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In this dissertation, I study the co- and postseismic deformation of the lithosphere using

numerical models of three-dimensional time-dependent deformation and space geodetic data. I

derive an original approach to simulate the static deformation due to faulting and volcanic unrest

in a heterogeneous half space with vertical and lateral variations in elastic moduli. The method

is based on a semi-analytic elastic Green function in the Fourier domain. I extend the model

to include time-dependent inelastic properties of the lithosphere. This approach can be used

to model time series of poroelastic rebound, viscoelastic flow and fault creep, three important

mechanisms thought to participate in postseismic transients. I use kinematic inversions and

forward models of deformation to infer the postseismic mechanisms responsible for the transient

that followed the 2003 Altai earthquake. I find that synthetic aperture radar (SAR) data are

most compatible with afterslip. The absence of an observable viscoelastic relaxation in the

three years following the earthquake can be explained by an effective viscosity of the ductile

substrate greater than 1019 Pa s. I use numerical models of coseismic deformation to explain

anomalously strained areas in the East California Shear Zone imaged by SAR line-of-sight (LOS)

data in the vicinity of the 1992 Landers and 1999 Hector Mine earthquakes. I find that the

enhanced strain can be explained by compliant zones (CZs) surrounding long-lived faults in the

Mojave desert. The LOS data is best explained by a 50% reduction of rigidity in volumes of

the order of 1-2 km thick around historical faults that extend from 5 km depth for the Calico

CZ to 9 km depth for the Pinto Mountain CZ. Finally, I use kinematic inversion of GPS data

and forward models to identify the location and rheology of the afterslip that followed the 2004

Parkfield earthquake. The time dependence and amplitude of GPS time series can be explained

by slip on an asperity centered at 5 km depth and governed by a rate-strengthening friction with

parameter (a− b) = 7×10−3, compatible with values obtained from laboratory experiment. The

GPS observations show evidence of lateral variations in the frictional properties on the Parkfield

segment of the San Andreas fault.
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Chapter 1

Introduction

In this thesis I contribute to our understanding of the physics that governs plate tectonics

and the internal deformation of the continental lithosphere. Establishing a complete physical

description of the deformation mechanisms in the crust and upper mantle is a formidable task

because such a model involves time and length scales that vary over several orders of magnitude

and that are associated with distinct dominant processes. A goal of tectonophysics is to provide

physical laws and parameters that describe the behavior of the lithospheric deformation. Field

observations and laboratory experiments provide some essential constraints on rock properties

and fault rheology but this approach is limited by the required extrapolation of laboratory results

to in situ conditions and the rare possibility of direct measurements. Earthquakes and other

stress perturbations in the crust provide a natural laboratory to study the physical properties of

the lithosphere. Crustal deformation may be imaged by geodetic instruments, including Global

Positioning System (GPS) and Synthetic Aperture Radar (SAR) and these observations compared

to models of deformation. In this thesis, I use the latter approach to improve our understanding

of the physical properties of the lithosphere. In particular, I use space geodetic data of co- and

postseismic deformation to constrain the elastic and ductile properties of the lithosphere. My

contribution is twofold. First I present original mathematical and numerical methods to evaluate

models of three-dimensional deformation, including static deformation in a heterogeneous crust

and time-dependent deformation due to fault creep, viscoelastic flow and poroelastic rebound

(three important source mechanisms in postseismic transients). Second, I use these models as

well as other state-of-the-art modeling approaches to explain geodetic measurements around the

2003 Altai earthquake, around the Parkfield segment of the San Andreas fault and in the East

California Shear Zone.

The movement of plates is accommodated at the plate boundary by slip on faults and

shear flow in the lower crust and upper mantle. Once a fault has been formed in the schizosphere,

the distribution of slip with depth and over time is controlled by friction. Below the brittle-ductile

transition, the deformation is controlled by the ductile properties of rocks. The long-term motion

on a fault is constrained by large-scale tectonics forces. As the plates migrate, faults accumulate

stress which is released seismically with earthquakes and aseismically with fault creep. In general

the earthquake cycle can be decomposed into three periods. The longest phase, which corresponds

to the earthquake recurrence interval, is referred to as the interseismic period. In this period

1
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Figure 1.1: Distribution of slip on a fault plane during the earthquake cycle. Earthquake nu-
cleation takes place in areas with unstable friction in the seismogenic zone. The stable part of
a fault slips aseismically during the inter- and postseismic phases of the earthquake cycle. The
seismogenic zone is delimited by the transition from stable to unstable friction.

of quiescence the unstable section of a fault is locked and is slowly loaded by regional shear

and by motion on stable parts of the fault (see Figure 1.1). The coseismic period refers to the

time interval required for an earthquake to nucleate, propagate and stop. The section of a fault

that exhibits seismicity and where earthquakes nucleate is referred to as the seismogenic zone.

The stress perturbation caused by sudden slip in the seismogenic zone can trigger an aseismic

transient. In the postseismic interval, the so-called afterslip occurs on stable parts of the fault.

Ideally, afterslip reduces stress asperities caused by the earthquake and restores a slip distribution

compatible with long-term plate motion. The partition of fault slip into seismic and aseismic

areas is controlled by the frictional properties of the fault. Unstable friction is associated with

areas of seismicity and earthquake nucleation. Stable friction gives rise to (aseismic) fault creep

both in the inter- and the postseismic part of the earthquake cycle. An earthquake can also be

at the origin of time-dependent deformation away from the fault, triggering shear flow below the

brittle-ductile transition or pore-fluid readjustments in the crust.

The co-, post- and interseismic phases of the earthquake cycle are characterized by a

distinct signature in geodetic measurements of surface deformation (see Figure 1.2). On one hand,

in the interseismic interval, the spatial distribution of strain has large wavelength corresponding to

the plate margin. On the other hand, in the coseismic interval, the deformation only surrounds

the near field of the fault. The wavelength of a postseismic transient depends on the source

mechanism. In case of viscoelastic relaxation, it is controlled by the depths of the brittle-ductile
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Figure 1.2: Sketch of the partition of long-term surface displacement into parts of the earthquake
cycle. Left panel: the spatial distribution of surface displacement as a function of distance from
a fault. The interseismic period (green) is characterized by a regional length scale. The coseismic
deformation (red) is highest near the fault and decays with across-fault distance. The postseismic
transient (blue) occurs around the fault and its length scale depends on the particular source
mechanism. Right panel: the time dependence of surface displacements as a function of position
in the earthquake cycle. In the interseismic period, a point off the fault (black star) slowly moves
in the direction of plate motion. As an earthquake happens, the point is suddenly displaced. A
transient displacement occurs in the postseismic period.

transition. Afterslip can occur at deep and shallow depth depending on the details of the coseismic

rupture. The spatial extent of a poroelastic rebound is controlled by the linear dimension of the

coseismic rupture. Observations of the spatial distribution and the temporal variations of surface

displacements can be used to decipher the elastic and ductile properties of the lithosphere.

My dissertation is organized in the following way. Chapter 2 is a study of the coseismic

and postseismic deformation due to the 2003 Mw 7.2 Altai earthquake. I use InSAR data to infer

a coseismic slip distribution and to model three years of postseismic deformation. I compare the

geodetic data to simulations of postseismic relaxation in the lower crust and upper mantle and

to models of poroelastic rebound. I infer the spatial distribution of afterslip that can explain

the radar observations. In Chapter 3, I describe the effect of compliant zones, finite crustal

areas of reduced rigidity, on the inferred fault slip distribution. I present a method to simulate

two-dimensional anti-plane deformation due to faulting in a heterogeneous crust. In Chapter 4,

I extend the model to three-dimensional deformation due to finite faults in a semi-infinite half

space in the presence of inclusions of finite size. Models can include lateral and vertical variations

in elastic properties. I apply the method to explain observations of compliant zones in the

East California Shear Zone in California: I compare deformation models to InSAR line-of-sight

data to constrain the geometry and the elastic contrast that characterize the surroundings of
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historical faults. In Chapter 5, I study the coseismic and postseismic deformation due to the 2004

Mw 6.0 Parkfield, CA earthquake. I use an array of 14 continuous GPS stations to constrain

the kinematics of coseismic and postseismic slip on the Parkfield section of the San Andreas

fault. I use stress-driven models of fault creep to infer the frictional properties of a stable

asperity that is responsible for most afterslip. The postseismic relaxation that followed the

2004 Parkfield earthquake revealed a segment of the San Andreas fault with lateral and vertical

variations in frictional properties. In Chapter 6, I present a semi-analytic method to simulate

static deformation in a three-dimensional half space in the presence of a surface density contrast

due to faulting or volcanic unrest. In Chapter 7, I develop an unified approach to simulate

time-dependent deformation due to viscoelastic flow, aseismic fault creep and poroelasticity. The

appendices describe the usage and the internal organization of three Fortran 90 programs that

evaluate three-dimensional deformation in a half space with a free surface and a density contrast.

In Appendix A, I explain how to use the Fortran program STATICU which evaluates the elasto-

static deformation in a homogeneous elastic half space due to faults, dykes and Mogi sources

of arbitrary orientation and position. The program STATICU implements the Fourier-domain

elastic Green function which is at the root of other deformation calculations. In Appendix B, I

describe the nuts and bolts of the Fortran 90 program STATICI which evaluates three-dimensional

deformation in a heterogeneous elastic half space. Possible calculations with STATICI include

models of deformation with vertical variations in elastic properties including the presence of finite

inclusions. Finally, Appendix C describes the details of the Fortran 90 program RELAX, which

performs simulations of the time-dependent relaxation that follows a stress perturbation due to

fault creep and viscoelastic shear flow.



Chapter 2

Space geodetic investigation of the co- and post-seismic deformation

due to the 2003 Mw 7.2 Altai earthquake: Implications for the local

lithospheric rheology

Sylvain Barbot, Yariv Hamiel and Yuri Fialko

Abstract. We use ENVISAT Advanced Synthetic Aperture Radar data and SPOT

optical imagery to investigate the co-seismic and post-seismic deformation due to the September

27th 2003, Mw7.2 Altai earthquake, which occurred in the Chuya Basin near the Russia-China-

Mongolia border. Based on the SAR and SPOT data, we determined the rupture location and

developed a co-seismic slip model for the Altai earthquake. The inferred rupture location is

in a good agreement with field observations, and the geodetic moment from our slip model is

consistent with the seismic moment determined from the tele-seismic data. While the epicentral

area of the Altai earthquake is not optimal for radar interferometry (in particular, due to temporal

decorrelation), we were able to detect a transient signal over a time period of 3 years following

the earthquake. The signal is robust in that it allows us to discriminate among several commonly

assumed mechanisms of post-seismic relaxation. We find that the post-earthquake InSAR data

do not warrant poro-elastic rebound in the upper crust. The observed deformation also disagrees

with linear visco-elastic relaxation in the upper mantle or lower crust, giving rise to a lower bound

on the dynamic viscosity of the lower crust of the order of 1019 Pa s. The data can be explained

in terms of fault slip within the seismogenic zone, on the periphery of areas with high co-seismic

slip. Most of the post-seismic deformation can be explained in terms of seismic moment release

in aftershocks; some shallow slip may have also occurred aseismically. Therefore, the observed

post-seismic deformation due to the Altai earthquake is qualitatively different from deformation

due to other similar-size earthquakes, in particular, the Landers and Hector Mine earthquakes in

the Mojave desert, southern California. The observed variations in the deformation pattern may

be indicative of different rheologic structure of the continental lithosphere in different tectonically

active areas.
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Figure 2.1: Location of the September 27th 2003, Mw7.2 Altai earthquake, near the Russia-
China-Mongolia border. a) Major geologic structures on the regional scale. b) Location of the
epicenter (yellow star), with the following days Mw ≥ 6 aftershocks (red stars). The black frames
indicate the radar swath of ENVISAT tracks 434 and 391. Orange stars indicate aftershocks of
Mw5 and above after 2003/12/22.

2.1 Introduction

On September 27th 2003, a Mw7.2 right-lateral strike-slip earthquake occurred in the

Chuya Basin in the mountainous Altai region, near the Russia-China-Mongolia border (fig. 2.1).

In the following few days, the Altai earthquake generated a robust sequence of aftershocks with

moment magnitudes up to Mw6.6 [Ekström et al., 2005, Nissen et al., 2007]. The Mw7.2 main-

shock is the largest earthquake in seventy years to occur in the Altai range, since the right lateral

strike-slip Mw 7.9 Fu-Yun earthquake which struck the northeastern Junggar basin in 1931.

The Altai intraplate mountain ranges stretch from southwestern Siberia to the Gobi

desert over a length of 1700 km. The tectonically active Altai ranges formed in the late Ceno-

zoic in response to a northeast compression coming from the India-Eurasia collision 2000 km to

the South [Tapponier and Molnar, 1979] and to a radial extension due to the warm, buoyant

Hangay Dome area in central Mongolia to the East [Cunningham, 1998]. The Altai region is

kinematically separate from the Hangay Dome, with a colder lithosphere and a greater elastic

thickness [Windley and Allen, 1993, Bayasgalan et al., 2005]. The Altai orogen includes two

distinct mountain belts: the right-lateral transpressive Western (or Mongolian) Altai and the

left-lateral transpressive Gobi Altai. The Western Altai is dominated by a regional N-S short-

ening and N-NW trending right-lateral strike-slip faults that terminate in NW trending thrust

faults [Cunningham, 2005]. In the Gobi Altai domain, these stresses are accommodated by trans-

pressive, E-W, left-lateral strike-slip faults with inter-seismic slip rates of the order of 1 mm/yr,

as constrained by GPS observations [Calais et al., 2003].
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Large earthquakes are usually followed by transient surface deformation with velocities

that exceed those for inter-seismic deformation. Such deformation transients present an opportu-

nity to improve our understanding of the physical processes involved in crustal and upper mantle

deformation. The instantaneous deformation field accompanying an earthquake can be explained

assuming linear elastic deformation of the ambient rocks [Fialko, 2004a, Fialko et al., 2005]. Tran-

sient strains are systematically observed in years to decades following large earthquakes [Stein

and Lisowski, 1983, Reilinger, 1986, Thatcher, 1983, Kenner and Segall, 2000], yet there is no

consensus regarding constitutive laws that govern the mechanical time-dependent processes in

the post-seismic epoch.

Several mechanisms have been proposed to explain the post-seismic transient deforma-

tion. One mechanism often invoked to explain post-seismic transients is afterslip on the ruptured

fault or its extension. Evidence for afterslip is provided by kinematic inversions of geodetic

data [Savage et al., 1994, Fialko, 2004b, Freed et al., 2006], although different physical expla-

nations can be invoked to describe the process dynamics [Tse and Rice, 1986, Dieterich, 1987,

Fialko, 2004b, Perfettini and Avouac, 2004]. Another commonly considered mechanism is the

aseismic visco-elastic relaxation in the lower crust and upper mantle. The possibly ductile lower

crust and upper mantle might not be able to sustain increases in deviatoric stresses due to

the main shock. The co-seismically induced change in the deviatoric stress below the brittle-

ductile transition might be relieved by viscous flow [Nur and Mavko, 1974, Pollitz, 1997, Deng

et al., 1999]. If the viscous deformation is involved in post-seismic transients, observations in-

dicate that simple linear visco-elastic models are inadequate. In particular, the latter fail to

explain the temporal and spatial characteristics of deformation transients following the Mojave

desert earthquakes, suggesting that multiple relaxation times and/or stress-dependent viscosities

may be necessary [Pollitz, 2003b, Fialko, 2004b, Freed and Bürgmann, 2004]. Third suggested

mechanism is the poro-elastic rebound of the upper crust [Reid, 1910]. For example, the post-

seismic transient following the 1992 Landers earthquake has been explained by a combination of

poro-elasticity above the brittle-ductile transition and a localized shear on the deep part of the

fault [Peltzer et al., 1998, Fialko, 2004b]. Probably the best documented example of poro-elastic

rebound is the one that occurred in the first few months following two June 2000 earthquakes in

South Iceland: Jonsson et al. [2003] demonstrated that both surface deformation and water-level

changes in geothermal wells are consistent with the pore pressure diffusion in response to the

co-seismic stress changes.

In this study, we compare the predictions of each candidate mechanism to a set of

interferometric data covering three years of post-seismic deformation following the 2003 Altai

earthquake. In Section 2, we describe the co-seismic rupture, as constrained by SAR ampli-

tude cross-correlation, azimuthal interferometry and SPOT optical image cross-correlation. In

section 3, we present the interferometric data characterizing the post-seismic deformation and

compare them to predictions of the afterslip, visco-elastic and poro-elastic models. Finally, we
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discuss the implications from these results for the mechanical properties of the Altai lithosphere

and variations in rheology among different tectonically active environments.

2.2 Co-seismic analysis

2.2.1 Determination of the fault location
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Figure 2.2: Co-seismic and post-seismic interferograms used in this study. The (grey) co-seismic
interferograms were jointly used to invert for the co-seismic slip on the fault. The 3 year (blue)
pairs were simultaneously inverted for afterslip. Other (black) pairs are used to verify the early
stage of the post-seismic transient approximatively 6 months, 2 years and 2.5 years after Altai
earthquake.

The Altai earthquake struck the northern part of the Western Altai. The 70 km long rup-

ture cut through the Chuya Range immediately SW of the Kurai and Chuya depressions [Nissen

et al., 2007]. Due to the remote location of the earthquake, few ground-based observations are

available. We investigated the earthquake rupture using space geodetic data. The co-seismic de-

formation was captured by several independent ENVISAT SAR pairs. Figure 2.2 shows interfer-

ograms from ENVISAT track 391, spanning a time interval between 2003/09/08 and 2003/10/13,

and from track 434, spanning a time interval between 2003/09/11 and 2004/07/22. Unfortunately,

the interferometric SAR (InSAR) coherence is poor in the near-field and to the South of the rup-
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ture due to temporal decorrelation [Zebker and Villasenor, 1992] in the Chuya Range, so we

could not use the radar line-of-sight phase information to determine the fault location. We found

Along-track InSAR data [Bechor and Zebker, 2006] to be more useful for this purpose, the along-

track interferometry being less sensitive to temporal decorrelation. The along-track interferogram

exploits a parallax effect to detect the surface displacement in the azimuthal (along-track) direc-

tion. The along-track interferometry is a high-resolution phase measurement equivalent to the

azimuthal offsets [Michel et al., 1999, Peltzer et al., 1999, Fialko et al., 2001b]. The details of our

implementation of the along-track interferometry are given in Appendix 2.6. We processed the

raw SAR data using the ROI PAC software [Rosen et al., 2000] that was modified to compute

the along-track interferograms. In our experience, successful along-track interferometry requires

baselines that are a factor of two smaller than thoses required for the convention radar LOS

interferometry. Given the relatively large baselines of the co-seismic SAR data for Altai, the

along-track interferogram is affected by the baseline decorrelation. A displacement contrast is

visible across the fault, but the measurement is complicated by the WNW-ESE fault orientation,

almost normal to the satellite track. The range offset data are less sensitive to changes in the re-

flective properties of the ground compared to the radar phase (LOS) data, and therefore provide

useful information on displacements near the fault trace, given the favorable fault orientation

along the radar range. We also analyzed SPOT5 panchromatic optical images [Van Puymbroeck

et al., 2000]. We used the cross-correlation software COSI-Corr [Leprince et al., 2007] to compute

the deformation that occurred between two acquisitions bracketing the earthquake (2003/09/09-

2004/01/17, frame K215-J249). This approach allows one to measure horizontal displacements

with an accuracy up to 5 cm, in the E-W and N-S directions. The inferred signal in the E-W dis-

placement component reveals a discontinuity consistent with the right-lateral strike-slip motion.

The N-S component of the SPOT cross-correlation shows no significant displacement contrast

across the fault and is not shown here. The SPOT data alone do not provide a precise fault

location presumably due to temporal decorrelation and non-optimal orbital baseline.

Our simplified fault geometry (see thick black line in fig. 2.3) consists of six rectangular

segments, rotating from an almost NE-SW strike in the westernmost section to a NNE-SSW

strike in the middle section, west of the Chuya depression. We also identified a short SW-NE

striking segment at the southern tip of the rupture based on the SAR offset data. The latter

segment probably corresponds to a Mw 6.6 sub-event that occurred several hours after the main

shock near the Chuya basin. Our estimation of the fault location, based on space geodetic data,

agrees well with the field mapping of Nissen et al. [2007] (red profile in fig. 2.3).

2.2.2 Inversion for co-seismic model

To investigate the deformation due to the Altai earthquake, we begin by deriving the

static rupture model. The co-seismic slip model plays an important role in studies of post-
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seismic relaxation as it provides the initial condition exciting the time-dependent response of the

lithosphere. Observed co-seismic deformation can often be explained by simple models based on

solutions for dislocations in an elastic half-space [Massonnet et al., 1993, Fialko et al., 2001b,

2005, Hamiel and Fialko, 2007]. Solutions for surface displacements due to dislocations in elastic

half-space are readily available for both homogeneous [Okada, 1985] and layered media [Wang

et al., 2003]. As the velocity structure of the Earth’s crust in the Western Altai area is poorly

known, we assume a homogeneous half-space with a Poisson’s ratio of ν = 0.25. Previous work

has shown that reasonable variations in the elastic moduli with depth have only moderate effect

on the inferred slip models [Zhu and Rivera, 2002, Simons et al., 2002, Fialko, 2004a, Hamiel and

Fialko, 2007].

Our slip model for the Altai earthquake was obtained from the inversion of SAR line-of-

sight data, using a three-dimensional elastic half-space solution [Okada, 1985]. We extended the

six segments down to a depth of 21 km and discretized each segment into 2×3 km patches in the

strike and dip direction respectively. Each individual patch is allowed to slip in the strike and dip

directions. The inversion for slip on the fault involves a regularized least-squares optimization.

The residuals between the computed surface displacements, projected onto the LOS direction,

and the measured SAR LOS displacements are minimized through an iterative procedure. The

added regularization constraint is covariance between neighboring fault elements and no slip at

the bottom and sides of the fault. Details on the data reduction and the inversion procedure

can be found in Fialko [2004a]. We inverted simultaneously the ENVISAT pairs 2003/09/08-

2003/10/13, track 391 and 2003/09/11-2004/07/22, track 434 (fig. 2.4) because the fault extends

across multiple satellite tracks. The inclusion of track 434 data was needed to constrain slip on the

western part of the fault. There are some discrepancies between the estimated focal mechanisms

of the main shock and the first large aftershocks. The Sept. 27th, 2003 main shock was a sub-

vertical right-lateral event which dip angle was estimated between 71◦ [Ekström et al., 2005]

and 82◦ [Nissen et al., 2007]. We estimated the dip angle of each segment by performing a grid

search between 60◦ and 120◦ and identifying the smallest misfit with the SAR LOS observations.

We found that quite different dip angles along the fault gave rise to similar misfits. As the

coherence is poor in the near field and south of the fault (fig. 2.4), the InSAR LOS data alone

are not sufficient to constrain the fault dip angle. We performed a similar grid search for the best

fitting dip angle for each segment, inverting pixel tracking data (range and azimuthal offsets),

which are less affected by decorrelation near the fault trace. The best fitting model gave rise

to segment orientation of less than 5◦ from the vertical. Inversions of InSAR phase and pixel

offsets (both individually and jointly) gave rise to systematic residuals in the azimuthal offsets

near the fault kink. We attempted to constrain the dip angles required by the azimuthal InSAR

data. The required dip angles for each segment were also sub-vertical but oriented to the South,

that is, opposite to those inferred from range offsets or phase change. As the vertical fault model

was within the family of models giving the best variance reduction, we assumed that all fault
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segments are vertical (fig. 2.4c). The residuals from range offsets (fig. 2.4e) reveal a zone of

deformation to the South of the rupture that cannot be explained by slip on the fault plane as

residuals appear on both sides of the fault. Azimuth offsets exhibit some asymmetry across the

fault, which might be indicative of either dipping rupture, or deviations from the assumption of

a laterally homogeneous elastic half-space.

The co-seismic slip model shows three patches of relatively high slip, which correspond

to the main rupture and the immediate large aftershocks. The second segment from the eastern

end of the rupture has a total seismic moment of Mw = 6.7, which agrees with the moment

magnitude of a thrusting event that occurred several hours after the earthquake as estimated

by Ekström et al. [2005]. This aftershock is located at the edge of the Chuya basin, in agreement

with the relocation of Nissen et al. [2007]. According to our slip model, the maximum surface

offsets are less than 4 m. Most of the slip occurs at relatively shallow depths, from the surface

to about 9 km depth. The western section of the fault slip model shows about 1 m slip at

greater depth, but is relatively poorly constrained by the SAR data. According to our slip

model the total seismic moment is M0 = 4.8× 1019 N m (corresponding to a moment magnitude

Mw=7.1), in fair agreement with the estimated moment derived from broadband tele-seismic

data Mw = 7.2 [Ekström et al., 2005]. It should be noted that we invert for the total slip that

occurred co-seismically and during the first 16 days following the mainshock. The corresponding

forward model (fig. 2.4b), projected onto the LOS direction (positive towards the satellite), is

qualitatively consistent with the co-seismic model of Nissen et al. [2007].

2.3 Post-seismic deformation

2.3.1 Inversion for afterslip model

We used SAR LOS interferometry to look at the post-seismic transients. We processed

the available ENVISAT data from tracks 391 and 162 (fig. 2.2) and identified the LOS displace-

ments common to all interferograms within the three year transient following the earthquake.

The post-seismic interferograms clearly show strain accumulation at the southern tip of the fault,

in the Chuya basin (fig. 2.5). The positive LOS displacements at the southern tip of the rup-

ture are not due to tropospheric noise [Tarayre and Massonnet, 1996], as the signal appears in

4 independent interferograms. The observed post-seismic signal is localized close to the fault,

with wavelengths much smaller than the fault length but of the order of the fault locking depth

(5-10 km). Note that the near-field LOS post-seismic displacements have the same sign as the

co-seismic ones.

The wavelength of the post-seismic transient and the polarity of the LOS displacements

appear to favor a shallow slip on the earthquake rupture. We carried out a kinematic inversion

for the post-seismic slip using two 3 year interferograms (2003/10/13-2006/08/28, track 391
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Figure 2.3: Co-seismic slip Inversion. (a) Interferograms (2003/09/08-2003/10/13, track 391
and 2003/09/11-2004/07/22, track 434) used to invert for a co-seismic slip model. (b) Model
co-seismic LOS displacements. (c) Co-seismic slip distribution obtained after inversion of LOS
displacements of the 2 interferograms in (a). The black arrows indicate the direction and ampli-
tude of slip for every patch. (d) LOS displacement residuals after inversion. (e) Range offsets
residuals. (f) Azimuthal offsets residuals.
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Figure 2.4: Post-seismic interferograms and inversion for the afterslip model. (a) Interferogram
2003/10/13-2006/08/28, track 391 showing 3 years of post-seismic deformation, projected in the
LOS direction. (b) Interferogram 2003/11/01-2006/09/16, track 162, showing also 3 years of post-
seismic deformation. (c) Afterslip model showing a slip distribution confined in the seismogenic
zone. (d) Forward model, fitting the two 3 year interferograms. (e-f) Residuals on interferograms
(a) and (b) respectively.
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and 2003/11/01-2006/09/16, track 162). As the 3 year interferograms have a somewhat different

spatial coverage, we performed a joint inversion, simultaneously minimizing the residuals between

both interferograms and our model. The joint inversion allows us to reduce the tropospheric

contribution of each interferogram. We used the same homogenous half-space model and fault

model as in the co-seismic inversion. We initially performed the inversion allowing for slip on

a deeper extension of the fault but such an inversion did not require any slip at depth greater

than 21 km. Consequently, we chose a fault geometry that is the same as the co-seismic one in

order to facilitate the model comparison (fig. 2.5c). In our best fitting model model, most of the

post-seismic slip occurs in the seismogenic zone, mainly above 6 km depth. The slip amplitude

and depth of the inferred slip model are robust to perturbations in dip angles, as verified by

inversions with variable dip angles on each segment, due to the short wavelength of the surface

deformation. The maximum slip occurred on the third segment from the eastern end of the

fault, in the middle of two relatively high co-seismic slip patches. The residuals of the inversion

(fig. 2.5e-f) are concentrated in the North Chuya Range, in the middle section of the fault trace.

Apart from these localized residuals, the bulk of the post-seismic SAR data is well explained by

the afterslip model. This suggests that most of the post-seismic LOS displacements may represent

slip (seismic or aseismic) on parts of the fault in the nominal seismogenic depth interval.

2.3.2 Poro-elastic rebound

The occurrence of a large earthquake alters the pore pressure in the crust close to the

rupture. The induced volumetric strain can create significant pore pressure gradients that are

relaxed by the movement of fluids following favorably the paths of maximum permeability in

the host rocks. The coupling between the pore fluid diffusion and the effective elastic properties

introduces a time-dependence into the response of the solid matrix [Reid, 1910, Biot, 1941,

Coussy, 2004]. Fluids are usually assumed to be pervasive in the Earth’s crust, so the poro-

elastic rebound is a likely physical mechanism contributing to the post-seismic deformation.

Based on theoretical arguments, pore fluid diffusion should occur at intermediate wavelengths

from near-field to about 2.5 fault lengths from the fault [Piombo et al., 2005], and the co-seismic

stress changes should be significantly altered on a timescale controlled by the hydraulic diffusion.

The pore pressure readjustment was estimated to be several years long in case of the Landers

earthquake [Peltzer et al., 1998, Fialko, 2004b], but only a few months long in case of the 2000

South Iceland earthquakes [Jonsson et al., 2003]. Radar interferometry is highly sensitive to the

vertical component of the deformation field and is therefore well suited to detect poro-elastic

rebound [e.g., Peltzer et al., 1998]. As the pore pressure dissipates, owing to the fluid diffusion,

there is a gradual change of Poisson’s ratio in the crustal rocks from the undrained conditions

immediately after the earthquake to the lower, drained, values [Peltzer et al., 1998, Biot, 1941,

Coussy, 2004]. We compute surface displacements corresponding to complete fluid diffusion by
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Figure 2.5: Predictions of the full poro-elastic rebound following Altai earthquake. The model
is obtained by differentiating the two elastic responses of the crust with an undrained Poisson’s
ratio νu = 0.25 and with a drained Poisson’s ratio νd = 0.20.

choosing the average value of the drained Poisson’s ratio νd = 0.20. The prediction of the post-

seismic transient (the difference between the drained and undrained states), projected in the

LOS direction, is shown in fig. 2.6. The poro-elastic rebound model agrees relatively well with

the 2003/10/13-2006/08/28 interferogram (fig. 2.5a) in the North Chuya Range, in the South

side of the fault’s mid-section. At this location, however, the afterslip model and the poro-

elastic model predict the same polarity of line-of-sight displacements. The LOS displacement in

the South Chuya Range and the Chuya Basin, where both InSAR observations are consistent, is

essentially opposite to the poro-elastic model (fig. 2.5a-b). The poro-elastic rebound of the upper

crust therefore cannot explain the InSAR data. Analysis of interferograms spanning 1 yr of post-

seismic deformation (see fig. 2.8) showed that the surface displacements had the same polarity

during the observation period, suggesting that no significant poro-elastic rebound occurred in

the three years following the Altai earthquake.

2.3.3 Visco-elastic relaxation

We also investigated a possibility of a visco-elastic response of the Altai lithosphere. The

visco-elastic relaxation can explain a variety of observations from laboratory experiments [e.g.,

Karato and Wu, 1993] to large scale lithospheric rebounds [Thatcher and Rundle, 1979, Peltier,

1981]. High-temperature, high-pressure creep experiments suggest that the effective viscosity is

controlled by the thermal properties of the lithosphere and the stress to which it is subjected [e.g.,
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Table 2.1: Visco-elastic coefficients (η - viscosity, µ - shear modulus, ν - Poisson’s ratio and τm
Maxwell relaxation time)

elastic
moduli

weak
mantle

weak
lower-crust

jelly
sandwich

UC
µ=28 GPa
ν=0.28

elastic elastic elastic

LC
µ=45 GPa
ν=0.26

η=1021Pa s
τm=350 yr

η = 2 1018Pa s
τm = 0.7 yr

UM
µ=69 GPa
ν=0.28

η= 2 1018Pa s
τm=0.7 yr

η=1018Pa s
τm=0.3 yr

η=1025Pa s
τm=3 Myr

The upper crust (UC) extends from the surface to 15 km; the lower crust (LC) extends from

15 km to the upper mantle (UM) at 35 km.

Larsen et al., 1996, Gasperini et al., 2004]. A higher geotherm implies a weaker lower crust and

a faster viscous relaxation. A direct way of characterizing properties of the ductile substrate is

to infer its viscosity structure from the transient response to the co-seismic excitation. Little

is known about the effective rheology of the lower crust and upper mantle in the Altai area.

Previous studies in other tectonic environments have considered Maxwellian materials [Pollitz

et al., 2000, Fialko, 2004b, Freed et al., 2006], standard linear solids [Pollitz et al., 2000], bilinear

solids [Pollitz, 2003b] and nonlinear power-law rheologies [Freed and Bürgmann, 2004]. As we

have little information on the structure of the lithosphere in the Mongolian Altai, we used a

simplified, vertically stratified model with a Maxwellian visco-elastic body. We have tested three

end-member rheologic models, having a different shear viscosity structure, all elastic parameters

being otherwise the same (Table 2.1). All models have in common an elastic upper crust down

to a depth of 15 km. Variations in the rheologic structure give rise to distinct wavelengths and

timescales in the time-dependent response at the Earth’s surface. We performed simulations of

the visco-elastic relaxation due to the Altai earthquake using the approach developed by Wang

et al. [2006] for a layered visco-elastic Earth model in the presence of gravity. In these simulations,

we used our co-seismic slip model (fig. 2.4c) and the rheologic parameters shown in Table 2.1.

We computed the entire time series of the post-seismic transient and then simulated the

SAR data (2003/10/13-2006/08/28) by computing the difference between the surface deformation

corresponding to the SAR acquisition dates, projected onto the satellite LOS. The resulting

surface displacements are shown in fig. 2.7. The jelly-sandwich model [Brace and Kohlstedt, 1980]

and the weak lower-crust model produce very similar results for any value of the upper-mantle

viscosity in the range η = 1018 − 1025 Pa.s. This indicates that the post-seismic deformation

we observe at the surface is not sensitive to variations in rheology at depths greater than 35 km

(about 4 fault depths). The weak lower-crust rheology yields a deformation with wavelengths

comparable to the thickness of the elastic upper crust, whereas the weak mantle rheology gives a
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Figure 2.6: Simulated LOS displacement for 3 years of visco-elastic relaxation occurring between
2003/10/13 and 2006/08/28. (a) Weak lower crust or jelly-sandwich rheology. (b) Deformation
due to a flow in a weak mantle. Note the larger wavelength of the deformation.

surface deformation with a larger wavelength, of the order of the Moho depth. This illustrates the

self-similar behavior of the solution with a wavelength depending upon the relaxation depth and

the deformation magnitude controlled by the length of the earthquake. None of the visco-elastic

simulations show a strain accumulation as close to the fault as seen in the SAR data. The SAR

observations therefore appear to rule out the viscous relaxation as a significant contributor to

the post-seismic transient on the timescale of three years at depths shallower than 35 km.

2.4 Discussion

The 3-year post-seismic transient following Altai earthquake shows a localized deforma-

tion at the southernmost part of the fault, in the Chuya basin. This deformation is not consistent

with the visco-elastic relaxation in the lower crust or upper mantle as the predicted deformation

would have a larger wavelength (fig. 2.7). In the weak lower-crust model, the surface deformation

is not sensitive to the value of the shear viscosity in the upper mantle, provided that the latter has

a relaxation time greater than a few years. These results are consistent with our expectation that

the bulk of the surface deformation is controlled by the most inviscid layer. The available data

do not have the spatial and temporal coverage to constrain deep viscous flow that might occur in

the upper mantle. However, any rapid viscous flow in the lower crust would yield a deformation

field with a wavelength well within the detection limit of our SAR images. Therefore, we can

put a lower bound on the effective shear viscosity of the lower crust in the Western Altai of

η ≥ 1019 Pa.s. This result is consistent with other estimates of the thickness of the brittle layer.

The strength of the lithosphere, as constrained by gravity measurements in the Western Altai,

is believed to reside in the seismogenic layer, which spans the entire crust [Bayasgalan et al.,
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2005]. Measurements of heat flux were interpreted as indicating that the effective thickness of

the lithosphere in the Mongolian Altai is 55 km [Windley and Allen, 1993]. While the shallow

location of the seismic rupture may not be able to excite significant visco-elastic response in the

deep ductile substrate, a longer period of observations of the post-seismic deformation might

nevertheless better constrain the visco-elastic properties of the lower crust.

The polarity of the LOS displacement shows that the poro-elastic rebound of the upper

crust cannot explain the observed transient, as evidenced by the anti-correlation between the

simulated poro-elastic interferogram and the InSAR data (fig. 2.6). The sense of motion in the

LOS direction is essentially the same over 6 months and 3 years after the earthquake, as inferred

from the corresponding InSAR data (pairs denoted by black lines in fig. 2.2 and shown in fig. 2.8).

This is indicative of either very small effective fluid diffusivity, or absence of pore fluids in the

upper crust in the Chuya Range and basin. This is somewhat surprising, given that poro-elastic

rebound was previously inferred in quite diverse tectonic environments [Jonsson et al., 2003,

Fialko, 2004b, Freed et al., 2006]. For example, in areas as arid as the Mojave Desert, the fluid

diffusion was proposed to be a dominant contribution of the post-seismic transient imaged by

InSAR during several years following the Landers earthquake [Peltzer et al., 1998, Fialko, 2004b].

The 3 years of post-seismic deformation following the Altai earthquake are best explained

by shallow slip in the seismogenic zone. One possible interpretation of such slip is that the lat-

ter occurs in response to a stress concentration on the periphery of large co-seismic slip areas.

Accelerated motion on a deep extention of the fault may occur aseismically, representing either

velocity strengthening behavior or viscous-like deformation within a localized subvertical shear

zone in the middle and lower crust [Fialko, 2004b]. Another possibility is that the observed

deformation results from stick-slip motion in the brittle layer [Dieterich, 1994, Perfettini and

Avouac, 2007]. Our inversions indicate that the geodetic moment released during three years of

post-seismic transient was M0 = 2.32 × 1018 N m (assuming a shear modulus of 33 GPa), which

is comparable to a cumulative moment of aftershocks derived from long-period body wave and

surface wave data, M0 = 1.51×1018 N m [Ekström et al., 2005]. Some of the aftershocks may not

have occurred on the 2003 Altai rupture, so the latter estimate should be considered an upper

bound. Given the uncertainty (∼ 0.1◦) in the tele-seismically recorded event locations, there is

permissive, but not conclusive evidence that most of the aftershock activity is concentrated on

the fault that produced the mainshock. We minimized a potential bias by summing the seismic

moment of aftershocks having magnitude 4 and above, 20 km from the epicenter, a distance cor-

responding to twice the location standard deviation, and verified that the temporal distribution

of selected events follows Omori’s law. The corresponding aftershocks of magnitude 5 and above

are shown in fig 2.1. Note that the estimate of the epicenter location was bias by about 20 km so

a similar error can be expected for aftershocks. Fig. 2.8 shows the cumulative seismic moment

released from Oct. 13, 2003, date of the first available post-seismic InSAR data. Interfero-

gram 2004/07/19-2003/12/22 spans a time interval about three times smaller than interferogram
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2006/06/19-2004/07/19, yet exhibits comparable LOS displacements. Similarly, a comparable

amount of seismic moment was released in the corresponding time intervals. Interferometric

pairs 2006/08/28-2003/10/13 and 2006/09/16-2003/11/01 (fig. 2.8c and d, respectively) cover

about the same time interval, but the former records the deformation a month earlier than the

latter, and shows greater LOS displacements. The available InSAR data depict a deformation

that correlates qualitatively with the time-dependent release of seismic energy of aftershocks.

The inferred occurrence of post-seismic slip in the seismogenic zone between two areas of high

co-seismic slip (2.5c and 2.4c), along with the general agreement between the tele-seismically-

derived moment of aftershocks and the geodetic moment suggested by our inverse model (2.5c)

indicate that most of the post-seismic deformation detected by InSAR my be explained in terms

of continued seismic moment release. We cannot rule out a possibility that at least some slip on

the fault might have occurred aseismically, but the available observations suggest that aseismic

afterslip did not dominate the post-seismic relaxation contrary to inferences from other loca-

tions [Rymer, 1990, Savage and Svarc, 1997, Jacobs et al., 2002, Hearn et al., 2002, Fialko,

2004b]. Localized creep in the lower crust and upper mantle is a suggested mechanism for the

loading on the fault in the inter-seismic period [Savage and Prescott, 1978], and it is reasonable

to expect that co-seismic loading would result in an accelerated creep on a deep extension of

the fault [Tse and Rice, 1986, Fialko, 2004b]. However, the deep afterslip is not evident in the

three year post-seismic transient following the Altai earthquake. Our kinematic inversion did not

require slip on a down-dip extension of the fault. In fact, a relatively short wavelength of the

observed deformation transient precludes any contribution from possible relaxation phenomena

below the brittle-ductile transition. To quantify this statement, we present analytical solutions

for deep afterslip and visco-elastic response in the limit of complete relaxation in two dimensions

(anti-plane strain). Consider a screw dislocation extending from the surface to a locking depth

L. In the presence of a visco-elastic substrate below the depth H, the surface displacement after

full relaxation of the co-seismic stress change is (see Appendix 2.7)

u(x) =
s

π
tan−1

(
tan

π L

2H
coth

π x

2H

)
(2.1)

where x is the horizontal distance from the fault and s is the total displacement occurring across

the fault. In case of afterslip, the stress relaxation is believed to occur on a vertical plane below

the seismogenic fault. As shown in Appendix 2.7, such relaxation gives rise to the following

displacement at the surface,

u(x) =
s

π
tan−1

(
H

x

√
1 +

x2

H2
tan

π L

2H

)
(2.2)

Figure 2.9 presents a comparison between the surface displacements due to visco-elastic relaxation

and deep afterslip. For the same depth of the brittle-ductile transition H, and L/H ratio,

the afterslip model produces a more localized deformation compared to the visco-elastic model.
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However, the wavelength of surface displacements in both cases is of the order of H. This result

also holds in three dimensions (the main difference being vanishing of surface displacements in the

far field in case of 3-D deformation). InSAR observations of post-seismic deformation over three

years following the Altai earthquake do not reveal lobes of LOS displacments with wavelengths

greater than 20 km, indicating that the source is confined to the upper crust. The lack of long-

wavelength deformation prevents us from considering more complicated (and presumably, more

realistic) models of visco-elastic relaxation using non-linear rheologies. Therefore we conclude

that the bulk of the observed post-seismic transient is due to additional slip on the fault plane at

the periphery of areas with high co-seismic slip. The post-seismic fault adjustment is dominated

by aftershocks but some aseismic creep in the upper crust cannot be ruled out.

2.5 Conclusions

The September 27th 2003, Mw7.2 right-lateral strike-slip Altai earthquake ruptured a

sub-vertical fault from the surface to a depth of ∼ 12 km, as inferred from a kinematic inversion

of SAR interferograms from the adjacent satellite tracks. Our InSAR observations do not have

the spatial coverage to constrain the mantle viscosity at depths greater than about 40 km. We

can, however, put a lower bound on the dynamic viscosity of the lower crust of 1019 Pa.s. A

smaller viscosity would have caused a substantial surface deformation detectable by the InSAR

data. The post-seismic deformation, as observed from all interferograms covering a time interval

up to three years, cannot be explained by the viscous relaxation of any horizontal substrate above

35 km depth. The polarity of the post-seismic displacements around the fault do not warrant the

poro-elastic rebound in the upper crust, suggesting a very low permeability or fluid saturation

of the crustal rocks in the Chuya depression and Chuya Range. We cannot rule out, however, a

possibility of a rapid pore fluid flow within the first 16 days following the earthquake, an interval

for which we have no constraints from interferometry. According to our afterslip model obtained

from a joint kinematic inversion of 2 independent interferograms, the total seismic moment release

during the three years of the post-seismic transient was M0 = 2.32 × 1018 N m. This estimate

has the same order of magnitude as the cumulative aftershock moment of M0 = 1.51× 1018 N m

derived from long period body wave and surface wave data over the corresponding time interval.

Most of the 3 year line-of-sight displacements can be explained by the occurrence of aftershocks

in the brittle upper crust next to areas of high co-seismic slip. Some slip may have occurred

aseismically at depths less than 6 km. These results differ from those from other areas, and

may be indicative of variations in rheology of the continental lithosphere in different tectonically

active areas.
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2.6 Along-track Interferometry

Conventional SAR interferometry allows one to measure surface displacements along the

satellite line of sight (radar range). Any component of motion that is orthogonal to the LOS

(for example, the along-track or azimuth displacements) cannot be detected with conventional

interferometry. Other techniques utilizing radar amplitude information (e.g, pixel tracking) were

proposed to measure azimuthal offsets [Michel et al., 1999, Van Puymbroeck et al., 2000, Leprince

et al., 2007, Fialko et al., 2001b]. Such techniques involve subpixel correlation of the radar

images, and are computationally expensive. Recently, Bechor and Zebker [2006] presented a new

way to measure along-track displacements by forming forward-looking and backward-looking

interferograms and computing their phase difference. The resulting image is a measure of the

surface displacement projected in the azimuthal direction and the LOS plane. We propose a

different way of generating the along-track interferogram by utilizing the already focused SAR

images. Our method consists in filtering for positive and negative Doppler frequencies of the

full-resolution complex SAR images. The proposed method is computationally efficient and can

be easily implemented in existing SAR processors.

The high resolution of SAR imagery is obtained via bandwidth broadening. In the range

direction, this is achived by pulse compression. Along track, resolution is improved by making

use of a Doppler synthesis or synthetic array approach [e.g., Elachi, 1987]. In the along-track,

or azimuthal direction, the SAR geometry implies several relationships between time, frequency,

velocity, look angle and satellite position. For instance, the instantaneous look angle θ, between

the radar antenna and a scatterer, and the Doppler frequency fD are related as follows,

fD =
2v
λ

sin θ (2.3)

where λ is the radar wavelength and v is the platform velocity (fig. 2.10). This relation allows

one to select look angles by using the frequency content of the radar return. As the SAR image

lines are recorded at the frequency fPRF, the local look angle is also a function of time, and
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equation (2.3) allows one to evaluate the radiation pattern of the SAR antenna as a function of

time. In order to build forward-looking and backward-looking interferograms, we only need to

separate the positive and negative Doppler returns. Because of the Earth’s rotation and curvature

and the platform’s yaw, the zero Doppler f0 does not exactly have a zero azimuth frequency, and

is a function of range r. Energy distributed above the Doppler centroid corresponds to forward-

looking angles and energy associated with frequencies lower than f0 corresponds to the backward-

looking part of the antenna beam. Our method thus consists in taking the one-dimensional

Fourier transform in the azimuthal direction of each single look complex image and either tapering

to zero unwanted frequencies or simply cropping the spectrum in order to select returns with a

given Doppler sign. We do so for two SAR complex images, and we obtain 4 complex sub-images.

We denote a11, a12 the forward-looking and backward-looking parts of image 1, respectively; and

a21, a22 the corresponding parts of image 2. Thus,

φ1 = arg (a11 a
∗
21)

φ2 = arg (a12 a
∗
22)

(2.4)

are the phase of the forward and backward interferograms, respectively. The along-track inter-

ferogram is the conjugate product a11 a
∗
21a
∗
12 a22. We now consider a scatterer in the LOS plane

that moved ∆r between the two acquisitions while staying in the LOS plane. The pulse energy is

distributed along different angles so we call α the average look angle of half the beam aperture.

Exploiting the parallax effect between the forward and backward look angles, and making use of

simple trigonometric relations, the phase of the along-track interferogram is

∆φ =
8π
λ

sinα∆r · â (2.5)

where â is a unit vector in the orbit direction and in the LOS plane. This is a measure of the

azimuthal component of the displacement. The averaged look angle, assuming a non-tapered

rectangular aperture, is

α =
λ

L

∫ 1

0
θ sinc2θ dθ∫ 1

0
sinc2θ dθ

≈ λ

3.65L
(2.6)

where L is the antenna length and the sinc function is the theoretical angular distribution of the

radar amplitude. In practice, the emitted pulse is tapered to avoid aliasing, which slightly changes

the radiation pattern. (If the angular distribution were uniform, one would have α = λ/2L.) In

order to simplify the discussion, we make the conservative approximation α = λ/4L. Noting

that α� 1, we can write

∆φ = 2π
∆r · â
L

(2.7)

The phase measurement is independent of the radar wavelength and is only a function of the

radar antenna length and the horizontal component of the ground displacement. Furthermore,

as L is about 10 m, relatively large displacements, of the order of 0.1-1 m, are needed to generate
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acceptable signal-to-noise ratio. Due to the double phase difference, the along-track phase mea-

surement is not relative, as opposed to conventional interferometry. A phase jump should occur

at ∆r · â = L/2 but the coherence is lost when displacements ∆r · â are greater than L/4, half the

pixel size in the azimuth direction. Therefore, the obtained phase signal does not have the usual

properties: it is not relative and phase jumps occur because of speckle only, not because of ground

displacements. There is no need for phase unwrapping to uncover the azimuthal displacement

field and the measured displacement lies in the range [−L/4, L/4].

2.7 Full relaxation due to a screw dislocation

We consider a full relaxation at a depth H below an infinitely long screw dislocation

extending from the surface to a depth L, with an anti-plane slip s (fig. 2.11). The displacement

field is self-similar, so we introduce the dimensionless parameters x1 = x∗1/H, x3 = x∗3/H and h =

L/H, where the starred variables are the dimensional Cartesian coordinates. The corresponding

surface displacements can be expressed using the general solution for an anti-plane dislocation

in a layered half-plane of Weertman and Weertman [1964] and Rybicki and Kasahara [1977] by

setting to zero the shear modulus of the underlying half-space (first line in eq. 2.8). This solution

is in the form of an infinite series, and converges rather slowly. One way to improve convergence is

to compute the series dual through Poisson’s sum formula (second line in 2.8). The solution is still

in the form of an infinite series. As the anti-plane screw dislocation problem consists essentially

in solving Laplace’s equation, a simplification comes from conformal mapping. Indeed, by the

application of the mapping w = ln z−1
z+1 , we notice that the co-seismic screw dislocation in a plate,

corresponding to the visco-elastic full relaxation, is the dual of the inter-seismic dislocation in a

half-space. The equivalent solutions are

u2(x1) =
2
π

[
tan−1 h

x1
+
∞∑
k=1

tan−1 h−2k
x1

+tan−1h+2k
x1

]

= h+ 2
∞∑
k=1

sin kπh

kπ
e−kπx1

=
2
π

tan−1 tan πh/2
tanhπx1/2

(2.8)

The solution for afterslip, with a vertical stress-free surface extending from the dimensionless

depth x3 = 1 to infinity (bottom of fig. 2.11), can be also obtained with the help of conformal

mapping: the afterslip and the plate solutions are dual through the mapping w = sin z. It can

be readily shown that the solution for afterslip in the limit of full relaxation is

u2(x1, 0) = h+ 2
∞∑
k=1

sin kπh

kπ
e−2k asinh x1

=
2
π

tan−1

(
1
x1

√
1 + x2

1 tan
π

2
h

) (2.9)
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The difference between the surface displacement due to the anti-plane dislocation in a plate and

the dislocation underlain by a vertical stress-free surface shows how these end-member models

result in different spatial wavelengths of post-seismic deformation at the surface.
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Figure 2.7: Seismic moment release. Cumulative seismic moment after Oct. 13, 2003 and the
LOS displacement of available InSAR data. The LOS displacements correlate with the seismic
moment released in the corresponding time interval of each interferometric pair. The thin black
line indicates the fault surface location. (a-d) LOS displacements in UTM coordinates relative
to the origin (87.74◦E,50.30◦N).
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Figure 2.8: Difference between the full relaxation of the co-seismic stresses on a vertical plane
(afterslip) and on a horizontal plane (visco-elastic relaxation). In both cases, the seismogenic
zone, of thickness H, is perfectly elastic and the fault extends from the surface to a depth L.
The two-dimensional solution is self-similar and depends only on the dimensionless parameter
h = L/H.
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Figure 2.9: Doppler history fD as a function of time, or equivalently, as a function of the look
direction towards a scatterer P at the surface of the Earth. Positive and negative Doppler
frequencies are associated with positive and negative look directions, respectively.
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Figure 2.10: Geometry and boundary conditions applied to the screw dislocation in an elastic
half-space. The solutions represent the sum of the co-seismic and post-seismic contributions to
the anti-plane displacement. Top: the free surface on a horizontal plane corresponds to the
visco-elastic relaxation. Bottom: the free surface on a down-dip extension of the fault plane
corresponds to the afterslip scenario.



Chapter 3

Effect of a Compliant Fault Zone on the Inferred Earthquake Slip

Distribution

Sylvain Barbot, Yuri Fialko and Dave Sandwell

Abstract. We present a new semi-analytic method to evaluate the deformation due

to a screw dislocation in arbitrarily heterogeneous and/or anisotropic elastic half-plane. The

method employs integral transformations to reduce the governing partial differential equations

to the integral Fredholm equation of the second kind. Dislocation sources, as well as spatial

perturbations in the elastic properties are modeled using equivalent body forces. The solution

to the Fredholm equation is obtained in the Fourier domain using a method of successive over-

relaxation, and is mapped into the spatial domain using the inverse Fast Fourier Transform.

We apply this method to investigate the effect of a soft damage zone around an earthquake

fault on the co-seismic displacement field, and on the earthquake slip distribution inferred from

inversions of geodetic data. In the presence of a kilometer-wide damage zone with a reduction

of the effective shear modulus of a factor of 2, inversions that assume a laterally homogeneous

model tend to underestimate the amount of slip in the middle of the seismogenic layer by as

much as 20%. This bias may accentuate the inferred maxima in the seismic moment release at

depth between 3-6 km suggested by previous studies of large strike-slip earthquakes.

29



30

3.1 Introduction

Major crustal faults are often associated with zones of highly cracked and damaged rocks

that can extend as far as 102-103 meters away from the slip interface [Ambraseys, 1970, Wilson

et al., 2004, Chester et al., 2005]. Such zones may result from inelastic deformation associated

with the fault growth [e.g., Vermilye and Scholz, 1998, Manighetti et al., 2001] or repeated

seismic ruptures [Rice et al., 2005, Fialko, 2007]. Intense damage gives rise to a reduction in the

effective elastic moduli of the fault zone material, as predicted by theoretical models [Rybicki,

1971, Kachanov, 1986, Lyakhovsky et al., 2001, Turcotte et al., 2003], and evidenced by geodetic

[Fialko et al., 2002, Fialko, 2004a, Hamiel and Fialko, 2007] and seismic [Li et al., 1994, Thurber

et al., 2003, Cochran et al., 2006] observations. Macroscopic compliant fault zones result in

significant lateral variations in the mechanical properties of the Earth’s crust, and may affect

the pattern of surface deformation during the co-seismic, post-seismic, and inter-seismic phases

of the earthquake cycle. In this paper we investigate the effect of a pre-existing damage zone

on the co-seismic displacement field, and spatially variable fault slip inferred from inversions of

geodetic data.

We develop a new computationally efficient semi-analytic model of the fault-induced de-

formation in an arbitrarily heterogeneous and anisotropic medium. We use integral transforms to

reduce the problem to the Fredholm integral equation of the second kind which is solved by means

of successive approximations [e.g., Delves and Mohamed, 1985, Fialko et al., 2001a]. The forcing

terms are the equivalent body forces representing dislocations with prescribed slip [Eshelby, 1957,

Burridge and Knopoff, 1964]. Our approach takes advantage of the convolution theorem and the

fast Fourier transforms [e.g., Frigo and Johnson, 1998] and avoids the formation of a stiffness

matrix, such that the overall computational burden scales only linearly with the model size. The

method readily allows one to simulate deformation due to fault slip in the Earth’s crust or litho-

sphere with realistic variations in the elastic moduli (e.g., as inferred from seismic tomography

data). It can be also extended to simulate the visco-elastic response by taking advantage of

the correspondence principle, whereby the time-dependent response of a visco-elastic medium is

determined by applying the Laplace transform and reducing a problem to a set of inhomogeneous

static problems in the transformed domain [e.g., Pollitz, 1997, Smith and Sandwell, 2004, Wang

et al., 2006].

In the next section, we present the elasto-static solution for heterogeneous media. The

solution is implemented for a case of a two-dimensional anti-plane deformation, and verified

against a number of available analytic solutions. In section 3, we apply our method to investigate

the effects of a macroscopic compliant fault zone on co-seismic slip distributions inferred from

inversions of geodetic data.
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3.2 Semi-Analytic Model of Deformation in Heterogeneous

and Anisotropic Media

3.2.1 Theory

Surface deformation due to slip on a fault can be well described using solutions for

dislocations in an elastic half-space [Steketee, 1958a, Savage and Burford, 1973, Fialko, 2004a].

As demonstrated by Burridge and Knopoff [1964], one may transform the corresponding mixed

boundary-value problem into a stress boundary-value problem using a body-force equivalent of

the dislocation discontinuity in terms of double couples. Under this approach, the solution can

simply be obtained from the integration of some forcing terms f(x). The equivalent body force for

a total displacement u on a fault located at position x and oriented normal to n̂(x) (see Fig. 3.1),

in a linear elastic medium with an elasticity tensor C(x) is given by [e.g., Eshelby, 1957, Burridge

and Knopoff, 1964, Aki and Richards, 1980, Alshits and Kirchner, 1995a,b, Nemat-Nasser and

Hori, 1999]

f = −∇ · (C : u⊗ n̂) (3.1)

The static deformation resulting from fault slip satisfies the conservation of linear momen-

tum [e.g., Malvern, 1969]

∇ · σ + f = 0 (3.2)

subjected to the displacement-strain relation,

ε =
1
2
[
∇⊗ u + (∇⊗ u)t

]
(3.3)

the stress-strain relation σ = C : ε, and appropriate boundary conditions. For a finite deforma-

tion source in an elastic half-space, the relevant boundary conditions are zero tractions at the

free surface and vanishing displacements at infinity.

We now introduce the following iterative approach to simulate a dislocation in a hetero-

geneous half-space. Consider the decomposition of the elastic moduli into a constant part C̄ and

a heterogeneous part, C′(x) [e.g., Du et al., 1994],

C(x) = C̄ + C′(x) (3.4)

The choice of C̄ is discussed in Appendix 3.5. The conservation of linear momentum can then

be written

∇ ·
(
C̄ : ε

)
+ f +∇ ·

(
C′ : ε

)
= 0. (3.5)

The contribution ∇·
(
C′ : ε

)
can be interpreted as equivalent body forces mimicking the presence

of heterogeneities. These ficticious forces are uniquely related to the elastic structure and can

be distributed such that the resulting deformation in a homogeneous medium is equivalent to

that in a heterogeneous medium. The proposed algorithm for solving the heterogeneous problem
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Figure 3.1: Dislocation in a half-space. A fault idealized by a plane of normal vector n̂ is sliding
in a direction u. In anti-plane deformation, strike-slip occurs along the x1-direction.

consists in the following steps: first, starting from the displacement field u0 = 0 (or some non-

trivial guess), compute the equivalent body force at iteration n = 1,

f̃n = f +∇ ·
(
C′ : εn−1

)
, (3.6)

then solve the homogeneous problem

∇ ·
(
C̄ : εn

)
+ f̃n = 0 (3.7)

for the entire displacement field with appropriate boundary conditions. Last, verify the conver-

gence criterion 〈
|| f̃n − f̃n−1 ||2

〉〈
|| f ||2

〉 < ε (3.8)

where ε is the tolerance (hereafter, we use ε = 10−6), and the operator 〈 . 〉 denotes integration

over the entire domain. Steps (3.6) and (3.7) are repeated until condition (4.39) is satisfied. The

convergence criterion is a necessary condition to ensure that the equivalent body forces adequately

mimic heterogeneities in the elastic structure. The amplitude of stress and the equivalent body

forces is governed by the forcing term f, which depends upon the magnitude of slip on the

dislocations and the local shear modulus, so the convergence criterion (4.39) is scaled accordingly.
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The displacement field due to a dislocation in an arbitrarily heterogeneous material can

be obtained by iteratively solving the corresponding homogeneous problems with the properly

distributed body forces.

3.2.2 Anti-Plane Deformation

Implementation

Here we implement the described procedure for the case of an infinitely long screw dislo-

cation in an elastic half-space, with two-dimensional variations in shear modulus [e.g., Barnett,

1972, Du et al., 1994]. The deformation is anti-plane strain, as u2 = u3 = 0, the only non-zero

displacement component is u1 = u1(x2, x3), and the only non-zero stress components are

σ12 = 2µ ε12 = µu1,2

σ13 = 2µ ε13 = µu1,3

(3.9)

We now decompose the rigidity tensor into a constant part and a heterogeneous part as follows,

µ(x) = µ̄+ µ′(x) (3.10)

We use the method of images to satisfy the free-surface boundary condition [Steketee, 1958a,

Smith and Sandwell, 2004]. The equivalent body forces act in the x1-direction only, and we

write f1(x) the sum of the equivalent body forces and their image. The conservation of linear

momentum can now be written as

µ̄ (u1,22 + u1,33) = −f1 − (µ′u1,2),2 − (µ′u1,3),3 (3.11)

which simplifies to the Poisson’s equation in case of a homogeneous medium. After Fourier

transforming, eq. (3.11) is reduced to an algebraic expression representing the Fredholm integral

equation of the second kind (see Appendix 3.5).

We solve equation (3.11) by using a method of successive approximations in the spec-

tral domain. Convergence of the resulting series of iterated kernels is further discussed in the

Appendix 3.5. A similar approach was previously used to study the cooling of the oceanic litho-

sphere [Sandwell, 1984], the mantle convection [Gable et al., 1991] and complex composites in

mineral structures [Moulinec and Suquet, 1998, Lebensohn, 2001]. We employ the Successive

Over-Relaxation (SOR) technique to accelerate convergence [e.g., Golub and Van Loan, 1996].

The iterative algorithm for solving equation (3.11) is as follows: starting from û0
1(k) = 0 or some

initial guess, compute the equivalent body forces in the spectral domain for iteration n = 1

ĝn(k) = f̂1 − ω2

(
µ̂′ ∗ ω2û

n−1
1

)
− ω3

(
µ̂′ ∗ ω3û

n−1
1

)
(3.12)

where the hat denotes the relevant field in the transformed domain and we use ω = 2π k. The

two-dimensional convolutions, denoted by the symbol ∗, are performed in the space domain,



34

taking advantage of the fast Fourier transform. Then, we update the displacement field using

the SOR method

ûn1 (k) = φT (k) ĝn(k) + (1− φ) ûn−1
1 (k) (3.13)

where we have defined the transfer function

T̂ (k) =
1

µ̄ (ω2
2 + ω2

3)
(3.14)

An optimal value for the SOR parameter φ for simple problems (single fault embedded in a

subspace of uniform shear modulus) is φ = µ̄/µ∗ where µ∗ is the shear modulus µ on the fault.

This choice ensures the satisfaction of the boundary conditions on the fault at any iteration, so

that the final solution is obtained with fewer iterations. If the geometry prohibits one from using

this simple definition, the default value φ = 1 should be preferred, which corresponds to the

successive approximation approach. Finally, we evaluate the convergence criterion〈
|| ĝn − ĝn−1 ||2

〉〈
||f̂1 ||2

〉 < ε (3.15)

where the norm is || f ||2 = f f∗, and the functional 〈 || . ||2 〉 =
∫∞
−∞ || . ||

2 dk denotes the total error

inferred from the Rayleigh’s theorem. In order to satisfy the boundary condition of vanishing

of displacement at infinity, we need to enforce ûn1 (0) = 0. This is done by setting T̂ (0) = 0.

Steps (3.12) and (3.13) are to be repeated until the convergence test (3.15) is satisfied. The

suggested algorithm uses the direct and inverse two-dimensional Fourier transforms

f̂(k) =
∫ ∞
−∞

f(x) e−i2πk·x dx

f(x) =
∫ ∞
−∞

f̂(k) ei2πk·x dk
(3.16)

The fault geometry is defined by the value of f1(x) and can be readily expressed in the

Fourier domain in an analytic fashion. However, an accurate model depends upon the quality of

the frequency sampling and the fault slip distribution should be tapered so that high frequencies

vanish as one approaches the Nyquist frequency. We suggest two appropriate tapers which

intensities are controlled by a roll-off parameter β. For any value of β in the range 0 < β < 1/2,

the tapers have a unit area and can be successively added so that only the tip of the fault or

abrupt changes in slip are tapered. The first is a linear taper

Πβ(x) =


1, |x| < 1

2
− β

1
2β

(
1
2

+ β − |x|
)

,
1
2
− β <|x| < 1

2
+ β

0, otherwise

Π̃β(k) = sinc(k) sinc(2β k)

(3.17)
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The second taper suppresses stress singularities at the tip of a fault and allows for a better

frequency sampling,

Ωβ(x) =



1, |x| < 1− 2β
2(1− β)

cos
(
π

(1− β)|x| − 1
2 + β

2β

)2

,

1− 2β
2(1− β)

< |x| < 1
2(1− β)

0, otherwise

Ω̃β(k) =
sinc( k

1−β ) + (1− 2β)sinc(k 1−2β
1−β )

2(1− β − 4k2 β2

1−β )

(3.18)

For β = 0, both tapers reduce to a simple boxcar function. As an example, a vertical fault of

unit length and slip, starting at depth d, has the equivalent body-force in the Fourier domain

f̂1(k) = −µ∗i2πk2 e
−π2∆x2

2k2
2

× Ω̃β(k3) 2 cos (2πk3(1/2 + d))
(3.19)

where we make use of the Gaussian representation of a unit moment, ∆x2 being the horizontal

sampling interval, and we utilize the shift property of the Fourier transform to add the source

and its image.

Benchmarks

We test our semi-analytic solution against a number of available analytic solutions for

an elastic half-space with the spatially variable elastic moduli. All benchmarks discussed below

include a strike-slip fault extending from the surface to a depth L, and having the surface slip s.

Our method allows one to treat dipping faults; for simplicity, here we restrict our attention to

vertical faults only.

We begin with the case of an isotropic medium with a contrast in shear modulus across

a transform fault (Fig. 3.2a). The analytic solution for the surface displacement is

u1(x2) =


2s
π

µ2

µ1 + µ2
tan−1 L

x2
, x2 < 0

2s
π

µ1

µ1 + µ2
tan−1 L

x2
, x2 > 0

(3.20)

where µ1 and µ2 are the value of the shear modulus at each side of the fault and s is the total

slip across the dislocation. As expected, the deformation is enhanced in the softer region. Note

an excellent agreement between the numerical and analytic solutions.

Next example illustrates the full post-seismic relaxation due to a visco-elastic substrate

underlying the elastic-brittle layer (Fig. 3.2b). Viscous flow reduces the co-seismically induced

shear stresses below the brittle-ductile transition. In the limit of full relaxation and no secular
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Figure 3.2: Comparison between the analytic expressions and the numerical solutions for surface
displacements due to a fault slip in heterogeneous media. a) Isotropic medium with a contrast
of shear modulus across the transform fault zone. b) Isotropic medium after full relaxation
of a visco-elastic substrate below the depth H. c) Isotropic medium with the compliant fault
zone with total width 2W . d) Contrast of anisotropy across the fault plane. The wavelength of
deformation is larger in the softer anisotropic crust, to the left of the rupture.
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deformation, the latter effectively becomes a stress-free boundary [e.g., Fialko, 2004b]. The full

visco-elastic deformation can be evaluated by subtracting the elastic half-space and the elastic

plate solutions. The respective analytic solutions are available for the case of the antiplane

strain [Weertman and Weertman, 1964, Rybicki, 1971, Nur and Mavko, 1974, Barbot et al.,

2008b]. Due to the finite displacement at far field, a numerical cosine transform is more adequate

to model the deformation. Our numerical solution is in an excellent agreement with the analytic

expressions (see Fig. 3.2b). Note that the use of the SOR method allows one to treat such

problems with arbitrarily large variations in elastic properties, as shown in this example.

We now consider deformation due to slip on a fault embedded in a relatively narrow

zone of damaged material having a reduced effective shear modulus. An analytic solution is

available in the form of an infinite series [e.g., Rybicki and Kasahara, 1977]. The corresponding

surface deformation is shown in Fig. 3.2c. The semi-analytic solution well captures the localized

deformation including a discontinuity in strain at the interface between the fault zone and the

surrounding crust. The convergence is reached after 2 iterations, which takes only a few seconds

for a 512× 512 array on a low end laptop computer.

Finally, we consider the case of faulting in an anisotropic half-plane with heterogeneous

shear moduli. The condition of anti-plane strain requires that the dislocation lines extend along

an axis of two-fold symmetry in the elastic moduli tensor. A fault separating two media with

anisotropic shear moduli µ12 and µ13 satisfies this condition. Any anti-plane isotropic solution

can be generalized for the anisotropic case by scaling the horizontal coordinate by a factor

α =
√
µ13

µ12
(3.21)

Deformation in the presence of anisotropic heterogeneity across a transform fault, as sketched in

Fig. 3.2d, exhibits the following deformation profile at the surface:

u1(x2) =


2s
π

1
1 + α

tan−1 L

αx2
, x2 < 0

2s
π

α

1 + α
tan−1 L

x2
, x2 > 0

(3.22)

and is very well matched by the numerical solution (Fig. 3.2d). The wavelength of the deforma-

tion is larger on the left side of the fault where the medium is more compliant in the vertical

direction. Solutions for dislocations in heterogeneous anisotropic media are further discussed in

Appendix 3.6.

As one can see from Figure 3.2, there is a general agreement between our semi-analytic

approach and closed form analytic solutions. We conclude that the proposed iterative scheme

can be efficiently used to model crustal deformation in the presence of arbitrary variations in the

effective elastic moduli in the Earth’s crust.
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3.3 Co-seismic deformation in the presence of a compliant

fault zone

Major crustal faults are often surrounded by zones of highly cracked and damaged rocks,

as evidenced by geologic [e.g., Wilson et al., 2004, Chester et al., 2005, Dor et al., 2006], seismic

[Li et al., 1994, Thurber et al., 2003, Cochran et al., 2006] and geodetic [Fialko et al., 2002, Fialko,

2004a, Hamiel and Fialko, 2007] observations. Such zones introduce significant lateral variations

in the crustal rigidity, and likely affect patterns of co-seismic deformation at the Earth’s surface

(see Figure 3.2c). Consequently, inversions of geodetic data for the subsurface fault slip that

are usually based on solutions for homogeneous or horizontally stratified Earth’s crust may be

systematically biased.

We investigate this potential bias by modeling the co-seismic response of a heterogeneous

brittle-elastic lithosphere in the presence of a damaged compliant fault zone. We approximate

the damage zone by using a reduced shear modulus µ in a finite vertical strip centered on the

fault plane and extending by the distance W in both directions away from the fault plane. Based

on preliminary results from seismic tomography of the Calico fault zone in eastern California

[Cochran et al., 2006], we assume that the effective shear modulus varies gradually from a back-

ground value µ to a minimum value µ/2 at the center of the fault zone. We further assume that

the fault zone width is six times smaller than the depth extent of the co-seismic slip, W = L/6,

where L is the nominal locking depth. For a fault locking depth of 12 km typical of California,

the assumed thickness of the compliant zone is 2 km, consistent with some geodetic and seismic

observations [Fialko et al., 2002, Fialko, 2004a, Hamiel and Fialko, 2007, Cochran et al., 2006].

The fault slip is assumed to be constant in the uppermost crust, and gradually tapered to zero

toward the bottom of the seismogenic zone according to the following expression,

s(x3) = s0

(
Πβ

[
2x3 − L

2L

]
+ Πβ

[
2x3 + L

2L

])
(3.23)

where s0 is slip in the upper part of the fault. The assumed slip distribution is shown by the solid

line in Fig. 3.3b for β = 0.4. The corresponding surface displacements are shown in Figure 3.3a

for a homogeneous half-space (solid line) and a half-space with the compliant fault zone (dashed

line). The difference between the two model predictions is maximum at a distance of O(W ) away

from the fault, where it reaches ∼10% of the local displacement amplitude.

We then invert the synthetic co-seismic surface displacements for the fault slip distribu-

tion at depth. Using the Green’s functions for a homogeneous elastic half-space, we perform two

sets of inversions: one for the case of a heterogeneous half-space with a compliant zone, and an-

other for the case of a homogeneous elastic half-space. The corresponding surface displacements

are shown in Fig. 3.3a. As inversions of surface displacements are intrinsically non-unique [e.g.,

Parker, 1994, Mavko, 1981, Savage, 1990], we impose the non-negativity and smoothness con-

straints to regularize the problem (see [Fialko, 2004a] for details). The resulting slip distributions
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are shown in Figure 3.3b for the homogeneous (long dashed line) and heterogeneous (short dashed

line) models. Note that the use of the non-negativity constraint makes the inversion a non-linear

one. One consequence of non-linearity is that the difference between the inverted slip models

(e.g., corresponding to the homogeneous and heterogeneous forward models) is not equivalent

to the inversion of the difference between the surface displacements (Figure 3.3a). Figures 3.3c

and 3.3d illustrate results of the inversion of the difference between the synthetics for the homo-

geneous and heterogeneous half-space, and the difference between the slip distributions shown

in Figure 3.3b, respectively. A comparison between the slip models inferred from inversions,

and the assumed slip distribution (Figure 3.3b) shows that the neglect of a compliant fault zone

gives rise to an underestimation of slip throughout much of the seismogenic layer. The largest

discrepancy (as much as 20%) corresponds to a depth interval around x3 ∼ 0.2L. In addition,

inversions neglecting a compliant zone tend to overestimate slip below the effective brittle-ductile

transition (depths greater than L, see Figure 3.3b). The effect of a vertical compliant zone on the

inferred slip distribution is opposite to the effect of horizontal layering. The latter tends to bias

the moment centroid to shallower depths in slip inversions that assume a homogeneous elastic

half-space [Simons et al., 2002, Fialko, 2004a, Hearn and Bürgmann, 2005].

These results bear on the interpretation of co-seismic deformation. In particular, inver-

sions of high-quality geodetic data from several large strike-slip events including the Landers,

Izmit, Hector Mine, and Bam earthquakes [Simons et al., 2002, Fialko, 2004a, Fialko et al., 2005]

suggest that the maximum seismic moment release occurs in the middle of the seismogenic layer,

with a peak in the interval between 3 and 6 km [Fialko et al., 2005]. Because co-seismic slip

in the uppermost part of the brittle layer (shallower than ∼ 3km) appears to be systematically

less than slip at greater depth, this pattern was referred to as the “shallow slip deficit” [Simons

et al., 2002, Fialko et al., 2005]. It is of interest to establish whether the shallow slip deficit

inferred from inversions of geodetic data represents actual variations in seismic slip with depth,

or is an artifact of inversions (e.g., due to an oversimplified representation of the mechanical

response of the Earth’s crust to fault slip). Results presented above suggest that previous infer-

ences of the shallow slip deficit may be in fact conservative, as inversions based on homogeneous

or horizontally stratified elastic half-space models likely underestimate the amount of slip in the

depth interval between ∼ 3−6 km if earthquake faults are embedded in large damage zones with

reduced effective elastic moduli (Figure 3.3b).

The semi-analytic approach described in this paper allows one to accurately and effi-

ciently calculate deformation due to fault slip in a heterogeneous elastic half-space under condi-

tions of anti-plane strain. This approach can be readily extended for the general case of three-

dimensional (3-D) deformation. The 3-D formulation will be presented in a separate paper.
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Figure 3.3: a) Synthetic co-seismic surface displacements in a homogeneous crust (solid line)
and in a laterally heterogeneous crust with a compliant zone (dashed line). b) Slip inversions
of surface displacements for the initial slip distribution shown by the continuous profile. c)
Inversion of the algebraic difference between the homogeneous and the heterogeneous synthetics.
d) Difference between the inversions of the homogeneous and heterogeneous synthetics.
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3.4 Conclusions

We derived an iterative approach to model dislocations in heterogeneous and anisotropic

media for the case of two-dimensional (anti-plane strain) deformation appropriate for infinitely

long strike-slip faults. The method requires solving homogeneous problems with equivalent body

forces that account for arbitrarily distributed elastic heterogeneities in the Earth’s crust. By

making use of a series of integral transforms, the problem is reduced to the Fredholm integral

equation of the second kind. The computational burden is alleviated by the application of the

convolution theorem and the use of fast Fourier transforms. We have tested our numerical scheme

against analytic solutions for surface displacements due to a finite dislocation with variable slip.

The comparisons showed a very good agreement between the numerical and analytic solutions,

indicating that the proposed method can be used to model deformation in heterogeneous and

anisotropic media with essentially arbitrary distribution of elastic moduli.

We applied the Fredholm iterative scheme to model the co-seismic displacements in the

presence of a narrow compliant zone with gradual variations in the shear modulus. Inversions of

the corresponding surface displacements for subsurface fault slip show that models that neglect

the presence of compliant damage zones around earthquake faults may underestimate fault slip

by as much as 20% in the middle of the seismogenic layer. This bias implies more accentuated

shallow slip deficit than suggested by previous studies of large strike-slip earthquakes, provided

that the investigated earthquake ruptures are surrounded by wide damage zones.
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3.5 Convergence Condition

The displacement field due to a screw dislocation in a heterogeneous isotropic medium

is, when expressed in the Fourier domain, the solution of the Fredholm integral of the second

kind

û(k) =
f̂2

µ̄ 4π2k · k
+
∫ ∞
−∞

K(k, s)û(s) ds (3.24)
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where the kernel K(k, s) is

K(k, s) =
k · s
k · k

µ̂′(k− s)
µ̄

. (3.25)

The estimation of û(k) can be performed by successive approximations

û(k)n = T [û(k)n−1] . (3.26)

The corresponding series converges if∣∣∣∣T [û(k)n]− T [û(k)n+1]
∣∣∣∣ < ∣∣∣∣û(k)n − û(k)n+1

∣∣∣∣ (3.27)

where we use the infinite norm

|| f ||2 = max
R2

f(k)f∗(k) (3.28)

As T [ . ] is a linear operator, we can write

T [ûn]− T [ûn+1] = T [ûn − ûn+1]

=
∫ ∞
−∞

K(k, s)(û(s)n − û(s)n+1) ds
(3.29)

Applying the Cauchy-Schwarz inequality, we have∣∣∣∣∣∣∣∣ ∫ ∞
−∞

K(k, s)(û(s)n − û(s)n+1) ds
∣∣∣∣∣∣∣∣

<
∣∣∣∣ ∫ ∞
−∞

K(k, s) ds
∣∣∣∣ ∣∣∣∣û(k)n − û(k)n+1

∣∣∣∣ (3.30)

Combining eqs. (3.27) and (3.30), the convergence of the successive approximation method is

obtained if ∣∣∣∣∣∣∣∣ ∫ ∞
−∞

K(k, s) ds
∣∣∣∣∣∣∣∣ < 1 (3.31)

Evaluation of the above integral gives∫ ∞
−∞

K(k, s) ds =
∫ ∞
−∞

k · s
k · k

µ̂′(k− s)
µ̄

ds

=
∫ ∞
−∞

µ̂′(s)
µ̄

ds−
∫ ∞
−∞

k · s
k · k

µ̂′(s)
µ̄

ds

=
µ′(0)
µ̄

+
i2πk · ∇µ′(0)
−4π2k · k µ̄

(3.32)

where the last step is obtained by application of the moment theorem [Bracewell, 2003]. We also

require invariant convergence properties upon translation, so after Fourier transforming (3.32)

to the space domain, one obtains the convergence criterion∣∣∣∣µ′(x)
µ̄

∣∣∣∣ < 1
2

(3.33)

where | . | denotes the absolute value. The optimal choice for µ̄, that allows the maximum range

of deviations, is

µ̄ =
1
2

(
max

R2
µ(x) + min

R2
µ(x)

)
(3.34)
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We have implemented the suggested algorithm for the case of the transform fault (Fig. 3.2a)

and performed a series of calculations for various values of µ̄. Results shown in Fig. 3.4 indicate

that convergence is obtained only for µ̄ > min µ(x) and that the optimal convergence rate is

obtained for the value predicted by (3.34). When using SOR, there is much less sensitivity to the

choice of µ̄, as convergence is always reached, and convergence rates are always faster compared

to the successive approximation method.
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Figure 3.4: Convergence rate of the proposed algorithm as a function of the homogenization
constant µ̄. The successive approximation works best for the value predicted by eq. (3.34)
(as denoted by arrow). When using SOR, convergence is obtained for all range of µ̄ with an
accelerated rate.

3.6 Anisotropy

Here we implement the suggested procedure for the case of anti-plane strain in the

presence of arbitrary heterogeneity and anisotropy. The non-zero stress components are

σ12 = 2C1212ε12 = µ12u1,2

σ13 = 2C1313ε13 = µ13u1,3

(3.35)

where we denote, for the sake of simplicity, the shear moduli as µ12 = C1212 and µ13 = C1313.

Note that for an isotropic medium, µ = C1212 = C1313. The rigidity tensor is decomposed into a

constant part and a heterogeneous part as follows,

µ12(x) = µ̄12 + µ′12(x)

µ13(x) = µ̄13 + µ′13(x)
(3.36)
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and the conservation of linear momentum is written

µ̄12u1,22 + µ̄13u1,33 = −f1 − (µ′12u1,2),2 − (µ′13u1,3),3 (3.37)

The algorithm is essentially the same as in the isotropic case, but the equivalent body forces,

corresponding to (3.12) in the isotropic case, become

ĝn(k) = f̂1 − ω2

(
µ̂′12 ∗ ω2û

n−1
1

)
− ω3

(
µ̂′13 ∗ ω3û

n−1
1

) (3.38)

The transfer function is

T̂ (k) =
(
µ̄12 ω

2
2 + µ̄13 ω

2
3

)−1
(3.39)

and an optimal value for the SOR parameter is now φ = µ̄12/µ
∗
12 where µ∗12 is the horizontal

shear modulus µ12 on the fault. Similarly, the relevant elastic parameter for the body force

representation in the presence of anisotropy is µ12 [Burridge and Knopoff, 1964]. As an example,

a vertical fault of length L and slip s, starting at depth d, has the equivalent body-force

f̂1(k) = −s µ∗12i2πk2 e
−π2∆x2

2k2
2

× L Ω̃β(Lk3) 2 cos (2πk3(L/2 + d))
(3.40)

Our solution for a dislocation in a heterogeneous and anisotropic half-plane favorably compares

to the analytic one, as shown in Fig. 3.2d in the main text.



Chapter 4

Three-dimensional models of elasto-static deformation in

heterogeneous media, with applications to the Eastern California

Shear Zone

Sylvain Barbot, Yuri Fialko and David Sandwell

Abstract. We present a semi-analytic iterative procedure for evaluating the three-

dimensional (3-D) deformation due to faults in an arbitrarily heterogeneous elastic half space.

Spatially variable elastic properties are modeled with equivalent body forces and equivalent

surface traction in a “homogenized” elastic medium. The displacement field is obtained in the

Fourier domain using a semi-analytic Green function. We apply this model to investigate the

response of 3-D compliant zones (CZ) around major crustal faults to coseismic stressing by nearby

earthquakes. We constrain the two elastic moduli, as well as the geometry of the fault zones by

comparing the model predictions to Synthetic Aperture Radar inferferometric (InSAR) data.

Our results confirm that the compliant zone models for the Rodman, Calico and Pinto Mountain

faults in the Eastern California Shear Zone can explain the coseismic InSAR data from both

the Landers and the Hector Mine earthquakes. For the Pinto Mountain fault zone, InSAR data

suggest a 50% reduction in effective shear modulus and no significant change in Poisson’s ratio

compared to the ambient crust. The large wavelength of coseismic line-of-sight displacements

around the Pinto Mountain fault requires a fairly wide (∼1.9 km) CZ extending to a depth of

at least 9 km. Best fit for the Calico CZ, north of Galway Dry Lake, is obtained for a 4 km

deep structure, with a 60% reduction in shear modulus, with no change in Poisson’s ratio. We

find that the required effective rigidity of the Calico fault zone south of Galway Dry Lake is

not as low as that of the northern segment, suggesting along-strike variations of effective elastic

moduli within the same fault zone. The ECSZ InSAR data is best explained by CZ models with

reduction in both shear and bulk moduli. These observations suggest pervasive and widespread

damage around active crustal faults.

45
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4.1 Introduction

Crustal faulting is often associated with development of highly fractured and damaged

rocks around the primary slip surface [Ambraseys, 1970, Wilson et al., 2004, Chester et al.,

2005]. Such damage zones may result from distributed inelastic deformation associated with

the propagation and coalescence of cracks and joints during fault growth [Segall and Pollard,

1980, Vermilye and Scholz, 1998, Manighetti et al., 2001], relaxation of stresses at geometric

irregularities [Dieterich and Smith, 2007, Liu et al., 2003] or dynamic loading at the propagating

rupture front [Rice et al., 2005, Fialko, 2007]. Field observations suggest that the thickness of the

cataclasite zones correlates with the cumulative fault slip [Scholz, 1987]. Intense damage gives

rise to a reduction in the effective elastic shear modulus of the fault zone material, as predicted

by theoretical models [Rybicki and Kasahara, 1977, Kachanov, 1986, Lyakhovsky et al., 2001,

Turcotte et al., 2003], and evidenced by geodetic [Fialko et al., 2002, Chen and Freymueller,

2002, Fialko, 2004a, Hamiel and Fialko, 2007] and seismic [Li et al., 1994, Thurber et al., 2003,

Cochran et al., 2009, Ben-Zion et al., 2003] observations.

In a recent study, Cochran et al. [2009] showed that the geodetically inferred kilometer-

wide compliant fault zones in the Mojave desert [Fialko et al., 2002, Fialko, 2004a] are also

expressed in marked reductions in seismic velocities. The width of the tomographically imaged

low velocity zones, as well as the magnitude of velocity reductions were found to be consistent

with independent geodetic estimates. Seismic observations reveal the complex structure of the

fault damage zones, with large gradients in the effective elastic moduli both laterally and as a

function of depth. An accurate description of the deformation due to such fault zones requires

models of fault slip in three-dimensional (3-D) heterogeneous media. In this study, we present

an efficient algorithm for simulating the deformation due to faulting in the presence of arbitrary

spatial variations in elastic properties. Several investigators have proposed ways to tackle this

problem [e.g., Du et al., 1997, Moulinec and Suquet, 1998, Pollitz, 2003a]. The approach of Du

et al. [1997] is limited to discrete variations in elastic properties. The method of Pollitz [2003a]

is more general, allowing gradual variations in elastic -and viscous- parameters, but the normal-

mode based solution makes it less practical for small-scale problems. Moulinec and Suquet [1998]

and other investigators [Brown et al., 2003, Lebensohn, 2001, Yu et al., 2005] base their solution

on a Fourier representation but do not include the free surface. All these semi-analytic techniques

use essentially a perturbation approach and are limited to small variations in elastic properties.

Our proposed method relaxes the constraint of weak inclusions and allows gradual variations

in shear and bulk moduli. Our Fourier-domain semi-analytic solution is adequate for modeling

intermediate-scale static deformation, such as fault slip in the presence of neighboring compliant

zones.

In the Section 4.2, we present the governing equations and boundary conditions relevant

to a three-dimensional heterogeneous problem. We generalize the description of dislocations in



47

terms of double-couple equivalent body forces by including equivalent surface traction in case

of faults extending to the Earth’s surface. This generalized representation allows us to model

normal, reverse and strike-slip faults of arbitrary geometry. We then present some iterative

methods that evaluate the displacement field based on the homogenization of elastic properties.

One such method is the successive approximation (SA) [Barbot et al., 2008a]; we show that it

is in essence equivalent to the perturbation method [e.g., Du et al., 1994, 1997, Pollitz, 2003a,

Yu et al., 2005]. The successive approximations and the perturbation methods are adequate for

small variations in elastic properties [Moulinec and Suquet, 1998, Barbot et al., 2008a]. Another

approach is the successive over-relaxation (SOR) method [Barbot et al., 2008a], which allows for

larger contrasts in elastic properties. Comparisons with analytic solutions and some example

calculations are presented in Appendix A. We apply our numerical method to model the static

deformation in the Eastern California Shear Zone due to the 1992 Landers and 1999 Hector Mine

earthquakes. We combine the model predictions with InSAR observations to refine inferences

about the mechanical properties, geometry and structure of compliant zones associated with the

Calico, Rodman and Pinto Mountain faults of the East California Shear Zone.

4.2 3-D Models of Deformation due to Faulting in Hetero-

geneous Media

In this section, we derive a 3-D model of elastostatic deformation in a semi-infinite solid

with a free-surface boundary condition and 3-D variations in elastic properties. The formulation

for 2-D antiplane deformation can be found in Barbot et al. [2008a]. We will first derive the

forcing terms representing the effect of internal dislocations. Equivalent representations of dislo-

cations include eigenstrain -Eq. (5.58)-, moment density -Eq. (4.6)- and equivalent body forces

(including the equivalent surface traction) -Eqs. (4.9) and (4.13), respectively. We show that

the governing equation is the inhomogeneous Navier’s equation with non-constant coefficients

and Neumann-type boundary conditions. Next we discuss some iterative solution methods based

on the decomposition of the elastic moduli. Finally, we present some details on the numerical

implementation and discuss results from our numerical benchmarks of Appendix A.

4.2.1 Governing equation and boundar‘y conditions

Consider a heterogeneous elastic body Ω comprised of two interfaced volumes with dis-

similar elastic properties cut by a shear dislocation α (see Fig. 4.1). The surface of the elastic

body ∂Ω is assumed to be traction free. A dislocation characterized by slip sα on a surface

with normal vector n̂α is associated with the eigenstrain tensor [Backus and Mulcahy, 1976b,
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Figure 4.1: The deformation of a heterogeneous elastic body Ω is driven by internal dislocations.
A failure plane with normal n̂α and slip sα cuts the volume with elastic tensors C1 6= C2.
The slip system α is associated with eigenstrain εα(x) = 1

2 (sα⊗ n̂α + n̂α⊗ sα), moment density
mα(x) = C : sα⊗ n̂α and equivalent body force fα(x) = −∇ ·mα. The surface boundary ∂Ω,
with normal vector n̂, is traction free (σ · n̂ = 0).

Nemat-Nasser, 2004, Barbot et al., 2008a, 2009a]

εα(x) =
1
2

(sα⊗ n̂α + n̂α⊗ sα) (4.1)

where operator ⊗ is the dyadic product (for example if a and b are two vectors, then in index

notation the product a ⊗ b is the second-order tensor aibj). Both n̂α and sα may in general

vary along the dislocation surface. The eigenstrain depends on the geometry of a dislocation but

is independent of elastic properties of the ambient solid. The static deformation undergone by

body Ω compared to a reference state is characterized by the total strain ε, the sum of elastic

and inelastic strains

ε = εe + εi (4.2)

where εi is the total inelastic eigenstrain due to internal dislocations

εi(x) =
n∑
α=1

εα(x), (4.3)

where n is the total number of dislocations. The eigenstrain (4.3) is a tensor-valued forcing term

and should not be confused with the elastic strain in the near field of the dislocation. Notice

that the eigenstrain tensor is identically zero away from a dislocation. In general, any degree of

localization of eigenstrain can be represented using generalized functions such as boxcar or Dirac-

delta functions. For discussions and examples on the use of generalized functions for body-force
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representation, see Backus and Mulcahy [1976b], Barbot et al. [2008a] and Barbot et al. [2009a].

In a heterogeneous body Ω with the tensor of elastic moduli C = C(x), the Cauchy stress

σ = C :εe (4.4)

where operation : is the double scalar product (for instance if A and B are two second-order

tensors, then in index notation the product A : B is the scalar AijBij), can be written using

Eq. (4.2) as follows,

σ = C :ε−C :εi (4.5)

where the second term can be recognized as the moment density [Aki and Richards, 1980, Shearer,

1999],

m(x) =
n∑
α=1

C(x) :εα. (4.6)

As elastic properties are spatially variable, the moment density is not necessarily uniform along

a dislocation surface. Using Eq. (5.49), the conservation of momentum for static equilibrium in

Ω can be written [Malvern, 1969, Nemat-Nasser and Hori, 1999]

∇ · (C : ε)−∇ · (C : εi) = 0 (4.7)

The second term in Eq. (4.7) depends upon the distribution and orientation of internal dislo-

cations in Ω. The effect of all internal dislocations may be represented using equivalent body

forces [Eshelby, 1957, Burridge and Knopoff, 1964, Nemat-Nasser, 2004]

f(x) = −∇ · (C : εi) =
n∑
α=1

fα(x) (4.8)

where

fα(x) = −∇ · ( C : sα ⊗ n̂α) (4.9)

is the equivalent body-force density due to an individual dislocation α, and sα and n̂α refer to

the Burger’s vector and the normal direction of dislocation α, respectively. As dislocations may

cut across heterogeneous regions, the equivalent body force (4.9) may not be readily reduced to

a double couple. The conservation of momentum can now be written as

∇ · (C : ε) + f = 0, (4.10)

where

ε =
1
2
(
∇⊗ u + (∇⊗ u)t

)
(4.11)

is the total strain and u(x) is the associated displacement. Governing Eq. (4.10) simplifies to

the Navier’s equation for a homogeneous isotropic elastic medium. The equivalent body force

density f(x) depends upon the elastic structure C(x). The force distribution represents the effect

of all internal dislocations and for now is supposed to be known.
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We seek the displacement field u(x) within Ω that satisfies governing Eq. (4.10) subject

to the free surface boundary condition. The surface traction can be expressed in terms of the

total strain,
σ · n̂ = n̂ · (C : εe)

= n̂ · (C : ε)− n̂ · (C : εi)
(4.12)

so that dislocations cutting through the boundary ∂Ω contribute to the equivalent surface traction

as follows,
t = n̂ · (C : εi)

=
n∑
α=1

n̂ · (C : sα ⊗ nα)
(4.13)

where nα and sα are evaluated at the surface. The equivalent surface traction due to a dislocation

α is therefore

tα = n̂ · (C : sα ⊗ nα) (4.14)

The presence of non-vanishing equivalent surface traction depends upon the relative orienta-

tion of the normal direction at the surface ∂Ω and the moment density mα = C : (sα⊗ n̂α)

of dislocations that cut the surface [Backus and Mulcahy, 1976a]. A vertical strike-slip fault at

the surface of a half-space, for example, is not associated with equivalent surface traction. Fig-

ure 4.2 shows the equivalent body-force distribution and the equivalent normal traction due to a

given point dislocation intersecting the surface of a half-space in case of isotropic elasticity. The

moment density of dislocation α with arbitrary direction is decomposed into six linearly indepen-

dent directions in a symmetric tensor space. Whereas equivalent body forces for a point-source

dislocation simplify to a double couple, the equivalent surface traction tα simplifies to a sim-

ple traction vector: purely tangential traction for off-diagonal moment density components and

purely normal traction for diagonal components. Equivalent body forces and equivalent surface

traction are dual through the application of the divergence theorem. Using Eq. (4.12), the free

surface boundary condition in the presence of dislocations at the surface of Ω can be written as

n̂ · (C : ε) = t =
n∑
α=1

tα on ∂Ω . (4.15)

Internal dislocations and associated boundary conditions can therefore be reduced to some equiv-

alent body-force density f(x) in Ω and some equivalent normal traction t on ∂Ω. In the case

of homogeneous and isotropic elasticity, the problem simplifies to Navier’s equation with forcing

terms and inhomogeneous boundary conditions.

4.2.2 Decomposition of Elastic Moduli

Our approach to solving the governing equation (4.10) subject to boundary condi-

tion (4.15) consists in using the elastic Green function for a homogeneous medium and in identi-
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Figure 4.2: An arbitrary slip system α for a point source dislocation (bottom sketch) can be
decomposed into six linearly independent components. Eigenstrain εα is associated with an
equivalent body force distribution fα(x) and equivalent surface traction tα. Equivalent surface
traction occurs when fractures reach to the surface of the semi-infinite solid.
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fying a set of equivalent body force and equivalent surface traction that represents the effect of

spatial variations in elastic properties.

Consider the following decomposition of the elastic moduli tensor C(x) into a constant,

homogeneous part C0 and a spatially variable part C′(x), such that

C(x) = C0 −C′(x). (4.16)

We define

σ′ = C′ : ε , (4.17)

the moment density corresponding to spatial variations in elastic properties. Using Eqs. (4.10)

and (4.16), we now can write the governing equation as follows,

∇ · (C0 :ε) + f−∇ · σ′ = 0 . (4.18)

The variations in elastic properties introduce the moment density m′ = C′ : ∇ ⊗ u and the

equivalent body-force representation of the effects of the inhomogeneous elastic properties in the

“homogenized” medium is

f′(x) = −∇ · σ′ (4.19)

Notice that the body force representation for dislocations is unaffected by the elastic moduli

decomposition. The moment density introduced by internal dislocations is a function of the

actual elastic properties C(x) of the body. Making use of Eq. (4.16), the surface traction becomes

σ · n̂ = n̂ · (C0 : ε)

− n̂ · (C′ : ε)− n̂ · (C : εi) = 0
(4.20)

Consequently, the free surface boundary condition in the homogenized body can be expressed as

follows

n̂ · (C0 : ε) = t + t′ on ∂Ω, (4.21)

where

t′ = σ′ · n̂ (4.22)

is the surface traction due to deviations from the homogenized elastic properties at the surface

∂Ω. In case of a layered medium, if C0 is chosen to correspond to the value of C(x) in the top

layer, the additional equivalent surface traction simply vanish as C′(x) = 0 on ∂Ω. Similar to the

equivalent body forces, the equivalent surface traction t due to internal dislocations is unaffected

by the decomposition of the elastic moduli tensor.

Decomposition (4.16) allows us to transform an equation with non-constant coefficients

into a homogeneous equation with modified boundary conditions and additional internal forcing
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terms. For known equivalent body forces and surface traction representing the elastic hetero-

geneity, the solution for a displacement field is [Aki and Richards, 1980]

u(x) =
∫

Ω

G(x,x0) ·
[
f(x0) + f′(x0)

]
dx0

+
∫
∂Ω

G(x,x0) ·
[
t(x0) + t′(x0)

]
dx0

(4.23)

where G(x,x0) is the Green function tensor (see [Love, 1927, Mindlin, 1936a] for the case of a

semi-infinite solid) for an elastic body with a homogeneous elastic moduli tensor C0. However,

one cannot readily evaluate Eq. (4.23), as the distribution of body forces mimicking the presence

of heterogeneities needs to be determined as part of the solution.

4.2.3 The Successive Approximation Method

One way to solve the heterogeneous problem (Eq. (4.23)) is to use the method of succes-

sive approximations [Bender and Orszag, 1978, Delves and Mohamed, 1985, Kato, 1980]. Extend-

ing the approach proposed by Barbot et al. [2008a] to the case of three-dimensional deformation,

we adopt the following iterative procedure

un(x) =
∫

Ω

G ·
[
f−∇ ·

(
C′ : ∇un−1

)]
dV

+
∫
∂Ω

G ·
[
t + (C′ : ∇un−1) · n̂

]
dA

(4.24)

where index n denotes a level of approximation. Noticing integrals in Eq. (4.24) are linear with

respect to u, we define an operator

L[v] = −
∫

Ω

G ·
[
∇ ·
(
C′ : ∇v

)]
dV

+
∫
∂Ω

G ·
[
(C′ : ∇v) · n̂

]
dA,

(4.25)

where v is a vector field in Ω. We then define the first non-zero term in series (4.24)

u0(x) =
∫

Ω

G(x,x0) · f(x0) dx0

+
∫
∂Ω

G(x,x0) · t(x0) dA.
(4.26)

Using Eqs. (4.25) and (4.26), the proposed iterative procedure (4.24) can now be written as

un(x) = u0(x) + L[un−1] (4.27)

where u0(x) is the first approximate solution, and the true solution to the heterogeneous problem

is (assuming non-biased convergence),

u(x) = lim
n→∞

un(x) (4.28)
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We refer to formulation (4.24)-(4.27) as the Successive Approximation (SA) method to eval-

uate the solution of the heterogeneous elastic problem governed by Eq. (4.10) with boundary

condition (4.15). The SA method is used in various geophysical contexts including flexure of

the oceanic lithosphere [Sandwell, 1984], mantle convection [Gable et al., 1991], deformation of

heterogeneous mineral composites [Moulinec and Suquet, 1998, Lebensohn, 2001, Brown et al.,

2003] and volcano geodesy [Fialko et al., 2001a]. Iterative methods such as the SA allow one to

handle complex media for which an exact Green function is not readily available.

4.2.4 The Perturbation Method

The successive approximation series (4.27) can be reorganized in a form of an infinite

sum [Kato, 1980],

un = u(0) +
n∑
k=1

u(k), n ∈ N∗ (4.29)

with the recursive relation

u(k) = L[u(k−1)] (4.30)

and initial value

u(0) ≡ u0(x) (4.31)

The proof can be obtained by recurrence: consider the first iteration of the successive approxi-

mation solution
u1 = u0 + L[u0] = u(0) + L[u(0)]

= u(0) +
1∑
k=1

L[u(k)]
(4.32)

Assuming that Eqs. (4.29) and (4.30) hold true for n > 1, we consider iteration n+ 1

un+1 = u0 + L [un]

= u(0) + L

[
u(0) +

n∑
k=1

u(k)

]

= u(0) + L
[
u(0)

]
+

n∑
k=1

L
[
u(k)

]
= u(0) + u(1) +

n∑
k=1

u(k+1)

= u(0) +
n+1∑
k=1

u(k)

(4.33)

where we took advantage of the fact that L is a linear operator and thus can be moved inside the

sum. As Eqs. (4.29) and (4.30) hold at iteration n, they must also hold at iteration n+1. There-

fore we have shown by recurrence that the successive approximation series (4.27) can be written
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as the finite sum (4.29). The ultimate solution associated with the recurrence relation (4.30) is

therefore

u(x) = u(0)(x) +
∞∑
n=1

u(n)(x) (4.34)

Formulation (4.34) is referred to as the perturbation method to solve Eq. (4.23). The perturbation

method was used by Du et al. [1994, 1997] to model deformation due to faulting in heterogeneous

media with some limiting assumptions about the spatial variations of elastic moduli. Our ap-

proach allows one to model gradual changes in elastic moduli as well as to evaluate numerically

virtually any number of higher-order approximations of the true solution.

4.2.5 The Successive Over Relaxation Method

The Successive Over-Relaxation (SOR) technique [Press et al., 1992, Barbot et al., 2008a]

is a minor modification of the successive approximation method. Defining a linear operator

T [v] =
∫

Ω

G ·
[

f−∇ ·
(
C′ : ∇v

)]
dV

+
∫
∂Ω

G ·
[
t + (C′ : ∇v) · n̂

]
dA

(4.35)

where v is a vector field in Ω, the successive approximation method can be written

un = T [un−1] . (4.36)

A natural way of regularizing the numerical evaluation of Eq. (4.36) is to use the successive

over-relaxation method [Golub and Van Loan, 1996]: The iterative procedure becomes

un = (1− φ) un−1 + φT [un−1] (4.37)

where 0 < φ < 2 is the SOR parameter. Obviously, the successive over relaxation method

simplifies to the successive approximation or the perturbation method for φ = 1. Solutions for

cracked media with large variations in elastic properties can be obtained using φ ' 0.5 when the

homogenized elastic tensor satisfies certain conditions (e.g., see Eq. (4.43) in Section 2.5).

In practice, we use only a limited number of terms in the SOR series (4.37) or the

perturbation method series (4.34). An estimate of the body force representing the presence of

faults and variable elastic moduli is

f̃n = f−∇ ·
(
C′ : ∇un

)
, (4.38)

and a common convergence criterion for the SA and SOR methods is〈
|| f̃n ||2

〉
−
〈
|| f̃n−1 ||2

〉〈
|| f ||2

〉 < ε, (4.39)

where ε is the tolerance (hereafter, we use ε = 10−6), and the angular bracket operator 〈 . 〉
denotes integration over the domain Ω.
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4.2.6 Homogenization of Elastic Moduli

The perturbation and the successive approximation methods are adequate only in case

of small variations in elastic properties [Moulinec and Suquet, 1998, Barbot et al., 2008a]. For

instance, in case of anti-plane deformation, a necessary convergence criterion is satisfied when

rigidity contrasts are less than a factor of two of the homogenized value [Barbot et al., 2008a].

In the case of an isotropic heterogeneous body under condition of antiplane strain, the fastest

convergence of the SA method is obtained for a homogenized rigidity that minimizes the max-

imum effective rigidity contrast in the body [Barbot et al., 2008a]. To generalize this result to

three-dimensional deformation, we note that the isotropic elastic tensor can be decomposed into

the pure volumetric and pure shear directions in tensor space, E1 and E2, respectively [Hill,

1965, Nemat-Nasser and Hori, 1999]

E1 =
1
3
1(2)⊗ 1(2), E2 = 1(4s) − 1

3
1(2)⊗ 1(2) (4.40)

where 1(4s) is the symmetric and unitary forth-order tensor and 1(2) is the second-order unitary

tensor. Tensors E1 and E2 satisfy the orthonormality relations

E1 = E1 : E1

E2 = E2 : E2

E1 : E2 = E2 : E1 = 0

(4.41)

and form a base for any isotropic forth-order tensor. The isotropic elastic moduli tensor can

therefore be written

C(x) = 3κ(x) E1 + 2G(x) E2 (4.42)

where κ = λ + 2G/3 and G are the bulk and shear moduli that can vary spatially. As strain

directions E1 and E2 are orthogonal, the constrains on the elastic moduli tensor reduce to

independent constrains on scalars κ and G. Consequently, we choose the following values for the

homogenized elastic parameters,

G0 =
1
2

(
max

Ω
G(x) + min

Ω
G(x)

)
,

κ0 =
1
2

(
max

Ω
κ(x) + min

Ω
κ(x)

)
.

(4.43)

Given λ0 = κ0 − 2G0/3, the homogenized isotropic tensor is therefore

C0 = λ0 1(2)⊗ 1(2) + 2G0 1(4s). (4.44)

In Appendix A we demonstrate that the numerical constraint of small variations in elastic prop-

erties within volume Ω can indeed be relaxed by application of the successive over relaxation

technique.
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4.2.7 Implementation

We adopt a numerical approach presented by Barbot et al. [2008a] for 2-D antiplane

strain and generalize it to the case of 3-D deformation. Sources of deformation include tensile

cracks and strike-slip and dip-slip faults of arbitrary orientation and position in the half space.

Notice that equivalent surface traction and the equivalent body forces appear in the representa-

tion of both the forcing terms due to internal dislocations and the effect of inclusions. Models

of deformation in a homogeneous half space or in a 3-D heterogeneous half space can there-

fore be evaluated with the same elastic Green function, one which satisfies a prescribed traction

boundary condition at the surface.

We perform the convolution between the equivalent body forces and the Green func-

tion for the homogeneous elastic half-space numerically in the Fourier domain. The expansion

of the displacement field in a Fourier series introduces a periodicity in the solution that lim-

its the solution accuracy near the edges of the computational grid. We mitigate this bias by

using large computational domains, such that deformation sources are sufficiently far from the

boundaries (except the free surface). We take advantage of the convolution theorem and the fast

Fourier transforms to reduce the computational burden (compared, e.g., to convolutions in the

space domain). We use the Boussinesq’s [Steketee, 1958a,b] and Cerruti’s [Love, 1927, Mindlin,

1936a] solutions for normal and tangential surface loading, respectively, to satisfy the free surface

boundary condition.

We compute the gradient of the displacement field and the divergence of the moment

density using finite impulse differentiator filters (FIR) [McClellan et al., 1973, Farid and Simon-

celli, 2004] in the bulk of the half space, and simple finite difference schemes near the surface, in

the vertical direction. The impulse response of finite difference filters has a narrow bandwidth so

using FIR filters allows us to compute more precise and more localized derivatives. Numerical

evaluation of derivatives is critical to preserve the accuracy throughout multiple iterations in

both the perturbation and the SOR methods. We taper the dislocations using the Ωβ function

(see Eq. (17) in [Barbot et al., 2008a]) to obtain band-limited sources and limit a potential Gibbs

phenomenon [Bracewell, 2003] in the resulting displacement field near the faults. The tapering

also suppresses the stress singularity at a fault tip.

The numerical technique was extensively validated against analytic solutions for antiplane-

strain problems with lateral and vertical layering [Barbot et al., 2008a]. The accuracy of dislo-

cation models that use the Fourier-domain Green function in a 3-D homogeneous half-space is

discussed in [Barbot et al., 2009a, Appendix B3]. We performed some additional benchmarks

for 3-D deformation in a 3-D heterogeneous half-space in Appendix A. These tests include cases

of vertical and lateral variations in elastic properties, models of faults cutting through differ-

ent elastic materials, large elasticity contrasts using the SOR method and forcing terms due to

strike-slip and dip-slip faults. In general, the accuracy of the iterative solution away from the
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(periodic) boundary is about 5 to 10% of the expected elastic structure contribution, the largest

error arising from the strongest elastic contrast: If the expected signal due to the rigidity varia-

tion is 10% of the total displacement, then our numerical solution is associated with a 0.5% to 1%

bias. The accuracy of our method as shown by comparisons with other analytic, semi-analytic or

numerical solutions and our ability to include complex geometric structures makes this approach

adequate to model deformation due to faulting in a heterogeneous crust.

4.3 Application to Compliant Fault Zones in the Mojave

Desert

The Eastern California Shear Zone (ECSZ) is a region of active deformation that strikes

northwest-southeast across the central Mojave desert [Dokka and Travis, 1990a,b, Savage et al.,

1980, Sauber et al., 1994]. The ECSZ extends from the San Gorgonio bend of the San Andreas

fault in the south to Owens Valley and the northern Basin and Range province. A system of

young strike-slip faults comprising the ECSZ accommodates 8 to 14 mm/yr of motion between

the North American and Pacific plates [Sauber et al., 1994, Miller et al., 2001, Oskin and Iriondo,

2004]. Active deformation within the ECSZ was highlighted by the occurrence of the 1992 Mw 7.3

Landers [Massonnet et al., 1993, Sieh et al., 1993] and the 1999 Mw 7.1 Hector Mine [Hauksson

et al., 2002, Sandwell et al., 2000, Simons et al., 2002, Fialko et al., 2001b] earthquakes.

Early Interferometric Synthetic Aperture Radar (InSAR) observations of the Hector

Mine earthquake revealed intriguing small-scale displacements along the satellite line-of-sight

(LOS) on faults adjacent to the main rupture [Sandwell et al., 2000]. These anomalous LOS

displacements were later interpreted to represent the response of compliant zones (tabular vol-

umes of reduced rigidity), to the permanent co-seismic stress changes induced by the Hector

Mine earthquake [Fialko et al., 2002]. Inspection of InSAR data from the 1992 Landers, CA

earthquake also revealed small-scale deformation on pre-existing faults and confirmed that this

deformation is consistent with the compliant zone response to coseismic loading [Fialko, 2004a].

Seismic probing of the Calico fault zone including trapped waves studies, and traveltime analysis

of teleseismic and active source data discovered the existence of a low-velocity zone along the

Calico fault coincident with the geodetically inferred compliant zone [Cochran et al., 2006, 2009].

Figure 4.3 shows the maximum gradients of the LOS displacement residuals (track 127, frame

2907, from January, 13th 1999 to October, 20th 1999) computed after removing the Hector Mine

earthquake coseismic model of Simons et al. [2002]. Figure 4.3 illustrates amplified deformation

around faults located near the Hector Mine rupture. In particular, the Calico-Hidalgo (CH),

the Rodman (RM), the Pinto Mountain (PM), the Homestead-Johnson Valley and the Emerson

faults all exhibit some anomalous strain. Location of the seismic experiment of Cochran et al.

[2006] is indicated with the black triangle. Some of the localized strain seen in Fig. 4.3 may be
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Figure 4.3: Gradient of the LOS displacement residuals after the Hector Mine coseismic model was
removed. Gradient emphasizes deformation around nearby faults and underlines possible creep
events (dashed quadrants). Triangle indicates location of the seismic experiment of Cochran et
al. [2008].

due to shallow creep events (outlined by dashed rectangles). For example, the localized strain

south of the Pinto Mountain fault in the Yucca Valley occurred prior to the Hector Mine earth-

quake, as it is absent in interferograms that bracket the Hector Mine earthquake more tightly.

This localized strain is associated with a history of seismic swarms [Jones and Helmberger, 1998].

The other three anomalous strain areas appear to be aseismic.

Previous studies of small-scale deformation due to faults in the ECSZ used finite element

models to evaluate the coseismic response of compliant fault zones assuming a constant drop in

the shear modulus and no change in the Poisson ratio within the CZ compared to the host

rocks [Fialko et al., 2002, Fialko, 2004a]. The fault zone response was modeled by applying

coseismic stress changes inferred from the homogeneous elastic half-space solutions, and the

interaction between neighboring fault zones (e.g., around the Calico and Rodman faults) was

neglected. While in general it is possible to use more sophisticated finite element simulations

including multiple fault zones and realistic earthquake rupture models, such simulations require

elaborate and time-consuming meshing of a computational domain, especially for non-planar

and branching faults. Also, assignment of spatially variable material properties to different
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parts of a computational mesh is cumbersome. We use our iterative semi-analytic approach to

evaluate three-dimensional deformation of the Earth’s crust with realistic variations in elastic

properties due to the presence of fault zones. We use a Poisson’s solid for the “homogenized”

starting model, corresponding to the value of Poisson’s ratio in the ambient crust assumed for the

coseismic slip models. The modeled compliant zones (CZs) follow the geometry of the geologically

mapped faults and are allowed to have across-strike, along-strike and down-dip variations in the

effective elastic moduli. We assume a gradual decay in the rigidity contrast away from the

fault trace. The spatial variation of elastic moduli, both lateral and vertical, is parameterized

with the tapered boxcar function Ωβ of Barbot et al. [2008a], with a fixed taper coefficient of

β = 0.3. Our model includes the inferred compliant zones associated with the Calico, Rodman,

Pinto Mountain, Emerson, and Homestead-Johnson Valley faults in the central Mojave desert.

Coseismic interferograms used to constrain the model include the April 24-August 7, 1992, ERS-

1 acquisitions from the descending track 399 (Landers earthquake) and January 13-October 20,

1999, ERS-2 acquisitions from the descending track 127 (Hector Mine earthquake) [Fialko et al.,

2002, Fialko, 2004a]. We assume that the fault-zone properties were not affected by nearby

earthquakes (but see a discussion in Hearn and Fialko [2009]).

We use the respective earthquake slip models [Fialko, 2004a, Simons et al., 2002] to

remove the LOS displacements predicted for a homogeneous half-space (referred to as the homo-

geneous model) from the interferograms. The residual LOS displacements represent propagation

artifacts (e.g., atmospheric noise), as well as the small-scale deformation such as the amplified

strain due to compliant zones. Similarly, we subtract the homogeneous model from the model

accounting for the presence of CZs. The residual forward model is referred to as the heteroge-

neous contribution (deviation of the predicted displacement field from the homogeneous elastic

half-space solution). The forward models are computed on a 512 × 512 × 512 grid with a uni-

form node spacing of 350 m. The time involved in evaluating a single forward model is of order

of five minutes on a 4-CPU shared-memory architecture computer. Figure 4.4 shows the total

surface displacements and the heterogeneous contribution due to the Landers and Hector Mine

earthquakes, modeled with our iterative semi-analytic approach. The origin corresponds to the

epicenter of the Hector Mine earthquake (116.27W, 34.595N). Profiles A-A’ across the Calico

and the Rodman faults, B-B’ across the Calico fault, and C-C’ across the Pinto Mountain fault

are selected because LOS displacements from these profiles are available in both the Landers and

Hector Mine coseismic interferograms. For a vertical strike-slip fault, the near-field uplift is due

to compression and near-field subsidence is due to extension. As one can see from Fig. 4.4, profile

A-A’ is located in the extensional quadrant of the Landers earthquake, and the compressional

quadrant of the Hector Mine earthquake. Profiles B-B’ and C-C’ are in the compressional quad-

rant of the Landers earthquake, and the extensional quadrant of the Hector Mine earthquake.

The fortuitous spatial configuration allows us to investigate the response of compliant fault zones

to different loading conditions.
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Figure 4.4: A) Map view of surface displacement corresponding to full 3-D deformation in a
heterogeneous crust due to the 1992 Landers, CA earthquake. Vectors and color scale indicate
horizontal and vertical displacements, respectively and uplift is taken to be positive. B) Elas-
tic structure contribution corresponding to the Landers model. C) Model of the total surface
displacements due to the Hector Mine earthquake. D) Hector Mine elastic structure contribu-
tion. The deformation is localized around CZs: The Calico-Hidalgo (CH), the Rodman (RM)
and the Pinto Mountain (PM) faults exhibit amplified strain. Profiles A-A’, B-B’ and C-C’ are
shown is subsequent figures. Origin corresponds to the epicenter of the Hector Mine earthquake
(116.27W, 34.595N). Light gray lines correspond to identified faults in the ECSZ and darker gray
lines indicate modeled compliant zones (CZ).
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Figure 4.5: Exploration of the CZ model space. Variance reduction of the Landers and Hector
Mine LOS data for the (a) Calico/Rodman and (b) the Pinto Mountain profiles (transects A-A’
and C-C’, respectively, in Fig. 4.4) as a function of the CZ width, depth and rigidity reduction
∆G. All models assume a Poisson’s solid (ν = 0.25) in the ambient crust and in the CZ. The star
symbol indicates the preferred model of Cochran et al. [2008] corresponding to a 36% reduction
in P-wave velocity. The circle indicates our preferred model, based on fitting the Landers and
Hector Mine LOS data simultaneously.
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We constrain the structural and elastic properties of a compliant zone by comparing the

modeled elastic contribution to the LOS data from the Landers and Hector Mine earthquakes.

The model parameters include the change in Lamé parameters ∆λ and ∆G, and the compliant

zone width W (fault-normal dimension) and depth D (down-dip dimension). We assume that

all CZs are extending vertically from the surface to a depth D and follow the strike of the

corresponding fault trace at the surface. To identify the best fitting model, we explore a range of

parameters with a grid search with depths going from 2 to 18 km, width varying from 0.8 to 2.8 km

and rigidity reduction ranging from −30 to −60 % compared to the ambient lithosphere. In all

models, we assume a Poisson’s solid for the ambient crust. The variance reduction of the Landers

and Hector Mine LOS data for profiles A-A’ and C-C’ are shown in Fig. 4.5 for a range of model

parameters. In these calculations, we assume that the rigidity reduction ∆G is accompanied with

a similar reduction in the other Lamé parameter ∆λ or, equivalently, with a similar reduction in

bulk modulus ∆κ. Fig. 4.5a shows the variance reduction of profile A-A’ corresponding to the

Calico and Rodman CZs. Based on previous exploration, we assume that the thickness of the

Rodman CZ is half that of the Calico CZ. The lesser depth extent of the Rodman CZ is required

by the small wavelength of the corresponding LOS data, most visible in the Landers earthquake

data (see Fig. 4.6a). The variance reduction is systematically better for the Hector Mine data,

due to a better signal-to-noise ratio in the Hector Mine radar interferogram. Residuals are larger

for CZs with a small rigidity contrast, the best variance reduction being obtained with the large

reduction ∆G = −60%. For all the rigidity contrasts considered, the required width of the Calico

CZ for both the Landers and the Hector Mine data lies in the range W = 4−5 km. The preferred

thickness of the Calico CZ is slightly (about 20%) higher for the Landers than for the Hector

Mine data. Our preferred model for the compliant zone surrounding the Calico fault, north of

Galway Dry Lake, explaining both the Landers and Hector Mine data simultaneously, implies a

60% shear and bulk moduli reduction, a depth of 4±0.5 km and a 2.0±0.2 km width. Best model

for the Rodman CZ is similar, except for a 2 km depth. We performed additional simulations,

considering an increase in Poisson’s ratio in the compliant zone. The best variance reduction

was obtained for a shallower structure. However, all models with increased Poisson’s ratio led to

higher misfit with both Landers and Hector Mine LOS data. These results indicate that a change

in the CZ bulk modulus accompanying the reduction in rigidity is a robust feature required by

the radar data.

Fig. 4.5b shows the variance reduction of profile C-C’ corresponding to the Pinto Moun-

tain compliant zone. As in case of models shown in Fig. 4.5a, we assume that rocks in the

fault zone behave as a Poisson’s solid, so that Poisson’s ratio is constant and equals 0.25. For

small rigidity contrasts (−∆G = 30− 40%), the LOS data provide essentially a lower bound on

the inferred width W = 2.0 ± 0.1 km and depth D = 9 km of the Pinto Mountain CZ. There

is an apparent trade-off between the required width and the rigidity reduction, most apparent

for the Landers data. However, the best variance reduction is obtained for models with the
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Figure 4.6: Observed (diamond) and modeled (solid line) LOS displacements from profile A-A’
corresponding to the Landers (bottom) and Hector Mine (top) coseismic interferograms North
of Galway Dry Lake. The Calico model corresponds to a 4 km deep, 2.0 km wide structure with
a 60% rigidity reduction, as indicated by a circle in Fig. 4.5a. The Rodman model is similar
except for a shallow structure of 2 km. B) Observed and modeled LOS residual displacements
across a southern segment of the Calico fault (profile B-B’). At this location, the Calico model
implies a shallow (2-3 km) structure 1.8 km wide with 45-50% rigidity reduction. Topography
(dashed line) does not correlate with InSAR phase delay, indicating a limited tropostatic noise
contribution. The continuous profiles correspond to forward models from several closely spaced
parallel profiles within boxes outlined in Fig. 4.4. The flip of polarity between the Landers and
Hector Mine coseismic InSAR data is an expected signature of a compliant zone.

largest rigidity reduction. For elastic contrasts larger than ∆G = −45% the width required by

the Landers and Hector Mine data differ by more than 15% and the models using the preferred

width inferred from the Hector Mine data produce only a poor fit to the Landers LOS data. Our

preferred model, which we indicate by a circle in Fig. 4.5, lies within 2% variance reduction of

the independent best-fitting models for Landers and Hector Mine. Our preferred model, fitting

both the Landers and Hector Mine data simultaneously, implies a 45% reduction in both shear

and bulk moduli in a zone 1.75 km wide and at least 9 km deep surrounding the Pinto Mountain

fault. The minimum depth of 9 km for the Pinto Mountain CZ is a robust feature that is required

by both datasets.

Figure 4.6a shows the observed and modeled LOS displacements along profile A-A’.

Profile A-A’ crosses over the Calico and the Rodman faults, north of Galway Dry Lake, close

to the seismic tomography experiment of Cochran et al. [2009] (see Fig. 4.3). There is little

correlation between topography (dashed line) and the InSAR data, indicating that the observed

variations in the LOS displacements do not result from atmospheric phase delays. We also

note the change in polarity in the LOS displacements corresponding to the Hector Mine and

Landers coseismic interferograms. This change in polarity is an expected signature of the vertical
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displacement due to a compliant zone, given a reversal in sign of the fault-normal coseismic

stress change. The assumed location and thickness of the Calico and Rodman compliant zones

are indicated in Figure 4.6a by gray bands. Solid lines in Figure 4.6a represent deformation

due to our preferred fault zone model, sampled along the respective profiles. The modeled

LOS displacements account for range variations in the radar incidence angle. Results shown in

Figure 4.6a accurately simulate the 3-D response of closely spaced compliant zones due to the

Calico and Rodman faults to coseismic loading, and represent a substantial improvement over

the previously published simplified models [e.g., Fialko et al., 2002]. Our preferred model for the

compliant zone surrounding the Calico fault, north of Galway Dry Lake, implies a 60% reduction

in shear modulus and no change in the Poisson’s ratio (accompanied by a 60% reduction in the

value of the bulk modulus) compared to ambient rocks, in a finite zone 4 km deep and 2.0 km

wide. Our preferred model for the CZ due to the Rodman fault implies the same elastic moduli

reduction, but to a shallower depth of D = 2.0 km.

Figure 4.6b shows the observed and modeled LOS displacements along profile B-B’ in

Fig. 4.4. InSAR data and models are shown for both the Landers and the Hector Mine earth-

quakes. Topography profile exhibits a ridge close to the location of the assumed compliant zone

but LOS displacements corresponding to the two seismic events change polarity and are not well

correlated with topography, suggesting that the observed LOS displacements are not an atmo-

spheric artifact. Incomplete data for the Landers earthquake, east of the compliant zone is due to

limited coverage of the available satellite track 399. InSAR data for the Landers earthquake are

nevertheless sufficient to suggest a localized increase in LOS displacements centered on the Calico

fault trace. Profile B-B’ samples a segment of the Calico fault located to the South of Galway

Dry Lake, about 35 km south of profile A-A’. This portion of the Calico fault was subjected to

compression during the Landers earthquake and extension during the Hector Mine earthquake,

coincident with the observed polarity of vertical displacement in Fig. 4.4. Our preferred CZ

model indicates a reduction of 45-50% in shear and bulk moduli in a 1.8 km wide zone extending

from the surface to a depth of 2-3 km. The CZ model can explain data from both the Hector Mine

and Landers earthquakes. Reductions in the effective elastic moduli on the southern segment of

the Calico fault are inferred to be somewhat smaller compared to those on the northern segment.

This result highlights a possibility of substantial variations in effective elastic properties along

the same fault zone. A 10% along-strike variation in elastic moduli compared to surrounding

rocks was also inferred along the Johnson Valley and the Kickapoo faults, the southern segments

of the Landers rupture [Li et al., 2000].

Fig. 4.7 shows the modeled and the observed LOS displacements across the Pinto Moun-

tain fault due to the Landers and Hector Mine earthquakes (profile C-C’ in Fig. 4.4). Profile C-C’

is located to the east of the Landers rupture, in a compressional quadrant near the southern tip

of the rupture. This proximity likely explains a relatively large (up to 30 mm) LOS displacement

due to the compliant zone of the Pinto Mountain fault. The southern tip of the Hector Mine
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Figure 4.7: Modeled (solid line) and observed (diamonds) LOS displacements across the Pinto
Mountain fault, profile C-C’. The predictions correspond to a single compliant zone model with
a 45% reduction in both shear and bulk moduli, indicated by a circle in Fig. 4.5b. The CZ
structure is 1.75 km wide and at least 9 km deep. The continuous profiles correspond to several
closely spaced parallel profiles from the forward model and indicate the variation of deformation
within the C-C’ box outlined in Fig. 4.4. Notice the separate scale for the Hector Mine data and
forward model.

rupture is located further away, about 80 km to the north-northeast. Both the larger distance

to, and the smaller size of the Hector Mine earthquake imply smaller stress perturbation on the

Pinto Mountain fault, and explain the reduced amplitude of the coseismic LOS displacements,

compared to those from the Landers event. Similar to the observed deformation patterns on the

Calico and Rodman faults, the polarity of LOS displacements on the Pinto Mountain fault is

different for the Landers and Hector Mine events, consistent with coseismic stress changes. Our

preferred model for the Pinto Mountain compliant zone, as indicated by a circle in Fig. 4.5, has

width of 1.9 km, a depth of at least 9 km, a 50% reduction in shear modulus and no change in

Poisson’s ratio compared to ambient crust. The deeper compliant zone compared to neighboring

Calico and Rodman is required by the large wavelength of the LOS displacements.

Fig. 4.8 shows the modeled and the observed LOS displacements across the Homestead

fault due to the Hector Mine earthquake. The LOS displacements can be explained by the

presence of a CZ about 1.5 km wide, extending from the surface to a depth of 4-5 km with 50%

reduction in shear modulus, and the same Poisson’s ratio as in ambient rocks. A model assuming

a CZ around the Homestead fault shows a good agreement with the InSAR data. Unfortunately,

no data exist for the 1992 Landers earthquake due to decorrelation in the near field of the rupture.

4.4 Discussion

Our analysis of space geodetic observations in the Eastern California Shear Zone using

fully three-dimensional models lends support to previous inferences of long-lived compliant zones



67

Hector Mine

across-fault distance (km)

LO
S 

di
sp

la
ce

m
en

t (
cm

)

InSAR
model

-5 0 5
-1

0.5

0

0.5

1

H
om

es
te

ad

Figure 4.8: Modeled (solid line) and observed (diamonds) LOS displacements across the Home-
stead fault. Forward model corresponds to a compliant zone with a 50% reduction in shear and
bulk moduli in a block 4-5 km deep and 1.5 km wide. The continuous profiles correspond to
forward models from several closely spaced parallel profiles within boxes outlined in Fig. 4.4.

around major faults, with appreciable reductions in the effective shear and bulk moduli. Our

inferred width of compliant zones is 2.0 km for the Calico and the Rodman process zones and

1.9 km for the Pinto Mountain fault. Over the past two decades, the structure of fault zones has

been primarily investigated using fault zone trapped waves generated by earthquakes or explo-

sions. For example, the Karadere-Duzce fault zone, a secondary branch of the North Anatolian

Fault, is inferred to have a wave-trapping structure ∼ 100 m wide, with a velocity decrease of

about 50% compared to the surrounding rocks [Ben-Zion et al., 2003]. Trapped waves gener-

ated by aftershocks following the 1992 Landers earthquake are best explained by a 250 m-wide

low velocity zone in the southern segment of the rupture, that tapers to 100-150 m at 8.2 km

depth [Li et al., 2000]. Trapped-wave studies rely on seismic sources within compliant zones

(most commonly, aftershocks) to detect and quantify the elastic contrasts [Li and Leary, 1990,

Li et al., 1998a,b, 1999, 2000, Ben-Zion et al., 2003]. The strength of the low-velocity anoma-

lies is believed to vary over the earthquake cycle [Marone et al., 1995, Li et al., 1998a, Vidale

and Li, 2003], but it is still unclear if results from seismic studies are directly applicable to the

longer geodetic time scale, due to the frequency dependence of elastic moduli. In this study, we

investigated major faults that did not rupture in historic times and therefore are well within the

interseismic phase of the earthquake cycle. Our preferred models suggest considerably (in case

of the Pinto Mountain fault - an order of magnitude) larger fault zone width compared to most

previous seismic studies of other faults. However, a recent seismic tomography and trapped wave

experiment on the Calico fault [Cochran et al., 2009] confirms our interpretation and provides a

direct independent evidence for the existence of a massive long-lived compliant fault zone along

the Calico fault. Our preferred model of the Calico compliant zone, with a 4 km depth and 2.0 km

width is very similar to the results of [Cochran et al., 2009] which imply a fault zone 1 − 2 km

wide, ∼5 km deep, with a rigidity reduction of 50− 75%. Our interpretation of InSAR data from

the Pinto Mountain fault suggests that a compliant zone extends from the surface to a depth of
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at least 9 km, i.e., through much of the brittle seismogenic layer.

Our models of compliant zones along major strike-slip faults in the Eastern California

Shear Zone require a significant reduction in the effective shear modulus. A robust feature of

InSAR observations is the change in polarity of the LOS displacements within several fault zones

due to the Landers and Hector Mine earthquakes. The observed change in polarity is primarily

due to the vertical displacements within the compliant zone. The polarity of vertical motion is

well constrained by InSAR observation and our results suggest that a reduction in both shear and

bulk moduli better describes the variations in the effective elastic moduli within the compliant

zones surrounding active faults in the ECSZ. These results contrast with the assumptions of

theoretical models of fault damage in which the latter is related to changes in the shear modulus

alone [Lyakhovsky et al., 2001, Hamiel et al., 2004]. Hearn and Fialko [2009] have investigated

the response of compliant zones in the ECSZ due to both a permanent elastic moduli reduction in

the fault process zones and a 2% coseismic change in rigidity in the same structure motivated by

findings of Vidale and Li [2003]. The conclusion of Hearn and Fialko [2009] is that it is difficult

to fit the data in the presence of coseismic softening of the fault zones, unless the fault zone

material is nearly incompressible. This study suggests that the data can be well explained by

permanent compliant zones with normal Poisson’s ratios, this highlighting the need for accurate

monitoring of changes in the fault-zone rigidity due to nearby earthquakes.

4.5 Conclusions

We have presented an iterative approach to model three-dimensional deformation due

to faults in a heterogeneous elastic half-space. The decomposition of the elastic moduli into

a constant part and a spatially varying part allows us to formulate an iterative solution that

takes advantage of the Green function for a homogeneous medium. Spatial variations in elastic

properties are accounted for by equivalent body forces and equivalent surface traction. This

approach obviates the need for deriving or numerically calculating the specific Green function

in case of heterogeneous elastic structures. It allows one to readily evaluate the effect of spatial

variations in elastic properties on deformation in the surrounding medium.

A possible drawback of our iterative approach is a potentially large number of successive

approximations (SA) required to accurately evaluate the heterogeneous elastic response. Like-

wise, the numerical estimation of the convolution between the homogeneous Green function and

the equivalent body forces -typically scaling as N2, where N is the number of nodes- can be

expensive as the equivalent body forces representing the effect of elastic variations in the homog-

enized medium can occupy large domains. Our approach consists in evaluating the deformation

numerically in the Fourier domain. We use the semi-analytic Green function for a half-space

to compute the displacement field due to the presence of arbitrarily distributed body forces in

the computational domain. Free-surface boundary condition is enforced by counterbalancing the
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stress field on the surface plane obtained first from the whole space solution. The halfspace

solution is finally obtained by application of analytic solutions, in the Fourier domain, for some

normal and tangential traction applied at the surface (the so-called Boussinesq’s and Cerruti’s

problems). The computational burden associated with a Fourier domain solution is independent

of the spatial extent or distribution of the body forces. The use of fast Fourier transforms allows

us to compute multiple successive approximations efficiently. One iteration on a 512× 512× 512

computation grid takes about a minute on a 4-CPU machine with a shared memory architecture.

Typically, about 10 iterations are needed to reach convergence. In most cases, the proposed

numerical method is a practical alternative to more advanced models like finite elements because

it does not require elaborate and time-consuming meshing of a computational domain, especially

for non-planar and branching faults. Also, the assignment of spatially variable material proper-

ties to different parts of a computational mesh is straightforward, due to the uniform sampling

of the computation domain.

We compared our numerical results with analytic and semi-analytic solutions for an-

tiplane, plane-strain and three-dimensional deformation problems. We find that our numerical

solutions for antiplane problems fall within 5% of analytical solutions, even in the case of large

contrasts in elastic properties. In the case of plane strain symmetry, we compared our solution to

results of the propagator method [P. Segall, pers. comm., 2008]. We use the semi-analytic Green

function approach of Wang et al. [2003] and finite element calculations to validate our approach

in 3-D for vertical and lateral variations in elastic moduli. Accuracy is better than about 5% of

the expected elastic structure contribution for elastic contrasts lower than 50% and better than

about 10% for contrasts higher than 50% compared to homogenized values. We conclude that

our semi-analytic method provides a sufficient accuracy to model realistic problems of three-

dimensional deformation in a heterogeneous crust. We applied this method to investigate the

structure and properties of compliant damage zones associated with young active faults in the

Eastern California Shear Zone. We modeled the line-of-sight (LOS) displacements documented

by radar interferometry during the 1992 Landers and the 1999 Hector Mine earthquakes [Fialko

et al., 2002, Fialko, 2004a]. We model the inferred compliant zones by a gradual reduction in

rigidity and bulk modulus around the geologically mapped fault trace. Using a grid search, we

explored a range of parameters that can explain simultaneously LOS displacements from both

the Landers and Hector Mine earthquakes.

The InSAR data near the Calico and the Rodman faults, respectively, are best explained

by the presence of a compliant zone that extends from the surface to a depth of 4 and 2 km,

respectively, with a rigidity reduction of 60% compared to ambient rocks. No contrast in the

Poisson ratio is inferred between the host rocks and the Calico fault zone. The wavelength

of LOS displacements around the Calico and the Rodman faults require an effective compliant

zone width of about 2.0 km. One segment of the Calico fault, South of Galway Dry Lake is

partially sampled by both Hector Mine and Landers interferograms. Data corresponding to this
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southern segment is best modeled with a 45-50% reduction is shear and bulk moduli in a 2-3 km

deep, 1.8 km wide structure. Our modeling results show substantial along-strike variations in

the elastic properties and fault zone size for the Calico fault. InSAR data around the Pinto

Mountain fault are best modeled with a compliant zone that extends from the surface to a least

9 km depth, in a 1.75 km wide zone with a 45% reduction in effective shear and bulk moduli.

A single elastic model of a heterogeneous crust with lateral variations around the Calico, the

Rodman and the Pinto Mountain faults can explain the InSAR data of both Landers and Hector

Mine earthquakes. We conclude that the presence of compliant zones around the Calico, the

Rodman and the Pinto Mountain faults in the East California Shear Zone is a robust feature of

these InSAR observations. The anomalous LOS displacements observed in the Hector Mine and

Landers interferograms correspond to the elastostatic response of a laterally heterogeneous crust

in the east California shear zone. The residual LOS displacements in the Hector Mine InSAR

data around the Homestead-Johnson Valley can be explained by the presence of a compliant zone

with a 50% reduction in shear and bulk moduli in a block 4-5 km deep and 1.5 km wide. Inferred

elastic properties in the Homestead Valley process zone indicates that the northernmost fault

segments of the 1999 Landers earthquake ruptured in the middle of a compliant zone.

Our modeling results indicate that damage accumulation around active faults is accom-

panied by a reduction in both shear and bulk effective moduli with a relatively small increase

in Poisson’s ratio. The “conserved Poisson’s ratio” end-member scenario seems to be more

applicable to the ECSZ than the “conserved bulk-modulus” end-member. These observations

suggest pervasive and widespread damage around active crustal faults. The inferred properties

of compliant zones may be used to quantify the amount of damage experienced by the host rocks

throughout the fault history.
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tively. A) An infinitely long strike-slip fault (dashed line) creates an antiplane symmetry (no
vertical displacement). B) An infinitely long edge dislocation creates a plane-strain symmetry in
the three-dimensional computational volume.

4.6 Benchmarks

4.6.1 Antiplane strain

We compare our numerical solution to analytic and semi-analytic solutions for antiplane,

plane-strain and three-dimensional deformation in a heterogeneous medium. In order to simulate

two-dimensional deformation in our three-dimensional calculations, we introduce a dislocation

extending across the computational grid. The periodicity of the solution, introduced by the

Fourier expansion, makes the source effectively infinite in the along-strike direction. In Fig. 4.9a,

a screw dislocation extends from both ends of the grid, and the resulting deformation is antiplane

(the only non-zero component of displacement is along strike). Displacements across a fault

exhibit a characteristic arctangent profile. In Fig. 4.9b, an infinitely long edge dislocation cuts

the volume, representing plane strain (the only non-zero component of displacement orthogonal

to the fault strike). Benchmarks for three-dimensional deformation are computed for finite faults.

First we consider cases of a screw dislocation in a vertically stratified elastic half plane.

The modeled domain is composed of a strip of rigidity G1, extending from the surface to depth

H, and a bottom half plane of rigidity G2. Figure 4.10a shows the surface displacement profile

corresponding to profile A-A’ in Fig. 4.9 (dashed line) along with the analytic solution for the

case of a infinitely long vertical strike-slip fault extending from the surface to a depth of 0.8H in

a homogeneous medium (G1 = G2). The numerical error, shown on the right panel of Fig. 4.10a,

increases away from the source, due to the periodicity of the Fourier domain solution. Within an

across-fault distance of ten fault lengths, error does not exceed 0.5 % compared to the analytic
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from the surface to the locking depth 0.8H. Numerical solution is shown at 1 and 14 iterations
of the perturbation method. C) Successive Over Relaxation method (SOR). Results similar to
B) but with a higher elastic constrast G2/G1 = 2.5. Convergence is obtained after 20 iterations.
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solution [Weertman and Weertman, 1964, Rybicki and Kasahara, 1977].

We use the perturbation method to compute the deformation in the case of the rigidity

contrast G2/G1 = 1.5. Left panel of Fig. 4.10b shows the heterogeneous contribution (the

difference between surface displacements in heterogeneous and homogeneous media). The first

iteration of the perturbation method is shown in solid line and over-estimates the effect of the

rigidity contrast. Corresponding error is about 20 % compared to the analytic result. After

14 iterations, convergence criterion (equation 4.39 in the main text) is satisfied and error is

comparable to the case of a homogeneous elastic structure.

We use the SOR method to compute the displacements in the case of the elastic contrast

G2/G1 = 2.5. Convergence criterion is reached after 20 iterations. Numerical and analytic

solutions for the heterogeneous structure and corresponding errors are shown in Fig. 4.10c. Error

does not exceed 5 % except in a small vicinity around the dislocation where it reaches a maximum

of 10 %. In case of a large elastic contrast, the homogenized elastic parameters must minimize

the effective elastic contrast and does not correspond to a value of rigidity around the fault.

The difference in effective stress is compensated at each iteration after estimating the amplitude

of stress near the fault. Numerical evaluation of stress in the fault zone is complicated by the

presence of the discontinuity and results in a greater final error at the fault location (see right

panel in Fig. 4.10c.) Overall, our two-dimensional numerical solutions performed in a three-

dimensional computational grid compare well to the analytic solutions for antiplane deformation.

The use of the SOR method allows us to consider such crustal structures with large variations

in rigidity.

4.6.2 Plane strain

Next, we consider the case of plane-strain deformation. Figure 4.11 shows the displace-

ment field along profile B-B’ in Fig. 4.9. The elastic structure consists of a strip of thickness H

with Lamé parameters λ1 = G1 overlying a half-plane with elastic parameters λ2 = G2. An edge

dislocation with unit slip, dipping 30◦, starts in the bottom layer at depth 1.5H and extends to

depth 3.5H. Fig. 4.11a shows the surface displacement in the case of a homogeneous medium.

Corresponding error compared to analytic solution [Savage, 1974, Niazy, 1975] is shown on right

panel and does not exceed 3 %. The constant shift error is an artifact due to periodicity of the

Fourier domain solutions.

We use the perturbation method to evaluate the surface displacement in the case of a

more compliant top strip with G1/G2 = 0.7 (Poisson’s ratio is the same for the two layers). We

choose the homogenized elastic parameters corresponding to the bottom layer, where the fault

is located. We compare our numerical solution with the displacement obtained using the matrix

propagator method of P. Segall [personal communication, 2008]. Fig. 4.9b shows the elastic

structure contribution, the difference between heterogeneous and homogeneous solutions. First
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approximate solution, at first iteration of the perturbation method, is an under-estimate the final

solution. Convergence criterion is reached after 9 iterations with a final error smaller than about

5 % of the expected elastic contribution signal. Notice that the elastic contribution is one order of

magnitude smaller than the total displacement. The difference between the total displacements

obtained using the propagator-matrix method or our approach is therefore barely distinguishable.

The surface displacement due to a vertical edge dislocation extending from depth 1.5H to 3.5H

is shown in figure 4.9c. Horizontal displacement error is characterized by a constant bias of about

5 % of the expected signal. Vertical displacement is anti-symmetric and does not display such

constant bias. Error in the vertical direction is limited to about 0.5 %.

We use the SOR method to compute the displacement in the presence of a large elastic

contrast between the horizontal layers. We use λ1 = G1 = 1 in the top layer and λ2 = 1 and

G2 = 2.5 in the bottom layer. Convergence is reached after 18 iterations. We compare our

solutions with results from the matrix propagator technique. Horizontal displacements exhibit a

bias close to 10% of the expected signal. Error in the vertical direction is limited to about 2%

except close to the fault for reasons discussed above in the case of antiplane strain. We conclude

that our two-dimensional simulations for plane strain and antiplane problems compare well with

available analytic or semi-analytic solutions.

4.6.3 Three-dimensional deformation

We compare our 3-D numerical models to the Green function approach of Wang et al.

[2003] for three dimensional deformation in a vertically stratified elastic half space. We introduce

a finite strike-slip fault in a semi-infinite solid where the elastic moduli increase at the transition

depth H. Poisson’s ratio (ν = 0.25) is identical in each layer but the shear modulus is increased by

50% in the bottom half space compared to its value in the overlying plate. The left-lateral strike-

slip fault extends vertically from the surface to a depth of 1.5H and is L = 2W long in the along-

strike direction. This geometric configuration allows us to evaluate our modeling of dislocations

intersecting materials with dissimilar elastic moduli. Figure 4.12a shows the horizontal (black

arrows) and vertical (background color) displacements that represent the difference between the

displacement field obtained with a heterogeneous medium and with a homogeneous medium,

respectively. The fault trace is indicated by the black line in the x1-direction (North). The

final solution is obtained with the perturbation method after 14 iterations. Figure 4.12b shows

the comparison with the solution of Wang et al. [2003], using the same scaling for arrows and

same color scale as in Fig. 4.12a. Some large residuals in the horizontal direction appear only

on the fault trace and are due to the fact that slip is not single-valued at the fault interface.

Residuals in the vertical direction occur near the quadrants of the computational grid due to

the effect of periodicity of the Fourier domain solution. Despite some small differences inherent

to the method, our Fourier domain perturbation approach compares very well with the Green
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function method of Wang et al. [2003]. In a test with a large increase of elastic moduli with

depth, we introduce a finite strike-slip fault extending from the surface to a depth of 0.8H (see

Fig. 4.13). We use the SOR method to evaluate the deformation in the computational volume.

Our numerical estimate of three-dimensional elastostatic deformation in a heterogeneous half

space with large variations in elastic moduli also favorably compares to results obtained with the

Green function approach of Wang et al. [2003].

Finally, we test the proposed method for a case of lateral variations in elastic moduli. We

compare the predictions of our model with finite-element calculations using the Abaqus software.

We introduce a right-lateral strike-slip fault of length L striking North-South along the x1-axis

from the surface to a depth W . An infinitely long compliant zone runs parallel to the fault. The

fault and the center of the compliant zone are separated by a distance W/2. The geometry and

resulting calculations are shown in Fig. 4.14. We create a mesh with increasing node density

closer to the fault and the compliant zone. The minimum distance separating the nodes is W/30.

For the Fourier-domain solution, we use a uniform sampling of W/30 and a computation grid of

256 × 256 × 256 nodes. We consider two cases. In a first simulation, the shear modulus in the

compliant zone is reduced by a factor of 10% and the Poisson’s ratio ν = 1/4 is uniform in the half

space. In a second simulation, the shear modulus is reduced by 10% compared to surrounding

solid, but the bulk modulus is uniform in the half space. In this second case, Poisson’s ratio is

ν = 0.26 in the compliant zone. Using the perturbation approach, we obtain convergence in both

cases after 4 iterations. The perturbation due to the presence of the compliant zone in both cases

represents about 5% of the maximum signal in a uniform half space. The corresponding surface

displacement is shown in Fig. 4.14a. The elastic contribution is shown in Fig. 4.14c and 4.14e for

the uniform bulk modulus and uniform Poisson’s ratio, respectively. The pattern of horizontal

displacements, shown by the arrows in Fig. 4.14, is comparable in both cases, with additional

displacements to the East of the fault. We observe more vertical displacement to the West of the

fault in the case where Poisson’s ratio is conserved. The difference between predictions of our

approach and the finite-element solution is shown in Fig. 4.14d and 4.14f, for the uniform bulk

modulus and the uniform Poisson’s ratio, respectively. In the course of our numerical validation,

we have noticed that the benchmark corresponding to the conserved bulk modulus (Fig. 4.14c and

4.14d) could be only be matched with the inclusion of equivalent surface traction, as indicated

by Eq. (4.21). The residuals represent about 10% of the corresponding elastic contribution signal

and about 1% of the cumulative displacement. There is an overall excellent fit between our

Fourier domain solutions and the finite-element calculations. We conclude that our semi-analytic

iterative approach can be successfully used to model crustal deformation due to faulting in the

Earth with realistic spatial distribution of elastic moduli.
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Chapter 5

Postseismic Deformation due to the Mw 6.0 2004 Parkfield

Earthquake: Stress-Driven Creep on a Fault with Spatially Variable

Rate-and-State Friction Parameters

Sylvain Barbot, Yuri Fialko and Yehuda Bock

Abstract. We investigate the co- and postseismic deformation due to the Mw 6.0

2004 Parkfield, CA earthquake. We produce co- and postseismic slip models by inverting data

from an array of 14 continuous GPS stations from the SCIGN network. Kinematic inversions

of postseismic GPS data over a time period of three years show that afterslip occurred in areas

of low seismicity and low coseismic slip, predominantly at a depth of ∼5 km. Inversions suggest

that coseismic stress increases were relaxed by predominantly aseismic afterslip on a fault plane.

The kinetics of afterslip is consistent with a velocity-strengthening friction generalized to include

the case of infinitesimal velocities. We performed simulations of stress-driven creep using a

numerical model that evaluates the time-dependent deformation due to coseismic stress changes

in an visco-elastoplastic half-space. Starting with a coseismic slip distribution, we compute the

time-dependent evolution of afterslip on a fault plane and the associated displacements at the

GPS stations. Data are best explained by a rate-strengthening model with frictional parameter

(a − b) = 7 × 10−3, at a high end of values observed in laboratory experiments. We also find

that the geodetic moment due to creep is a factor of 100 greater than the cumulative seismic

moment of aftershocks. The rate of aftershocks in the top 10 km of the seismogenic zone mirrors

the kinetics of afterslip, suggesting that post-earthquake seismicity is governed by loading from

the nearby aseismic creep. The San Andreas fault around Parkfield is deduced to have large

along-strike variations in rate-and-state frictional properties. Velocity strengthening areas may

be responsible for the separation of the coseismic slip in two distinct asperities and for the ongoing

aseismic creep occurring between the velocity-weakening patches after the 2004 rupture.

80
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5.1 Introduction

The San Andreas fault around Parkfield, California, exhibits a transition from a creeping

segment to the northwest to a locked segment to the southeast. The creeping section experi-

ences a quasi-steady sliding at a rate of 33 mm/yr [Murray et al., 2001], close to the estimated

35 mm/yr long-term rate of the San Andreas fault at that latitude [Lisowski et al., 1991]. Moder-

ate magnitude 6 earthquakes repeatedly occur in this transition zone. The 2004 Mw 6.0 Parkfield

earthquake is the most recent in a series of events including a least five historical earthquakes in

1881, 1901, 1922, 1934, and 1966 rupturing approximately the same area on the fault [Bakun and

McEvilly, 1984, Bakun et al., 2005]. The Earthquake Prediction Experiment [Bakun and Lindh,

1985], motivated by the small recurrence time of the Parkfield sequence, sought to monitor the

anticipated earthquake and reveal the earthquake process in unprecedented detail. The event of

September 28, 2004 was the subject of numerous studies that exploited a large variety of available

geophysical data [e.g., Harris and Arrowsmith, 2006].

The coseismic rupture was imaged using various geodetic [e.g., Johanson et al., 2006,

Johnson et al., 2006, Langbein et al., 2006] and seismic [e.g., Liu et al., 2006, Allmann and

Shearer, 2007] observations. A common feature of these studies is the partition of the earthquake

slip distribution in two distinct areas of high slip: a first patch located close to the epicenter, and

a second, larger amplitude patch, further to the northwest. Previous studies showed that the

postseismic transient is likely dominated by afterslip [e.g., Johanson et al., 2006, Johnson et al.,

2006, Freed, 2007]. Johanson et al. [2006] inferred the details of the early afterslip distribution

from GPS and interferometric synthetic aperture radar (InSAR) measurements. Somewhat sur-

prisingly, more fault-averaged slip was found to have occurred during the postseismic period than

during the coseismic rupture. The inferred geodetic moment due to afterslip was equivalent to

a magnitude Mw 6.1 earthquake over four months following the rupture [Johanson et al., 2006],

and Mw 6.3 two years after the event [Freed, 2007] (i.e., about three times the coseismic moment

release.) The moment release during co- and postseismic slip differs from that observed in other

instrumented areas and might be peculiar because of the transition between the creeping and

locked segments of the San Andreas fault.

In this study, we take advantage of the continuous GPS array of the SCIGN net-

work [Langbein and Bock, 2004], which covers the Parkfield segment during the inter-, co- and

postseismic intervals, to constrain the dominant mechanisms driving the postseismic deforma-

tion over three years following the 2004 earthquake. In the next section, we begin by deriving

a coseismic slip model and estimating the resolving power of the GPS array. In section 3, we

perform a series of kinematic inversions to track the evolution of slip on the fault plane over three

years following the earthquake. In section 4, we describe stress-driven creep models incorporating

power-law and velocity-strengthening friction laws. We perform a principal component analysis

of the GPS time series. We fit the dominant mode to analytic solutions for the postseismic
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relaxation of a simple creeping patch. In section 5, we use stress-driven creep models to con-

strain constitutive properties of the fault interface [Stuart and Tullis, 1995, Johnson et al., 2006,

Perfettini and Avouac, 2004, 2007]. We explore predictions of the rate- and state-dependent

friction [Dieterich, 1992, 1994] using a new semi-analytic model of nonlinear fault creep. Using

our kinematically inferred coseismic slip distribution as an initial condition, we compute forward

models of fault brittle creep and discuss implications for in situ constitutive frictional properties

of rocks in the San Andreas fault zone. In Appendix 5.8, we derive the analytic impulse response

of a power-law shear zone and of a Rate-Strengthening (RS) crack due to coseismic stress change.

In Appendix 5.9 we describe our mathematical approach to model three-dimensional deformation

due to nonlinear creep and present our numerical implementation. The rate of creep of the RS

crack in the interseismic period is discussed in Appendix 5.10.

5.2 Coseismic Slip Model

We use the September 28th 2004 one-day static offsets in the SCIGN continuous GPS

time series computed at the Scripps Orbit and Permanent Array Center (http://sopac.ucsd.edu/)

to invert for a coseismic slip distribution. We approximate the fault zone with a single fault

segment and allow for right-lateral strike slip only. We discretize a 40 km long, 15 km deep plane

with 2 × 1 km patches in the strike and dip directions, respectively. As inversions of surface

displacements are intrinsically non-unique [e.g., Parker, 1994, Mavko, 1981, Savage, 1990], we

impose slip non-negativity, a smoothness constraint and zero slip at the bottom of the fault to

regularize the problem (see [Fialko, 2004a] for details). In particular, we use the homogeneous

elastic Green function [Okada, 1992] for a Poisson solid and the finite difference approximation

of the gradient operator to smooth the slip model.

We determine our preferred source geometry by performing a grid search for the strike,

dip and position of the fault that best fit the GPS offsets. Fig. 5.1 shows our best model,

corresponding to a vertical fault striking N136◦. Effects of the smoothness factor (SF) on the

inferred geometry are illustrated in Fig. 5.2. For high values of SF, the inferred slip distribution on

the fault is smooth (see upper-left slip model in Fig. 5.2a). At intermediate values of SF, the slip

distribution becomes bimodal, with two distinct slip patches appearing along strike. For smaller

values of SF, the two slip patches persist, and become more localized with a smaller slip area and

a higher slip amplitude. We choose our smoothing factor SF=10−4 to be at the position where

misfit is weakly dependent upon the degree of smoothing, as illustrated by the smoothness/misfit

curve of Fig. 5.2b. Using a uniform shear modulus of G = 30 GPa, our best-fitting coseismic

model has a geodetic moment of m = 1.98 1018 N equivalent to moment magnitude Mw 6.16,

somewhat higher than the seismic moment of Mw 6.0. Inversions using a high-rate GPS data

and a smaller coseismic interval gave rise to a geodetic moment of Mw 6.0, in a better agreement

with estimates from seismic data [Murray and Langbein, 2006]. Our use of daily GPS solutions
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may include some early afterslip in the coseismic model. Fig. 5.1b shows the modeled surface

displacements at the 14 GPS stations, along with the GPS measurements and their two-sigma

uncertainty. Most of the GPS displacements can be explained by right-lateral strike slip on the

fault plane.

The station distribution in the GPS array and the geometry of the fault limit our ability

to infer slip equally well everywhere on the fault plane. Following the approach of Backus [1970]

and Tarantola [2004], the resolution kernel of the under-determined inverse problem is

R = Gt
(
G Gt

)−1
G (5.1)

where G is the matrix of the elastic Green function [Okada, 1992] used in the slip distribution

inversion. Fig. 5.3a shows the diagonal of matrix R, which represents the sensitivity of the

GPS array to variations in slip at each patch on the fault. The resolution, a dimensionless

quantity, varies from 1 in well-resolved areas to 0 in essentially unresolved areas. Inspection of

the resolution matrix shows that the available GPS data constrain mostly the upper part of the

fault. A critical value of resolution R = 0.1 is reached at a depth of about 7 km. Fig. 5.3b shows

off-diagonal components of the resolution matrix of eq. (5.1) for slip patches down to 8 km depth.

Resolution on deeper patches is degraded, as expected. Off-diagonal terms indicate the correlation

between inferred slip on a fault patch and neighboring patches. For example, inference of slip

on a fault patch intersecting the Earth’s surface at along-strike position x = 24 km is unbiased.

However, inferred slip at the ends of the fault, away from most GPS stations, is less resolved. For

the slip patch at depth of 5 km and along-strike position of x = 24 km, the inferred slip location

is more robust along the strike than along the dip direction. At the same position in azimuth but

greater depth, the inferred slip is more diffuse and azimuthal position is less robust. We conclude

that inversion for slip using the current distribution of GPS stations is robust down to a depth of

about 7 km immediately below the center of the GPS array at along-strike range x = 18−30 km.

We note however that the inferred slip at about 5 km depth might appear distributed along a

greater depth range of about 2-3 km.

Our coseismic slip model exhibits two zones of relatively high slip (see Fig. 5.1a). The

area to the northwest, characterized by the highest slip, is directly below the GPS array, above

the 7 km resolution limit of the array aperture, and is therefore a well constrained feature. The

second area, to the southeast and closer to the epicenter, is further away from the GPS network

and extends to a depth of 10 km. The corresponding slip is more poorly constrained, and might

be over-smoothed.

5.3 Postseismic Transient Deformation

Large earthquakes are usually followed by episodes of gradually decaying deformation.

Various mechanisms proposed to explain the postseismic transients include poroelastic rebound [Peltzer
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et al., 1998, Jonsson et al., 2003, Fialko, 2004a], afterslip on the ruptured fault or its exten-

sion [Marone et al., 1991, Savage et al., 1994, Fialko, 2004b, Freed et al., 2006, Barbot et al.,

2008b], and viscoelastic relaxation in the lower crust or upper mantle [Nur and Mavko, 1974,

Pollitz et al., 2000, Freed and Bürgmann, 2004]. Several authors have shown that the postseismic

transient following the 2004 Parkfield earthquake is dominated by afterslip [e.g., Johnson et al.,

2006, Johanson et al., 2006, Freed, 2007]. The focus of this study is the physical mechanisms of

afterslip caused by the 2004 event. We utilize the network of 14 continuous GPS stations [Lang-

bein and Bock, 2004] to infer a time-dependent postseismic slip on the fault plane. We use

SOPAC’s filtered daily position time series where a common mode noise has been removed. The

methodology for noise reduction is standard and details can be found in Wdowinski et al. [1997].

We isolate the postseismic signal from the filtered GPS time series by removing a linear trend

corresponding to the interseismic displacements. The time window used in the regression for in-

terseismic velocities corresponds to the interval from first availability of data to December 2003,

before the occurrence of neighboring San Simeon earthquake. The duration of the time series

used in the inversion at each GPS station varies from 2.2 to 7.2 a and is listed in Table 5.1.

Inferred interseismic GPS velocities and uncertainties are shown in Table 5.1. We also remove
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Table 5.1: Inferred velocity of the SCIGN continuous GPS stations before the December 2003
San Simeon earthquake. Time t (a) refers to the duration of the interval used for the linear
regression. Parameters VN , VE , σN and σE are the North and East components of the GPS
velocity and corresponding standard deviation, respectively.

Name lon lat t (a) VN (m/a) VE (m/a) σN (mm/yr) σE (mm/yr)

CAND -120.433 35.939 4.3 -0.0242 0.0070 0.1 0.1

CARH -120.430 35.888 2.3 -0.0353 0.0159 0.2 0.2

CRBT -120.750 35.791 2.2 -0.0380 0.0211 0.3 0.3

HOGS -120.479 35.866 2.3 -0.0348 0.0175 0.2 0.2

HUNT -120.402 35.880 2.3 -0.0274 0.0082 0.1 0.1

LAND -120.473 35.899 4.3 -0.0346 0.0173 0.2 0.1

LOWS -120.594 35.828 2.3 -0.0365 0.0200 0.2 0.1

MASW -120.443 35.832 2.3 -0.0348 0.0168 0.2 0.1

MIDA -120.458 35.921 4.3 -0.0236 0.0085 0.2 0.2

MNMC -120.434 35.969 2.3 -0.0239 0.0055 0.2 0.2

PKDB -120.541 35.945 7.2 -0.0351 0.0188 0.1 0.1

POMM -120.478 35.919 4.3 -0.0343 0.0161 0.2 0.2

TBLP -120.360 35.917 2.3 -0.0255 0.0039 0.2 0.5

RNCH -120.524 35.899 2.2 -0.0375 0.0167 0.7 0.8

the coseismic displacements due to the December 2003 Mw 6.6 San Simeon and the 2004 Park-

field earthquakes, along with other spurious static offsets. (Some static offsets appear in GPS

time series after antenna updates.) Postseismic data clearly show that the transient deformation

triggered by the coseismic stress change is still occurring three years after the earthquake (see

Figs. 5.7 and 5.10).

We invert the postseismic signal for cumulative afterslip as a function of time. Formalism

of the inversion is the same as the one used for the coseismic model discussed above (including the

smoothing constraint and the resolution, as shown in Fig. 5.3.) Most of the surface displacements

occur during the first year following the earthquake. Fig. 5.4 shows snapshots of the inferred

afterslip evolution at 0.05, 0.15, 0.30, 0.70, 1.10, 1.50 and 2.50 years after the main event.

We did not regularize the afterslip evolution in the time domain which may result in spurious

variations in slip velocity (e.g., see a patch of high slip at along-strike distance of 30 km at time

0.7 years that disappears at later times, Fig. 5.4.) Such second-order variations in the inferred

cumulative afterslip are likely due to unmodeled periodic signals and the presence of noise in the

postseismic time series [Williams et al., 2004, Langbein, 2008]. GPS horizontal displacements

and fit to the data are shown in Fig. 5.5. Most stations are very well fitted by our afterslip

models throughout the 3 year interval. Given that the 2004 Parkfield earthquake induced little if

any viscous relaxation in the lower crust or upper mantle [Johnson et al., 2006, Freed, 2007], our
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results confirm that the postseismic deformation is primarily driven by right-lateral afterslip on

the fault plane. Station CARH, located inside the fault zone, exhibits a reversal in the direction

of motion. This behavior is likely due to slip migration to a nearby parallel fault strand [Murray

and Langbein, 2006].

Also shown in Fig. 5.4 is our coseismic slip model (top-left panel) and the cumulative

seismicity. The coseismic slip contour lines are superimposed on all kinematic inversions to facil-

itate comparison between co- and postseismic slip distributions. At early stages of deformation,

afterslip occurs principally around a depth of 5 km, between two areas of high coseismic slip. In

the time interval of about 3 months, afterslip reaches an equivalent geodetic moment greater than

the seismic moment of the Parkfield earthquake, in agreement with earlier results by Johanson

et al. [2006]. After 2.5 years, afterslip reaches a cumulative geodetic moment of Mw 6.35 (c.f. our

inferred coseismic moment of Mw 6.16). The shallow location (depth smaller than 7 km) of early

afterslip is robust, given the sensitivity of the GPS array (Fig. 5.3). We performed two other

series of inversions of coseismic and postseismic GPS data varying the discretization of the fault

plane as a function of depth [Fialko, 2004a, Fialko et al., 2005]. In these inversions we increased

the along-strike and the down-dip dimensions of sub-fault rectangles by 25% and 50%, respec-

tively, resulting in a sampling of the deepest part of the fault by 5 to 4 slip patches, respectively.

We find that, similar to what appears in Fig. 5.4, coseismic slip and afterslip occupy a remark-

ably complementary area on the fault plane. There is no resolvable overlap between afterslip

and coseismic slip. At later times, some afterslip occurs also at greater depth, but the location

cannot be precisely inferred from the available data. Our estimate of the postseismic geodetic

moment includes the poorly resolved deep slip (Fig. 5.3) that occurs in the last two years and

may be biased towards higher values in this period. Earthquake locations correlate with areas

of coseismic slip and seem not to evolve spatially throughout the postseismic epoch. Afterslip is

confined to areas of low seismicity and does not represent deformation due to aftershocks.

Time-dependent kinematic inversions of GPS data suggest that afterslip occurs at the

periphery of the coseismic rupture, in areas characterized by low aftershock activity. Such aseis-

mic creep is suggestive of spatial variations in frictional properties on the San Andreas fault

near Parkfield. In particular, velocity-weakening areas appear to correspond to zones of high

seismicity and coseismic slip; velocity-strengthening areas appear to pose an obstacle to rupture

propagation and to the occurrence of aftershocks, but favor postseismic creep.

5.4 Models of Time-Dependent Deformation

We investigate several mechanisms that might contribute to the observed deformation

pattern. The deformation may be localized on a frictional surface [Marone et al., 1991, Marone,

1998, Scholz, 2002] or in a ductile shear zone [Evans and Kohlstedt, 1995, Roberts and Turcotte,

2000, Montesi, 2004]. In the latter case, the so-called plastic instabilities can spread over a narrow,
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yet finite, volume encompassing the fault zone. In case of a frictional interface, all deformation is

accommodated by slip on a narrow fault. These two hypotheses give rise to specific constitutive

laws relating the effective stress to the slip rate.

Shear failure and slip at seismogenic depth are controlled by the Coulomb stress [Byerlee,

1978], which is to the first order given by

τ − µσ = 0 (5.2)

where τ is the amplitude of shear stress in the direction of sliding, σ is the effective normal stress

accounting for the pore pressure contribution (positive for compression) and µ is the coefficient of

friction. We decompose shear and effective normal stresses resolved on a fault into a background

(e.g., tectonic) level and a coseismic change, respectively,

τ = τb + ∆τ

σ = σb + ∆σ
(5.3)

In the context of strike-slip faulting, we further assume that the change in the normal stress is

negligible compared to the tectonic and lithostatic contributions

∆σ � σb , (5.4)

and that the pre-earthquake Coulomb stress is negligible compared to the coseismic stress change,

∆τ � τb − µ0 σb (5.5)

Under these assumptions, the effective stress driving afterslip on the fault plane is the shear

component of coseismic loading ∆τ . Subsequent evolution of stress changes depends upon a

particular mechanism of shear.

Plastic instabilities can be modeled with linear or power-law creep rheologies [Weertman

and Weertman, 1964, 1975, Evans and Kohlstedt, 1995],

γ̇ = A

(
∆τ
G

)n
(5.6)

where γ̇ is the rate of plastic strain, n is a power exponent between 1 and 5 indicating the

degree of stress sensitivity, G is the shear modulus, and A is the reference strain rate controlling

the timescale of deformation. For n = 1, the creep rheology is linear and η = G/A is the

viscosity. Equation (5.6) may be coupled to thermal softening, which implies depth-dependent

parameters [Kohlstedt et al., 1995]. Dependence on thermal or other specific state parameters

can simply be included by allowing parameter A to vary spatially.

Localized slip on frictional interfaces can be described by rate- and state-dependent

friction laws [Ruina, 1983, Dieterich, 1992]

µ = µ0 + a ln
(
ṡ

ṡ0

)
+ b ln θ , (5.7)
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where ṡ is the slip rate on the fault, µ0 is the coefficient of friction at a reference slip rate ṡ0,

a and b are the frictional parameters and θ is a state variable subjected to an evolution law.

Under the consistency condition (5.2) and the assumptions (5.4) and (5.5), the friction law can

be written

ṡ = ṡ0 θ
− ba e

τ
a σ (5.8)

where the ratio b/a is a work-hardening parameter, weakening for b/a > 1 and strengthening for

b/a < 1. An unphysical feature of the original rate-and-state formulation (5.7) is an asymptotic

divergence of friction at small velocities ṡ < ṡ0. We adopt a generalized version of eq. (5.7),

µ = µ0 + a sinh−1

[
ṡ

2 ṡ0
θ
b
a

]
(5.9)

motivated by thermo-dynamic considerations [Lapusta et al., 2000, Rice et al., 2001]. Under the

same assumptions the corresponding slip rate is

ṡ = 2 ṡ0 θ
− ba sinh

τ

a σ
(5.10)

Note that formulations (5.7) and (7.25), or equivalently formulations (5.8) and (5.10), are asymp-

totically equivalent at high velocities, but eqs. (7.25) and (5.10) remain bounded at small slip

rates. We assume that most of the postseismic creep occurs at steady state (θ̇ = 0) and we ignore

the healing and slip-weakening effects. The steady-state assumption is valid only if the cumula-

tive afterslip largely exceeds the strengthening or weakening distance Dc of the state variable.

The magnitude of afterslip at Parkfield reaches about half a meter (see Fig. 5.4), which is sev-

eral orders of magnitude larger than values of Dc inferred from laboratory experiments [Marone,

1998]. The steady-state assumption gives rise to a purely rate-strengthening constitutive law

ṡ = 2 ṡ0 sinh
[

∆τ
a σ

]
(5.11)

which represents the direct effect between slip rate and stress change. Note that formula-

tion (5.11) resembles the empirical relationship of Garofalo [1975] for power-law breakdown [Tsenn

and Carter, 1987]. Velocity-strengthening friction models are an approximation to the full rate-

and state-dependent friction model for a positive parameter (a − b) and negligible evolution

of the state variable, θ̇ = 0 [e.g., Marone et al., 1991, Marone, 1998, Perfettini and Avouac,

2007]. We note that the Rate-Strengthening (RS) friction parameter ṡ0 does not correspond to

the so-called ”interseismic” velocity of the friction interface (see discussion in Appendix 5.10.)

Eq. (5.11) relates the rate of steady afterslip to coseismic stress change, and RS parameter ṡ0 is

a rock property that controls the timescale of transient slip episodes similar to parameter A in

power-law models.

To test the predictive power of RS friction and power-law creep in explaining the GPS

time series, we consider the impulse response of a simple shear zone. For a planar shear crack,

afterslip is controlled by the effective stiffness of the slip patch

G∗ =
C G

L
(5.12)
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where scalar C is a dimensionless constant close to 1 that depends on the geometry [Eshelby,

1957, Kanamori and Anderson, 1975, Shearer, 1999, Fialko, 2007] and L is the linear dimension

of the crack. The strain accumulated across a ductile shear band of linear dimension L and

thickness T depends upon its aspect ratio α = CT/L. Fig. 5.6 illustrates the impulse response
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Figure 5.6: Creep tests for a simple crack frictional surface. The stress and strain impulse
responses for (a) the linear and power-law creep and (b) the rate-strengthening (RS) friction
laws. For a step-like increase in total strain, resulting from an instantaneous change in stress
∆τ , some inelastic deformation is triggered. The dotted profiles indicate the response of a
linear rheology. The classic formulation of RS friction is ill-posed for a creep test whereas the
generalized friction law remains bounded at small velocities. The detail of calculations can be
found in Appendix 5.8.

to an instantaneous stress change for the linear and power-law creep rheologies, as well as for the

classic and generalized rate-strengthening laws. Details of calculations are given in Appendix 5.8.

The impulse response for a linear rheology is

γ(t) =
∆τ0
αG

(
1− e−t/t0

)
(5.13)

where γ is the strain across the ductile shear zone, ∆τ0 is the initial shear traction, t0 is the

relaxation time scale. A schematic of the creep evolution described by eq. (5.13) is shown in

the first column of Fig. 5.6 and superimposed on other profiles as a dashed line. Linear creep

is a particular case of power-law creep for the case n = 1 (see eq. (5.6)), and of the generalized

rate-strengthening friction for large a σ/∆τ0. The power-law response

γ(t) =
∆τ0
αG

(
1−

[
1 +

t

t0

] −1
n−1
)
, n > 1 (5.14)
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associated with the timescale

t0 =
1

A (n− 1)

(
G

∆τ0

)n−1

(5.15)

is illustrated in Fig. 5.6 for a power exponent n = 2. Compared to the linear case most of the

deformation happens at an early time but complete relaxation, however, takes a much longer

time. In case of rate-strengthening friction, the dimensionless ratio

k =
∆τ0
a σ

(5.16)

controls the degree of nonlinearity during slip evolution, similar to the exponent n for power-law

creep. The impulse response of strain for RS friction is

s(t) =
∆τ0
G∗

(
1− 2

k
coth−1

(
et/t0 coth

k

2

))
, (5.17)

where we defined the reference time

t0 =
1

2 ṡ0

a σ

G∗
(5.18)

Deformation is also characterized by high velocities at early times, but reaches complete relax-

ation more rapidly, compared to linear or power-law models. Note that strain rates predicted by

eq. (7.31) eventually vanish, as stress is relaxed, in contrast to the prediction of the original form

of rate-dependent friction, shown in the third column of Fig. 5.6.

We test whether the impulse response of power-law creep and the generalized rate-

strengthening friction law are able to explain the observed GPS time series. We use solu-

tions (5.13), (5.14) and (7.31) for the deformation of a simple crack to fit the GPS time series.

We optimize the timescale t0, an amplitude and a nonlinear coefficient (parameters n or k for

power-law and RS friction, respectively) to reduce a misfit between the data, with associated

uncertainties, and the forward models. Inversions are performed with a random walk and sim-

ulated annealing with a positivity constraint on model parameters [e.g., Tarantola, 2004]. We

first performed a series of inversion of individual time series. We found that, regardless of the

rheology considered, inferred model parameters were remarkably consistent among GPS stations

and components. The uniformity of inferred timescale t0 and nonlinear coefficient is indicative

of a time-space separable source mechanism.

Motivated by this finding, we perform a Principal Component Analysis (PCA) of the

GPS time series [Dong et al., 2006]. Considering that individual time series are ordered as lines

in matrix X, we define the projection Y = PTX, with P−1 = PT , such that

Λ = Cov (Y)

= PTCov (X) P
(5.19)

where Λ is the diagonal covariance matrix of the PCA modes. As one has

X = PY (5.20)



95

2004 2005 2006 2007 2008
0

0.5

1

1.5
1st mode time series (95.2%)

-20 -10 0

0

5

10

15

20

25
1st mode space function

 CARH

 POMM

 CAND

 HOGS
 HUNT

 LAND

 LOWS  MASW

 MIDA

 MNMC

 PKDB

 TBLP

 RNCH

2004 2005 2006 2007 2008
-0.1

0

0.1
2nd mode time series (1.7%)

-20 -10
easting (km)time (years)

no
rth

in
g 

(k
m

)

no
rm

al
iz

ed
 a

m
pl

itu
de

no
rm

al
iz

ed
 a

m
pl

itu
de

no
rth

in
g 

(k
m

)

0

0

5

10

15

20

25
2st mode space function

 CAND

 CARH

 HOGS
 HUNT

 LAND

 LOWS  MASW

 MIDA

 MNMC

 PKDB

 POMM  TBLP

 RNCH

Figure 5.7: PCA decomposition of GPS time series. The first mode, with 95% of the total
variance, corresponds to the postseismic signal. The associated GPS displacements exhibit the
expected signature of right lateral slip on the fault and correspond to the cumulated surface
displacement after three years. The second mode, which represents 1.7% of the total variance,
is due to a common-mode seasonal signal, which is not removed from the SOPAC filtered time
series [Langbein, 2008], and is about two orders of magnitude smaller. The associated surface
displacements are generally aligned perpendicular to the fault.

the original time series can be decomposed into a linear combination of the PCA modes [Menke,

1984, Preisendorfer and Mobley, 1988]. Matrix Y is an orthogonal basis of X because the

individual times series that occupy lines of Y have no correlation (in other words, Cov (Y)

is diagonal). We obtain the PCA decomposition of GPS time series by applying the spectral

decomposition of the covariance matrix of X. The eigenvalues correspond to the variance of

individual modes in base Y. Eigenvalues and eigenvectors Λ and P are arbitrarily scaled. We

normalize them consistently so that the dominant mode eventually reaches 1 at the end of the

time series. As eigenvectors are a linear combination of the original GPS signals, we obtain

uncertainties on Y by a simple error propagation method. At first approximation, uncertainties

on individual modes are reduced by a factor of
√

2N , where N is the number of GPS stations.

Fig. 5.7 shows the first and second most dominant modes. The decomposition consists of a time

series and a spatial distribution. The signal with most variance explains 95.2 % of the data. The

time-dependent signal corresponds to a postseismic transient and associated vector displacements

are consistent with right lateral motion on the fault. We performed a kinematic inversion for

fault slip based on the spatial distribution of displacement of the first mode shown in upper right

quadrant of Fig. 5.7. The slip distribution is dominated by a small slip patch centered at 5 km
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depth similar to the last slip distribution in Fig. 5.4. The second mode is due to a common-mode

seasonal signal, which is not removed from the SOPAC filtered time series [Langbein, 2008],

and is about two orders of magnitude smaller. The associated GPS displacements appear to

be generally perpendicular to the fault. We consider the first mode to be representative of the

postseismic response.

We test the possibility of the impulse response of different rheologies to explain the

dominant PCA mode. We use a random walk with simulated annealing to find the amplitude C,

timescale t0 and nonlinear coefficient (n or k) required by the data. In a series of inversions we

impose the degree of nonlinearity to illustrate its role in reducing the data. Results are shown in

Table 5.2. We compute the square root of the weighted sum of the square of the residuals for the

first two months and for the entire duration of the time series. These are reported in Table 5.2

as χ1 and χ2, respectively. As we normalized the first PCA mode to reach the value of 1 after

three years, the inferred amplitude C of fit functions is an indicator of the degree of completion

predicted by the different models. For example, values of C ' 1 indicate a postseismic transient

close to termination whereas higher values indicate an ongoing transient. For both power-law

and RS friction rheologies, the residuals are reduced by increasing the degree of nonlinearity.

The best model for power-law corresponds to n = 6.9, associated with an amplitude of C = 2.03.

The best power-law model predicts that the post-Parkfield transient is only half complete. The

best RS-friction fit to the PCA mode is superior to those of power-law models, as shown by the

short term and the long term residual norms. The best fit is obtained for k = 7.0 and C = 1.25,

indicating that the afterslip is only 75 % complete three years after the earthquake. The better fit
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Table 5.2: Best Fitting parameters to the first mode of the PCA decomposition. The time
series is fitted with the functional describing the impulse response of power-law creep and rate-
strengthening (RS) friction. Fit parameters C, t0 and n or k are the amplitude, the timescale
and the nonlinear exponent (n for power-law and k for RS), respectively, estimated from the
inversion. Misfits χ1 and χ2 measure the residual variance for the first two months and for the
three years time series, respectively.

rheology C t0 n or k χ1 χ2

power-law 0.93 2.8 1 4.1 10−1 7.6 10−2

1.04 0.23 2 2.4 10−1 4.2 10−2

1.19 0.10 3 1.7 10−1 3.0 10−2

2.03 0.03 6.9 8.1 10−2 1.6 10−2

RS 0.93 0.38 1 3.9 10−1 7.2 10−2

0.94 0.47 2 3.4 10−1 6.2 10−2

0.99 0.9 4 1.7 10−1 3.2 10−2

1.25 4.8 7.0 3.2 10−2 1.0 10−2

of the RS model favors the rate-strengthening creep model over the power-law shear zone model.

The excellent fit of the RS friction model to the observed time series lends support to

our assumptions (5.4) and (5.5). The best power-law creep model gives rise to an inferior fit

with a power exponent outside of the experimentally measured range [Weertman and Weertman,

1964, 1975, Tsenn and Carter, 1987, Kohlstedt et al., 1995, Montési and Hirth, 2003], and we

conclude that the bulk of postseismic relaxation is due to afterslip governed by a generalized

rate-strengthening friction model. All original time series are well explained by eq. (7.31) for

values of k ranging from k = 5 to k = 8. Best fit for the first PCA mode is obtained, as shown in

Fig. 5.8 and Table 5.2, for k = 7. Inferred magnitude of the corresponding timescale is subject

to greater uncertainty, with t0 = 4.8 ±2.4 years.

As evidenced by our geodetic inversions (Fig. 5.4), the afterslip occurring in the first

4 months following the Parkfield earthquake is located between two patches of high coseismic

slip, at about 5 km depth, in an area having a characteristic radius l = 2 km. In the first 4

month period, the equivalent geodetic moment due to afterslip, assuming G = 30 GPa, reaches

2.1 1018 N (equivalent Mw 6.18), compared to a cumulative seismic moment of aftershocks of

8.2 1014 N (Mw 3.9) over the same time period in the top 10 km. The lack of coseismic slip and

the occurrence of essentially aseismic afterslip are interpreted as indicating the presence of a

velocity-strengthening area in the middle of a nominally velocity-weakening layer at depth of

5 km.

As postseismic creep gives rise to a total slip of s ' 0.5 m, an estimate of the effective

stress drop is [e.g., Eshelby, 1957, Kanamori and Anderson, 1975, Shearer, 1999, Fialko, 2007]

∆τ0 = C
s

l
G ' 2.5 10−4G (5.21)
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where G is the shear modulus of the upper crust and C is a constant, of order of unity, that

depends upon the geometry of the slip patch. Static values of the shear modulus are not well

constrained, but likely vary between 3 and 30 GPa, leading to estimates of the stress drop between

∆τ0 = 0.75 MPa and ∆τ0 = 7.5 MPa. For a uniform rock density of ρ = 2700 kg/m3, the

lithostatic pressure at 5 km depth is p = 135 MPa. Using our inference of k = 7, a low-end shear

modulus, and assuming an effective normal stress of σ = 100 MPa, our low-end estimate of the

frictional parameter is

a =
∆τ0
k σ
' 10−3 (5.22)

Considering the range of possible values of the shear modulus, estimate of the friction parameter

can vary between a ' 10−3 and a ' 10−2. Noting that parameter a is a proxy for (a − b)

in the context of full rate- and state-dependent friction, our inferred value falls in the range

of frictional parameters observed in laboratory experiments, with values for (a − b) lower than

10−2 at temperatures corresponding to the middle of the seismogenic zone [Scholz, 1990, 1998,

Marone, 1998]. Using the same assumptions, the timescale inferred from fitting the GPS data

gives rise to

ṡ0 =
∆τ0

2G∗ t0
' 5 10−5 m a−1 (5.23)

The Maxwell relaxation time tm associated with afterslip on a simple crack depends upon the

effective crack stiffness,

tm =
∆τ
G∗ ṡ

(5.24)

The inferred value for the RS parameter ṡ0 corresponds to linear relaxation timescales growing

from tm = 0.45 a, at onset of transient deformation, to tm ' 200 a at later times. Estimates of

the velocity parameter based on GPS time series and analytic solutions for a point source might

be biased by a spatially variable afterslip on the fault. The effective timescale of deformation

might be longer than that for a point source, and therefore eq. (5.23) should be considered a lower

bound. We conclude that the parameters obtained from fitting eq. (7.31) to the postseismic GPS

signal are consistent with a physical model of stress relaxation. The better fit of the RS model

within a reasonable range of parameters contrasts with the inferior fit obtained with a power-law

model that requires an exponent inconsistent with the laboratory data. Notice that the 28 three-

year time series corresponding to the 14 GPS stations can be explained with a model having only

3 degrees of freedom. Another approach to explain the data, relating surface displacements to

rate of aftershocks [e.g., Savage et al., 2007], requires many more degrees of freedom.

The inferred rate-strengthening segment of the fault experiencing an accelerated creep

after the 2004 Parkfield earthquake is estimated to be slipping at rates of 1.1 mm/yr in the

interseismic period in response to slip at 33 mm/yr below the seismogenic zone [Murray et al.,

2001], on the down-dip extension of the San Andreas fault (see Appendix 5.10.) However, a

shallow rate-strengthening patch was not apparent in inferred slip distributions corresponding to

the interseismic period [Murray et al., 2001, Murray and Langbein, 2006]. The surface velocities
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in GPS network corresponding to this shallow creep patch alone vary between 0.01 mm/yr at the

closest station and 0.001 mm/yr at the furthest station. Such small surface velocity contributions

are below the detection limit, given GPS uncertainties and the rate of interseismic loading of

33 mm/yr at the bottom of the seismogenic layer.

5.5 Semi-Analytic Models of Afterslip

As our analysis of the GPS data using solutions for a simple crack impulse response

(Section 5.4) favored the generalized friction model, we further explore the latter using full 4-D

simulations with a finite source. We model the aseismic creep occurring after the Parkfield event

using a semi-analytical model of deformation in an visco-elastoplastic half-space. Our approach

allows one to evaluate a time-dependent deformation due to a quasi-static fault slip in response to

the driving coseismic stress changes. Our model includes the linear and power-law creep as well as

the generalized velocity-strengthening friction law but, based on results in Section 5.4, we focus

on RS models. We compute deformation due to fault creep using integral transforms [Barbot

et al., 2008a]. The time-dependent fault creep is modeled by integrating the constitutive laws

with a second-order accurate Runge-Kutta method with adaptive time steps. Details of our

modeling approach and example calculations are discussed in Appendix 5.9.

We evaluate the velocity-strengthening parameters using our coseismic slip model as

the initial condition driving the afterslip sequence. Guided by results of kinematic inversions

(Fig. 5.4), we assume that areas of high coseismic slip are velocity-weakening, and do not par-

ticipate in postseismic creep. We also assume that areas on the periphery of high-slip asperities

are predominantly velocity-strengthening. Because seismic slip may have propagated into a tran-

sition between the velocity-weakening and velocity-strengthening areas, we include this zone in

our model by limiting the coseismic slip distribution to areas where coseismic slip was greater

than 0.2 m (about 30 % of maximum coseismic slip.) We compensate the reduction in geodetic

moment by rescaling the amplitude of the coseismic slip model. The result is a more compact slip

distribution where the two main coseismic slip patches are separated by a RS patch that did not

slip during the 2004 earthquake. The coseismic slip model is shown in Fig. 5.4 by the contours.

The rest of the fault is allowed to participate in afterslip driven by the coseismic stress changes.

We do not constrain the rake of afterslip. The slip direction is dictated by the instantaneous

stress field (and may in general have a dip-slip component.)

We compute displacements resulting from time-dependent creep on a fault plane at the

location of the 14 GPS stations. To evaluate how well the generalized rate-strengthening model

is able to explain the GPS data, we perform a grid search to find the coefficient k that best

explains the postseismic time series. In each numerical solution, we fit the GPS signals to find

the reference strain rate ṡ0 that gives rise to the largest misfit reduction at all stations.

Fig. 5.9 shows snapshots of the simulated RS creep evolution on the fault plane. Afterslip
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Figure 5.9: Numerical simulation of afterslip with Rate-Strengthening (RS) friction. The sim-
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Time evolution of afterslip is described by the generalized RS friction law of eq. (5.11). Afterlip
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Fig. 5.10. Snapshots are separated by 20 time steps. The numerical method is described in
Appendix 5.9.
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Figure 5.10: Postseismic GPS data (solid line), two-sigma uncertainties (gray shade) and best
forward model (dashed lines) corresponding to the generalized rate-strengthening friction law
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exception of station CARH and MIDA, in the very near field, which are affected by a fault
migration.
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assuming an effective normal stress of σ = 100 MPa.

takes place in the middle of the two patches of high coseismic slip and propagates preferentially

towards the free surface. At later times our model predicts more shallow afterslip than is actually

deduced in kinematic inversions. We suggest that this difference may result from the assumption

of uniform frictional parameters on the fault plane. A higher value of ṡ0 near the surface would

delay the occurrence of shallow afterslip. Investigations of the depth dependence of frictional

properties is beyond the scope of the study. Fig. 5.10 shows the GPS displacements and our best

fitting model. For each forward model associated with a value of k, one parameter, ṡ0, controlling

the timescale of deformation, is optimized through a grid search. Amplitude of displacements

at each station is determined from the elastic Green function. Stations CARH and MIDA, in

the very near field, are the only GPS stations showing a large misfit. This misfit may be due

to our assumption of afterslip occurring on a geometrically simple fault plane. At the rest of

the stations, our model predicts the correct sense of horizontal displacements, and most forward

models are within the uncertainties of GPS measurements (95% confidence interval). Despite the

approximations introduced in the initial condition, the forward model results in more than 70%

variance reduction.

We computed a series of solutions for different values of a σ ranging from 0.2 MPa to

1.4 MPa, assuming a shear modulus of G = 30 GPa, and inverted GPS data for the reference slip

rate ṡ0. Variables ṡ0 and a in our formulation correspond to the parameter V0 and the steady-

state friction parameter (a−b), respectively, in spring-slider analogs of rate- and state-dependent

friction [e.g., Dieterich, 1994, Marone et al., 1991, Marone, 1998, Perfettini and Avouac, 2007].

Fig. 5.11 shows the misfit and inferred velocity V0 as a function of the velocity-strengthening
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parameter (a − b), assuming an effective normal stress σ = 100 MPa. We evaluated the misfit

between data and model during the first year of deformation (dashed profiles) and the entire 3

years of data. Variance reduction is slightly better for the shorter interval, but in general is quite

consistent. For both periods, we obtain the best fit for (a − b) = 7 × 10−3 and ṡ0 = 20 mm/yr.

Smaller values of (a−b) give rise to a higher misfit, but the variance reduction remains sufficiently

low for higher values of (a−b). Our finite-size source modeling essentially provides a lower bound

on the frictional parameter (a− b).
Inferences of RS parameter (a−b) in our full 3-D calculation are not biased by a particular

choice of the shear modulus in the homogeneous elastic half-space. Some bias in estimating

steady state friction parameters may arise due to the presence of a compliant fault zone [Fialko

et al., 2002, Fialko, 2004b, Hamiel and Fialko, 2007, Barbot et al., 2008a, 2009b]. As we model

the Parkfield coseismic rupture and the subsequent creep using the same value for the rigidity,

corresponding to the compliant zone, this potential bias is limited. Another bias may come from

using daily GPS solutions to derive the coseismic model, which might map some early afterslip

into the coseismic model. We ignore the evolution of the state parameter. For this reason, we

expect our forward models to be less accurate in the first few days following the rupture and to

capture accurately the longer timescale deformation. Parameters inferred from 3-D calculations

are consistent with our impulse response estimates in the previous section and our preferred

value of (a − b) = 7 × 10−3, corresponding to the largest misfit reduction, is at the high end of

inferences from laboratory experiments [Marone, 1998].

5.6 Discussion

The 2004 Mw 6.0 Parkfield earthquake triggered a transient deformation that was re-

sponsible for larger cumulative surface displacements compared to those from the main event.

Velocities that are higher than the interseismic ones are still observed at near-field GPS stations

three years after the event. Our inversions of the continuous GPS postseismic time series reveal

that afterslip occurred conspicuously between two areas of high coseismic slip at depth of about

5 km, in the middle of the seismogenic zone. Numerous aftershocks following the earthquake are

located mostly in areas that participated in seismic slip, and not in areas that hosted postseis-

mic creep. We conclude that the post-Parkfield transient deformation is due to aseismic slip

that relaxed the stress increase caused by the main shock. Furthermore, observations of micro-

seismicity and aftershocks of previous Parkfield earthquakes have shown that earthquakes occur

repeatedly on the same asperities, suggestive of variations in effective frictional properties on the

fault plane [Waldhauser et al., 2004]. Our time series analysis and finite-source modeling of the

GPS data indicate that afterslip occurred on a periphery of patches of high seismic slip, and is

likely governed by a rate-strengthening friction law.

Results of our modeling bear on the extrapolation of laboratory measurements to natu-
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Figure 5.12: Aftershocks driven by aseismic creep. A) The equivalent seismic moment of our
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aftershocks that occurred in the top 9 km (shaded depths).

ral faults. Our inferred value of the steady rate-strengthening frictional parameter is of order of

(a− b) = 7× 10−3. Typical laboratory measurements at temperatures representative of the seis-

mogenic zone suggest values of the friction rate parameter in the range from 0 to 0.006, depending

on the cumulative shear displacement experienced by the samples [Marone, 1998, Scholz, 2002].

Morrow and Lockner [2001] found the velocity dependence of friction (a− b) = 0.005− 0.007 for

samples of the Hayward fault for a variety of rocks in effective pressure conditions simulating

depths of burial up to 12 km. Experiments with clay minerals in pressure conditions relevant

to the top 15 km revealed a rate-strengthening friction with parameter a − b = 0.007 [Morrow

et al., 1992]. Experiments on thick gouge layers sheared between rough surfaces at high normal

stress [Marone et al., 1990] predict higher friction rate parameters, and seem to be most con-

sistent with our inferences of (a − b) on a mature fault such as the San Andreas fault in the

Parkfield area.

Johnson et al. [2006] modeled the afterslip evolution following the 2004 Parkfield event

using a full rate-and-state dependent friction formulation. In their approach afterslip is controlled

by the pre-earthquake stress level on the fault, the stress change due to the earthquake and

frictional properties on the fault (a, b, critical slip distance Dc and V0), some of which are
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allowed to vary laterally and with depth. They invert for a range of parameters that reproduces

the GPS 9 month time series. They find a rate-strengthening coefficient of (a−b) = 10−4−10−3,

an order magnitude lower than values inferred from laboratory experiments. In our study, we

use longer (3 years) time series and constrain the fault frictional properties with 1) time series

analysis and 2) a pure rate-strengthening model with lateral variations in frictional properties.

Our kinematic inversions of afterslip show that much of postseismic slip occurs on a patch between

seismic asperities so we model a fault with uniform frictional properties that we attribute to this

slipping patch. Our best afterslip model explains 70% of the 3 year GPS signal and produces

fit to the data that is comparable to that of [Johnson et al., 2006, see Fig. 11] over the first

9 months. A reasonably good performance of our simpler model compared to the approach of

Johnson et al. [2006] can be explained by the fact that most of afterslip occurs in a limited area

and samples the frictional properties of the fault at this location.

The aftershock sequence following the 2004 Parkfield earthquake has a cumulative mo-

ment much lower than the geodetic moment due to postseismic creep. The equivalent geodetic

moment for afterslip, assuming a shear modulus of G = 30 GPa, exceeds 3.23 1018 N (Mw 6.3)

three years after the earthquake whereas aftershocks account for a moment of 5.96 1016 N (Mw 5.15)

in the same period. The higher moment of afterslip compared to cumulative moment of after-

shocks disfavors the assumption that postseismic creep is driven by the occurrence of after-

shocks [Savage and Yu, 2007]. The depth distribution of aftershocks is tri-modal, as shown in

Fig. 5.12c (also, see Fig. 5.4.) Most earthquakes occur between 3 and 9 km depth, with cumu-

lative magnitude of Mw 4.26. The rest of the moment release is due to three large aftershocks

that occurred at greater depth (> 10 km.) The moment release due to shallow (depth < 10 km)

aftershocks is found to be strongly correlated with aseismic slip. Fig. 5.12a shows the cumulative

moment of aftershocks occurring above 9 km depth and the equivalent geodetic moment of creep

estimated from our finite-source modeling and the geodetic inversions. The geodetic moment

corresponding to our best forward model is represented with the black solid line, assuming a

shear modulus of G = 30 GPa. The geodetic moment inferred from afterslip kinematic inversions

is plotted as circles. Finally, cumulative aftershock moment is shown by the dashed line. We did

not remove a seismic moment rate corresponding to background seismicity from the cumulative

aftershock moment. The moment of seismic noise in interseismic times is immediately overshad-

owed by the occurrence of larger magnitude aftershocks. Correlation between creep and seismicity

seems to start 4 days (10−2 a) after the main shock. However, precise evaluation of the kinetics

of early creep in our model is limited by our assumption of a pure rate-strengthening friction.

In a rate- and state-dependent friction model, the state variable accounts for the effect of fault

contact aging on the effective friction. For the same stress initial condition, the initial velocity

is reduced compared to a pure rate-strengthening model. As a result, the onset of excitation

of aftershocks by creep could happen earlier than our model predicts. Fig. 5.12b illustrates the

relationship between the cumulative aftershock moment and estimates of the equivalent geodetic
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moment for the aseismic slip based on geodetic inversions and finite-source forward modeling.

As creep accounts for a moment release that is two orders of magnitude greater than that due to

aftershocks, data suggest that stressing from aseismic slip in velocity-strengthening areas governs

the seismicity rates in neighboring velocity-weakening areas.

Similar inferences were made in previous studies of postseismic deformation in other

locations, including the 1992 Landers, California [Perfettini and Avouac, 2007] and the 2005

Nias-Simeulue, Sumatra [Hsu et al., 2006] earthquakes. Savage and Yu [2007] also showed that

the rate of aftershocks and surface velocities were linearly related during the first year of the

postseismic transient. At Parkfield, aftershocks and afterslip occur principally at depth of about

5 km, in areas well resolved by the GPS network. The aftershocks hypocenters do not overlap

with inferred areas of postseismic creep. An integrated view on seismic and aseismic transients

following the Parkfield earthquake (Fig. 5.4) suggests the presence of along-strike variations in

frictional properties of the fault in the middle of the seismogenic zone. Such variations are likely

due to proximity of the Parkfield segment of the San Andreas fault to the creeping section,

and might be rare in other locations, where the transition from velocity-weakening to velocity-

strengthening behavior occurs primarily as a function of depth.

5.7 Conclusions

We investigated the co- and postseismic deformation due to the Mw 6.0 2004 Parkfield,

CA earthquake. We used daily position time series from the SCIGN network to derive our coseis-

mic slip model. Inferred strike-slip distribution exhibits two areas of high slip, consistent with

results of previous investigations. We find a geodetic coseismic moment of Mw 6.16, somewhat

higher than the seismic moment of Mw 6.0. We next inverted the horizontal components of the

postseismic time series for evolution of afterslip. Most of the postseismic data can be explained

by right-lateral afterslip on the fault plane that ruptured coseismically. After two years, the cu-

mulative postseismic geodetic moment reaches an equivalent magnitude Mw 6.35, higher than our

coseismic geodetic estimate of Mw 6.16. During the first year following the earthquake, afterslip

is confined to the upper half of the seismogenic zone, occurring principally around 5 km depth,

and between two areas of large coseismic slip. There is no resolvable overlap between coseismic

slip and afterslip. The aftershock sequence took place in areas devoid of afterslip, with most of

the earthquakes occurring in areas that ruptured coseismically. The seismicity in the top 10 km

has a cumulative moment about two orders of magnitude smaller than the equivalent geodetic

moment of afterslip. We conclude that the postseismic transient is dominated by aseismic slip

driven by coseismic stress changes and we interpret the occurrence of afterslip and aftershocks

in separate locations as being due to along-strike variations in effective frictional properties.

Modeling of GPS time series using solutions for shear cracks suggests that afterslip is

more likely localized on discrete planes rather than distributed over finite-width plastic zones with
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power-law rheology. A rate-strengthening friction law generalized for small velocities [Rice et al.,

2001] can explain the surface displacements at all stages of the postseismic period. A distinction

between candidate mechanisms has been possible due to availability of temporally dense GPS

solutions. Power-law models were found to provide an inferior fit to GPS time series. To investi-

gate the rate-strengthening creep hypothesis further, we developed a new semi-analytic method

to evaluate the time-dependent deformation due to coseismic loading in an visco-elastoplastic

half-space. The method uses integral transforms to compute the three-dimensional static de-

formation. The time integration for a given constitutive law is performed using a second-order

accurate Runge-Kutta method with adaptive time steps. We modeled the postseismic transient

using the generalized rate-strengthening friction law and our coseismic slip model as initial con-

dition. The best-fitting model can explain 72 % of all GPS data, except at station CARH in the

very near field, which suffered a velocity reversal due to migration of the creep interface. Finite-

source modeling of the creep evolution puts a lower bound on the rate-strengthening frictional

parameter, a σ > 0.5 MPa, in agreement with inferences from the simple crack approximation.

The same rate-strengthening forward model can explain both the time dependence of GPS data

and the spatio-temporal evolution of creep on the fault plane inferred from kinematic inversions.

Assuming an effective normal stress of σ = 100 MPa, appropriate for 5 km depth, we

infer a steady-state rate-strengthening friction parameter of (a − b) = 7 × 10−3, which is on a

high end of values measured in laboratory experiments [Scholz, 1990, 1998, Marone, 1998]. Our

result suggests that laboratory data corresponding to high normal stresses and thick gauge layers

are most consistent with our in situ inferences of frictional properties of mature faults such as

the San Andreas fault near Parkfield. Our modeling results indicate that areas that ruptured

during the 2004 Parkfield event continued to experience seismicity in the postseismic period.

The occurrence of unstable sliding (stick-slip behavior), suggests that the respective areas are

characterized by a negative frictional parameter (a−b). The strong correlation between creep and

aftershock moments, as well as the spatial anti-correlation between creep and seismicity suggest

that creep is governing the rate and magnitude of aftershocks in the top 10 km of the seismogenic

zone. This scenario of reloading of the velocity weakening surfaces by afterslip on nearby velocity-

strengthening patches is suggestive of strong lateral variations in frictional properties along the

Parkfield segment of the San Andreas fault. Velocity-strengthening areas represent an obstacle to

the propagation of the main rupture and are responsible for the aseismic relaxation of coseismic

stress by creep, thereafter governing the rate of seismicity in velocity-weakening areas. These

results emphasize the effect of aseismic deformation on the rate of aftershocks and the spatio-

temporal distribution of slip throughout the seismic cycle.
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5.8 Impulse Response of a Point Source

A finite area of localized shear with linear dimension L embedded in a elastic medium

Ω with shear modulus G can be idealized with a time-space separable spring-slider model with

the effective spring constant per unit area

G∗ =
C G

L
(5.25)

where scalar C is a constant close to 1 that depends on the geometry [Eshelby, 1957, Kanamori

and Anderson, 1975, Shearer, 1999, Fialko, 2007]. We treat this idealization as ”point source”

because it ignores details of displacements within the slipped area and provides an accurate

approximation in the far field. The point-source approximation also assumes that stress resolved

on the slip area is uniform.

The inelastic response of a medium to coseismic stress change is, in general, the solution

for a constant total strain ε̇ = 0 subjected to some initial conditions or, using eqs. (5.61) and

(5.62), in terms of stress

D : σ̇ + F :σ = 0 (5.26)

where D and F are the elastic compliance and fluidity tensors, repectively and σ is the Cauchy

stress. Projecting eq. (5.26) in the -constant- strain direction R and using the point-source

approximation, we develop the associated governing ordinary differential equations for localized

shear bands with power-law creep and afterslip with rate-strengthening friction.

5.8.1 Power-Law Shear Bands

In a simple shear zone model s(t) is the displacement across the finite shear band which

relaxes the stress τ = G∗s. A schematic of the geometry is shown in Fig. 5.13. The rheology

of fault creep is described by eq. (5.6) where the plastic strain rate can be approximated by

γ̇ = ṡ/T , where T is the thickness of the shear zone (see Fig. 5.13). In the case of linear creep
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Figure 5.13: Schematic of the point-source approximation for a localized shear band of thickness
T and linear dimension L. The cumulated displacement s across the ductile zone relaxes the
stress τ = G∗s.

of eq. (5.6) with n = 1, the evolution of shear stress across the ductile zone is governed by the

differential equation

τ̇ + αAτ = 0 (5.27)

where α = CT/L is the aspect ratio of the ductile zone. The solution is given by

τ(t) = τ0 e
−t/t0 (5.28)

where τ0 is the initial (coseismic) loading and the time scale

t0 =
1
αA

(5.29)

is independent of the initial stress condition and controlled by the aspect ratio of the ductile

zone and the effective rheology of rocks within the shear zone. As stress is relaxed, cumulative

displacement across the ductile volume is

s(t) =
τ0
G∗
(
1− e−αAt

)
. (5.30)

Displacement in the elastic medium exhibits similar time dependence, but amplitudes decay away

from the shear zone. Similarly, for nonlinear creep, the governing equation for stress on the fault

plane is
τ̇

G
+ αA

( τ
G

)n
= 0 (5.31)

and the decay of shear stress is

τ(t) = τ0

[
1 + αA (n− 1)

(τ0
G

)n−1

t

] −1
n−1

(5.32)

where the timescale of deformation t0 scales with the reference strain rate A, the aspect ratio α

and the initial stress τ0

t0 =
1

αA (n− 1)

(
G

τ0

)n−1

(5.33)



110

Integrating eqs. (5.6) and (5.32), we obtain the displacement evolution across the ductile zone

s(t) =
τ0
G∗

(
1−

[
1 +

t

t0

] −1
n−1
)

(5.34)

or, in terms of strain,

γ(t) =
τ0
αG

(
1−

[
1 +

t

t0

] −1
n−1
)

(5.35)

5.8.2 Rate-and-State Creep

For the generalized rate-strengthening friction, with a constitutive relationship repre-

sented by eq. (5.11), the scalar ordinary differential equation for stress is

τ̇

G∗
+ 2 ṡ0 sinh

( τ

a σ

)
= 0 (5.36)

where a and ṡ0 are the frictional parameters and scalar σ is the fault normal stress (compression

is assumed positive). The degree of nonlinearity in the transient sliding depends upon the

dimensionless ratio

k =
τ0
a σ

(5.37)

and the resulting stress evolution on the slip patch is

τ(t) = τ0
2
k

coth−1

(
e2ṡ0

G∗
aσ t coth

k

2

)
(5.38)

Introducing the timescale

t0 =
a σ

2 ṡ0G∗
(5.39)

we obtain the slip evolution

s(t) =
τ0
G∗

(
1− 2

k
coth−1

(
et/t0 coth

k

2

))
(5.40)

The generalized friction model is highly nonlinear for k � 1, but is quasi-linear for k ≤ 1. We

note that the timescale t0 depends upon the size of the slipping patch.

Time series of postseismic deformation can be compared to predictions of eqs. (5.30), (5.35)

or (5.40). Inferred timescale t0 and degree of nonlinearity (n or k in case of power law and gen-

eralized rate-strengthening friction, respectively) can be used to constrain initial effective stress

and frictional parameters.

5.9 Numerical Model of Time-Dependent Creep on Finite

Faults in an Elastic Half-Space

We present a novel approach to evaluate the three-dimensional time-dependent defor-

mation due to a localized creep in an otherwise elastic half-space. The method is based on a
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continuum representation of fault slip. In particular, our treatment extends the usual double-

couple representation of static faults and derive an expression for the equivalent body force rate

that reproduces the required slip velocity on the fault. In a first subsection, we introduce a

formulation for slip systems that describes static slip and creeping dislocations. In a second

subsection, we derive a continuum formulation of the constitutive and governing equations that

describe afterslip of a fault plane and associated elastic deformation in a half space. In a final

subsection, we present details of our numerical implementation.

5.9.1 Continuum Representation of Dislocations

Faults can be viewed as dislocations that introduce an irreversible displacement disconti-

nuity in an otherwise elastic domain. These dislocations cannot simply be treated using Dirichlet

boundary conditions on each side of the interface because only the relative displacement between

the two sides are formally known, as opposed to the absolute position of the particles that

lie across the contact. Boundary conditions might be sensibly prescribed in terms of strain

(Neumann-type boundary conditions), but a difficulty arises because of the discontinuous nature

of the interface.

Consider semi-infinite solid Ω with a traction-free surface ∂Ω. We use a Cartesian co-

ordinate system where position in a half space is denoted by x = (x1, x2, x3) with x3 positive

downward and x3 = 0 at the surface ∂Ω. We adopt the infinitesimal strain approximation of

linear elasticity. A fault S is defined by a surface

n(x) = 0 . (5.41)

The normal unit vector on S is the unit vector

n̂ =
∂n

∂x
(5.42)

Hereafter, we denote S+ one side on the fault and S− the other, such as n = 0+ on S+ and

n = 0− on S−. After some slip occurred on the fault surface, the previously adjacent points

across S are separated by s, which is the Burgers’ vector associated with the dislocation. We

define the plastic displacement ui(n), where superscript i stands for irreversible or inelastic, due

to slip on the fault as follows

ui(0+)− ui(0−) = s (5.43)

A schematic of the geometry is shown in Fig. 5.14. The gradient of the inelastic deformation is

the tensor

∇ui =
∂ui

∂x
= n̂⊗ ∂ui

∂n
(5.44)

Defining the gradient
∂ui

∂n
= δ(n) s , (5.45)
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Figure 5.14: A buried circular slip patch embedded in semi-infinite solid Ω with free surface
∂Ω at x3 = 0. Slipping surface is defined by n(x) = 0. Burgers’ vector of dislocation is s =
ui(0+)− ui(0−).

where δ(x) is the Dirac delta function, and integrating, we find a continuum description of plastic

deformation that satisfies condition of eq. (5.43). Decomposing the gradient into the canonical

symmetric and skew-symmetric parts, respectively

∇ui = εi + Ωi (5.46)

we obtain the eigenstrain associated with the dislocation

εi(x) =
1
2

(n̂⊗ s + s⊗ n̂) δ(n(x)) (5.47)

The delta function of eq. (5.47) is a continuous representation of the fault discontinuity at n = 0

and also prescribes the location of the dislocation in the medium. Notice that no intrinsic fault

thickness is associated with eigenstrain. In particular, eigenstrain is not defined as the ratio

of some cumulative displacement over some small, yet finite, distance. The use of generalized

functions to describe seismic sources has been discussed by Backus and Mulcahy [1976b].

Before completing the continuum representation of a dislocation, we consider a purely

static deformation. We decompose the total strain ε in the semi-infinite solid into elastic and

inelastic parts, respectively

ε = εe + εi (5.48)

where the inelastic strain, only occurring on the dislocation, is formally valid everywhere in the

solid due to the use of the Dirac delta function (eq. (5.47)). (In most of the domain Ω, we have

ε = εe.) Using decomposition of eq. (5.48) the Cauchy stress becomes

σ = C : εe = C : ε−C : εi (5.49)
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where C is the fourth-order elastic moduli tensor in Ω and operator : is the double scalar product.

The distinction between elastic and plastic strains in the stress-strain relationship of eq. (5.49)

makes apparent the moment density of the dislocations

m(x) = C : εi(x) (5.50)

Whereas the moment density of dislocations can be obtained by other means [e.g., Aki and

Richards, 1980, Shearer, 1999], our formulation is advantageous because it includes the loca-

tion, size and magnitude of the dislocations. Furthermore, using the Cauchy stress definition of

eq. (5.49) and conservation of momentum ∇·σ = 0, we find the inhomogeneous Navier’s equation

∇ · (C : ε) + f = 0 (5.51)

where ε is unknown and the body-force density term is

f(x) = −∇ ·
(
C : εi(x)

)
(5.52)

As in the case of the moment density, the equivalent body forces for dislocations can be ob-

tained using different approaches [e.g., Eshelby, 1957, Burridge and Knopoff, 1964]. Note that

expression (5.52) contains information about the double couple representation of dislocations as

well as their location and size in the half space. For example, the elastic potential energy of the

dislocation is simply

E =
∫

Ω

σ : εi(x) dV =
∫
S

σ : s⊗ n̂ dA (5.53)

which comes from the continuum representation of eigenstrain of eq. (5.47), the symmetry of the

stress tensor and the definition of the Dirac delta function. The solution displacement in Ω due

to static slip described by eq. (5.47) and (5.52) is

u(x) =
∫

Ω

G(x,x0) · f(x0) dV

=
∫
S

∇G : C : s⊗ n̂ dA
(5.54)

where G is the elastic Green function tensor, and last term is obtained by integration by part

and using the definition of the Dirac delta function.

The continuum representation of static dislocations in terms of eigenstrain accurately

captures the discontinuous nature of displacement fields due to fault slip. The eigenstrain is a

forcing term in the strain domain which should not be confused with the elastic strain in the

near field of the dislocation. Using the tensor inner product 〈A,B〉 =
√

2 A : B and assuming

purely tangential fault slip (no opening or interpenetration), one can write [e.g., Nemat-Nasser,

2004]

εi(x) = γ(x) R (5.55)
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where R is a unitary, symmetric and deviatoric, second-order tensor and γ, the norm of εi(x), is

the total slip across the dislocation. In particular, noting s = s ŝ, one has

γ(x) = s δ(n(x)) (5.56)

The eigenstrain describes the slip on a fault patch. This definition can be readily extended to

represent slip velocities across the dislocation. To do so, we define the eigenstrain rate

ε̇i(x) = γ̇(x) R (5.57)

As shown for the case of static dislocations, the plastic deformation rate γ̇ = ṡ nominally applies

to the fault interface only, but is formally valid in the entire domain Ω by use of the Dirac

delta function. We use this continuum representation to formulate the constitutive equations

in the solid and at the contact interface in a uniform, consistent manner. Various degrees of

strain localization on a fault can be readily modeled using Dirac’s delta, boxcar, Gaussian, etc.

functions.

5.9.2 Body Force Representation of Fault Creep

In a general case, a static dislocation with slip vector s along a surface of normal n̂(x)

is associated with the eigenstrain

εi =
1
2

(s⊗ n̂ + n̂⊗ s) (5.58)

and, in a linear elastic medium Ω with elastic tensor C, with the moment density m = C : εi.

The equivalent body force (formally a body-force density) for such a dislocation is [e.g., Eshelby,

1957, Burridge and Knopoff, 1964, Nemat-Nasser, 2004]

f(x) = −∇ · (C : s⊗ n̂) (5.59)

and the resulting displacement u in the elastic half-space is obtained with application of the

elastic Green function [Love, 1927, Nemat-Nasser and Hori, 1999]

u(x) =
∫

Ω

G(x,x0) · f(x0) dx0 (5.60)

In an visco-elastoplastic material, with elastic compliance tensor D and fluidity tensor

F(x), the elastic strain-rate tensor is

ε̇e = D : σ̇ (5.61)

and the irreversible plastic strain rate occurring on the fault is

ε̇i = F : σ (5.62)

where σ = C : εe is the Cauchy stress [Malvern, 1969], and the amplitude of F is stress and space

dependent. Note that the fluidity tensor F has a non-vanishing value only on the fault surface,
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even though it can be defined everywhere in Ω by use of generalized functions. The total strain

rate is the sum of elastic and inelastic contributions

ε̇ = ε̇e + ε̇i (5.63)

Assuming infinitesimal strain, combining eq. (5.61), (5.62) and (5.63) and integrating, we obtain

σ(t) = C :ε(t)−
∫ t

0

C : ε̇i(s) ds (5.64)

where the integrand

ṁ(x, t) = C : ε̇i(x, t) (5.65)

is the internal torque density applied in the solid to gradually relax stress. The total strain ε can

simply be evaluated from the state of current deformation

ε(t) =
1
2
[
∇⊗ u + (∇⊗ u)T

]
(5.66)

We derive the solution velocities from the integration of forcing terms

ḟ(x) = −∇ ·
(
C : ε̇i

)
(5.67)

using the elastic Green function

u̇(x) =
∫

Ω

G(x,x0) · ḟ(x0) dx0 (5.68)

We compute the time-dependent deformation by integrating simultaneously eq. (5.64) and eq. (5.68).

The inelastic strain-rate tensor ε̇i is usually decomposed into a direction R and a scalar

strain rate γ̇ [Nemat-Nasser, 2004]

ε̇i = F :σ = γ̇R (5.69)

While the decomposition (5.69) is general, in the case of the extreme localization of a discon-

tinuous fault interface the eigenstrain rate γ̇ corresponds to the slip rate on the fault γ̇ = ṡ.

The strain direction R for strike-slip and dip-slip faults is a deviatoric, symmetric and unitary

second-order tensor that describes the geometry of the slip system. The traction t(x) resolved

on a fault surface can be decomposed into normal and shear components,

t = σ · n̂ = (t · n̂) n̂ + τ (5.70)

Noting s = s ŝ, we assume that the slip-rate vector is collinear with the direction of shear traction

evaluated on the fault patch,

ṡ = ṡ τ̂ (5.71)

Extending the static case of eq. (5.58) to time-dependent slip, the plastic strain-rate direction

becomes

R =
1
2

(τ̂ ⊗ n̂ + n̂⊗ τ̂ ) (5.72)
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and the corresponding equivalent body-force rate, from eqs. (5.67), (5.69) and (7.28), simplifies

to

ḟ(x) = −∇ · (γ̇ C :R) (5.73)

A dislocation slips only when a yield condition g(σ) = 0 is satisfied, such that

γ̇ =

 0, if g(σ) < 0

f(σ, γ, t), if g(σ) = 0
(5.74)

where in general the formulation γ̇ = f(σ, γ, t) allows for a direct effect, some work hardening

and a possible healing. We use the Coulomb yield surface given by eq. (5.2). Coseismic static

displacements u(x, t=0) and stress change σ(x, t=0) define a set of initial conditions that govern

the subsequent inelastic deformation. Constitutive relationships for plastic flow or generalized

rate-strengthening friction, eqs. (5.6) and (5.11) respectively, complete the description of our

model.

5.9.3 Numerical Implementation

We extend the approach of Barbot et al. [2008a] to three-dimensional deformation, and

use integral transforms to evaluate the elastic response of a half space, i.e. to solve eq. (5.60)

and (5.68) numerically. We perform the convolution between the equivalent body forces and

the elastic Green function in the Fourier domain, taking advantage of the convolution theorem

and the fast Fourier transform. The method is computationally efficient: the evaluation of the

instantaneous velocity field in a 5123 node grid with uniform sampling is obtained in a few

seconds on a parallel computer with shared-memory architecture. One possible drawback of

Fourier methods is the periodicity of the numerical solution. We mitigate undesirable effects of

periodic boundary conditions using sufficiently large computational grids. We taper the fault

segments to reduce aliasing and temper stress singularities [Barbot et al., 2008a]. Our approach

allows one to compute deformation due to the presence of buried faults of arbitrary orientation.

We benchmarked our numerical code against the analytic solution of Okada [1992] for

strike-slip and dip-slip faults. Fig. 5.15 shows the relative error between analytic and numerical

solutions at the location of the GPS stations at Parkfield, for our inferred coseismic model.

Numerical error is usually smaller than 5 %, and exceeds 10 % in the far field where absolute

displacements are vanishingly small and at the precise location of the fault where the displacement

discontinuity is represented by a continuous field. We also compared our solution to another

numerical approach. Fig. 5.15 shows the relative error introduced by the numerical Green function

of Wang et al. [2003] for a spatial sampling of ∆ = 0.5 km and ∆ = 0.2 km. As one can see from

Fig. 5.15, our model, with a uniform sampling of ∆ = 0.25 km performs well compared to the

method of Wang et al. [2003].

We evaluate the integrals in eq. (5.68) and (5.64) using a second-order accurate Runge-

Kutta scheme with adaptive time steps [Abramowitz and Stegun, 1972]. From the instantaneous
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Figure 5.15: Relative error of numerical models compared to the analytic solution of Okada [1992]
for the Parkfield coseismic slip model. The displacement vector at the location of the 14 GPS
stations is estimated numerically with the method of Wang et al. [2002] (triangles) and with
the one developed in this study (circles). The percentage error is plotted as a function of the
expected analytical solution for the 3 components of displacement. The red triangles correspond
to a denser sampling of the Wang et al. [2002] Green function, which reduces the numerical error.
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Figure 5.16: The time-dependent deformation due to frictional sliding on a surface of unit size.
A) The stress on a fault is perturbed due to static slip on an upper segment leading to afterslip.
B) The vector-valued displacement at a surface point driven by the deep afterslip is evaluated
numerically using a second-order accurate Runge-Kutta method with adaptive time steps. The
forward models compare well with the expected impulse response of linear (ṡ = ∆τ/η) and
nonlinear (ṡ = A (∆τ/G)n, here n = 2) constitutive laws. The timescale of the synthetic signal
is recovered within a 5% error. The adaptive time step is apparent only for the case of a nonlinear
evolution law.

effective linear viscosity,

η(t) =
τ

γ̇
(5.75)

we determine the characteristic relaxation timescale

tm =
η

G
(5.76)

where G is the shear modulus. We use a fraction of tm, also referred to as the Maxwell relaxation

time, for time increments. Finally, we estimate the spatial gradients in eq. (7.6) using a finite

impulse response differentiator filter [McClellan et al., 1973]. Filters are much better estimates

of localized deformation than simple finite difference schemes because the latter smooth the

derivative estimates near discontinuities such as slip on a fault.

Fig. 5.16 shows a benchmark of our approach for a simple geometry. We place a small

slip patch in a coseismic stress field with a choice of parameters constrained to satisfy t0 = 1 a

in eqs. (5.29) and (5.33). We compare the time series of surface displacement at an arbitrary

location at the surface of the half-space to the impulse response of linear and nonlinear rheologies

(Fig. 5.16b). Our adaptive time steps are apparent for the nonlinear power-law creep, with shorter

time increments at early time of deformation and longer ones at later times, when most stress has

already been relaxed. The numerical solution is very well fit by the expected impulse response

of linear or nonlinear rheologies and the theoretical timescale of deformation is recovered within
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a 5 % error. We conclude that our modeling approach and its numerical implementation are

sufficiently robust for modeling stress-driven afterslip with linear as well as nonlinear rheologies.

5.10 Interseismic Slip Rates for a Slip Patch

The response of a rate-strengthening (RS) friction patch to a constant interseismic strain

rate obeys

ε̇e + ε̇i = Γ̇ R (5.77)

where ε̇e and ε̇i are the elastic and inelastic strain rates, respectively, and Γ̇ and R are the

amplitude and direction, respectively, of the interseismic strain rate evaluated on the fault patch.

After the initial period of transient deformation, the steady-state response is inelastic only (ε̇e =

0) and the rate of strain release due to the RS friction patch equals to the strain rate imposed

by interseismic loading

γ̇ = Γ̇ (5.78)

The strain rate of the slipping patch, γ̇, is given by

γ̇ =
ṡ

C L
(5.79)

where C is a dimensionless parameter depending upon the geometry of the patch and L is the

linear dimension of the patch. The RS friction parameter ṡ0 is equivalent to parameter V0 of

classic rate-and-state friction for large velocity, but does not represent the “interseismic” velocity.

Friction parameter ṡ0 controls the timescale of deformation transients and the effective “viscosity”

of the shear zone (see eq. (5.75) and (5.76).)

In case of strike-slip faults, interseismic deformation may be idealized by slip below the

seismogenic zone at rates corresponding to the long-term (averaged over multiple earthquake

cycles) plate motion [Savage, 1990]. The velocity field for a long vertical strike-slip fault locked

from the surface to the depth H is

u̇1 =
v

2π

[
tan−1 x2

H − x3
+ tan−1 x2

H + x3

]
(5.80)

where u̇1(x2, x3) is the along-strike velocity, x2 is the across-fault distance, x3 is depth and v is

the long-term slip rate. Consider a creeping patch in the locked zone at depth x3 < H. The

strain rate imposed on the creeping patch by interseismic loading is

Γ̇ =
v

2π
H

H2 − x2
3

. (5.81)

Assuming a circular patch of radius L, the creep rate is [Eshelby, 1957]

ṡ = Γ̇
16
7π

L (5.82)

In the case of a fault slipping at the rate of 33 mm/yr with a locking depth of 15 km and a

creeping circular patch of radius L = 2 km buried at a depth of 5 km, the average creep velocity

is u̇1 = 1.1 mm/yr.



Chapter 6

Fourier-Domain Green Function for an Elastic Semi-Infinite Solid with

Gravity with Applications to Earthquake and Volcano Deformation

Sylvain Barbot and Yuri Fialko

Abstract. We present an analytic solution in the Fourier domain for an elastic

deformation in a semi-infinite solid due to an arbitrary surface traction. We generalize the so-

called Boussinesq’s and Cerruti’s problems to include a restoring buoyancy boundary condition at

the surface. Buoyancy due to a large density contrast at the Earth’s surface is an approximation

to the full effect of gravity that neglects the perturbation of the gravitational potential. Using

the perturbation method, and assuming that the effect of gravity is small compared to the

elastic deformation, we derive an approximation to the space-domain Boussinesq’s problem that

accounts for a buoyancy boundary condition at the surface. The Fourier- and space-domain

solutions are shown to be in good agreement. Numerous problems of elasto-static or quasi-static

time-dependent deformation relevant to faulting in the Earth’s lithosphere (including inelastic

deformation) can be modeled using equivalent body forces and surface traction. Solving the

governing equations with the elastic Green function in the space domain can be impractical as

the body force can be distributed over a large volume. We present a computationally efficient

method to evaluate the elastic deformation in a three-dimensional half space due to the presence

of an arbitrary distribution of internal forces and traction at the half-space surface. We first

evaluate the elastic deformation in a periodic Cartesian volume in the Fourier domain, then

use the analytic solutions to the generalized Boussinesq’s and Cerruti’s problems to satisfy the

prescribed mixed boundary condition at the surface of the half space. We show some applications

for magmatic intrusions and faulting. This approach can be used to solve elasto-static problems

involving spatially heterogeneous elastic properties (by employing a homogenization method)

and time-dependent problems such as nonlinear viscoelastic relaxation, poroelastic rebound, and

non-steady fault creep under the assumption of spatially homogeneous elastic properties.

120



121

6.1 Introduction

An instantaneous deformation field accompanying an earthquake can be well explained

assuming linear elastic deformation of the ambient rocks [Reid, 1910, Fialko et al., 2001b, Simons

et al., 2002, Fialko, 2004a]. Postseismic and interseismic phases of the earthquake cycle are also

commonly modeled using solutions for an elastic half space [Savage, 1974, McGuire and Segall,

2003, Miyazaki et al., 2003, Hsu et al., 2006, Fialko, 2006, Barbot et al., 2009a]. Elastic solu-

tions are also widely used to model volcanic unrest [e.g., Mogi, 1958, Yang et al., 1988, Fialko

et al., 2001a]. Some types of time-dependent inelastic deformation can also be simulated using

an elastostatic Green function by virtue of the Laplace transform whereby the time series of

deformation are obtained from a series of static deformation fields evaluated given the effective

elastic moduli [Rundle, 1982, Pollitz, 1997, Wang et al., 2003, 2006, Smith and Sandwell, 2004].

Recent geodetic observations suggest that the time-dependent response of the crust to stress

change is in fact non linear [Freed and Bürgmann, 2004]. If so, models used to interpret obser-

vations of postseismic deformation need to account for nonlinear rheologies of the lower crust or

upper mantle. Barbot and Fialko [submitted, 2009a] proposed a method to evaluate mechanisms

thought to be common in a postseismic relaxation (e.g., afterslip, viscoelasticity, and poroelas-

ticity), based on a fundamental solution for a body force in a homogeneous elastic half space. In

this paper we present such a solution in the Fourier domain, to allow an efficient evaluation of

the time-dependent displacement field by taking advantage of the fast Fourier transforms and the

convolution theorem. The proposed semi-analytic method involves two steps: first we evaluate a

displacement field in a full space, then apply a correction to satisfy the boundary condition (also,

see Nguyen et al. [2008]). Our model includes a mixed boundary condition with a gravitational

restoring force that results from displacements across the density contrast interface. The method

can be used to model postseismic deformation involving nonlinear rheologies [Barbot and Fialko,

submitted, 2009a], and static deformation in a heterogeneous elastic half space [Barbot et al.,

2009b].

This article is organized as follows. First, we describe a Fourier-domain analytic so-

lution to the displacement field in an elastic half space under a prescribed traction boundary

condition. The solution is obtained using the Galerkin vector potential. We consider cases of

tangential traction and normal load then describe a solution that accounts for an arbitrary spa-

tial distribution of traction in all directions. Our solution generalizes the so-called Cerruti’s and

Boussinesq’s problems to incorporate the buoyancy effect due to a density contrast at the surface.

In Section 6.3 we derive a semi-analytic Green function for the elastic half space in the Fourier

domain. Our formulation allows one to evaluate the displacement field due to an arbitrary dis-

tribution of internal forces and surface traction accounting for a buoyancy effect at the surface.

In Section 6.4, we discuss applications relevant to crustal deformation and compare calculations

using our method to known analytic solutions. In Appendix 6.6 we use a perturbation method
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Figure 6.1: Geometry and boundary condition for the deformation due to an arbitrary distribu-
tions of surface traction. The surface traction t(x) is the sum of the applied load p(x) and the
buoyancy restoring force g = ∆ρ g u3 n̂. Displacement u in the semi-infinite solid satisfies the
homogeneous Navier’s equation (6.4) with buoyancy boundary condition (6.3).

to derive an approximation to the solution to the generalized Boussinesq’s problem in the space

domain. We use this analytic solution to validate our Fourier-domain formulation. Finally, in

Appendix 6.7, we validate the results presented in Section 6.2 using an alternate derivation based

on the Boussinesq-Papkovitch potential.

6.2 Analytic solution to the traction boundary-value prob-

lem in a semi-infinite elastic solid with gravity

We wish to obtain an expression for the static deformation of a homogeneous elastic half

space Ω subject to a distribution of traction pi(x1, x2) at its surface x3 = 0. The surface ∂Ω is

associated with the normal vector ni = −δi3, where δij is the Kronecker’s delta. The vertical

displacement at the surface gives rise to a buoyancy restoring force so that the equilibrium

holds [Wolf, 1991, Johnston et al., 1998],

ti = pi + gi , (6.1)

where pi is the applied surface load,

gi = ∆ρ g u3 ni . (6.2)

is the pressure due to the assumed density contrast ∆ρ at the surface and ti = σijnj is the

resulting traction at the surface (see Fig. 6.1). In terms of stress components we obtain the



123

surface boundary condition

σ13(x1, x2) = −p1(x1, x2)

σ23(x1, x2) = −p2(x1, x2)

σ33(x1, x2) = −p3(x1, x2) + ∆ρ g u3

(6.3)

where σij is the Cauchy stress tensor [Malvern, 1969, Nemat-Nasser and Hori, 1999]. In the

homogeneous elastic half-space the conservation of linear momentum and Hooke’s law give rise

to the homogeneous Navier’s equation

(λ+ µ)uj,ij + µui,jj = 0 (6.4)

where ui is the vector-valued displacement field and λ and µ are the Lamé parameters. We look

for a displacement field that satisfies the governing equation (6.4) with boundary condition (6.1)

at the surface and vanishing displacement at infinity.

Next we introduce the Galerkin vector potential and use it to solve for two related

subproblems: the Boussinesq’s problem for the deformation due to normal loads at the surface,

and the Cerruti’s problem for the deformation due to the application of tangential traction at the

surface. We consider a generalization of the classic formulation of the Cerruti’s and Boussinesq’s

problems that includes a buoyancy restoring force at the surface. By applying the superposition

theorem, we derive a general solution for the deformation in a half-space due to the application

of some arbitrary traction at the surface.

6.2.1 The Galerkin vector potential

The Galerkin vector potential Gi [Westergaard, 1935, Mindlin, 1936b, Mindlin and

Cheng, 1950a, Steketee, 1958a] is defined by the change of variable

ui = Gi,jj − αGj,ij (6.5)

where the dimensionless constant α can be expressed in terms of Lamé’s parameters or Poisson’s

ratio

α =
λ+ µ

λ+ 2µ
=

1
2(1− ν)

(6.6)

Inserting the Galerkin potential in the homogeneous Navier’s equation (6.4) gives rise to

Gi,jjkk = 0 . (6.7)

In the absence of internal forces the three Cartesian components of Gi are biharmonic. By

applying the two-dimensional horizontal (x1, x2) Fourier transforms

f̂(k1, k2, x3) =
∫ ∞
−∞

∫ ∞
−∞

f e−i2π(k1x1+k2x2)dx1dx2

f =
∫ ∞
−∞

∫ ∞
−∞

f̂(k1, k2, x3) e−i2π(k1x1+k2x2)dk1dk2

(6.8)
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where f is a scalar field and defining the angular velocities ωi = 2π ki the biharmonic equa-

tion (6.7) simplifies to the fourth-order ordinary differential equation(
∂2

∂x2
3

− β2

)2

Gi = 0 (6.9)

where we have defined the radial angular velocity

β = (ω2
1 + ω2

2)1/2 (6.10)

A general solution for the components of the Galerkin vector is

Ĝi = (Ai +Biβx3) e−β x3 + (Ci +Diβx3) e+β x3 (6.11)

Vanishing displacements at infinity (x3 →∞) require Ci = Di = 0, so that the general solution

and its successive derivatives are,

Ĝi = (Ai +Biβ x3) e−β x3

Ĝi,3 = β (Bi −Ai −Biβ x3) e−β x3

Ĝi,33 = β2 (−2Bi +Ai +Biβ x3) e−β x3

Ĝi,333 = β3 (3Bi −Ai −Biβ x3) e−β x3

(6.12)

The components of the stress tensor are, without loss of generality,

σij = µ
[

(2α− 1)δijGk,kll

+ Gi,jkk +Gj,ikk − 2αGk,ijk
] (6.13)

The semi-analytic solution in the Fourier domain for the deformation in a half-space subject to

surface traction consists in finding the values of the Ai and the Bi from the Fourier transform of

the surface stresses, i.e., removing the six degrees of freedom in the Galerkin vector of eq. (6.12).

Such a solution might be obtained directly by inverting a 6×6 square matrix, but this approach is

not generally tractable. Instead, we solve independently the so-called Boussinesq’s and Cerruti’s

problems, corresponding to the application of normal and tangential loads, respectively, at the

surface of the half space, and obtain the full solution by linear superposition.

6.2.2 The Boussinesq’s problem with gravity

The Boussinesq’s problem consists in the application of a concentrated normal load

p = p3 e3 at the surface of the half-space. We consider an extended problem of an arbitrary dis-

tribution of normal traction with buoyancy effects. The solution to this problem in the Fourier

domain with no gravity was presented by Steketee [1958a]. Assuming that the first two com-

ponents of the Galerkin vector potential can be set to zero, G1 = G2 = 0, we obtain the shear

stress components

σ̂13 = −2µ iω1β
2 [(1− 2α)B3 + α(A3 +B3βx3)] e−βx3

σ̂23 = −2µ iω2β
2 [(1− 2α)B3 + α(A3 +B3βx3)] e−βx3

(6.14)
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A. Fourier solution to the Boussinesq’s problem

B. Comparison with analytic solution
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Figure 6.2: A) Fourier-domain solution for the Boussinesq’s problem (eq. 6.20). The map view
corresponds to displacements at a depth of 3 km. The arrows indicate the horizontal displacement;
the vertical displacement is shown by the color. Vertical displacement is taken to be positive
upward. A point-source moment m23 is applied at the surface. A) Comparison between the
analytic solution and the semi-analytic Fourier domain solution along profile A-A’. These results
correspond to a Poisson’s solid (λ = µ) without buoyancy effects at the surface (Γ = 0).
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that both vanish identically at the surface if

A3 = (2− α−1)B3 (6.15)

Combining the surface normal stress

σ̂33 = 2µαB3 β
3 (6.16)

and the vertical displacement at the surface

û3 = −β2B3 (6.17)

and using the boundary condition σ̂33 = −p̂3 + ∆ρ g û3 of eq. (6.1), one finds

B3 =
−p̂3

2µαβ2 (β + Γ)
(6.18)

where we have introduced the critical wavenumber

Γ =
∆ρ g
2µα

= (1− ν)
∆ρ g
µ

(6.19)

that represents the relative effect of gravity compared to the elastic rigidity. For a typical

density constrast at the Earth’s surface ∆ρ = 2.8 103 kg/m3 and shear modulus G = 30 GPa, the

associated critical wavelength is Γ−1 = 103 km. The solution for the displacement field for the

Boussinesq’s problem with the buoyancy effect is

û1(k1, k2, x3) = iαω1β B3

[
1− α−1 + βx3

]
e−β x3

û2(k1, k2, x3) = iαω2β B3

[
1− α−1 + βx3

]
e−β x3

û3(k1, k2, x3) = −αβ2B3

[
α−1 + β x3

]
e−β x3

(6.20)

A comparison between the Fourier domain solution (6.20) and the corresponding analytic

solution using the space-domain Green function (eq. 6.74 in Appendix 6.6) is shown in Fig. 6.2.

We compute the response of a moment load m23 applied at the surface x3 = 0 and compute the

displacements at a depth of 3 km ignoring the role of gravity (Γ = 0). The difference between

the two fields is within a few percents of the maximum value. The effect of gravity on the

displacement field (6.20) is to damp long-wavelength displacement components with the high-

pass filter 1/(1 + Γx), where x = 1/β is the two-dimensional radial wavelength. Displacement

wavelengths greater than the critical wavelength Γ−1 are strongly attenuated whereas wavelengths

much shorter than Γ−1 are little affected by the buoyancy boundary condition. An elastic Green

function in the space domain that incorporates the effect of buoyancy is developed in Appendix 6.6

and compares well with the Fourier-domain formulation. The effect of gravity on viscoelastic

relaxation following slip on a thrust fault is illustrated by Barbot and Fialko [submitted, 2009a].
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6.2.3 The Cerruti’s problem with gravity

The Cerruti’s problem corresponds to the deformation in a half-space due to the appli-

cation of some tangential forces at the surface. As there is no fundamental difference between

applying forces in the x1 or the x2 direction, we simplify the problem and solve for surface

stress in the x1 direction only. The solution corresponding to the tangential forces oriented in

the x2 direction can be obtained by rotation about the x3 axis. We therefore solve the homoge-

neous Navier’s equation (6.4) considering the following boundary conditions: a prescribed surface

stress σ13, vanishing surface stress σ23, equilibrium between the restoring buoyancy force and the

normal stress σ33 and vanishing of displacements at infinity.

We start by using only one component of the Galerkin vector potential, such that G2 =

G3 = 0. In the Fourier domain we obtain the stress components at the surface,

σ̂13 = 2µβ
[
αω2

1A1 + (β2 − αω2
1)B1

]
σ̂23 = 2µαω1ω2β[A1 −B1]

(6.21)

From the surface boundary condition σ23 = 0, we obtain

A1 = B1 (6.22)

and from the prescribed shear stress in the x1-direction we find

B1 =
−p̂1

2µβ3
(6.23)

At this point, however, we have no vertical displacement at the surface and the condition of

vanishing of normal stress at the surface is not satisfied. The Galerkin potential G1 contributes

to the surface normal stress

σ̂33 = (α− 1)
iω1 p̂1

β
(6.24)

This normal stress can be readily cancelled by application of the solution (6.20) to the Boussi-

nesq’s problem with the constant

B3 = −iω1
1− α
α

B1

β + Γ
(6.25)

The solution to the Cerruti’s problem requires two components of the Galerkin vector potential.

Using eqs. (6.22), (6.23) and (6.25) the solution displacement can be written

û1 = B1

{
− 2β2

+
ω2

1

1 + h

[
2− α−1 + αh+ (1 + αh)β x3

]}
e−β x3

û2 = ω1ω2
B1

1 + h

{
2− α−1 + αh+ (1 + αh)β x3

}
e−β x3

û3 = iω1β
B1

1 + h

{
α−1 − 1 + (1 + αh)β x3

}
e−β x3

(6.26)
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A. Fourier solution to the Cerruti’s problem

B. Comparison with analytic solution
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Figure 6.3: Benchmark of the Fourier-domain solution to the Cerruti’s problem (Eqs. (6.26)
and (6.27)). A) A point-source moment m12 is applied at the surface of the half space. The
map view corresponds to displacements at a depth of 3 km. The arrows indicate the horizontal
displacement; the vertical displacement is shown in color. Vertical displacement is taken to be
positive upward. B) Comparison between the analytic solution and the semi-analytic Fourier
domain solution for the displacement along profile B-B’. In these calculations, we use a Poisson’s
solid (λ = µ) and ignore the buoyancy effect (Γ = 0).
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where, for convenience, we have introduced the dimensionless parameter h = Γ/β. The solution

to the Boussinesq’s and Cerruti’s problems can also be obtained analytically in the Fourier domain

using the Boussinesq-Neuber-Papkovitch potential, as shown in Appendix 6.7.

In case when the tangential traction is exerted in the x2 direction, we have p = p2 ê2,

B1 = 0, B2 = −p̂2/2µβ3 and the displacement field is

û1 = ω1ω2
B2

1 + h

{
2− α−1 + αh+ (1 + αh)β x3

}
e−β x3

û2 = B2

{
− 2β2

+
ω2

2

1 + h

[
2− α−1 + αh+ (1 + αh)β x3

]}
e−β x3

û3 = iω2β
B2

1 + h

{
α−1 − 1 + (1 + αh)β x3

}
e−β x3

(6.27)

The space-domain solution for the case of a concentrated load acting normal to the

surface of a half-space [Love, 1927, Nemat-Nasser and Hori, 1999, Soutas-Little, 1999] is given

by

u1 =
1

4πµ r

[
1 +

x2
1

r2
+ (1− 2ν)

(
r

r + x3
− x2

1

(r + x3)2

)]
u2 =

x1x2

4πµ r

[
1
r2
− 1− 2ν

(r + x3)2

]
u3 =

x1

4πµ r

[
x3

r2
+

1− 2ν
r + x3

] (6.28)

where r = (x2
1+x2

2+x2
3)1/2. We note a discrepancy in sign between the solutions given by Nemat-

Nasser and Hori [1999] and Soutas-Little [1999] for the vertical component of displacement. Our

results (eq. 6.28) agree with those of Soutas-Little [1999] and Okumura [1995]. A comparison be-

tween the analytic solution (6.28) and the Fourier-domain formulation (6.26) is shown in Fig. 6.3.

We apply a moment m12 at the surface of the half space and compute the solution on a horizontal

plane at a depth of 3 km. In this calculation, the buoyancy is ignored (Γ = 0). Fig. 6.3b compares

the analytic and numerical solutions along the horizontal profile B-B’. The error is less than 1%

of the maximum value of either displacement component.

6.2.4 Arbitrary distribution of surface traction with gravity

The general solution corresponding to the application of an arbitrary traction pi at the

surface of the half space is provided by the superposition of solutions to the Boussinesq’s and

Cerruti’s problems. It makes use of the three components of the Galerkin vector potential.
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Combining results (6.20), (6.26) and (6.27) we obtain the complete displacement solution

û1 =
[
− 2B1β

2 + αω1 (B1ω1 +B2 ω2)(1 + β x3)

+ α iω1β B3(1− α−1 + βx3)
]
e−β x3

û2 =
[
− 2B2β

2 + αω2 (B1 ω1 +B2ω2)(1 + β x3)

+ α iω2β B3(1− α−1 + βx3)
]
e−β x3

û3 = αβ2
[
i (ω1B1 + ω2B2)x3

− B3

(
α−1 + β x3

) ]
e−β x3

(6.29)

where the constants Bi depend upon the applied traction

B1 =
−p̂1

2µβ3

B2 =
−p̂2

2µβ3

B3 =
−β p̂3 + i(1− α)(ω1p̂1 + ω2p̂2)

2µαβ3(β + Γ)

(6.30)

Our formulation (6.29) is a closed-form solution in the Fourier domain to the traction boundary-

value problem in a half space including a buoyancy restoring force at the surface.

6.3 A semi-analytic Green function for the elastic half space

with gravity

The elastic Green function for a semi-infinite elastic solid with a free-surface boundary

condition [Love, 1927, Mindlin, 1936a] provides the elementary solution that can be used to

evaluate the three-dimensional deformation due to a distribution of point forces. As body force

representations can be used to imitate dislocations [Burridge and Knopoff, 1964, Steketee, 1958a],

an elastic response of the crust due to slip on buried faults can be evaluated using the elastic

Green function [Okada, 1992, Meade, 2007]. Both internal forces and surface traction are required

to represent slip on a fault if the latter intersects the surface [Backus and Mulcahy, 1976a,b,

Barbot et al., 2009b]. An inhomogeneous traction boundary condition is also used in models of a

heterogeneous crust [Barbot et al., 2009b]. Finally, it can be required in models of time-dependent

poroelastic relaxation [Barbot and Fialko, submitted, 2009a].

Theoretically, the three-dimensional displacement field can be obtained with the convo-

lution between the equivalent body force and the elastic Green function [Love, 1927, Mindlin,

1936a]. However, the forcing terms might occupy a large volume and the convolution in the space

domain might not be computationally tractable. Our approach is to evaluate the elastic deforma-

tion numerically using a semi-analytic Green function in the Fourier domain [Barbot et al., 2008a,

2009a,b]. This approach takes advantage of the convolution theorem of the Fourier transform
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whereby the convolution becomes a product in the Fourier domain. The surface traction bound-

ary condition is enforced using superposition. The Fourier-domain semi-analytic Green function

satisfying arbitrary surface traction boundary conditions can be used in multiple applications

including elasto-static deformation in homogeneous and heterogeneous materials [Moulinec and

Suquet, 1998, Barbot et al., 2009b], models of fault creep [Barbot et al., 2009a] and other post-

seismic phenomena [Barbot and Fialko, submitted, 2009a].

6.3.1 A Fourier-domain elastic Green function

Our approach to evaluate the three-dimensional displacement in a half space due to

an arbitrary distribution of body forces fi subject to an inhomogeneous traction and buoyancy

boundary condition is as follows. Consider the inhomogeneous Navier’s equation

µ

(
α

1− α
uj,ij + ui,jj

)
+ fi = 0 (6.31)

subject to the surface boundary condition

σijnj = qi + ∆ρ g u3ni, x3 = 0 (6.32)

where ui is the vector-valued displacement field, σij is the Cauchy stress tensor, ni = (0, 0,−1)

is the surface normal vector and qi(x1, x2) is the prescribed load. The displacement that satisfies

eq. (6.31) and (6.32) can be decomposed into a homogeneous and a particular contribution

ui = uhi + upi (6.33)

where the displacement field uhi is a solution to the homogeneous Navier’s equation

αuhj,ij + (1− α)uhi,jj = 0 (6.34)

with inhomogeneous surface boundary conditions and the particular solution up satisfies eq. (6.31)

regardless of the surface boundary condition. The particular solution can be obtained in a

straight-forward manner in the Fourier domain. Upon Fourier transforming in the three directions

eq. (6.31) becomes algebraic

µ

(
α

1− α
kikj + klkl δij

)
ûpj =

1
4π2

f̂i (6.35)

where ki are the wavenumbers and the displacement field can be directly inverted to obtain

ûpi =
1
µ

(1− α) klkl δij − αkikj
4π2(klkl)2

f̂j (6.36)

where hats denote the Fourier transform of the corresponding variables. We note that eq. (6.36)

is ill-posed for k1 = k2 = k3 = 0. The zero wavenumber component of the Fourier solution

corresponds to a rigid-body displacement and does not involve elastic deformation. We do not
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allow for a net displacement of the half space and we simply set ûi(0, 0, 0) = 0. The particular

solution to eq. (6.31) is provided by eq. (6.36) for any distribution of internal forces.

We now seek a homogeneous solution uh such that the sum (6.33) satisfies the boundary

condition (6.32). For convenience, as eq. (6.29) is already a Fourier-domain solution, we evaluate

the surface traction and the surface vertical displacements in the Fourier domain. A displacement

field is associated with the stress

σij = µ

(
ui,j + uj,i −

1− 2α
1− α

uk,kδij

)
(6.37)

and we define the surface traction due to the homogeneous and particular displacement fields by

thi = σhijnj and tpi = σpijnj , respectively. In the Fourier domain the stress can be written

σ̂ij = µ

(
kjδil + kiδjl −

1− 2α
1− α

klδij

)
ûl (6.38)

The contributions of vertical displacement ûp3 and traction t̂pi from the particular solution at the

surface are, respectively,

ûp3(k1, k2) =
∫ ∞
−∞

ûp3(k1, k2, k3) dk3 (6.39)

and
t̂pi (k1, k2) =

µ

∫ ∞
−∞

(
kj û

p
i + kiû

p
j −

1− 2α
1− α

klû
p
l δij

)
nj dk3

(6.40)

The solution to the homogeneous Navier’s equation (6.34) was discussed in Section 6.2 and given

by eq. (6.29). By definition of eq. (6.1), the traction and the surface vertical displacement of the

homogeneous solution satisfy

thi = pi + ∆ρ g uh3ni (6.41)

where the traction pi(x1, x2) is a degree of freedom required to satisfy eq. (6.32). We use linear

superposition to cancel the contribution from the particular solution and satisfy (6.32). The

displacements in the semi-infinite solid can be evaluated for a given applied traction pi(x1, x2)

at the surface and the buoyancy boundary condition is automatically satisfied. We write

uh = uh(; pi) (6.42)

where we use the semi colon to denote the dependence of the homogeneous solution upon the

prescribed boundary condition pi at the surface. Using the decomposition of eq. (6.33) the

boundary condition (6.32) can be written

thi + tpi = qi + ∆ρ g (uh3 + up3)ni (6.43)

Using eq. (6.41) we constrain the last degree of freedom

pi = −tpi + ∆ρ g up3ni + qi (6.44)
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In the Fourier domain, the required homogeneous contribution is

ûg = ûg(;−t̂pi + ∆ρ g ûp3ni + q̂i) (6.45)

The displacement field due to a distribution of internal body forces and surface traction is ulti-

mately evaluated using the following steps. First, we apply a three-dimensional Fourier transform

to the body-force field. Second, we apply the Fourier-domain Green function of eq. (6.36). We

obtain a displacement field that satisfies periodic boundary conditions. The intermediate solution

requires a correction to satisfy the traction boundary condition. We evaluate the two-dimensional

traction field (6.44) in the Fourier domain by calculating the integrals (6.39) and (6.40) numer-

ically. We then evaluate a homogeneous solution that satisfies eq. (6.44) using the analytic

solution (6.29). Summing the two displacement fields results in a solution that satisfies the in-

homogeneous Navier’s equation (6.31) and the prescribed traction boundary condition (6.32).

Finally, we perform a three-dimensional inverse Fourier transform to obtain a displacement field

in the space domain.

6.4 Models of faulting and volcanic unrest

We test the semi-analytic Green function described in Section 6.3 against analytic solu-

tions for the three-dimensional displacements due to fault slip and magmatic intrusions. Some

benchmarks for strike-slip faults and a comparison with the numerical approach of Wang et al.

[2003] are presented in Barbot et al. [2009a]. Benchmarks for dip-slip faults in plane strain prob-

lems can be found in Barbot et al. [2009b]. We start by comparing models of deformation for a

point source using the solution of Mindlin and Cheng [1950a] for a nucleus of strain. We then

describe models including sources of finite size and compare our numerical solution for strike-slip

and dip-slip faults with the analytic solution of Okada [1992]. Our formulation allows us to rep-

resent sources of arbitrary orientation in the half-space. To illustrate this capability, we consider

a case of a buried thrust fault.

First we consider the case of a dilatation source. A point source of dilatation is an

approximation representing isometric magmatic intrusions subject to a pressure boundary con-

dition [Mogi, 1958]. The surface displacement (at x3 = 0) due to a source of dilatation at depth

y3 in a semi-infinite solid with Poisson’s ratio ν is [Mindlin and Cheng, 1950a,b]

u1 = +
1 + ν

π

x1

r3

u2 = +
1 + ν

π

x2

r3

u3 = −1 + ν

π

y3

r3

(6.46)

where r =
(
x2

1 + x2
2 + y2

3

)1/2 is the distance from the source centered at the origin and an

observation point at the surface. The dilatation source of eq. (6.46) can be represented by the
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Figure 6.4: A) Map view of surface displacement due to a dilatation source centered at y1 = y2 =
0 and buried at a depth of y3 = 0.5 km. Horizontal and vertical components of displacement are
represented by the vectors and the color, respectively. Uplift is taken to be positive. B) The
norm of the residuals between the numerical solution and the formulation of Mindlin and Cheng
[1950b] as a function of the number of nodes in the 3-D grid for a uniform isotropic sampling
of ∆xi = 0.05 km. The error is normalized by the norm of the analytic solution. The dashed
and solid-line profiles correspond to a dilatation source at depth of y3 = 0.5 and y3 = 1.0 km,
respectively. The numerical error decreases as the boundaries of the computational domain
increases and the non-desired effect of periodicity decreases.
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eigenstrain εiij = δij , a moment density mij = 3κ δij and an equivalent body force fi = −mij,j in

the notation of Barbot et al. [2009a], Barbot and Fialko [submitted, 2009a], Barbot et al. [2009b],

where κ is the bulk modulus. Our numerical solution for the surface displacement is shown in

Fig. 6.4a for a point source at depth y3 = 0.5 km. In Fig. 6.4b, we show the numerical error as

a function of the number of nodes in our three-dimensional grid. We normalize the sum of the

square of the residuals between the semi-analytic and the analytic solution (6.46) by the norm of

the analytic signal. In these calculations we assume a Poisson’s solid (λ = µ and ν = 1/4), ignore

the density contrast at the surface (Γ = 0) and use a uniform sampling size of ∆xi = 0.05 km.

A simulation using 5123 nodes takes about 30 seconds on a four-CPU shared-memory computer.

The error decays to less than 1% for large computational grids where the effect of periodicity is

smaller. Calculations with different values of Poisson’s ratio gave rise to similar residuals.

We now consider the case of finite faults. We model finite faults with a distribution of

internal forces and surface traction [Barbot et al., 2009a]. Figure 6.5a (left panel) shows the

surface displacements due to a vertical left-lateral strike-slip fault with a 1 m slip. The right

panel shows the residuals between our numerical solution and the analytic formulation of Okada

[1992]. The residuals at the tip of the fault are due to our tapering of slip at the edges of the

fault. We taper slip at the fault tips to mitigate a possible Gibbs phenomenon [Barbot et al.,

2008a]; also tapered slip distribution is more physically reasonable than constant slip [e.g., Fialko,

2004c]. Figure 6.5b shows the surface displacements associated with a vertical dip-slip fault with

a 1 m slip on a plane extending from the surface to a depth of 1 km. Models of dip-slip faults

intersecting the surface require both equivalent body forces and equivalent surface traction to

represent the slip discontinuity. The residuals with the solution of Okada [1992] are localized near

the fault and arise from the displacement discontinuity, which cannot be accurately represented

by a continuous field down to a scale of numerical discretization. For both the strike-slip and

dip-slip faults, the residuals immediately away from the fault trace fall below 5% of the expected

signal.

Finally, we use the derived semi-analytic Green function to compute the displacement

field due to a thrust fault. Fig. 6.6a shows the displacement field at the surface due to a buried

thrust fault 10 km long and 10 km wide in the down-dip direction. The top of the fault is buried at

a depth of 5 km. The residuals with the analytic solution of Okada [1992] are shown in Fig. 6.6b

(notice the change of scale). Overall, residuals are about 2% of the expected signal. The biggest

residuals are located near the top of the fault and are due to slip tapering in our models. We

investigate the effect of sampling and size of the computational domain on the accurary of the

numerical solution. Figure 6.6c shows the norm of the residuals as a function of the number of

nodes in the computational grid for two different sampling sizes. For small grids, the error is

greater for small sampling size. Figure 6.6c shows that the error corresponding to a grid with

linear dimension of 12.8 km is comparable to the error arising from using a grid with the same

linear dimension but doubled number of nodes. We conclude that a primary source of error
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in this case comes from the distance to the periodic boundary. For larger computational grids,

residuals associated with a smaller sampling become smaller, illustrating the tradeoff between the

requirement of large computational domains and small discretization. We performed additional

tests for a buried dip-slip fault, varying the dip angle from 0 to 90◦ and the fault length between

10 and 30 km, all other parameters being otherwise the same. We found similar good agreement

between numerical and analytic solutions as the example shown in Fig. 6.6.

Figures 6.4, 6.5 and 6.6 illustrate simple point- and finite sources of deformation. Com-

plex geometries can be readily accounted for in our method using a superposition of such ele-

mentary sources [Barbot et al., 2009a,b]. We conclude that the proposed Fourier-domain semi-

analytic Green function approach is sufficiently accurate and flexible to allow realistic simulations

of crustal deformation due to earthquake and volcano-related phenomena.

6.5 Conclusions

Building on the classic work of Steketee [1958a], we derived the analytic Fourier-domain

solution for displacements due to an arbitrary distribution of tangential and normal loads at

the surface of a semi-infinite solid. Our formulation generalizes the so-called Boussinesq’s and

Cerruti’s problems by accounting for the effect of buoyancy at the surface due to a large density

contrast between the lithosphere and the atmosphere. The buoyancy boundary condition is an

approximation to the full effect of gravity where self-gravitation and internal density variations

are ignored. The full Fourier-domain solution with surface buoyancy is given by eq. (6.29).

We note that the solution (6.29) can be found using the Galerkin as well as the Boussinesq-

Papkovitch-Neuber vector potentials (see Appendix 6.7). We also derived a space-domain Green

function for deformation of an elastic half space due to the application of normal loads at the

surface of the half space with a buoyancy boundary condition (see Appendix 6.6). We use a

perturbation approach, assuming that the effect of gravity is a small contribution to the elastic

deformation, to approximate a solution for the elastic Green function. The accuracy of our

solution is validated by a good agreement between the Fourier- and space-domain solutions to

the generalized Boussinesq’s problem.

Numerous problems of elastic deformation due to internal forces and surface traction

come about from static models of faulting and from time-dependent models of postseismic re-

laxation [e.g., Barbot et al., 2009b, Barbot and Fialko, submitted, 2009a]. The displacement

or velocity can theoretically be obtained by the convolution in the space domain between the

elastic Green function and the body force, however this is not always practical because the inter-

nal forces can be distributed over a larger domain and the convolution operation scales as N2,

where N is the number of nodes in the simulation. We derived an efficient way to evaluate the

three-dimensional deformation in a half space due to the presence of an arbitrary distribution

of internal forces and surface traction. Our method consists in (1) obtaining the displacement
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field in a periodic full space due to the same internal forces and (2) adding a homogeneous solu-

tion to satisfy the prescribed boundary conditions, including the buoyancy effect. The periodic

solution can be readily obtained in the Fourier domain and the auxiliary analytic homogeneous

solution is given by eq. (6.29). The two-step method is computationally efficient and easily

parallelized to deal with large computational grids. The semi-analytic solution compares well

to analytic solutions for the displacement field due to strike-slip and dip-slip faults of arbitrary

orientation and point-sources of dilatation, with a typical maximum error of 5% for the explored

range of model sizes. Our Fourier-domain solution can be efficiently used to model elasto-static

deformation [Barbot et al., 2009b], as well as quasi-static deformation such as that due to the

most common postseismic mechanisms (viscoelastic relaxation, poroelastic rebound and fault

creep). Applications of the proposed Green function to models of time-dependent postseismic

deformation are considered elsewhere [Barbot and Fialko, submitted, 2009a].
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6.6 Space-domain analytic Green function with buoyancy

boundary condition

In this appendix, we derive an analytic solution for the elastic Green function for the

case of a concentrated normal load applied at the surface of a semi-infinite elastic body. Our

solution extends the classic solution to the so-called Boussinesq problem [Love, 1927, Nemat-

Nasser and Hori, 1999] to a generalized boundary condition where surface normal displacement

is counteracted by a buoyancy force. We use the analytic solution derived in this Appendix to

validate the Fourier domain solution presented in Section 6.2. We first introduce the Boussinesq-

Papkovitch-Neuber vector potential, then use this potential to solve for the elastic Green function

with buoyancy boundary condition. Our solution (eq. 6.73) is obtained using the perturbation

method where we assume that the buoyancy effect is a small contribution to the elastic deforma-

tion.
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6.6.1 The Boussinesq-Papkovitch-Neuber potential

The Boussinesq-Papkovitch-Neuber representation [Mindlin, 1936b] can be obtained by

applying the Helmholtz decomposition to the solution to Navier’s equation (6.4) as follows

ui = φ,i + εijkAj,k with Aj,j = 0 (6.47)

where φ and Ai are scalar and vector fields, respectively, and εijk is the Levi-Civita symbol. In

the absence of body forces and taking

α =
λ+ µ

λ+ 2µ
=

1
2(1− ν)

(6.48)

the conservation of momentum gives rise to[
φ,i + (1− α)εijkAj,k

]
,jj

= 0 (6.49)

Defining the harmonic vector potential

Bi =
1

1− α
φ,i + εijkAj,k (6.50)

and its divergence

Bj,j =
1

1− α
φ,jj (6.51)

one obtains, without loss of generality,

φ =
1− α

2
(xkBk +B0) (6.52)

where we have used the vector identity (xkBk),jj = 2Bj,j and defined B0 as a harmonic scalar.

From the definition of Bi, we have

εijkAj,k = Bi −
1

1− α
φ,i (6.53)

and one obtains the following representation

ui = Bi −
α

2
[xkBk +B0],i (6.54)

This is the Papkovitch-Neuber elastic potential, which represents the solution to Navier’s equation

in the absence of body force in terms of a harmonic vector Bi and a harmonic scalar B0. Without

loss of generality, one has the following results

uj,j = (1− α)Bj,j
σij
µ

= (2α− 1)δij Bk,k +Bi,j +Bj,i

− α (xkBk +B0),ij

(6.55)

The advantage of the Papkovitch-Neuber potential is that it may allow one to attain an analytic

solution to the Navier’s equation in an easier way by manipulating harmonic vector and scalar

potentials.
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6.6.2 The Boussinesq problem with buoyancy surface boundary condi-

tion in the space domain

We look for an analytic expression for the Green function representing the displacement

field experienced in the elastic half space Ω due to the application of a unit normal concentrated

load p = δ(x) ê3 at the origin, including the effect of buoyancy at the surface. The boundary

condition at the surface ∂Ω, recast in terms of stress components, is

σ13 = 0

σ23 = 0

σ33 = −δ(x1)δ(x2) + ∆ρ g u3

(6.56)

where δ(x) is the Dirac delta function. We consider the case where the first two components of

the Papkovitch potential vanish, B1 = B2 = 0. The stress components become

σ13

µ
= (1− α)B3,1 − α (x3B3,13 +B0,13)

σ23

µ
= (1− α)B3,2 − α (x3B3,23 +B0,23)

σ33

µ
= B3,3 − α (x3B3,33 +B0,33)

(6.57)

The displacement field is

u1 = −α
2

(x3B3,1 +B0,1)

u2 = −α
2

(x3B3,2 +B0,2)

u3 =
(

1− α

2

)
B3 −

α

2
(x3B3,3 +B0,3)

(6.58)

At the surface x3 = 0, the stress components are simply

σ13

µ
= (1− α)B3,1 − αB0,13

σ23

µ
= (1− α)B3,2 − αB0,23

σ33

µ
= B3,3 − αB0,33

(6.59)

and the vertical displacement at the surface is

u3 =
(

1− α

2

)
B3 −

α

2
B0,3 (6.60)

Notice that the expressions (1 − α)B3,1 − αB0,13 and (1 − α)B3,2 − αB0,23 in eq. (6.59) are

harmonic in Ω and vanish at the surface ∂Ω due to the vanishing shear stress boundary condition

(6.56) on ∂Ω. A harmonic field that vanishes at the domain boundary is zero identically in the

whole domain and one obtains the relation

(1− α)B3 − αB0,3 = 0 in Ω. (6.61)
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Using Green’s third identity and the Betti’s method of integration [Love, 1927, Chapter 10], the

elastic response to load and gravity at the surface ∂Ω can be written

σ33

µ
− 2αΓu3 = α (B3,3 − ΓB3) = − 1

2πµ
x3

r3
(6.62)

where r = (xkxk)1/2 is the distance from the point source (see Figure 6.1) and we have used the

wavelength

Γ =
∆ρ g
2µα

(6.63)

The component B3 of the Papkovitch potential satisfies the inhomogeneous ordinary differential

equation

B3,3 − ΓB3 = − 1
2πµα

x3

r3
(6.64)

The homogeneous solution to eq. (6.64) is associated with the trivial solution (zero displacements)

of a stress-free boundary condition. Using the method of variation of parameters, the particular

solution to (6.64) is

B3 = − eΓx3

2πµα

∫ x3

0

t e−Γt dt

(ρ2 + t2)3/2
(6.65)

where

ρ =
(
x2

1 + x2
2

)1/2
(6.66)

The definite integral in eq. (6.65) does not readily yield a closed-form expression. An approx-

imation of the solution to (6.64) is attainable in various ways. One is to Taylor-expand the

denominator in the integrand in the right-hand-side of eq. (6.65) and keep only the first two

terms to obtain

B3 ' −
eΓx3

2πµα

∫ x3

0

t e−Γt dt

ρ (ρ2 + 3
2 t

2)
(6.67)

for which a solution can be expressed in a closed form. However, for the sake of interpretation,

we are looking for an expression that can be separated into two parts, one part corresponding

to the solution with no buoyancy effects (Γ = 0) and another part describing the contribution of

gravity. Assuming that Γ � 1, we use a perturbation approach [Bender and Orszag, 1978] and

write the successive approximations of B3 as follows

B
(n+1)
3,3 = − 1

2πµα
x3

r3
+ ΓB(n)

3 (6.68)

with B
(0)
3 = 0, where superscript f (n) denotes the approximation n of function f . The first

approximation is

B
(1)
3 =

1
2πµα

∫ x3

0

−t dt
(ρ2 + t2)3/2

=
1

2πµα
1
r

(6.69)

which corresponds to the well-known case where buoyancy at the surface is ignored [Love, 1927,

Mindlin, 1936a, Nemat-Nasser and Hori, 1999]. The second approximation is

B
(2)
3 =

1
2πµα

[ ∫ x3

0

−t dt
(ρ2 + t2)3/2

+ Γ
∫ x3

0

dt

(ρ2 + t2)1/2

]
=

1
2πµα

[
1
r

+ Γ ln (x3 + r)
] (6.70)
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and corresponds to our analytic approximation of the effect of gravity for the Boussinesq’s prob-

lem; thereafter we use the approximation B3 ≈ B(2)
3 . Using eq. (6.61) we define

B
(n)
0 =

1− α
α

∫ x3

0

B
(n)
3 (t) dt (6.71)

and we obtain

B
(2)
0 =

1− α
2πµα2

[
ln (x3 + r) + Γ (x3 ln (x3 + r)− r)

]
(6.72)

Finally, plugging Eqs. (6.70) and (6.72) into eq. (6.58) and using the cylindrical coordinates we

obtain the following approximation of the displacement field

ur =
ρ

4πµr

[
x3

r2
− 1− α

α

1− Γ r
x3 + r

− Γ
x3

x3 + r

]
uθ = 0

u3 =
1

4πµr

[
α−1 +

x2
3

r2
+ Γ

[
α−1 r ln(x3 + r)− x3

]] (6.73)

For comparison, the Green function for the Boussinesq problem, in the absence of gravity, can

be found, e.g., in Love [1927], Okumura [1995], Nemat-Nasser and Hori [1999] or Soutas-Little

[1999]

ur =
ρ

4πµ r

[
x3

r2
− 1− α

α

1
r + x3

]
uθ = 0

u3 =
1

4πµ r

[
α−1 +

x2
3

r2

] (6.74)

Notice that eq. (6.73) simplifies to the classic solution (6.74) when Γ = 0, as expected.

A comparison between Fourier domain solution (eq. 6.29) and corresponding analytic

solution using the space-domain Green function (eq. 6.73) is shown in Fig. 6.7. We compute the

response to a point-source moment load m23 applied at the surface x3 = 0. We take into account

a density contrast at the surface by setting Γ = 10−2 m−1. The corresponding displacement at

a horizontal plane at a depth of 3 km is shown in Fig. 6.7a. The difference between the solution

that includes a buoyancy effect and the one that ignores buoyancy is shown in Fig. 6.7b. The

contribution of buoyancy to the total displacement field is less than 10% of the total signal. The

vertical displacement contribution of buoyancy is of opposite polarity compared to the direction

of vertical displacement due to the direct effect of the applied traction. The buoyancy effect

is tempering the amplitude of vertical displacement and the opposite polarity of the gravity

contribution is an expected behavior. We evaluate the contribution of gravity using our space-

domain Green function (6.73). The residuals between the Fourier-domain and the space-domain

solutions are shown in Fig. 6.7c and a comparison between the Fourier and space-domain solutions

along profile C-C’ is shown in Fig. 6.7d. The residuals between the two fields are within a few

percents of the maximum value of the gravity contribution. Note a good agreement between the

Fourier-domain and space-domain solutions to the generalized Boussinesq’s problem.
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Figure 6.7: Benchmark of the Fourier-domain solution including a buoyancy boundary condition.
A) A moment m13 is applied at the surface of the half space. B) The full surface displacement.
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(6.73), respectively.
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Table 6.1: Commonly used two-dimensional Fourier transforms of three-dimensional functions.
We denote |k| =

(
k2

1 + k2
2

)1/2 and r =
(
x2

1 + x2
2 + x2

3

)1/2.

f(x1, x2, x3) F [f(x)] = f̂(k1, k2, x3)

1/r 1
|k| e

−2π|k| x3

ln(x3 + r) −1
2π|k|2 e

−2π|k| x3

x3 ln(x3 + r)− r 1
4π2|k|3 e

−2π|k| x3

Finally, we establish the formal relation between the perturbation solution (6.73) and

the exact Fourier-domain solution (6.20), which we repeat here for convenience

û1(k1, k2, x3) = iαω1β B3

[
1− α−1 + βx3

]
e−β x3

û2(k1, k2, x3) = iαω2β B3

[
1− α−1 + βx3

]
e−β x3

û3(k1, k2, x3) = −αβ2B3

[
α−1 + β x3

]
e−β x3 .

(6.75)

Assuming small ratios of Γ/β, corresponding to a small wavelength limit, the constant

B3 =
−p̂3

2µαβ2 (β + Γ)
(6.76)

can be expanded in a Taylor series. Keeping the first two terms of the Taylor expansion we find

B3 =
−p̂3

2µαβ3
− Γ

−p̂3

2µαβ4
+O

(
Γ2

β2

)
(6.77)

Setting p3 = δ(x1)δ(x2), or simply p̂3 = 1, the first term corresponds to the classic Boussinesq’s

solution (6.74) and the second term gives rise to the perturbation contribution found in eq. (6.73).

To illustrate this statement, we consider the vertical component of displacement. Using the

expansion (6.77) the vertical component of displacement in the Fourier domain becomes

û3 =
1

2µβ
[
α−1 + βx3

]
e−β x3

− Γ
1

2µβ2

[
α−1 + βx3

]
e−β x3

(6.78)

Upon inverse Fourier transforming with the pairs recalled in Table 6.6.2, we directly confirm that

u3 =
1

4πµ r

[
α−1 +

x2
3

r2

]
+ Γ

1
4πµ

[
α−1 ln(x3 + r)− x3

r

] (6.79)

is the perturbation solution (eq. 6.73). Equivalence between the remaining components of dis-

placement can be demonstrated in a similar way.
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6.7 Static deformation in a half-space due to surface trac-

tion using the Boussinesq-Papkovitch-Neuber poten-

tial

In this appendix we present an alternative derivation of the Fourier domain solution for

the so-called Boussinesq and Cerruti’s problems. In Section 6.2 we used the Galerkin vector

potential to derive the solution to the generalized problem of applied surface traction including

the effect of a buoyancy restoring force at the surface of a semi-infinite elastic solid. Here, we

use the Boussinesq-Papkovitch-Neuber potential to derive the Fourier-domain solution to the

Boussinesq and Cerruti’s problems, ignoring the effect of gravity. We use this derivation to

validate results of Section 6.2 in the special case where gravity is neglected (setting Γ = 0). We

first derive the solution to the Boussinesq’s problem and then to the Cerruti’s problem.

6.7.1 The Boussinesq’s problem

The Boussinesq’s problem can be solved semi-analytically in the Fourier domain by

making use of the Papkovitch-Neuber representation and Fourier transforming (6.54) in the

horizontal direction. Using the Fourier transforms pair defined in (6.8), the transformed gradient

operator becomes ∇̂ = (iω1, iω2,
∂
∂x3

). In Cartesian coordinates, each component of the vector

potential is harmonic and it is sufficient to set B = B3 ê3. Hence, we have ∇2B3 = ∇2B0 = 0

and
B̂3(k1, k2, x3) = β b3 e

−β x3

B̂0(k1, k2, x3) = b0 e
−β x3

(6.80)

where we have used

β = 2π
(
k2

1 + k2
2

)1/2
. (6.81)

We have discarded the positive exponentials to ensure a bounded solution in the far field. Before

satisfying the surface boundary condition, we obtain the surface displacements

û1 = −α iπk1 (b0 + βb3x3) e−β x3

û2 = −α iπk2 (b0 + βb3x3) e−β x3

û3 = +β
[
b3 +

α

2
(b0 − b3 + b3βx3)

]
e−β x3

(6.82)

At the surface, x3 = 0, we have the shear stresses

σ̂13 = µ i2πk1 β [α b0 + (1− α)b3]

σ̂23 = µ i2πk2 β [α b0 + (1− α)b3]
(6.83)

so the condition of vanishing of the shear stress at the surface is satisfied for

b0 = (1− α−1)b3 (6.84)
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Respectively we obtain the displacement field

û1 = −iπk1b3(α− 1 + αβ x3) e−β x3

û2 = −iπk2b3(α− 1 + αβ x3) e−β x3

û2 = +
1
2
β b3(1 + αβ x3) e−β x3

(6.85)

The surface normal stress, in the Fourier domain, is

σ̂33 = −µαβ2b3 (6.86)

so the Boussinesq problem is solved for

b3 = − p3

µαβ2
(6.87)

where p3 is the prescribed surface normal traction. Result (6.85) is the same as the one of

eq. (6.20) obtained using the Galerkin biharmonic vector potential.

6.7.2 The Cerruti’s problem

We start be considering the form of the solution corresponding to setting B2 = B3 = 0.

The remaining non-zero harmonic scalars are thus

B̂0 = b0 e
−β x3 ,

B̂1 = βb1 e
−β x3 .

(6.88)

Making use of the Fourier transform identity,

F [x f(x)] =
i

2π
f̂ ′(k) , (6.89)

where the prime means differentiation with respect to the relevant wavenumber, we obtain the

displacements

û1 =
[(
β +

α

2
ω2

1

β
[1− β x3]

)
b1 −

α

2
iω1b0

]
e−β x3

û2 = −α
2
iω2

[
i
ω1

β
(1− β x3)b1 + b0

]
e−β x3

û3 = −α
2

[
iω1(−2 + β x3)b1 − β b0

]
e−β x3

(6.90)

Using Hooke’s law for a homogeneous solid, we obtain the surface shear stresses

σ̂13 = µ
[
iω1αβb0 − (β2 + 2ω2

1α)b1
]

σ̂23 = µ iω1α(b0β + i2ω1b1)
(6.91)

The vanishing condition for σ23 at the surface gives

b0 = −2ω1

β
b1 (6.92)
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and the prescribed surface stress p1(k1, k2) gives

b1 = − p1

β2
(6.93)

The remaining normal stress,

σ̂33 = −(1− α)iω1βb1 = (1− α)
iω1p1

β
, (6.94)

is removed by applying the Boussinesq’s solution (eq. 6.85) with the constant

b3 =
1− α
α

iω1p1

µβ3
(6.95)

The solution to Cerruti’s problem, arising from the application of the Papkovitch-Neuber repre-

sentation, is then

û1 =
[
b1
β

(
β2 − α

2
ω2

1(1 + β x3)
)

− 1
2
iω1b3(α− 1 + αβ x3)

]
e−β x3

û2 =
[
− αb1

2β
ω1ω2(1 + β x3)

− 1
2
iω2b3(α− 1 + αβ x3)

]
e−β x3

û3 =
αβ

2

[
− iω1b1 + b3(α−1 + β x3)

]
e−β x3

(6.96)

Formulation (6.96) is equivalent to eq. (6.26) obtained with the Galerkin vector potential.



Chapter 7

Towards a Unified Representation of Postseismic Mechanisms:

Semi-Analytic Models of Fault Creep, Poroelastic Rebound and

Power-Law Flow

Sylvain Barbot and Yuri Fialko

Abstract. We present a unified continuum mechanics representation of the mech-

anisms believed to be commonly involved in postseismic transients such as viscoelasticity, fault

creep and poroelasticity. The time-dependent relaxation that follows an earthquake, or any other

static stress perturbation, is considered in a framework of a generalized viscoelastoplastic rhe-

ology whereby some inelastic strain relaxes a physical quantity in the material. The relaxed

quantity is the deviatoric stress in case of viscoelastic relaxation, the Coulomb stress in case of

creep on a fault plane and the trace of the stress tensor in case of poroelastic rebound. In this

framework, the instantaneous velocity field satisfies the linear inhomogeneous Navier’s equation

with sources parameterized as equivalent body forces and surface traction. We evaluate the ve-

locity field using the gravitational elastostatic Green function in the Fourier domain [Barbot and

Fialko, submitted, 2009b] and integrate the governing equations in the time domain using a pre-

dictor/corrector method. The accuracy of the proposed method is demonstrated by comparisons

with finite element simulations of viscoelastic relaxation following strike-slip and dip-slip ruptures

for linear and power-law rheologies. We also present comparisons with analytic solutions for af-

terslip driven by coseismic stress changes. Finally, we demonstrate that the proposed method

can be used to model time-dependent poroelastic rebound by adopting a viscoelastic rheology

with bulk viscosity and work hardening. The proposed method allows one to model postseismic

transients that involve multiple mechanisms (afterslip, poroelastic rebound, ductile flow) with an

account for the effects of gravity, non-linear rheologies and arbitrary spatial variations in inelastic

properties of rocks (e.g., the effective viscosity, rate-and-state frictional parameters, poroelastic

properties).

149
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7.1 Introduction

Interpretations of the geodetic, seismologic, and geologic observations of deformation

due to active faults require models that take into account complex fault geometries, spatially

variable mechanical properties of the Earth’s crust and upper mantle, evolution of damage and

friction, and rheology of rocks below the brittle-ductile transition [Tse and Rice, 1986, Scholz,

1988, 1998]. Studies of postseismic relaxation typically rely on models of fault afterslip [e.g.,

Perfettini and Avouac, 2004, 2007, Johnson et al., 2006, Freed et al., 2006, Hsu et al., 2006,

Barbot et al., 2009a, Ergintav et al., 2009], viscoelastic relaxation [Pollitz et al., 2000, Freed and

Bürgmann, 2004, Barbot et al., 2008b] and poroelastic rebound [Peltzer et al., 1998, Masterlark

and Wang, 2002, Fialko, 2004b] to explain the observations. Existing semi-analytic models of

time-dependent three-dimensional (3-D) viscoelastic deformation [Rundle, 1982, Pollitz, 1997,

Smith and Sandwell, 2004, Johnson et al., 2009] are limited to linear constitutive laws. Fully

numerical (e.g., finite element) methods may be sufficiently versatile to incorporate the essential

physics of a ductile response [Freed and Bürgmann, 2004, Parsons, 2005, Freed, 2007, Pearse and

Fialko, 2008], but often require elaborate and time-consuming discretization of a computational

domain, especially for non-planar and branching faults, and assignment of spatially variable

material properties to different parts of a computational mesh. Another challenge consists in si-

multaneous modeling of several (possibly interacting) mechanisms [Masterlark and Wang, 2002,

Fialko, 2004b, Johnson et al., 2009]. For example, geodetic data from the 1992 Landers, CA earth-

quake were used to demonstrate the occurrence of a poroelastic rebound, a power-law viscoelastic

flow in the upper mantle and afterslip on the down-dip extension of the main rupture [Peltzer

et al., 1998, Freed and Bürgmann, 2004, Fialko, 2004b, Perfettini and Avouac, 2007]. Data from

the 2002 Denali earthquake were also argued to be compatible with the occurrence of these three

main mechanisms [e.g., Freed et al., 2006].

In this paper we introduce a computationally efficient 3-D semi-analytic technique that

obviates the need for custom-built meshes but is sufficiently general to handle complex fault ge-

ometries and nonlinear rheologies. We develop a unified representation of the main mechanisms

thought to participate in postseismic relaxation (see Figure 7.1). The model employs a general-

ized viscoelastic rheology that is compatible with linear and power-law viscous flow, poroelastic

rebound and fault creep (afterslip). This framework allows one to construct fully coupled models

that account for more than one mechanism of relaxation. Each mechanism contributes to some

inelastic strain to relax a certain quantity in the viscoelastic body. The relaxed quantity is the

deviatoric stress in case of viscoelastic relaxation, the Coulomb stress in case of fault creep and

the trace of the stress tensor in the case of poroelastic rebound. The method is fast and easily

parallelized to deal with large computational domains. For each above-mentioned mechanism,

we present benchmarks and comparisons with analytic, semi-analytic or finite-element solutions.

This article is organized as follows. First we describe a general solution method to evalu-
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Figure 7.1: Sketch of inelastic properties of the lithosphere responsible for postseismic transients.
Postseismic deformation may be due to a combination of poroelastic response, fault creep and
viscous shear. The shear flow in the mantle and lower crust might be governed by a power-law
viscosity for high stress and by a Newtonian viscosity at lower stress. Afterslip on fault roots is
governed by a velocity-strengthening friction law. Poroelastic rebound can occur throughout the
crust but likely decreases with increasing depth.

ate time series of viscoelastic relaxation. The approach is compatible with any nonlinear rheology

provided the infinitesimal-strain approximation is applicable. We then consider the particular

cases of three dominant mechanisms of postseismic relaxation. In Section 7.3 we consider vis-

coelastic deformation: We show some example calculations and benchmarks for Newtonian and

power-law flow following strike-slip and dip-slip earthquakes, including the effects of gravity. In

Section 7.4 we describe a viscoelastic rheology for fault creep with rate-strengthening friction. We

benchmark our numerical solution against the analytic solution for a point source. In Section 7.5

and Appendix 7.7.1 we introduce the viscoelastic rheology equivalent to poroelasticity.

7.2 A general viscoelastic model

Our method of evaluating three-dimensional (3-D) time-dependent deformation due to

earthquakes is based on a continuum representation of fault slip, viscous flow and change in pore

fluid content. In this section, we describe the coupled equations that govern the postseismic

deformation regardless of a particular relaxation mechanism and present a semi-analytic solution

method to evaluate the time series of relaxation. The proposed approach can accommodate

different types of relaxation mechanisms and various degrees of strain localization in a medium.

In a generalized viscoelastic body Ω, with elastic compliance tensorDijkl, the total strain-

rate tensor ε̇ij may be presented as the sum of elastic (reversible) and inelastic contributions

ε̇ij = ε̇eij + ε̇iij (7.1)
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where the dots represent time differentiation. In case of linear elasticity, the elastic strain-rate

tensor can be written

ε̇eij = Dijkl σ̇kl (7.2)

where σij is the Cauchy stress [Malvern, 1969]. The plastic strain rate εiij , also referred to as

eigenstrain rate, represents a relaxation process such as viscous flow, fault creep or poroelastic

compaction. Any such source of time-dependent inelastic deformation contributes to a forcing

term in strain space

ε̇iij = γ̇ Rij (7.3)

where γ is the amplitude of inelastic strain and Rij is a unitary and symmetric tensor representing

the local direction of the inelastic strain-rate. The irreversible strain rate obeys a constitutive

relationship or evolution law of the form

γ̇ = f(σij , γ) (7.4)

where σij is the instantaneous Cauchy stress and γ is the cumulative amplitude of inelastic strain.

The presence of parameter γ in the evolution law (7.4) represents the effects of work hardening

(or softening). A particular form of operator f , which defines the material rheology, depends

upon the relaxation mechanism. When no work hardening takes place the rheology γ̇ = f(σij)

is an algebraic equation. If the instantaneous inelastic strain rate depends on the history of

deformation, then the rheology γ̇ = f(σij , γ) is a differential equation coupled to the equation

for stress evolution. Poroelasticity, viscoelastic relaxation and fault creep can all be written in

this general form.

Assuming infinitesimal strain, combining eq. (7.1), (7.2), and (7.3) and integrating, we

obtain the general hereditary equation for stress evolution

σij(t) = Cijklεkl(t)−
∫ t

0

γ̇(t′)CijklRkl(t′) dt′ (7.5)

where t′ is a dummy variable of the time integration and Cijkl is the elastic moduli tensor, such as

CijmnDklmn = (δikδjl + δilδjk) /2 [Nemat-Nasser and Hori, 1999]. One interpretation of eq. (7.5)

is that in a viscoelastic material the stress is reduced by a history of inelastic relaxation. Notice

that eq. (7.5) reduces to Hooke’s law if no inelastic deformation occurs. The total strain εij can

simply be evaluated from the current displacement field

εij(t) =
1
2

(δikδjl + δilδjk) uk,l

=
1
2

(ui,j + uj,i) ,

(7.6)

where the latter depends on a history of deformation,

ui(t) = ui(0) +
∫ t

0

vi(τ) dτ . (7.7)
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Similarly the rate of change of stress, σ̇ij = Cijklε̇
e
kl can be written using eq. (7.1)

σ̇ij = Cijkl
(
ε̇kl − ε̇ikl

)
(7.8)

The inelastic contribution to the stress rate can be thought of as the instantaneous power density

applied to body Ω by all internal processes, and as a forcing term in tensor space

ṁij = Cijkl ε̇
i
kl . (7.9)

A time series of deformation at any point in Ω can be evaluated given a specific rheology

(eq. 7.4). At all times, a displacement field must satisfy the condition of a vanishing surface

traction ∫
∂Ω

σij(t) n̂j dA = 0 (7.10)

The criterion (7.10) is satisfied by enforcing simultaneously a free surface boundary condition

σ̇ij n̂j = 0 and the conservation of the rate of momentum σ̇ij,j = 0. Using (7.8) and (7.9) the

free-surface boundary condition becomes

ṫi = Cijkl ε̇kl n̂j = ṁij n̂j (7.11)

where n̂i is the normal vector at the surface ∂Ω. Eq. (7.11) indicates that a postseismic relaxation

process contributes to some equivalent rate of surface traction ṫi if the corresponding eigenstrain-

rate ε̇iij is non-zero at the surface ∂Ω. Without loss of generality, the conservation of rate of

momentum can be written

(Cijkl ε̇kl),j + ḟi = 0 (7.12)

which corresponds to the inhomogeneous Navier’s equation in case of a homogeneous isotropic

elastic solid and where we have defined the equivalent body-force rate

ḟi = −ṁij,j (7.13)

The mechanisms driving a post earthquake transient can be equivalently represented by the

eigenstrain-rate (eq. 7.3), the power density (eq. 7.9) and the distribution of equivalent body

force and surface traction rate (eqs. 7.13 and 7.11, respectively). One important aspect of the

proposed generalized viscoelastic representation of postseismic mechanisms is that regardless of

a particular form of the constitutive relation, including nonlinear rheologies, the instantaneous

velocity field is a solution to a linear partial differential equation. The velocity field satisfies the

inhomogeneous Navier’s equation (7.12) with the inhomogeneous boundary condition (7.11) and

the methods used to solve elasto-static problems can be also applied to nonlinear time-dependent

deformation.

The instantaneous velocity field vi can in general be obtained using the elastic Green

function
vi(xi) =

∫
Ω

Gij(xi, yi) ḟj(yi) dV

+
∫
∂Ω

Gij(xi, yi) ṫj(yi) dA
(7.14)
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Interestingly, the details of the geometry and the elastic structure of the viscoelastic body are

all captured by the specific form of the elastic Green function Gij . The Green function for a

semi-infinite solid is given, e.g., by Love [1927] and Nemat-Nasser and Hori [1999]. The Green

function accounting for the effects of gravity is given by, e.g., Pollitz [1997] for a layered spherical

body and by Wang et al. [2003] for a layered half space. Because the equivalent body forces can

be distributed over a large volume the convolution (7.14) can be computationally expensive. This

difficulty is alleviated by using a Fourier-domain elastic Green function [Barbot et al., 2009a,b]. In

this paper we describe a general method for simulation of time-dependent postseismic deformation

that employs the Fourier-domain elastic Green function of Barbot and Fialko [submitted, 2009b].

The Green function of Barbot and Fialko [submitted, 2009b] correspond to a semi-infinite elastic

medium with uniform elastic properties, uniform density and a gravitational restoring force at

the surface of the half space. The practical efficiency of the proposed procedure is made possible

by the fast Fourier-domain Green function described in the companion paper [Barbot and Fialko,

submitted, 2009b], but is in general compatible with any third-party Green function.

A time series of transient deformation following a stress perturbation can be obtained as

follows. From a given level of stress at time t, we evaluate the eigenstrain rate due to a particular

mechanism with eq. (7.3). We evaluate the corresponding power density (7.9) and compute

the associated distribution of surface traction and internal forces with eq. (7.11) and (7.13)

respectively. We then solve eq. (7.12) for a velocity field. We obtain the new displacement,

stress, and cumulative strain fields for time t + dt by integrating the corresponding quantities

in the time domain using an explicit method with a predictor/corrector scheme [Abramowitz

and Stegun, 1972]. In particular, the stress-tensor field at t + dt is obtained from eq. (7.5). We

repeat these steps until the simulation of the viscoelastic relaxation over a specified time interval

is complete.

The method is sufficiently general to deal with most mechanisms believed to be rel-

evant to postseismic deformation such as Newtonian and non-Newtonian viscous flow, rate-

strengthening fault creep and poroelasticity. One important advantage of the proposed method

is an ability to handle arbitrary spatial variations in inelastic properties. Variations in inelastic

properties are accounted for by changing the spatial distribution of the corresponding equivalent

internal forces and surface traction. A current limitation is the assumption of uniform elastic

properties. Note that variations in elastic properties (e.g., the Lamé parameters λ and G) may

be readily accounted for if the respective elastic Green function is known.

7.3 Nonlinear viscoelastic flow

The lower-crust and upper-mantle rocks exhibit a ductile behavior [Nur and Mavko,

1974, Weertman and Weertman, 1975, Brace and Kohlstedt, 1980, Karato and Wu, 1993, Sav-

age, 2000] that is often invoked to explain large-wavelength post-earthquake deformation tran-
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sients [Reilinger, 1986, Pollitz et al., 2000, Johnson et al., 2009]. Geodetic [Freed and Bürgmann,

2004] and laboratory [Karato et al., 1986, Kirby and Kronenberg, 1987, Kohlstedt et al., 1995]

observations indicate a stress-dependent mantle viscosity, and suggest that a power-law rheology

of the form

ε̇iij = γ̇0

( τ
G

)n−1 1
G
σ′ij (7.15)

may be applicable to the lower crust and upper mantle, where 1 ≤ n < 5 is a power exponent, G

is the shear modulus,

σ′ij = σij − δij
σkk
3

(7.16)

is the deviatoric stress tensor and

τ =
(

1
2
σ′klσ

′
kl

)1/2

(7.17)

is the norm of the deviatoric stress. The strain-rate direction is purely deviatoric

Rij =
σ′ij
τ

(7.18)

and the amplitude of strain rate is

γ̇ = γ̇0

( τ
G

)n
(7.19)

where γ̇0 is a reference strain rate. Power-law creep is a thermally activated process [Karato,

2008] and γ̇0 is assumed to increase as a function of depth (Figure 7.1). For a power exponent

greater than unity the effective viscosity

η =
1
γ̇0
Gn τ1−n (7.20)

is lower at the initial stage of a transient deformation when stress is higher. The ductile flow is

not limited by a yield surface and for a constant stress condition the effective viscosity η increases

exponentially with decreasing temperature [e.g., Karato, 2008]. A time scale of the postseismic

transient due to viscoelastic relaxation

tm =
η

G
=

1
γ̇0

(
G

τ

)n−1

(7.21)

is stress dependent and is shorter near the onset than at the later stages of the transient. Some

ductile flow is thought to occur below the seismogenic zone (at depths greater than 15 to 50 km).

The confinement of the flow below an essentially elastic plate obviates any equivalent surface

traction (ṫi = 0) and the deformation can be represented by a distribution of internal forces only.

7.3.1 Numerical examples and benchmarks

We test our formulation of the power-law viscoelastic relaxation by considering stress

perturbations due to strike-slip and dip-slip faults. In these test models, the fault slip occurs in

an elastic plate that rests on a power-law viscoelastic half space. Here, we ignore the effects of
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gravity (but see Barbot and Fialko [submitted, 2009b]). We compare the predictions of post-

seismic displacement from our semi-analytic method with those computed using a finite-element

approach. We use the software Abaqus to perform the finite-element calculations.

We start with the case of a strike-slip fault in an elastic brittle layer. We assume uniform

and isotropic elastic properties of a Poisson’s solid (the Lamé parameters λ = G and Poisson’s

ratio ν = 1/4). The brittle-ductile transition is assumed at a depth of 30 km. Below 30 km, we

assume a power-law rheology with a power exponent n = 3.5 (see eq. 7.15). The fault slips 1 m

uniformly from the surface to a depth of 10 km and is 40 km long. We perform a simulation of

the viscoelastic postseismic relaxation using our generalized viscoelastic formulation. We perform

the computation on a 5123 grid with a uniform sampling of ∆xi = 0.8 km. We use an explicit

method to integrate velocity and stress. We choose the adaptive time step corresponding to a

tenth of the characteristic time of eq. (7.21) and march forward in time using a second-order

accurate predictor/corrector method. A snapshot of the post-earthquake surface displacement at

the early stage of the transient is shown in Fig. 7.2a. For the respective finite-element calculation

we use a 628332-node mesh with a sampling size ranging from 0.8 km near the fault to 11.5 km

in the far field. We pin the boundary of the mesh 300 km away from the fault center. A map

view of the surface residuals between the simulations using our formulation and the ones using

the finite element method is shown in the right panel of Fig. 7.2a. The maximum discrepancy

between the two solutions is less than 10%. The simulated time series of surface displacement

at the “observation” points numbered from 1 to 9 are shown in Fig. 7.2b. We choose to non-

dimensionalize time using the reference time

tm =
1
γ̇0

( s
L

)1−n
(7.22)

where γ̇0 and n are the reference strain rate and power exponent of the power law, respectively,

and s/L is the strain drop on the fault. We use s = 1 m and L = 10 km. The time series exhibit

the typical higher velocities near the onset of the postseismic transient with rapidly decaying

velocities at later times. There is an excellent agreement between results obtained from the finite

element calculations and from our method. A distinct behavior of the power-law relaxation is

a change in polarity of vertical displacements at the surface of the half space. The change in

polarity can be seen in the time series of vertical displacement of far-field point number 9 in

Fig. 7.2b.

We perform a similar simulation using a Newtonian viscosity, i.e. with n = 1 in eq. (7.15),

all other parameters being the same. A snapshot of the surface displacement due to the viscoelas-

tic relaxation is shown in the left panel of Fig. 7.3a, corresponding to a time t = 2 tm after the

coseismic stress perturbation. The residuals with the finite-element forward model at this time is

shown in the left panel of Fig. 7.3a. There is an excellent agreement between the finite-element

and the semi-analytic results: The maximum residuals are less than 5 per cent of the expected

signal. In Fig. 7.3b we compare the simulated time series of viscoelastic relaxation at points num-
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bered from 1 to 12 in Fig. 7.3a. The distribution of observation points covers the near- and far

fields of the fault. The finite-element and Fourier time-series differ less than 5 per cent through-

out a time interval spanning 12 characteristic relaxation times. The non-Newtonian and linear

viscosity models converge to the same fully relaxed solution. Before the relaxation is complete,

the postseismic displacements due to a linear and a power-law rheology have the same polarity

in the near field. In the far field, however, the power-law relaxation due to slip of a vertical

strike-slip fault has an opposite polarity compared to the Maxwell rheology. Our simulations

indicate that the far-field postseismic displacements due to a power-law mantle flow (with n > 1)

change polarity early in the postseismic transient.

We proceed with the evaluation of postseismic relaxation due to dip-slip faulting. For

simplicity, we consider the case of a vertical dip-slip fault with the same geometry as in the

strike-slip models. Although the geometry is similar, changes in the slip rake lead to very differ-

ent stress changes in the lithosphere. We consider first the case of a nonlinear viscoelastic upper

mantle governed by the power-law rheology of eq. (7.15) with n = 2. A snapshot of the surface

displacement early in the postseismic transient is shown in Figure 7.4a. The vertical postseis-

mic displacement has the same polarity as the coseismic displacement. Horizontal postseismic

displacements, however, are opposite to the coseismic ones. We performed the same simulation

using Abaqus and the residuals are shown in the right panel of Figure 7.4a. The time series of

surface displacements at points numbered from 1 to 8 in the maps are shown in Figure 7.4b.

There is an excellent agreement between the semi-analytic and the finite-element results. The

time series reveal two striking features. First, the initial postseismic velocities are much higher

than at later times, as most visible for points 1 and 2. Second, a change in polarity occurs at

far-field locations. This change is most conspicuous for point 6 in the East-West direction. A

subtle change of polarity can be misleadingly interpreted as a delayed postseismic transient (e.g.,

the see vertical displacement of point 8).

Finally, we consider the case of a dip-slip fault in an elastic plate over a Maxwellian

viscoelastic half space. The geometry of the fault and the brittle-ductile transition is the same as

in previous models. The prediction from our semi-analytic model and the residuals with finite-

element calculations at postseismic time t = tm/2 are shown in Figure 7.5a. The time series of

postseismic displacements at surface positions in the near and far field are shown in Figure 7.5b.

There is an excellent agreement between the semi-analytic and the fully numerical solutions. No-

tice a change of polarity of far-field points 8 and 12. The overall patterns of surface displacement

due to Newtonian and power-law viscosity are similar, in contrast to the case of a strike-slip fault.

An overall agreement between the finite-element and the semi-analytic calculations suggests that

our formulation is robust and can be used to model postseismic deformation due to nonlinear

viscoelasticity.
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7.3.2 Effect of gravity

We include gravity in our model as the former affects surface deformation in case of vis-

coelastic relaxation. The principal effect of gravity is to reduce the amplitude of large-wavelength

vertical deformation at late stages of viscoelastic relaxation [Pollitz et al., 2000, Freed et al., 2007].

To validate our approach, we reproduce the viscoelastic relaxation benchmarks of [Rundle, 1982,

Figures 6 and 7] and [Pollitz, 1997, Figure 3]. The model includes a thrust fault in an elastic

plate overlying a Newtonian viscoelastic half space with uniform elastic properties. Poisson’s

ratio ν = 1/4 is constant in the entire half space. The brittle-ductile transition occurs at depth

H. We assume a uniform density ρ = 3300kg/m3 in the half space. The models of Rundle [1982]

and Pollitz [1997] differs slightly in that they have an additional small density contrast at the

brittle-ductle transition. The fault dips 30◦, is 20H/3 long in the strike direction and H wide in

the dip direction and U is the amplitude of slip. The magnitude of the gravitational restoring
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force is controlled by the wavenumber [Barbot and Fialko, submitted, 2009b]

Γ = (1− ν)
∆ρg
G

(7.23)

where ∆ρ is the density contrast at the surface (i.e., between rock and air) and g is the acceleration

of gravity. The critical wavenumber (7.23) is associated with the dimensionless number ΓH =

2.475 10−2. Figure 7.6a shows the simulated across-fault profiles of co- and postseismic vertical

displacements corresponding to the case of no gravity. The postseismic vertical displacement

after 45 relaxation times, close to the full relaxation, has higher amplitude and larger wavelength

than the vertical displacement after 5 relaxation times. Notice a few areas, for example between

x2 = −4H and x2 = −2H, that exhibit a change of polarity in the course of the postseismic

transient. Such a change of polarity is an expected feature of the postseismic transient following

a thrust fault, as shown Rundle [1982] and Pollitz [1997]. Our results indicate that it is also

characteristic in the case of dip-slip faults, in general, for both linear and power-law rheologies

(see Figures 7.4 and 7.5). The corresponding simulations which include the effect of gravity

are shown in Figure 7.6b. The early postseismic displacement profile after 5 relaxation times

is less affected by the gravitational restoring force. At later times, close to full relaxation, the

vertical displacement is reduced by about a factor of two compared to the non-gravitational

solution. The effect of buoyancy is more pronounced at later times of the postseismic transient

when surface displacements have a larger wavelength. Results in Figure 7.6 compare well to

the simulations of Rundle [1982] and Pollitz [1997] despite our neglect of a density contrast

at the brittle-ductile transition. The deep density contrast has a much smaller effect on the

patterns of surface displacements due to the smaller density contrast and the smaller wavelength

of deformation at the brittle-ductile transition (due to proximity to the fault). Our calculations

confirm the conclusions of Rundle [1982] and Pollitz [1997] regarding the importance of gravity

for postseismic displacements during late stages of viscoelastic relaxation.

7.4 Fault creep

Fault creep, or stable sliding on a fault plane, is thought to be an important component

of the earthquake cycle [e.g., Tse and Rice, 1986]. Afterslip has been widely documented following

large earthquakes in various tectonic environments including subduction zones [Hsu et al., 2006]

and transform faults [Bürgmann et al., 2002, Freed et al., 2006, Johnson et al., 2006, Barbot

et al., 2009a]. Recent studies show that afterslip can be the dominant mechanism responsible for

the postseismic transient [Freed, 2007, Barbot et al., 2008b] but it can also occur in combination

with other mechanisms [Fialko, 2004a, Freed et al., 2006, Johnson et al., 2009]. Laboratory

experiments and modeling of geodetic data indicate that afterslip may be governed by the rate-

and state-dependent friction [Marone et al., 1991, Marone, 1998, Kohlstedt et al., 1995, Perfettini

and Avouac, 2007, Barbot et al., 2009a]. In this section, we describe a continuum representation
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of rate-strengthening fault creep. We use the formulation of Barbot et al. [2009a] that generalizes

the classic rate-and-state friction [Dieterich, 1979, 1992] to allow for vanishing slip rates [Rice

et al., 2001].

Fault creep can be viewed as a localized visco-elastoplastic deformation. The onset of

sliding, or fault failure, is defined by the Coulomb yield stress [Byerlee, 1978],

τc = τ − µσ (7.24)

where τ is the amplitude of shear traction in the direction of sliding, σ is the effective normal stress

(positive for compression) accounting for the pore pressure contribution and µ is the coefficient of

friction. A fault remains locked for strictly negative Coulomb stress τc < 0. In this case continued

loading causes deformation off of the fault [Heap et al., 2009]. When shear stress is high enough,

τc = 0, the fault fails and the subsequent slip evolution is described by a rate-strenghtening

friction rheology. Assuming small Coulomb stress before a stress perturbation, an assumption

discussed in detail in [Barbot et al., 2009a], the slip rate is controlled by the local stress drop ∆τ

according to the constitutive law

ṡ = 2 ṡ0 sinh
∆τ
a σ

(7.25)

where ṡ0 is a reference slip rate controlling the time scale of slip transients and a σ is a parameter

constraining the effective stress and the degree of nonlinearity in the afterslip evolution. Formu-

lation (7.25) ignores the effect of a state variable evolution. Notice that ṡ is always positive, as

eq. (7.25) describes the slip rate and not the slip direction.

In order to simulate fault creep in three dimensions, one needs to describe the geometry

of the slip system. The change of traction ti resolved on a fault surface S can be decomposed

into normal and shear components,

ti = σij n̂j = tkn̂k n̂i + ∆τi (7.26)

where n̂i is the unit vector normal to the fault surface and ∆τi is the shear component of the

traction exerted on the fault such that

∆τ = (∆τk ∆τk)1/2 (7.27)

Noting the Burger vector of the dislocation si = s ŝi, we assume that the slip-rate vector is

colinear with the direction of shear traction evaluated on the fault patch,

ṡi = ṡ∆τ̂i (7.28)

and the instantaneous inelastic strain-rate direction is [e.g., Nemat-Nasser, 2004, Karato, 2008]

Rij =
1
2

(∆τ̂in̂j + n̂i∆τ̂j) (7.29)

In the continuum representation of fault creep, the slip rate ṡ is associated with the inelastic

strain rate

γ̇ = ṡ HS(xi) (7.30)
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numerical model and by the analytic solution to a spring-slider model are compared for various
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where HS , in dimensions of length−1, is unity or zero according to whether its argument is or

is not a point of the fault surface S. Fault representation using generalized functions is further

discussed by Backus and Mulcahy [1976b] and Barbot et al. [2009a]. In this formulation the

rake of afterslip is governed by the local stress direction and slip is constrained to occur on a

predefined fault plane described by its position and orientation n̂i. Using eqs. (7.29) and (7.30)

the inelastic strain rate due to fault creep can be written ε̇iij = γ̇ Rij , mathematically analogous

to other deformation mechanisms, so that our solution method described in Section 7.2 also

applies in case of afterslip.

7.4.1 Analytic benchmark

The response of a rate-strengthening point-source fault patch to a stress perturbation is

described by Barbot et al. [2009a]. The slip impulse response to a stress drop ∆τ0 is,

s(t) =
∆τ0
G∗

(
1− 2

k
coth−1

(
et/t0 coth

k

2

))
, (7.31)

where G∗ is the effective stiffness of the fault patch, the time scale of slip evolution is

t0 =
1

2 ṡ0

a σ

G∗
, (7.32)

and the degree of nonlinearity of slip evolution is controlled by the dimensionless ratio

k =
∆τ0
a σ

. (7.33)

We compare the predictions of afterslip for a point source using our generalized viscoelastic

representation and the analytic solution (7.31). We consider the case of an elementary dislocation
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subjected to a stress drop ∆τ0. We simulate the response of fault patches with frictional properties

varying from a σ = ∆τ0/7 to a σ = ∆τ0. Figure 7.7 shows a comparison between the numerical

and analytic solutions. The numerical profiles represent postseismic displacements at the surface

scaled by their maximum amplitude. We perform this comparison to remove a potential numerical

bias due to the Fourier-domain elastic Green function. Note an excellent agreement between

analytic and numerical solutions for a wide range of stress perturbations (Figure 7.7).

7.5 Poroelastic rebound

The Earth’s crust is a heterogeneous material that is composed of solid and fluid phases

(e.g., porous rocks and pore fluids). The occurrence of a large earthquake alters the pore pressure

in the crust. The induced stress change can create significant pore pressure gradients that

may be relaxed by the movement of fluids if the host rocks are sufficiently permeable. The

coupling between the pore-fluid diffusion and the effective stress introduces a time dependence

into the response of the solid matrix [Biot, 1941, Rice and Cleary, 1976, Rudnicki, 1985, Wang,

2000, Coussy, 2004]. Fluids are usually assumed to be pervasive in the Earth’s crust, so the

poroelastic rebound is a likely physical mechanism contributing to the postseismic deformation.

Peltzer et al. [1998] and Fialko [2004b] suggested that pore pressure readjustment could explain

surface deformation following the 1992 Mw 7.3 Landers earthquake and Jonsson et al. [2003]

documented fluid pressure changes associated with postseismic deformation due to the 2000

south Iceland earthquakes. Models of poroelastic rebound are usually limited to simulations

of surface displacements at drained condition [e.g., Fialko, 2004b, Barbot et al., 2008b], which

corresponds to a full relaxation. In this section we demonstrate an equivalence between the

equations of poroelasticity and the generalized viscoelasticity. This will allow us to evaluate the

time-dependent poroelastic rebound using the framework developed in Section 7.2.

Using a formal decomposition of the strain rate tensor (eq. 7.1), we postulate that the

inelastic strain involved in a poroelastic rebound is purely isotropic,

ε̇iij = γ̇
1
3
δij , (7.34)

i.e., the direction of relaxation in strain space is constant (cf. eq. 7.4)

Rij =
1
3
δij (7.35)

The poroelastic rebound thus can be viewed as an example of bulk viscosity. The amplitude of

inelastic strain γ corresponds to the effective change in fluid content in the representative volume

element (see eq. 7.55 in Appendix 7.7). In case of isotropic elastic properties, the amplitude of

inelastic strain γ obeys the diffusive evolution law

γ̇ = D

[
(1− β) γ − β σ

κu

]
,jj

(7.36)
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where κu is the undrained bulk modulus, D is the diffusivity in units of length2×time−1, 0 ≤ β ≤
1 is a non-dimensional parameter indicating the degree of coupling between the porous matrix

and the pore space and

σ =
σkk
3

(7.37)

is the isotropic stress, positive for extension. The total macroscopic stress change σ is a forcing

term resulting from the coupling between matrix strain and fluid pressure. Equation (7.36) is

associated with the surface boundary condition

γ =
β

1− β
σ

κu
, at x3 = 0, t > 0 (7.38)

Notice that eq. (7.36) is of the form γ̇ = f(σij , γ), the general evolution law of a viscoelastic

process. In its simplest, isotropic form, the poroelastic deformation requires only two additional

parameters, compared to linear elasticity, to describe the postseismic time-dependent deforma-

tion. The first parameter β is a non-dimensional coupling coefficient indicating what portion of

the initial isotropic stress will eventually be relaxed. The second parameter is the diffusivity D

which controls the timescale of the relaxation. Appendix 7.7 gives relations between β, D and

other commonly used poroelastic parameters.

As fluid flow can take place in the entire crust, including near the surface, the equivalent-

body-force representation of the poroelastic rebound seeks a proper distribution of internal forces

and surface traction per unit time. The power density, using eqs. (7.9) and (7.34), becomes

ṁij = κu γ̇ δij , (7.39)

and we obtain the corresponding internal torque distribution per unit time

ḟi = −κu γ̇,i , (7.40)

associated with the surface-traction rate

ṫi = −κu γ̇ δi3 , at x3 = 0 . (7.41)

The instantaneous solid matrix velocity field can be obtained using eq. (7.14) with the forcing

terms and traction boundary condition of eqs. (7.40) and (7.41), respectively.

7.5.1 Methods and benchmarks

One complication of poroelastic models compared to treatment of power-law viscoelas-

ticity, for example, is the evaluation of the evolution law. The presence of a Laplacian operator

in the evolution law (7.36) makes an effective viscosity wavelength dependent. One simple way to

evaluate the rate of fluid content is to use a finite-difference approximation. The finite difference

method allows one to tackle heterogeneous properties and in particular to account for vertical

variations in fluid diffusivity D and matrix/pore coupling β. One important limitation, however,



168

−3.0

−1.5

0

1.5

3.0

−3.0 −1.5 0.0 1.5 3.0
−3.0

−1.5

0

1.5

3.0

−3.0 −1.5 0 1.5 3.0

−3.0

−1.5

0

1.5

3.0

−3.0 −1.5 0 1.5 3.0
−3.0

−1.5

0

1.5

3.0

−3.0 −1.5 0 1.5 3.0

A. Strike-slip fault surface displacement and full poroelastic rebound (drained - undrained solutions)

B. Residuals with finite-difference and Fourier time-integration methods at full relaxation (drained condition)

x 1
 (

km
)

x 1
 (

km
)

x2 (km)

x2 (km)

0.5 m

−0.05 0 0.05 m

10 mm

−5 0 5 mm

x 1
 (

km
)

x2 (km)

x 1
 (

km
)

x2 (km)

30 mm

−15 0 15 mm

10 mm
Fourier
method

with adaptive
time-step

Finite-difference
method

−5 0 5 mm

Figure 7.8: Benchmark for time series of surface displacement due to a stress perturbation in
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the surrounding rocks. A fraction β of the pressure change is relaxed by pore-fluid diffusion. The
coseismic surface displacement due to the fault slip is shown in A (left panel). B) Comparison
between fully time-dependent calculations and the analytic solution for the case of full relaxation
(drained condition).
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is the conditional stability of the finite difference integration method. The maximum time step

of numerical integration is [Press et al., 1992]

∆tmax =
∆x2

2 D̃
(7.42)

where ∆x is the grid sampling size and the product D̃ = (1−β)D is taken to be the largest value

in the computational domain. As the characteristic length scale of a problem is often a multiple

of the sampling size, the finite-difference method often requires 50 to 100 computational steps

to simulate a time interval of one characteristic relaxation-time. The full poroelastic rebound

is approached after several characteristic times so the finite-difference method amounts to a

significant computational burden. Another approach to evaluate the rate of fluid content γ̇ at

a time tn is to perform the time integration in the Fourier domain. After Fourier transforming

eq. (7.36) and assuming that the forcing term σ(h) is in fact constant over a small time interval

[tn, tn + h], an approximation of the rate of fluid content is

˙̂γ(tn + h) = −D̃ω2e−D̃ω
2h

[
γ̂(tn)− β

1− β
σ̂(tn)
κu

]
(7.43)

where ω = 2π(k2
1 +k2

2 +k2
3)1/2 is the radial wavenumber and the hats denote the Fourier transform

of the corresponding variables. If the assumption of a constant forcing term is satisfied then

eq. (7.43) is an exact solution to the fluid diffusion partial differential equation (7.36). Our

quadrature method of the diffusion equation coupled to the Navier’s equation is as follows: For

a given time step ∆t, we evaluate analytically the fluid velocity at time tn + ∆t/2 in the Fourier

domain using eq. (7.43). We then integrate the change in fluid content using leapfrog in the space

domain

γ(tn + ∆t) = γ(tn) + γ̇(tn + ∆t/2) ∆t (7.44)

Naturally, the fluid velocity is also used to evaluate the coupled elastic deformation. The Fourier

method of integration is unconditionally stable and small steps are required for accuracy only

to update the forcing term. We use adaptive time steps to optimize a tradeoff between ac-

curacy and duration of the simulations: the initial time increment is a fraction of ∆tmax and

every subsequent increments are increased by 5 per cent of the previous value. We also use a

corrector-predictor approach to march forward in time. One possible disadvantage of using the

proposed Fourier/leapfrog integration method is the constraint of uniform poroelastic properties.

A Fourier integration method of the diffusion equation compatible with vertical variations in

poroelastic properties is possible, for example using the exponential time integration method [Cox

and Matthews, 2002], but it is not considered in this paper.

We test our viscoelastic formulation of the poroelastic equations with a simulation of

the time-dependent poroelastic rebound following a strike-slip event. We first evaluate the full

rebound using the difference between drained and undrained conditions. We then simulate the

complete time series of a poroelastic rebound and compare the fully-relaxed numerical solution
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(gray profile) integration schemes. The k = −1 and k = −2 slopes indicate the expected error
reduction of second and third-order integration methods, respectively. The span of possible time
steps is limited for the finite difference method due to a conditional stability condition.

to the static “drained-undrained” solution. The stress perturbation that is relaxed by poroelastic

bulk viscosity in the crust is due to a strike-slip fault with a uniform slip of 1 m that extends

from the surface to a depth of 1 km. We choose a Lamé parameter λu = 1.5G, where G is

the shear modulus, and the coupling coefficient β = 0.3. The corresponding drained parameter

is λd = 0.85G. We choose the diffusivity D = 10−2 m2/s. The characteristic length scale

is the depth of the fault W = 1 km which is associated with the diffusion time scale tm =

W 2/2D = 1.6 yr. Our simulation spans a time interval of 17 tm, presumably enough to reach

full relaxation. Figure 7.8a (left panel) shows the initial displacement field at the surface due

to the right-lateral strike-slip fault. The corresponding postseismic displacement after complete

pore pressure readjustment is shown in the right panel of Figure 7.8a. We run two simulations;

a first using the finite difference method with a constant time step of ∆t = ∆tmax/5 and another

using the “Fourier-leapfrog” method with adaptive time steps. The residuals between the finite-

difference and “drained-undrained” solutions at full rebound is shown in Fig. 7.8b (left panel).

The residuals are characterized by long wavelengths which illustrates the well-known difficulty

of resolving long wavelengths with a finite difference scheme for parabolic equations [Press et al.,

1992]. The residuals associated with the Fourier-leapfrog method are shown in right panel of

Fig. 7.8b and correspond to the last of the 130 steps required to reach full rebound. The long

wavelength displacement is much better resolved.

Finally, we assess the accuracy of our proposed methods of time integration. Figure 7.9

shows the efficiency diagram for the Fourier/leapfrog and the finite difference methods. We

compute the L2 norm of the error taken at time t = 10 tmax for various constant time-step
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sizes. The error is the norm of the difference between a given solution and a reference one

which was obtained with an extremely small time step. Figure 7.9 shows a cumulative error that

reduces approximatively quadratically with the step size for both methods. This large accuracy

improvement with step size reduction indicates that the Fourier/leapfrog and the finite difference

methods, when associated with a predictor-corrector approach, is third-order convergent. For a

given reduced time step, the Fourier/leapfrog solutions are always about an order of magnitude

more accurate than the finite difference counter part. The efficiency diagram 7.9 shows a range

of possible time steps for the Fourier/leapfrog method covering about three orders of magnitude.

The better accuracy of the Fourier/leapfrog method of integration along with the possibility of

including adaptive time steps and a predictor/corrector scheme makes it much preferable over

the finite-difference method in problems for which both schemes are applicable.

7.6 Conclusions

We introduced a unified representation of the main mechanisms believed to be involved

in postseismic transients. We showed that fault creep, pore fluid diffusion and viscous flow can all

be formalized within a framework of a generalized viscoelastic rheology whereby some inelastic

strain relaxes a physical quantity in the lithosphere. Afterslip relaxes the Coulomb stress on a

fault plane while viscoelastic flow acts to reduce the deviatoric stress in the substrate below the

brittle-ductile transition. A poroelastic rebound is governed by a bulk viscous rheology with work

hardening and its effect is to reduce the pressure in the solid. The proposed unified representation

allows us to employ the same solution method to model postseismic relaxation involving such

diverse mechanisms, including nonlinear rheologies and coupling between different mechanisms.

Our approach to model postseismic relaxation is to identify the power density that

represents the effect of all driving mechanisms. The power density is associated with a distribution

of internal forces and surface traction and the instantaneous velocity field is solution to the

inhomogeneous Navier’s equation. The technique can handle nonlinear rheologies because in this

framework the instantaneous velocity satisfies a linear partial differential equation and all the

strategies to solve elastostatic problems are directly applicable. We solve for a velocity field semi-

analytically using the Fourier-domain Green function described in the companion paper [Barbot

and Fialko, submitted, 2009b]. In general other Green functions (e.g., derived for different

boundary conditions, geometry or material elastic properties) can be used in conjunction with

our method. The Green function of Barbot and Fialko [submitted, 2009b] corresponds to a

uniform elastic half space with a buoyancy boundary condition at the surface.

We applied the method to model nonlinear viscoelastic relaxation, stress-driven afterslip,

and poroelastic rebound. We compared our simulations to results of finite element calculations

for the cases of a Newtonian viscosity and a power-law rheology (with a stress power exponent of

n = 3.5 and n = 2 for strike-slip and dip-slip faults, respectively). For all scenarios considered we
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find an excellent agreement between our semi-analytic solutions and the fully numerical results.

We show that if the ductile flow is governed by a power-law rheology the transient deformation

exhibits higher rates of deformation near the onset of the postseismic period. The onset of the

power-law viscoelastic relaxation following slip on a strike-slip fault is also characterized by a

change of polarity of vertical displacements in the far field. The effect of gravity can be substan-

tial at late stages of viscoelastic relaxation because of large wavelength vertical displacements.

We also showed a good agreement between our semi-analytic models of stress-driven fault creep

and analytic solutions. Finally, we described the effect of pore fluid diffusion in a representative

volume element in terms of an effective bulk viscous rheology whereby pressure is relaxed by

changes in volumetric inelastic strain. We showed the equivalence between our bulk viscosity

formulation and the classic theory of poroelasticity. In the bulk viscosity formulation of poroe-

lasticity the inelastic strain corresponds to an effective change in pore fluid content and obeys

an inhomogeneous parabolic differential equation. We propose two solution methods to evaluate

the instantaneous strain rate due to pore pressure diffusion. We successfully benchmarked our

time-dependent simulations of poroelastic rebound against fully-relaxed solutions.

Our unified representation of postseismic mechanisms allows the simulation of sophis-

ticated models of postseismic relaxation that incorporate realistic aspects of faulting including

complex fault geometry, localization of deformation, gravitational effects and realistic variations

of inelastic properties. Our semi-analytic approach simplifies the treatment of nonlinear rheolo-

gies such as power-law creep and rate-strengthening friction and enables the joint occurrence of

multiple mechanisms in a self-consistent manner.
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7.7 Continuum Theory of Poroelastic Compaction

In this appendix, we show that the poroelastic rebound problem, which consists in de-

scribing the pore fluid diffusion and the coupled elastic deformation following an initial stress or

strain perturbation, can be written as a generalized viscoelastic relaxation whereby some inelas-

tic strain accumulates to relax a physical quantity in the material. In a poroelastic composite,

the relaxed quantity is the isotropic stress as opposed to, for example, the deviatoric stress in

a Newtonian viscoelastic body. In this framework, poroelasticity is an example of macroscopic
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bulk viscosity. The appendix is organized as follows. First, we present the basic equations of lin-

ear poroelasticity [Bredehoeft, 1967, Rice and Cleary, 1976, Rudnicki, 1985, Kumpel, 1991] and

how they come about from constitutive relations and conservation laws. Next, we show that the

constitutive and governing equations of poroelasticity can be written using two end-member rep-

resentations. The classic formulation uses the pore pressure as dynamic variable and the elastic

moduli for drained condition as model parameters. Our alternate approach uses the perturbation

of fluid density in the pore volume as dynamic variable and the elastic moduli for the undrained

condition to parameterize the pore fluid flow and the associated elastic deformation. The latter

approach is convenient to model initial-condition problems where the pore fluid flow is driven by

a sudden stress perturbation of the ambient crust. The proposed formulation is compatible with

a general viscoelastic behavior of the crust and allows the modeling of the complete time series

of a poroelastic rebound.

7.7.1 The Classic Theory of Poroelasticity

The coupled partial differential equations governing the diffusion of pore pressure and

the solid matrix compaction can be obtained from two constitutive relations and two conservation

laws. The constitutive equations are the stress-strain relationship, an equivalent to Hooke’s law

augmented with an additional dynamic variable, and the linearized equation of state for the fluid

density. The conservation laws are the conservation of mass for the fluid and the conservation of

momentum for the solid-fluid composite. In the sequel we will adopt the nomenclature of Kumpel

[1991] and Wang [2000].

In a poroelastic composite, a linearized equation of state relates the relative change in

fluid content [Wang, 2000]

ζ =
mf −mf0

ρ0
, (7.45)

where mf −mf0 denotes the increment of fluid mass per unit rock volume and ρ0 is a reference

density of the pore fluid, to the given pore pressure and confining stress as follows [Biot, 1941,

Rice and Cleary, 1976, Kumpel, 1991]

ζ =
α

κd

(
p/B +

σkk
3

)
(7.46)

where B is the Skempton coefficient, κd is the bulk modulus of the composite for drained condition

and α is the dimensionless coefficient of effective stress. The pore pressure p is positive for

compression and the confining stress in the solid matrix σ = σkk/3 is positive for extension.

The stress-strain relation for the composite material is described by the generalized Hooke’s law

which is extended for poroelastic composite materials

σij = 2G
νd

1− 2νd
εkkδij + 2Gεij − αp δij (7.47)

where G is the shear modulus, νd is the Poisson’s ratio for drained condition and the εij =

(ui,j + uj,i)/2 are the macroscopic strain components. In particular, summing diagonal terms in
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eq. (7.47), one has

σ = κdεkk − αp (7.48)

For vanishing pore pressure (p = 0), one obtains a form of Hooke’s law where the drained elastic

moduli appear as model parameters.

The fluid diffusion law is obtained from the conservation of mass, ṁf + ρ0 qk,k = 0, with

a Darcy flow law qi = −x p,i for the flux qi, giving rise to

∂

∂t

(
mf −mf0

ρ0

)
= x p,kk (7.49)

where x is the Darcy conductivity in units of length3 × time×mass−1. The Darcy conductivity,

also referred to as the mobility, is the ratio of the rock permeability to the fluid viscosity x = k/µf .

(The permeability has the units k ∼ length2 and the pore fluid viscosity µf ∼ mass× length−1×
time−1.) Some more complicated expressions of the pore fluid flow can include the effect of water

head [e.g., Bredehoeft, 1967] and/or anisotropic diffusivity [Singh et al., 2007]. Combination of

constitutive relations (7.46) and (7.47) with the flow law (7.49) together with the conservation

of momentum equation σij,j = 0 gives rise to a set of coupled governing equations that describes

the evolution of the macroscopic displacement ui and the pore pressure p of an isotropic and

homogeneous porous medium. The coupled governing equations are [e.g., Kumpel, 1991]

G

(
1

1− 2νd
uk,ki + ui,kk

)
= αp,i (7.50)

Q−1ṗ = x p,kk − α u̇k,k (7.51)

where Q−1 is a compressibility. The parabolic equation (7.51) is subjected to the surface bound-

ary condition p = 0 at the surface of the half space. Parameters α and Q−1 can be expressed in

terms of the Poisson’s ratio for undrained conditions νu and the Skempton ratio B as follows

α =
3(νu − νd)

(1− 2νd)(1 + νu)B
(7.52)

and

Q−1 =
3
2

1− 2νu
1 + vu

α

GB
=

α

κuB
(7.53)

The pore pressure p appears as a forcing term in the Navier’s equation (7.50) and the matrix

compaction uk,k is a forcing term of the diffusion equation (7.51), giving rise to a fully coupled

system.

7.7.2 A bulk-viscosity formulation for poroelasticity

In this section, we draw a parallel between the classic poroelastic theory and the vis-

coelastic formalism presented in Section 7.5 of this article. We show that the classic constitutive

and governing equations of poroelasticity can be written using the effective change in fluid den-

sity in the pore volume and the elastic moduli for undrained condition to parameterize the pore
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fluid flow and the associated elastic deformation. Our proposed formulation can be viewed as a

macroscopic formulation, where only two additional parameters -a coupling coefficient β and a

diffusivity D-, compared to linear elasticity, are required to describe the time-dependent defor-

mation. We show how these parameters relate to the microscopic properties of the fluid-solid

composite.

First, in order to simplify the poroelastic equations, we define the effective coupling

coefficient

β = B α (7.54)

We choose for dynamic variable the effective change of pore fluid density

γ = B
mf −mf0

ρ0
(7.55)

By definition, the inelastic deformation γ is identically zero in undrained condition. The linearized

equation of state for the pore fluid can now be written

γ =
β

κd

(
p/B +

σkk
3

)
(7.56)

Using eq. (7.54) and the stress-strain relation (7.47) for the composite material we have in the

isotropic direction
σkk
3

= κdεkk − β p/B (7.57)

Combining eqs. (7.54), (7.56) and Biot’s stress-strain eq. (7.48) we obtain an alternate isotropic

strain-rate relation invoking our chosen dynamic variable

σkk
3

=
Kd

1− β
(εkk − γ) (7.58)

Setting γ = 0, there follows a relationship between drained and undrained moduli

κu =
1

1− β
κd

λu =
2G
3

1
1− β

(
β +

3νd
1− 2νd

)
νu =

3νd + β(1− 2νd)
3− β(1− 2νd)

(7.59)

where κu, λu and νu, respectively, are the bulk modulus, the Lamé parameter and the Poisson’s

ratio, respectively, for undrained condition. Reciprocally, given undrained elastic moduli and an

effective coupling coefficient, one has

λd = (1− β)λu − β
2G
3

νd =
β(1 + νu)− 3νu
2β(1 + νu)− 3

(7.60)

Second and third formulas in eq. (7.59) and eq. (7.60) are simply derived from the first one using

well-know relations between isotropic elastic moduli [e.g., Malvern, 1969]. The isotropic stress in
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the solid matrix can be written
σkk
3

= Ku (εkk − γ) (7.61)

which is the counterpart of eq. (7.57) which uses the effective pore pressure instead of fluid

content as dynamic variable. Alternatively, the coupling coefficient β can be retrieved from

inferred values of drained and undrained moduli

β = 1− Kd

Ku
= 3

νu − νd
(1− 2νd)(1 + νu)

(7.62)

where the effective bulk modulus in undrained (initial) condition Ku is greater than in drained

condition, at full relaxation (Ku ≥ Kd). Similarly, drained and undrained conditions are associ-

ated with effective drained νd and undrained νu Poisson’s ratios, respectively, with νu ≥ νd.
Combining eqs. (7.56) and (7.61) we obtain an expression for the pore pressure in terms

of strain in the solid matrix and strain in the pore fluid

αp = κu (γ − βεkk) (7.63)

Substituting eq. (7.63) into eq. (7.47) we obtain the generalized stress-strain relation [see also

Segall, 1985]

σij = λuεkkδij + 2Gεij − κuγ δij (7.64)

where the effective stress in the poroelastic composite is parameterized with the fluid strain γ

instead of Biot’s formulation with the pore pressure. Notice that eq. (7.64) can be written

σij = Cijkl

(
εkl −

1
3
γ δkl

)
(7.65)

with the isotropic elastic stiffness tensor

Cijkl = λu δijδkl +G (δijδkl + δikδjl) (7.66)

which corresponds to our formulation for stress in a viscoelastic material with bulk viscosity and

whereby the εkl are the components of the total strain, the inelastic strain is εikl = γ δkl/3 and

the isotropic elastic tensor Cijkl is for undrained condition. Combining eqs. (7.49), (7.61) and

(7.63) the Darcy’s equation for fluid diffusion becomes

γ̇ = D

[
(1− β) γ − β σ

κu

]
,jj

(7.67)

and the boundary condition p = 0 at the surface of the half space becomes

γ =
β

1− β
σ

κu
, x3 = 0, t > 0 (7.68)

The diffusivity D, in units of length2 × time−1, a combination of the microscopic parameters, is

given by

D = κu
B x
α

= M x (7.69)
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where M is Biot’s modulus, the reciprocal of a storage coefficient [Detournay and Cheng, 1993,

Wang, 2000]. The parabolic equation (7.67) is compatible with the general form of a viscoelastic

constitutive relation with work-hardening γ̇ = f(σij , γ). Poroelasticity is therefore an example

of bulk viscosity and in this framework the coupling parameter β can be thought of as a work-

hardening parameter.

Finally, using conservation of momentum with formulation (7.64) one obtains the coupled

governing equations

G

(
1

1− 2νu
uk,ki + ui,kk

)
= κuγ,i

γ̇ = D

[
(1− β) γ − β σ

κu

]
,jj

(7.70)

where only two additional model parameters are required to describe a poroelastic rebound

compared to linear elasticity. Formulations (7.50), (7.51) and (7.70) of the governing equations

of poroelasticity are equivalent. Coupled eqs. (7.50) and (7.51) make use of the pore pressure

p and the drained elastic moduli to parameterize the time-dependent deformation, as suggested

by Biot [1941], whereas eq. (7.70) uses the effective fluid density change γ and the undrained

elastic moduli. Similarly, Segall [1985, 1989] made use of the pore-fluid mass as dynamic variable,

but neglected the coupling between confining stress and fluid diffusion. His approximation of the

poroelastic equations is more similar to the thermoelastic theory where heat generated by the

solid strain is also neglected.

We have written a viscoelastic formulation of the linear poroelasticity theory. We have

shown that poroelastic rebound is the time-dependent response of an isotropic viscoelastic ma-

terial with work hardening that can be described with two inelastic parameters. One corrolary

is that models of a poroelastic rebound from geodetic measurements can at best constrain two

macroscopic parameters (for example, our proposed parameters D and β). Inferences on micro-

scopic parameters α, B and x can only be attained with additional in situ measurements.



Appendix A

Numerical models of static deformation: the semi-infinite solid

elasto-static Green function

Program STATICU computes the static elastic deformation due to the presence of dislo-

cations in a semi-infinite solid with isotropic and homogeneous elastic properties and a free-surface

boundary condition. The current Fortran 90 implementation uses the homogeneous elastic Green

function for a half space. The Green function is performed semi-analytically in the Fourier do-

main, as described in Chapter 6.

A.1 Model input

The computation is performed in a Cartesian grid (see Figure A.1). The grid is defined

by the number of nodes in the three directions, sx1, sx2 and sx3, respectively. The code is

designed to deal with dimensions that are only powers of two: 128, 256 or 512, for example. The

spatial extent of the grid depends on the sampling intervals, ∆x1, ∆x2 and ∆x3, in the x1, x2

and x3 directions, respectively. The horizontal extent of the computational grid is ∆x1× sx1 and

∆x2 × sx2, in the x1 and x2 directions, respectively. In the depth direction, the computational

domain extends from −∆x3 × sx3/2 to ∆x3 × (sx3 − 1)/2, but the half space extends from 0 to

∆x3 × (sx3 − 1)/2, with x3 positive down. To ensure accurate models, the rule of thumb is to

have the domain at least twenty times the characteristic dimension of the source, or, to have any

edge of the computational grid about ten fault lengths away from a fault tip. Another constraint,

to ensure good sampling, is to allow for at least five samples per fault. These two constraints

can be satisfied simultaneously by maximizing the number of nodes, at the expense of computer

memory. The Green function depends on the Lamé parameters λ and G. The value of the shear

modulus has no influence on the computed results and only the value of Poisson’s ratio ν should

be considered. To avoid numerical overflow, the shear modulus should be kept small (G = 1 is

fine).

The program STATICU computes the static deformation due to slip on faults. Internally,

the program uses superposition to evaluate a distribution of internal forces and surface traction

that represents the slip model. The final deformation is evaluated by the convolution between

the internal forces with the elastic Green function. The number of slip patches has little influence
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Figure A.1: The discretized half space. The origin of the reference system is at the center of
the surface. The modeled half space dimension is −∆x1 × sx1/2 to ∆x1 × (sx1 − 1)/2 in the x1

direction, −∆x2 × sx2/2 to ∆x2 × (sx3 − 1)/2 in the x2 direction and 0 to ∆x3 × (sx3 − 1)/2 in
the x3 (depth) direction.

on the time of computation. Every slip patch is described by a geologic representation, as shown

in Figure A.2. A fault segment is modeled by its length in the along-strike direction, its width in

the down-dip direction, the position of the top tip (xs, ys, and zs) and its strike and dip angles.

By convention, an observer located at the top fault tip and oriented in the strike direction would

face the fault trace and would have the fault dipping to his right for a dip angle between 0◦ and

90◦. All quantities, without exceptions, should be given in consistent S.I. units, with lengths, slip

and positions in meters (m) and with Lamé parameters in pascals (Pa). The unit of simulated

displacements corresponds to the unit used for slip. The spatial dimension unit corresponds to

the one used for lengths and positions. A slip model consists in an arbitrary number of slip

patches. The slip distribution is smoothed to avoid stress singularities. The smoothing conserves

the seismic moment. The amplitude of smoothing is controlled by a roll-off parameter going from

β = 0 for no smoothing to β = 0.5 for strong smoothing. A value of β = 0.2 ensures stability of

the computation.

Program STATICU automatically computes the deformation everywhere in the half

space. The output can be i) a series of observation points, defined by their name (a 4-character

string) and their position in the half space, ii) a horizontal-plane view of the displacement. The

displacement on a horizontal plane is sampled at a prescribed depth; iii) the displacement in the

entire half space for three-dimensional visualization (see Figure A.3). In the latter case, the grid

is subsampled. Every output file is written in a subdirectory defined at execution time. A basic

input of program STATICU is provided from the standard input or is read from a separate file

and may be as follows

# grid size
512 512 512
# sampling and smoothing
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Figure A.2: Geologic model of slip on a fault. The fault is described by the position of its top
tip, its length in the along-strike direction, width in the down-dip direction, its strike angle and
its dip angle. The rake indicates the orientation of slip.

0.05 0.05 0.05 0.2
# origin shift and rotation
0 0 0
# observation depth
0
# output directory
./output1
# elastic moduli
1.0 1.0
# observation points
0
# screw/edge dislocations
1
# no slip x1 x2 x3 length width strike dip rake

1 1.0 -0.5 -0.0 0.5 1.0 1.0 0 45 90
# open cracks
0

The ’#’ character can be used to comment out instruction lines from the standard input. Export

of sample points and map view displacement is always provided. The choice of exporting the

entire grid in the VTK format for three-dimensional visualization is only provided at compilation

time. Similarly, the format of the map-view export is specified at compilation time. Available

formats are ASCII and binary form. The binary form is compatible with visualization in GMT,

the general mapping tool application. Figure A.4 shows an example of visualizing the horizontal

plane view output using the GMT program. The origin position in the input file can be used to

center the computation grid at a specific position on the horizontal plane.
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Figure A.3: Example of three-dimensional output from the program STATICU. The slip model
and the associated displacement field corresponding to the 1992 Landers, CA earthquake is
automatically exported in the VTK format. Here the data is visualized with the free software
Paraview.

A.2 Fortran implementation

The STATICU main program uses Fortran 90 modules to perform functional operations.

The entire program requires four modules. The corresponding Fortran 90 source files are:

elastic3d.f90 for stress/strain conversions, tensor operators, body-force representation of faults,

coordinates manipulation and structure definition

export.f90 includes routines to sample and export data in text, binary GRD and VTK formats.

fourier.f90 for 1-D, 2-D and 3-D Fourier transforms, wavenumber calculations. This module

contains interfaces to use the Cooley-Tukey FFT of Brenner (1968), the FFTW and the

intel FFTs.

green.f90 for the evaluation of the elastic Green function and boundary-value problems.

The main program performs a series of actions. First the data is read from the standard input or

a specified input file. Then the required memory is allocated. An excerpt of the program shows

the next important operations

! Program ’STATICU’

! load shear dislocations
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Figure A.4: Example of map-view output from the program STATICU. The surface displacement
field corresponding to the 1992 Landers, CA earthquake can be automatically exported in the
GRD format, allowing quick visualization with the GMT mapping tool.

DO i=1, ns ! number of shear faults
! adding sources in the space domain
CALL source(mu,s(i)%slip,s(i)%x,s(i)%y,s(i)%z, &

s(i)%width,s(i)%length,s(i)%strike,s(i)%dip,s(i)%rake,beta, &
sx1,sx2,sx3,dx1,dx2,dx3,c1,c2,c3,p1,p2,p3)

END DO

! apply the 3d elastic transfert function
CALL greenfunction(c1,c2,c3,dx1,dx2,dx3,lambda,mu,p1,p2,p3,GRN_HS)

! export displacements to the GMT grd format
CALL exportgrd(c1,c2,c3,sx1,sx2,sx3/2,dx1,dx2,dx3,oz,x0,y0,wdir,0)

! export displacements at sample points
CALL exportpoints(c1,c2,c3,sx1,sx2,sx3/2,dx1,dx2,dx3, &

opts,ptsname,0._8,wdir,.true.,x0,y0,rot)

The ’DO’ loop adds internal body forces and surface traction to the total forcing term. After

the loop is performed, the variables ’c1’, ’c2’ and ’c3’ contain the directional components of the

internal body forces. The variables ’p1’, ’p2’ and ’p3’ contain the total surface traction. The next

operation, performed by the subroutine ’greenfunction’, from the module ’green’, computes

the three-dimensional displacement using the semi-analytic Fourier-domain Green function. The

operation is performed in place: only one set of arrays are required to store the forcing terms and

the resulting displacement field. After the ’greenfunction’ subroutine is executed, the variables
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’c1’, ’c2’ and ’c3’ contain the three components of the displacement field. The next two operations

consist in exporting the displacement field to a map-view binary file (subroutine ’exportgrd’)

and to individual files corresponding to sample points (subroutine ’exportpoints’). The end of

the program, not shown, involves freeing memory. Note that the real Fortran 90 program can be

more complicated in order to implement parallel execution, optional instructions, or additional

export formats. An excerpt of ’greenfunction’, the routine applying the Green function to the

body-force field, is as follows

! Subroutine ’GreenFunction’ in module ’Green’

! forward Fourier transform equivalent body-force and surface traction
CALL fft3(c1,sx1,sx2,sx3,dx1,dx2,dx3,FFT_FORWARD)
CALL fft2(t1,sx1,sx2,dx1,dx2,FFT_FORWARD)

CALL fft3(c2,sx1,sx2,sx3,dx1,dx2,dx3,FFT_FORWARD)
CALL fft2(t2,sx1,sx2,dx1,dx2,FFT_FORWARD)

CALL fft3(c3,sx1,sx2,sx3,dx1,dx2,dx3,FFT_FORWARD)
CALL fft2(t3,sx1,sx2,dx1,dx2,FFT_FORWARD)

! solve for displacement field in Fourier domain
ALLOCATE(temp1(sx1+2,sx2),temp2(sx1+2,sx2),temp3(sx1+2,sx2))
CALL elasticresponse(lambda,mu,c1,c2,c3,dx1,dx2,dx3,temp1,temp2,temp3)

! adding stress in the Fourier domain
temp1=t1-temp1
temp2=t2-temp2
temp3=t3-temp3

! add homogeneous solution to satisfy boundary condition
CALL cerruti3d(temp1,temp2,temp3,lambda,mu,c1,c2,c3,dx1,dx2,dx3)

DEALLOCATE(temp1,temp2,temp3)

! inverse Fourier-transform displacement components
CALL fft3(c1,sx1,sx2,sx3,dx1,dx2,dx3,FFT_INVERSE)
CALL fft3(c2,sx1,sx2,sx3,dx1,dx2,dx3,FFT_INVERSE)
CALL fft3(c3,sx1,sx2,sx3,dx1,dx2,dx3,FFT_INVERSE)

The subroutine ’greenfunction’ implements the semi-analytic Green function described in Chap-

ter 6. First, the equivalent body-force and surface traction fields are Fourier-transformed. Next,

the periodic-space Green function is applied (in place) with the subroutine ’elasticresponse’.

Subroutine ’elasticresponse’ also evaluates the resulting traction at the surface, which be-

comes available in the array variables ’temp1’, ’temp2’ and ’temp3’. A displacement field that

satisfies the homogeneous Navier’s equation is evaluated and added to the current displacement

field by subroutine ’cerruti3d’. The result is a displacement field that satisfies the free-surface

boundary condition. The last operations consist in freeing the memory that was required to
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store the surface traction and in inverse-Fourier transforming the displacement field to provide

a solution in the space domain.



Appendix B

Numerical models of elastic deformation in heterogeneous media

Program STATICI simulates three-dimensional deformation in a heterogeneous elastic

half space due to slip on faults of arbitrary position and orientation. Program STATICI imple-

ments the methods described in Chapter 4. The current implementation allows the elastic moduli

model to be parameterized with i) a depth-dependent profile, ii) the inclusion of rectangular-

parallelepiped volumes and ii) an arbitrary three-dimensional variation. The numerical strategy

consists in identifying equivalent body forces and surface traction to represent the effect of vari-

ations in elastic moduli and evaluating the deformation using the homogeneous elastic Green

function. The Green function corresponds to a choice of “homogenized” elastic moduli, which

should be representative of the true elastic structure. The solution is obtained iteratively using

the perturbation method or the successive over-relaxation method (SOR). For example, for the

case of a vertically-layered elastic profile with a 30 GPa shear modulus seismogenic zone overlying

a 45 GPa shear modulus half space, a choice of “homogenized” shear modulus of Ḡ = 30 GPa

would ensure fastest convergence and most accurate results. In principle the SOR method can

be used to deal with models having arbitrary variations of elastic moduli, in particular with elas-

tic contrasts greater that a factor of two. However, the SOR method requires defining a hyper

parameter φ which controls the convergence of the iterative scheme. There are no sets of defined

rules to choose this parameter and the convergence is therefore not systematically guaranteed.

For elastic contrasts lower than a factor of two, the perturbation method should converge for a

sensible choice of “homogenized” elastic moduli. For φ = 1 the SOR method is equivalent to the

perturbation method. Typical choices of the SOR parameter φ range from φ = 1/2 to φ = 2.

B.1 User interface

Program STATICI builds on the simpler program STATICU and both codes share sim-

ilarities in their input files. In particular, the computational grid, the faults and the output

products are specified the same way. The only difference in the input of program STATICI is

the specification of the heterogeneous elastic structure and of the homogenized elastic moduli.

The output of program STATICI is identical in form to the one of program STATICU, includ-

ing output in ASCII and binary forms, for 2-D or 3-D visualization. A basic input of program

STATICI may be as follows

185
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# grid size
256 256 256
# sampling and smoothing (beta=0.2)
0.5 0.5 0.5 0.2
# origin shift and rotation
0 0 0
# observation depth (output surface displacements)
0
# output directory (where output files are written)
./output1
# homogenization constants (Lame’s parameters) and SOR parameter
1.0 1.0 1.0
# elastic layers
3
1 0 1 1
2 10 1 1
3 10 1.1 1.1
# number of nodes of the 3D structure
0
# compliant zones
0
# observation points
0
# screw/edge dislocations
1
# index slip x1 x2 x3 length width strike dip rake

1 1 -6 0 0 12 5 0 90 0
# open cracks
0

The above input corresponds to a vertically layered elastic model with a plate over a half space

with a 10% increase in shear modulus in the half space. The strike-slip fault slips in the top half

of the plate. The “homogenized” elastic moduli are chosen to correspond to the top plate. This

choice of “homogenized” moduli ensures that the equivalent body forces representing the effect

of variations of elastic moduli are located in the half space only, far from the surface. Notice that

an elastic model with two layers requires three lines of specification. The first two lines define

the top and bottom of the plate and the third line corresponds to the definition of the half space.

The following specification

# elastic layers
2
1 0 1 1
2 10 1.1 1.1

would give rise to an elastic model with the Lamé parameters increasing monotonically from 1,

at the surface, to 1.1 at a depth of 10 km. The deeper material would be assigned a constant

shear modulus of 1.1 below 10 km. The layered modeled is described by the value of the Lamé

parameters at specified depths; the intermediate values are linearly interpolated from the values
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at the two nearest depths. The description of the variation of elastic properties with depth is

similar to the specification of the PREM model, in seismology.

A. Conceptual model B. Modeled elastic structure contribution
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Figure B.1: Simulation of the deformation due to a strike-slip fault in a heterogeneous lithosphere.
The elastic moduli are reduced around an infinitively long compliant zone in the near field of the
fault. A) sketch of the geometry of the fault and the position of the compliant zone. B) Surface
displacement corresponding to the elastic structure contribution showing additional strain in the
vicinity of the compliant zone, compared to a model with a homogeneous lithosphere.

Another example illustrate the modeling of deformation due to a strike-slip fault nearby

an infinitively long compliant zone. Figure B.1 shows the elastic structure contribution, the

difference between the displacement in a heterogeneous domain with the one corresponding to a

homogeneous half space. The displacement model shown in Figure B.1 can be obtained with the

following input file

# grid size
256 256 256
# sampling and smoothing
0.3333 0.3333 0.3333 0.05
# origin shift and rotation
0 0 0
# observation depth
0
# output directory
./compliant_zone_simulation
# homogenization constant
1.0 1.0 1.0
# elastic layers
1
1 0.0 1.0 1.0
# number of nodes of the 3d elastic structure
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0
# compliant zones
1
# index dlambda dmu x1 x2 x3 length width thickness strike dip

1 -0.05 -0.05 -60 5 0 120 10 2 0 90
# observation points
0
# screw/edge dislocations
1
# index slip x1 x2 x3 length width strike dip rake

1 -1 -10 0 0 20 10 0 90 0
# open cracks
0

In this model, the half space is uniform except for a finite volume of reduced elastic moduli. This

volume, referred to as a compliant zone, is parameterized with its variations of elastic moduli, ∆λ

and ∆µ, its position, its linear dimension (length, width and thickness) and orientation (strike

and dip angles). The geometric definition of compliant zones uses similar conventions to those

for a fault, expect for an additional thickness parameter that indicates the dimension of the

compliant zone in the strike-perpendicular direction. The compliant zones are tapered using the

roll-off parameter β that is also used to define fault slip. In the above model, the compliant has a

5% reduction in elastic moduli. Note that the definition of the compliant zone is a perturbation to

the ambient elastic model, rather than a specification of the absolute value of the elastic moduli

at this location.

B.2 Fortran implementation

Program STATICI is implemented in Fortran 90. The main program uses a combination

of Fortran 90 modules to perform important tasks. The corresponding source files are:

heterogeneous3d.f90 for stress/strain conversions, tensor operators, body-force representation

of faults, coordinate manipulation, structure definition, stress field calculation (gradients),

equivalent body force calculation (divergence) and elastic structure definition

export.f90 includes routines to sample and export data in text, binary GRD and VTK formats.

fourier.f90 for 1-D, 2-D and 3-D Fourier transforms, wavenumber calculations.

green.f90 for the evaluation of the elastic Green function and boundary-value problems.

Program STATICI shares numerous routines with the Fortran 90 program STATICU. A simplified

excerpt of the main program corresponding to the implementation of the perturbation solution

reads as follows

CALL elasticstructure(lambda,mu,elasticlayer,dx3)
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! adding compliant zones
DO i=1,ncz

CALL compliantzone( &
compzones(i)%dlambda,compzones(i)%dmu, &
compzones(i)%x,compzones(i)%y,compzones(i)%z, &
compzones(i)%width,compzones(i)%length,compzones(i)%thickness, &
compzones(i)%strike,compzones(i)%dip, &
beta,sx1,sx2,sx3/2,dx1,dx2,dx3,lambda,mu)

END DO

CALL dislocations(event,dx1,dx2,dx3,sx1,sx2,sx3,beta, &
lambda0,mu0,lambda,mu, &
u1,u2,u3,p1,p2,p3,sig,isMomentDensity)

! norm of the initial forces
fscaling=vectormean(u1,u2,u3,sx1,sx2,sx3/2)

! initial guess for the displacement field
CALL greenfunction(u1,u2,u3,dx1,dx2,dx3,lambda0,mu0,p1,p2,p3)

ALLOCATE(c1(sx1+2,sx2,sx3/2),c2(sx1+2,sx2,sx3/2),c3(sx1+2,sx2,sx3/2))

! variables c1,c2 and c3 contain the perturbation-method solution displacement
CALL fieldrep(c1,u1,sx1+2,sx2,sx3/2)
CALL fieldrep(c2,u2,sx1+2,sx2,sx3/2)
CALL fieldrep(c3,u3,sx1+2,sx2,sx3/2)

! ’perturbed’ elastic properties (deviation from uniform)
lambda=lambda0-lambda
mu =mu0-mu

! iteration loop
DO i=1,ITERATION_MAX

! instantaneous stress level
CALL stress(lambda,mu,u1,u2,u3,dx1,dx2,dx3,sx1,sx2,sx3/2,sig)

! equivalent body-force & surface traction
u1=0;u2=0;u3=0;p1=0;p2=0;p3=0
CALL equivalentbodyforce(sig,dx1,dx2,dx3,sx1,sx2,sx3/2, &

u1,u2,u3,p1,p2,p3)

! norm of the equivalent forces representing the effect of inclusions
fnorm=vectormean(u1,u2,u3,sx1,sx2,sx3/2)

! solve for displacement perturbation
CALL greenfunction(u1,u2,u3,dx1,dx2,dx3,lambda0,mu0,p1,p2,p3)

! update the iterative solution with the latest perturbation
CALL fieldadd(c1,u1,sx1+2,sx2,sx3/2)
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CALL fieldadd(c2,u2,sx1+2,sx2,sx3/2)
CALL fieldadd(c3,u3,sx1+2,sx2,sx3/2)

! convergence test of the perturbation method (epsilon = 1e-6)
isConvergence=fnorm/fscaling .lt. epsilon

! stop when convergence test is satisfied
IF (isConvergence) GOTO 100

END DO

100 CONTINUE

! export final solution
CALL exportgrd(c1,c2,c3,sx1,sx2,sx3/2,dx1,dx2,dx3,oz,x0,y0,wdir,0)

After the execution of the first ’DO’ loop, the elastic moduli variables ’lambda’ and ’mu’ represent

the modeled elastic structure. The subroutine ’dislocations’ add the body forces and surface

tractions to the variables ’u1’, ’u2’ and ’u3’ for the body forces and ’p1’, ’p2’ and ’p3’, for the trac-

tions. The norm the of the body forces is stored in the variable ’fscaling’. A displacement field

is obtained after execution of the subroutine ’greenfunction’, which is described in Appendix A.

Next, the variables ’c1’, ’c2’ and ’c3’ contain the three components of the final solution. The

next ’DO’ loop adds the higher-order terms of the perturbation solution. First, a uniform field of

elastic moduli is removed to the elastic moduli model (eq. 4.16 in Chapter 4). At each iteration

of the perturbation loop, the equivalent moment density (eq. 4.17) is evaluated using the subrou-

tine ’stress’ and stored in the tensor-valued array variable ’sig’. Next, a set of equivalent body

force and surface traction is identified (eq. 4.19) using subroutine ’equivalentbodyforce’. The

corresponding perturbation displacement field is obtained using the subroutine ’greenfunction’

and is finally added to the current estimate of the solution displacement. The program exe-

cution exits the ’DO’ loop if a convergence test (eq. 4.39) is satisfied. The current code in file

’statici.f90’ also includes the possibility of using the successive over-relaxation method.

The module ’heterogeneous3d.f90’ adds to the existing routines of STATICU module

’elastic3d.f90’ the necessary routines to evaluate the current stress and to compute a set of

body forces from tensor field. The equivalent moment density representing a variation in elastic

moduli (eq. 4.17 in Chapter 4) is evaluated from the subroutine ’stress’. An excerpt of the

Fortran 90 subroutine ’stress’ is as follows

! subroutine ’stress’ of module ’heterogeneous3d’

DO i3=1,sx3
DO i2=1,sx2

DO i1=1,sx1
clambda=lambda(i1,i2,i3)
cmu =mu (i1,i2,i3)

IF (abs(cmu) .ge. epsilon .or. abs(clambda) .ge. epsilon) THEN
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! Finite Impulse Response filter
CALL localstrain_fir2(t,i1,i2,i3,ker1,ker2,ker3, &

len1,len2,len3,v1,v2,v3,sx1,sx2,sx3)
CALL isotropicstressstrain(t,clambda,cmu)
sig(i1,i2,i3)=t

ELSE
sig(i1,i2,i3)=TENSOR(0._4,0._4,0._4,0._4,0._4,0._4)

END IF
END DO

END DO
END DO

The three embedding ’DO’ loops run through the three-dimensional computational grid. At each

point, the deviation from the “homogenized” elastic moduli is determined and stored in the

variables ’clambda’ and ’cmu’. In case of no deviation, their is no equivalent moment density and

the local value of the stress tensor is assigned to zero. Otherwise, the local strain is evaluated

from the displacement field (variables ’v1’, ’v2’ and ’v3’) and assigned to the tensor variable

’t’. The stress (or moment density) is evaluated in place using Hooke’s law with the routine

’isotropicstressstrain’ and assigned to the local moment density field ’sig(i1,i2,i3)’. In

the module ’heterogeneous3d.f90’, the reading of the code is complicated by the possibility to

compile it to run in parallel with MPI and OpenMP.

The equivalent body forces are obtained from the moment density field (eq. 4.19 in

Chapter 4) using the Fortran 90 subroutine ’equivalentbodyforce’ as follows

DO i3=1,sx3
DO i2=1,sx2

DO i1=1,sx1
! Finite Impulse Response filter
CALL localdivergence_fir2(f1,f2,f3,i1,i2,i3, &

ker1,ker2,ker3,len1,len2,len3,sig,sx1,sx2,sx3)

c1(i1,i2,i3)=c1(i1,i2,i3)-REAL(f1)
c2(i1,i2,i3)=c2(i1,i2,i3)-REAL(f2)
c3(i1,i2,i3)=c3(i1,i2,i3)-REAL(f3)

END DO
END DO

END DO

The first three ’DO’ loops run through the computational domain. The subroutine ’localdivergence_fir2’

computes the local value of the divergence of the stress tensor field ’sig’. The result is a body

force whose three components are stored in the variables ’f1’, ’f2’ and ’f3’. The equivalent

body force field is then updated with the opposite value. The reading of the code of subroutine

’equivalentbodyforce’ in module ’heterogeneous3d.f90’ is complicated by the possibility to

compile it to run parallel with MPI or OpenMP.
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Numerical models of time-dependent deformation

Program RELAX computes the time-dependent deformation following a stress pertur-

bation due to the presence of a ductile substrate or a stable slipping fault. The fault creep is

governed by a rate-strengthening friction and the ductile layer, by a power-law rheology. The

current Fortran 90 program allows for arbitrary variations in inelastic properties but is limited to

homogeneous elastic properties. The instantaneous velocity is obtained using the Green function

for a half space with a free surface and a restoring force due to a density contrast between rock

and air at the surface. The Green function is performed semi-analytically in the Fourier domain,

as described in Chapter 6 and the simulation of the time-dependent deformation is performed

using the method described in Chapter 7. The stress perturbation comes from slip on faults or

magmatic unrest. The specification of the initial slip model is similar to the one in programs

STATICU and STATICI.

C.1 User Interface

Similarly to programs STATICU and STATICI, the computation is performed in a Carte-

sian grid, which is described by the sampling size and the number of nodes in the three directions.

The boundary condition at the surface includes the effect of a density contrast between rocks and

air. The effect of the density contrast is specified by the parameter Γ in eq. (6.19). In program

RELAX, the elastic Green function is defined by the Lamé parameters and the gravity parameter

Γ. Program RELAX evaluates the time-dependent relaxation following a series of perturbations.

Each perturbation is referred to as a “coseismic event”. Each event is associated with a slip

model. The first event starts at time 0, in S.I. units. The time of occurrence of the following

events must be prescribed. The possible inclusion of multiple events can be important in models

involving nonlinear creep rheologies.

The time-dependent model shown in Figure 7.2 in Chapter 7 can be obtained from the

following input to program RELAX

# grid size (sx1,sx2,sx3)
512 512 512
# sampling size & smoothing (dx1,dx2,dx3,beta)
0.8 0.8 0.8 0.2
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# origin position and rotation
0 0 0
# observation depth
0
# output directory
./output5
# elastic parameters (lambda,mu,Gamma)
3e1 3e1 0
# integration time (t1) and time step
# (use negative integers, say ’-p’, to write outputs every p time steps)
1e5 -1
# number of observation planes
0
# number of observation points
12
# index name x1 x2 x3

1 GPS1 25 10 0
2 GPS2 25 20 0
3 GPS3 25 30 0
4 GPS4 25 40 0
5 GPS5 25 50 0
6 GPS6 25 60 0
7 GPS7 50 10 0
8 GPS8 50 20 0
9 GPS9 50 30 0
10 GP10 50 40 0
11 GP11 50 50 0
12 GP12 50 60 0

# number of prestress interfaces with depth
0
# number of linear viscous interfaces
0
# number of powerlaw viscous interfaces
1
# index depth gammadot0 power cohesion

1 30 6.137788e6 3.5 0.0
# number of fault creep interface
0
# number of interseismic dislocation
0
# number of interseismic dykes
0
# number of coseismic events
1
# number of shear dislocations
1
# index slip x1 x2 x3 length width strike dip rake

1 -1 -20 0 0 40 10 0 90 0
# number of tensile cracks
0
# number of point dilatation sources
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0

The time series of displacement covering the interval (0, 1e5), in S.I. units, will be sampled

at 12 points named GPS1, GPS2, ..., GP12. Also, a series of outputs in map view will be

written in subdirectory ’./output5’. Since the time step ’-1’ was chosen, the program will

automatically choose a time step and the map-view output (in GRD, text and VTK formats)

will be written at every computational time step. For a time step of ’-3’, the program would

choose a computational time step automatically and write the map-view displacements to disk

every three time steps. The displacement at the observation points is updated systematically,

at every steps of the computation. The effect of the surface density contrast is ignored (Γ = 0).

The time-dependent lithospheric deformation is controlled by a power-law rheology with stress

exponent n = 3.5 in eq. (7.19). The brittle-ductile transition occurs at a depth of 30 m. The

effect of cohesion is to modify the apparent stress (cohesion is usually set to zero). The transient

deformation is due to the occurrence of a single event at time zero. The event consists in the slip

of a vertical strike-slip fault.

To reproduce the results of Figure 7.7, corresponding to the transient deformation due to

stable slip on a rate-strengthening friction asperities subjected to a uniform stress perturbation,

one may use the following input of program RELAX

# grid size (sx1,sx2,sx3)
128 128 128
# sampling size & smoothing (dx1,dx2,dx3,beta)
0.05 0.05 0.05 0.2
# origin position (north,east) and rotation
0 0 0
# observation depth
0
# output directory
./output1
# elastic parameters and gravity parameter (lambda,mu,Gamma)
1 1 0
# integration time (t1)
25 -1
# number of observation planes
0
# number of observation points
1
# no name x1 x2 x3

1 GPS7 0.5 0.5 0
# number of prestress interfaces
1
# no depth s11 s12 s13 s22 s23 s33

1 0 0 7 0 0 0 0
# number of linear viscous interfaces
0
# number of powerlaw viscous interfaces
0
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# number of fault creep interfaces
1
# no depth gamma0 (a-b)sigma friction cohesion

1 0 1 1 0.6 0
# number of afterslip planes
1
# no x1 x2 x3 length width strike dip

1 -0.025 0 1 0.05 0.05 0 90
# number of interseismically loading faults and dykes
0
0
# number of coseismic events
1
# number of shear dislocations
1
# index slip x1 x2 x3 length width strike dip rake

1 0 -1.0 0 1.1 1 0.5 0 90 0
# number of tensile cracks
0
# number of point dilatation sources
0

The transient deformation is due to slip on a rate-strengthening friction asperity. The rate-

strengthening friction properties are uniform in the lithosphere with γ̇0 = 1 s−1 and (a − b)σ =

0.6 Pa. Afterslip occurs on a vertical plane and is confined in a rectangular area 0.05 m long and

0.05 m wide. The occurrence of afterslip is due to a uniform stress perturbation of σ12 = 7 Pa.

Notice that the input of program RELAX requires the definition of a slip model. In order to

model afterslip due to a uniform stress, the slip model consists in one fault with no associated

slip.

To reproduce the results of Figure 7.6, showing the effect of a surface density contrast of

the partterns of viscoelastic relaxation following slip on a thrust fault, one may use the following

input to program RELAX

# grid size (sx1,sx2,sx3)
512 512 512
# sampling size & smoothing (dx1,dx2,dx3,beta)
0.05 0.05 0.05 0.2
# origin position and rotation
0 0 0
# observation depth
0
# output directory
./output1
# elastic parameters (lambda,mu) and gravity (Gamma)
1 1 2.475e-2
# integration time (t1)
45 -1
# number of observation points
0
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# number of prestress interfaces
0
# number of observation planes
0
# number of linear viscous interfaces
1
# index depth gammadot0 cohesion

1 1 1 0
# number of powerlaw viscous interfaces
0
# number of fault creep interface
0
# number of interseismic stuff
0
0
# number of coseismic events
1
# number of shear dislocations
1
# index slip x1 x2 x3 length width strike dip rake

1 1 -3.3 0 0.5 6.6 1 0 30 90
# number of tensile cracks
0
# number of point dilatation sources
0

The time-dependent deformation is due to the stress perturbation associated with 1 m slip on a

thrust fault dipping 30◦. The elastic moduli are λ = µ = 1 Pa. The density contrast gives rise to a

critical wavelength of Γ = 2.475 10−2 m−1. The simulation covers the time interval (0, 45 s). The

map-view output is written at every computational step. The brittle-ductile transition occurs at

a depth of 1 m. The reference strain rate is uniform in the viscous layer with γ̇0 = 1 s−1. The

characteristic Maxwell time corresponding to this model is tm = 1/γ̇0 = 1 s. The simulation

corresponds to 45 relaxation times of a linear viscoelastic relaxation.

C.2 Fortran implementation

The RELAX main program uses Fortran 90 modules to perform functional operations.

The entire program requires four modules. The corresponding Fortran 90 source files are:

elastic3d.f90 for stress/strain conversions, tensor operators, body-force representation of faults,

coordinates manipulation, structure definition, stress field calculation (gradients), equiva-

lent body force calculation (divergence) and inelastic structure definition

export.f90 includes routines to sample and export data in text, binary GRD and VTK formats.

fourier.f90 for 1-D, 2-D and 3-D Fourier transforms, wavenumber calculations.
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green.f90 for the evaluation of the elastic Green function and boundary-value problems includ-

ing the effect of a density variation at the surface.

friction3d.f90 for the rate-strengthening friction rheology

viscoelastic3d.f90 for the power-law viscoelastic rheology

The modules ’./elastic3d.f90’, ’export.f90’, ’fourier.f90’, ’fourier.f90’ and ’green.f90’

are mostly identical to the one used by program STATICI, except for module ’green.f90’ which

includes the effect of the density contrast at the surface in program RELAX. Two additional

modules, ’friction3d.f90’ and ’viscoelastic3d.f90’, are used to evaluate the instantaneous

strain rates due to frictional sliding or viscoelastic flow.

A simplified exert of program RELAX is as follows, assuming an initial displacement field

(scalar-valued array variables ’u1’, ’u2’ and ’u3’) and initial stress perturbation (tensor-valued

array variable ’sig’) are defined,

t=0
DO i=1,ITERATION_MAX ! maximum number of iterations is 900

IF (t > (interval+1e-6)) GOTO 100 ! exit when simulation is over

! predictor displacement at t+Dt/2 (Runge-Kutta method)
CALL tensorfieldadd(sig,tau,sx1,sx2,sx3/2,c1=0._4,c2=-1._4)
CALL stressupdate(u1,u2,u3,lambda,mu,dx1,dx2,dx3,sx1,sx2,sx3/2,sig)

! initialize large time step
tm=1e7
! initialize no forcing term in tensor space
CALL tensorfieldadd(moment,moment,sx1,sx2,sx3/2,0._4,0._4)

! powerlaw viscosity
CALL viscouseigenstress(mu,nonlinearstruc,sig,sx1,sx2,sx3/2, &

dx1,dx2,dx3,moment,MAXWELLTIME=tm)

! nonlinear fault creep with rate-strengthening friction
DO k=1,np

CALL frictioneigenstress(n(k)%x,n(k)%y,n(k)%z, &
n(k)%width,n(k)%length,n(k)%strike,n(k)%dip,beta, &
sig,mu,faultcreepstruc,sx1,sx2,sx3/2,dx1,dx2,dx3,moment, &
maxwelltime=tm)

END DO

! choose an integration time step
CALL integrationstep(tm,Dt,t,oi,odt,events,e,ne)

CALL tensorfieldadd(sig,moment,sx1,sx2,sx3/2,c1=0.0_4,c2=1._4)

v1=0;v2=0;v3=0;t1=0;t2=0;t3=0;
CALL equivalentbodyforce(sig,dx1,dx2,dx3,sx1,sx2,sx3/2,v1,v2,v3)
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! predicted velocity
CALL greenfunctioncowling(v1,v2,v3,t1,t2,t3,dx1,dx2,dx3,lambda,mu,gam)

! v1,v2,v3 contain the predictor displacement at time t+Dt/2
CALL fieldadd(v1,u1,sx1+2,sx2,sx3/2,c1=REAL(Dt/2))
CALL fieldadd(v2,u2,sx1+2,sx2,sx3/2,c1=REAL(Dt/2))
CALL fieldadd(v3,u3,sx1+2,sx2,sx3/2,c1=REAL(Dt/2))

! corrector
CALL tensorfieldadd(sig,tau,sx1,sx2,sx3/2,c1=-REAL(Dt/2),c2=-1._4)
CALL stressupdate(v1,v2,v3,lambda,mu,dx1,dx2,dx3,sx1,sx2,sx3/2,sig)

! reinitialize moment density tensor
CALL tensorfieldadd(moment,moment,sx1,sx2,sx3/2,0._4,0._4)

! powerlaw viscosity
v1=0
CALL viscouseigenstress(mu,nonlinearstruc,sig,sx1,sx2,sx3/2, &

dx1,dx2,dx3,moment,GAMMA=v1)

! update slip history
CALL fieldadd(gamma,v1,sx1+2,sx2,sx3/2,c2=REAL(Dt))

! nonlinear fault creep with rate-strengthening friction
! use v1 as placeholders for the afterslip planes
v1=0
DO k=1,np

CALL frictioneigenstress(n(k)%x,n(k)%y,n(k)%z, &
n(k)%width,n(k)%length,n(k)%strike,n(k)%dip,beta, &
sig,mu,faultcreepstruc,sx1,sx2,sx3/2,dx1,dx2,dx3,moment,VEL=v1)

END DO

! rate of equivalent body force
v1=0;v2=0;v3=0;t1=0;t2=0;t3=0;
CALL equivalentbodyforce(moment,dx1,dx2,dx3,sx1,sx2,sx3/2,v1,v2,v3)

! instantaneous velocity at time t+Dt/2
CALL greenfunctioncowling(v1,v2,v3,t1,t2,t3,dx1,dx2,dx3,lambda,mu,gam)

! update deformation field u(t+Dt) = u(t)+Dt * v(t+Dt/2)
CALL fieldadd(u1,v1,sx1+2,sx2,sx3/2,c2=REAL(Dt))
CALL fieldadd(u2,v2,sx1+2,sx2,sx3/2,c2=REAL(Dt))
CALL fieldadd(u3,v3,sx1+2,sx2,sx3/2,c2=REAL(Dt))
CALL tensorfieldadd(tau,moment,sx1,sx2,sx3/2,c2=REAL(Dt))

! time increment
t=t+Dt

! write outputs
IF (isoutput(skip,t,i,odt,oi,events(e)%time)) THEN

CALL exportgrd(u1,u2,u3,sx1,sx2,sx3/2,dx1,dx2,dx3,oz,x0,y0,wdir,oi)
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! update output counter
oi=oi+1

END IF
END DO

100 CONTINUE

The time-dependent model is calculated using a second-order Runge-Kutta method. Each iter-

ation of the first ’DO’ loop corresponds to a computational time step. In the “predictor” step,

the displacement at time t+ ∆t is evaluated using the relation ui(t+ ∆/2) = ui(t) + vi(t)∆t/2,

where ui and vi are the displacement and velocity fields, respectively. In the “corrector” step,

the instantaneous velocity is evaluated at time t + ∆t/2 and the final displacement field is ob-

tained using the relation ui(t+ ∆t) = ui(t) + vi(t+ ∆t/2)∆t. After execution of the subroutine

’stressupdate’, the tensor-valued variable ’sig’ contains the value of the instantaneous stress

(eq. 7.5). Then a large time step and the moment density (eq. 7.9) are initialized. The subroutine

‘viscouseigenstress‘ and ‘frictioneigenstress‘, from the modules ‘viscoelastic3d.f90‘

and ‘friction3d.f90‘, respectively, add the power density (eqs. 7.15 and 7.28, respectively) to

the tensor-valued variable ‘moment‘. Next, the subroutine ‘integrationstep‘ chooses a com-

putation time step ∆t. The time step corresponds to a recommended value from routines

‘viscouseigenstress‘ and ‘frictioneigenstress‘ or, if smaller, the user-specified value or,

if smaller, the time to the next coseismic event. The rate of body force and surface traction

are evaluated from the power density with subroutine ‘equivalentbodyforce‘ and the instan-

taneous velocity is obtained using the subroutine ‘greenfunctioncowling‘. The latter uses the

semi-analytic elastic Green function that includes the effect of the density contrast at the sur-

face. Before the “corrector” section, the variables ‘v1‘, ‘v2‘ and ‘v3‘ contain the displacement

at time t + ∆t/2. First in the “corrector” section, the stress corresponding to its value at time

t + ∆t/2 (eq. 7.5) is evaluated using subroutines ‘tensorfieldadd‘ and ‘stressupdate‘. The

power density is re-initalized to zero and updated with the power density due to viscoelasticity

and fault creep. The corresponding rate of body force and surface traction is evaluated using

subroutine ‘equivalentbodyforce‘ and the instantaneous velocity at time t+ ∆t/2 is obtained

with the routine ‘greenfunctioncowling‘. The variables ‘u1‘, ‘u2‘ and ‘u3‘ are then updated

to contain the cumulative displacement at time t+ ∆t. Before the time increment, the variable

‘tau‘ contains the cumulatively relaxed stress, corresponding to the integral is eq. (7.5). After

tracking the time progress with variable ‘t‘, the output may be written to disk. The output is

written if the current time corresponds to an integer of the user-defined output time interval,

or if a new coseismic event occurred. The code for the main program written in ’relax.f90’

includes the above instructions but also includes the possibility to export various information

(equivalent body-force field, postseismic contribution) in multiple formats (text, GRD, VTK),

the effect of steadily moving faults and dykes, the treatment of linear and power-law viscosity

and the inclusion of several coseismic events at different times in the simulation.
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