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Abstract 

Since the first report of maternal care effects on DNA methylation in rats, epigenetic 

modifications of the genome in response to life experience have become the subject of intense 

focus across many disciplines.  Oxytocin receptor expression varies in response to early 

experience, and both oxytocin signaling and methylation status of the oxytocin receptor gene 

(Oxtr) in blood have been related to disordered social behavior.  It is unknown whether Oxtr 

methylation varies in response to early life experience, and whether currently employed 

peripheral measures of Oxtr methylation reflect variation in the brain.  We examined the effects 

of early life rearing experience via natural variation in maternal licking and grooming during the 

first week of life on behavior, physiology, gene expression, and epigenetic regulation of Oxtr 

across blood and brain tissues (mononucleocytes, hippocampus, striatum, and hypothalamus). 

Rats reared by “high” licking-grooming (HL) and “low” licking-grooming (LL) rat dams 

exhibited differences across study outcomes: LL offspring were more active in behavioral 

arenas, exhibited lower body mass in adulthood, and showed reduced corticosterone responsivity 

to a stressor.  Oxtr methylation was significantly lower at multiple CpGs in the blood of LL 

versus HL rats, but no differences were found in the brain.  Across groups, Oxtr transcript levels 

in the hypothalamus were associated with reduced corticosterone secretion in response to stress, 

congruent with the role of oxytocin signaling in this region. Methylation of specific CpGs at a 

high or low level was consistent across tissues, especially within the brain. However, individual 

variation in methylation relative to these global patterns was not consistent across tissues. These 

results suggest that blood Oxtr methylation may reflect early experience of maternal care, and 

that Oxtr methylation across tissues is highly concordant for specific CpGs, but that inferences 

across tissues are not supported for individual variation in Oxtr methylation. 



1. INTRODUCTION   

Research across many disciplines and organisms has identified a crucial role for the physical 

and social environments of early life as determinants of later development, health, and behavior 

(e.g. Meaney, 2001; Suomi, 1999; Hertzman and Boyce, 2010; McEwen, 2012).  Experience of 

parental care in particular, shapes numerous developmental outcomes in offspring.  In rats, 

decades of research have characterized effects of maternal care on stress-reactivity and anxiety-

like behaviors, mediated in part through the tactile stimulation of licking and grooming pups 

during the early postnatal period (Francis and Meaney, 1999; Gonzalez et al., 2001).  Dams 

display natural variation in grooming frequency, which allows for comparisons between pups 

exposed to high licking (HL) and low licking (LL) in the absence of external manipulation (Liu 

et al., 1997; Caldji et al., 1998; Francis et al., 1999).  In recent years there has been a great 

expansion in the known physiological and behavioral outcomes of early maternal care beyond 

anxiety, including effects on social behaviors.  Natural variation in maternal care alters adult 

social behavior in both male and female rats, with greater social interaction times in the offspring 

of HL dams (Starr-Phillips and Beery, 2014).  Early maternal care also affects play behavior, 

both in juveniles and adults (Parent and Meaney, 2008; van Hasselt et al., 2012; Parent et al., 

2013). 

Oxytocin (OT) is a neuropeptide that plays a role in many aspects of both anxiety and social 

behavior including anxiety, fear, depression, social buffering of stress, maternal behavior, 

individual recognition, trust, empathic accuracy, and social attachment formation (Neumann and 

Landgraf, 2012; Knobloch et al., 2012; Guzmán et al., 2013; Kirsch et al., 2005; Smith and 

Wang, 2014; Beery and Kaufer, 2015; Shahrokh et al., 2010; Guastella and Macleod, 2012; 

Carter et al., 2008; Ross and Young, 2009). While oxytocin production and release patterns 



within the brain are highly conserved across species, the distribution and density of oxytocin 

receptors (OTR) is highly variable between species and plastic within species, suggesting that the 

regulation of oxytocin receptor location and abundance may be an important mechanism 

underlying variation in behavior (Young, 1999; Insel and Young, 2000; Beery et al., 2008; 

Donaldson and Young, 2008; Phelps et al., 2010; Anacker and Beery, 2013).  Oxytocin receptor 

density has been associated with behavioral variation in many brain regions including olfactory 

bulb, striatum, septum, hypothalamus, hippocampus, and amygdala (e.g. Yu et al., 1996; Bale et 

al., 2001; Beery and Zucker, 2010; Ophir et al., 2012; Dölen et al., 2013; Lukas et al., 2013), as 

well as other regions that are part of the extended limbic system or social behavior network 

(Newman, 1999; Goodson, 2005; O’Connell and Hofmann, 2011).   

Maternal care impacts multiple aspects of oxytocin circuitry, with early life social 

environment associated with altered OT and/or OTR profiles in mice, rats, and voles (reviewed 

in Bales and Perkeybile, 2012; Veenema, 2012).  Oxytocin is released in pups following 

grooming-like tactile stimulation (Lenz and Sengelaub, 2010), and variation in maternal care is 

associated with OTR density.  Specifically, natural variation in maternal care has been associated 

with changes in OTR density in the bed nucleus of the stria terminalis and central amygdala of 

female offspring (Francis et al., 2002), and maternal separation has been linked to changes in 

OTR in the hypothalamus, lateral septum, and caudoputamen in male rats (Lukas et al., 2010).  

While many questions remain, the potential for early life events to interact with oxytocin 

circuitry and later social behavior is evident. 

Epigenetic modifications of the genome that alter the activity of specific genes represent a 

path by which experience may influence later physiology and behavior.  One such modification 

is DNA methylation, in which a methyl group is added to the 5’ carbon of a cytosine that is 



typically adjacent to a guanine nucleotide — referred to as a CpG. Such regulation has been 

associated with long term differences in glucocorticoid receptor density by maternal care; these 

differences appear to be maintained throughout the life-course at least in part by variation in the 

extent of glucocorticoid receptor gene (Nr3c1) expression (Liu et al., 1997; Weaver et al., 2001; 

van Hasselt et al., 2012), and differential DNA methylation of its promoter (Weaver et al., 2004; 

Pan et al., 2014) or neighboring regions (McGowan et al., 2011).  

Since the report of postnatal variation in DNA methylation in rats in response to maternal 

care (Weaver et al., 2004), it has become increasingly clear that methylation can be dynamic 

after birth and throughout the lifespan (Fraga et al., 2005; Siegmund et al., 2007; Christensen et 

al., 2009; Miller et al., 2010).  The oxytocin receptor is differentially but highly methylated 

across a wide variety of tissues (Kimura et al., 2003), and may be a good candidate for regulation 

by experience-dependent methylation.  Expression of the oxytocin receptor gene (humans: 

OXTR, rodents: Oxtr) is sensitive to DNA methylation patterns; experimentally induced 

methylation in a CpG rich region ~1kb upstream of the OXTR translation initiation site labeled 

“MT2” by Kusui et al. (2001) has been shown to suppress gene transcription in human and 

mouse tissues (Kusui et al., 2001; Mamrut et al., 2013).  The function of OXTR methylation has 

also been explored in a few studies. Hypermethylation of multiple CpGs within the OXTR 

promoter was identified in blood samples from affected individuals within a human family with 

autism (Gregory et al., 2009), and DNA methylation of a single CpG in this promoter region in 

peripheral blood mononuclear cells (PBMCs) has since been associated with altered neural 

activity in multiple brain regions in functional MRI scans (Jack et al., 2012; Puglia et al., 2015).  

OXTR methylation has been associated with emotional traits and circulating oxytocin in humans 

(Dadds et al., 2014). Methylation of one OXTR CpG in human blood was associated with a 



diagnosis of social anxiety disorder and correlated with stress reactivity in the Trier Social Stress 

test (Ziegler et al., 2015), and another recent study found that OXTR methylation varied with 

both clinical depression and OXTR genotype (Reiner et al., 2015).  These findings suggest that 

methylation of the oxytocin receptor gene and neighboring regions are good candidates for 

investigation within the realm of the prolonged impacts of early maternal care. 

While multiple studies have begun to examine DNA methylation in the brain or peripheral 

tissues and their associations with life experience, we still know relatively little about how 

specific these associations are to tissue type. There has been intense interest in the interpretation 

of DNA methylation assays in readily available tissues such as blood.  While blood methylation 

may be an important biomarker for outcomes such as cancers (Langevin et al., 2012), it is less 

clear if it will be a useful and relevant indicator of epigenetic changes related to brain and 

behavior. Methylation varies across cell types (Lam et al., 2012; Reinius et al., 2012), and blood 

cell composition may vary across and within individuals. Many methylation patterns are also 

distinct across tissue lineages, often with greater cell-type specific variation than inter-individual 

variation. Both concordance and discordance across tissues have been widely reported (e.g. Iyer 

et al., 2010; Liberman et al., 2012; Davies et al., 2012; Jiang et al., 2015; Farré et al., 2015). A 

few studies have reported on methylation of OXTR/Oxtr in multiple tissues, demonstrating 

greater methylation in liver than in uterine myometrium (Kusui et al., 2001; Kimura et al., 2003), 

CpG specific methylation patterns in uterine and mammary tissue (Mamrut et al., 2013), and 

variation in methylation across brain regions (Harony-Nicolas et al., 2014). In the latter study, 

cross-tissue correlations of methylation levels in olfactory bulb and cerebellum were performed 

by CpG, and no significant correlation was found.  In all behavioral epigenetic studies of human 

OXTR methylation to date, blood samples have been used as the tissue source, and a key 



unresolved question is whether blood measures of OXTR methylation are associated with 

methylation in brain regions (Kumsta et al., 2013).  We address this question in rats, and 

interrogate whether potential cross-tissue correlations are useful predictors at an individual level. 

The present study characterizes Oxtr promoter methylation and gene regulation in rats born 

to and reared by rat dams exhibiting natural variation in maternal care in order to a) assess the 

impacts of early life experience in the form of maternal care on Oxtr methylation and b) examine 

these methylation patterns across multiple tissues of interest either for their ease of sampling or 

connections to behavior.  Oxtr methylation was assessed in a CpG island ~1.2 kb upstream of the 

coding region; this sequence was chosen because it encompasses a region of high conservation 

across vertebrates, as well as much of the MT2 region associated with in vitro Oxtr expression 

(Kusui et al., 2001). We assessed several anxiety-like behaviors and physiological outcomes in 

these offspring in order to document effects of maternal care. We contrast Oxtr methylation 

profiles by maternal care experience, and compare methylation across tissue types — including 

blood and three limbic system brain regions: hippocampus, striatum, and hypothalamus — to 

gain a better understanding of the tissue specificity of variability in Oxtr methylation.  In rats, 

oxytocin receptors are present and relate to behavior in all three of these brain tissues, 

particularly the nucleus accumbens within the ventral striatum, the dorsal hippocampus, and the 

ventromedial hypothalamus (Tribollet et al., 1992; Starr-Phillips and Beery, 2014; Dumais et al., 

2013). Finally, we relate Oxtr mRNA expression to methylation and corticosterone (CORT) 

secretion.   

 

2. MATERIALS AND METHODS 



(a) Animal subjects  

Long-Evans rats were bred locally from individuals obtained from Charles River 

(Wilmington, MA). Rats were maintained on a 12:12 light:dark cycle with lights off at 19:00 and 

housed in transparent plastic cages (48 x 27 x 20 cm) on Tek-Fresh bedding (Harlan Teklad, 

Madison, WI).  Food (Purina Rat Chow, Purina Mills, St. Louis, MO) and tap water were 

available ad libitum. Ambient temperature was 20  2°C and humidity was 50  5%.  

Litters were designated high-licking or low-licking as described below.  From 144 total 

offspring, 38 males (18 HL, 20 LL), and 36 females (18 HL, 18 LL) from 9 litters were followed 

in this study. Offspring were pair-housed at weaning on postnatal day 22 (PND22; the day of 

parturition was designated PND0).  All procedures were approved by the Animal Care and Use 

Committee of the University of California, Berkeley and conformed to NIH guidelines. 

 

(b) Experimental design and timeline 

Rats reared in HL or LL litters were weighed at weaning, and weekly from 10 to 16 weeks of 

age. Behavioral testing took place at 13-14 weeks of age on the open field test, light-dark box, 

and elevated plus maze (described below), with at least one day between tests.  Blood sampling 

for corticosterone took place at 15 weeks of age.  Rats were otherwise unmanipulated.  At week 

16, rats were sacrificed for organ weight determination and tissue collection for DNA/RNA 

extraction as described below. CORT assays and DNA/RNA extraction were performed on 

males; female tissues were saved for another study.   

DNA methylation was measured across a ~450 base pair region of the Oxtr promoter 

spanning 25 CpGs within a CpG island (figure 1A; sections e and f, below).  Sequenom 

sequencing was the principal method used to measure methylation for all samples in peripheral 



blood mononuclear cells and hippocampus; 12 “units” within this sequence of either single CpGs 

or pairs were considered for analysis (see section e below).  In a series of follow-up assays, the 

same region of 25 CpGs captured by the Sequenom assay was assessed by pyrosequencing in a 

subset of the same tissue samples (specific methods described below). Pyrosequencing was 

conducted on genomic DNA from hippocampus, striatum (caudoputamen and nucleus 

accumbens), and hypothalamus.  Hippocampal samples were used to validate the similarity of 

outputs of the two sequencing methods, and hippocampus, striatum, and hypothalamic samples 

were used to examine cross-tissue similarity of multiple brain regions involved in anxiety and 

social behavior.    

 

(c) Maternal care characterization 

Maternal behavior was observed for 7 days beginning on the day following parturition 

(PND1) (Champagne et al., 2003; Francis et al., 1999; Liu et al., 1997).  The behavior of each 

dam was monitored for 5 h from 6:00-8:00, 12:00-13:00, and 18:00-20:00 following a scan-

sampling procedure.  Dams were observed every 2min during the observation session (for 180 

daily and 1260 total observations).  Outcomes recorded were pup licking/grooming, self-

grooming, and location of the dam (on/off the nest). Nursing posture was described in a 

narrative.  Maternal licking scores were calculated as the % of total observations in which the 

dam was observed grooming her pups.  HL and LL dams were defined as 1SD above or below 

the mean (Champagne et al., 2003). 

 

(d) Behavioral tests 



Behavioral tests each lasted 5 min and were video recorded without the presence of an 

experimenter in the room.  Tests were scored without knowledge of treatment group using 

custom software (A. Beery, available on request).   

Light-dark box:  Rats were placed in the dark portion of a chamber consisting of an enclosed 

black Plexiglas box (38 x 38 x 20 cm) connected to a clear Plexiglas chamber with no lid (38 x 

38 x 38 cm).   Time spent in the light relative to the dark portion of the box was recorded, as well 

as latency to exit the dark box and activity within the apparatus.   

Open-Field: Exploratory behavior was assessed in a novel, circular open arena 152 cm in 

diameter for 5 min. Time spent in a zone within 15 cm of the wall vs. the center was determined, 

as well as latency to enter the center and movements between zones of the apparatus.   

Elevated Plus-Maze: The elevated plus-maze was constructed of black Plexiglas with two open 

arms and two enclosed arms (10 cm wide, 112 cm long), elevated to a height of 50 cm.  Rats 

were placed in a dark arm facing the center.  Latency to enter the light arm, ratio of time in the 

light:dark arms, and movements within the maze were scored. 

 

(e) Corticosterone hormone immunoassay 

Plasma corticosterone concentration was assayed by enzyme immunoassay (Assay 

Designs/Enzo Life Sciences Corticosterone EIA, ADI-900-097; sensitivity 27 pg/ml) as 

previously described (Beery et al., 2012). Briefly, blood was collected from a tail nick within 1 

minute of cage disturbance prior to restraint, following 20 min restraint stress, and at 30 min 

intervals for four additional recovery measurements.  Samples were centrifuged at 4°C for 20 

min and plasma was stored at -80°C until the time of assay.  Samples were thawed, centrifuged, 

diluted 1:20 with assay buffer, and aliquotted into 96-well plates in duplicate.  6 standards 



ranging from 32-20,000 pg/ml and reference samples were assayed in duplicate on each plate. 

Mean intra-assay variation was 4% and inter-assay variation was 8%. 

 

(f) Tissue collection and DNA extraction  

~7ml blood was collected via cardiac stick, mixed 1:1 with PBS, placed on ice, and separated 

on a Ficoll gradient within 1 hour of collection.  Samples were layered on 12 ml Ficoll, 

centrifuged at 500 RCF for 30 min, and the white cell layer was collected.  Cells were washed 

twice with PBS, aliquotted into multiple samples and pelleted. Aliquots were stored at -80° until 

DNA and RNA extraction.  

Brains were removed, placed on crushed dry ice, and bisected.  Frozen brains were stored at -

80°C.  Left halves were microdissected and the hippocampus, striatum (nucleus accumbens and 

caudoputamen), and hypothalamus of each brain was stored in RNAlater at -80°C.  Left and right 

adrenal glands were collected from all animals and paired testis weight was determined in males. 

Genomic DNA was extracted using the AllPrep DNA/RNA kit (Qiagen, Inc.) according to 

manufacturer instructions. Samples were purified if needed with the Clean and Concentrate kit 

(Zymo Research).   

 

(g) DNA Methylation analysis of Oxtr by Sequenom 

Oxtr methylation was assessed across a 434 bp sequence ~1.2 kb upstream of the coding 

region.  This sequence encompasses a CpG island, a region of high conservation across 

vertebrates, and 25 CpGs—including 8 within the MT2 region previously associated with in vitro 

Oxtr expression (figure 1A). Primers were designed using Sequenom EpiDesigner (see 

supplemental Table S1 for all primers and numbered CpGs) to capture the sequence from 



207717398 to 207717832 on chromosome 4 (March 2012 RGSC 5.0/rn5 assembly, UCSC 

Genome Browser).  Samples were bisulfite converted with the EZ DNA Methylation Kit (Zymo 

Research) and eluted into 100mL of HyPure water (HyClone). 20ng of bisulfite converted DNA 

was prepared for analysis on a Sequenom MALDI-TOF mass spectrometer by PCR amplification 

and T cleavage transcription reactions. The Sequenom platform assesses DNA methylation of 

fragments based on the mass of the unmethylated versus methylated versions of fragments 

generated by enzymes with base specific cleavage patterns.  The resulting fragments may have 

one or more CpGs contained within depending on the specific sequence.  Units (fragments 

containing one or more CpGs) were excluded if they were high or low mass fragments or had 

overlapping peaks (CpG #3, #8, #10, and #18), or spanned ≥3 CpGs (CpG #11-13, CpG #20-23).  

This resulted in 12 units containing one or two CpGs for analysis (figure 1B). Assays were run in 

triplicate alongside methylated and demethylated rat control DNA.  Oxtr promoter methylation 

was assessed by Sequenom in PBMCs and hippocampus. 

 

(h) DNA Methylation analysis of Oxtr by Pyrosequencing 

PyroMark Assay Design 2.0 (Qiagen, Inc.) software was used to design the bisulfite 

pyrosequencing assay covering the ~450 BP/25 CpG region assayed in the Sequenom assays, 

using four sequencing primers (supplemental Table S2). DNA was subjected to bisulfite 

conversion using the EZ DNA Methylation Kit (Zymo Research). HotstarTaq DNA polymerase 

kit (Qiagen, Inc.) was used to amplify the Oxtr target region using the biotinylated primer set 

with the following PCR conditions:  15 minutes at 95°C, 45 cycles of 95°C for 30s, 58°C for 

30s, and 72°C for 30s, and a 5 minute 72°C extension step.  Streptavidin-coated sepharose beads 

were bound to the biotinylated-strand of the PCR product and then washed and denatured to 



yield single-stranded DNA. Sequencing primers were introduced to allow for pyrosequencing 

(Pyromark™ Q96 MD pyrosequencer, Qiagen, Inc.).  

 

(i) qPCR  

RNA was extracted from study samples using the AllPrep DNA/RNA kit (Qiagen, Inc.) 

according to manufacturer instructions. Contaminating genomic DNA was eliminated with 

genomic wipeout buffer (Qiagen, Inc.). One µg of RNA was reverse transcribed with the 

QuantiTect Reverse Transcription Kit (Qiagen, Inc.) using random primers according to 

manufacturer protocol. The complementary DNA was analyzed using a Rotor-Gene 6000 

(Corbett Research) and PerfeCTa SYBR Green FastMix (Quanta Biosciences). Ct values of 

duplicates or triplicates were averaged and used to calculate relative amounts of transcripts, 

normalized to β-actin (Actb) transcript.  

  

(j) Statistics and data analysis 

Sequenom data were analyzed using Mass ARRAY EpiTyper version 1.0 and the 

BioConductor package for R (The R project for statistical computing). Methylation values were 

assessed in triplicate and averaged for each sample.  Pyrosequencing methylation values were 

assessed in singlicate, and analyzed with Pyro Q-CpG software (Qiagen) to generate quantitative 

methylation levels of the targeted CpG dinucleotides of interest.  Values identified by the 

software as failing validation were excluded from analysis.  qPCR values for Oxtr were analyzed 

as fold-change relative to β-actin (Actb) expression in duplicate for each sample.  When values 

were discrepant between technical duplicates for either Oxtr or Actb by more than 0.25 SDs, 



subsequent runs were done with triplicates and the average of those values was used in further 

data analysis.  

Differences between HL and LL groups were assessed by 2-way ANOVA including sex and 

maternal care for outcomes measured for both sexes, or by t-tests assuming unequal variance 

(Welch’s t-test) for outcomes measured in males. Correlations between continuous variables are 

reported with Pearson’s r, or Spearman’s rho (rs) for non-parametric data.  Comparisons across 

multiple brain regions were conducted by one-way ANOVA followed by Tukey’s HSD; all other 

tests are described in the text.  Corrections for multiple comparisons are reported using false 

discovery rate (Benjamini and Hochberg, 1995), expected number of false positives, and 

aggregate probabilities if appropriate, depending on the number of findings reported.  The main 

study outcomes (Oxtr methylation and transcript levels) were examined for litter effects, which 

were not found.  Statistical analyses were performed with JMP 8.0.2 (SAS Institute, Cary, NC) 

and R. Results were considered significant if the two-tailed p-value was <0.05.   

 

3. RESULTS 

(a) Maternal care was associated with variation in physiology and behavior  

HL and LL offspring consistently manifested significant variation across the three behavioral 

tests.  LL rats exhibited greater activity in the light-dark box (p = 0.01, figure 2A) and emerged 

earlier (p < 0.04). Across groups, greater activity level predicted earlier emergence time in the 

light-dark box (p < 0.0001, r = 0.81). LL rats also exhibited earlier emergence in the elevated 

plus maze (p < 0.02), and greater activity in the open field test (p < 0.02).  No group differences 

were present in percent of time spent in the open on any test.   



Baseline corticosterone secretion was equivalent between HL and LL male offspring 

(females not tested) but differed in response to 20 minute restraint at 30, 60, 90, and 120 minutes 

after the initiation of restraint, as well as in area under the curve (AUC) (p < 0.03, figure 2C).  

Rats with higher CORT AUC showed markedly higher latency to enter the center of the open 

field (p < 0.0001, r = 0.63), and greater activity in the elevated plus maze (p < 0.02, r = 0.35).  

They also trended towards less time in the center of the open field (p = 0.07, r = 0.25) and less 

time in the open arm of the elevated plus maze (p = 0.07, r = 0.25).  

Body weight was equivalent between HL and LL rats at weaning, but diverged in adulthood 

in both sexes (figure 2B; p = 0.006 effect of maternal care in two-way ANOVA at week 16).  At 

week 16, HL female rats weighed 316±5g, while LL females weighed 297±8g.  HL males 

weighed 578±12g and LL males weighed 527±18g. Uterine mass showed a trend towards higher 

mass in HL relative to LL females (0.69±0.038 high, 0.60±0.033 low, p = 0.08) despite lack of 

association with terminal body weight (p = 0.29, r=.20). Paired testis weight tended to be greater 

in HL males (paired testis weight: 3.98±0.05 versus 3.72±0.12, p = 0.06), but this effect was 

likely due to the strong correlation between testis weight and body weight (p < 0.0001, r =0.67). 

Terminal measurements of adrenal mass did not differ between groups in either sex.   

 

(b) DNA methylation of Oxtr varies with maternal care  

Oxtr methylation was assessed in a CpG island ~1.2 kb upstream of the coding region, and 

mean methylation across individuals ranged from 0-50% depending on CpG and tissue (figure 

1B). Sequenom Oxtr methylation in PBMCs exhibited significant variation with maternal care in 

4 of 12 units examined (figure 3A), and methylation was greater in HL offspring than in LL 

offspring in each case: CpG 5 (3.1±0.39 HL versus 1.86±0.37 LL; p = 0.03), CpG 9 (1.2±0.24 



HL versus 0.5±0.14 LL; p = 0.01), CpG 14&15 (7.9±0.57 HL versus 6.4±0.36 LL; p = 0.04), and 

CpG 25 (17.42±0.77 HL versus 15.31±0.51 LL; p = 0.03).  The probability of 4 CpGs out of 12 

varying at this level is p = 0.002, or p = 0.0003 for all four findings in the same direction.  No 

single high/low difference retains significance after correction for multiple comparisons using 

false discovery rate (FDR), thus we cannot detect which of the four differences are reliable, 

despite a strong aggregate signal.  

In hippocampus, one unit differed significantly based on maternal care (CpG 6&7; 2.07±036 

HL versus 3.13±035 LL; p = 0.04; figure 3B).  Such a result would be expected by chance ~45% 

of the time with 12 comparisons, and is thus not meaningful. 

Finally, variation in PBMC methylation was compared to stress-induced corticosterone 

response in the same individuals.  Higher CORT AUC was associated with lower DNA 

methylation, most strongly for CpG 24 (p=0.006, r =.58), becoming a trend at p=0.07 after 

correction for multiple comparisons by FDR. 

 

 (c) Oxtr methylation concordance between tissues across individuals 

Pyrosequencing assays 

Cross-tissue methylation comparisons (in addition to those performed for PBMCs and 

hippocampus using Sequenom) were conducted by pyrosequencing in three brain regions: 

hippocampus, hypothalamus, and striatum.  Hippocampal samples previously analyzed by 

Sequenom were re-analyzed by pyrosequencing for validation, and values obtained were 

significantly correlated across sequencing methods (p < 0.0001, r=.63).  Mean methylation 

across subjects was assessed in each neural tissue, with significant differences by brain region, 

CpG, and brain region by CpG interactions (2-way ANOVA; p < 0.0001 all effects; figure 4A). 



The overall pattern of high and low methylation across the sequence exhibited both similarities 

and differences relative to the sequence in PBMCs (figure 3A).  Concordance of particular CpGs 

across brain tissues was extremely high (striatum versus hippocampus:  p <0.0001, r=.95; 

hypothalamus versus hippocampus: p < 0.0001, r=.94; n=25 CpGs, figure 4B).   

 

Sequenom assays 

Mean % methylation of all individuals for each CpG containing unit within the Oxtr 

amplicon in peripheral (PBMC) samples was positively correlated with mean % methylation of 

the same units in central (hippocampal) samples (p = 0.05, r =.50, figure 4C), such that a CpG 

with low overall methylation in one tissue was likely to have low methylation in another tissue.   

 

(d Oxtr methylation discordance across tissues within individuals 

Concordance across tissues within individuals was examined for each CpG by calculating the 

correlation coefficients between hippocampus and hypothalamus methylation values from all 

individuals measured in both tissues (figure 5A).  These two brain regions had the greatest 

number of samples yielding high quality data for both regions (n=21-28 matched samples 

depending on CpG). All correlation coefficients could be classified as indicative of “weak” or 

“no” correlation, and none had significant p-values associated with them despite a 72% chance 

(0.95
25

) of at least one false positive and a 36% chance of 2 or more.  The same procedure was 

applied to hippocampus and striatum with a smaller data set (n=12-14 matched samples per CpG; 

CpGs 7 and 8 were excluded for low matched sample sizes; figure 5B).  Two correlations were 

individually significant (CpG 1: r = .75, p = 0.004, FDR corrected p = 0.08; CpG 11: r = .66, p = 

0.02, FDR corrected p = 0.23), however this result could also be expected by chance given the 



number of comparisons.  Correlation coefficients for single comparisons of mean methylation 

across the sequence by individual were also calculated but were not significant (hypothalamus to 

hippocampus: p=.36, r=.30; striatum to hippocampus: p=.38, r=-.21).     

A parallel analysis was performed with Sequenom data from individuals measured in blood 

and hippocampus.  Correlation coefficients ranged from no (0.03) to moderate (.46) correlation 

for each CpG, with only one individually significant correlation (CpG 9; r = .46, p = 0.02, FDR 

corrected p  = .22), as could be expected by chance.  Thus, individual methylation in PBMCs 

was also not demonstrably predictive of methylation in hippocampus.  Across all comparisons, 

individually significant correlations (prior to correction) for particular CpGs in any given pair of 

tissues did not correspond to those found in any other tissue pairings. 

 

(e) Oxtr expression, corticosterone secretion, and DNA methylation  

Oxtr expression was quantified via qPCR as fold-change relative to Actb.  Oxtr expression   

varied across brain regions (p<0.0001, one-way ANOVA, figure 6A), with significant post-hoc 

differences detected between striatum and hippocampus (p<0.0001, Tukey’s HSD), and between 

hypothalamus and hippocampus (p<0.0001, Tukey’s HSD).  Expression of Oxtr in RNA samples 

extracted from PBMCs was too low to characterize reliably.  

Hypothalamic oxytocin signaling has been previously related to reduced corticosterone 

levels, so Oxtr expression levels in the hypothalamus were compared to CORT area under the 

curve in response to restraint in all samples with both data types available (n=18).  Greater 

hypothalamic Oxtr expression was associated with lower CORT AUC (p=0.05, r=.46) across 

samples (figure 6B). 



At a sequence-wide level, higher methylation levels matched up with reduced transcript. 

Within the brain, hypothalamic samples were the most methylated and exhibited the least 

transcript expression, followed by striatum, and then hippocampus, although absolute differences 

in % methylation by tissue were small.  Blood samples exhibited the highest degree of 

methylation and undetectable transcript.   

DNA methylation levels were also compared to Oxtr mRNA expression within each brain 

region. Oxtr fold-change in the hippocampus was compared to methylation of each Sequenom 

unit, and was positively correlated with hippocampal methylation of CpG 19 (p = 0.006, r= .50), 

yielding a FDR corrected p-value 0.07.  Mean methylation across all sites assayed in 

hippocampus was positively but not significantly associated with Oxtr fold-change (p = 0.28, 

r=.21), and there were no group differences in hippocampal Oxtr expression by maternal care.  

Expression was also quantified in a smaller set of striatum tissue available from study subjects 

(n=16 samples).  Oxtr fold-change in the striatum appeared positively correlated with 

pyrosequencing values for striatum methylation for two CpGs (CpG 2: p=0.035, r=.53; CpG 16: 

p=0.032, r=.55), but two or more differences at the p<0.05 threshold would be expected by 

chance 36% of the time with 25 tests, and these values do not survive FDR correction (both 

becoming p=.43). No correlations between methylation and expression were evident in 

hypothalamus (n=26 samples).  Thus methylation of specific CpGs may have a positive 

relationship with gene expression, but this is difficult to detect. 

 

DISCUSSION 

Natural variation in early maternal care was associated with both physiological and 

behavioral differences in adult offspring.  Previous studies have demonstrated cross-generational 



effects of early experience on activity measures (Denenberg and Whimbey, 1963), which we 

found across several different behavioral testing setups, with LL offspring exhibiting greater 

activity.  Interestingly, LL offspring of both sexes also exhibited lower body weights in 

adulthood, despite the absence of differences at weaning, which may be related to their distinct 

activity profiles.  Rats subjected to three weeks of daily maternal separation have been shown to 

weigh less than controls, despite normal feeding behavior under baseline conditions (Iwasaki et 

al., 2000), which may parallel the present findings.   

High- and low-licking offspring had similar basal corticosterone levels, but LL offspring 

mounted a reduced CORT response to restraint and downregulated CORT levels sooner, similar 

to rats born to prenatally stressed dams (Burton et al., 2007), and to female rats receiving the 

lowest levels of licking within LL litters (Pan et al., 2014).  Chronic stress exposure in adulthood 

is also associated with faster downregulation of CORT levels in response to restraint in this rat 

strain (Beery et al., 2012).  Thus HL and LL rats in this study appear to have important 

differences in their stress-reactivity that were correlated with differences in activity behavior.   

Terminal measures of reproductive traits including uterine and testicular mass both showed 

trends towards higher mass in HL versus LL rats.  Prior studies have shown earlier onset of 

fertility, increased sexual attractivity, and more proceptive behaviors in female LL offspring 

(Cameron et al., 2008a, 2008b; Sakhai et al., 2011), which appears opposite the present findings.  

However our measures reflect organ weight differences taken in later adulthood, and in the case 

of males these differences may be mainly reflective of differences in body weight.   Together, 

these findings on activity, body weight, corticosterone secretion and reproductive structures add 

to a growing body of known persistent effects of maternal care on later life outcomes, 

documented across an ever-increasing variety of domains (e.g. Caldji et al., 1998; Francis et al., 



1999; Zhang et al., 2005; Parent and Meaney, 2008; Walker et al., 2008; Beery and Francis, 

2011; Starr-Phillips and Beery, 2014).   

 

Oxtr methylation, gene expression, and maternal care: PBMC findings 

Oxtr promoter methylation varied with maternal care (high- versus low-licking offspring) in 

PBMCs.  Methylation was increased at four of 12 sites examined in adult HL offspring relative 

to LL offspring.  The aggregate probability of all four of these changes was 0.0003, however any 

one specific difference might not be reliable.   These differences were of small absolute 

magnitude, with total differences in methylation ranging from ~1-3%, although in some cases 

this indicated a large percent difference between LL and HL groups (from 13% to 144% change).  

These small differences may reflect the inclusion of multiple cell types in PBMC samples that 

are not affected by manipulations, or it may reflect a lack of biological signficance.    

Oxytocin receptor transcript has been detected in PBMCs in some species (Ndiaye et al., 

2008; Nicholson et al., 2004), and OT causes functional changes in bovine T lymphocytes and 

human PBMCs (Ndiaye et al., 2008; Macciò et al., 2010), but PBMCs are generally considered 

to be an OXTR non-expressing tissue (Kimura et al., 2003).  In the present study, Oxtr transcript 

level was too low to reliably characterize, even in concentrated samples.  It is possible that Oxtr 

is expressed in blood cells but that mRNA persistence is very low.  However, very low to non-

existent transcript levels imply that PBMC Oxtr methylation differences between HL and LL are 

more likely to serve as a marker of prior experience than to act as functional contributor to 

physiological or behavioral regulation via altered gene expression.   

Ziegler et al. (Ziegler et al., 2015) found that mean methylation across 12 OXTR CpGs in a 

human population was negatively associated with stress-induced salivary cortisol levels; in our 



study, mean methylation was weakly negatively correlated with PBMC Oxtr methylation in rats, 

with a strong negative relationship for CpG #24 that became a trend following correction for 

multiple comparisons.  If Oxtr methylation in blood cells is associated with reduced cort in 

additional studies, this will highlight the need to determine whether it is part of a functional 

pathway, or simply a biomarker of experience.  Finally, prior research has shown that there can 

be important and substantial sex differences in methylation (e.g. Kurian et al., 2010; Liu et al., 

2010; McCarthy et al., 2014), and Oxtr methylation levels should be examined in females. 

 

Oxtr methylation, gene expression, and maternal care: neural findings 

Oxytocin receptors across the three brain regions measured for methylation and transcript 

expression have previously been associated with a variety of social, sexual, and anxiety 

behaviors.  OTR in the nucleus accumbens has been associated with reward-mediated affiliative 

behavior and parental care (e.g. Aragona and Wang, 2009; Olazábal and Young, 2006), and 

receptors in the ventromedial hypothalamus have been implicated in sexual behavior and vary 

with reproductive status (Bale et al., 2001; Young et al., 1997; Dumais et al., 2013).  Oxytocin 

within the hypothalamus also plays an important functional role in the inhibition of the stress-

axis (Neumann et al., 2000).  Oxytocin receptors in the hippocampus have been less well studied, 

but oxytocin activity at OTR in this region modulates interneurons and enhances cortical 

information transfer (Owen et al., 2013).  Additional research suggests that hippocampal OTR 

density changes seasonally with behavior, and may be involved in spatial aspects of social 

behavior (Beery et al., 2014; Ophir et al., 2012). 

In contrast to group differences by maternal care found in PBMCs, only 1 of 12 comparisons 

in hippocampus yielded a difference between HL and LL groups, with an adjusted 



(unmeaningful) p-value of .46.  This was surprising, because we expected that Oxtr methylation 

differences by maternal care would be more likely in neural than peripheral tissue.  It remains 

possible that Oxtr methylation was altered by maternal care in other brain regions, including 

those measured in this study, as sample sizes and methodology (single sequence reads) used in 

the pyrosequencing portion of this study were insufficient to detect group differences.  

Oxtr transcript levels were readily measurable in all three neural tissues and were highest in 

the hippocampus, followed by the striatum, with the lowest levels in the hypothalamus. Low 

Oxtr transcript within the hypothalamus likely reflects the heterogeneity of this tissue, with some 

nuclei expressing OTR at a high level in rats (e.g. ventromedial hypothalamus) relative to others. 

Prior research has established an important role for hypothalamic OT signaling in the 

suppression of cort secretion (Neumann et al., 2000; Smith and Wang, 2014).  In the present 

study, higher levels of Oxtr transcript within the hypothalamus were correlated with reduced cort 

area under the curve in response to restraint stress, suggesting that increased ability to receive an 

OT signal might play a role in this downregulation. 

 

DNA methylation and transcript abundance 

Increased methylation of the OXTR/Oxtr gene has been associated with reduced gene 

expression, as has been reported for many genes (Kusui et al., 2001; Mamrut et al., 2013).  Thus 

one might expect reduced oxytocin receptor gene expression in the blood of HL offspring.  

Important exceptions to this negative relationship between OXTR methylation and gene 

expression exist, however, with high methylation and gene expression in mammary tissues 

(Mamrut et al., 2013) and at specific CpG sites (Harony-Nicolas et al., 2014), thus an inverse 



relationship between methylation and expression cannot be assumed and was investigated in this 

study.  

Oxtr transcript levels relative to the control gene Actb were measured by qPCR in RNA 

extracted from PBMCs, and related to methylation.  Tissues that expressed more transcript also 

had lower methylation levels, with the greatest methylation and least Oxtr transcript in PBMCs.  

However we also found tentative support for a positive association between methylation and 

transcript levels at particular CpGs.  In hippocampus, increased methylation was associated with 

increased Oxtr mRNA relative to Actb, most strongly for one CpG  (#19) but with a similar 

pattern across the sequence analyzed. Two potential correlations between methylation and 

expression were found in striatum, both also in the positive direction.  The complexities involved 

in predicting expression from methylation have been echoed by others (Mamrut et al., 2013).  

Lam et al. (2012) found that in a human cohort, only a minority of individual CpG sites had 

significant correlations with mRNA levels across individuals, similar to the present findings.  

They also found that, in addition to the canonical negative relationship between methylation and 

gene expression, increased methylation with increased mRNA expression was observed for a 

substantial number of genes.  This has been specifically described for OXTR in some tissues, and 

for some CpGs (Harony-Nicolas et al., 2014; Mamrut et al., 2013).  One possible explanation for 

the positive correlation found between methylation and gene expression in some studies is that 

methylation measured following bisulfite conversion of DNA includes 5-hydroxy methylation, 

typically associated with transcriptional activation (Branco et al., 2012; Hackett et al., 2013), 

although potentially a stable modification (Bachman et al., 2014).  Additional complexity in the 

relationship between methylation and transcription is also becoming apparent, for example the 



methyl-CpG binding protein MeCP2 may be more associated with transcriptional activation than 

repression (Chahrour et al., 2008).   

 

Methylation patterns across tissues 

Methylation levels differed by tissue and were highest in blood.  Across the sequence, 

regions of high and low methylation were similar across tissues such that specific CpGs that 

tended to be more or less methylated in one tissue were also more or less methylated in others 

(figures 3A, 3B, 4A).  These correlations were strongest between brain regions, with 

hippocampal methylation measures at each CpG strongly correlated with methylation of the 

same CpGs in striatum and hypothalamus (figure 4B) – two brain regions in which oxytocin 

receptors are known to play important roles in a variety of social behaviors (Goodson, 2005; 

Anacker and Beery, 2013).  Similarly, peripheral methylation in PBMCs was moderately 

correlated with brain methylation levels in hippocampus (figure 4C).  Farré et al. (2015) found 

that blood methylation values are significantly more variable than brain values, in part because 

of heterogeneity of cell types in the blood.   

These correlations across tissues by CpG in the present study contrast with the lack of 

significant correlation in Oxtr methylation by CpG across two brain regions reported in Harony-

Nicolas et al. (2014).  Their findings may reflect greater methylation differences between neural 

tissues of disparate developmental origins (olfactory bulb and cerebellum), the assessment of 

CpGs in a different region of the Oxtr gene, or reduced power to find significant correlations 

based on the smaller number of CpGs (7) and subjects assessed in their study.   

Despite consistent patterns of high and low methylation across CpGs (and resulting 

correlation across tissues), individual variation in one tissue was not demonstrably predictive of 



variation in another (with comparisons made in blood vs. hippocampus, hypothalamus vs. 

hippocampus, and striatum versus hippocampus). Correlation coefficients were as low as or 

lower than expected by chance even between brain regions, indicating that individual variability 

did not have detectable predictive power across tissues. 

 

Conclusions 

We demonstrate for the first time that early life experience is associated with subtle 

methylation differences in the Oxtr gene in blood, together with changes in body-weight, 

activity, and stress-reactivity.  Oxtr expression was measurable across all brain regions, and 

hypothalamic transcript levels were correlated with reduced CORT secretion, as expected based 

on the suppressive role of OT signaling in this region.  Oxtr expression was not detectable in 

PBMCs. Together these findings suggest that Oxtr in mononuclear cells may be a target of 

experience-dependent DNA methylation without reflecting functional connections to expression.   

The ability to use PBMC methylation as an indicator of methylation in other tissues has been 

the subject of much interest.  Epigenetic studies in humans regularly sample only blood (OXTR 

examples: Gregory et al., 2009; Unternaehrer et al., 2012; Puglia et al., 2015; Ziegler et al., 2015; 

Reiner et al., 2015) or other peripheral tissues, while most behaviorally relevant epigenetic 

changes have been documented in the brain (e.g. Weaver et al., 2004; Roth et al., 2009; Miller et 

al., 2010). Some studies have suggested that one tissue may be a good proxy for another (Houde 

et al., 2014; Iyer et al., 2010; Liberman et al., 2012; Stenz et al., 2014).  The present study 

highlights a crucial distinction between tissue concordance of patterns of methylation across a 

region of the genome (very high in these samples) and the ability to use individual variation in 

methylation in one tissue to make inferences about another (not supported in this study).   
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FIGURE LEGENDS    

Figure 1. Location and components of the target sequence within the Oxtr promoter in rats.  (A) 

The Oxtr gene lies on the reverse (-) strand on chromosome 4.  The target region begins 

approximately 1.2kb upstream and encompasses a CpG island and region of high conservation 

across vertebrates (alignment data from UCSC genome browser).  (B) Epigram of CpGs within 

the target region, color-coded by mean % methylation in each tissue. Methylation was generally 

higher in PBMCs than in the brain.  Open gray circles represents units providing no data in 

Sequenom assays because of peak mass; open black circles depict data not analyzed because of 

>2 CpGs clustered in one unit. 

 

Figure 2: Physiological and behavioral variation as a function of early maternal care.  (A) LL 

offspring were more active in the light-dark box as well as other behavioral tests. (B) HL and LL 

offspring did not differ in body weight at weaning, but HL offspring of both sexes weighed more 

in adulthood, including at week 16 (effect of maternal care: p <0.01, effect of sex: p <0.0001). 

(C) Corticosterone response to a stressor was greater in HL offspring, with similar peak timing 

but greater overall CORT secretion relative to LL offspring (area under the curve, females not 

tested). CORT AUC was associated with anxiety-like behaviors (see text).  * p < 0.05, ** p < 

0.01.  Error bars depict ± SEM. 

 

Figure 3: Oxtr methylation across 12 Sequenom units in HL and LL offspring in peripheral 

blood mononuclear cells (A) or hippocampus (B). In blood, 4 of 12 units examined exhibited 

significantly higher methylation in HL offspring than LL offspring, representing a combined 



probability of 0.0003.  In brain, 1 of 12 units differed with maternal care, but such a result would 

be expected by chance (p=.45) and is not meaningful. * = p < 0.05 prior to correction.   

  

Figure 4: Methylation measures across neural tissues. (A) Mean methylation levels were 

assessed by pyrosequencing across 25 CpGs in three brain tissues, including hippocampus. 

Methylation differed significantly by both CpG and brain region (each p<0.0001, 2-way 

ANOVA) and showed both similarities and differences in CpG methylation patterns relative to 

PBMCs (figure 3B).  (B) Methylation levels (measured by pyrosequencing) were highly 

concordant between hippocampus and other brain regions (striatum and hypothalamus).  (C) To a 

lesser extent, blood measures of methylation were associated with hippocampal methylation 

(both Sequenom data).  Data are shown for each of 25 CpGs (4B) or 12 CpG containing units 

(4C), averaged across subjects.  

 

Figure 5: Individual methylation values were not correlated across brain tissues, despite tissue 

concordance at the group level. For each CpG, we computed the Pearson correlation coefficient r 

between the methylation values for matched samples in pairs of brain regions (bars).  Dark and 

light shaded regions represent 95% and 99% thresholds, respectively, of distributions of possible 

correlation coefficients determined from 10,000 permutations of the measured values among the 

individuals.  These distributions represent the null hypothesis that an individual methylation 

value in one brain region does not help to predict the value in another region in the same animal.  

(A) Correlations based on pyrosequencing data for matched samples passing validation in both 

hippocampus (HC) and hypothalamus (Hypo).  Correlations for individuals at each CpG were 

either weak (.2< r <.3) or absent (r <.2), and none were significant, even prior to correction for 



multiple comparisons.  (B) Correlations for matched samples passing validation in both 

hippocampus and striatum (Str).  Two correlations (CpG 1 and 11) were individually significant 

prior to but not following correction, and this result could be expected by chance.  Correlations 

between hippocampus and blood (described in the text) yielded similar results, and no particular 

CpG yielded consistently high correlation across multiple tissues.   

 

Figure 6: Oxtr expression, quantified by qPCR as fold-change relative to Actb.  (A) Relative 

Oxtr expression varied significantly by brain region with the highest expression levels in the 

hippocampus and the lowest (but readily detectable levels) in the hypothalamus.  Transcript 

levels were too low to reliably assess in PBMCs (not shown).  (B) Relative Oxtr expression was 

negatively correlated with corticosterone secretion in response to a stressor.  **** = p < 0.0001 

(Tukey’s HSD) 
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Highlights 

 
 Rats were reared by dams exhibiting high or low maternal care 

 Physiological, behavioral, and epigenetic outcomes were assessed in offspring 

 Oxtr promoter methylation varied with maternal care in peripheral blood samples 

 Methylation patterns over the target region were highly correlated across neural tissues 

 Nonetheless, individual variation in methylation was uncorrelated across tissues 
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