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RESEARCH Open Access
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Abstract

Background: CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an
alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study
reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single
guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as “two-donor floxing” method).
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(Continued from previous page)

Results: We re-evaluate the two-donor method from a consortium of 20 laboratories across the world. The dataset
constitutes 56 genetic loci, 17,887 zygotes, and 1718 live-born mice, of which only 15 (0.87%) mice contain cKO alleles.
We subject the dataset to statistical analyses and a machine learning algorithm, which reveals that none of the factors
analyzed was predictive for the success of this method. We test some of the newer methods that use one-donor DNA
on 18 loci for which the two-donor approach failed to produce cKO alleles. We find that the one-donor methods are
10- to 20-fold more efficient than the two-donor approach.

Conclusion: We propose that the two-donor method lacks efficiency because it relies on two simultaneous
recombination events in cis, an outcome that is dwarfed by pervasive accompanying undesired editing events. The
methods that use one-donor DNA are fairly efficient as they rely on only one recombination event, and the probability
of correct insertion of the donor cassette without unanticipated mutational events is much higher. Therefore, one-
donor methods offer higher efficiencies for the routine generation of cKO animal models.

Keywords: CRISPR-Cas9, Mouse, Transgenesis, Homology-directed repair, Conditional knockout mouse, Floxed allele,
Oligonucleotide, Long single-stranded DNA, Machine learning, Reproducibility

Background
Gene inactivation through knockout alleles in a model
organism such as mouse provides invaluable insights
into the mechanisms of gene function and disease [1].
However, important challenges remain to successfully
analyze the phenotypic impact of knockout (KO) genes
in adult model organisms, as over 30% of the genes in
mice are essential for development and cause embryonic
lethality or neonatal subviability when deleted [2]. To
overcome lethal phenotypes in gene-knockout models,
conditional knockout (cKO) strategies have emerged [3].
cKO models usually involve the insertion of LoxP sites
in introns flanking critical exon/s or (less commonly) in
intergenic regions or flanking regulatory regions such as
promoters and enhancers. When crossed with a Cre
recombinase-expressing driver mouse, the Cre enzyme
recognizes LoxP sequences and removes the intervening
sequence. This leads to functional inactivation of the tar-
geted gene in only the cells where the Cre is expressed
and capable of targeting the DNA [3]. Generating a KO
or cKO mouse previously required the use of embryonic
stem (ES) cell-based homologous recombination with
embryo manipulation, microinjection (MI), and assisted
reproduction technologies (ART) [4]. These techniques
were established in the 1980s and are still being used as
gold standard methods. Based on this technology, large-
scale efforts such as the Knockout Mouse Project
(KOMP) [5] and the European Conditional Mouse
Mutagenesis (EUCOMM) Program [6] have designed
thousands of targeting constructs and generated modi-
fied ES cell clones for over 90% of coding genes. Using
the ES cell clones, about 25% of mouse genes have been
converted into cKO mice, all readily available and ac-
cessible in public repositories [7].
The recent emergence of genome editing technologies

such as ZFN, TALENs, and CRISPR-Cas9, which can
generate precise double-strand breaks in the genome,

enables an improvement in the efficiency of gene targeting
and has considerably facilitated the generation of genetic-
ally engineered animal models by direct injection of re-
agents into mouse zygotes [8]. Class 2 CRISPR system
generates a precise double-strand break in the DNA via
targeting with a simple-to-generate chimeric single guide
RNA (sgRNA) and has become the most commonly used
gene editing endonuclease system. The double-strand
break leads to error-prone, non-homologous end joining
(NHEJ) repair or homology-directed repair (HDR) under
the guidance of a repair template [9, 10]. In an earlier
study, a high success rate (16%) of targeting LoxP sites in
cis was reported using two sgRNAs and two single-
stranded oligonucleotides (ssODN) containing LoxP sites
(herein referred to as “two-donor floxing method”) flank-
ing a targeted critical exon (Fig. 1) [11].
We describe here a global community effort, from a

consortium of 20 transgenic core facilities and programs
across the world, to evaluate the efficiency of the two-
donor method of generating cKO alleles and compare it
with the recently described methods that use long single-
or double-stranded DNA donors or "second LoxP inser-
tion in the next-generation" approach.

Results
Generation of conditional alleles for Mecp2 gene using
the two-donor floxing method
We attempted to reproduce an experiment targeting the
Mecp2 gene, the locus for which creating floxed alleles
using the two-donor floxing method was efficient at 16%
[11]. We used the same sgRNAs and ssODNs described
in the original report [11]. Three independent centers at
the Australian National University (ANU) in Australia,
University of Nebraska Medical Center (UNMC) in the
USA, and the Czech Centre for Phenogenomics in the
Czech Republic (IMG) performed these experiments on
C57BL/6N inbred mice. The microinjected zygotes were
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cultured to blastocysts, and the genomic DNAs were an-
alyzed by genotyping PCRs and Sanger sequencing
(Table 1). Using a concentration mix of 10 ng/μl of Cas9
mRNA, 10 ng/μl of in vitro transcribed sgRNA, and 10
ng/μl of ssODN, we observed no successful targeting
(i.e., correct insertion of two LoxP sites in cis-configur-
ation) even though both sgRNAs cleaved target DNA as
indicated by the presence of indels or integration of a
LoxP site at the desired location, which varied from 13
to 33% (Table 1).
Interestingly, we noted the occasional presence of muta-

tions within the LoxP sites indicating illegitimate repair
events at the target site or errors arising from the com-
mercially synthesized donor DNAs. The frequency of suc-
cessful targeting of two LoxP sites in cis was previously
reported to be 16% [11], which we failed to replicate.

A global survey of the generation of conditional alleles
using the two-donor floxing method
To better assess the efficiency of the two-donor floxing
method at other loci, we evaluated 56 additional loci in
the mouse genome from a consortium of 20 institutions
across Australia, Belgium, Japan, the USA, the UK, the
Czech Republic, and Canada (Additional file 1: Table S1).
This study was not pre-designed, rather, it constitutes data
from the experiments performed at numerous laboratories
that attempted using the two-donor floxing method to
generate cKO mouse models. Of note, because the experi-
mental conditions described in the original method were
not producing desirable efficiencies, the laboratories in
our consortium further modified the experimental condi-
tions in an attempt to increase its efficiency. We report a
compilation of such data from these laboratories, and

A

B

C

D

Fig. 1 Schematic of two-donor floxing method of creating cKO alleles. a Wild-type locus showing exons 3, 4, and 5 of a hypothetical gene where
exon 4 is chosen as a target exon for inserting LoxP sites. Guides 1 and 2 target introns 3 and 4, respectively. b CRISPR components for the two-
donor floxing method Cas9 source. c Delivery method of CRISPR components into zygotes (microinjection or electroporation). d The cKO allele
showing target exon (#4) with flanking LoxP sites

Table 1 Summary of the edited blastocysts for Mecp2 gene from three different centers

Zygotes
injected

Blastocysts
genotyped

Correctly
targeted

Incorrectly targeted
at the 5′ site (%)

Incorrectly targeted
at the 3′ site (%)

Australian National University (ANU), Australia 106 51 0 11 indels and 6 LoxP
correctly inserted (33%)

6 indels and 1 LoxP
correctly inserted (13%)

University of Nebraska Medical Center (UNMC), USA 80 70 0 14 indels and 1 LoxP
correctly inserted (21%)

21 indels (30%)

Czech Centre for Phenogenomics, Czech republic (BIOCEV/IMG) 40 28 0 8 indels and 1 LoxP
correctly inserted (32%)

5 indels (18%)
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thus, it naturally represents a “real-world situation” as it
constitutes many diverse characteristics that were not pre-
planned. Therefore, this dataset provided an opportunity
to investigate the effect of many different parameters on
the method’s efficiency.
The two-donor floxing data from the consortium was

collected through a survey where investigators were re-
quested to enter details of various parameters of the ex-
periments in an excel spreadaheet file. For the easy
presentation of the large dataset, we split the information
from the single spreadsheet into 3 smaller spreadsheets.
These data and the results are presented as Add-
itional file 1: Table S1, Additional file 2: Table S2, and
Additional file 3: Table S3, and the overall summary of the
results is presented in Additional file 4: Table S4. Out of
17,887 zygotes (17,557 microinjected and 330 electropo-
rated; see details below) zygotes, 12,764 (71.4%) were sur-
gically transferred into recipient females. The recipient
females gave birth to 1718 pups (9.6% of the microin-
jected/electroporated zygotes), of which only 15 pups
(0.87%) contained the floxed alleles.

Analysis of factors affecting the outcome of the two-
donor floxing method
This large dataset enabled us to analyze the various fac-
tors affecting the outcome of the two-donor floxing
method. These factors included different mouse strains,
nature of loci (essential vs non-essential genes), distance
between the two guides, different mode of deliveries
(microinjection or electroporation), different reagent for-
mats, different reagent concentrations, and differences in
guide testing practices (some laboratories pre-test the
guide RNAs, and some do not). A majority of projects
were performed on a C57BL/6J background (39) whereas
18 projects used C57BL/6N background and 3 additional
ones used a hybrid mouse background (B6C3HF1,
B6SJLF1, FVBCD1F1). Statistical analysis of our data
(Fisher exact test, p = 0.74) did not find any impact of
strain background on the method’s efficiency. Of the 56
targeted loci (49 microinjected and 7 electroporated), 21
were ranked as essential genes based on early embryonic
or postnatal lethality of homozygous knockout mice ac-
cording to the mouse genome database http://www.in-
formatics.jax.org [12]. Prior targeted deletions of 18 out
of 56 of the loci were reported to generate homozygous
mice that were viable into adulthood, and consequences
of a null mutation at 17 loci were unknown. Together,
this indicates the repartition between putative essential
and non-essential targeted gene was in equal frequency
(Fisher exact test, p = 0.76). Using a previously published
machine learning method to predict gene essentiality in
mice [13], we confirmed an equal frequency of essential
and non-essential genes in our dataset (Fisher exact test,
p = 0.99) The distance between sgRNA varied from 250 bp

to 1.1Mb with a median of 2 Kb. Single exons to entire
genes or regulatory genomic regions (Additional file 1:
Table S1) were floxed. We investigated whether the dis-
tance between sgRNA is critical for the likelihood of the
success of the two-donor floxing method. We failed to
find such evidence in our dataset (Kruskal-Wallis rank-
sum test, chi-squared = 32, p = 0.42), although the sample
size was too low to form a conclusion (Cohen’s effect size
d = 0.40 with power 1-beta = 0.27). Of the 56 loci, 49 loci
were microinjected (Additional file 2: Table S2) and 7 loci
were electroporated (Additional file 3: Tables S3). Among
the microinjected zygotes for 49 loci with 53 independent
designs, significantly higher numbers of zygotes was micro-
injected to the pronucleus alone (26/53) rather than the
cytoplasm alone (10/53) or both pronucleus and cytoplasm
(17/53) (Fischer exact test p= 0.004), which is consistent
with the current practice in most transgenic core facilities
(Fig. 2a). Different forms of CRISPR reagents (synthetic or
in vitro transcribed sgRNA, Cas9 mRNA or Cas9 pro-
tein, or sgRNA- and Cas9-expressing plasmid) were
used (Additional file 1: Table S1). The majority of the
projects used in vitro transcribed mRNA (35/59) at
various concentrations varying from 10 to 100 ng/μl of
Cas9 mRNA (Fig. 2b) and from 10 to 50 ng/μl sgRNA.
ssODN were delivered at a concentration varying from
10 to 200 ng/μl. In 18 instances, Cas9 was delivered as
a protein with a concentration varying from 10 to 75
ng/μl. Sixty-seven percent (41 pairs out of 61 pairs) of
sgRNAs were tested in an in vitro cleavage assay prior
to zygotic injection. We found no differences in editing
efficiencies between the tested and the non-tested
sgRNA sets [5′ guides: Kruskal-Wallis rank-sum test,
chi-squared = 0.004, p = 0.94; 3′ guides: Kruskal-Wallis
rank-sum test, chi-squared = 0.2, p = 0.65]. Interestingly,
for 6 loci, Cas9 and sgRNAs were delivered in the form
of a chimeric sgRNA-SpCas9 plasmid (pX330) at a con-
centration of 5 ng/μl. We sought to determine whether
the forms of reagent delivery such as plasmid, ribonu-
cleoprotein (RNP), or mRNA would have an effect on
the overall efficiency in targeting using the two-donor
floxing method. We failed to find such evidence (Fisher
exact test p = 1).
Recently, electroporation of zygotes has been developed

as an efficient method for generating knockout, point mu-
tations, tagged, or conditional alleles [14–20]. From our
consortium, three laboratories and programs surveyed the
likelihood of success of the method. For seven loci sur-
veyed, we noted success in inserting a single LoxP allele
(Additional file 3: Table S3) from the analysis of blasto-
cysts or live mice for two out of the seven loci. In contrast,
we noted a relatively high frequency of large deletions and
indels (up to 39% of large deletions) indicating a successful
editing. However, none of the loci showed two LoxP sites
inserted in cis in the offspring, suggesting that the delivery
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of CRISPR reagents by electroporation does not make a
statistical difference in obtaining a desired outcome from
the two-donor floxing approach, although the large num-
bers of embryos that can be manipulated allow for the re-
covery of a very small number of correctly targeted alleles.
Next, we hypothesized that the success in generating

floxed alleles using the two-donor floxing approach may
depend on the factors such as (i) sgRNA efficiency, (ii)
simultaneity in LoxP insertion, or (iii) the concentration of

the Cas9, sgRNA, and ssODN reagents. To gain insight
into these possibilities, we further analyzed data from
the 56 loci (Additional file 2: Table S2, Additional file 3:
Table S3). Note that the offspring for 54 loci were ana-
lyzed at the postnatal stage (Additional file 2: Table S2,
Additional file 3: Table S3) whereas 2 loci were analyzed
at the blastocyst stage (Additional file 3: Table S3). In
some cases, the loci were further analyzed to assess guide
cleaving activity. Of the 1684 founder mice, 676 (40%)

Fig. 2 Quantitative assessment of the success of the two-donor floxing method. a Method of zygote injections (pronuclear, cytoplasmic, or both)
for delivery of the CRISPR reagents used by reporting centers. Numbers indicate the percentage of the total zygotes microinjected or
electroporated. b Form of the CRISPR reagents (mRNA, protein, or plasmid) delivered to the zygotes. Numbers indicate percentages. c Number of
successfully edited alleles and correct LoxP insertions out of the total number of live-born pups from microinjected and transferred zygotes.
Numbers indicate absolute numbers. d Types of editing observed among the live-born pups genotyped from a subsample from 25 loci. Numbers
indicate absolute values
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carried editing events. Two hundred seventy-three mice
(16%) showed some type of editing (indels and/or substi-
tutions), and 225 (13%) and 180 (11%) mice harbored a
single LoxP insertion or deletions between the two cleav-
age sites, respectively (Fig. 2c). The mice for 25/56 loci
were further assessed for additional editing events includ-
ing large deletions (Fig. 2c). Of the 487 founder mice ana-
lyzed (from those 25 loci), 219 (45%) 203 (41%), 52
(10.7%)%, and (13) 2.7% samples contained no editing,
indels, single LoxP insertions, or large deletions, respect-
ively (Fig. 2d). From the 1684 animals analyzed, only 15
mice (0.87%) were correctly targeted with intact LoxP sites
in the cis-configuration (Additional file 2: Table S2).
Out of the 56 loci, only 11 loci were successfully targeted
(19.6%). The average number of zygotes needed to gener-
ate 1 correctly targeted animal was 1192. The essentiality
of the genes had no impact on the likelihood of success of
the two-donor floxing (4/23 success in targeting for em-
bryonic or postnatal lethality vs 5/18 for viable homozy-
gous mice and 2/15 for unknown embryonic or postnatal
lethality, Fisher exact test p = 0.27). We also noted from
our data, among the 56 loci analyzed, 14% showed dele-
tions between the 2 target sites for Cas9 cleavage. We also
noted a relatively high occurrence of single LoxP inser-
tions for > 20% of the mice genotyped (from all loci) and
a few instances of trans-LoxP insertions (on different al-
leles, reducing the probability for correct insertion of the

LoxP sites) (Fig. 3). We therefore hypothesized that the
success of this approach depends on the combined effi-
ciency of the sgRNA and the likelihood of LoxP insertion
at both sites to enable two in cis HDR events to occur
simultaneously. To assess this postulate, we performed a
generalized linear regression analysis to model the rela-
tionship between Cas9, sgRNA concentration, sgRNA
cleavage efficiency, the distance between LoxP insertions,
and frequency of LoxP insertions, with success of the two-
donor floxing method as a positive outcome. The analyses
are summarized in Table 2. The efficiency of LoxP inser-
tions at both 5′ and 3′ sites appears to be the best pre-
dictor for the likelihood of success of the two-donor
floxing method, accounting for over 80% of the total vari-
ance. However, this predictor was not significant in our
linear regression model. Additional predictors such as
sgRNA efficiency or efficiency in 5′ or 3′ insertion of LoxP
explained approximately 15% of the total variance, but
none of these predictors was significant in our model. The
concentration of Cas9 mRNA accounted for less than
0.1% of the total variance but was statistically significant
(p < 0.01) in the generalized linear regression model as a
predictor for the success of the two-donor floxing method.
However, the success of the two-donor floxing method
was marginally correlated with an increase of Cas9 mRNA
concentration (r2 Pearson = 0.27, p = 0.08). From our ana-
lysis, the sample size of the successful LoxP insertions in

A

B

C

D

E

F

Fig. 3 Desired and undesired outcomes of the two-donor floxing method. a-f Wild-type locus showing exons 3, 4, and 5 of a hypothetical gene
where exon 4 is chosen as a target exon for inserting LoxP sites. a Desired outcome showing a floxed allele. Overall occurrence was < 1%.
b–f Various undesired outcomes including only one LoxP site insertion (b), only indels created at one or both sites (c), combination of LoxP
insertion and indels (d), deletion between the two cleavage sites (e), and no indel or no insertion events (f)
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cis was too small to definitively rule out any other predic-
tors (Cohen’s effect size d = 0.4, power 1-beta = 0.41). We
reasoned that the analysis of only the loci where LoxP
insertion events were observed may better predict the
likelihood of the success of this approach (even
though those insertions were not in cis-configura-
tions). To test this, we performed a statistical analysis
only on those loci containing LoxP sites and excluded
the loci lacking LoxP insertions in either of the guide
cleavage sites. We identified 28 such loci (from a
total of 56 loci). We did not find any difference in
predicting the outcome to the previous analysis with
all loci (data not shown). Together, these results sug-
gest that the presence of two simultaneous recombin-
ation events seemed to be the best predictor to
generating two floxed alleles in cis; although higher
Cas9 mRNA concentration seemed to be another pre-
dictor, its effect was marginal.
To further determine if the factors such as nucleo-

tide composition of the donor ssODN, ssODN length,
or reagent concentration might explain the success of
this approach, we applied a machine learning algo-
rithm (random forests) on all loci that were correctly
or incorrectly targeted [21]. Cross-validation of the
machine learning model by bootstrapping aggregation
(aka “out-of-bag error”), we did not find any associ-
ation between the success of this approach and the
concentration of the reagents (p value = 0.84), 5′ and
3′ ssODN donor length (respectively p values of 0.21
and 0.18) or the nucleotide compositions at the target
site. Overall, we observed a low performance of the
model when including ssODN donor length, nucleo-
tide composition at the target site, and concentration
of the reagents with an “out-of-bag estimate value” at
0.222. In summary, the assessment of regression com-
bined with machine learning analysis could not clearly

identify any specific factors contributing to the ineffi-
ciency of the two-donor floxing method.

Effect of microinjection skill factor on the two donor
floxing method's outcome
Because microinjection is one of the most critical steps
in mouse genome editing experiments, we postulated
that the efficiency of this method might depend on the
skills of the technical personnel that perform micro-
injection. If skill influences the outcome (e.g., successful
floxing alleles), we would be able to determine a differ-
ence between laboratories. We assessed this parameter
by calculating the correlation between the laboratory as
a predictive value and the positive outcome (successful
floxed alleles). We did not find any evidence of a “skill”
effect influencing the positive outcome (Kruskal-Wallis
rank-sum test, chi-squared = 22, p = 0.16).
As an independent analysis for microinjection skill effect,

we gathered another type of large dataset (creating knockin
models using one-ssODN donor) from our consortium that
gauged the microinjection skills of the technical personnel
in our consortium. The 20 laboratories that participated in
this study (including the ANU laboratory that only tested
the Mecp2 locus) had a nearly 90% success rate in generat-
ing one-ssODN donor knockin models; 293 out of 330 loci
attempted were successful with an overall efficiency of 13%
of live-born mice carrying the desired knockin alleles
(Additional file 5: Table S5), suggesting that all of the la-
boratories that participated in the study had sufficient
microinjection skills to create models using the CRISPR
tool. Therefore, the lack of success in generating floxed al-
leles using the two-donor floxing method at the 20 partici-
pating laboratories was not due to the lack of technical
skills in zygote-microinjection of CRISPR reagents.

Assessing the efficiencies of other methods of generating
conditional alleles
In recent years, a few other methods of generating condi-
tional alleles have been described utilizing one-donor DNA,
such as Easi-CRISPR (efficient additions with ssDNA
inserts-CRISPR) or CLICK (CRISPR with lssDNA inducing
cKO alleles) or double-stranded DNA (dsDNA)-based
methods [17, 22, 23]. We hypothesized that one of the rea-
sons for the lower efficiency of the two-donor floxing
method could be that it requires two recombination events
(each of which is independently subject to mutational
events) whereas just one recombination event is sufficient
for “one-donor DNA” methods. To test this postulate, we
used the one-donor DNA method of generating a condi-
tional allele in several loci that initially failed using the two-
donor floxing method. Of the 61 independent targeting
projects (for 56 loci), 48 projects failed with the two-donor
method. Nine of these projects were then repeated using
long single-stranded DNA donor approaches (4 with Easi-

Table 2 Generalized regression analysis to identify factors
predicting the success of the 2-sgRNA 2-ssODN method

Estimate Standard error t value p value

Intercept − 0.14 0.15 0.91 0.37

Efficiency of 5′ sgRNA 0.19 0.23 0.84 0.4

Efficiency of 3′ sgRNA − 0.31 0.22 − 1.36 0.18

5′ LoxP insertion 0.01 0.92 0.017 0.98

3′ LoxP insertion 0.01 0.38 0.27 0.79

5′ LoxP × 3′ LoxP insertion 4.05 2.32 1.74 0.09

Cas9 mRNA concentration 0.004 0.002 1.92 0.06*

Cas9 protein concentration 0.0003 0.003 0.1 0.91

SgRNA concentration − 0.002 0.002 − 1.12 0.27

ssODN concentration 0.002 0.001 0.13 21

Distance − 0.00001 < 0.0001 − 1.28 0.21

***p < 0.01, *p < 0.05
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CRISPR method, 5 with CLICK method), 2 projects with
dsDNA donor method, and 1 project with traditional ES
cell targeting. Remarkably, all of the one-donor methods
led to a successful generation of the floxed alleles (Add-
itional file 6: Table S6). Of the 11 projects using Easi-
CRISPR, CLICK, or dsDNA methods, we found the average
success rate was 18.3% ± 13% with a median of 13.2%,
which corresponds to an average 20-fold improvement over
the two-donor floxing method (Kolmogorov-Smirnov test p
value < 10−5). We examined whether this 18.3% average
success rate could be due to a higher cleavage efficiency of
the sgRNAs. Our analysis of the 5′ and 3′ guide cleavage
efficiencies (by counting indel or LoxP insertion events) in-
dicates that it is not the case (Mann-Whitney U test with a
respective p value of 0.43 and 1 suggests that the difference
in editing efficiency is not the reason for this discrepancy in
success rate between these methods).
A possible explanation for the large difference in effi-

ciency between the two-donor floxing method and those
that use one-donor DNA is that the latter requires only
one recombination event whereas the two-donor floxing
method relies on two recombination events occurring in
cis. If this hypothesis is true, we should observe a differ-
ence in the frequency of simultaneous insertion in 3′
and 5′ sites between these methods. To ascertain this
hypothesis, we compared the frequency of simultaneous
insertions of LoxP sites in 3′ and 5′ for Easi-CRISPR,
CLICK, or dsDNA delivery and two-donor floxing
method, and indeed found a difference (6 ± 20% two-
donor floxing vs 76 ± 27% for other methods; Mann-
Whitney U test W = 1, p value = 4.7 × 10−5) confirming
our hypothesis.
Two modifications to the two-donor floxing method

have been reported recently. The first modification in-
volves the insertion of the second LoxP site via a second
injection of reagents into the zygotes derived from the
mouse lines of the first injection containing only one of
the two LoxP insertions [24]. We refer to this method as
“second LoxP insertion in the next generation.” The sec-
ond modification involves introducing LoxP sites at two
separate intervals in the same zygotes; the first one at the
1-cell stage and the second at the 2-cell stage [25]. We
refer to this method as “sequential delivery of LoxP
sites.” We tested 7 (of the 48 failed) projects using
the “second LoxP insertion in the next generation”
(Additional file 6: Table S6) method, and all resulted in
the successful generation of floxed alleles. We found 14 ±
6% and 27 ± 32% efficiencies, respectively, in the first and
the second LoxP insertion experiments, which indicate that
the frequency of recombination is much higher when inser-
tion of just one LoxP is treated as a separate event. In other
words, the efficiencies of “one-donor” insertion events (in-
dividual events) are significantly higher than the combined
efficiency of insertion of two-donors. Even though

this approach takes nearly 1 year to complete, the
method ultimately generates floxed alleles at an effi-
ciency equivalent to “one-donor approaches” such as
Easi-CRISPR, CLICK, or delivery of dsDNA. We also
tested “sequential delivery approach,” the second
modification of the two-donor floxing method intro-
duced above, on three new loci, but none produced
conditional alleles (Additional file 7: Table S7). We
note that we only tested the microinjection mode of
delivery to evaluate the sequential delivery approach.
Considering that electroporation is regarded as less
harsh approach (as it maintains a sufficiently reason-
able amount of zygote viability after the two consecu-
tive rounds of reagent introduction), we suggest that
this method may require further evaluation at add-
itional loci to draw a conclusion on its efficiency.

Discussion
CRISPR-Cas9 technology has greatly facilitated the gen-
eration of mouse lines containing knockout or knockin
alleles [26, 27]. However, the generation of conditional
alleles remains a challenge using traditional ES cells and
CRISPR-Cas9 gene-editing technologies. A previous
report demonstrated 16% efficiency with two chimeric
sgRNAs and two single-stranded oligonucleotides (re-
ferred here as two-donor floxing method) to produce
conditional alleles in mice [11].
To evaluate the efficiency of the two-donor floxing

method, we replicated the experiments described in the
initial report on Mecp2 (10) at three laboratories using the
same experimental approaches to generate the sgRNA
and Cas9 and microinjected into mouse zygotes along
with ssODN donors. Although we observed single LoxP
site insertions and indels at the cleavage sites, the method
was unsuccessful in inserting two LoxP site in cis. These
results prompted us to conduct a survey on the experi-
ences of the global transgenic research community in
using this method for the routine generation of cKO
models. Twenty transgenic core facilities or large-scale
knockout mouse centers participated in the consortium
contributing data for 56 loci and over 17,000 microin-
jected or electroporated zygotes. In contrast to the 16% ef-
ficiency observed in the first report [11], the large dataset
from the consortium suggests that the method is < 1% effi-
cient and the method generally produces a series of un-
desired editing events, which occur at a nearly 100-fold
higher rate than the correct insertion of the two LoxP sites
in cis. These results are comparable with previous reports
demonstrating an important disparity in success rate vary-
ing from 0 to 7% of mice harboring two LoxP sites inser-
tions in cis whether delivered by microinjection [22, 25,
28–30] or by electroporation [25]. We and others also
noted the large number of deletions at the target sites fol-
lowing DNA cleavage [22].
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What determines the success of the two-donor floxing
method?
Because our dataset represented a “real-world situation”
consisting of diverse experimental conditions, it actually
provided an opportunity to investigate the effect of sev-
eral different parameters on the method’s efficiency. The
factors we analyzed included CRISPR-reagent formats;
reagent concentrations, whether the guides were pre-
tested or not; nucleotide composition at the target sites;
nature of the loci (lethal or non-lethal); distance between
the two guide cleavage sites; mouse strains used; micro-
injection technician skills; and laboratory/site factor.
Our statistical and machine learning analyses suggested
that none of these factors could explain the lower effi-
ciency of this method. One plausible explanation is that
the method relies on two recombination events leading
to a successful insertion of two donors on the same
chromosomal DNA, and the probability of such an event
(among the multitude of other combination of events)
becomes very low. We tested 11 loci (of the 48 failed
projects with 2 ssODN donor approach) using one-
donor DNA approaches (see the “What are the alterna
tive approaches to the two-donor floxing method?” sec-
tion for the list) with a 10- to 20-fold higher efficiency.
This supports our hypothesis that the one recombin-
ation event that occurs when using one-donor DNA
approach offers better efficiencies than two simultaneous
recombination events needed when using the two-donor
DNA approach. This raises a related question: will the
efficiency be higher if LoxP insertions are far away from
each other (e.g., several kilobases to 100 s of kilobases
apart)? In this instance , because the two recombination
events will be sufficiently far away from each other, will
they negatively affect each other’s efficiency in a similar
way as when they are close to each other? One study re-
ported moderate efficiencies when they placed LoxP sites
sufficiently far away, and the study included 6 loci [31].
The distances between the LoxP sites (and the efficien-
cies of insertions) were 361 kb (5%), 4 kb (2.5%), 205 kb
(18%), 1.6 kb (5%), 348 kb (0%) ,and 7 kb (0%). We did
not find evidence in our data to suggest that placing
LoxP sites several kilobases apart will provide higher
efficiencies, although our sample size is too small to
formally rule out this hypothesis.

What are the alternative approaches to the two-donor
floxing method?
During the previous 2–3 years, a few strategies have
been reported that offer potential alternatives to the
low-efficiency two-donor floxing method. These newer
methods use one-DNA donor formats including long
single-stranded DNAs, linear dsDNAs, or circular dsDNAs
(plasmids). The first set of alternative methods utilize long
single-stranded DNA as a donor; a microinjection-based

approach of this method was named Easi-CRISPR (efficient
additions with ssDNA inserts-CRISPR) [23, 32], and an
electroporation-based approach was named CLICK
(CRISPR with lssDNA inducing cKO alleles) [17]. The
efficiency of Easi-CRISPR for creating conditional
alleles ranged from 8.5 to 18% with a median of 13%
(in previous publications it ranged from 8.5 to 100%
for seven different loci [23, 32]). The CLICK method
was demonstrated using three loci (with four
independent attempts) and had an efficiency ranging
from 3.7 to 16.6% with a median of 11%. Along the
lines of “one-donor DNA approaches,” the methods
using two versions of double-stranded DNA donors
have been reported, one each with linear and circular
dsDNAs. A method termed Tild-CRISPR (targeted
integration with linearized dsDNA-CRISPR) uses
long-dsDNA as donors, which was demonstrated for
two loci at 18.8% and 33.3% efficiency [33]. A second
version of the dsDNA donor is a method utilizing cir-
cular dsDNA molecules (plasmids) to insert LoxP sites
via pronuclear microinjection with efficiencies ranging
from 1.5 to 5.9% for three loci [22], and 20% and
22% for 2 loci from our dataset.
We attempted seven of the loci that failed with the

two-donor floxing method using the recently developed
alternative methods such as the “second LoxP insertion
in the next-generation method” where it uses the one-
side LoxP inserted models of the first injection and re-
injects the second side LoxP donor into zygotes derived
from them. All of the projects produced successful con-
ditional alleles at an average efficiency of 21%. The sec-
ond method using the “sequential delivery of LoxP sites”
introduces each of the guide RNA-ssODN sets into the
same zygotes at 1-cell and 2-cell stages, respectively. We
failed to generate cKO alleles for the three loci
attempted, although the sample size was too small to
provide any conclusion on the efficiency of this tech-
nique. Overall, our results suggest that the newer
methods, particularly those that use the one-donor DNA
approach, appear to be superior alternatives to the two-
donor floxing method.
Based on these results, we make the following

recommendations. Even though it is possible to ob-
tain a cKO allele using the two-donor floxing method,
because of its low efficiency, the method may not be
suitable as the first choice for a routine generation of
cKO mouse models. The newer methods, particularly
those employing long DNA donors (ssDNA or
dsDNA), provide superior efficiencies for the routine
generation of cKO animal models.

Reproducibility of CRISPR-based research methods
Genome editing tools utilizing the CRISPR-Cas systems
have transformed many biomedical research fields as
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they have contributed to a number of powerful research
methods. While many published methods are reprodu-
cible (as evidenced by their wide usage), the research
community often encounters issues in reproducing some
published methods. This may be because the original
“proof-of-concept” papers have used underpowered
studies in demonstrating the method, the results of
which could be an exception, rather than the rule. Our
community effort drawing upon the expertise and
wealth of data from a multi-center transgenic mouse
core facilities and research laboratories has allowed for
the evaluation of collective experiences with the previ-
ously published methods of generating cKO mouse
alleles. Our conclusions and recommendation of repro-
ducible and efficient methods of genome editing will
reduce wastage of resources, including animal lives.
Our work exemplifies the importance of critical re-
evaluation of the methods impacting larger research
communities. Studies like this, where larger community
experiences about the published methods are gathered
and the large datasets are critically analyzed to make
recommendations of best practices, can be vital, espe-
cially as the application of CRISPR-Cas9 technology
continues to grow in both basic research and eventually
into the clinic.

Conclusion
In conclusion, we find the two-donor floxing method to
be inherently biased for indels or substitutions at the
double-strand break, deletion between the guide cleav-
age sites, or trans-insertion of the LoxP sites. Even
though it is not impossible to obtain a cKO allele using
the two-donor floxing method, because of its very low
efficiency (~ 1200 zygotes were needed to generate 1
correctly targeted animal), the method may not be suit-
able for the routine generation of cKO mouse models.
The method requires two simultaneous HDR events, an
outcome that we find occurs very infrequently (< 1%)
and is subject to unanticipated genome editing events at
the cleavage sites. The newer methods, particularly those
employing long DNA donors (ssDNA or dsDNA), offer
higher efficiencies and, thus, are more suitable for the
routine generation of cKO animal models.

Material and methods
Ethical statement
All experiments were approved by the respective Institutional
Animal Care and Use Committees in the USA and Ethics
Committees in Australia, Belgium, the Czech Republic,
Japan, Spain, and the UK according to the guidelines or code
of practice from the National Institute of Health in the USA,
the National Health and Medical Research Council
(NHMRC) in Australia, Animals (Scientific Procedures) Act
1986 in the UK, or Ministry of Education, Culture, Sports,

Science and Technology (MEXT), The Ministry of Health,
Labor and Welfare (MHLW) in Japan, the Central
Commission for Animal Welfare (CCAW) in the
Czech Republic, the Canadian Council on Animal
Care (CCAC) in Canada, the National Ethics Code
from the Royal Belgian (Flemish) Academy of Medicine in
Belgium, and the European Code of Conduct for Research
Integrity from All European Academies.

Mecp2 gene targeting using CRISPR-Cas9
Mecp2 left single chimeric guide RNA (sgRNA) 5′-
CCCAAGGATACAGTATCCTA-3′ and Mecp2 right
sgRNA 5′-AGGAGTGAGGTCTAGTACTT-3′ were
designed as described in Yang et al. [11]. Ultramer
oligonucleotides (Integrated DNA Technologies, Coralville,
IA) were designed with sequences to T7 promoter for in
vitro transcription, DNA target region, and chimeric RNA
sequence. Complimentary oligos for each target sequence
were annealed at 95 °C for 5 min, and the temperature was
reduced 0.20 °C/s to 16 °C using a PCR machine (BioRad
T100) before use as a template for sgRNA synthesis.
sgRNAs were synthesized with the HiScribe™ T7 Quick
High Yield RNA Synthesis Kit (New England Biolabs).
Cas9 mRNA was obtained from Life Technologies or
in vitro transcribed from a Chimeric pX330-U6-
Chimeric-BB-CBh-hSpCas9 expression plasmid ob-
tained from Addgene repository (Plasmid 42230; a do-
nation from the laboratory of Feng Zhang). Given the
lack of details on concentrations of CRISPR reagents
used in Yang et al. floxing experiments [11], we chose
10 ng/μl sgRNA, 10 ng/μl Cas9 mRNA, and 10 ng/μl
ssODN for the Mecp2 floxing experiments based on
the fact that these concentrations yielded high-
efficiency ssODN insertions at all of the 12 loci
attempted at the University of Nebraska transgenic
core, the first of the three laboratories where Mecp2 repli-
cation experiments were undertaken. Experiments with
the same concentrations (10:10:10 ng/μl) were then re-
peated at two more laboratories (one in Australia and one
in the Czech Republic).

SgRNA design
SgRNAs were designed using available online tools such as
CRISPOR, Chop-Chop, or CCTop [34, 35]. SgRNAs were
cloned into pX330 and in vitro transcribed [27, 36, 37], or
synthesized and annealed [38]. Cas9 mRNA or protein was
purchased, in vitro transcribed, or purified in-house. Cas9
protein was complexed with the sgRNA or crRNA and the
trans-activating crRNA [39] and then mixed with the
ssODN prior to microinjection. Concentrations and site of
injection for Cas9 protein or mRNA, sgRNA, and template
repairs for each locus are indicated in Additional file 1:
Table S1.
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Mouse husbandry, zygote microinjection and
electroporation
Mice were purchased from various sources and maintained
under specific pathogen-free conditions. Mice were main-
tained under 12/12-h light cycle, and food and water were
provided ad libitum. Three to five week-old females were
superovulated by intraperitoneal injection of pregnant
mare’s serum gonadotropin (5 IU) followed by intraperito-
neal injection of human chorionic gonadotropin hormone
(5 IU) 48 h later. Superovulated females were mated with 8-
to 20-week-old stud males. The mated females were
euthanized the following day, and zygotes collected from
their oviducts. Cytoplasmic or pronuclear injections were
performed under an inverted microscope, using associated
micromanipulators, and microinjection set-up. Electropor-
ation of the embryos was performed with an electropor-
ation device using a cuvette or 1-mm plate electrodes with
the following parameters: 30-V square wave pulses with
100-ms interval using a BioRad electroporator device or
four poring pulses (40 V, 3.5ms, interval 50ms, 10% voltage
decay + polarity) followed by five to six transfer pulses (5 V,
50ms, interval 50ms, 40% voltage decay, alternating + and
− polarity) using a NEPA21 electroporator device. Microin-
jected or electroporated zygotes were either surgically
transferred into the ampulla of pseudo-pregnant females or
cultured overnight at 37 °C and then surgically transferred
at the 2-cell stage of development.

Genotyping
As a general practice, at all centers, the genomic DNAs
were first analyzed by PCR to identify mice containing both
LoxP sites. The animals were declared negative if genotyp-
ing did not reveal the presence of shifted bands corre-
sponding to the size of LoxP (34 bp). The DNA extraction
was performed on ear punch or tail tip collected from
mouse pups over 15 days old using a DNA extraction kit
according to the manufacturer’s instructions. Primers were
designed to amplify the regions encompassing the inte-
grated LoxP sequence. PCR was performed using Taq poly-
merase under standard PCR conditions. The PCR products
were then purified with ExoSAP-IT1 or a PCR Clean-Up
System kit according to the manufacturer’s instructions.
Sanger sequencing was performed in core facilities. To
identify LoxP insertions, as a general practice at all centers,
the two target sites were amplified individually to look for
an increase in the amplicon size, which occurs if LoxP sites
are inserted successfully. If the LoxP insertion was not ob-
served in this first set of PCR analyses, the samples were de-
clared negative for LoxP insertion, and in many such cases,
the samples were not analyzed further (as the end goal of
the project, i.e., generation of the floxed allele, was not
met). In some cases, such samples were also sequenced to
assess indels to understand if the guides were successful in
cleaving the target site. In some cases, the entire regions

encompassing both the guide cleavage sites were amplified
to assess for deletions between the cleavage sites.

Machine learning modeling
We used Python to prepare the dataset for modeling a
random forest [21] classification model. This requires each
target to be assigned a binary label, i.e., 0 or 1. We in-
cluded each of the targets from Additional file 2: Table S2
for a total of 54 samples (49 unique loci). Due to the rela-
tively low number of successes, we binned the data into
two classes, “positives” and “negatives.” For this, we used
the “correctly targeted” column from Additional file 2:
Table S2. We assigned targets with 1 or more successful
edits to positives and targets with zero successful edits to
negatives. This resulted in 12 positives and 42 negatives.
We then generated a feature matrix for the dataset.

This is a representation of the dataset in a format suit-
able for modeling using the random forest algorithm,
where each row in the matrix represents a target. This
involves converting properties from the target to a nu-
merical representation. For example, we convert the
DNA sequence AAATC to [A:0.6, T:0.2, C:0.2, G:0].
However, as well as single nucleotide proportions, we
also include dinucleotide proportions (i.e., AA, AT, CT).
We do this for each of the sequences (5′ guide RNA, 3′
guide RNA, 5′ donor sequence, and 3′ donor sequence)
from Additional file 1: Table S1. We also include the
lengths of the 5′ and 3′ donor sequence for each target.
With the labels and feature matrix, we then trained a

random forest model using scikit-learn [40]. We trained
the model using the default parameters. However, due to
the imbalanced classes (a low number of 1 s vs. 0 s), we
instructed the algorithm to use a custom “class_weights”
parameter.
To quantify the model’s performance, we take advantage

of the out-of-bag (OOB) error property of random forests.
This value is generated during training by evaluating each
“tree” in the random forest model using the samples that
were not included for training that tree (through boot-
strapping). We observe an OOB error of 0.222. Finally, we
can identify important features using the “feature_impor-
tances_” property of the random forest model.
Source code is available on GitHub repository https://

gist.github.com/aydun1/932f526867f7f8139b8e8eae7c76
e866 and Zenodo doi: https://doi.org/10.5281/zenodo.333
9039 under the MIT license.

Statistics
To determine the statistical differences between the pro-
portions, we performed a Fisher exact test or a Kruskal-
Wallis sum-rank test or a Kolmogorov-Smirnov test. For
means, we performed a Mann-Whitney U test. A general-
ized linear model calculation was performed with success
of the two-donor floxing method as a response. Predictive

Gurumurthy et al. Genome Biology          (2019) 20:171 Page 11 of 14

https://gist.github.com/aydun1/932f526867f7f8139b8e8eae7c76e866
https://gist.github.com/aydun1/932f526867f7f8139b8e8eae7c76e866
https://gist.github.com/aydun1/932f526867f7f8139b8e8eae7c76e866
https://doi.org/10.5281/zenodo.3339039
https://doi.org/10.5281/zenodo.3339039


variables were efficiency of the sgRNA; probability of LoxP
insertions in 5′ and 3′ (5′_LoxP and 3′_LoxP); simultan-
eous insertion of the two LoxP sites (interaction between 5′
_Loxp and 3′_LoxP); Cas9 mRNA, protein, plasmid, and
ssODN concentrations; and distance between the distal and
proximal target sites. Variance for each predictor was
determined by calculating the diagonal of the variance-
covariance matrix. Effect sizes and type II error were
determined using Cohen effect size d statistics and power
calculation. All statistical analyses were performed using
Rstudio v1.1.423. The results were considered statistically
significant at p < 0.05.

Additional files

Additional file 1: Table S1. The guide RNA and singlestranded
Oligonucleotide DNA sequences, their concentrations and the length of
genomic regions floxed (in bp) reported in this study. (XLSX 29 kb)

Additional file 2: Table S2. The results of the two-donor floxing
approach via microinjection for 49 unique loci. (XLSX 21 kb)

Additional file 3: Table S3. The results of the two-donor floxing
approach via electroporation for 7 unique loci. (XLSX 11 kb)

Additional file 4: Table S4. Overall efficiency of the two-donor
(2sgRNA-2ssODN) floxing method of generating the cKO alleles
(XLSX 9 kb)

Additional file 5: Table S5. The details and the results of the 330
unique loci attempted for ssODN knock-in projects (i.e. point
mutation knock-in or short-tag insertion projects). (XLSX 14 kb)

Additional file 6: Table S6. The details and the results of alternate
methods of floxing, tested on 18 loci. (XLSX 23 kb)

Additional file 7: Table S7. The Evaluation of the modified method of
two-donor floxing method (sequential delivery approach) reported in the
Horii et al. 2017 report. (XLSX 11 kb)
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