
UC Irvine
ICS Technical Reports

Title
Limited exception modeling and its use in presynthesis optimizations

Permalink
https://escholarship.org/uc/item/1fr4z0kn

Authors
Li, Jian
Gupta, Rajesh K.

Publication Date
1996

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1fr4z0kn
https://escholarship.org
http://www.cdlib.org/

Notlce: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Limited Exception Modeling and Its Use

in Presynthesis Optimizations

tjian Li and ^Rajesh K. Gupta

Technical Report :jjt96-48
October, 1996

^Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, XL 61801

^Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425

^j-li3@uiuc.edu, hgupta@ics.uci.edu

Abstract

In behavioral descriptions, statements that allow limited control
jumps, such as Verilog disable statements on named blocks, are often
used for describing system behavior in presence of exceptions. In this
paper, we extend the Timed Decision Tables (TDT), a tabular model
of behavioral descriptions, to represent more general control struc
tures including exceptions. We introduce the notion of action sharing
that allows us to reduce resource requirements using existing high-level
synthesis tools on descriptions with control exceptions. We present
presynthesis algorithms that works on the extended TDT model and
algorithms to perform action sharing in TDT models. Our experiments
on well-known HardwareC benchmarks show size reduction resulting
from sharing actions in the input behavioral descriptions.

SL e-AR.

lBn9)siViaiflTisoitoM•
batooloiqadyfim<
wbJliiQhvqoOvd
(.0.3.UW9HiT)

Limited Exception Modeling and Its Use in Presynthesis
Optimizations

Abstract

In behavioral descriptions, statements that allow limited control jumps, such as Verilog

disable statements on named blocks, are often used for describing system behavior in presence

of exceptions. In this paper, we extend the Timed Decision Tables (TDT), a tabular model of

behavioral descriptions, to represent more general control structures including exceptions. We

introduce the notion of action sharing that allows us to reduce resource requirements using ex

isting high-level synthesis tools on descriptions with control exceptions. We present presynthesis

algorithms that works on the extended TDT model and algorithms to perform action sharing

in TDT models. Our experiments on well-known HardwareC benchmarks show size reduction

resulting from sharing actions in the input behavioral descriptions.

Key words: Exception Handling. Control Flow Modeling. Timed Decision Tables. Presynthesis Optimiza-

Area of Tnterest; 5.1, 4.4

1 Introduction

Due to the maturity of optimization and synthesis tools at logic and register transfer level, system
specification is increasingly being done at behavioral level using Hardware Description Languages
(HDL). Behavioral descriptions in HDLs use control-flow constructs such as conditional branches

and loops, which are also commonly used in programming languages. In addition to the normal
control flow constructs such as if statement or while loop, some HDLs also support mechanisms
for exception handling. There are two kinds of exceptions: (1) immediate transfer of control such
as a goto statement inside a loop, (2) interruption, in which the interrupted control flow is resumed

after exception processing is completed. The exception handling is frequently used for concurrent

system simulation, although its use in synthesis has been very limited. In this paper, we focus on

circuit synthesis from descriptions with control exceptions.

As an example of exception modeling mechanism, consider the Verilog disable statement.
Verilog disable statements are defined on named blocks [1]. A Verilog block is defined by a pair
of begin and end and groups together one or more behavioral statements. Verilog blocks can be
assigned names. The Verilog block with a name is called the named block. A disable statement is

defined within a named block. Semantically, a disable statement on a named block is equivalent to a
goto to the end of this block. Disable statements are used to break out of a loop or nested branches

or to continue executing with the next iteration of the loop. Disable can also be used when there

are are multiple processes [1]. Disable in multiple processes is used to model interruption. In this
paper, we focus on modeling control exceptions within a single process.

begin: blockA
if (A)

begin
ifCB)

begin
ABC;
disable blockA;

end

XY2;
end

Figure 1: A Verilog description with a named block and a disable statement.

Consider the Verilog description in Figure 1 showing a named block and a disable statement.

Here the outermost block is named blockA. The statement "disable blockA;" breaks out of the

nested branches.

When using structured programming languages such as C without goto statements or Verilog

without disable statements, the scope of the blocks are statically defined and any two scopes are

either nested or disjoint. In other words, blocks do not intersect each other. The control flow

in such descriptions can be represented by serial-parallel (SP) graphs, or equivalently as regular

expressions such as Control-flow Expression (CFE) [2].

High-level synthesis of digital systems consists of subtasks such as scheduling, resource allo

cation/binding and control generation. Algorithms for these subtasks are developed for input

description without exceptions. Consequently, high-level synthesis systems such as ADAM [3],
Olympus [4], SAW [5] and YSC [6], consider only structured inputs with very limited exception
modeling such as RESET signals. The latter is incorporated in synthesized circuit by a specific
choice of storage elements (flip-flop with asynchronous set/reset). In presence of control exception

the input control flow is no longer structured (i.e. SP). It is possible to rewrite the description
such that it can then be synthesized by duplicating appropriate actions. For instance, consider the

example in Figure 1. The original non-SP control flow can be converted into SP control flow as

shown below. The generated SP description can be used for synthesis. This description, however,
typically results in a higher resource requirement and lead to sub-optimal synthesis results.

CrahditionA
f7 Vf

<jwdltion^ condKionB>

fT^

// code generated from (b)

begin: blockA

If (A)

if(B)

ABC:

else

begin
XYZ:

FGH; // duplicated code
end

else

FGH:

Figure 2: (a) A non-SP control flow graph which corresponds to the original description with

disable, (b) SP control flow with a duplicated node, (c) Generated description from the SP

control flow graph.

In [7] we introduced a tabular representation to model structured HDL descriptions and apply
behavior preserving presynthesis optimizations using assertions and behavioral Don't Cares. In

this paper we extend the TDT model to include exceptions. We minimize code duplication needed

for traditional high-level synthesis as shown in Figure 2(c) above by a transformation called action

sharing. This extension is based on transforms in the action part of TDTs.
This paper is organized as follows. In the next section, we present the extended TDT model

with an explanation of the concept of behavioral Don't Cares in TDT. In Section 3, we show the
TDT-based algorithms for presynthesis optimization. In Section 4, we present the experimental
results. In Section 5, we conclude and present our future plans.

2 TDT Representations with Actions in Limited-Entry Form

Tabular representations have been used for hardware modeling at different abstraction levels [7, 8,
9]. The TDT model was first introduced in [7]. It is based on the notions of condition and action.
A TDT can be viewed as a set of rules. The rules are selected forexecution according to the values
of TDT conditions. Once a rule is selected, the action part of this rule is executed. A TDT consists
ofcondition stub, condition entries, action stub, and action entries. The condition stub (or action
stub) and condition entries (or action entries) can be arranged in either limited-entry form, or in
extended-entry form. In conventional TDTs presented in [7], action stubs and action entries are
arranged in extended-entry form, while condition stub and condition entries are arranged in limited-
entry form. All the algorithms previously presented work with this arrangement. In a conventional
TDT with the action part in extended-entry form, the action part specifies operations/action on
specific variables in the action matrix. In a conventional TDT with the condition part in limited-
entry from, the condition sub list all the conditions and the condition matrix is essentially a Boolean
matrix. Figure 3(a) shows an behavioral description fragment taken from [7]. In Figure 3(b) we
give one example of the conventional TDT representation which models the same behavior as the

description in Figure 3(a).

if C1 {

if C2

C1 _Y__^ N
C2 Y N ~K

A al a2 a3

delay 1 2 1

C1 Y Y N

C2 Y irir delay
al II 1 I 0 I 0 II 1 "
a2 0 10 2

a3 ~~~l I

Figure 3: (a) A behavioral description in HardwareC, (b) its TDT representation as shown in [1],
(c) its representation in the extended TDT models.

To overcome the limitations of the conventional TDT model, we put the action stub and ac-

tion entries also in limited-entry form, specify a more general execution semantics, and re-write

our presynthesis algorithms accordingly. Figure 3(c) shows the TDT representation of 3(a) with

actions re-arranged in limited-entry form. When arranged in the limited-entry form, the action

stub enumerates all possible action sets, and the section for action entries is essentially a Boolean

matrix. A '1' in the action entries indicates that the action set in the corresponding row will be

executed when the rule in the corresponding column is selected. In contrast, a '0' in the action

entries indicates that the action set in the corresponding row will not be executed when the rule in

the corresponding column is selected.

The execution semantics which is an extension of [7] is as follows: (1) select the set of rules to

apply, (2) execute the action that the selected rules map to. Step 1 is the same as in [7]. More
than one action sets can be executed in Step 2 when one rule is selected for execution. The order of

execution in such case depends on the concurrency type, data dependency, and serialization relation

specified between action sets in the action stub. The concurrency type between two action sets can

be serial, parallel, or data-parallel. When an concurrency type of parallel is specified between two

action sets, they are invoked simultaneously if both are selected for one rule. When an concurrency

type of serial is specified bwtween two action sets, a serialization order also needs to be specified

between these two actions. Normally, we use the order in which these actions appear in the action

stub unless the order is otherwise specified. Execution of the two action sets follow the serialization

order if both action sets are selected for execution in one TDT rule. When an concurrency type of

data-parallel is specified between two action sets, either a serialization order or an data-dependence

relation may be specified between the two to determine the order of execution when both action

sets are selected for execution in one TDT rule. If neither data dependency nor serialization order

is specified, the two actions may be run in parallel. Figure 2(c) shows an example of a TDT model

with action part arranged in limited-entry form. The delay part of the TDT models are often

omitted since this information is not crucial for high-level synthesis or needed in the presynthesis

optimization.

In below we show one example of the extended TDT representation. It models the same behavior

as the Verilog description in Figure 1. Note that action set 'FGH' are shared between two control

paths and that both action set 'XYZ' and action set 'FGH' will be invoked for execution once

column one is selected.

Example 2.1. Consider the description fragment in Example 1.1. It can be model using a TDT with
action stub and action entries in limited-entry form.

B N Y X

ABC II 0 I 1 1 0
XYZ 1 0 0

"FGH II 1 I 0 I r

The conditions 'A' and 'B' are taken from the condition expressions in the original Verilogdescription. There

are three actionsets 'ABC, 'XYZ', and 'FGH'. This TDT lists all the control paths in the behavioral model.

•

One ofthe basic operations onTDTis merging diiferent TDTsinto a larger one. Merging is used
to increase the scope of TDT-based presynthesis optimization. The extended TDT model support
two additional merging cases. First, a TDT with actions in limited-entry form can be merged with
a following or preceding action set. Second, any two procedure TDTs in a sequence can be merged
as long as proper concurrency types, data dependencies and serialization are specified among the
action sets in the resulting TDT. Merging is used to increase the scope ofpresynthesis optimization,
a better chance for merging certainly means a better chance for increasing the,scope ofpresynthesis
optimization. Example 2. 2 shows how a TDT is merged with a following action set. A TDT can
always be merged with a following action set. However, to merge with a preceding action set, none
of the conditions of the TDT should depend on this action set.

£xample 2.2. We assume 03 follows TDTl in an action set of concurrency type serial. We can then
merge 03 and TDTl to produce a new table TDT2 with the same functionality and timing sememtics.

TDTl: I Qi j| 1
02 0

TDT2: I II ^
02 0
03 1

Topreserve the behavior, we specify a concurrency type ofserial between (oi, 03) and (03, 03) in the action
stub of TDT2. The serilization order follows the order in chich these actions appear in the action stub. •

Behavioral Don't Cares in TDT. Behavioral Don't Cares are widely used in presynthesis
optimization [7]. The meaning of these behavioral Don't Cares is closely related to the concepts of
behavior ON-set, behavior OFF-set, and behavior DC-set ofanoperation ina behavioral description
in [10]. These concepts aje well defined in the extended TDT representation.

Take an arbitrary TDT, denoted tdt. We first define condition vector as a column in the

condition part of a TDT, which is essentially one set of possible values the condition variables of
the TDT can assume. Then the behavior ON-set, OFF-set, and DC-set of an operation O are
defined as follows.

• Behavior ON-set of operation O in tdt is the set of condition vectors (condition columns) in
tdt that select O for execution.

• Behavior OFF-set ofoperation O in tdt is the set of condition vectors (condition columns) in
tdt that select no action or actions other than O for execution.

• Behavior DC-set ofoperation O is the set ofcondition vectors (condition columns) in tdt that
violate any one of the assertions specified on the environment or extracted from the data-flow.

The DC-set of operation O depends on the assertions either explicitly specified on the environ
ment of a system by the designer or extracted from the data flow. When a column in the DC-set

of an operation is selected for execution, we also say that this operation evaluates to a behavioral
Don't Care, which means that the result of the computation of this operation has no effect on
the behavior of the specified system. We give two examples in below to illustrate the concepts.
Example 2. 3 shows a TDT with two action sets oi and 02, and it explains the behavior ON-set,
OFF-set and DC-set of oi and 02. Example 2.4 introduces an assertion in the previous TDT and
explains what is a behavioral Don't Care.

Example 2.3. Assume we have a simple behavioral model that iscaptured in the following TDT.

1 0 1

02 I 0 I 1 I 1

Then the behavior ON-set of Oi is C1C2 + cT- The behavior OFF-set of oi is cicj. The behavior ON-set of 02

is ci^ -h The behavior OFF-set of 02 is C1C2. The behavior DC-sets of both operations are empty sets.

Example 2.4. Take the sameTDT, but assert that ci is always true. The third column then violates the
specified assertion. We mark the third column explicitly as shown in below and call it a Don't Care column.

In this case, the behavior ON-set of oi is C1C2. The behavior OFF-set of oi is ci^. The behavior ON-set of

02 is C1C2. The behavior OFF-set of02 is C1C2. The behavior DC-sets of both operations are cj". We also say
that oi and 02 take Don't Care values when Ci is false. •

3 Algorithms

In Figure 4, we show a flow diagram of presynthesis optimization using TDT models. TDT based
optimization is carried out in three steps: (1) reducing the number of columns, (2) reducing the
number of rows, (3) sharing identical actions. Columns reduction can be formalized into a two-

level logic minimization problem and the column optimizer has been implemented by calling an
efficiently-implemented two-level logic minimizer [7]. We have present a set of algorithms in [11] to
carry out column reduction and row reduction. In this section, we present algorithms for sharing
identical actions. We also present generalization of row and column operations for the extended
TDT models with exceptions. We present algorithms following the order of presynthesis flow as
show in Figure 4(a).

input HDL

merged TDT Don't Cares

row optimizer

merged TDT

optimizer
column optiniizer

optimized TDT

code generator
action sharing

optimized HDL
optimized TDT

Figure 4: Flow diagram for presynthesis: (a) the whole picture, (b) details of the optimizer.

3.1 Merging TDT with Actions in Limited-entry Form

As mentioned earlier, merging is used to increase the scope of presynthesis optimization. TDTs
resulting from the parsing phase are typically small. Small TDTs are merged together by recursively
applying several basic merging algorithms. There are three cases: (1) merging TDTs in a sequence,
(2) merging TDTs in a hierarchy, (3) merging a TDT with a preceding or following action set.
When merging TDTs in a hierarchy, we refer to theoutermost TDT as the calling TDT, and inner
TDT as the called TDT. One common case of merging TDTs in a hierarchy is when the called
TDT contains only one condition. Merging in this case is referred to as "basic merge" in [7). We
present in below an basic merge algorithm which works with TDT with actions in limited-entry
form.

Algorithm 3.1 Basic Merge for TDTs with Actions in Limited-entry Form

modifitd.basicjmerge(tdt, suhJtdt)
begin

if (subJdt is the jth action set oftdt) and (subjdt has only one condition) then
condition '^(condition of subJdt);
conditionList *—{conditions of tdt);
if (condition € conidtionList) then

i *—(the index of condition in conditionList);
J *—(ihe set of indices of columnes in which subJdt is selected for execution)
foreach j in J do

if (tdt—*conditionEntry[i][j] —'Y') then
iffyes-action-set ofsubJdt not in action sets oftdt) then

insert the yes-aciion-sei in the action stub oftdt in the position
between the original jih and (j+l)th action sets;

insert a new row in the action entries oftdt with all '0' in the position
between the original jth and (j-hl)th rows;

endif
mark the corresponding action entry as '1';

else if (tdt—^conditionEntry[t][j] = 'N') then
if(no-action-set of subjdt not in action sets oftdt) then

insert the no-action-set in the action stub oftdt in the position
between the original jth and (j-hl)th action sets;

insert a new row in the action entries oftdt with all '0' in the position
between the original jth and (j-hl)th rows;

endif
mark the corresponding action entry as '1

else if (tdt—*conditionEntry[{\\j] = 'X') then
split column j;
0551^71 the two actions in subJdt to the two newly created rules;

endif
endforeach

else (* if having a nev condition *)
add a new row for this new condition;
i *—(the index of this new condition in conditionList);
J *—{the set of indices where subJdt is marked '}');
foreach j in J do

split the column j;
assign 'Y' 'N' respectively to the two new entries at

row i and columns corresponding to original column j;
assign all other new condition entries to '0';
{{(yes-action-set of subJdt not in action sets oftdt) then

insert the yes-action-set in the action stub oftdt in the position
between the original jih and (j+l)th action sets;

insert a new row in the action entries oftdt with all '0' in the position
between the original jth and (j-hl)ih rows;

endif
if(no-action-set of subJdt not in action sets oftdt) then

insert the no-action-set in the action stub oftdt in the position
between the original jth and (j-hl)th action sets;

insert a new row in the action entries oftdt with all '0' in the position
between the original jth and (j-hl)th rows;

endif
mark the two action entries corresponding to the yes-action-set and

no-action-set with '1' respectively;
endforeach

endif

endif

A TDT with only one condition is also referred to as unit TDT. In a unit TDT, the yes-action-

set refers to the action set which is selected when the TDT condition evaluates to true. In contrast,

the no-action-set refers to the action set which is selected when the TDT condition evaluates to

false. The two foreach loops in the merging algorithms are used to support action sharing since in

the extended TDT representation the called TDT may be shared by more than one control paths.

3.2 TDT Construction from HDL Descriptions with Exceptions

Translating HDL description with disable statements involving modifying both the parser and
merger. Algorithm 3.2shows the major changes. Since each column in a TDT represents a control
path and all action sets are presented, modeling a control jump in TDTs simply requires deletion
of action sets between the control jump and the jump target point in each path that contains the
control jump.

Algorithm 3.2 Translate HDL Description with Disable into TDT and Perform Merging Op
eration o f

/* consider step 1-3 as a modified parser */
1. process disable in the same way as all other ALU statements;
2. add a special endblock statement for each named block
3. call the original parser;
/» consider step 4-7 as the modified merger */
4. call other merging algorithms;
5. foreach column with a pair of disable and endblock statements do

mark all action sets in between as '0';
6. remove all disable statements;
7. remove all endblock statements;

3.3 Action Sharing

As mentioned previously, action sharing refers to identification of duplicate actions created due
to modeling of exception control flow as shown in Figure 2. Action sharing is performed in two
major steps: (1) searching for identical action sets, (2) merging corresponding rows in the action
part of the table if merging is valid. Details of this process is shown in Algorithm 3.3. Before
merging identical action sets in Step 3 of Algorithm 3.3 , we check to see if the merging violates
any originally specified concurrency relations or serializations in Step 2.

Algorithm 3.3 Sharing identical action sets

1. Search for identical action sets in the action stub
2. Decide whether or not to merge these actions sets into a shred copy

(a) check on the set of concurrency types, the set of serialization relations each
copy of the identical action set has in relation to other action sets

(b) continue with Step 3 only if these concurrency types and serialization relations are identical
between any two copies of the identical action sets

(c) go back to Step 1 otherwise
3. Merge action sets found in Step 1 into a shared copy

(a) merge action entries into one row, a column of which should be marked as
selected ('1') in this row, if the same column of any other row are marked as selected

(b) modify the data dependence relation so that the shared copy will inherit all the original
relations specified on the action stub

4. Repeat Step 1-3 until no more action can be shared

3.4 Generating HardwareC Code with Duplicated Actions Removed

To use the existing tools, we translate TDT models back into behavioral descriptions. Algorithm 3.4

shows how to generate HardwareC code from optimized TDT models. Note that when one action

set is selected for execution in aU paths in a sub-tdt, only one copy of the code corresponding to

this action set is generated. However, as we mentioned earlier, if control jump structures are not

allowed in a HDL, it is not always possible to rewrite a description without duplicating identical

code segments. In cases when several but not all columns shared an action set in a TDT, often we

have to duplicate the shared action sets during code generation.

Algorithm 3.4 Generating HardwareC Code from TDTs Actions in Limited-entry Form

procedure gencodeFromTDTfidi)
begin

if (there is a row in entries with all *1') then
split tdt into tdt\, aciionSetTn, o^^d tdt2;
call gencodeFromTDTftdti);
call gencodeFromActionSetfactionSetm);
call gencodeFromTDT(tdt2);

elseif (there is a still a row with share actions) then
separate the shared part from tdt if behavior can be preserved
call gencodeFromActionSet on the separated action sets, call

gencodeFromTDT on the reset of tdt;
put two pieces of HardwareC code generated above according to the way the action set

is separated from tdt;
elseif (tdt is a unit TDT with one condition) then

emit "if (condition of tdt) ";
call gencodeFromActionSet(yes-action'Set of tdt);
emit "else";
call gencodeFromActionSet(no-action'Set of tdt);

else
pick in the condition entries a row with no Don't Cares;
creates two tables tdta <ind tdtg as follows

copy all columns in tdt with 'Y' in row i to tdta;
copy all columns in tdt with 'N' in row i to tdtg;
delete row i from tdta and tdts;

generate HardwareC code as follows
emit "if(Ci)";
call gencodeFromTDT(tdtA);
emit "else";
call gencodeFromTDT(tdtB);

endif

procedure gencodeFromActionSet(actionSei)
begin

foreach action in actionSet do
emit proper delimiter according to the concurrency type;
call gencodeFromAciion(action);
emit proper delimiter according to the concurrency type;

end

procedure gencodeFromAction(aciion)

begin
switch (action—*typt)

case TDT: call gencodeFromTDT{aciion—^idi);
case AciionSei: call gencodeFroTnAciionSet(aciion—*subAciionSei);
case ALU: ...
case 10: ...
case MessagePassing: ...

end switch

One approach to avoid duplicating shared action sets, as shown in the second branch in
gencodeFromTDT, is to separate the shared action sets from the TDT while generating Hard-
wareC code from TDT. This separation is not always possible. It is only valid in the following
cases:

1. A concurrency type of data-parallel is specified on the action stub and the shared action
appears as the first action set.

2. A concurrency type of data-parallel is specified on the action stub and the shared action
appears as the last action set.

3. Cases that can be transformed into the above cases via behavior preserving transformations.
For example, the order of two action set can be swapped in a TDT if a concurrency type of
data-parallel is specified and there is no data-dependency specified between the two action
sets.

Though this approach has avoided having multiple copies of identical action sets, it introduces
additional control circuits.

In below we show an example to demonstrate how algorithms for action sharing (Algorithm
3.3) and HardwareC code generation (Algorithm 3.4) presented in this section can be applied.

Example 3.1. Consider the description fragment shown in (a). It isfirst translated into a TDT model in
(b). Following Algorithm 3.3, we search for identical action sets inTDT (b) and merge them to form TDT
(c). Then, following Algorithm 3.4, we generate the optimized code in (d) from TDT (c).

if(syncjaode) {
if (msgvait (ichaxtnal))

xdata = receive(c); /*!*/
else

aaiother^ctiozL_set;

}
else

xdata ~ receive(c); /*3*/

(a)

8ync_mode || V | Y | N"
msgwait "Y N X"

xdata = receive(c) || 1 | 0 | 1"
another.act ionjset I 0"

sync-mode Y Y N
msgwait Y N "X"

xdata = receive(c) /»!»/ || 1 | 0 | 0
ajiother^ction.set I 0"

xdata = receive(c) /*3*/ 0 ~0 T

if (Isyncjnode I msg9ait(c))
xdata = receive(c);

else

another^ctiou_set;

(d)

Here we merge the two copies of the "receive(c)" operation. •

4 Experimental Results

In addition to the merging algorithms, the column and row optimization algorithms originally im
plements in PUMPKIN [7], we have added anotheroptimization step for sharing identical code. To
evaluate the effectiveness of this step, weturn offcolumnand rowoptimization and run PUMPKIN
with several high-level synthesis benchmark designs. Our experimental methodology is as follows.
The HDL description is compiled into TDT models, run through the optimizations, and finally
output as a HardwareC description. This output is provided to the Olympus High-Level Synthe
sis System [4] for hardware synthesis under minimum area objectives. We use Olympus synthesis
results to compare the effect of optimizations on hardware size on HDL descriptions. Hardware
synthesis was performed for the target technology of LSI Logic lOK library of gates. Results are
compared for final circuits sizes, in terms of numbers of cells used.

In Table 1 we show the results of action sharing on examples designs. Description
'comm/exec_unit' refers to the execution unit in a ethernet controller. Description 'cruiser/State'
models a hardware module for speed regulation in a cruiser. Description 'i8251/xinit' is the trans
mit process in a HardwareC version of the 48251' design. Description 'daio_receiver' is the receiver
part of the Digitcil Audio Output (DAIO) chip. Description 'frisc' refers to a simplified RISC
processor. All the designs are from the high-level synthesis benchmark suite [4].

Table 1 lists the synthesized circuit sizes of each benchmark description before and after action

sharing is performed. The percentage of circuit size reduction is computed for each description
and listed in the last column of Table 1. Note that this improvement depends on the amount of

sharable code segments in the input behavioral descriptions.

The overall effect of presynthesis optimization is to rewrite the description and remove re
dundancies in the input description either as a part of the original specification or as a result of
assertions and behavioral Don't Cares. This task is often done by the system designer in an at-

circuit size (cells) A%

before

comm/exec-unit 864

cruiser/State 356

i8251/xmit 971

daio_receiver

Table 1: Synthesis Results: cell counts before and after shared action are identified.

tempt to axrive at an efficient implementation. However, in the case where there are sharable code

segments, it is not always possible to rewrite the code to put identical code segments together in
one shared copy without using control transfer structures such as Verilog disable.

5 Conclusion and Future Work

In this paper, we have extended the TDT representation to model exception handling and resulting
action sharing. We have presented algorithms for row and column optimizations and for action

sharing. Our experimental results on high-level synthesis benchmarks show a circuit size reduction

5-32% depending on the among of sharable code segments in the input behavioral descriptions.
For our future work, we plan to carry out further synthesis tasks starting from the TDT rep

resentation because of the ease it offers for modeling shared action sets. We also plan to work on
the exception handling on multiple processes.

References

[1] D. E. Thomas and P. R. Moorby, The Verilog Hardware DescriptionLanguge. Kluwer Academic
Publishers, 1995.

[2] C. Coelho and G. D. Micheli, "Dynamic scheduling and synchronization synthesis of concur
rent digital systems under system-level constraints," Proceedings of the IEEE International

Conference on Computer-Aided Design^ pp. 175-181, November 1994.

[3] A. Parker, J. Pizarro, and M. Mlinar, "A Program for Data Path Synthesis," in Proceedings
of the 23'̂ '̂ Design Automation Conference^ pp. 461-466, June 1986.

[4] G. D. Micheli, D. C. Ku, F. Mailhot, and T. Truong, "The Olympus Synthesis System for
Digital Design," IEEE Design and Test Magazine^ pp. 37-53, Oct. 1990.

[5] D. Thomas, E. Lagnese, R. Walker, J. Nestor, J. Rajan, and R. Blackburn, Algorithmic and

Register-Transfer Level: The System Architect's Workbench. Kluwer Academic Publishers,

1990.

[6] R. K. Brayton, R. Camposano, G. D. Micheli, R. Otten, and J. van Eijndhoven, "The York-
town Silicon Compiler System," in Silicon Compilation (D. Gajski, ed.), pp. 204-310, Addison

Wesley, 1988.

[7] J. Li and R. K. Gupta, "HDL optimization using timed decision tables," in Proceedings of the
Design Automation Conference, pp. 51-54, June 1996.

[8] K. Rath, M. E. Tuna, and S. D. Johnson, "Behavior tables: A basis for system representation
and transformation system synthesis," in Proceedings of the IEEE International Conference
on Computer-Aided Design, pp. 736-740,1993.

[9] A. J. W. M. ten Berg, C. Huijs, and T. Krol, "Relational algebra as formalism for hardware
design," Microprocessing and Microprogramming, 1993.

[10] R. K. Gupta and J. Li, "Control optimization using behavioral Don't Cares," in Proceedings
of the IEEE International Symposium on Circuits and Systems, 1996.

[11] J. Li and R. K. Gupta, "Timed Decision Table: A model for system representation and opti
mization," Technical Report UIUCDCS-R-96-1971, University of Illinois, 1996.

