task,
since the reliability of the AI seemed more difficult to per-
ceive, participants were considered to pay more attention to
the heatmaps as justification. However, there were heatmaps
with low interpretability in accordance with the experimen-
tal conditions, and thus, the participants who saw the low-
interpretability heatmaps might have greatly decreased trust.
The same phenomenon was also found in a previous study
where people distrusted the AI when they did not perceive
the rationale of the AI (Goodwin, Sinan, & Önkal, 2013).

Furthermore, regarding H3, as above, in the obese screen-
ing task, the participants were considered to not pay very

much attention to the heatmaps. Therefore, there was no ef-
fect found from the attention interpretability. However, in the
drowsiness detection task, the attention interpretability espe-
cially increased emotional trust. Emotional trust is known
to be increased by anthropomorphism and human-like behav-
iors (Glikson & Woolley, 2009). There is a possibility that
the heatmaps with high interpretability in the drowsiness de-
tection task might have made participants feel that the AI had
human-like behaviors and increased their emotional trust.

Finally, there were negative influences from cognitive trust
on reliance and compliance in the drowsiness detection task.
In this study, the task AI was explained as learning from the
participants’ answers and becoming smarter. There is a pos-
sibility that the participants who had higher cognitive trust
in the drowsiness detection, a more difficult task, might have
tended to have the partner AI learn more to become smarter.

Conclusion
This study investigated how XAI which shows its purposes
and attention as explanations affects human trust in and use
of AI. The experimental results revealed that (1) displaying
the purpose of AI positively influenced trust when the partici-
pants complied with AI in an easier task and negatively influ-
enced trust when they relied on AI in a more difficult task, (2)
just displaying the heatmaps negatively influenced trust when
the participants in a more difficult task, and (3) the heatmaps
positively influenced trust according to their interpretability
in a more difficult task.
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Colley, M., Rädler, M., Glimmann, J., & Rukzio, E. (2022).
Effects of scene detection, scene prediction, and maneu-
ver planning visualizations on trust, situation awareness,
and cognitive load in highly automated vehicles. In Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (Vols. 6, No., 2, Article 49, p. 1-
21). doi: 10.1145/3534609

Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Al-
gorithm aversion: People erroneously avoid algorithms af-
ter seeing them err. Journal of Experimental Psychology:
General, 144(1), 114–126. doi: 10.1037/xge0000033

Dzindolet, M. T., Pierce, L. G., Beck, H. P., & Dawe, L. A.
(2002). The perceived utility of human and automated aids
in a visual detection task. Human Factors, 44(1), 79–94.
doi: 10.1518/0018720024494856

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007).
G*power 3: A flexible statistical power analysis pro-
gram for the social, behavioral, and biomedical sci-
ences. Behavior Research Methods, 39(2), 175–191. doi:
10.3758/bf03193146

Ghoddoosian, R., Galib, M., & Athitsos, V. (2019). A real-
istic dataset and baseline temporal model for early drowsi-
ness detection. In 2019 IEEE/CVF conference on computer
vision and pattern recognition workshops (CVPRW) (pp.
178–187). doi: 10.1109/cvprw.2019.00027

Glikson, E., & Woolley, A. W. (2009). Human trust in arti-
ficial intelligence: Review of empirical research. Academy
of Management Annals, 14(2), 627–660. doi: 10.5465/an-
nals.2018.0057

Goodwin, P., Sinan, G. M., & Önkal, D. (2013). An-
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