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Artificial intelligence applied to coronary
artery calcium scans (AI-CAC)
significantly improves cardiovascular
events prediction

Check for updates

Morteza Naghavi1 , Anthony P. Reeves2, Kyle Atlas1, Chenyu Zhang 1, Thomas Atlas3,
Claudia I. Henschke4, David F. Yankelevitz4,MatthewJ.Budoff 5, DongLi5, SionK.Roy5, KhurramNasir6,
SabeeMolloi7, Zahi Fayad6,Michael V.McConnell8, IoannisKakadiaris9, David J.Maron 8, JagatNarula9,
Kim Williams10, Prediman K. Shah11, Daniel Levy12 & Nathan D. Wong13

Coronary artery calcium (CAC) scans contain valuable information beyond the Agatston Score which
is currently reported for predicting coronary heart disease (CHD) only. We examined whether new
artificial intelligence (AI) applied to CAC scans can predict non-CHD events, including heart failure,
atrial fibrillation, and stroke. We applied AI-enabled automated cardiac chambers volumetry and
calcified plaque characterization to CAC scans (AI-CAC) of 5830 asymptomatic individuals (52.2%
women, age61.7 ± 10.2 years) in themulti-ethnic studyof atherosclerosis during 15years of follow-up,
1773 CVD events accrued. The AUC at 1-, 5-, 10-, and 15-year follow-up for AI-CAC vs. Agatston
scorewas (0.784 vs. 0.701), (0.771 vs. 0.709), (0.789 vs. 0.712) and (0.816 vs. 0.729) (p < 0.0001 for all),
respectively. AI-CAC plaque characteristics, including number, location, density, plus number of
vessels, significantly improved CHD prediction in the CAC 1–100 cohort vs. Agatston Score. AI-CAC
significantly improved the Agatston score for predicting all CVD events.

Coronary artery calcium (CAC) scoring is the strongest predictor of risk
for atherosclerotic cardiovascular disease (ASCVD) in asymptomatic
individuals1. AlthoughCAC scoring is used for prediction of coronary heart
disease events, it is not used for prediction of other cardiovascular disease
(CVD) events such as stroke, heart failure (HF) and atrial fibrillation (AF).
Beyond risk factor assessment, screening tools for overall CVD event pre-
diction are limited due to cost-effectiveness and feasibility barriers.

The usage of CAC scans has increased significantly since the ACC/
AHAGuideline on theManagement of BloodCholesterol in 20182 included
CACscore in the algorithm for consideration of statin therapy, among those
at borderline and intermediate risk for ASCVD. It is estimated that 45-50%
of theUS population aged 40-80would fall in these groups defined as 5-20%
risk of ASCVD events over 10 years3,4. The possibility of applying artificial

intelligence (AI) to predict CVD has been previously published by some of
our teammembers using the support vectormachine algorithms inMESA5.
Wehave sought to further enrich the value ofCACscans by applyingAI that
automatically measures all cardiac chamber volumes and left ventricular
(LV)masswithout using any contrast agent. For thismanuscript, we refer to
AI-enabled automated cardiac chambers volumetry fromCAC scans as AI-
CAC, and the AI-CAC model incorporates Agatston CAC Score, left atrial
(LA), right ventricular (RV), left ventricular (LV) volume and mass.

We have recently shown that AI-CAC volumetry alone enabled the
prediction of HF in the Multi-Ethnic Study of Atherosclerosis (MESA)6,7.
Additionally, we have demonstrated that AI-CAC LA volume alone
improved the predictive value of CHARGE-AFRisk Score andNT-proBNP
for the detection of individuals at high risk of AF8,9. Such an add-on
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measurement can offer valuable insights into a patient’s overall CVD risk
beyond theCACscore. In this studyofMESAparticipants,we compared the
performance of AI-CAC over the traditional Agatston CAC Score for the
prediction of all CVD events (stroke, myocardial infarction, angina, resus-
citated cardiac arrest, all cardiovascular disease-related deaths, HF, and AF)
plus all-cause mortality. This approach broadens the scope and clinical
significance of comparing AI-CAC vs. the Agatston CAC score

Results
Themean (SD) age of our subjectswas 62 ± 10 years, 52%were female, 40%
were non-Hispanic White, 26% non-Hispanic Black, 22% Hispanic, and
12% Chinese. Table 1 shows the baseline characteristics of MESA partici-
pants who experienced a CVD event vs. those who did not over the 15 years
of follow-up, during which 1773 CVD events accrued. In univariate com-
parisons, participants experiencing CVD events were older, more likely
male, and more likely non-Hispanic White. The cases that experienced a
CVD event had higher cardiac chamber volumes for LA, LV, RA, and
LV mass.

Figure 1 shows examples of three participantswith enlargedLAandLV
volumes with CAC score 0 and low risk ( < 5%) ASCVD risk score who
experiencedCVDevents.A significant number of low-risk participantswith
CAC 0 have enlarged cardiac chambers.With a higher CAC score category,
there was a higher proportion of patients with LA and LV volumes in the
highest quartile (p-trend = 0.0001). 17.7% of cases with CAC 0 who are
considered low risk have enlarged LA volume that puts them at high risk for
AF and stroke (Fig. 2a). Similarly, 22.7% of cases with CAC 0 have enlarged
LV volume that puts them at risk of HF (Fig. 2b).

The median C-statistic (95% CI) for all CVD events over 15 years for
pooled sexes between AI-CAC vs. Agatston CAC score was 0.742 (CI:
0.723–0.761) vs. 0.709 (CI: 0.688–0.728) (p < 0.0001). For females, the C-
statistic between AI-CAC volumetry vs. Agatston CAC Score was 0.751
(0.738–0.778) vs. 0.705 (0.683–0.720) (p < 0.0001), respectively, and 0.701
(0.674-0.723) vs. 0.672 (0.651–0.693) (p = 0.0012), respectively, for males.
AI-CAC had significantly higher discrimination than Agatston CAC Score
for CVD events prediction across 1-, 5-, 10-, and 15-year follow-up (Fig. 3),
including AF, HF, stroke, hard CVD, and All-cause mortality prediction

Table 1 | Baseline characteristics of the multi-ethnic study of atherosclerosis (MESA) participants, including cases with and
without cardiovascular events at 15 years of follow-up

15-year follow-up outcome data Overall (N = 5830) Cardiovascular events p-value

No (N = 4057) Yes (N = 1773)

Age (years) 62.2 ± 10.3 60.1 ± 10.0 67.1 ± 9.1 <0.0001

Female sex (%) 52.2% 55.7% 43.8% <0.0001

Body Surface Area 1.90 ± 0.24 1.89 ± 0.24 1.93 ± 0.24 <0.0001

Race (%)

Non-Hispanic White 39.7% 37.7% 43.8% 0.0321

Chinese 12.1% 12.2% 11.0% 0.2054

Non-Hispanic Black 26.1% 27.2% 24.5% 0.0935

Hispanic 22.0% 22.9% 20.7% 0.8569

AI-CAC volumetry

LA volume (cc) 102.5 ± 25.4 58.8 ± 14.5 67.3 ± 18.1 <0.0001

LV volume (cc) 61.4 ± 16.1 100.8 ± 24.4 106.6 ± 27.0 <0.0001

RA volume (cc) 134.3 ± 34.4 69.4 ± 17.1 74.4 ± 19.7 <0.0001

RV volume (cc) 77.0 ± 18.9 133.2 ± 34.1 136.7 ± 35.0 0.1254

LV mass (g) 107.8 ± 26.4 103.2 ± 25.0 110.9 ± 27.4 <0.0001

Total heart volume (cc) 482.3 ± 108.7 465.4 ± 104.6 495.9 ± 113.2 <0.0001

Coronary artery calcium (CAC)

Agatston score 0.93 (0-90.66) 0 (0-36.9) 51.04 (0-280.4) <0.0001

Number of plaques 0 (0-5) 0 (0-3) 5 (0-15) <0.0001

Number of affected vessels 0 (0-2) 0 (0-1) 2 (0-3) <0.0001

Mean CAC density 0 (0-79) 0 (0-48) 89 (0-399) <0.0001

Risk factors

Diabetes 12.7% 10.2% 18.7% <0.0001

Hypertension 44.7% 38.5% 59.5% <0.0001

Current smoking 13.0% 12.2% 13.3% 0.1765

Current alcohol usage 68.6% 69.7% 65.9% <0.0001

Family history of coronary heart disease (%) 42.7% 40.5% 48.5% <0.0001

LDL cholesterol (mg/dL) 117.2 ± 31 117.8 ± 31.1 115.5 ± 32.2 0.3017

HDL cholesterol (mg/dL) 51.0 ± 14 51.2 ± 14.9 50.1 ± 15.1 0.1087

Total cholesterol (mg/dL) 194.2 ± 35 195.0 ± 35.4 192.5 ± 36.8 <0.0001

Systolic blood pressure (mmHg) 126.5 ± 21.4 123.7 ± 20.4 133.4 ± 22.0 <0.0001

Diastolic blood pressure (mmHg) 71.9 ± 10.2 71.4 ± 10.1 73.0 ± 10.3 <0.0001

Blood pressure lowering Rx 37.0% 31.8% 49.7% <0.0001

Lipid-lowering Rx 16.6% 14.6% 21.3% <0.0001
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(Table 2). Category-free NRI showed improvement across all follow-up
periods for AF, HF, stroke, hard CVD, and All-Cause Mortality.

AI-CAC volumetry significantly added to a CVD risk factors-based
model for all CVD event prediction (Supplementary Table 1). The AI-CAC
biomarker model coefficients and hazard ratios for CVD, AF, and HF have
been provided in Supplementary Tables 2, 3, 4. A significant increase in C-
statistic for All CVD events was observed when adding AI-CAC measure-
ments to basic risk factor models (0.745 (0.655–0.836) vs. 0.774
(0.693–0.852)) (Supplementary Table 5). A notable increase in dis-
crimination for CVD prediction was demonstrated over 1-, 5-, 10-, and 15-
year follow-ups. AI-CAC measurements demonstrated significant incre-
mental value when added to CVD risk factors for 1-year CVD prediction

(0.803 vs. 0.749, p < 0.0001) (Supplementary Fig. 6a), 5-year CVD predic-
tion (0.786 vs. 0.752, p < 0.0001) (Supplementary Fig. 6b), 10-year CVD
prediction (0.801 vs. 0.774), p < 0.0001 (Supplementary Fig. 6c), and15-year
CVD prediction (0.823 vs. 0.816, p < 0.0001) (Supplementary Fig. 6d).

AI-CAC plaque characterization significantly improved CHD pre-
diction in the CAC 1–100 cohort. AI-CAC plaque characteristics included
the number of plaques, location, density, plus number of vessels affected.
The addition of AI-CAC RV volume, LV volume, and LV mass further
improved discrimination for CHD in this cohort. The AI-CAC composite
model included LA volume, RV volume, LV volume, LV mass, AI-CAC
derived plaque characterization, and Agatston CAC Score. Over 5- and 10-
year follow-up, the time-dependent AUC for theAI-CAC compositemodel

Fig. 1 | AI-enabled automated cardiac chambers volumetry and calcified plaque
characterization to CAC scans (AI-CAC) definition and case examples. AI-CAC
component diagram derived from coronary artery calcium (CAC) scan and

examples of AI-CAC volumetry detection of high-risk individuals with enlarged
cardiac chambers in coronary artery calcium (CAC) scans with a calcium score of
zero and low ASCVD risk.

Fig. 2 | Quartiles of AI-enabled automated cardiac chambers volumetry and
calcified plaque characterization to CAC scans (AI-CAC) Left Atrial (LA) and
Left ventricular (LV) Volume by Agatston Coronary Artery Calcium (CAC)
Score Quartiles. aAI-CAC LA volume vs. CAC score. Stacked bar chart of quartiles
of AI-CAC LA volume by CAC score categories (0, 1–100, 101–400, over 400).

Despite the correlation, 17.7% of cases with CAC 0who are considered low risk have
enlarged LA volume that puts them at high risk for atrial fibrillation (AF) and stroke.
b AICAC LV volume vs. CAC score. Stacked bar chart of quartiles of AI-CAC LV
volume by CAC score categories (0, 1–100,101–400, over 400). 22.7% of cases with
CAC 0 have enlarged LV volume that puts them at risk of heart failure (HF).
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vs. Agatston CAC Score was 0.654 vs. 0.557 (p < 0.0001) and 0.688 vs. 0.556
(p < 0.0001), respectively (Supplementary Fig. 8a, b).

Discussion
Our study primarily demonstrates the utility of applyingAI toCAC scans to
extract more actionable information than currently reported, which is the
Agatston CAC score only. We found that AI volumetry significantly
improves upon traditional CAC scoring for the prediction of risk for total
CVDevents aswell as thepredictionof individualCVDevents ofHF, stroke,
AF, and all-cause mortality in a large multi-ethnic cohort. The plaque
characterization componentofAI-CACspecifically improved thepredictive
value of the Agatston score for CAC scores 1–100. Moreover, we show the
value of this technique not only for longer-term event prediction (10-15

years) but also for nearer-termevents (1 to 5-year follow-up). This is thefirst
multi-ethnic outcome study of an easily implemented AI technology that
can be applied to non-contrast CAC scans without additional radiation
exposure to identify patients at risk of such events whowould otherwise not
be identified by Agatston CAC score. The potential utility of non-coronary
findings in CAC scans has been reported previously using manual 2D
measurements of LV10–13 and LA sizes14–17. Our study corroborates findings
from the Heinz Nixdorf Recall Study and others and further brings to light
the value of non-coronary findings inCAC scans for a comprehensiveCVD
risk assessment beyond CHD14–18. Kizer et al. showed that LA size was an
independent predictor of CVD events19. Mahabadi et al.15 showed in the
longitudinal Heinz Nixdorf Recall Study that two-dimensional LA size and
epicardial adipose tissue from non-contrast CT were strongly associated

Fig. 3 | Time-dependent receiver operating curve (ROC) area under curve (AUC)
for all cardiovascular events between AI-enabled automated cardiac chambers
volumetry and calcified plaque characterization to CAC scans (AI-CAC) vs.
Agatston coronary artery calcium (CAC) Score over 15 years. a Time-dependent
AUC for AI-CAC vs. CAC score at 1-year follow-up. AI-CAC had significantly
higher discrimination than Agatston CAC score for CVD events prediction over
1-year follow-up. The AUC at 1-year follow-up for AI-CAC vs. Agatston Score was
0.784 vs. 0.701 (p < 0.0001). bTime-dependent AUC for AICAC vs. CAC score over

5-years follow-up. At a 5-year follow-up, AI-CAC continued to demonstrate
superior discrimination compared to the Agatston CAC score. The AUC for AI-
CAC vs. Agatston score was 0.771 vs. 0.709 (p < 0.0001). cTime-dependent AUC for
AI-CAC vs. CAC score over 10-years follow-up. For a 10-year follow-up, AI-CAC
maintained a higher AUC compared to the Agatston score (0.789 vs. 0.712,
p < 0.0001). d Time-dependent AUC for AI-CAC vs. CAC score over 15-years
follow-up. At the 15-year follow-up, AI-CAC achieved the highest discrimination,
with an AUC of 0.816 vs. 0.729 for the Agatston score (p < 0.0001).
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with prevalent and incident AF and that LA size diminished the link of
epicardial adipose tissue with AF, and was also associated with incident
major CVD events independent of risk factors and CAC-score16.

Although there are multiple automated CAC scoring tools available,
currently, there is no clinically available tool to clinicians for automated
cardiac chamber volumetry inCACscans that is validated against outcomes.
Here, we provide evidence of the feasibility of using AI for automated 3D
volumetry of cardiac chambers that takes on average 20 s. Currently, such
measurements are only possible on contrast-enhanced CT scans, which
require more radiation plus injection of an X-ray contrast agent that is
burdensome20. In contrast, AI-CACvolumetry can be applied to any new or
existing non-contrast CAC scan for automated cardiac chamber measure-
ment. Standalone cardiacMRI and echocardiography arenot comparable to
our solution, which is an opportunistic add-on to chest CT scans. While
echocardiography and cardiac MRI provide valuable information on car-
diac chamber volume, they are not indicated for the asymptomatic popu-
lation and are usually performed in cardiovascular clinics. However, AI-

enabled cardiac chamber volumetry can be done on any chest CT scan,
including lung cancer screening scans. This approach opens the door to
identifying high-risk asymptomatic patients in non-cardiovascular clinics.

AI-CAC volumetry not only works on ECG-gated CAC scans but also
non-gated lung CT scans21. Non-contrast chest CT scans are prime candi-
dates for opportunistic AI-enabled cardiac chamber volumetry for the
identification of patients at increased risk forAF22 andHF. TheAI approach
can enable automatic screening of the over 10 million chest CT scans done
each year in the US alone23. Such an AI tool can run in the background of
radiology picture archiving and communication systems (PACS) and alert
providers to cases with enlarged cardiac chambers. Unfortunately, many
high-risk patients with enlarged cardiac chambers are currently undetected
and, therefore, untreated. Early detection of these cases can allow for close
monitoring of progression to AF for stroke prevention and guideline-
directedmedical therapy forHFprevention. In our study,wehave found the
unadjusted correlations between Agatston CAC score and LA and LV
volumes to be low (R = 0.20 and R = 0.10, respectively) (Supplementary

Table2 | Time-dependent areaunder thecurve (AUC)andcategory-freenet reclassification index (NRI) at 1-, 5-, 10-, and15-year
follow-up between AI-CAC and Agatston CAC score (CAC) for individual and all cardiovascular event and mortality prediction

MESA outcomes
1-year follow up

CAC AUC (95% CI) AI-CACa AUC (95% CI) AUC p-value AI-CAC NRI over CAC NRI p-value

AF 0.67 (0.58,0.75) 0.80 (0.71,0.88) <0.0001 0.77 <0.0001

HF 0.65 (0.52,0.77) 0.91 (0.84,0.97) <0.0001 1.17 <0.0001

CHDb 0.78 (0.72,0.85) 0.80 (0.72,0.87) 0.41 0.19 0.05

Stroke 0.67 (0.56,0.79) 0.79 (0.66,0.87) <0.0001 0.65 <0.0001

Hard CVDc 0.68 (0.59,0.79) 0.77 (0.68,0.85) <0.0001 0.34 <0.0001

All CVD eventsd 0.69 (0.65,0.75) 0.77 (0.73,0.83) <0.0001 0.40 <0.0001

All-cause mortality 0.64 (0.52,0.68) 0.71 (0.58,0.82) <0.0001 0.61 <0.0001

5-year follow up

AF 0.67 (0.64,0.70) 0.74 (0.70,0.77) <0.0001 0.36 <0.0001

HF 0.71 (0.65,0.75) 0.83 (0.79,0.88) <0.0001 0.64 <0.0001

CHDb 0.79 (0.76,0.82) 0.81 (0.78,0.84) 0.18 0.18 0.006

Stroke 0.66 (0.60,0.72) 0.76 (0.70,0.81) <0.0001 0.58 <0.0001

Hard CVDc 0.73 (0.70,0.77) 0.78 (0.75,0.80) <0.0001 0.33 <0.0001

All CVD eventsd 0.71 (0.69,0.74) 0.75 (0.74,0.78) <0.0001 0.28 <0.0001

All-cause mortality 0.67 (0.63,0.70) 0.70 (0.66,0.73) <0.0001 0.32 <0.0001

10-year follow up

AF 0.69 (0.67,0.71) 0.76 (0.74,0.78) <0.0001 0.43 <0.0001

HF 0.71 (0.68,0.75) 0.81 (0.78,0.84) <0.0001 0.52 <0.0001

CHDb 0.79 (0.77,0.81) 0.80 (0.78,0.83) 0.09 0.16 0.002

Stroke 0.66 (0.63,0.70) 0.75 (0.71,0.79) <0.0001 0.45 <0.0001

Hard CVDc 0.72 (0.70,0.75) 0.77 (0.74,0.79) <0.0001 0.33 <0.0001

All CVD eventsd 0.71 (0.70,0.73) 0.76 (0.75,0.78) <0.0001 0.29 <0.0001

All-cause mortality 0.68 (0.65,0.70) 0.71 (0.69,0.73) <0.0001 0.33 <0.0001

15-year follow up

AF 0.69 (0.67,0.71) 0.75 (0.74,0.77) <0.0001 0.33 <0.0001

HF 0.75 (0.71,0.78) 0.83 (0.79,0.86) <0.0001 0.50 <0.0001

CHDb 0.81 (0.78,0.83) 0.82 (0.80,0.85) 0.73 0.17 0.002

Stroke 0.69 (0.66,0.73) 0.75 (0.70,0.79) <0.0001 0.30 <0.0001

Hard CVDc 0.75 (0.72,0.78) 0.79 (0.77,0.82) <0.0001 0.24 <0.0001

All CVD eventsd 0.72 (0.70,0.74) 0.76 (0.74,0.78) <0.0001 0.23 <0.0001

All-cause mortality 0.68 (0.66,0.71) 0.72 (0.70,0.74) <0.0001 0.29 <0.0001

AF atrial fibrillation, HF heart failure.
aAI-CAC model: LA indexed by BSA, RV indexed by BSA, LV volume and mass indexed by BSA, log-transformed CAC.
bCHD: myocardial infarction, definite angina, probable angina, resuscitated cardiac arrest, CHD death.
cHard CVD: myocardial infarction, resuscitated cardiac arrest, stroke, CHD death, stroke death.
dAll cardiovascular events: stroke, myocardial infarction, angina, resuscitated cardiac arrest, all cardiovascular disease-related deaths, heart failure, and atrial fibrillation.
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Figs. 1 and 2), hence a substantial portion of the population with enlarged
LA and LV chambers are found in low-risk CAC categories. The combi-
nation of the automated cardiac chambers volumetry component of AI-
CAC plus automated AI-CAC plaque characterization showed a greater
incremental AUC value over the Agatston score vs. each alone.

Finally, the lack of coverage for CAC scans byMedicare and healthcare
insurance carriers has contributed to healthcare inequity in the US. Ikram
andWilliams24 have shown that low-income people in the Chicago area are
less likely to get CAC scans compared to people in higher-income zip codes.
We hope that by applying AI to CAC scans and providing incremental
value, the payers will be more likely to cover CAC scans.

Our study has several strengths and limitations. The multi-ethnic
nature ofMESA recruited from six field centers around the US provides for
greater generalization of our findings than single-center studies. MESA
included standardizedmethods of data collection, laboratorymeasurement,
follow-up, aswell as adjudicationofCVDevents. Internal validationwasnot
performed with hold-out due to the low sample size of several events.

One limitation is that the MESA Exam 1 baseline CT scans were
performed between 2000 and 2002 using electron-beam computed tomo-
graphy (EBCT) or earlier generation multidetector CT scanners, and cur-
rent CAC scanning utilizes more advanced multidetector CT scanning.
However, since our AI training was done completely outside of MESA and
used a modern multidetector (256 slices) scanner, we do not anticipate this
to affect the generalizability of our findings.

Another limitation is the potential impact of different ECG gating
methods (RR-interval) used in MESA for multidetector CT (50%) and
EBCT (80%). This discrepancy resulted in significant differences in LA
volume between participants scanned with EBCT vs. MDCT (57.4 cc vs.
65.4 cc, respectively, p < 0.0001). However, LV volume, LV mass, and RV
volume measurements were not affected by scanner type (Supplementary
Table 7). The cumulative incidence ofAFbetweenLAvolumesmeasured by
different scanners showed similar results (Supplementary Figs. 10 and 11).
Although interaction terms between LA volume and scanner type were
tested and found to be non-significant for outcome prediction, questions
remain on the extent of the impact of scanner type on our findings.

Since MESA does not distinguish between HF subtypes (heart failure
with reduced ejection fraction (HFrEF) vs. heart failure with preserved
ejection fraction (HFpEF)), wewere unable to compare the prediction ofHF
subtypes. However, in a preliminary study, we obtained data from 75
patients who underwent both a cardiac CT scan and echocardiography at
Harbor UCLAmedical center25. AI-CAC LV volume index (LVVI) defined
as LV volume divided by BSA was able to distinguish HFrEF vs. HFpEF
comparably to echocardiography LVVI (Supplementary Fig. 9).

Finally, our study excluded 771 cases who did not consent to the use of
their data by commercial entities. However, the baseline characteristics of
these cases did not differ systematically with respect to the remaining par-
ticipants, and we do not anticipate this to affect our findings.

In this study, we presented AI-CAC data on cardiac chambers volu-
metry and calcified plaque characterization obtained from existing CAC
scans in a largemulti-ethnic prospective study and compared it to Agatston
CAC Score alone for prediction of all cardiovascular events (stroke, myo-
cardial infarction, angina, resuscitated cardiac arrest, all CVD-related
deaths, HF, and AF), over 15 years. AI-CAC significantly improved upon
the Agatston CAC score for all cardiovascular events prediction (including
all CHD in CAC 1–100 cohort), as well as total mortality. Moreover, sig-
nificant improvement in risk prediction and reclassification of events was
not only seen for longer-term (e.g., 10- and 15-year) events but also for
nearer-term (e.g., 1- and 5-year) events, advancing the status quo to help
identify individuals at risk of near-term CVD events and death.

The projected impact of our study lies in AI’s ability to provide
opportunistic screening of enlarged cardiac chambers in all types of chest
CT scans, including lung cancer screening and non-cardiac thoracic diag-
nostic CT scans. This manuscript primarily demonstrates the utility of
applying AI to CAC scans to extract more actionable information than the
Agatston CAC score that is currently reported. Additionally, AI-CAC can

measure chamber volume much faster and cheaper and is operator-
independent compared to manual methods.

Methods
Study population
MESA is a prospective, population-based, observational cohort study of
6814 men and women without clinical CVD at the time of recruitment. Six
field centers in the United States participated in the study: Baltimore,
Maryland; LosAngeles, California; Chicago, Illinois; ForsythCounty,North
Carolina; NewYorkCity, NewYork; and St. Paul,Minnesota. As part of the
initial evaluation (2000-2002), participants received a comprehensive
medical history, clinic examination, and laboratory tests. Demographic
information, medical history, andmedication use at baseline were obtained
by self-report. An ECG-gated non-contrast CT was performed at the
baseline examination to measure CAC (see below).

Outcomes
The primary outcome was a composite of all CVD events comprised of
stroke, myocardial infarction, angina, HF, AF, resuscitated cardiac arrest,
and all CVD-related deaths. Participants were contacted by telephone every
9–12months during follow-up and asked to report all new CVD diagnoses.
International Classification of Disease (ICD) codes were obtained. For
participant reports of HF, coronary heart disease, stroke, and CVD mor-
tality, detailed medical records were obtained, and diagnoses were adjudi-
cated by the MESA Morbidity and Mortality Committee. Incident AF was
identified by ICD codes 427.3x (version 9) or I48.x (version 10) from
inpatient stays and, for participants enrolled in fee-for-service Medicare,
fromMedicare claims for outpatient and provider services. Hard CVDwas
defined as myocardial infarction, resuscitated cardiac arrest, stroke, CHD
death, and stroke death. Anginawas classified, except in the setting ofMI, as
definite, probable, or absent.Definite orprobable angina requires symptoms
of typical chest pain or atypical symptoms. Probable angina requires, in
addition to symptoms, a physician's diagnosis of angina, and medical
treatment for it. Definite angina required one or more additional criteria,
including CABG surgery or other revascularization procedures; 70% or
greater obstruction on coronary angiography; or evidence of ischemia by
stress tests or by resting ECG. A detailed study design for MESA has been
published elsewhere26.MESAparticipants have been followed since the year
2000. IncidentAFhas been identified throughDecember 2018. 70 caseswith
AF diagnosed prior to MESA enrollment were removed from the analysis.

From the 6814 MESA participants, we excluded 771 who did not
consent to the use of their data by commercial entities, leaving 6043 parti-
cipants at baseline.Among the remainingparticipants, 125participantswith
missing slices in CAC scans and 88 participants with missing event or time
follow-up data were excluded, resulting in data from 5830 participants for
final analysis. Of the 125 cases withmissing slices inCAC scans were, 49.8%
male and50.2%female,with age 60.8 ± 10.1. These errorswere random, and
our investigations did not reveal any association between cases withmissing
slices and any of the dependent or independent variables in our study.

The AI tool for automated cardiac chamber volumetry
The automated cardiac chambers volumetry tool in AI-CAC referred to in
this study is called AutoChamberTM (HeartLung.AI, Houston, TX). The
deep learning model used TotalSegmentator27 as the base input and was
further developed to segment each of the four cardiac chambers: LA, LV,
RA, RV also in addition to several other components such as automated
CAC score and plaque characterization, which are not presented here
(Fig. 1). The coremachine learning component of AI-CAC is adapted from
TotalSegmentator which is a widely used anatomical model published and
validated by investigators independent from our group. The source code for
theTotalSegmentator basemodel is available publicly. The base architecture
of the TotalSegmentator model was trained on 1139 whole-body CT cases
with 447 cases of coronary CT angiography (CCTA) independent from
MESA using nnU-Net, a self-configuring method for deep learning-based
biomedical image segmentation28. The initial input training data were
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matched to non-contrast and contrast-enhanced ECG-gated cardiac CT
scans with 1.5mm slice thickness. Because the images were taken from the
same patients in the same session, registration was done with good align-
ment. Following this transfer of segmentations, a nnU-Net deep learning
tool was used for training the model. Additionally, iterative training was
implemented whereby human supervisors corrected errors made by the
model, and the corrected data were used to further train the model, leading
to improved accuracy. To standardize the comparison in MESA, cardiac
chambers were indexed by body surface area (BSA).

We developed a post-processing pipeline to identify instances of poor-
quality segmentationswhere the region of interest was absent. Furthermore,
we employed connected components analysis to eliminate ectopic seg-
mentation islands. These methods were implemented to ensure quality
control andoptimize themodel’s performance. Expert rulesbuilt into theAI
model excluded 125 cases due to missing slices in image reconstruction,
which occurredwith some of the electron-beamCTscanners used inMESA
at baseline.

Agatston CAC score measurement
Three study sites used cardiac-gated electron-beam CT scanners, whereas
the other three sites used multidetector CT scanners. Each participant was
scanned twice at baseline examination, with ameanAgatston score used for
analysis29. All scans were phantom-adjusted and read by two trained CT
image analysts at a central MESA CT reading center, with high reprodu-
cibility and comparability between electron-beamCTandmultidetectorCT
scanning30,31. Detailed information on CT scan methods and interpretation
has been provided previously30.

CAC area and density were derived from total Agatston and volume
scores, whichwere provided in the originalMESAdata set. Themethods for
this derivation are elsewhere32.

AI-CAC plaque characterization beyond Agatston CAC score
In addition to AI-CAC cardiac chamber volumetry, AI-CAC enables cal-
cified plaque characterization that currently is not reported by the Agatston
CAC Score. These characteristics include the number of plaques, the
number of vessels with plaques, plaque density, and location. In this study,
wehave only used these characteristics for calcifiedplaques, however, efforts
are underway to characterize non-calcified (soft plaques) in non-contrast
CAC scans using AI-CAC.

InMESA-1,humanexperts generated reports onplaque characteristics
for each patient. For these reports, each expert manually identified plaques
by clicking on them, extracting x, y, and z coordinates for each point, and
measuring surface area using a connected components algorithm. This
algorithm identified connected pixels that were adjacent side-by-side but
excluded those connected diagonally. From these reports, we were able to
extract information on plaque location, number of plaques, plaque density,
and the number of vessels affected by plaques. We have chosen to use
MESA’s plaque characterization due to excessive noise in the coronary
arteries in MESA-1 CT scans.

Statistical analysis
We used SAS (SAS Institute Inc., Cary, NC) and Python 3.10 for statistical
analyses. All values are reported as means ± SD except for CAC and plaque
characteristics,whichdidnot shownormal distribution and arepresented as
median with interquartile range (IQR). All tests of significance were two-
tailed, and significance was defined at Type I error (α) = 0.05 and Type II
error (β) = 0.20. All analyses met the appropriate sample size and power
considerations. Instanceswhere these requirements were notmet have been
excluded and noted.

Survival analysis was performed using Cox proportional hazards
regression. Model assumptions were tested using Schoenfeld and Martin-
gale residuals and no violations of proportional hazards or non-linearity
were detected in any variables. Discrimination was assessed using the time-
dependent receiver operator characteristic (ROC) area under the curve
(AUC)33 and Uno’s C-statistic34. The time-dependent AUC was calculated

using the inverse probability of censoring weighting (IPCW) estimator
without competing risks to determine discrimination at specific follow-up
times. AUC confidence intervals were obtained using 1000 bootstrapped
samples. Significance in the AUC difference between predictors was cal-
culated based on the variance of the difference using the independent and
identically distributed (iid)-representation of the AUC estimator. Uno’s C-
statistic was calculated to account for significant right censoring over 15
years of follow-up for all CVD predictions (70%). Significance in con-
cordance discrimination was determined using 1000 bootstrapped samples.

Category-free (continuous) net reclassification index (NRI) was cal-
culated using the sum of the differences between the proportions of upward
reclassifications and downward reclassifications events and non-events,
respectively. P(up|event) and P(down|nonevent) form the positive com-
ponents of the NRI in expression, while events that move down and non-
events that move up are mistakes introduced by the new marker. NRI was
developed as a statistical measure to evaluate the improvement in risk
prediction models when additional variables are incorporated into a base
model35.

The AI-CAC model, as presented, is comprised of the LA volume
index, RV volume index, LV volume index, LV mass index, plaque char-
acterization, and MESA-reported phantom-adjusted Agatston CAC score.
Cardiac chamber volumetry was indexed by body surface area to standar-
dize measurements. Because MESA participants were entirely asympto-
matic without overt HF, LV volume and LVmass index demonstrated high
collinearity and were combined into a composite variable. Correlation and
variance inflation factor analysis showed low multicollinearity among the
remaining predictors. Agatston CAC score was natural logarithm-
transformed (ln-transformed + 1) to improve the interpretability of
hazard ratios and avoid undue influence of large values. All predictors were
modeled continuously and exhibited a linear relationship with outcomes.

The focus of this manuscript is comparing AI-CAC over Agatston
CACScore alone; therefore, no risk factors or other covariateswere included
in either model presented in the figures of this manuscript. However,
incremental value of AI-CAC measurements over CVD risk factors have
been provided in the Supplementary Information.

Data availability
No datasets were generated or analysed during the current study.

Code availability
SAS and Python codes used for statistical analysis in this study are available
within a reasonable time from the publication date.
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