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O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a nutrient-
sensitive protein modification that alters the structure and function of a
wide range of proteins involved in diverse cellular processes. Similar to
phosphorylation, another protein modification that targets serine and threo-
nine residues, O-GlcNAcylation occupancy on cellular proteins exhibits
daily rhythmicity and has been shown to play critical roles in regulating
daily rhythms in biology by modifying circadian clock proteins and
downstream effectors. We recently reported that daily rhythm in global
O-GlcNAcylation observed in Drosophila tissues is regulated via the inte-
gration of circadian and metabolic signals. Significantly, mistimed feeding,
which disrupts coordination of these signals, is sufficient to dampen daily
O-GlcNAcylation rhythm and is predicted to negatively impact animal bio-
logical rhythms and health span. In this review, we provide an overview of
published and potential mechanisms by which metabolic and circadian sig-
nals regulate hexosamine biosynthetic pathway metabolites and enzymes, as
well as O-GlcNAc processing enzymes to shape daily O-GlcNAcylation
rhythms. We also discuss the significance of functional interactions between
O-GlcNAcylation and other post-translational modifications in regulating
biological rhythms. Finally, we highlight organ/tissue-specific cellular
processes and molecular pathways that could be modulated by rhythmic
O-GlcNAcylation to regulate time-of-day-specific biology.
1. Introduction
Organisms from all domains of life exhibit daily biological rhythms to adapt to
changes in their environment over the 24 h day–night cycle. In animals, daily
rhythms of physiology, metabolism and behaviour are strongly regulated by
the circadian clock, an endogenous biological timer that enables animals to antici-
pate predictable changes in biotic and abiotic factors [1,2]. The circadian clock is a
molecular oscillator that relies on transcriptional–translational feedback mechan-
isms operated by key clock transcription factors to generate daily oscillations
in gene expression. In coordination with processes that are regulated by post-
transcriptional mechanisms, clock-regulated rhythmic gene expression programs
that are often tissue- and cell-specific produce daily rhythms in clock outputs.
The outputs of animal circadian clocks are all-encompassing and include rhyth-
mic processes such as sleep–wake cycles, feeding–fasting cycles, metabolism,
hormone production and secretion, immune response, neuronal excitability and
even permeability of the blood–brain barrier [3–10]. There is growing evidence
that some clock outputs are themselves zeitgebers (i.e. time-givers) and can feed-
back to the molecular oscillator to reinforce and/or modulate daily biological
rhythms. The feeding–fasting cycle is one such clock output and studies have
shown that key clock transcription factors that form the core of the molecular
oscillator can be regulated by metabolites or nutrient-sensitive hormones, such
as heme, NAD/NADH (nicotinamide adenine dinucleotide/reduced form of
nicotinamide adenine dinucleotide), AMP/ATP (adenosine monophosphate/
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adenosine triphosphate), acetyl coenzyme A, glucocorticoids
and glucagon (reviewed in [11]).

Besides impacting daily biological rhythms by modulating
the activities of key clock transcription factors, metabolic
feedback from feeding–fasting cycles can also regulate daily
rhythms through other mechanisms beyond the circadian
clock. For example, feeding–fasting cycles can drive rhythmic
production of NAD+, which serves as coenzyme for histone
deacetylases class III, also known as sirtuins, to regulate
daily rhythmicity in epigenomic landscape and global gene
expression [12,13]. Feeding activity also contributes to daily
oscillation of protein translation [14]. This was shown to be
mediated by the nutrient-sensitive mTOR pathway, amino
acid sensing pathways and metabolic modification of mRNA.

We recently established that integration of circadian signals
and rhythmic metabolic input can regulate daily cellular
physiology through rhythmic protein O-linked-N-acetylgluco-
saminylation (O-GlcNAcylation) [15]. O-GlcNAcylation has
the potential to modify the function of thousands of proteins
[16–19], and has been shown to play a critical role in maintain-
ing animal circadian rhythms [20–23]. Furthermore, since both
O-GlcNAcylation and phosphorylation modify serine and
threonine residues [16,17,24], rhythmic O-GlcNAcylation
may contribute to robust oscillation of the 24 h phosphopro-
teome and regulate its time-of-day specific function [25–28].
These post-translational mechanisms could bypass regulation
at the transcriptional level to directly modulate protein
function in a time-specific and nutrient-sensitivemanner. Inter-
estingly, our studies showed that the amplitude of daily protein
O-GlcNAcylation rhythm is severely dampened if animals
are fed at an unnatural time window (i.e. time of day at
which they are normally fasting [15]). This suggests that rhyth-
mic functions of cellular proteins could be impaired by
mistimed meals, a common occurrence in modern society.
Our findings point to the likelihood that the beneficial effects
of time-restricted feeding [29–35], a practice that limits food
consumption to 8–12 h during an individual’s natural active
period and has been shown to maintain robust circadian
rhythms, enhance health span and alleviatemetabolic diseases,
may be partially mediated via daily O-GlcNAcylation rhythm.

In the remainder of the review, we will summarize
the regulation of daily rhythmicity in O-GlcNAcylation by
metabolic and circadian signals, outline interactions between
O-GlcNAcylation and other post-translational modifications
(PTMs), and highlight cellular processes that are potentially
regulated by rhythmic O-GlcNAcylation.
2. Regulation of O-GlcNAcylation in the
context of daily biological rhythm

Protein O-GlcNAcylation is nutrient-sensitive and is tightly
linked to cellular metabolic status. For this reason, the
regulation and function of O-GlcNAcylation have been
extensively studied in the context of metabolic diseases,
specifically diabetes and cancers [17,36]. On the contrary,
although metabolism and energy status are highly rhythmic
over the day–night cycle, the number of studies on rhythmic
O-GlcNAcylation and the consequences of its disruption
dwarfs in comparison. The cycling of O-GlcNAc groups
on proteins is regulated by the level of UDP-GlcNAc (the
substrate) and the activities of two O-GlcNAc processing
enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase
(OGA) (figure 1). UDP-GlcNAc is produced from the
hexosamine biosynthetic pathway (HBP), which integrates
metabolites from glucose metabolism (glucose), amino acid
metabolism (glutamine), lipid metabolism (acetyl-CoA) and
nucleotide metabolism. In this section, we discuss current
findings on the regulation of O-GlcNAcylation under the
framework of rhythmic biology over a 24 h day–night cycle.

2.1. Regulation of HBP pathway by daily rhythm of
nutrient availability

Nutrient availability directly determines the level of building
blocks for producing UDP-GlcNAc. Given that there is strong
support from metabolomics studies showing that nutrient
input correlates with feeding activity [15,94–96], metabolic
influx into the HBP is expected to be highly rhythmic over
the day–night cycle and probably contributes to daily rhythmi-
city in O-GlcNAcylation. In studies conducted using cultured
cells or tissues, elevated production of UDP-GlcNAc has
been shown to correlate with higher nutrient concentration
in cell media, including glucose, glutamine, glucosamine
(GlcN), acetylglucosamine (GlcNAc), free fatty acids and
uridine [37,50,97–105]. However, some glucose starvation
studies showed contradictory results; glucose starvation was
observed to result in elevation of O-GlcNAcylation level
[38,50,51]. These conflicting observations could be explained
by divergent properties of cell lines or tissue types. For
example, Pham et al. [106] showed that O-GlcNAcylation
levels in different subtypes of diffuse large B-cell lymphoma
cell lines respond differently to glucose deprivation. Addition-
ally, increasedO-GlcNAcylation upon glucose starvation could
be due to altered levels of OGT, OGA or glutamine:fructose-6-
phosphate amidotransferase (GFAT) [38,50,51].

Although cell culture and ex vivo studies have firmly
established the importance of nutritional regulation of HBP
and O-GlcNAcylation, in vivo studies especially ones that
take into account daily rhythmic biology and feeding–fasting
cycles are still limited. In the 1990 s, Hawkins et al. [107]
showed that continuously infusing lipid emulsion, uridine
or GlcN for 7 h increases UDP-GlcNAc levels in rat skeletal
muscles. To establish the relationship between feeding
activity and levels of HBP metabolites including UDP-
GlcNAc, we recently monitored feeding rhythm and HBP
metabolites in Drosophila flies over a 24 h day–night cycle
[15]. We observed strong correlation between fly feeding
rhythm and daily rhythms in HBP metabolites in fly body tis-
sues. Significantly, we found that shifting the time of food
consumption significantly altered the peak time of HBP
metabolite rhythm. In summary, we conclude that HBP
metabolites and UDP-GlcNAc level are strongly regulated
by clock-controlled feeding–fasting cycle and metabolic
input. Whether this phenomenon is consistent in other ani-
mals, including nocturnal animals, will need to be explored
in future studies.

2.2. Daily regulation of HBP enzymes
Besides rhythmic metabolic input into the HBP facilitated by
clock-controlled feeding–fasting cycles, rhythmic expression
and activity of HBP enzymes could also contribute to daily
rhythms in protein O-GlcNAcylation. Searching through
CirGRDB, a mammalian circadian transcriptomic database
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Figure 1. Schematic illustrating metabolic and circadian regulation of rhythmic protein O-linked-N-acetylglucosaminylation (O-GlcNAcylation). The circadian clock
oscillator receives environmental signals and regulates daily feeding–fasting cycles. Feeding–fasting cycles rhythmically provide input to hexosamine biosynthetic
pathway (HBP), which contributes to rhythmic production of UDP-GlcNAc [15]. O-GlcNAc transferase (OGT) takes UDP-GlcNAc as a substrate and transfers GlcNAc onto
serine and threonine residues of proteins. This process is recognized as O-GlcNAcylation (O-GlcNAc is depicted as G on protein molecules). Metabolic input can also
regulate the O-GlcNAcylation rhythm through modifying the activities of glutamine:fructose-6-phosphate amidotransferase (GFAT) [37–49], OGT [21,50–63] and
O-GlcNAcase (OGA) [64]. Additionally, the clock oscillator not only regulates feeding–fasting cycles, but also regulates the expression or enzymatic activities of
all the HBP enzymes [39,47,65–76] and O-GlcNAc processing enzymes [62,63,71,72,77–93]. The potential mediating factors of metabolic and circadian inputs
are illustrated in the schematic diagram; metabolic inputs are depicted in brown and circadian inputs are depicted in blue. The dashed arrows indicate potential
regulation without known mechanisms. HK, Hexokinase; GPI, phosphoglucose isomerase; GFAT, glutamine–fructose-6-phosphate aminotransferase; GNPNAT, gluco-
samine-phosphate N-acetyltransferase; PGM3, phosphoacetylglucosamine mutase; UAP1, UDP-N-acetyl glucosamine pyrophosphorylase 1; OGT, O-GlcNAc transferase;
OGA, O-GlcNAcase; Glc, glucose; Glc-6-P, glucose-6-phosphate; Fruc-6-P, fructose-6-phosphate; GlcN-6-P, glucosamine-6-phosphate; GlcNAc-6-P, N-acetylglucosamine-
6-phosphate; GlcNAc-1-P, N-acetylglucosamine-1-phosphate; UTP , uridine triphosphate; UDP-GlcNAc, uridine diphosphate N-acetylglucosamine; mTOR, mammalian
target of rapamycin; NR4A1, nuclear subfamily 4 group A member 1; GCN2, general control nonderepressible2; miRNA, microRNA; AMPK, AMP-activated protein
kinase; EGF, epidermal growth factor; TGFβ, transforming growth factorβ; Sp1, specificity protein 1; PKA, protein kinase A; Nrf2, nuclear factor E2-related factor-2;
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checkpoint kinase 1; ROCK2, Rho-associated coiled-coil forming protein kinase 2; MYPT1, myosin phosphatase target subunit 1.
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[108] and published Drosophila transcriptomic datasets
[27,109], we found that transcripts encoding all HBP enzymes
oscillate in at least one study. Additionally, data mining in cir-
cadian proteomic and phosphoproteomic datasets [25,27,110]
revealed that the majority of the HBP enzymes have oscillat-
ing protein levels and/or phosphorylation. Our recent study
reported that GFAT enzyme activity oscillates over a 24 h
cycle in flies and rhythmic GFAT activity is regulated by
the integration of metabolic and circadian signals [15].
In this section, we will elaborate on our findings and discuss
potential mechanisms mediating daily regulation of HBP
enzymes. In particular, we will focus on the regulation of
GFAT, the rate-limiting enzyme of HBP and the most well
studied of all HBP enzymes (figure 1).

The expression of gfatmRNA is highly regulated by nutri-
ent availability and nutrient-sensing pathways. gfat has two
isoforms in animals, gfat1 and gfat2. Both isoforms encode
GFAT enzymes that perform the same catalytic function but
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have distinct tissue-specific distribution (reviewed in [111]).
We showed that the expression of gfat2 mRNA in fly body tis-
sues is strongly induced by food consumption in Drosophila
[15], although we did not explore the mechanisms that
mediate the observed induction. In tissue culture, expression
of gfat mRNA has been shown to be stimulated by various
nutrients [37,39–42] and mediated by multiple molecular
pathways, including mammalian target of rapamycin2
(mTOR2) [41,43], nuclear subfamily 4 group A member 1
(NR4A1) [40], microRNA (miR)-27b-3p [42] and general
control nonderepressible2-activating transcription factor 4
pathway [38]. Expression of gfat mRNA can potentially be
regulated by clock-controlled factors/processes in addition
to feeding–fasting cycles and rhythmic metabolic input.
These include angiotensin II [112–114], epidermal growth
factor (EGF) [39,65,66], transforming growth factorβ (TGFβ)
[67–69] and Specificity protein 1 [70–72], all of which are
known to influence gfat expression.

Beyond transcriptional regulation, GFAT enzyme activity
is known to be influenced by PTMs and feedback regulation
from HBP metabolites. We reported that the circadian clock
strongly regulates daily GFAT activity through unknown
post-transcriptional and/or post-translational mechanism(s)
[15]. Interestingly, the kinases that have previously been
identified to regulate GFAT activities are also known effectors
of circadian signals or clock-controlled metabolic signals.
These include AMP-activated protein kinase (AMPK)
[44,45], mTOR2 [46] and protein kinase A (PKA) [47,73–76].
In particular, PKA-directed phosphorylate site at GFAT1
S235 [74] is shown to oscillate over a circadian cycle in
mouse liver [25]. However, the function of GFAT1 pS235
is currently unclear. Finally, glucosamine-6-phosphate
(GlcN-6-P) and UDP-GlcNAc, the direct product from the
GFAT-catalysed reaction and end product of the HBP respect-
ively, can feedback to inhibit GFAT activity [47–49]. As our
study found that GlcN-6-P and UDP-GlcNAc levels oscillate
over the day–night cycle with peak time corresponding
to feeding period [15], HBP metabolites likely represent
important signals to shape daily GFAT activity.

In summary, as we concluded in our studies in Drosophila
[15], the HBP enzyme GFAT represents an important
integration hub of circadian and metabolic signals to regulate
the production of UDP-GlcNAc and cellular protein
O-GlcNAcylation.

2.3. Daily regulation of O-GlcNAc processing enzymes
There is strong evidence showing that OGT and OGA, the
two O-GlcNAc processing enzymes that drive the cycling of
GlcNAc group on and off proteins, are subjected to control
by the circadian clock, but data on direct measurements of
OGT and OGA enzyme activities over a daily cycle are
still lacking to the best of our knowledge. Circadian tran-
scriptomic and proteomic analyses showed that the oga
mRNA and OGA protein oscillate in mouse livers and fly
heads [27,71,115–119], while ogt mRNA but not OGT protein
was observed to oscillate in mouse livers and fly heads
[20,21,27,71,109,110,120–122]. We showed that in Drosophila
fly bodies, the transcripts and encoded proteins of the two
O-GlcNAc processing enzymes are modulated by both circa-
dian and metabolic input [15]. This section is devoted to
review potential molecular mechanisms that mediate
metabolic and circadian regulation of OGT and OGA.
ogt mRNA and its encoded protein OGT are regulated by
nutrient levels and nutrient-sensing pathways that are
expected to be highly rhythmic over the day–night cycle.
There are two nutrient-sensing pathways that are known to
regulate OGT protein level, mTOR [52–54] and insulin signal-
ling [55], and glucose itself [50,51,56] has also been shown
to modulate ogt mRNA expression. Currently, it is unclear
how expression of ogt mRNA and their encoded proteins
are regulated by the circadian clock. The clock can potentially
orchestrate rhythmic ogt mRNA expression by targeting
rhythmically active transcription factors. Candidates include
nuclear factor E2-related factor-2 (Nrf2) [77–80], E2F1 tran-
scription factor [81,82] and hepatocyte nuclear factor 1
homologue A (HNF1A) [72,83,84], which are known to regu-
late ogt expression. With regard to OGT protein cycling,
lysine-specific histone demethylase 1B (KDM1B or LSD2)
and ubiquitin ligase E6AP have been shown to facilitate
OGT ubiquitylation and degradation through their ubiquitin
ligase activity [85,86]. Interestingly, LSD2 and E6AP
transcripts are both observed to oscillate in circadian tran-
scriptome studies [71,72,82]. Finally, the clock protein REV-
ERBα directly interacts with OGT and stabilizes OGT in
different cellular compartments, as the cellular localization
of REV-ERBα oscillates [87]. Whether and how these mechan-
isms contribute to circadian regulation of OGT levels will
need to be explored in future studies. When compared with
the regulation of ogt expression, much less is known about
pathways that modulate oga expression. Given that E2F1
regulates oga expression in addition to ogt expression [81], it
represents a transcription factor candidate [82] that can
drive rhythmic oga expression.

At the post-transcriptional level, OGT enzymatic activity
is regulated by multiple PTMs, which have been shown to
respond to metabolic or circadian signals. Metabolic input
has been shown to regulate OGT phosphorylation and
thereby enzymatic activity through insulin signalling
[21,57,58], as well as AMPK [59] and CAMKII [60,61] phos-
phorylation. Glycogen synthase kinase 3β (GSK3β), which
happens to be an insulin signalling effector and a clock
kinase, is shown to phosphorylate OGT at S3 or S4 to increase
its enzymatic activity [21]. GSK3β-dependent phosphoryl-
ation of OGT can also change substrate selectivity [58].
Moreover, the circadian clock has been shown to rhythmi-
cally regulate the kinases and phosphatases that modify
OGT, such as Checkpoint kinase 1 (ChK1) [88,89], Rho-associ-
ated coiled-coil forming protein kinase 2 (ROCK2) [71,72,90],
myosin phosphatase target subunit 1 (MYPT1) [71,72,91,92].
Finally, O-GlcNAcylation of OGT S389 is shown to increase
OGT nuclear localization [62]. As O-GlcNAcylation can inte-
grate both metabolic and circadian signals [15], it will be
interesting to explore whether OGT exhibits daily oscillation
of subcellular localization. OGA can also be modified by
phosphorylation and O-GlcNAcylation [123]. However, the
functional role of these PTMs on OGA is less defined.
Whether the phosphorylation and O-GlcNAcylation status
of OGT and OGA is rhythmically regulated over a 24 h
day–night cycle and how that modulates their activities
needs future investigation.

To conclude the discussion on daily regulation of
O-GlcNAc processing enzymes, it is important to point out
that OGT and OGA impose reciprocal regulation against one
another to maintain O-GlcNAc homeostasis. For example, as
OGT protein level decreases, OGT forms a repressor complex
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withmSin3A and histone deacetylase1 (HDAC1) at the promo-
ter of oga to inhibit its expression [64]. OGA can promote
ogt expression by reducing O-GlcNAcylation of CCAAT/
enhancer-binding proteinβ (C/EBPβ) recruited to the
promoter of ogt [63]. Notably, increasing O-GlcNAcylation
level using an OGA inhibitor has been observed to elevate
OGA protein while decreasing OGT protein level [93]. The
reciprocal regulation of the twoO-GlcNAcprocessing enzymes
is expected to contribute to shaping daily rhythmicity
of O-GlcNAcylation.
3. Crosstalk between O-GlcNAcylation and
other post-translational modifications to
regulate daily cellular physiology

Different types of PTMs co-occur on proteins to regulate their
functions in response to diverse physiological and environ-
mental signals. O-GlcNAc modifications have been shown to
exhibit crosstalk with other PTMs, such as phosphorylation
(reviewed in [24]), acetylation [124–126] and ubiquitination
[127,128]. The crosstalk between O-GlcNAcylation and
phosphorylation has attracted the most attention, as both
PTMs target serine and threonine residues. Given that circa-
dian proteomics studies in recent years demonstrated that
phospho-occupancy in many cellular proteins exhibit daily
rhythmicity to regulate time-of-day protein functions [25–28],
it is intriguing to explore how O-GlcNAcylation and
phosphorylation (and possibly other PTMs) could work in
conjunction to regulate daily rhythmicity in protein functions.
Crosstalk between O-GlcNAcylation and other PTMs can pre-
sent itself in two manners: (i) modify the function of writers
and erasers (enzyme level), or (ii) modify the same sites or
nearby sites on protein substrates to modulate the level of
other PTMs (substrate level) (figure 2). With an emphasis
on phosphorylation, we next review the mechanisms by
which O-GlcNAcylation could shape daily rhythmicity in
phosphoproteome to regulate biological rhythms.

3.1. Daily O-GlcNAcylation-phosphorylation crosstalk
(O-P crosstalk) at the enzyme level

Since global O-GlcNAcylation level oscillates over a 24 h
cycle [15] and O-GlcNAcylation has been shown to regulate
the function of a myriad of kinases and phosphatases
[24,134,135], time-of-day specific O-GlcNAcylation of kinases
and phosphatases could represent an important mechanism
to remodel daily rhythmicity in the phosphoproteome. In
2012, Dias et al. [136] systematically analysed O-GlcNAcyla-
tion of kinases using an in vitro OGT assay. They screened
through 152 full-length human kinases and identified 42
O-GlcNAcylated kinases. More recently, Schwein & Woo



Table 1. O-GlcNAcylation of kinases known to regulate circadian rhythm. GSK3β, glycogen synthase kinase3β; S6K1, ribosomal protein S6 kinase 1; AMPK,
AMP-activated protein kinase; PKC, protein kinase C; MAPK p38, mitogen-activated protein kinase p38; ERK1/2, extracellular signal-regulated kinase1/2, CK2α
casein kinase2α.

kinases O-GlcNAc sites function of O-GlcNAcylation references

AKT T308, S473 (characterized by

mutagenesis)

inhibit AKT phosphorylation at T308 and S473, and inhibit AKT activity [137,138]

GSK3β n.a. promote GSK3β phosphorylation at S9, and inhibit GSK3 activity [137,139,140]

S6K1 S489 (characterized by

mutagenesis)

inhibit S6K1 phosphorylation at S418 and T229, and inhibit S6K1 activity [141]

AMPK n.a. inhibit AMPKα phosphorylation at T174, and inhibit AMPK activity [59,142]

PKCζ T408, T410 (characterized by

mutagenesis)

inhibit PKCζ phosphorylation at T410, and inhibit PKCζ activity [143]

MAPK

p38

n.a. promote p38 phosphorylation, and activate p38 activity [144]

ERK1/2 n.a. promote ERK1/2 phosphorylation, and activate ERK1/2 activity [144]

CK2α S347 (validated by Edman

sequencing)

inhibit CK2α phosphorylation at T344, reduce the interaction between CK2α and

PIN1, promote CK2α degradation, and alter substrate selectivity

[145]
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[135] reviewed the O-GlcNAcomic datasets, and found more
than 100 O-GlcNAcylated kinases, which covers all six major
kinase families (AGC, CMGC, CAMK, STE, CK1 and TK/
TKL) and some atypical protein kinases. Not surprisingly,
a number of phosphatases are also found to be O-GlcNAcy-
lated, including MYPT1, PPFIA2−4, PPP6R2, PTPN6,
PTPN7, PTPRC, TNS2 and SIRPA [135].

Much progress has been made in characterizing the
function of O-GlcNAcylation on many kinases. In table 1,
we highlight the O-GlcNAcylated ‘circadian kinases’, which
we identified by analysing the circadian phosphoproteome
[25,27]. Nevertheless, proteomic studies on how O-GlcNAc
sites of certain kinases could modulate the phosphoproteome
are still rather limited. Schwein et al. [146] recently used nano-
body-OGT and nanobody-split OGA to specifically modify
O-GlcNAc S347 on CK2α and analysed the phosphoproteome
inHEK293 cells. They observed that increasedCK2αO-GlcNA-
cylation promotes the phosphorylation of 39 proteins, enriched
for chromatin modification, metabolism and ribosome, while
decreasing the phosphorylation of 12 proteins. In conclusion,
O-GlcNAcylation could regulate cellular physiology through
modifying the kinome and thereby the phosphoproteome
(figure 2). Future investigation is warranted to reveal the
O-GlcNAcylation-kinome crosstalk under the framework of
the 24 h day–night cycle.

3.2. Daily O-P crosstalk at the substrate level
Since the discovery that O-GlcNAcylation and phosphoryl-
ation can modify the same amino acid residue on the same
protein [147], crosstalk between O-GlcNAcylation and phos-
phorylation on substrates is recognized as an important
mechanism for regulating protein function. Early study inves-
tigating O-P crosstalk used OGA inhibitors to elevate the
global O-GlcNAcylation level and assayed the phosphopro-
teome in cell culture [129]. Out of the 711 phosphopeptides
detected, 148 phosphopeptides increased and 280 decreased
upon OGA inhibition. The phosphoproteins identified by
Wang et al. [129] were enriched for cytoskeleton, cytoskeleton
binding and RNA/DNA binding proteins. In addition to
using inhibitors to globally alter protein O-GlcNAcylation
status, other approaches have also been used to characterize
physiologically relevant O-P crosstalks. Trinidad et al. [130]
studied O-P crosstalks at murine synapses, as both OGT
and OGA are enriched at synapses [148,149]. They sequen-
tially enriched for O-GlcNAc and phosphopeptides and
successfully detected O-GlcNAcylation and phosphorylation
on the same peptides [130]. Among the 1750 O-GlcNAc sites
and 16 500 phosphosites detected, 135 sites can be modified
by both O-GlcNAcylation and phosphorylation. More recently,
Fan et al. [131] developed a HILIC enrichment method to sim-
ultaneously enrich for O-GlcNAc and phosphopeptides. They
assayed O-P crosstalk on 1115 RNA binding proteins (RBPs)
and found that 213 RBPs (25%) can be both O-GlcNAcylated
and phosphorylated. Taken together, direct competition
between O-GlcNAcylation and phosphorylation may not be
the dominant mechanism for O-P crosstalk, and O-GlcNAcyla-
tion and phosphorylation aremore likely to regulate each other
through modifying approximal sites (figure 2).

To elucidate the mechanisms for O-P crosstalk, researchers
have started to analyse potential consensus sequence of O-P
crosstalk. Although sites modified by both O-GlcNAcylation
and phosphorylation occur at a relatively low frequency,
Yao et al. [132] extracted three motifs (Pxx[S], Txxx[S] and
[T]xxxxxxxxxP) that are overrepresented in S/T exhibiting O-P
crosstalk at the same residue. For O-P crosstalk at approximal
sites, Leney et al. [133] performed a systematic analysis using a
MS-based in vitro kinetic assay and identified a motif with
four amino acids: N-[S/T]P(V/A/T)[S/T]-C. Phosphorylation
occurs at the N terminal S/T and O-GlcNAcylation modifies
the C terminal S/T, and the two PTMs tend to reciprocally inhi-
bit one other [133]. Data mining in PhosphoSite Plus showed
that 1048 proteins could be regulated by this potential mechan-
ism, andprevious studies support thatO-P crosstalkonproteins
such as eukaryotic initiation factor 4 (eIF4) and Sin3A could be
mediated by this motif [133,150,151]. Kinase prediction shows
that extracellular signal-regulated kinase1 (ERK1), ERK2, CK1
and GSK3β are likely to modify the motifs mentioned above
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[132,133]. Interestingly, these kinases overlap with ‘circadian
kinases’ that can rhythmically phosphorylate proteins over a
24 h cycle [25,27], suggesting that daily cycling of O-GlcNAcy-
lation could potentially regulate daily rhythmicity in the
phosphoproteome at the substrate level (figure 2). Nevertheless,
this hypothesis needs to be tested with the advances of O-P
peptide enrichment methods and MS proteomics.
4. O-GlcNAcylation is an important mechanism
that regulates daily cellular physiology

A large body of work contributed to our understanding of
diverse mechanisms by which metabolic input interacts
with the endogenous circadian clock to regulate daily biologi-
cal rhythms (reviewed in [11,13,152]). Our recent study
highlights protein O-GlcNAcylation as a key post-transla-
tional mechanism that integrates metabolic and circadian
signals to regulate rhythmic physiology [15]. At the molecular
level, there are two ways O-GlcNAcylation can regulate
daily rhythms of cellular physiology: (i) O-GlcNAcylation
can modulate core clock proteins and the pace of the molecu-
lar clock, which in turn alters rhythmicity of diverse
cellular processes; (ii) O-GlcNAcylation can rhythmically
modify cellular proteins outside of the molecular oscillator
to regulate their time-of-day specific functions (figure 3).
In this section, we review the impact of O-GlcNAcylation
on clock protein functions and outline other rhythmic cellular
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processes that can be modified by O-GlcNAcylation beyond
the core clock.
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4.1. Regulation of clock proteins within the core
molecular oscillator by O-GlcNAcylation

The molecular oscillator of the animal circadian timing system
relies on transcription-translation feedback mechanisms
to maintain approximately 24 h biological rhythms (reviewed
in [1,2]) (figure 3). Brain and muscle Arnt-like protein-1
(BMAL1) and circadian locomotor output cycles kaput
(CLOCK) are the key transcriptional activators of the mamma-
lian clock (Drosophila homologues are dCYCLE and dCLOCK
(dCLK)), and as heterodimers, they drive the expression of thou-
sandsof clock-controlledgenes includinggenes that encode their
own transcriptional repressors, PERIOD1-3 (PER1-3) andCRYP-
TOCHROME1-2 (CRY1-2) (dPER and dTIMELESS (dTIM) in
Drosophila) (figure 3). The molecular oscillator is critical for gen-
erating daily rhythmicity of gene expression that manifest into a
range of rhythmic biological processes (reviewed in [1–10]).

PTMs, especially phosphorylation, have been established
as essential mechanisms for maintaining the pace of the mol-
ecular oscillator [174–176]. Phosphorylation of the clock
protein dPER was first characterized by Edery et al. [177] and
subsequent studies continue to highlight diverse properties
of clock proteins that are regulated by phosphorylation
(reviewed in [178,179]). O-GlcNAcylation was first introduced
as a mechanism to regulate the molecular clock and circadian
rhythms by Kim et al. [20], Kaasik et al. [21] and Li et al. [22].
These pioneering studies showed that in both fly andmamma-
lian models, increasing global O-GlcNAcylation slows down
the pace of the clock and results in period lengthening of be-
havioural rhythms, while reducing O-GlcNAcylation has the
opposite effect. Furthermore, these studies and subsequent
studies [23,180] showed that many clock proteins, including
dCLK, dPER, dTIM, BMAL1, CLOCK, are O-GlcNAcylated
and period-altering effects are mediated by disrupting clock
protein O-GlcNAcylation.

Interestingly but perhaps not surprisingly, some clock pro-
teins even display daily rhythms of O-GlcNAcylation that are
sensitive to feeding and nutrient input [21–23]. In Drosophila,
O-GlcNAcylation of dPER promotes its stability and inhibits
nuclear entry [20]. Transcriptional reporter assays inDrosophila
S2 tissue culture showed that manipulating O-GlcNAcylation
levels by overexpressing OGT or OGA also changes dPER
and dCLK transcriptional activities [21]. To begin to dissect
site-specific O-GlcNAc regulation, our group mapped dPER
and dTIM O-GlcNAc sites in fly heads using MS proteomics
[23,180]. We found that O-GlcNAcylation of dPER S942 inhi-
bits the interaction of dPER and dCLK and reduces dPER
repressor activity [23]. The function of O-GlcNAcylation on
dTIM however remains to be determined. In mammalian
clock, O-GlcNAcylation is shown to stabilize BMAL1 and
CLOCK by inhibiting their ubiquitination [22]. In HEK293
cells, O-GlcNAcylation and phosphorylation compete at
PER2 S662, and O-GlcNAcylation of S662 increases PER2
repressor activity [21]. In summary, O-GlcNAcylation is
highly involved in the regulation of molecular oscillators
(figure 3). Future site-specific characterization of clock proteins
is needed to further understand the mechanisms by which
metabolic input regulates molecular oscillators and biological
rhythms through O-GlcNAcylation.
4.2. Regulation of rhythmic cellular processes beyond
the molecular oscillator by O-GlcNAcylation

O-GlcNAcylation not only occurs on clock proteins, but
also regulates the function of a large part of the proteome
(figure 3). By cataloging results from over 1700 articles,
O-GlcNAcome Database listed 7789 human O-GlcNAc
proteins and 3503 mouse O-GlcNAc proteins [18]. Meta
analysis on the human O-GlcNAcylated proteins from
Wulff-Fuentes et al. [18] and combing through published
O-GlcNAcomic papers [153–173] suggest that O-GlcNAc
proteins are heavily involved in nucleic acid binding/
transcriptional regulation/RNA metabolism, metabolism of
proteins, cellular structure and cell signalling (figure 3).
Many elegant reviews have summarized published functio-
nal investigations of O-GlcNAcylation on cellular proteins
(e.g. [16,17,19,181,182]). To date, although circadian/daily
rhythm of the O-GlcNAcome has yet to be conducted, our
study showing robust daily rhythmicity in global protein
O-GlcNAcylation in Drosophila tissues suggests that diverse
cellular processes and molecular pathways could potentially
be rhythmically regulated by daily cycling O-GlcNAcylation
that is sensitive to metabolic input [15].

In table 2, we summarize published efforts to identify
O-GlcNAcylated proteins in different cell types or tissues,
which could provide insights into tissue- or cell-specific
daily O-GlcNAc regulation on biological rhythms. In particu-
lar, we highlight pathways with O-GlcNAcylated factors that
are critical for performing tissue- or cell-specific functions.
We excluded O-GlcNAcomic studies conducted using
cancer cell lines, as cellular O-GlcNAc status is known to be
altered in cancer cells compared to cells under physiological
conditions [183–185]. Finally, we also excluded studies con-
ducted using whole organisms, such as D. melanogaster and
Caenorhabditis elegans [186–188], since our focus in table 2 is
on tissue-specific characterization.

In addition to tissue- or cell-specific studies, there are
other in depth O-GlcNAcomic studies at the organelle level,
such as mitochondria from rat heart [189,190] and rat liver
[191], cardiac myofilament from rat [192], synapses from
mouse brain [130,193,194], ribosome from rat liver [195]
and nuclei from mouse embryonic stem cells [196]. Addition-
ally, comparative O-GlcNAcomic studies have been carried
out in cell culture systems to investigate the role of O-GlcNA-
cylation under different conditions [197–199] or during the
progression of cell cycles [200,201]. However, comparative
O-GlcNAcomic studies over different time points of a 24 h
day and in different organs/tissues in vivo are warranted to
reveal the role of O-GlcNAcylation in regulating daily rhyth-
micity in organ- and tissue-specific physiology and potential
differential regulation by metabolic and circadian signals.
5. Conclusion
Significant progress has been made to elucidate the regu-
lation of metabolic signals on daily rhythms in physiology
and behaviour. Metabolic input regulates gene expression
at specific times of day through nutrient-sensing pathways
influenced by feeding–fasting cycles. This is accomplished
through functional modification of core clock proteins and/
or epigenetic regulation of the genomic landscape. Our
recent study showed that O-GlcNAcylation is also an



Table 2. O-GlcNAcomic studies in animal tissues and cell lines.

tissue or cell type organism

number of
O-GlcNAc
proteins

number of
O-GlcNAc
sites

tissue- or cell-specific function of
O-GlcNAcylation references

nervous system

forebrain rat 25 n.a. cellular communication/signal transduction;

intracellular transport

[153,154]

hippocampus mouse 14 n.a. neuronal structure; glucose metabolism [155]

cerebral cortical

tissue

mouse 274 n.a. neurogenesis; synaptic transmission; learning and

memory; cytoskeleton

[156]

cortex mouse 278 n.a. synaptic trafficking; notch/Wnt signalling; circadian

clock proteins

[157]

brain rat 30 n.a. signal transduction; cytoskeleton and vesicle

trafficking

[158]

brain human 530 1094 receptor signalling; substrate-adhesion dependent

cell spreading; cell projection assembly

[159]

muscular system

gastrocnemius

muscle

rat 14 n.a. glycolytic pathway and energetic metabolism;

contractile protein

[160]

C2C12 myotubes mouse 342 n.a. cytoskeleton and chaperones; transporter and

binding proteins; cell adhesion molecules

[161]

right ventricle rat 500 n.a. oxidation–reduction process; intracellular transport;

metabolism; cellular respiration and energy

[162]

excretory system

embryonic kidney

cells (HEK293)

human 1500 180 cell death; molecular transport; cellular assembly

and organization; cell cycle, growth and

proliferation; cell morphology; PTM

[163]

embryonic kidney

cells (HEK293)

human 75 n.a. cell-cell adhesion; cell cycle; molecular transport;

Purine ribonucleoside monophosphate biosynthetic

process; cellular response to heat; viral process

[164]

embryonic kidney

cells (HEK293)

human 215 n.a. Metabolism; Signal transduction; Translation;

Transport

[165]

urine human 457 n.a. organelle organization; cell cycle; cellular

localization; heterocycle metabolic processes; DNA

repair; cellular response to stress; developmental

processes; transport

[166]

immune system

T cell mouse 116 n.a. metabolic process; cellular component organization/

biogenesis; DNA packing

[167]

T cell human 133 n.a. nucleotide, nucleic acid transport [168]

T cell human 1045 n.a. viral process; cell-cell adhesion; cell cycle; cellular

transport; protein sumoylation

[169]

embryonic

macrophage-like

cells (S2 cells)

fruit fly 51 n.a. metabolism; stress response; cell cycle [170]

other tissues or cell types

liver rat 68 n.a. metabolism; transport; signal transduction [165]

(Continued.)
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Table 2. (Continued.)

tissue or cell type organism

number of
O-GlcNAc
proteins

number of
O-GlcNAc
sites

tissue- or cell-specific function of
O-GlcNAcylation references

osteoblasts

(MC3T3E1)

mouse 20 n.a. post-translational regulation; systemic nutrient

homeostasis

[171]

placental

trophoblasts

(BeWo)

human 829 n.a. translational initiation; viral transcription; SRP-

dependent co-translational protein targeting to

membrane

[172]

fibroblasts (NIH3T3) mouse 374 n.a. metabolism; intracellular transport [173]
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important mechanism that integrates metabolic and circadian
signals to regulate the daily biological rhythms [15]. In this
review, we summarize published and potential mechanisms
by which metabolic and circadian signals can shape daily
O-GlcNAc oscillation, discuss crosstalk between O-GlcNAcy-
lation and the phosphoproteome to regulate rhythmic protein
functions, and highlight cellular pathways that may be regu-
lated by oscillating O-GlcNAcylation in different tissues or
cell types. As time-restricted feeding/eating is emerging as
a non-invasive therapeutic strategy to alleviate metabolic syn-
dromes [30,35,202,203], our review provides mechanistic
insight into the significance of properly aligning our eating
time with biological rhythm. Since we showed in Drosophila
that food consumption at unnatural feeding time of the
day–night cycle can dampen the oscillation of protein
O-GlcNAcylation [15], it is likely that rhythmic functions of
O-GlcNAc proteins/pathways would be disrupted with mis-
timed eating. This may contribute to deleterious effects of
mistimed eating and high-fat diet, which has been shown
to impair feeding–fasting rhythms and rhythmic metabolic
input [204,205].

It is important to note that different organs or tissues are
likely differentially regulated by metabolic input versus circa-
dian input. For example, despite that the blood–brain barrier
is expected to render brain tissues less sensitive to daily oscil-
lation of metabolites, O-GlcNAcylation has been detected in
brain tissues and shown to oscillate on clock proteins in fly
heads [20,21,23]. Our understanding of the similarities and
divergence among O-GlcNAcomes in multiple organs or tis-
sues and how organisms coordinate organ/tissue-specific O-
GlcNAcomic rhythms to properly maintain time-of-day
physiology at the organismal level will improve with contin-
ued development of comparative O-GlcNAcomic methods
[198,201].

In this review, we largely focused on O-GlcNAcylation as
an intracellular mechanism that underlies metabolic regu-
lation of daily biological rhythms. We briefly mentioned a
few intercellular signals, such as insulin, EGF, TGFβ, which
could contribute to regulation of protein O-GlcNAcylation.
However, there are many other intercellular signals, includ-
ing neuronal signals, hormones (melatonin, adrenal cortex
hormones, thyroid hormones etc.) and gut microbiota,
which can relay time-of-day specific metabolic signals to
influence cellular protein functions. How O-GlcNAcylation
responds to these intercellular signals is unknown and
beyond the scope of this review.

Finally, it is important to note that O-GlcNAcylation is
only one of many nutrient-sensitive PTMs. Feeding–fasting
cycles likely regulate daily cellular physiology through
other metabolite-driven PTMs. Figlia et al. [206] reviewed
over 20 different types of PTM using metabolites, such as
lipids, amino acids, Coenzyme-A, acetate, malonate and lac-
tate. Future studies are warranted to determine whether
these nutrient-sensitive PTMs are also involved in regulation
of daily biological rhythms. Recently, Bludau et al. [207]
developed an exciting tool to predict protein structure with
PTMs. In combination with site-specific information of
these metabolite-driven PTMs, the metabolic regulation of
protein functions could be computationally predicted,
which could provide a more comprehensive view on the
metabolic effect on daily biological rhythms.
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