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Abstract
This study provides extended seasonal predictions for the Upper Colorado River Basin (UCRB) precipitation in boreal spring 
using an artificial neural network (ANN) model and a stepwise linear regression model, respectively. Sea surface tempera-
ture (SST) predictors are developed taking advantage of the correlation between the precipitation and SST over three ocean 
basins. The extratropical North Pacific has a higher correlation with the UCRB spring precipitation than the tropical Pacific 
and North Atlantic. For the ANN model, the Pearson correlation coefficient between the observed and predicted precipitation 
exceeds 0.45 (p-value < 0.01) for a lead time of 12 months. The mean absolute percentage error (MAPE) is below 20% and 
the Heidke skill score (HSS) is above 50%. Such long-lead prediction skill is probably due to the UCRB soil moisture bridg-
ing the SST and precipitation. The stepwise linear regression model shows similar prediction skills to those of ANN. Both 
models show prediction skills superior to those of an autoregression model (correlation < 0.10) that represents the baseline 
prediction skill and those of three of the North American Multi-Model Ensemble (NMME) forecast models. The three NMME 
models exhibit different skills in predicting the precipitation, with the best skills of the correlation ~ 0.40, MAPE < 25%, and 
HSS > 40% for lead times less than 8 months. This study highlights the advantage of oceanic climate signals in extended 
seasonal predictions for the UCRB spring precipitation and supports the improvement of the UCRB streamflow prediction 
and related water resource decisions.

Keywords  Upper Colorado River Basin precipitation · Sea surface temperature · Extended seasonal prediction · Artificial 
neural network · Statistical forecast · North American Multi-Model Ensemble

1  Introduction

The Upper Colorado River Basin (UCRB), defined as the 
catchment region upstream of the stream gauge of the 
Colorado River at Lees Ferry, Arizona, plays an impor-
tant role in water resources over the southwestern United 
States (Jacobs 2011). In recent years, a declining trend was 
observed in the UCRB streamflow during April–July, con-
tributed by sustained drought conditions, in large part due 

to reduced precipitation (including both rainfall and snow-
fall) and increase of surface temperature on seasonal scales 
(Xiao et al. 2018; Hobbins and Barsugli 2020; Milly and 
Dunne 2020). Currently, the water level at Lake Powell 
approaches the minimum level (3525 feet) that is required 
to meet downstream water delivery obligation to the Lower 
Colorado River Basin under a 100-year-old water-sharing 
agreement, the Colorado River Compact (Sakas 2021). Con-
sequently, reliable seasonal prediction of the UCRB stream-
flow becomes increasingly important for water management 
decisions.

Climate variables such as regional precipitation (rainfall 
and snowfall) and snowpack have large impacts on stream-
flow. These variables have been applied to short-lead sea-
sonal predictions of streamflow and water supply for the 
Colorado River, including those from Natural Resources 
Conservation Service and Colorado Basin River Forecast 
Center (e.g., Franz et al. 2003; Pagano et al. 2009; Werner 
and Yeager 2013; Fleming and Goodbody 2019). Although 
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snow water equivalent in April has the dominant influence 
on peak flow of the UCRB in April–July, precipitation in 
spring can significantly influence snow melting and runoff of 
the UCRB, and so to influence year to year variation of the 
UCRB streamflow. Thus, a more skillful extended seasonal 
prediction of precipitation over the UCRB could potentially 
reduce the uncertainty of its streamflow forecast, especially 
for the years with strong precipitation anomalies in spring.

To increase the prospect of long-lead forecasts of the 
UCRB hydroclimate systems (e.g., streamflow and precipi-
tation), previous studies have investigated the relationship 
between the UCRB hydroclimate systems and large-scale 
climatic teleconnections, such as those related to sea sur-
face temperature (SST) (e.g., Kim et al. 2006; Regonda 
et al. 2006; Switanek et al. 2009; Bracken et al. 2010; Kalra 
and Ahmad 2011; Sagarika et al. 2015, 2016; Zhao et al. 
2021). Numerous studies focused on the role of Pacific and 
Atlantic SST, especially the El Niño–Southern Oscillation 
(ENSO), Pacific Decadal Oscillation (PDO), and Atlantic 
Multidecadal Oscillation (AMO) (e.g., Hidalgo and Dracup 
2003; Kim et al. 2006; Kalra and Ahmad 2011; Nowak et al. 
2012; McGregor 2017; Tamaddun et al. 2017, 2019; Zhao 
et al. 2021; Zhao and Zhang 2022). An early study showed 
that the UCRB streamflow has a higher correlation with the 
AMO compared to other indices associated with the Pacific 
and Indian Oceans on decadal-to-multidecadal time scales 
(McCabe et al 2007), while a recent study found a stronger 
correlation between the Pacific SST and the UCRB stream-
flow in recent decades on interannual time scales (Zhao et al. 
2021). For precipitation, Hidalgo and Dracup (2003) showed 
that the UCRB precipitation during the warm (cold) season 
is strongly (weakly) correlated to the El Niño. Similarly, 
Kim et al. (2006) found that the warm phase of the ENSO 
is associated with precipitation increase during summer in 
the UCRB, whereas its cold phase is linked to precipitation 
reduction during winter in the lower basin. Zhao and Zhang 
(2022) further showed the causal effect of the tropical Pacific 
SST in the previous winter on the UCRB spring precipita-
tion using a Granger causality approach. The relationship 
between the ENSO and Colorado River Basin (CRB) pre-
cipitation could be modified by the PDO (Kim et al. 2006).

Taking advantage of oceanic teleconnection, previous 
studies have used SSTs over multiple basins as predictors 
to predict the UCRB (or CRB) streamflow and precipita-
tion (e.g., Regonda et al. 2006; Bracken et al. 2010; Lamb 
et al. 2011; Oubeidillah et al. 2011; Kalra and Ahmad 
2011, 2012; Sagarika et al. 2015, 2016; Zhao et al. 2021). 
For example, Zhao et al. (2021) developed an extended 
seasonal prediction of the UCRB April–July streamflow 
with lead times up to nine months by using Pacific SST 
predictors that have lag-correlation with the streamflow. 
Their results suggested that the long-lead prediction skill 
is linked to the strong correlation between the Pacific 

SST and UCRB streamflow in recent decades. Kalra and 
Ahmad (2012) adopted a modified version of the Support 
Vector Machine-based framework to predict annual precip-
itation (accumulated over 12 months) over the CRB with a 
lead time of one year using ocean–atmosphere oscillations 
from 1900 to 2008. Their results showed that using PDO, 
North Atlantic Oscillation (NAO), and AMO indices as 
predictors leads to a successful prediction of upper basin 
annual precipitation, while the AMO and ENSO-related 
indices can improve prediction skills over the lower basin. 
Kalra and Ahmad (2011) applied the k-nearest neighbor 
nonparametric technique and found that prediction skills 
for spring and winter precipitation are better compared to 
those for the summer and autumn seasons.

The long-lead seasonal prediction of the UCRB pre-
cipitation prior to the runoff season (April–July) is critical 
because water resource decisions often require extended 
seasonal predictions with a long lead time. For example, 
the California Department of Water Resources needs 
predictions of winter and spring precipitation and snow 
water equivalent in the prior August for its water resource 
planning. Due to the linkage between SST and UCRB 
hydroclimate system, the goal of our study is to provide 
an extended (up to one year) seasonal prediction of the 
UCRB precipitation using predictors derived from SST 
over the Pacific and North Atlantic.

Following Zhao et al. (2021), we apply a machine learn-
ing tool, i.e., an artificial neural network (ANN), to predict 
the UCRB precipitation and compare prediction skills of 
the ANN with those of a stepwise linear regression model, 
an autoregression model, and three of the North American 
Multi-Model Ensemble (NMME) models. Specifically, the 
ANN is able to identify nonlinear relationships among geo-
physical fields and supplements traditional linear statistical 
methods in forecasting meteorological and oceanographical 
fields (e.g., Hsieh and Tang 1998; Hsieh 2001). The step-
wise linear regression applies a sequential forward selection 
approach, which selects predictors in a sequential order by 
maximizing the total variance explained at each step, and is 
widely used for seasonal forecasts (e.g., Yim et al. 2015; Li 
and Wang 2018; Long et al. 2022). Compared to other more 
advanced linear regression models (e.g., Ridge and Lasso 
regression), the stepwise regression model does not involve 
any hyperparameter that needs to be tuned and validated 
with a large number of samples. The autoregression model 
and NMME models act as a baseline for the prediction. In 
addition, the role of soil moisture as a “bridge” between SST 
and UCRB precipitation will also be examined in this study. 
As suggested by previous studies, soil moisture in previ-
ous seasons may be important to precipitation in the fol-
lowing season (e.g., Beljaars et al. 1996; Zhang et al. 2008; 
Koster et al. 2016; Yang et al. 2016). Such mechanism of 
the influence of soil moisture on local precipitation has been 
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evaluated through an atmospheric general circulation model 
(AGCM) (Koster et al. 2016).

2 � Data and methods

2.1 � Data

The observed monthly averaged precipitation from 1948 
to 2019 comes from National Oceanic and Atmospheric 
Administration (NOAA) Climate Prediction Center (CPC) 
Unified Gauge-Based Analysis with a spatial resolution of 
0.25° (Chen et al. 2008). Note that we aim to predict precipi-
tation during the period of 1980–2019, and the data during 
1948–1979 are used for training with retrospective cross-
validation. The observed monthly averaged precipitation 
and soil moisture come from three models (i.e., VIC, Noah, 
and Mosaic) of Phase 2 of the North American Land Data 
Assimilation System (NLDAS-2) with a resolution of 0.25° 
(Xia et al. 2012). The NLDAS-2 dataset was created via the 
incorporation of observational and reanalysis data into the 
non-atmosphere coupled land-surface model, and the three-
model mean values are used in this study. This study also 
uses predicted monthly averaged precipitation from three 
state-of-the-art NMME models, i.e., the CanSIPSv2, COLA-
RSMAS-CCSM4, and GFDL-CM2p5-FLOR-B01, with a 
resolution of 1.0° from 1983 to 2018 (Kirtman et al. 2014). 
These three models have the longest lead time for predic-
tions of precipitation.

The monthly total natural flow data at Lees Ferry from 
1980 to 2018 is obtained from the Bureau of Reclamation 
(Prairie and Callejo 2005). The monthly averaged SST is 
obtained from the Hadley Centre Sea Ice and Sea Surface 
Temperature datasets (HadISST) from 1947 to 2019 at the 
spatial resolution of 1.0° (Rayner et al. 2003). The monthly 
mean integrated water vapor transport (IVT) and geopoten-
tial height are from 1979 to 2019 from the European Centre 
for Medium-Range Weather Forecasts fifth-generation rea-
nalysis (ERA5) at the spatial resolution of 2.5° (Copernicus 
Climate Change Service 2017).

2.2 � Hindcast

Our analysis shows that the correlation coefficient between 
the UCRB April–July streamflow and the UCRB averaged 
spring precipitation is apparently larger than that between 
the April–July streamflow and winter precipitation (Fig. S1), 
indicating that the predictability of the streamflow mainly 
arises from the UCRB spring precipitation. Thus, we mainly 
focus on the UCRB spring precipitation in this study. The 
hindcast of precipitation covers spring (March–May) for the 
period of 1980–2019. For statistical forecast models, we use 
observations averaged over February to perform 1-month 

lead (LD1) predictions and use observations averaged over 
January to perform 2-month lead (LD2) predictions. Simi-
larly, we use observations averaged over March of the previ-
ous year to perform the 12-month lead (LD12) predictions.

For NMME models, real-time forecasts are issued on the 
15th of each month using observations on the 1st day of 
that month (Kirtman et al. 2014). For example, forecasts 
issued on March 15th, 2019, were initialized by observa-
tion on March 1st, 2019. We average the predicted monthly 
precipitation by NMME models for March, April and May, 
respectively, as their prediction for spring precipitation. To 
be comparable with statistical forecasts, the NMME LD1 
prediction of spring precipitation is referred to as forecast 
initialized by March 1st observations issued on the 15th of 
March. Similarly, the LD2 prediction is referred to as fore-
cast initialized by February 1st observations issued on the 
15th of February. Note that the prediction of the statistical 
forecast model actually has a somewhat longer lead time 
than that of the NMME model.

2.3 � Statistical seasonal predictions

In this study, the seasonal prediction of the UCRB spring 
precipitation contains three major parts: deriving predictors, 
creating statistical forecast models, and evaluating prediction 
skill. The general workflow of this study is similar to that 
in Zhao et al. (2021), while the predictors and predictand 
are different. Here the predictors and predictand are SST 
over three ocean basins (extratropical North Pacific, tropical 
Pacific, and North Atlantic) and UCRB spring precipita-
tion, respectively. Compared to Zhao et al. (2021) that used 
Pacific SST as a predictor for the UCRB streamflow, this 
study includes the North Atlantic SST as an additional pre-
dictor to predict the UCRB spring precipitation. The reason 
we include the North Atlantic SST is that the variability 
of the North Atlantic SST such as AMO can influence the 
UCRB hydroclimate system via oceanic-atmospheric oscil-
lation (e.g., McCabe et al 2007; Kalra and Ahmad 2009, 
2012).

We first create predictors by calculating the correlation 
between the UCRB spring precipitation and SST over the 
three ocean basins. Two cross-validated approaches are 
applied in this study: leave-three-out and retrospective 
approaches. For the leave-three-out cross-validation, we 
leave out three years centered on the year of prediction when 
calculating the correlation between SST and precipitation. 
For example, for LD1 of 2000, we use data from 1980 to 
1998 and from 2002 to 2019 to calculate their correlation. 
For years at the beginning or the end, for LD1 of 1980 as an 
example, we use data from 1983 to 2019 to calculate their 
correlation. For the retrospective cross-validation, we use 
data spanning 32 years to calculate their correlation. For 
example, for LD1 of 1980, we use data from 1948 to 1979 
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to calculate the correlation. Then, we derive SST predictors 
for each predicted year at each lead time based on correla-
tion maps between SST and precipitation following Zhao 
et al. (2021). The steps include: (1) dividing the SST over a 
selected domain into two groups, one for positive correla-
tions significant at the 95% level and the other for negative, 
(2) calculating the average SST for each group, and (3) com-
puting the difference between the two groups.

Next, we apply an ANN model and a stepwise linear 
regression model by using created SST predictors from LD1 
to LD12, and an autoregression model by using precipitation 
from LD1 to LD12, to predict the UCRB spring precipita-
tion. For the ANN, we use a two-layer feed-forward neural 
network, with a tan-sigmoid transfer function and a linear 
transfer function in the hidden layer and output layer, respec-
tively. Such selection of the transfer functions is consist-
ent with previous studies (e.g., Tangang et al. 1997, 1998; 
Hsieh and Tang 1998; Tang et al. 2000; Gaitan et al. 2014). 
Specifically, 5 neurons are used in the hidden layer and 1 
neuron for the output layer. The neural network is trained 
by the Bayesian Regularization backpropagation algorithm, 
which minimizes the combination of weights and squared 
errors. To reduce the effect of nonlinear instability and over-
fitting, we run the model 10 times and use the 10 ensemble 
members because the parameters of the neural network are 
randomly initialized. The stepwise linear regression model 
sequentially selects predictors by maximizing the total vari-
ance of the predictors explained at each step. At the first 
step, the predictor that is statistically significant at the 0.05 
level and has the highest correlation with the predictand is 
selected. In the next step, we select the predictor yielding 
the highest correlation coefficient (statistically significant) 
together with the predictor selected in the previous step. 
The same procedure is then sequentially repeated until no 
statistically significant predictor is detected. The autoregres-
sion model uses the UCRB precipitation during LD1–LD12 
to predict the spring precipitation. Linear regression coef-
ficients are computed between the spring precipitation and 
leading precipitation and are used for prediction. A detailed 
description of the three models can be found in Zhao et al. 
(2021).

We use the two cross-validated approaches to train the 
ANN and stepwise linear regression models. For the leave-
three-out approach, for example, we use SST predictors from 
February 1983 to February 2019 observations to train the 
statistical models for the LD1 prediction of spring precipi-
tation in 1980. For the retrospective approach, for exam-
ple, we use SST predictors from February 1948 to Febru-
ary 1979 observations to train the statistical models for the 
LD1 prediction of spring precipitation in 1980. In addition, 
we use the leave-three-out approach to train the autore-
gression model. Finally, we use three metrics, the Pearson 
correlation, mean absolute percentage error (MAPE; e.g., 

Fernández-González et al. 2017; Lv et al. 2019), and Heidke 
skill score (HSS; e.g., Jury et al. 1999; Yoo et al. 2018), to 
evaluate prediction skills of forecast models for each pre-
dicted year of 1980–2019. The equations of the three metrics 
are shown below.

where “Hindcast” and “Obs” are predicted and observed pre-
cipitation, respectively; cov() is the covariance between the 
two variables and σ() indicates the standard deviation. The 
MAPE is shown as:

where N is total number of years. The HSS is defined as:

where H and E are the total and expected number, respec-
tively, of correct predictions of the sign of the normalized 
precipitation. E sets to be N∕3 for a random forecast.

3 � Results

3.1 � UCRB precipitation

We calculate the climatological mean (for 1980–2019) of 
both monthly and annual mean domain averaged precipi-
tation (Fig. 1a). The result shows that the monthly mean 
precipitation has the largest magnitude during spring, 
late summer, and early autumn, and is not sensitive to the 
dataset applied. The annual mean precipitation is around 
1.1 mm day–1 and the spring mean precipitation exceeds 
this value. It is interesting to note that there is a dip during 
June. The decrease of rainfall from April to June may be 
associated with the intensification of the high-pressure sys-
tem over the western North America, while the increase of 
the rainfall from June to September is likely due to a north-
eastward shift of the high-pressure center during the North 
American summer monsoon (Smith and Kummerow 2013). 
The similarity between UCRB precipitation (especially in 
spring) in NOAA CPC dataset and NLDAS dataset indicates 
that the result is not sensitive to dataset applied. In the fol-
lowing study, we will focus on the spring season and use the 
NOAA CPC dataset.

Figure 1b shows the long-term climatology of the spring 
precipitation over the UCRB. The precipitation with large 
values (> 1.5 mm day–1) appears over boundaries of the 
UCRB and provides water resources for the Colorado River 

(1)Pearson correlation =
cov(Obs, Hindcast)

σObsσHindcast
,

(2)MAPE =
1

N

N∑

i=1

||
|
|

Hindcast
i
− Obs

i

Obs
i

||
|
|
× 100%,

(3)HSS =
H − E

N − E
× 100%,



1819Extended seasonal prediction of spring precipitation over the Upper Colorado River Basin﻿	

1 3

and its branches. The correlation between the UCRB aver-
aged spring precipitation and April–July natural flow at Lees 
Ferry is also calculated, with a correlation coefficient of 0.56 
(Fig. 1c). Given its significant correlation with the UCRB 
April–July streamflow (Hoerling et al. 2019), we will focus 
on the UCRB averaged spring precipitation in the following 
analyses.

3.2 � Role of SST in the UCRB spring precipitation

Following previous studies that highlight the effect of the 
Pacific and North Atlantic SSTs (especially those related 
to ENSO, PDO, and AMO) on the UCRB precipitation 
(e.g., Hidalgo and Dracup 2003; Kim et al. 2006; Kalra and 
Ahmad 2011; Nowak et al. 2012; McGregor 2017; Tamad-
dun et al. 2017, 2019; Zhao et al. 2021; Zhao and Zhang 
2022), we calculate the correlation coefficient between 
the UCRB averaged spring precipitation and SST for 
LD1–LD12. Figure 2 shows the correlation coefficient aver-
aged over the period of 1980–2019 using the leave-three-out 
cross-validation. In general, the correlation coefficient over 
the Pacific exhibits a tri-pole pattern, with positive corre-
lations over the coast of North America and the tropical 

Pacific, and negative correlation over around 30°N, while 
the correlation coefficient over the North Atlantic is gener-
ally negative. To further examine the robustness of the SST 
patterns, we calculate the correlation coefficient between 
SST and precipitation using the retrospective cross-valida-
tion. The averaged correlation map shows similar patterns, 
despite smaller magnitude of the correlation (Fig. S2).

We create SST predictors for the extratropical North 
Pacific (20° N–65° N, 120° E–110° W), tropical Pacific 
(20°  S–20°  N, 120°  E–70°  W), and North Atlantic 
(0°–60° N, 70° W–0°), respectively. We select the three 
basins to create SST predictors because (1) the correlation 
coefficients over the three basins are relatively high and (2) 
the linkage between SST over the three basins and UCRB 
precipitation is well documented (e.g., Hidalgo and Dra-
cup 2003; Kim et al. 2006; Kalra and Ahmad 2011, 2012; 
Nowak et al. 2012; McGregor 2017; Tamaddun et al. 2017, 
2019). The change of SST predictors is very small when we 
alter the boundary of the SST domain by several degrees. As 
described in the methodology (Sect. 2.3), the SST predictor 
varies each year and lead time.

Figure 3a–c shows the correlation coefficients between 
SST predictors for each of the three ocean basins and the 

Fig. 1   a Climatological mean of the monthly mean precipitation 
(unit: mm day–1) averaged over the UCRB using NOAA CPC (red) 
and NLDAS (blue) datasets, respectively. The black dashed line 
denotes the climatological mean of annual mean precipitation using 
NOAA CPC dataset. b Climatological mean of precipitation (unit: 
mm day–1) during spring over the UCRB. The abbreviations of the 

states are labeled. c Normalized spring precipitation (bars) averaged 
over the UCRB and April–July normalized total natural flow at Lees 
Ferry (black line) for the period of 1980–2019. r represents the cor-
relation coefficient between UCRB averaged spring precipitation and 
April–July total natural flow
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UCRB averaged spring precipitation for each predicted year 
at each lead time using the leave-three-out approach. Aver-
age correlation coefficients (red line) are all greater than 
0.40 and significant at the 99% level. In general, the average 
correlation coefficient of the extratropical Pacific SST pre-
dictors is higher than that of the other two ocean-basin pre-
dictors, indicating that the extratropical Pacific plays a more 
significant role in the UCRB spring precipitation than do 
the tropical Pacific and North Atlantic. The average corre-
lation coefficient of the extratropical Pacific SST predictors 
drops quickly from 0.70 at LD1 to 0.47 at LD4 but increases 
somewhat to around 0.50–0.60 afterward, consistent with the 
evolution of correlation patterns for the extratropical Pacific 
(Fig. 2). In addition, we also calculate correlation coeffi-
cients between the UCRB averaged spring precipitation and 
SST predictors for the three ocean basins together (Fig. S3a) 
and global oceans (Fig. S3b), respectively, for each predicted 
year at each lead time using the leave-three-out approach. 
The correlation coefficients are much smaller than those for 

extratropical Pacific SST predictors because the large con-
tribution of the extratropical Pacific is unable to stand out 
when it is mixed with other ocean basins.

Figure 3d–f shows correlation coefficients between SST 
predictors for each of the three ocean basins and the UCRB 
averaged spring precipitation for each predicted year at each 
lead time using the retrospective approach. The retrospec-
tive approach shows a larger spread of each year’s correla-
tion coefficient (gray line) than that of the leave-three-out 
approach, but their average correlation coefficients (red line) 
are similar. Such a larger spread of the correlation is due 
to longer data records used in the retrospective approach. 
This result suggests that the decadal variability of the cor-
relation between the UCRB spring precipitation and SST 
contributes to the larger spread among different years, as 
discussed in Zhao et al. (2021). In addition, we also compute 
the correlation between the UCRB average spring precipi-
tation and other climatic indices over Pacific and Atlantic 
for LD1–LD12. These indices include PDO, Oceanic Niño 

Fig. 2   a The correlation coefficient (shading) between SST and 
UCRB spring precipitation at LD1 using the leave-three-out cross-
validation averaged for the period of 1980–2019. Black dots represent 
correlation coefficients significant at the 95% level. The blue, purple, 

and green boxes represent the extratropical North Pacific, tropical 
Pacific, and North Atlantic, respectively. b–l Same as in a, but from 
LD2 to LD12
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Index (ONI), AMO, North Pacific Index (NPI), North Pacific 
Gyre Oscillation (NPGO; similar to the second empirical 
orthogonal function mode of North Pacific SST––the Vic-
toria Mode), and Atlantic Niño Index (ATL3). The result 
shows that their correlations range from − 0.50 to 0.40 (Fig. 
S4), significantly lower than those of SST predictors (espe-
cially the North Pacific SST predictors) derived in this study 
(Fig. 3).

It is noted that there is a dip in the correlation coefficient 
in Fig. 3 for short lead times (e.g., LD4–LD6) but a higher 

correlation at longer lead times (e.g., LD10–LD11). Fol-
lowing previous studies that suggested that soil moisture 
in previous seasons may be important to precipitation in 
the following season (e.g., Beljaars et al. 1996; Zhang et al. 
2008; Koster et al. 2016; Yang et al. 2016), here we hypoth-
esize that the long memory of soil moisture is responsible 
for the higher correlation between SST and UCRB spring 
precipitation for the long lead times.

To examine this hypothesis, we first calculate the cor-
relation between UCRB averaged spring precipitation and 

Fig. 3   a Correlation coefficients between the North Pacific SST pre-
dictors and UCRB averaged spring precipitation from LD1 to LD12 
for 1980–2019. The gray lines denote correlations between the two 
variables using the leave-three-out cross-validation. There are a total 
of 40 gray lines and each line represents one year during 1980–2019. 

The red line represents the average of all the 40 years. b and c, Same 
as in a, but for the tropical Pacific and Atlantic SST predictors. d–f, 
Same as in a–c, but for the retrospective approach. The black dashed 
lines represent correlation coefficients significant at the 99% level
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UCRB averaged November–February (NDJF) soil mois-
ture for the period of 1980–2019. Their correlation is 0.35 
(significant at the 95% level), indicating that the NDJF soil 
moisture is significantly correlated to spring precipitation 
over the UCRB. The mechanism of the influence of soil 
moisture on local precipitation has been investigated via an 
AGCM (Koster et al. 2016). Next, we calculate the correla-
tion between UCRB averaged soil moisture in NDJF and 
that in the leading times (LD5–LD12; note that these lead 
times correspond to the spring precipitation) to investigate 
whether soil moisture has a long memory (i.e., autocorre-
lation). Their correlation coefficients range from 0.65 (for 
LD5) to 0.35 (for LD10–LD12) (significant at the 95% 
level) (Fig. 4a), indicating that the soil moisture’s signal at 
LD10–LD12 (i.e., previous spring) can persist through the 
following winter (i.e., NDJF). Then, we compute the cor-
relation between the UCRB averaged soil moisture and SST 
over the three basins for each lead time of LD5–LD12 (these 
lead times correspond to the spring precipitation). The result 
shows that the correlation between soil moisture and SST at 
short lead times (e.g., LD5–LD6) is generally lower than that 

at long lead times (e.g., LD9–LD12) (Fig. S5). Such a result 
is confirmed when we count the number of grid points over 
the three ocean basins with correlation coefficients signifi-
cant at the 95% level: the number for long lead times is much 
larger than that for short lead times (Fig. 4b).

The above result may be counterintuitive, and is presum-
ably due to seasonal variation of the teleconnection. SST 
in previous September–October (LD5–LD6) generally 
has a weaker remote influence on the UCRB soil moisture 
(at LD5–LD6) and thus spring precipitation than SST in 
March–June (LD9–LD12) does. The long memory of soil 
moisture (Fig. 4a) appears to preserve the SST influence 
from the previous spring/early summer to winter (NDJF) 
and then influence the precipitation in the following spring. 
Thus, the high correlation between SST and UCRB spring 
precipitation for long lead times (Fig. 3) is probably due to 
(1) high correlation between SST and UCRB soil moisture at 
these lead times and (2) such SST–soil moisture information 
persisting into the following spring (Fig. 4).

We further examine how IVT is linked to soil moisture 
by regressing the IVT for each lead time of LD1–LD12 
onto the UCRB averaged soil moisture for each lead time 
of LD1–LD12 (Fig. 5). For most of the lead times (e.g., 
LD1–LD9 and LD12), the IVT originated from the south, 
west or southwest is linked to soil moisture over the UCRB, 
while the IVT from the east is associated with the soil mois-
ture for LD10–LD11. To understand the physical mechanism 
associated with the IVT–soil moisture linkage, we further 
investigate the regressed geopotential height at 850 hPa. In 
general, the UCRB soil moisture is accompanied by low 
pressure anomalies in the lower troposphere (850 hPa) over 
the eastern Pacific or the United States. Such low pressure 
anomalies may induce IVT from the south, west or south-
west (e.g., LD1–LD9 and LD12). For LD10–LD11, the 
IVT originated from the east is accompanied by westward 
extended low pressure anomalies located over the eastern 
United States (Fig. 5j–k). Due to the long memory of soil 
moisture (Fig. 4a), those atmospheric features (IVT and 
geopotential height) in long lead times can potentially be 
linked to soil moisture in winter (i.e., NDJF) and thus spring 
precipitation.

3.3 � Prediction skills of precipitation

We perform extended seasonal predictions for the UCRB 
spring precipitation using normalized SST predictors of 
the three ocean basins. The discussion in previous section 
suggests that soil moisture can act as a “bridge” between 
SST and UCRB precipitation. The correlation between the 
UCRB averaged soil moisture from LD1 to LD12 and UCRB 
averaged spring precipitation is less than 0.40. Thus, we 
will only use SST predictors of the three ocean basins as 
predictors. We compare the prediction skills of the ANN 

Fig. 4   a Correlation coefficients between UCRB averaged soil mois-
ture in NDJF and that in LD5–LD12. b The number of points over 
the domain of the three ocean basins with correlation coefficients 
(between the UCRB averaged soil moisture and SST over the three 
basins at the same lead time) significant at the 95% level. In other 
words, we first calculate the correlation coefficient between the 
UCRB averaged soil moisture at one lead time (e.g., LD5) and SST 
over the three basins at that lead time (e.g., LD5). Then, we calculate 
the total number of grid points with correlation coefficient significant 
at the 95% level
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model with those of the stepwise linear regression model, 
the autoregression model, and three NMME models. Three 
verification metrics are used to evaluate prediction skills.

Figure 6a exhibits correlation coefficients between the 
observed and predicted precipitation from LD1 to LD12 
using the leave-three-out cross-validation. For the ANN 
model (with 10 ensemble members), Pearson correlation 
is above 0.40 (p-value < 0.01) for LD1–LD12, with high 
correlations (> 0.50) for LD1–LD2 and LD8–LD12, con-
sistent with the higher correlation between the extratropi-
cal Pacific SST predictors and precipitation for these lead 
times (Fig. 3a). This result confirms the dominant role of the 
extratropical North Pacific in the UCRB spring precipitation. 
The correlation coefficient of the ANN is generally higher 
than that of the stepwise linear regression model, especially 
for LD3, LD5, and LD6. The autoregression model has no 
skill (correlation < 0.10). The MAPE of the ANN is less 
than 20%, indicating that the magnitude of precipitation 
is well captured, while the MAPE values in the other two 
approaches are larger (Fig. 6b) than that of ANN. In addi-
tion, we also use six oceanic indices (PDO, ONI, AMO, 

NPI, NPGO, and ATL3) from LD1 to LD12 as predictors to 
predict the UCRB spring precipitation by applying the ANN. 
The result is listed in Table S1 and the skill is lower than that 
using SST predictors of the three ocean basins as predictors.

For the retrospective approach, the Pearson correlation is 
slightly smaller and MAPE is slightly larger than those of 
the leave-three-out approach (Fig. 6e, f). The lower skills for 
the retrospective approach may result from the larger spread 
of the correlation in this approach (see Fig. 3). Addition-
ally, both the correlation and MAPE are similar between the 
ANN and stepwise linear regression model for the retrospec-
tive approach. The HSS for all years and anomalous years 
(precipitation anomalies outside the ± 1 standard deviation) 
ranges from 40% to 80% and 50% to 100%, respectively, for 
LD1–LD12, generally greater than 50% that is the threshold 
for a satisfactory prediction (Jury et al. 1999; Zhao et al. 
2021) (Fig. 6c, d, g, h). The HSS of the ANN is slightly 
higher than that of the stepwise linear regression model for 
both cross-validated approaches.

Figure 7 shows the hindcast of normalized precipitation 
anomalies for LD1–LD12 for individual years compared to 

Fig. 5   a Regression of IVT (vectors; unit: kg m–1 s–1) and geopoten-
tial height at 850 hPa (shading; unit: m) at LD1 onto the UCRB aver-
aged soil moisture at LD1. For IVT, values significant at the 95% 
confidence level or higher are shown in black vectors, where gray 
vectors indicate values not significant. For geopotential height, stip-

pling indicates regions significant at the 95% level. The green curve 
indicates the boundary of the UCRB. b–l Same as in a, but for the 
regression of IVT and 850  hPa geopotential height onto the UCRB 
averaged soil moisture with the same lead time for LD2–LD12, 
respectively
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those observed using the leave-three-out cross-validation. In 
general, both ANN and stepwise linear regression models 
can capture the sign of the observed precipitation anomalies, 
giving rise to the prediction skills shown in Fig. 6. Consist-
ent with the HSS, the sign of normalized precipitation is bet-
ter predicted by the ANN than the stepwise linear regression 
model for LD3, LD5, and LD6. Moreover, the sign of pre-
cipitation anomalies for extreme years is well captured (e.g., 
1989, 1995, 2002, 2012, and 2019). The statistical models 
also well capture the magnitude of precipitation anomalies 
for neutral years. However, precipitation anomalies with 
very large magnitudes are generally underestimated. For 
example, the hindcasts only predict about a half or less of 
the positive precipitation anomalies in 1995, the largest mag-
nitude during the 40 years, with only the exception at LD2, 
LD10, LD11 for the linear model. Similarly, the hindcasts 
underestimate the large negative precipitation anomalies 
in 2002 and 2012 and the positive anomalies in 2011 and 
2019. Similar results could be seen for predicted precipita-
tion anomalies for individual years using the retrospective 
approach (Fig. S6).

Finally, we compare verification metrics of the ANN 
model (with the two cross-validated approaches) with those 
of the three NMME models, which provide forecasts of 
spring precipitation with lead times up to 10 months. All 
the three NMME models show decreasing Pearson corre-
lations from LD1 to LD10 (Fig. 8a), consistent with typi-
cal prediction skills of dynamic models when lead time is 
longer (e.g., Zhao and Yang 2014,  Zhao et al. 2015). Such 
low skills at long lead times may be associated with (1) 
initial conditions for these lead times (as initial conditions 
are responsible for the initial bias growth; Ma et al. 2021) 
and (2) model drifts (e.g., asymptotic, overshooting, and 
inverse drift; Hermanson et al. 2018; Manzanas 2020). The 
CanSIPSv2 shows the best performance among the three 
models, and the prediction skill of the correlation is com-
parable to that of the ANN with the retrospective approach 
for LD1–LD5. The correlation after LD5 drops quickly for 
the CanSIPSv2 and is therefore much smaller than that of 
the ANN. The MAPE of predicted precipitation varies sig-
nificantly among the three models, ranging from ~ 25% for 
the CanSIPSv2 to > 100% for the COLA-RSMAS-CCSM4 

(Fig. 8b). Systematic errors in the model-simulated precipi-
tation were documented in previous studies (e.g., Zhao et al. 
2016, 2017). In addition, the CanSIPSv2 well captures the 
HSS (> 50%) for LD1–LD7 (Fig. 8c). For anomalous years 
(precipitation anomalies outside the ± 1 standard deviation), 
the improvement of the HSS compared to all years is not 
as much as that in the ANN (Fig. 8d), indicating that the 
prediction skill for extreme precipitation events in dynamic 
models is worse than that in the ANN.

Overall, the prediction skill of the ANN model resem-
bles that of the stepwise linear regression model for the 
lead time within one year, but the former is superior to the 
latter for some lead times (especially for the leave-three-
out approach). The similar prediction skill between the two 
statistical models indicates a largely linear relationship 
between UCRB spring precipitation and SST at seasonal and 
extended seasonal scales. Compared to the NMME models, 
the ANN shows better or comparable prediction skills for 
short-lead seasonal prediction (shorter than 6 months), but 
substantially higher skills for extended seasonal prediction 
(up to 1 year). The good prediction skills of the ANN at 
long lead times are probably due to (1) the high correlation 
between SST and UCRB soil moisture at these lead times 
and (2) such SST–soil moisture information persisting into 
the following spring (Fig. 4). The low prediction skills of the 
NMME models at longer lead times may be associated with 
initial conditions for these lead times and model drifts (e.g., 
Hermanson et al. 2018; Manzanas 2020; Ma et al. 2021).

4 � Concluding remarks

This study investigates the influence of SST over multiple 
ocean basins on the UCRB spring precipitation and pro-
vides an extended seasonal prediction of the precipitation 
using statistical forecast models. The extratropical North 
Pacific plays a more significant role in the UCRB spring 
precipitation than the tropical Pacific and North Atlantic. 
SST predictors over the three ocean basins are developed 
and show higher correlations with the UCRB precipitation 
than the widely used oceanic indices in the literature (e.g., 
PDO, ONI, and AMO).

Normalized SST predictors of the three basins are applied 
to the ANN model for predicting the UCRB precipitation 
using both the leave-three-out and retrospective cross-val-
idations. The ANN model shows good skills for predicting 
the precipitation up to one year in advance, with correla-
tion > 0.45, MAPE < 20%, and HSS > 50%, respectively. The 
good prediction skills of the ANN at long lead times may 
be due to the high correlation between SST and UCRB soil 
moisture at these lead times and such SST–soil moisture 
information persisting into the following spring. The ANN 
shows similar prediction skills to those of the stepwise linear 

Fig. 6   a The correlation coefficients between the observed and pre-
dicted precipitation from LD1 to LD12 using the leave-three-out 
cross-validation. The red and blue lines denote results from the ANN 
(ensemble mean) and stepwise linear regression, respectively, by 
using SST predictors of the three ocean basins. Shading denotes the 
spread of the maximum and minimum values of 10 ensembles of the 
ANN. The green line represents the result from the autoregression. 
b–d Same as in a, but for MAPE (%), HSS (%) for all years, and HSS 
(%) for anomalous years, respectively. e–h Same as in a–d, but for the 
retrospective cross-validation. The black dashed line represents a sat-
isfactory prediction, that is, Pearson correlation > 0.40, MAPE < 20%, 
and HSS > 50%

◂
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regression model, suggesting a largely linear system between 
precipitation and SST. The autoregression model shows no 
skill (correlation < 0.10). The prediction skill by using SST 
predictors derived in the three ocean basins is superior to 
the skill by using established modes of variability (i.e., the 
six oceanic indices). The three NMME models exhibit dif-
ferent skills in predicting the precipitation, but they are all 
lower than those of the ANN model. The CanSIPSv2 model, 
the best among the three NMME models, shows moderate 
skills for the lead time less than eight months, with cor-
relation ~ 0.40, MAPE ~ 25%, and HSS > 40%. The lower 
prediction skills of the NMME models at longer lead times 
are probably linked to initial conditions for these lead times 

and model drifts (e.g., Hermanson et al. 2018; Manzanas 
2020; Ma et al. 2021).

In conclusion, the ANN model can predict the UCRB 
spring precipitation for up to around one year in advance, 
providing a greater skill than dynamic models. Even 
though mountain snowpacks are the major source for 
streamflow (e.g., Barnett et al. 2005), precipitation anoma-
lies over the UCRB during spring are also able to signifi-
cantly influence the UCRB streamflow during April–July. 
Currently, the UCRB ensemble streamflow prediction 
uses historical probabilistic distributions of rainfall and 
temperature as part of the climate inputs. Improved sea-
sonal prediction of precipitation over the UCRB, such as 
that presented in this study, could provide more realistic 

Fig. 7   a The observed normalized UCRB spring precipitation (bars) 
and predicted results by the ANN (red dots) and stepwise linear 
regression (blue dots) by using SST predictors of the three ocean 

basins at LD1 from 1980 to 2019 with the leave-three-out cross-vali-
dation. b–l Same as in a, but from LD2 to LD12



1827Extended seasonal prediction of spring precipitation over the Upper Colorado River Basin﻿	

1 3

climate inputs to the UCRB streamflow prediction, and 
so potentially improve its skill, especially for the years 
with strong precipitation anomalies. Thus, the methods 
described in this study should improve climate guidance 
for water resource managers to act within existing fiscal 
management protocols.

Ongoing and future work include further understanding 
of the dynamical mechanism behind the statistical relation-
ship between the UCRB precipitation and SSTs. One might 
need to design experiments such as prescribing SSTs over 
different basins in GCMs to evaluate the response of the 
UCRB precipitation to the prescribed SSTs. The future work 
also includes further improving prediction skills (especially 
for three- to six-month lead predictions) by applying other 
linear/nonlinear statistical forecast models (e.g., Ridge and 
Lasso regressions and convolutional neural network) and 
incorporating other variables into the model. Moreover, 
future work may consider a complete investigation of the 
source of bias and prediction skills of the NMME models.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00382-​022-​06422-x.

Acknowledgements  We thank the two anonymous reviewers for their 
insightful comments. Authors JHJ, SC and HS acknowledge the support 
by the Jet Propulsion Laboratory, California Institute of Technology, 
under contract by NASA.

Funding  This study is funded by NOAA (NA170AR4310123), Cali-
fornia Department of Water Resources (4600013129), and Climate 
Indicators and Data Products for Future National Climate Assess-
ment from National Aeronautics and Space Administration (NASA) 
(NNX16AN12G).

Availability of data and material  The NOAA CPC data is from https://​
psl.​noaa.​gov/​data/​gridd​ed/​data.​unifi​ed.​daily.​conus.​html. The NLDAS-2 
data is from https://​disc.​gsfc.​nasa.​gov/​datas​ets?​keywo​rds=​nldas​&​
page=1. The UCRB streamflow data comes from https://​www.​usbr.​
gov/​lc/​region/​g4000/​Natur​alFlow/​suppo​rtNF.​html. The HadISST data 
is from https://​www.​metof​fi ce.​gov.​uk/​hadobs/​hadis​st/. The ERA5 data 
is from https://​cds.​clima​te.​coper​nicus.​eu/#​!/​search?​text=​ERA5&​type=​
datas​et. The NMME output is from http://​iridl.​ldeo.​colum​bia.​edu/​
SOURC​ES/.​Model​s/.​NMME/. The PDO index is from https://​www.​
ncei.​noaa.​gov/​pub/​data/​cmb/​ersst/​v5/​index/​ersst.​v5.​pdo.​dat. The ONI 

Fig. 8   a–d Same as in Fig.  6a–d, but for verification metrics from 
the ANN with the retrospective approach (purple), ANN with the 
leave-three-out approach (red), CanSIPSv2 (brown), COLA-RSMAS-

CCSM4 (green), and GFDL-CM2p5-FLOR-B01 (blue). Only LD1–
LD10 is available for the three NMME models

https://doi.org/10.1007/s00382-022-06422-x
https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
https://disc.gsfc.nasa.gov/datasets?keywords=nldas&page=1
https://disc.gsfc.nasa.gov/datasets?keywords=nldas&page=1
https://www.usbr.gov/lc/region/g4000/NaturalFlow/supportNF.html
https://www.usbr.gov/lc/region/g4000/NaturalFlow/supportNF.html
https://www.metoffice.gov.uk/hadobs/hadisst/
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat
https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat


1828	 S. Zhao et al.

1 3

index is from https://​origin.​cpc.​ncep.​noaa.​gov/​produ​cts/​analy​sis_​monit​
oring/​ensos​tuff/​ONI_​v5.​php. The AMO index is from https://​psl.​noaa.​
gov/​data/​times​eries/​AMO/. The NPI index is from https://​clima​tedat​
aguide.​ucar.​edu/​sites/​defau​lt/​files/​npind​ex_​month​ly.​txt. The NPGO 
index is from http://​www.​o3d.​org/​npgo/​npgo.​php. The ATL3 index is 
computed as the domain averaged SST anomaly over the equatorial 
Atlantic (3°S–3°N, 0°–20°W) using the HadISST data.

Code availability  For additional questions regarding the code sharing, 
please contact the corresponding author at siyu_zhao@atmos.ucla.edu.

Declarations 

Conflict of interest  The authors have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a 
warming climate on water availability in snow-dominated regions. 
Nature 438:303–309

Beljaars ACM, Viterbo P, Miller MJ, Betts AK (1996) The anomalous 
rainfall over the United States during July 1993: sensitivity to 
land surface parameterization and soil anomalies. Mon Weather 
Rev 124:362–383

Bracken C, Rajagopalan B, Prairie J (2010) A multisite seasonal 
ensemble streamflow forecasting technique. Water Resour Res 
46:W03532

Chen M, Shi W, Xie P, Silva V, Kousky V, Higgins RW, Janowiak K 
(2008) Assessing objective techniques for gauge-based analyses 
of global daily precipitation. J Geophys Res 113:D04110

Copernicus Climate Change Service (2017) ERA5: fifth generation 
of ECMWF atmospheric reanalyses of the global climate. On: 
Copernicus Climate Change Service Climate Data Store (CDS), 
https://​cds.​clima​te.​coper​nicus.​eu/​cdsapp#​!/​home. Assessed 18 
Apr 2019

Fernández-González S, Martín ML et al (2017) Uncertainty quantifica-
tion and predictability of wind speed over the Iberian Peninsula. J 
Geophys Res Atmos 122:3877–3890

Fleming SW, Goodbody AG (2019) A machine learning metasystem 
for robust probabilistic nonlinear regression-based forecast-
ing of seasonal water availability in the US west. IEEE Access 
7:119943–119964

Franz K, Hartmann H, Sorooshian S, Bales R (2003) Verification of 
national weather service ensemble streamflow predictions for 
water supply forecasting in the Colorado River basin. J Hydro-
meteorol 4(6):1105–1118

Gaitan CF, Hsieh WW, Cannon AJ (2014) Comparison of statistically 
downscaled precipitation in terms of future climate indices and 

daily variability for southern Ontario and Quebec, Canada. Clim 
Dyn 43:3201–3217

Hermanson L, Ren HL, Vellinga M et al (2018) Different types of drifts 
in two seasonal forecast systems and their dependence on ENSO. 
Clim Dyn 51:1411–1426

Hidalgo HG, Dracup JA (2003) ENSO and PDO effects on hydrocli-
matic variations of the Upper Colorado River Basin. J Hydrome-
teor 4:5–23

Hobbins M, Barsugli J (2020) Threatening the vigor of the Colorado 
River. Science 367:1192–1193

Hoerling M, Barsugli J, Livneh B, Eischeid J, Quan X, Badger A 
(2019) Causes for the century-long decline in Colorado River 
flow. J Clim 32:8181–8203

Hsieh WW (2001) Nonlinear canonical correlation analysis of the trop-
ical Pacific climate variability using a neural network approach. 
J Clim 14:2528–2539

Hsieh WW, Tang B (1998) Applying neural network models to pre-
diction and data analysis in meteorology and oceanography. Bull 
Amer Meteor Soc 79:1855–1870

Jacobs J (2011) The sustainability of water resources in the Colorado 
River basin. Bridge 41:6–12

Jury MR, Mulenga HM, Mason SJ (1999) Exploratory long-range mod-
els to estimate summer climate variability over southern Africa. 
J Clim 12:1892–1899

Kalra A, Ahmad S (2009) Using oceanic-atmospheric oscillations for 
long lead time streamflow forecasting. Water Resour Res. https://​
doi.​org/​10.​1029/​2008W​R0068​55

Kalra A, Ahmad S (2011) Evaluating changes and estimating sea-
sonal precipitation for the Colorado River Basin using a stochas-
tic nonparametric disaggregation technique. Water Resour Res 
47:W05555

Kalra A, Ahmad S (2012) Estimating annual precipitation for the Colo-
rado River Basin using oceanic–atmospheric oscillations. Water 
Resour Res 48:W06527

Kim TW, Valdés JB, Nijssen B, Roncayolo D (2006) Quantification of 
linkages between large-scale climatic patterns and precipitation 
in the Colorado River Basin. J Hydrol 321:173–186

Kirtman BP et al (2014) The North American Multimodel Ensem-
ble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward 
developing intraseasonal prediction. Bull Amer Meteor Soc 
95:585–601

Koster RD, Chang Y, Wang H, Schubert SD (2016) Impacts of local 
soil moisture anomalies on the atmospheric circulation and 
on remote surface meteorological fields during boreal sum-
mer, a comprehensive analysis over North America. J Clim 
29:7345–7364

Lamb KW, Piechota TC, Aziz OA, Tootle GA (2011) A basis for 
extending long-term streamflow forecasts in the Colorado River 
Basin. J Hydrol Eng 16:1000–1008

Li J, Wang B (2018) Predictability of summer extreme precipitation 
days over eastern China. Clim Dyn 51:4543–4554

Long Y, Li J, Zhu Z, Zhang J (2022) Predictability of the anomaly 
pattern of summer extreme high-temperature days over southern 
China. Clim Dyn 59:1027–1041

Lv Z, Zhang S, Jin J et al (2019) Coupling of a physically based lake 
model into the climate forecast system to improve winter climate 
forecasts for the Great Lakes region. Clim Dyn 53:6503–6517

Ma H et al (2021) On the correspondence between seasonal forecast 
biases and long-term climate biases in sea surface temperature. 
J Clim 34:427–446

Manzanas R (2020) Assessment of model drifts in seasonal forecasting: 
sensitivity to ensemble size and implications for bias correction. 
J Adv Model Earth Syst 12:e2019MS001751

McCabe GJ, Betancourt JL, Hidalgo HG (2007) Associations of 
decadal to multidecadal sea-surface temperature variability 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://psl.noaa.gov/data/timeseries/AMO/
https://psl.noaa.gov/data/timeseries/AMO/
https://climatedataguide.ucar.edu/sites/default/files/npindex_monthly.txt
https://climatedataguide.ucar.edu/sites/default/files/npindex_monthly.txt
http://www.o3d.org/npgo/npgo.php
http://creativecommons.org/licenses/by/4.0/
https://cds.climate.copernicus.eu/cdsapp#!/home
https://doi.org/10.1029/2008WR006855
https://doi.org/10.1029/2008WR006855


1829Extended seasonal prediction of spring precipitation over the Upper Colorado River Basin﻿	

1 3

with upper Colorado River flow. J Am Water Resour Assoc 
43(1):183–192

McGregor G (2017) Hydroclimatology, modes of climatic variability 
and stream flow, lake and groundwater level variability: a progress 
report. Prog Phys Geogr 41:496–512

Milly PCD, Dunne KA (2020) Colorado River flow dwindles as warm-
ing-driven loss of reflective snow energizes evaporation. Science 
367:1252–1255

Nowak K, Hoerling M, Rajagopalan B, Zagona E (2012) Colorado 
River Basin hydroclimatic variability. J Clim 25:4389–4403

Oubeidillah AA, Tootle GA, Moser C, Piechota T, Lamb K (2011) 
Upper Colorado River and Great Basin streamflow and snow-
pack forecasting using Pacific oceanic–atmospheric variability. J 
Hydrology 410:169–177

Pagano TC, Garen DC, Perkins TR, Pasteris PA (2009) Daily updating 
of operational statistical seasonal water supply forecasts for the 
western U.S. J Am Water Resour Assoc 45:767–778

Prairie J, Callejo R (2005) Natural flow and salt computation methods, 
calendar years 1971–1995. Bureauof Reclamation, pp 1–112

Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell 
DP, Kent EC, Kaplan A (2003) Global analyses of sea surface 
temperature, sea ice, and night marine air temperature since the 
late nineteenth century. J Geophys Res 108:4407

Regonda SK, Rajagopalan B, Clark M, Zagona E (2006) A multimodel 
ensemble forecast approach: application to spring seasonal flows 
in the Gunnison River basin. Water Resour Res 42:W09404

Sagarika S, Kalra A, Ahmad S (2015) Interconnections between oce-
anic–atmospheric indices and variability in the US streamflow. J 
Hydrology 525:724–736

Sagarika S, Kalra A, Ahmad S (2016) Pacific Ocean SST and Z500 
climate variability and western US seasonal streamflow. Int J Cli-
matol 36:1515–1533

Sakas ME (2021) If Lake Powell’s water levels keep falling, a multi-
state reservoir release may be needed. In: Colorado Public Radio 
News. https://​www.​cpr.​org/​2021/​06/​18/​if-​lake-​powel​ls-​water-​lev-
els-​keep-​falli​ng-a-​multi-​state-​reser​voir-​relea​se-​may-​be-​needed/. 
Accessed 18 Jun 2021

Smith RA, Kummerow CD (2013) A comparison of in situ, reanalysis, 
and satellite water budgets over the upper Colorado River basin. J 
Hydrometeor 14:888–905

Switanek MB, Troch PA, Castro CL (2009) Improving seasonal predic-
tions of climate variability and water availability at the catchment 
scale. J Hydrometeor 10:1521–1533

Tamaddun KA, Kalra A, Ahmad S (2017) Wavelet analysis of west-
ern U.S. streamflow with ENSO and PDO. J Water Clim Chang 
8:26–39

Tamaddun KA, Kalra A, Ahmad S (2019) Spatiotemporal variation 
in the continental us streamflow in association with large-scale 
climate signals across multiple spectral bands. Water Resour Man-
age 33:1947–1968

Tang B, Hsieh WW, Monahan AH, Tangang FT (2000) Skill compari-
sons between neural networks and canonical correlation analysis 
in predicting the equatorial Pacific sea surface temperatures. J 
Clim 13:287–293

Tangang FT, Hsieh WW, Tang B (1997) Forecasting the equatorial 
Pacific sea surface temperatures by neural networks models. Clim 
Dyn 13:135–147

Tangang FT, Tang GM, Monahan AH, Hsieh WH (1998) Forecasting 
ENSO events: a neural network-extended EOF approach. J Clim 
11:29–41

Werner K, Yeager K (2013) Challenges in forecasting the 2011 runoff 
season in the Colorado Basin. J Hydrometeor 14:1364–1371

Xia Y, Mitchell K, Ek M, Sheffield J, Cosgrove B, Wood E, Luo L, 
Alonge C, Wei H, Meng J, Livneh B, Lettenmaier D, Koren V, 
Duan Q, Mo K, Fan Y, Mocko D (2012) Continental-scale water 
and energy flux analysis and validation for the North American 
Land Data Assimilation System project phase 2 (NLDAS-2): 1. 
Intercomparison and application of model products. J Geophys 
Res 117:D03109

Xiao M, Udall B, Lettenmaier D (2018) On the causes of declining 
Colorado Rover streamflows. Water Resour Res 54:6739–6756

Yang K, Wang CH, Bao HY (2016) Contribution of soil moisture vari-
ability to summer precipitation in the Northern Hemisphere. J 
Geophys Res Atmos 121:108–124

Yim SY, Wang B, Xing W, Lu MM (2015) Prediction of Meiyu rainfall 
in Taiwan by multi-lead physical-empirical models. Clim Dyn 
44:3033–3042

Yoo C, Johnson NC, Chang C, Feldstein SB, Kim Y (2018) Subsea-
sonal prediction of wintertime East Asian temperature based on 
atmospheric teleconnections. J Clim 31:9351–9366

Zhang J, Wang W-C, Wei J (2008) Assessing land-atmosphere cou-
pling using soil moisture from the Global Land Data Assimilation 
System and observational precipitation. J Geophys Res Atmos 
113(D17):D17119

Zhao S, Yang S (2014) Dynamical prediction of the early season rain-
fall over southern China by the NCEP Climate Forecast System. 
Wea Forecasting 29:1391–1401

Zhao S, Zhang J (2022) Causal effect of the tropical Pacific sea surface 
temperature on the Upper Colorado River Basin spring precipita-
tion. Clim Dyn 58:941–959

Zhao S, Yang S, Deng Y, Li Q (2015) Skills of yearly prediction of the 
early-season rainfall over southern China by the NCEP climate 
forecast system. Theor Appl Climatol 122:743–754

Zhao S, Deng Y, Black RX (2016) Warm season dry spells in the cen-
tral and eastern United States: diverging skill in climate model 
representation. J Clim 29:5617–5624

Zhao S, Deng Y, Black RX (2017) Observed and simulated spring and 
summer dryness in the United States: the impact of the Pacific 
sea surface temperature and beyond. J Geophys Res Atmos 
122:12713–12731

Zhao S, Fu R, Zhuang Y, Wang G (2021) Long-lead seasonal predic-
tion of streamflow over the Upper Colorado River Basin: The 
role of the Pacific sea surface temperature and beyond. J Clim 
34:6855–6873

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.cpr.org/2021/06/18/if-lake-powells-water-levels-keep-falling-a-multi-state-reservoir-release-may-be-needed/
https://www.cpr.org/2021/06/18/if-lake-powells-water-levels-keep-falling-a-multi-state-reservoir-release-may-be-needed/

	Extended seasonal prediction of spring precipitation over the Upper Colorado River Basin
	Abstract
	1 Introduction
	2 Data and methods
	2.1 Data
	2.2 Hindcast
	2.3 Statistical seasonal predictions

	3 Results
	3.1 UCRB precipitation
	3.2 Role of SST in the UCRB spring precipitation
	3.3 Prediction skills of precipitation

	4 Concluding remarks
	Acknowledgements 
	References




