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ARTICLE

Understanding congestion propagation by
combining percolation theory with the macroscopic
fundamental diagram
Lukas Ambühl 1✉, Monica Menendez2 & Marta C. González3

The science of cities aims to model urban phenomena as aggregate properties that are

functions of a system’s variables. Following this line of research, this study seeks to combine

two well-known approaches in network and transportation science: (i) The macroscopic

fundamental diagram (MFD), which examines the characteristics of urban traffic flow at the

network level, including the relationship between flow, density, and speed. (ii) Percolation

theory, which investigates the topological and dynamical aspects of complex networks,

including traffic networks. Combining these two approaches, we find that the maximum

number of congested clusters and the maximum MFD flow occur at the same moment,

precluding network percolation (i.e. traffic collapse). These insights describe the transition of

the average network flow from the uncongested phase to the congested phase in parallel with

the percolation transition from sporadic congested links to a large, congested cluster of links.

These results can help to better understand network resilience and the mechanisms behind

the propagation of traffic congestion and the resulting traffic collapse.

https://doi.org/10.1038/s42005-023-01144-w OPEN

1 Institute for Transport Planning and Systems, ETH Zurich, Zurich, Switzerland. 2 Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United
Arab Emirates. 3 Department of City and Regional Planning and Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
✉email: ambuehll@ethz.ch

COMMUNICATIONS PHYSICS |            (2023) 6:26 | https://doi.org/10.1038/s42005-023-01144-w |www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01144-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01144-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01144-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01144-w&domain=pdf
http://orcid.org/0000-0001-8835-0950
http://orcid.org/0000-0001-8835-0950
http://orcid.org/0000-0001-8835-0950
http://orcid.org/0000-0001-8835-0950
http://orcid.org/0000-0001-8835-0950
mailto:ambuehll@ethz.ch
www.nature.com/commsphys
www.nature.com/commsphys


Urban traffic networks act as important engines of urban
growth and economic prosperity but also place limits on
their sustainability, health, and quality of life. Thus,

understanding the collapse of traffic networks (i.e. network-wide
congestion) influences land use and environmental policies.
Current methods of modeling the dynamics of traffic congestion
lack cohesion, especially when they come from different fields.
Current studies either investigate the macroscopic traffic
dynamics1–5, or they analyze the spatio-temporal congestion
propagation at the network level6–10.

Since the beginning of traffic research, a few key descriptors of
traffic dynamics on individual links have proven useful. Among
the most prominent are the Fundamental Diagram9,11–13 and the
Bureau of Public Roads (BPR) function14. According to the
fundamental diagram as shown in Fig. 1, initially uncongested
roads will allow traffic flow to increase as vehicle density
increases. However, once the density exceeds a certain value, the
flow begins to decrease resulting in congestion. Similarly, the BPR
function, named after the Bureau of Public Roads, describes
traffic congestion on a link as a function of its traffic volume
divided by its theoretical capacity. Despite the success of these
link level metrics, they neglect the interactions with other roads.
As a result, they do not provide information about large scale
traffic congestion.

Network level perspectives seek to remedy this by capturing the
complexities of traffic dynamics throughout the full road net-
work. Many such indicators have been proposed including travel
time15,16, observed network flows17, and network capacities18,19.
At their core, these all attempt to extend successful link level
metrics in the hopes of accurately describing the full complex
network through a single, simple to understand quantity. The
MFD represents a network level analogy of the fundamental

diagram. It does so by relating the average network flow to the
average vehicle density. The MFD is widely used in traffic engi-
neering since it allows, with local data from loop detectors, to
parsimoniously model, manage, and optimize traffic in urban
networks.

Existing literature has demonstrated the importance of such
inter-link communication1,6,20–25. Pioneering work in the last few
years established that traffic networks exhibit a percolating state
based on the characteristic speeds in their roads6,21. Follow-up
works have confirmed this fact, a recent example of this is the use
of a susceptible-infected-recovered (SIR) model to predict20

traffic congestion propagation. This is a general approach based
on percolation theory26,27. Many types of networks exhibit per-
colation processes where drastic changes in the geometric struc-
ture of congested clusters can occur, analogous to traffic
congestion spreading as seen in Fig. 1. A simple example of
percolation is given by the lattices shown in Fig. 128. Here, the
sites (squares) of an infinite lattice have a probability p of being
congested and 1−p of being uncongested. For small p (i.e. few
congested sites), there exist several small clusters (connected
purple squares). Conversely, for large p, a single large cluster of
the same order as the system develops. Note, the transition
between scenarios is very drastic, occurring at what is called the
critical point.

Despite the rich literature on both the network science and the
traffic engineering side, these two perspectives have not yet been
unified into a single Science of Traffic Networks consistently
describing the dynamics of the congestion. How is the percolation
phenomenon linked to the aggregated traffic states observed in
the network and depicted by the MFD? In this work, we address
this issue by connecting the two perspectives for five diverse cities
worldwide. We begin by modeling the traffic networks through

Fig. 1 Examples of link and network level perspectives compared. The figure shows traffic conditions (measured in speed ratio) at 06:30, 07:30, and
08:30 in Downtown Los Angeles, respectively. The speed ratios are obtained by dividing traffic speed by the speed limit. Traffic flow on a single link is
described by a fundamental diagram (FD). Here, we show a triangular version thereof, where we identify two states: uncongested (increasing slope above
the yellow box) and congested (decreasing slope above the purple box). At the network level, the macroscopic fundamental diagram (MFD) describes the
traffic dynamics for urban road networks. We link the two perspectives using percolation represented by squares (sites) of an infinite lattice. Each square in
the lattice has a certain probability p of being congested (purple) and 1−p of being uncongested (yellow). This is analogous to a traffic network, where each
link is either uncongested or congested as defined by a fundamental diagram. Percolation models the likelihood of finding a path from the top to the bottom
of the lattice via congested (purple) sites based on the value of p. An example of such a path is marked in red in the lattice in the middle.
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simulations spanning an extended morning traffic peak. These
networks incorporate high-resolution features including road
classes, priorities, lane geometries, and traffic signals. We com-
bine this framework with calibrated origin-destination matrices
and state-of-the-art traffic simulations in order to emulate rea-
listic conditions. We then assess the network level traffic per-
formance and connect multiple network level measures. We
uncover a relationship between the MFD and percolation theory,
which allows us to arrive at a surprisingly clear connection
between the network and link level perspectives: the number of
congested clusters of percolation and the average flow in the
network (MFD) follow the same function across the day - the
correlation coefficient is 0.93. Moreover, the number of congested
clusters reaches its maximum simultaneously with the global
system flow (in veh/h) represented by the maximum of the MFD.
From a percolation perspective, the depicted behavior of the
number of congested clusters is a concomitant phenomenon of a
percolation process - it is what we call a precursor for percolation.
In other words, once the MFD flow starts to decrease, congested
clusters start to merge, hence their number decrease, which in
turn is the precursor of the very quick formation of a congested
cluster spanning a large part of the network - i.e. percolation.
Therefore, we argue that the uniting element of the MFD and
percolation is the maximum number of clusters. Therefrom we
conjecture that the MFD and the percolation process are transi-
tively connected to each other. These results connect the MFD
and percolation theory.

Our findings, therefore, provide a clear understanding of the
traffic response in cities. This, in turn, can affect their planning of
space and demand for mitigating congestion’s negative impacts.

Results
Approach. We analyze spatiotemporal traffic patterns using state-
of-the-art traffic simulations29 of five metropolitan areas: Boston,
Lisbon, Los Angeles, Rio de Janeiro, and San Francisco. Origin-
Destination (OD) tables for traffic demands were initially derived
from call detail records (CDR), calibrated, and used in previous
studies30–32. Figure 2 depicts each of these networks to scale. The
Fig. 2d inset magnifies downtown San Francisco highlighting the
details of the simulation. Unlike other models, the extent and
detail of the network allow for realistic congestion spreading at
high spatiotemporal resolution. Our analysis focuses on an
extended morning peak hour (05:30-11:00). Details on the net-
works, simulation framework, and travel time validation are given
in Methods and Supplementary Note 2.

Network level traffic performance. In the past decade, the traffic
engineering community has employed a conservation-based
reservoir modeling of city-wide traffic congestion3,4,18. It is best
illustrated by a bathtub where the water inflow refers to cars
joining the traffic stream, water draining from the bathtub to cars
leaving it by exiting the network or ending their trip, and the
depth of water in the bathtub to the density of traffic. Such
behavior is summarized by the MFD as introduced in Fig. 1. The
product of traffic density and speed defines the system’s trip
arrivals at destinations per time step. Above some peak flow
density, traffic flow (which is proportional to the vehicle-distance
traveled) decreases resulting in a lower trip ending rate2.

Figure 3a, b show the MFDs for the morning peak on the
central business district of the five cities analyzed. Each dot
represents the average traffic conditions sampled at 5-minutes
intervals. Functionally, the MFD flow is defined as:

MFD � X �
P
l2
‘lxl

P
l2L

‘l
ð1Þ

where X is the average flow (veh/h-lane; measured over 5-minutes
intervals) through the network, ℓl is the lane-length (summed
over all lanes) of link l, xl is the number of cars that flow through l
in a given time interval, and L is the set of all links. It is important
to note that as traffic increases, the average speed of a driver in
the network decreases, even before the peak average flow is
observed (i.e. while the system is theoretically uncongested). This

Fig. 2 Maps of the traffic networks for each city. The networks depicted represent the morning traffic conditions (at 09:00) on a weekday in a Boston,
b Los Angeles, c Rio de Janeiro, d San Francisco Bay Area, and e Lisbon. The speed ratios are obtained by dividing traffic speed by the speed limit.

Fig. 3 An analysis of the average traffic performance of the central
business district of each city. a Depicts the measured macroscopic
fundamental diagram (MFD) flow versus vehicle density of each city. Note
that Lisbon and Boston do not reach the congested branch of the MFD.
b Shows the MFD speed as a function of vehicle density. Labeling colors are
identical to Figure a.
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is evident by the curved top of the MFD, see Fig. 1. Three cities
exhibit a decreasing, congested branch in the MFD: San Francisco
(SFO), Rio de Janeiro (RIO), and Los Angeles (LAX). Boston
(BOS) and Lisbon (LIS) do show decreasing flows in the
uncongested branch, but they are the result of a decrease in
traffic demand and not traffic congestion.

Traffic percolation. Following our introductory Fig. 1, we ana-
lyze traffic in the five urban networks as a percolation phenom-
enon. For every time interval, we classify every link as either
congested or uncongested using its current traffic condition based
on the fundamental diagram (a link level metric). This binary
definition is consistent with the traffic dynamics of a road seg-
ment. Essentially, it follows the idea of a triangular fundamental
diagram. Using a labeling approach that is based on the critical
density of the fundamental diagram is a precise and model-
independent choice, which is consistent at the link and network
level - unlike the speed-dependent definition used by previous
studies in traffic percolation (e.g. ref. 21). A congestion definition
based on speed is ultimately subjective and somewhat arbitrary.
This seemingly minor difference enables us to use consistent
definitions across both the link and network level perspectives
and therefore ultimately unify our results.

To the best of our knowledge, previous studies focusing on
percolation did look into how the percolation threshold changed
over time depending on the time of the day. They did not, however,
look at how the clusters themselves evolved over the time of the
day. Here, we track the evolution of congested clusters over time,
which has been neglected in previous traffic percolation analyses.
We find that while the number and the size of the congested
clusters are relatively low in the early morning, both increase with
time until the clusters start merging into one large cluster.

Figure 4 shows the average flow based on the MFD (a network
level measure), the number of clusters, and the size of the largest
cluster as a function of time. We see that, in San Francisco, Rio de
Janeiro, and Los Angeles, the peak network flow occurs when the
number of congested clusters reaches its maximum, right before
the giant component emerges28. While Boston and Lisbon do not
reach their maximum possible flow, we still observe a correlation
between their average flows and the number of clusters. To the
best of our knowledge the average flow in a network has not been
linked previously to the spatial propagation of congestion. Traffic
throughput depends on the number of links congested and
especially on the number of congested clusters. Thus, the MFD,
which represents the traffic flow, is evidently linked to the
congestion propagation in urban traffic networks. From a

statistical perspective, we tested the correlation between the
MFD flow and the number of congested clusters and they average
0.93 over all five cities and simulations, hence, confirming the
high similarity between the trends from a technical perspective.

Right after reaching the maximum number of clusters, we see a
sharp increase in the largest cluster’s size, the giant component
(LG), for the cities exhibiting a congested MFD branch. The gray
curve represents the evolution of LG. In the beginning, clusters of
congestion are locally isolated. With time, they grow in number.
Once the clusters start to merge and their overall number drops,
these pockets of congestion stop being a local phenomenon. It
becomes more difficult (but not impossible) to detour since many
links are now congested. The detours get longer and slower; hence,
the MFD flow reduces. The clusters remain mostly separated in
space until a critical point is reached where the clusters suddenly
merge into one giant component. This marks the time instant at
which the network percolates. It is common to define the
percolation point as the moment at which the second-largest
cluster reaches its maximum size21. Intuitively, this happens right
before it merges with the largest cluster. This moment in time is
shown as a vertical dashed line in Fig. 4. From our analysis, it
becomes clear that not all cities exhibit percolation under realistic
traffic conditions. Congested clusters in Boston and Lisbon do not
reach the point of percolation with current traffic demand levels.
Still, these cities confirm the high correlation between the number
of congested clusters and average MFD-flow, also for the non-
percolating networks. Artificially increasing the traffic demand for
these cities proportionally would cause their networks’ MFDs to
become congested and thereafter percolate like the other cities
shown. In this study, we refrain from doing so in order to
demonstrate our findings on real networks with real demand levels.
A detailed analysis of the cluster size distribution before, at, and
after percolation can be found in Supplementary Note 4.

We see that as the MFD reaches its maximum, network
congestion spills back across the network, causing congested
clusters to merge and eventually bringing about the percolation
transition.

While this helps to unify the different perspectives to
understand traffic, the classical implementation of percolation
assesses how the system changes with probability rather than
time. Figure 5b shows the fraction of links of our network that
resides in LG vs the congestion probability (fraction of
congested links). At low congestion probability, LG contains
only a small fraction of the network. Then after the critical
point, LG jumps to a large fraction. Simultaneously, the second-
largest component (SG) suddenly drops in value (Fig. 5a). We

Fig. 4 Comparison of the macroscopic fundamental diagram (MFD) and traffic congestion spreading. This figure depicts the temporal evolution of the
size of the largest cluster (LG, gray), the MFD flow (veh/h-lane, yellow), and the number of congested clusters (Nc, blue) for a selected random seed in
a San Francisco, b Rio de Janeiro, c Boston, d Los Angeles, and e Lisbon. The solid vertical line indicates the time at which the maximum number of clusters
emerge, which coincides with the time at which the MFD reaches its maximum flow; the dashed line indicates when the system percolates.
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should note that the critical point appears to shift depending on
the city. This may indicate that the effective dimension of the
various cities is different because the critical point depends on
network characteristics19,28. Furthermore, it has been shown
recently that the dynamics of traffic flow on city roads and
highways result in different effective dimensions33. Thus, the
variations of the critical point are likely a result of different
network compositions (e.g. a change in the ratio of city roads to
highways).

In order to better understand how the system changes with the
congestion probability, Fig. 5c shows the evolution of the
congestion probability over time. Note that the congestion
probability is a function of the evolution of the origin-
destination matrix over time combined with the network
structure. Not surprisingly, the probability increases substantially
for the three cities reaching a congested branch of the MFD. Still,
the pattern varies significantly, which further underlines the value
of our study which unifies congestion propagation under the
umbrella of the MFD and percolation.

Discussion
A century passed the age of the automobile, traffic networks are
still being described as engines of global growth and prosperity.
However, their uninformed expansion is a leading cause of pol-
lution and other negative externalities. The collapse of traffic
networks, i.e. network-wide congestion, causes a loss in social and
economic opportunities and increased carbon emissions. In our
endeavor towards greener and more livable cities, a clear
understanding of traffic network congestion is necessary to sim-
plify science-informed policy.

In this work, we use realistic high-resolution simulations to
explore the impact of traffic congestion on urban road networks.
We uncover a strong correlation between the percolation of traffic
congestion (long-established by network scientists) and the
average flow through the network as measured by the MFD
(widely used by traffic engineers). Both are connected by the
number of congested clusters and the average network flow, for
which both reach their maximum simultaneously, serving as a
pre-cursor for a percolation of congestion. This surprisingly clear

connection between the network and link level perspectives
allows us to coherently describe the dynamics of the congestion at
both levels simultaneously. Therefore, because percolation is a
tool for assessing network resilience, our results have the potential
to enable planners to take advantage of the minimal data
requirements of the network level measures to assess road net-
work resilience using a single actionable framework.

While the theories and concepts used here have been studied
on their own, we take it one step further and show that they are
indeed connected. When combined they lay the groundwork for a
unification of perspectives, approaches, and fields of study into a
single Science of Traffic that updates our understanding of urban
traffic substantially. It allows traffic scientists to draw on
knowledge from a coherent set of models and approaches and to
communicate their results more efficiently to other researchers in
the field.

Our congestion definition allows for consistency, but it also
might classify roads as congested as per the triangular funda-
mental diagram, when in fact they still show a relatively high flow,
close to capacity. Intuitively, it takes some time for congestion to
move upstream connecting multiple saturated roads to create a
large congested cluster. This might explain some of the delay
between the MFD-flow maximum and the critical point of per-
colation. Nonetheless, a further sensitivity analysis is necessary in
the future to fully describe the magnitude and mechanisms
behind such delay. Moreover, our binary definition of congestion
based on traffic flow theory does not easily translate to previously
used definitions in the field of traffic percolation. Future work
could try to relate metrics previously used in traffic percolation,
such as the critical speed threshold used in ref. 21. Additionally,
while we found that our focus on congested clusters offers a better
understanding of the spatio-temporal evolution of congestion, an
interesting line of future research consists of analyzing uncon-
gested clusters and any relation they might have to the percola-
tion process.

From a traffic perspective, newer and more dynamic approa-
ches in the field allow for a time-dependent definition of an
MFD-controlled perimeter. Instead of relatively complicated
partitioning algorithms for homogeneous regions, future research
could test new frameworks which mostly focus on preventing the

Fig. 5 Percolation and congestion probability. a, b shows the traditional percolation approach as the fraction of links of our network that resides in SG and
LG vs the congestion probability (includes all 15 random seeds; SG represents the second largest component, here smoothed across all seeds; Lnet represents
the size of the network; a shares same colors as b). c shows the congestion probability over time.
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merging of two separated clusters (the percolation moment).
Instead of controlling somewhat homogeneous regions, it could
be interesting to show whether it is possible to apply a similar
framework as in ref. 21, identify critical bottlenecks in the net-
work, and thereby define new partitioning methodologies and
traffic control schemes. Note, such ideas were very recently fol-
lowed up by ref. 34.

Open work in this subject contains, but is not limited to, a
further comparison of cities of various sizes, demographics, and
network topologies to systematically account for socioeconomic,
emissions, and network variance. Our study offers the starting
point for future research to understand which relationships exist
between traffic demand, network topology, management strategy,
and existence and time of percolation. The Science of Traffic
Networks will become increasingly important when planning
urban road networks to account for the recent urbanization
trends and the development of more liveable and greener cities.

Methods
Data. The networks were extracted from OpenStreetMap (OSM). When available,
the number of lanes, speed limit, and traffic signal locations were extracted directly
from OSM databases. In all other cases, heuristics were used to infer the missing
information. The networks include all road types – even traffic-relevant residential
roads. Origin-Destination (OD) tables for traffic demands were initially derived
from call detail records (CDR), calibrated, and used in previous studies30–32. The
spatial resolution of the origin-destination table corresponds to traffic assignment
zones, which, depending on population density, encompass roughly 1-2 km2. We
discuss the details in Supplementary Note 1.

Simulation. The simulations are generated with SUMO29 using a mesoscopic
multi-lane model35. Roads are segmented, and traffic dynamics are modeled from
segment to segment obeying some capacity and space constraints. This allows for
realistic modeling of vehicle queues. Intersections are modeled according to a
detailed right of way scheme. We implement a periodic, stochastic routing of
vehicles based on the current traffic conditions in the network29. Routing is done
via a stochastic shortest path method. 50% of the vehicles adhere to their initial
route and 50% are re-routed every 6 min. This is similar to common simulation
setups36. We use a time resolution of 1s and run 15 different random seeds. The
details of the models are discussed in Supplementary Note 2.

Congested links. We use the fundamental diagram of traffic (FD) to find the peak
flow density for every link. If the link’s traffic density ki exceeds the peak flow
density kci of its fundamental diagram, we classify it as congested (kiðtÞ> kci ). See
Supplementary Note 3 for more information.

Data availability
The simulation data that support the findings of this study are available in ETH Zurich’s
Research Repository with the identifier https://doi.org/10.3929/ethz-b-000584669.
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