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ABSTRACT 

 

The Effects of Chronic Arsenic Exposure on Thermogenesis and Type 2 Diabetes  

by 

Felicia Castriota 

Doctor of Philosophy in Environmental Health Sciences 

 

University of California, Berkeley 

 

Professor Martyn T. Smith, Chair  

 

The prevalence of type 2 diabetes (T2D) has nearly doubled since 1980. T2D is 

characterized by hyperglycemia, insulin resistance, and long-term complications. Poor nutrition, 

sedentary lifestyle, and obesity, are among the strongest risk factors for the development of this 

metabolic disease. Environmental pollutants however, also have the potential to alter glucose 

homeostasis and lead to the development of T2D. Arsenic is one of these chemicals, with 

epidemiologic studies worldwide supporting this association. The precise mechanism of action 

by which arsenic exhibits its diabetogenic effects however, remains unclear. Since the late 2000s, 

select heat-producing adipose depots have been identified and shown to be intricately involved in 

glucose metabolism. Brown and beige adipocytes are important regulators of energy expenditure 

and both lipid and glucose homeostasis. This dissertation aims to identify whether arsenic 

increases the risk of T2D development among obese individuals, and identify its effects on 

thermogenic adipocytes involved in glucose metabolism and energy expenditure. Chapter 1 is a 

state-of-the-science review of the disruptive effects of arsenic exposure on glucose homeostasis, 

with an emphasis on findings from experimental studies. Chapter 2 is a cross-sectional analysis 

of a unique arsenic exposed population in Northern Chile. This chapter examines the effects of 

arsenic exposure on T2D development, and evaluates whether arsenic and obesity may act 

synergistically to increase T2D risk. While proposed pathways for arsenic’s role in T2D include 

alterations in pancreatic β-cell function and insulin secretion, these findings are reported only at 

high arsenic exposure concentrations. Therefore, further investigation to elucidate arsenic’s 

diabetogenic molecular targets in mammalian models is required at relevant public health 

concentrations. Chapter 3 examines the effects of chronic low-dose arsenic exposure on 

thermogenesis and recruitable beige adipocytes involved in key metabolic pathways in vivo.  

Chapter 4 informs current statistical methodologies for indirect calorimetry analysis by 

implementing longitudinal data analysis techniques and randomization-based inference to better 

capture how environmental chemical exposures alter energy expenditure over time. Lastly, 

Chapter 5 summarizes the current state of arsenic research within the context of metabolic 

biology, and highlights how interdisciplinary research has the potential to inform current 

environmental standards and public health interventions.
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Abstract 

 

BACKGROUND: The prevalence of type 2 diabetes (T2D) has more than doubled since 1980. 

Poor nutrition, sedentary lifestyle, and obesity are among the primary risk factors. While an 

estimated 70 percent of cases are attributed to excess adiposity, there is an increased interest in 

understanding the contribution of environmental agents to diabetes causation and severity. 

Arsenic is one of these environmental chemicals, with multiple epidemiology studies supporting 

its association with T2D. Despite extensive research, the molecular mechanism by which arsenic 

exerts its diabetogenic effects remains unclear.  

 

OBJECTIVES: We conducted a literature search focused on arsenite exposure in vivo and in 

vitro, using relevant endpoints to elucidate potential mechanisms of oral arsenic exposure and 

diabetes development. 

 

METHODS: We explored experimental results for potential mechanisms and elucidated the 

distinct effects that occur at high versus low exposure. We also performed network analyses 

relying on publicly available data, which supported our key findings. 

 

RESULTS: While several mechanisms may be involved, our findings support that arsenite has 

effects on whole body glucose homeostasis, insulin-stimulated glucose uptake, glucose-

stimulated insulin secretion, hepatic glucose metabolism, and both adipose and pancreatic -cell 

dysfunction.  

 

DISCUSSION: This review applies state-of-the-science approaches to identify the current 

knowledge gaps in our understanding of arsenite on diabetes development.  

 

KEY WORDS: Arsenic; Type 2 diabetes (T2D); Insulin resistance; Insulin-stimulated glucose 

uptake (ISGU); Glucose-stimulated insulin secretion (GSIS) 

 

Introduction 

Arsenic is a naturally occurring metalloid in the Earth’s crust, found in water, air, food, 

and soil (Hughes et al. 2011). More than 200 million individuals are exposed to arsenic in drinking 

water, with high prevalence in Taiwan, Bangladesh, India, South America, and the United States 

(Hughes et al. 2011). The principal route of arsenic exposure occurs via the ingestion of 

contaminated drinking water and food, which continues to be a widespread public health concern 

(ATSDR 2007). Foods that have been reported to have high levels of inorganic arsenic include 

rice and rice-based products, poultry, apple juice, wine, and beer (Castriota et al, 2018). Runoff 

and leaching from rocks, sediment, and anthropogenic sources, are significant processes of 

drinking water contamination (ATSDR 2007).  Oral inorganic arsenic exposure is associated with 

a wide range of diseases, including cancers of the skin, bladder, lung, kidney, and liver, in addition 

to developmental, dermatological, neurological, respiratory, immune, cardiovascular, endocrine, 

and metabolic disorders such as type 2 diabetes (T2D) (Hughes et al. 2011; Naujokas et al. 2013).  

Elemental arsenic is present in both inorganic and organic forms, and in various oxidative 

states (Hughes et al. 2011). Both the pentavalent form, arsenate (iAsV) and the trivalent form, 

arsenite (iAsIII) are detected in drinking water (Hughes et al. 2011). Arsenite metabolism via oral 

exposure occurs primarily in the liver via arsenic (+3 oxidation state) methyltransferase (As3MT), 
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and involves sequential reduction and methylation reactions that lead to the formation of both 

trivalent and pentavalent monomethylated (MMA) and dimethylated (DMA) metabolites (Agusa 

et al. 2011). A reductive methylation model has been proposed where trivalent metabolites are 

conjugated to glutathione (GSH) and ultimately oxidized to pentavalent arsenical metabolites 

(MMA5+ and DMA5+) as the final products (Hayakawa et al 2005; Agusa et al, 2011). In recent 

years, the production of trivalent methylated species has been evaluated and deemed a 

bioactivation process that increases an individual’s susceptibility to arsenic toxicity (Agusa et al. 

2011; ATSDR 2007). In fact, methylarsonous (MMA3+) and dimethylarsinous acids (DMA3+) have 

been found to be more cytotoxic (Hou et al. 2013) and genotoxic (Petrick et al. 2000; Styblo et al. 

2000) than their pentavalent counterparts, in murine and human cell lines, respectively.  

 

Differences in Existing Research  

Studies have attempted to distinguish the risk of arsenic-induced T2D based on exposure 

level with inconsistent results across experimental models. In 2012, an expert panel assembled by 

the National Toxicology Program (NTP) concluded that the existing epidemiologic findings 

provided limited to sufficient support for the link between arsenic and diabetes in populations 

exposed to concentrations greater than 150 ppb (Maull et al. 2012). Since this evaluation, 

additional studies have published increasing evidence in support of the association between 

arsenic-induced T2D (Castriota et al. 2018; Farzan et al. 2017; Grau-Perez et al. 2017; Pan et al. 

2013; Peng et al. 2015). Animal models have also been established in attempt to mimic population 

exposures and identify the chemical’s diabetogenic effects. The concentration of arsenite in 

drinking water used in published in vivo metabolic studies have however, ranged from 100 ppb up 

to 50 ppm (Ditzel et al. 2015; Garciafigueroa et al. 2013; Adebayo et al. 2015; Druwe et al. 2012; 

Paul et al. 2011; Song et al. 2017; Maull et al. 2012). In vivo studies have large discrepancies in 

both exposure duration, concentration, and administration, many of which do not mimic those 

observed in human populations worldwide (Huang et al. 2011; Maull et al. 2012; Navas-Acien et 

al. 2005; Thayer et al. 2012). In 2012, an expert panel assembled by NTP deemed evidence for 

animal research on the topic of arsenic and diabetes inconclusive due to the dissimilarity of animal 

exposures across studies, and to those reported in human exposure studies (Maull et al. 

2012).Treatment with arsenite in vitro is also highly variable in regards to both dose and duration 

(Maull et al. 2012). In light of these concerns, NTP recommended that future arsenic research 

focus on animal studies designed to mimic internal doses observed in humans, accompanied by 

low-dose in vitro studies on cell lines involved in glucose metabolism (Maull et al. 2012; Thayer 

et al. 2012).  

There also remains a need for more uniform model selection for in vitro and in vivo study 

designs that are relevant to human exposures. The expression of As3MT in different cell lines may 

vary substantially, impacting the kinetics of arsenite metabolism and its effects in targets involved 

in glucose homeostasis. The assessment of sodium arsenite metabolism in four animal species, 

including rat, hamster, guinea pig, and mouse, found mice to be the most appropriate model to 

evaluate arsenic toxicity (Mitchell et al. 2000). While mice metabolize arsenic more quickly than 

humans, they have similar distribution parameters (Mitchell et al. 2000). The limitation of using 

mouse models is mostly due to low biological sample availability (e.g. plasma, urine, tissue) due 

to the animal’s small mass (Mitchell et al. 2000). Rats are considered a less appropriate animal 

model for arsenic metabolism as a proxy for human exposures as compared to other mammalian 

models (ATSDR 2007; Lu et al. 2004; Mitchell et al. 2000). While circulating DMA3+ inorganic 
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arsenic metabolite is accumulated in erythrocytes in rats, humans experience arsenic retention in 

epithelial tissues, such as the skin and lung (Lu et al. 2004). 

Historically, higher arsenic doses have been administered in animal studies due to the 

decreased susceptibility of laboratory animals to inorganic arsenic toxicity as compared to humans 

(ATSDR 2007). Rodents either metabolize arsenic quicker or sequester it in blood cells and thus 

require concentrations of arsenic above those found in exposed populations in order to achieve 

similar internal doses (Maull et al. 2012).  However, few studies report internal dose calculations, 

which require comprehensive water consumption estimates (States et al. 2011). The current 

literature also includes broad duration exposure periods, ranging from a few days to years (Maull 

et al. 2012). Routes of arsenic administration also vary, and include oral exposure via drinking 

water, oral gavage, and intraperitoneal injection (Maull et al. 2012). Since arsenic metabolism 

kinetics differ between animal models and humans, calculations based solely on allometric scaling 

may not be valid, and therefore are usually not reported (States et al. 2011). The use of genetic 

biomarkers and histopathology of select tissues have instead been more widely employed to 

convey equivalence to arsenic toxicity in humans (States et al. 2011).  

This review highlights key in vivo studies with supporting associations observed in vitro 

(Figures 2 and 3). This targeted approach relies on quantitative methodologies to qualitatively 

synthesize the most relevant studies and address inconsistencies in arsenical species, route of 

administration, and duration of exposure, reported in the literature. We provide mechanistic 

evidence to support epidemiologic findings and advance our understanding of arsenic and T2D 

development.  

 

Methods  

 

Literature Search and Study Selection  

          We performed a literature review search using the Health Assessment Workspace 

Collaborative (HAWC) Literature Search tool (https://hawcproject.org/) starting on June 2018, to 

locate studies focusing specifically on arsenite exposure and T2D. We used key terms and medical 

subject headings (MeSH) as follows: (“Arsenite” AND “Type 2 Diabetes”) OR (“Arsenite” AND 

“Insulin Resistance”) OR (“Arsenite” AND “Chronic”) OR (“Arsenic” AND “In Vitro”) OR 

(“Arsenite” AND “Epidemiology”) OR (“Arsenite” AND “Mus Musculus”). A total of 500 studies 

were obtained, with 99 additional relevant studies uploaded manually into the HAWC database. 

HAWC allows researchers to perform a PubMed database 

(https://www.ncbi.nlm.nih.gov/pubmed/) literature search where studies from the results of the 

query are imported and tagged for either inclusion or exclusion. All studies, whether searched 

directly in HAWC or uploaded manually, underwent an identical tagging process. A total of 599  

references underwent tagging based on established exclusion and inclusion criteria. The inclusion 

criteria for experimental studies and literature reviews were based on exposure to arsenite and T2D 

as the primary outcome of interest. The exclusion criteria for experimental studies and literature 

reviews were a) no data on arsenic b) included arsenicals as a mixture or those other than those in 

the trivalent form of arsenite c) included routes of exposure other than via drinking water (oral) 

for in vivo studies d) in utero exposure only e) relied on animal models other than mice f) the 

assessment of the target organ or cell line was not relevant to T2D development g) duplicate study. 

These criteria were established based on the research question of interest, which focused on the 

effect of oral arsenite exposure either in mice, or in rodent or human cell lines relevant to T2D, to 

assess the effect of the chemical on mechanisms involved in dysregulation of glucose homeostasis. 

https://hawcproject.org/)
https://www.ncbi.nlm.nih.gov/pubmed/)
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The study tagging was conducted by two researchers (F.C., L.R.) and any inconsistencies were 

resolved by consensus. HAWC visualization tools were used to create a literature tag-tree to 

illustrate study identification and classification (Figure 1). A total of 85 studies were selected for 

inclusion using the HAWC search database. We referred to the NTP Office of Health Assessment 

and Translation (OHAT)’s risk of bias rating tool to assess the quality of the animal studies 

included in this review (OHAT 2015). A total of 14 animal studies were rated for each of the 9 

risk-of-bias questions outlined for animal studies by OHAT’ guidelines (OHAT 2015). The risk-

of-bias rating was based on a 4-point scale, which included: definitively low risk of bias (++), 

probably low risk of bias (+), probably high risk of bias (-/NR), and definitely high risk of bias (-

-). Based on our assessment, there is a low probability of risk-of-bias (Figure SF1). The most 

important considerations for potential bias include the presence of an unintended co-exposure, 

such as high levels of arsenic in standard rodent chow, lack of research blinding, and lack of 

randomization in the allocation of treatment versus vehicle control. 

 

Network Analyses  

In addition to literature review, we also relied on chemical- and disease-related gene 

association data using the publicly available Comparative Toxicogenomics Database (CTD) 

(http://ctdbase.org), to identify genes that are associated with arsenic and T2D (Davis et al. 

2017). Within CTD, chemicals and diseases are annotated with MeSH identifiers 

(https://www.nlm.nih.gov/mesh/) that facilitate searching within the database. After individual 

gene lists were obtained, we identified 16 genes commonly affected by sodium arsenite, insulin 

resistance, and T2D (Figure 4). The Venn diagram was created using Venny 2.1 

(http://bioinfogp.cnb.csic.es/tools/venny/) (Figure 4). A potential limitation of using specific key 

terms is the potential of missing relevant genes, exemplified by the hypermethylation of 

KCNQ1, a gene involved in insulin secretion that did not appear in our original search. Despite 

this limitation, MeSH identifiers continue to be widely used based on narrow research criteria.  

To further investigate the biological processes enriched for the obtained list of genes, we 

used the ClueGO app (Bindea et al. 2009) within Cytoscape (Lotia et al. 2013) together with the 

WikiPathways repository (Slenter et al. 2018). Cytoscape (http://www.cytoscape.org/) is able to 

visualize molecular interaction networks and integrate these with gene expression profiles and 

other data. Additional features are available as applications. For gene set enrichment analysis 

(GSEA) we used the WikiPathways repository (accessed on February 14, 2018) containing 418 

curated human pathways and 5866 human genes. The advantage of using the ClueGO app within 

Cytoscape together with GSEA is that it enables the visualization of non-redundant and highly 

connected pathways in one functionally grouped network. Pathway selection criteria included a 

minimum number or percentage of genes (at least 3 genes or 4 percent of the total). The selection 

of highly connected pathways was based on Kappa statistics (Kappa Score > 0.4). In this way, 

functionally related biological pathways (containing the same genes) are clustered together.  

 

Results  

 Based on our review of the current literature we propose biological mechanisms to explain 

the association between arsenic exposure and dysregulation of glucose homeostasis. We further 

explore and validate published in vivo and in vitro targets via the use of network analyses from 

publicly available data.  

 

 

http://bioinfogp.cnb.csic.es/tools/venny/
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Whole Body Glucose Homeostasis  

  In vivo studies found impaired glucose tolerance in mice treated at high levels (ppm range) 

of arsenite. Persistent impaired glucose tolerance was observed in 8-week old C57BL/6J male mice 

based on glucose tolerance tests (GTT) performed (Kirkley et al. 2017). A study comparing 1, 10, 

20, or 50 ppm 8-week arsenite found that 4-week old C57BL/6J male mice developed impaired 

glucose tolerance only at the highest exposure dose (Paul et al. 2007; 2008). While relatively lower 

dose (3 ppm) of arsenite treatment for 16 weeks did not affect glucose tolerance in 7-week old 

non-diabetic C57BLKS/Jdb/m male mice, such treatment increased susceptibility to impaired 

glucose tolerance in 7-week old diabetic C57BKS/Leprdb/db male mice (Liu et al. 2014).  

Studies in genetic obese C57BKS/Leprdb/db male mice suggest the potential for a synergistic 

interaction between arsenic exposure and nutritional overload on the development of metabolic 

disorders. We identified five rodent studies that assessed the effects of arsenic co-exposures with 

high fat diet (Ditzel et al. 2015; Shi et al. 2014; Paul et al, 2011; Wu et al. 2008; Tan et al. 2011). 

Swiss Webster mice were treated with arsenic (100 ppb) after weaning for 10 weeks (to 13-weeks 

of age) (Ditzel et al. 2015). During the course of treatment, high fat diet was administered to assess 

the effects on fatty liver disease. Increased ectopic fatty lipid deposition and liver damage were 

observed in these mice (Ditzel et al. 2015). However, despite the induction of hepatic fibrosis, no 

significant increase in HOMA-IR, a measure of insulin resistance, was observed (Figure 2) (Ditzel 

et al. 2015). However, when mice were exposed to arsenic from embryonic day 5 to 13 weeks of 

age, and also fed a high fat diet after weaning, the effects on hepatic lipid accumulation and fibrosis 

were even more pronounced, and HOMA-IR was significantly elevated (Ditzel et al. 2015). These 

findings elucidate important differences for in utero versus postnatal arsenic dosing.  

4-week old C57BL/6J male mice were exposed to both arsenite (50 ppm) and high fat diet 

for 20 weeks. While these mice exhibited impaired insulin secretion, no changes were observed in 

fasting blood glucose (FBG), which suggests pancreatic -cell dysfunction (Paul et al. 2011). Oral 

GTT showed impaired glucose tolerance was more pronounced in arsenite and high fat diet-treated 

mice compared to mice administered high fat diet alone (Paul et al. 2011).  

Overall, in vivo studies show that impaired glucose tolerance is observed only under 

exposure to high doses of arsenic, such as 50 ppm (Figure 2). Figure 2 provides a graphical 

representation of whole body glucose homeostasis and insulin resistance observed in the in vivo 

studies reviewed on arsenite exposure. Figure 2 reveals that exposure to lower doses of arsenic, 

such as 4.9 ppm and below, does not seem to alter glucose homeostasis, unless combined with 

genetic-induced diabetic models.  

 

Insulin Stimulated Glucose Uptake (ISGU)  

Insulin is an anabolic hormone secreted by pancreatic -cells in response to high blood 

glucose levels (Figure 6). One of the major functions of insulin is to promote glucose uptake and 

utilization in peripheral tissues, such as skeletal muscle and white adipose tissue (Figure 6). During 

insulin resistance, the ability of insulin to promote glucose utilization in skeletal muscle and white 

adipose tissue is impaired (Saltiel and Kahn 2001).  

Using 3T3-L1 adipocytes as a model, 4h sodium arsenite treatment at 100 μM (13 ppm) 

reduced both basal and ISGU (Walton et al. 2004). Treatment at 20 μM (2.6 ppm) also decreased 

both insulin-stimulated and basal glucose uptake (Walton et al. 2004). At 50 μM (6.5 ppm) 

arsenite, 4h of exposure significantly reduced both insulin-stimulated phosphorylated AKT levels, 

and the expression of AKT protein (Walton et al. 2004). Similar concentration-dependent effects 

on ISGU were observed with metabolites methylarsine oxide and iododimethylarsine (Walton et 
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al. 2004). Notably, the authors did not examine whether 20 μM of arsenite treatment for 4h was 

sufficient to alter AKT expression. Xue et al treated 3T3-L1 adipocytes with 0.25-2 μM (32-260 

ppb) of arsenite for 7 days (Xue et al. 2011). The authors observed decreased insulin-stimulated 

AKT phosphorylation on serine residue 473, a hallmark of AKT activation. A significant reduction 

in ISGU was noted at 2 μM arsenite treatment, although a decreasing trend in glucose uptake was 

observed starting at lower concentrations (0.25-1 μM) (Hamann et al. 2014). These responses were 

correlated to a dose-dependent increase of intracellular GSH, and the expression of nuclear factor 

erythroid 2-related factor 2 (NRF2), which is a central transcription factor regulating cellular 

adaptive response to oxidative stress (Xue et al. 2011). Enhanced NRF2 activity has been shown 

to reduce insulin stimulated AKT phosphorylation and GLUT4 translocation in white adipose 

tissue (Xu et al. 2012). Arsenite treatment at 1 and 2 μM for 7 days also attenuated insulin-induced 

peroxide production, which is required for the induction of GLUT4 translocation (Mahadev et al. 

2001; Xue et al. 2011). This study however, did not directly examine the induction of NRF2 

activity and the reduced peroxide production to the suppressive effect of arsenite on insulin 

response in 3T3-L1 adipocytes (Mahadev et al. 2001).  

Divya et al treated 3T3-L1 pre-adipocytes and C2C12 myoblasts with 0.5, 1 and 2 μM 

arsenite for 8 weeks. At the end of treatment, cells were differentiated to either adipocytes or 

myotubes (Padmaja Divya et al. 2015). All three concentrations decreased ISGU ( Padmaja Divya 

et al. 2015) While 0.5 μM of arsenite showed no significant reduction in the expression of GLUT4 

in 3T3-L1 adipocytes or C2C12 myotubes, both 1 and 2 μM arsenite decreased GLUT4 expression 

in these cell lines (Padmaja Divya et al. 2015). Notably, mitochondrial membrane potential was 

also reduced in 2 μM arsenite treatment in both 3T3-L1 adipocytes and C2C12 myotubes (Padmaja 

Divya et al. 2015). This observation coincided with the decreased expression of protein deacetylase 

SIRT3 and the recruitment of FOXO3A, a transcription factor that regulates reactive oxygen 

species (ROS) metabolism, to its binding sites in the manganese superoxide dismutase (MnSOD) 

and PGC1 gene (Sundaresan et al. 2009). Overexpression of SIRT3 and MnSOD in C2C12 

myotubes enhanced mitochondrial membrane potential and restored ISGU that was shown to be 

suppressed by arsenite (Padmaja Divya et al. 2015). Interestingly, SIRT3 appeared to deacetylate 

FOXO3A, MnSOD and PGC1 (Padmaja Divya et al. 2015). The deacetylation of FOXO3A at 

the lysine 100 residue was upregulated with arsenic exposure in C2C12 myoblasts, which 

promoted FOXO3A’s nuclear localization and subsequent inactivation (Padmaja Divya et al. 

2015). In vitro, arsenite has been shown to inhibit SIRT3-FOXO3A signaling to reduce 

mitochondria activity and impair ISGU (Padmaja Divya et al. 2015).  

Arsenite exposure has widespread metabolic effects, also influencing peripheral glucose 

uptake in the central nervous system (Rodríguez et al. 2016). The brain has an obligate glucose 

requirement and therefore is especially vulnerable to impairments to glucose transporters (GLUT1 

and GLUT3) required for glucose to cross the blood brain barrier and be delivered to neurons 

(Rodríguez et al. 2016). Recent findings reported male C57BL/6J mice exposed to 50 ppm for 1-

month experienced a decrease in GLUT1 and GLUT3 mRNA levels in the brain, despite a lack of 

significant change of serum glucose concentrations (Rodríguez et al. 2016). Interestingly, arsenite 

administration significantly increased insulin receptor expression in the hippocampus (Rodríguez 

et al. 2016). However, it is unclear whether the change in glucose tolerance was due to the 

reduction of GLUT1 and GLUT3 expression in hippocampus (Rodríguez et al. 2016). 

A recent study showed impaired brown adipose tissue activity (BAT) in female C57BL/6J 

exposed to 5 or 20 ppm arsenic for 17 weeks (Zuo et al. 2019). While these mice experienced no 

changes in body weight, BAT mass was significantly elevated in the 5 ppm exposure group, with 
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significantly increased adipocyte droplets based on histopathological analysis (Zuo et al. 2019). 

Moreover, insulin levels were significantly elevated at both concentrations of exposure, with a 

significant decrease in genes involved in thermogenesis (UCP1 and PGC1) and mitochondrial 

respiratory chain activity (COX IV and NDUFS4) (Zuo et al. 2019).  

Studies focused on arsenic’s effects on ISGU have most frequently relied on 3T3-L1 

adipocytes to demonstrate impaired effects at both high and low exposures (Figure 3). Skeletal 

muscle, however, is primarily responsible for the majority of insulin-dependent glucose utilization 

in the body (DeFronzo 2009). The only cell culture model used to study the effects of arsenic on 

myotubes is C2C12 myotubes, and arsenite exposure has also been shown to impair C2C12 

differentiation in vitro (Hong and Bain 2012). Future studies should focus on the effects of arsenic 

on primary myotubes isolated from both rodents and humans. A recent study reported impaired 

skeletal muscle function, myofiber hypertrophy, mitochondrial myopathy, and altered oxygen 

consumption after 5-week arsenite exposure (100 ppb) in 5-6 week old C57BL/6NTac male mice 

(Ambrosio et al. 2014). While these in vivo findings support the evidence found in cultured 

myotubes (C2C12), additional studies will provide valuable insight regarding arsenic toxicity.  

The network analyses performed in this review support experimental findings, and 

highlight genes involved in insulin resistance and metabolic disorders. These include insulin, 

insulin receptor substrate 1 and 2, and heme oxygenase 1 (Figure 4). Arsenic’s effects on 

alterations in gene expression associated with these pathways can have deleterious effects on ISGU 

and whole body glucose homeostasis, as demonstrated in Figures 2 and 3.  

 

Hepatic Glucose Metabolism and Insulin Signaling 

The liver is a key target tissue for arsenic-induced insulin resistance due to its role in both 

arsenic metabolism and glucose production. Insulin suppresses hepatic gluconeogenesis and 

glycogenolysis, which are impaired in T2D (Basu et al. 2004). Gluconeogenesis is mainly 

regulated by the modulation of the transcription of rate-controlling enzymes in the pathway, such 

as phosphoenolpyruvate carboxykinase (PCK1) and the catalytic subunit of glucose 6 phosphatase 

(G6PC) (Pilkis  and Granner 1992). Insulin inhibits the transcription of both PCK1 and G6PC. To 

inhibit glycogenolysis, insulin activates protein phosphatase 1 (PP1) that inhibits glycogen 

phosphorylase, which catalyzes the rate-limiting step of glycogenolysis (Petersen et al. 2017). 

Identified studies showed that treating C57BLKS/Jdb/m and C57BLKS/Jdb/db male mice with 

3 ppm arsenite for 16 weeks increased PCK1 overexpression (Liu et al. 2014). Protein levels of 

Na+K+-ATPase in the liver were increased in arsenite treated mice (Liu et al. 2014). Arsenite 

treatment did not affect FBG levels in C57BLKS/Jdb/m mice. However, arsenite treatment elevated 

fasting glucose levels in C57BLKS/Jdb/db mice (Liu et al. 2014). The rate of gluconeogenesis and 

glycogenolysis was not measured in this study (Liu et al. 2014). Thus, the exact mechanism 

governing the elevation of FBG is unclear in C57BLKS/Jdb/db mice. 

A recent study reported a dose-dependent decrease in glycogen content in mouse primary 

hepatocytes treated with low-dose (0.5-2 μM) arsenite for 4 hrs (Zhang et al. 2017). Exposure to 

arsenite resulted in a dose-dependent reduction in insulin-dependent activation of glycogen 

synthase (GS), the rate-controlling enzyme in glycogenesis, and activation of glycogen 

phosphorylase (GP), the rate-controlling enzyme in glycogenolysis (Zhang et al. 2017). Notably, 

arsenite treatment for 4 hrs also inhibited insulin stimulated AKT phosphorylation at serine 308 

and 473, characteristic of AKT activity (Zhang et al. 2017). In contrast, the activity of GSK3, a 

downstream effector of AKT, was not affected by exposure to arsenite (Zhang et al. 2017). 

Inhibition of insulin-dependent AKT phosphorylation has also been reported in vivo, corroborating 
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in vitro findings in both hepatocytes and adipocytes (Chakraborty et al, 2012).  

The dose and duration of arsenic treatment in vitro can be a critical factor in identifying 

targets of arsenic toxicity relevant to human exposures. A study found that chronic treatment in 

mice (8 weeks) with high arsenite exposure (150 ppm) resulted in hepatic damage, with observed 

tissue necrosis and significantly elevated serum glutamate-pyruvate transaminase (SGPT) (Noman 

et al. 2015). HepG2 human hepatoma cells have been used as a model to study both the long- and 

short-term effects of arsenite on insulin signaling. While a 1h exposure to arsenite at concentrations 

up to 1 mM did not alter cell viability, the authors observed a decrease in GSH (Hamann et al. 

2014). Conversely, cell viability was greatly reduced after 24 hrs of arsenite treatment (Hamann 

et al. 2014). Notably, HepG2 cells treated with 3 or 10 μM of arsenite for 24 hrs attenuated insulin’s 

ability to activate AKT (Hamann et al. 2014). The phosphorylation of IR by insulin was reduced 

with exposure to 10 μM, but not 3 μM of arsenite (Hamann et al. 2014). Similar to findings from 

murine primary hepatocytes, arsenite treatment did not induce changes in GSK3 activity (Hamann 

et al. 2014). The phosphorylation of another insulin-induced downstream effector of AKT, 

FOXO1, was also not affected by arsenite treatment (Hamann et al. 2014). Surprisingly, while 

insulin inhibits the expression of G6PC  in healthy individuals (Hutton and O’Brien 2009), 24 hrs 

of arsenite treatment (1, 3 and 10 μM) also significantly suppressed G6PC expression (Hamann et 

al. 2014). The combinatorial effect of insulin and arsenite on G6PC expression, however, was not 

examined. For short-term exposures, HepG2 cells treated with 100 and 300 μM of arsenite for 1h 

induced both AKT and FOXO1 phosphorylation (Hamann et al. 2014). Thus, in contrast to the 

inhibitory effect on insulin action observed after 24 hr arsenite treatment, 1h arsenite treatment 

mimicked insulin-like signaling (Hamann et al. 2014). These findings highlight how the duration 

of arsenite exposure in vitro may have significant implications on our interpretation of 

epidemiologic findings.  

Additional studies assessing arsenic’s effects on hepatic glucose regulation are needed. 

While the current literature is sparse, studies suggest that low dose arsenite treatment of more than 

4 hrs may alter insulin’s anabolic activity in hepatocytes in vitro. The network analyses highlight 

genes involved in hepatic lipid metabolism and inflammation, such as SIRT1 and SREBP (Figure 

5). This however, contrasts findings that report arsenic to have insulin-mimetic properties at high 

doses during acute exposures. The chemical’s pronounced effects on liver function, hepatic 

steatosis, and injury, have also been widely reported in murine models (Ditzel et al. 2015; Shi et 

al. 2014; Noman et al. 2015). However, whether arsenic exposure modulates gluconeogenesis and 

glycogenolysis in vivo remains unexplored.  

 

Glucose Stimulated Insulin Secretion (GSIS) and β-cell Function 

Pancreatic -cells respond to elevated plasma glucose levels to secrete insulin, which in 

turn stimulates glucose utilization in skeletal muscle and white adipose tissue (Figure 7). This 

process allows mammals to maintain plasma glucose levels in a narrow range of homeostasis. 

Identified studies showed that treating 8-week old C57BL/6J male mice with 50 ppm arsenite for 

8-weeks resulted in impaired glucose tolerance (Kirkley et al. 2017). Whereas no differences in 

peripheral insulin sensitivity were observed between groups, arsenic-treated mice experienced a 

reduction in GSIS compared to controls (Kirkley et al. 2017). High dose exposure did not affect 

pancreatic -cell mass or structure, suggesting that arsenite affects -cell function (Kirkley et al. 

2018). The ability of arsenic to induce reactive oxygen species (ROS) and free radicals has been 

previously reported in human fibroblast cells (Hu et al. 2002). The pancreas has low antioxidant 

capabilities, and therefore may be especially vulnerable to arsenic-induced oxidative stress (Keane 
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et al. 2015). INS-1 832/13 cells treated with low-dose arsenite for 24 hrs decreased both GSIS and 

mitochondrial respiration in a dose-dependent manner (Dover et al. 2018). Low levels (0.25 and 

0.5 μM) of arsenite treatment for 96 hrs dampened glucose-induced insulin secretion in INS-1 

832/13 rat pancreatic -cells by activating NRF2 activity, which activates the transcription of 

genes involved in antioxidant defenses. Once activated, these genes decreased endogenous 

peroxide production necessary for adequate glucose induced insulin secretion (Fu et al. 2010). 

Arsenite treatment did not affect insulin gene expression in this report, which suggests that the 

secretion of insulin, but not its synthesis, is the target of arsenic toxicity (Fu et al. 2010). Additional 

studies report similar findings, as arsenic attenuates glucose stimulated insulin secretion without 

affecting insulin synthesis (Figure 3) (Douillet et al. 2013; Díaz-Villaseñor et al. 2008). Another 

report, however, shows that high levels of sodium arsenite treatment (5 µM) for 72 and 144 hrs in 

pancreatic -cells isolated from male Wistar rats resulted in significantly lower insulin gene 

expression (54 and 72 percent, respectively) (Díaz-Villaseñor et al. 2006). These dose of treatment 

also requires careful consideration, as 5 µM significantly decreased pancreatic -cell viability after 

144 hrs, but not 72 hrs (Díaz-Villaseñor et al. 2006).   

Arsenite may reduce GSIS by interfering with calcium-mediated signaling required for 

insulin secretory granule exocytosis (Figure 7). Calpains are calcium-sensing proteases that 

activate proteins such as SNAP25, involved in insulin secretory vesicle exocytosis (Marshall et al. 

2005). SNAP25 and CALPAIN10 both mediate the fusion of insulin granules with the plasma 

membrane (Marshall et al. 2005). While low-dose (0.5-1 μM) arsenite treatment of RINm5F rat 

pancreatic -cells for 72 hrs did not decrease CAPLAIN10 activity with either 5.6 or 15.6 mM 

stimulation, CALPAIN10 activity was significantly increased only at 2 μM (Díaz-Villaseñor et al. 

2008). Treatment with 1 μM arsenite during insulin-stimulated glucose secretion in vitro decreased 

calpain activity, measured as SNAP-25 proteolysis (Díaz-Villaseñor et al. 2008). Oddly, 2 μM 

arsenite treatment did not affect calpain activity. While CALPAIN10 activity was significantly 

increased only after 2 μM arsenite treatment, its activity was trending upward starting at 0.5 μM 

(Díaz-Villaseñor et al. 2008). Arsenite concentrations at 1, 2, and 5 μM significantly reduced cell 

viability (Díaz-Villaseñor et al. 2008).  

Endoplasmic reticulum (ER) stress is an additional mechanism involved in impaired GSIS  

(Hasnain et al. 2016). Sodium arsenite (4 μM) treatment in INS-1 cells for 3, 6, 12, and 24 hrs 

activated ER stress, as measured by PERK activity (Wu et al. 2018). Treating arsenite-treated 

pancreatic islets with PERK inhibitor restored the capacity of glucose stimulated insulin secretion 

(Wu et al. 2018). This finding suggests arsenite-induced ER stress can suppress glucose stimulated 

insulin secretion (Figure 3). The induction of ER stress and autophagy is likely to be cell 

autonomous, as treating INS-1 rat insulinoma cells with arsenite (4 μM) for 6 hrs potentiated PERK 

activity and altered the expression of autophagy makers (Wu et al. 2018). 

Oxidative stress induced by arsenite treatment in -cells has been shown to induce 

apoptosis. INS-1 832/13 pancreatic -cells treated with sodium arsenite (2.5-10 μM) exhibited 

increased intracellular ROS levels and apoptosis (Pan et al. 2014). Arsenite exposure also 

significantly reduced mitochondrial membrane potential and lysosomal membrane composition 

(Pan et al. 2014). Low-dose arsenite (0.25-1 µM) exposure in INS-1 832/13 pancreatic -cells for 

96 hrs decreased cell viability and thioredoxin reductase (TRX) activity in a dose-dependent 

manner (Yao et al. 2015). TRX is an enzyme that protects cells from oxidative damage and also 

associates and suppresses the activity of ASK1, a protein kinase involved in apoptosis (Soga et al. 

2012). Indeed, the levels of ASK1 protein were increased in cell culture media upon arsenite 
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treatment (Yao et al. 2015). Moreover, reducing ASK1 expression by RNA interference attenuated 

arsenite-induced cytotoxicity (Yao et al. 2015). Thus, arsenic reduced TRX activity, which in turn 

activated ASK1 to induce apoptosis in INS-1 cells. Notably, although NRF2 activation reduced 

GSIS as previously described, NRF2-induced antioxidant response has been shown to be involved 

in protecting pancreatic -cells from arsenic-induced cellular damage. Both NRF2-knockdown 

MIN6 pancreatic -cells and pancreatic islets isolated from NRF2-knockout mice experienced 

increased cytotoxicity upon 2-6 hrs of arsenite (2-10 µM) treatment (Yang et al. 2012). MIN6 

NRF1-knockdown cells also had decreased antioxidant capabilities (Cui et al. 2017). In vitro 

findings showed arsenite treatment decreased cell viability (1-20 µM for 24 hrs) and enhanced 

expression of genes involved in arsenic metabolism (Cui et al. 2017). These results further 

corroborate the role of arsenite-induced oxidative stress in pancreatic -cell apoptosis. HepG2 cells 

treated with low-dose arsenite (0.13-2 µM) for 24 hrs experienced a significant rise in C-reactive 

protein (CRP), which is secreted in response to increased inflammation (Druwe et al. 2012). These 

experimental findings are consistent with the increased levels of CRP observed in FVB female 

mice treated with 100 ppb via drinking water for 22 weeks (Druwe et al. 2012). Another study 

found 16-week arsenite (3 ppm) exposure increased inflammation, ROS, and vacuole formation in 

pancreatic islet of db/m mice, and further exacerbated these conditions in db/db mice (Liu et al. 

2014). 

In vivo studies that assess the effect of arsenic on the pancreas are conducted by exposing 

rodents at ppm levels for a duration of at least 8 weeks. Several of these studies showed that arsenic 

treatment increased pancreatic damage, which is in agreement with in vitro studies that report 

exposures starting at 1 µM to induce apoptosis. Most studies (Díaz-Villaseñor et al. 2008; Douillet 

et al. 2013; Díaz-Villaseñor et al. 2006; Hamann et al. 2014) that treat with arsenic levels > 1 µM 

report a reduction in GSIS, which supports dose-specific effects on glucose homeostasis (Figure 

3). Studies suggest that lower dose and/or shorter exposure duration (Fu et al. 2010; Yao et al. 

2015; Wu et al. 2018; Pan et al. 2014) affect the ability of pancreatic -cells inflammation,  with 

decreased pancreas weight (Liu et al. 2014; Kirkley et al. 2017). Discrepancies in experimental 

findings reported across animal studies may also be due to different susceptibilities across animal 

strains and species (Gentry et al. 2004). Several mechanisms were identified as mediating arsenic-

induced -cell apoptosis, including upregulated oxidative and ER stress (Figure 3). Interestingly, 

arsenic activation of NRF2 may inhibit endogenous ROS necessary for glucose uptake and insulin 

secretion (Xu et al. 2012). However, the activation of NRF2 also protects -cells from apoptosis 

(Masuda et al. 2015), and therefore has multiple implications in maintaining glucose homeostasis 

at various arsenic exposure concentrations. The network analyses performed reveal 5 genes 

associated with oxidative stress and inflammatory responses, including C3, TNF, NOS3, HMOX1 

and SOD2 (Figure 5). Further investigation of these mechanisms at chronic low doses relevant to 

human exposures are necessary going forward (Hectors et al. 2011).  

 

Adipose Tissue Function 

White adipose tissue is the primary organ responsible for the storage of lipids in the form 

of triglycerides. Increased lipolysis contributes to ectopic lipid deposition in target tissues involved 

in glucose metabolism, such as the liver and skeletal muscle (Rosen and Spiegelman 2006), 

Ectopic lipid deposition is one of the major mechanisms of insulin resistance. Thus, both excess 

storage of lipids in white adipose tissue, such as obesity, and lipodystrophy, have significant effects 

on insulin sensitivity and glucose homeostasis (Rosen and MacDougald 2006; Rosen and 

Spiegelman 2006). Adipose tissue is also an endocrine organ that secretes various adipokines to 
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modulate metabolic functions (Coelho et al. 2013; Kershaw and Flier 2004). Both in vivo and in 

vitro studies have found arsenic treatment to modulate adipocyte function and differentiation 

(Figures 2 and 3, respectively). Exposure to arsenite (5 or 50 ppm) in 4-week old C57BL/6J male 

mice for 18 weeks significantly decreased serum adiponectin levels (Song et al. 2017), a key 

adipokine in insulin sensitivity (Rosen and Spiegelman 2006; Ye and Scherer 2013). However, it 

remains unclear whether the reduction of plasma adiponectin levels contributes to arsenic’s effects. 

Most of the in vivo studies of chronic arsenite exposure found in our search showed no 

significant differences in weight gain or overall body mass (Figure 2) (Adebayo et al. 2015; 

Ambrosio et al. 2014; Kirkley et al. 2017; Song et al. 2017). Treating 5-6 week old C57BL/6J male 

mice with (100 ppb) arsenite for 5 weeks induced lipid mobilization that resulted in elevated 

ectopic accumulation of lipids in skeletal muscle (Garciafigueroa et al. 2013). Treating adipocytes 

differentiated from human mesenchymal stem cells with 1 µM arsenite for 72 hrs increased 

glycerol release, an indicator of the lipolytic activity in adipocytes (Garciafigueroa et al. 2013). 

Interestingly, arsenite treatment also results in lower expression of PERILIPIN1, a lipid droplet 

protein found in adipocytes (Garciafigueroa et al. 2013). These responses were reduced by 

pertussis toxin, an inhibitor of Gi-α subunit of heterotrimeric G protein. Indeed, antagonizing Gi-

coupled endothelin-1 type A receptor attenuated arsenite’s lipolytic response, whereas 

antagonizing endothelin-1 type B receptor reduced the ability of arsenite to suppress PERILIPIN1 

expression (Garciafigueroa et al. 2013). These results suggest that arsenic modulates PERILIPIN1 

expression and lipolysis through different mechanisms (Figure 3). PERILIPIN1 does, however, 

play an important role in the regulation of lipolysis in adipocytes (Sztalryd and Brasaemle 2017). 

PERILIPIN1 associates with and inhibits adipocyte triglyceride lipase (ATGL), an enzyme that 

hydrolyzes triacylglycerol to diacylglycerol. Upon the induction of protein kinase A (PKA) 

signaling by norepinephrine, PERILIPIN1 is phosphorylated by PKA, which prompts its 

dissociation from ATGL. Phosphorylated PERILIPIN1 subsequently recruits phosphorylated 

hormone sensitive lipase, which hydrolyzes diacylglycerol to monoacylglycerol. This process 

enhances lipolysis in adipocytes. Thus, reducing the expression of PERILIPIN1 will result in the 

augmentation of basal lipolysis, yet also attenuate norepinephrine-cAMP induced lipolysis.  

Adipocyte number (hyperplasia) and size (hypertrophy) are important features of white 

adipose tissue. 5-week arsenite exposure (100 ppb) in vivo was shown to reduce adipocyte numbers 

in white adipose tissue (Garciafigueroa et al. 2013). These results suggest arsenite treatment 

impairs adipogenesis (Figure 3). Pertussis toxin and antagonists of endothelin-1 type A and B 

receptors reduced arsenite’s ability to inhibit human mesenchymal stem cells (hMSCs) 

differentiation into adipocytes (Klei et al. 2012). Moreover, reduced expression of endothelin-1 

type A and B receptors in pre-adipocytes attenuated arsenite-inhibited adipogenesis (Klei et al. 

2012). These results suggest that the ability of arsenite to inhibit adipogenesis, like its effect on 

lipolysis, requires, or at least in part, endothelin-1 type A and B receptors. 

A multitude of studies observe the suppressive effect of arsenite on adipogenesis (Figure 

3) (Ceja-Galicia et al. 2017; Hou 2012; Trouba et al. 2000; Wauson et al. 2002). Arsenite (0.2-4 

μM) treatment of hMSCs impaired differentiation to adipocytes (Yadav et al. 2012). Perhaps 

unsurprisingly, the expression of transcription factors involved in adipogenesis, such as 

peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer binding protein   

and  (C/EBP and C/EBP), were also reduced, whereas the expression of adipogenic inhibitor 

Wnt3a was increased (Yadav et al. 2012). Arsenite treatment in 3T3-L1 pre-adipocytes also 

suppressed differentiation to adipocytes (Hou et al. 2013). Arsenite treatment resulted in higher 

levels of  CCAAT-enhancer-binding protein homologous protein-10, CHOP10, an endoplasmic 
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reticulum (ER)-stress response protein involved in the unfolded protein response (UPR) (Hou et 

al. 2013). CHOP10 is a negative regulator of C/EBP, which acts upstream of PPAR actors 

involved in adipogenesis, such as PPARγ and C/EBP in the transcriptional cascade regulating 

adipogenesis (Hou et al. 2013). C3H 10T1/2 pre-adipocytes exposed to sodium arsenite (6 mM) 

for 8 weeks also experienced altered morphology and impaired differentiation (Trouba et al. 2000). 

Arsenite-treated human hMSCs (1 M for 24 and 48 hrs) exhibited significantly altered function 

of non-coding microRNA involved in adipogenesis (Beezhold et al. 2017; Renu et al. 2018). Both 

culture adipocytes and primary hMSCs isolated from mice treated with arsenite in vivo (100-250 

ppb) increased miR-29 and CYCLIND expression, furthering cell growth rather than adipogenic 

differentiation (Beezhold et al. 2017).  

Recent findings suggest low and moderate dose arsenite exposure induces lipolysis and 

impairs adipogenesis (Renu et al. 2018). Mechanistic studies indicate a dose-dependent inhibition 

of adipocyte differentiation, altering critical pro-adipogenic programming (Figure 3). Arsenic’s 

effects in adipose tissue also manifest in increased ectopic lipid deposition in both the liver and 

skeletal muscle, which could contribute to the development of insulin resistance (Renu et al. 2018). 

Gene lists obtained from our network analyses complement findings in both in vivo and in vitro 

studies, and support adipose tissue as a target of arsenic toxicity. Many of the genes highlighted in 

the network analyses (Figure 5) are directly involved in adipogenesis, altered energy storage, 

adipokine secretion, and ectopic lipid deposition, further supporting the experimental evidence 

reported. Figure 5 lists the pathways related with arsenic-induced insulin resistance and also 

depicts the interaction network of both these pathways and select genes identified.  

 

Trivalent Arsenical Metabolites – DMA3+ and MMA3+  

Since epidemiologic studies have reported the association of arsenic and T2D, the primary 

focus of laboratory research in the context of diabetes has relied on the parent compound as the 

chemical of exposure (Castriota et al. 2018; Farzan et al. 2017; Grau-Perez et al. 2017; Pan et al. 

2013; Peng et al. 2015). Recent evidence however, has shown trivalent arsenical species to 

interfere with metabolic pathways responsible for glucose homeostasis. A dose-dependent 

decrease in mitochondrial respiration associated with GSIS in INS-1 832/13 pancreatic -cells was 

observed for both arsenite and MMA3+, but not for DMA3+ (Dover et al. 217). MMA3+ decreased 

GSIS in INS-1 cells after 24-hr exposure at both 0.375 and 0.5 M (Dover et al. 2017). There was 

however, no significant decrease observed upon 24 hr DMA exposure, even at the highest dose 

(Dover et al. 2017).  This research highlights key differences in the effects of arsenical species on 

GSIS, warranting increased laboratory research on this pathway.  

4 hr exposure to arsenite and MMA3+ concentrations as low as 0.5-2 M decreased 

glycogen levels in insulin-stimulated in primary murine hepatocytes by interfering with rate-

limiting glycogenesis genes GS and GP, and increasing glucose output (Zhang et al. 2017). Both 

arsenite and MMA3+ downregulated GS and upregulated GP, in addition to inhibiting AKT 

phosphorylation, insulin’s regulatory step for glycogen synthesis (Zhang et al. 2017). This 

finding parallels results of arsenic-treated adipocytes, with impaired AKT-dependent GLUT4 

mobilization in trivalent arsenical-treated 3T3-L1 pre-adipocytes (Walton et al. 2004).  

3T3-L1 pre-adipocytes, SVCs, and human adipose tissue-derived stem cells (hADSCs), 

treated with low concentrations of DMA3+ ( 2 M) or MMA3+  ( 1 M) all experienced 

impaired adipogenesis mediated by UPR and ER stress (Hou et al. 2013). While arsenite and 

MMA3+ interfered with adipogenesis via CHOP10 in the early stages of differentiation, DMA3+ 
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did not, suggesting its anti-adipogenic effects are mediated via a different target (Hou et al. 

2013). In addition, greater cytotoxicity was observed for both MMA3+ and DMA3+ in 3T3-L1 

pre-adipocytes, SVCs, and hADSCs, compared to arsenite (Hou et al. 2013).  Future research 

should focus on the specific effects of trivalent arsenical metabolites on metabolic pathways to 

increase our understanding of the diabetogenic potential of arsenic metabolism, and its 

intermediates.   

 

Discussion 

 Our review of the literature on the laboratory research of arsenite exposure and its effects 

on glucose homeostasis suggests that several mechanisms may be involved, including insulin-

stimulated glucose uptake, glucose-stimulated insulin secretion, hepatic glucose metabolism, and 

adipose and pancreatic -cell dysfunction. Arsenite has wide physiological effects, affecting 

multiple metabolic organs involved in glucose homeostasis. Although the effects of arsenic 

exposure on the integrity and the physiology of various tissues are reported (Figure 2), the 

molecular mechanisms underlying these findings are mostly unknown. The in vitro studies and 

targets identified via –omic databases of publicly available data have the potential to unravel 

these mechanisms. Different strains of rodents that respond to arsenic differently could also be 

utilized. The expert panel assembled by the NTP has therefore, encouraged researchers to assess 

arsenic’s metabolic effects in strain susceptible to these metabolic endpoints (Maull et al. 2012). 

Current advances in omics technologies have been paralleled with the use of publicly 

available databases. Together, these tools have the ability to expand our understanding of 

chemically-induced diseases. A recent study on the use of CTD for the creation of adverse outcome 

pathways assessed arsenical exposures and dysregulation of glucose homeostasis as one of its 

primary case studies (Davis et al. 2018). This further emphasizes the relevance of elucidating 

potential mechanisms of action for a relevant topic in the fields of comparative toxicogenomics 

and environmental epidemiology (Davis et al. 2018). We were able to identify 16 genes commonly 

affected by sodium arsenite, insulin resistance, and T2D.  

Evidence from in vitro and in vivo studies suggest that arsenite interferes with signaling 

involved in glucose uptake and insulin secretion, downregulating molecular targets such as AKT 

and glucose transporters (GLUT 1, 3, 4), and calcium signaling pathways involved in insulin 

exocytosis and secretion from pancreatic -cells, respectively. Arsenite has been shown to 

interfere with adipogenesis, which has implications for altered energy storage and ectopic lipid 

deposition. Hepatic manifestations are also present upon exposure, with the upregulation of 

PCK1 and other rate-limiting enzymes of gluconeogenesis (Liu et al. 2014). Trivalent methylated 

arsenical metabolites MMA and DMA share similar effects to their parent compound, interfering 

with metabolic pathways involved in glucose homeostasis (Zhang et al. 2017; Hou et al. 2013; 

Douillet et al. 2013).  

The 16 genes identified in our CTD analysis encode proteins that are involved in glucose 

homeostasis, oxidative stress, inflammation, lipid metabolism, energy balance, lipid metabolism, 

and adipogenesis, among other processes. Midst these targets, insulin, insulin receptor, insulin 

receptor substrate 1 and 2 (IRS1 and IRS2, respectively) and SLC2A4 (also known as GLUT4) 

are components of the insulin signaling pathway that regulate glucose utilization in peripheral 

tissues. Leptin and leptin receptor are components of leptin signaling, which increases satiety and 

controls energy balance. PPARγ encodes a nuclear receptor that positively regulates insulin 

sensitivity (Rosen and Spiegelman 2006). Thiazolidinediones (TZD), a class of anti-diabetic drugs, 

act as agonists of PPARγ (Tontonoz and Spiegelman 2008). SIRT1 encodes a protein deacetylase, 



 
   
  

 

 
15 

which positively regulates insulin sensitivity. As discussed above, adiponectin (ADIPOQ) encodes 

a hormone secreted from white adipose tissue that improves insulin sensitivity (Rosen and 

Spiegelman 2006). An additional 5 genes (C3, TNF, NOS3, HMOX1 and SOD2) encode proteins 

involved in the inflammatory response. SOD2 (MnSOD) protein also clears mitochondrial ROS to 

reduce oxidative stress (Padmaja Divya et al. 2015). Interestingly, this analysis indicates that 

advanced glycosylated end products (AGEs) bind to their receptors (RAGEs), which can activate 

inflammatory pathways.  

 

Conclusions and Future Directions 

While epidemiology studies have linked arsenic exposure to the development of T2D in 

populations worldwide, the current mechanism by which arsenic contributes to dysregulation of 

glucose homeostasis remains elusive in humans despite well-established laboratory models. In the 

last two decades, efforts have focused on assessing arsenic’s effects on metabolic target tissues, 

including the pancreas, adipose, liver, and skeletal muscle.  Most in vivo studies have relied on 

rodents, administering higher arsenite concentrations at ppm levels due to the species’ accelerated 

arsenic metabolism compared to humans. Nonetheless, it is critical to model our experimental 

designs to internal doses that are relevant to human health and exposures. Human exposure 

assessment is also limited by the measurement of total arsenic concentration, which also include 

organic arsenicals that are not considered hazardous to human health and irrelevant to toxicity 

associated with inorganic arsenic exposures. 

Inconsistencies in the literature highlight the need for additional research characterizing 

the metabolic effects at chronic, low-dose exposures. High exposure in vivo studies have shown 

that arsenic treatment alone can reduce GSIS (Liu et al. 2014; Kirkley et al. 2017). High exposure 

in vivo studies report arsenic treatment alone to affect glucose homeostasis by damaging the 

integrity of the pancreas, and reducing GSIS (Liu et al. 2014). However, lower dose arsenite 

treatment alone has been found to exacerbate genetic and diet-induced insulin resistance and 

impaired glucose tolerance (Liu et al. 2014; Ditzel et al. 2015; Paul et al. 2011). In vitro studies 

on pancreatic -cells mostly confirm that high dose arsenic exposure increases apoptosis, whereas 

low dose arsenic inhibits GSIS (Pan et al. 2014; Lu et al. 2011; Díaz-Villaseñor et al. 2008). Many 

other in vitro results, however, require the corroboration of in vivo studies. For example, arsenic 

has been shown to affect ISGU in adipocytes and myotubes, increasing the breakdown of glycogen 

in hepatocytes, and reducing insulin signaling in these cell types (Padmaja Divya et al. 2015). 

However, the effects of arsenic on peripheral glucose utilization and hepatic glucose production 

and insulin signaling in vivo, have not been extensively explored. Another area of increasing 

interest is the interaction between arsenic and obesity, as an excess body mass index is a causal 

factor for T2D development. Recent suggest a synergistic relationship with chronic arsenic 

exposure and obesity on T2D, with obese individuals being the most susceptible to T2D 

development (Castriota et al, 2018).  

We used publicly available omics data and performed pathway identification using online 

tools to validate the relationship between arsenic and T2D, complementing experimental findings. 

This analysis resulted in the identification of key genes and pathways involved in arsenite-induced 

insulin. These data-driven approaches can assist researchers to harmonize, summarize, and 

structure existing mechanistic knowledge underlying arsenite-induced dysregulation of glucose 

homeostasis. These techniques can identify knowledge gaps and aid in the development of more 

focused study designs.  
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Insulin resistance is a chronic condition with epidemic proportions. The increasing 

prevalence of T2D both domestically and worldwide, in addition to arsenic’s widespread exposure, 

motivates our efforts to determine arsenic’s contribution to the etiology of this metabolic disorder 

(Zimmet et al. 2016). We hope this review will help to inform public health interventions due to 

the growing burden of T2D and ongoing arsenic exposure in vulnerable communities worldwide.  
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Glossary 

 

ADIPOQ Adiponectin 

ASK1  Apoptosis signal-regulating kinase 1 

ATGL  Adipocyte triglyceride lipase  

C/EBP          CCAAT-enhancer-binding protein alpha and beta 

CHOP10      CCAAT-enhancer-binding protein homologous protein-10 

DMA3+         Dimethylarsinous acid 

EPA             Environmental Protection Agency 

ER                Endoplasmic reticulum 

FBG             Fasting Blood Glucose 

FOXO          Forkhead box transcription factor 

G6Pase Glucose-6-phosphatase 

GLUT        Glucose transporter type  

GSH             Glutathione 

GSIS            Glucose stimulated insulin secretion 

GSK3           Glycogen synthase kinase 3 

GTP             Guanosine triphosphate 

hADSCs Human adipose tissue-derived stem cells  

hMSCs         Human Mesenchymal Stem Cells 

HOMA-IR   Homeostatic model assessment of insulin resistance  

IR                 Insulin receptor 

IRS1           Insulin receptor substrate 1 

ISGU           Insulin Stimulated Glucose Uptake 

MAPK             Mitogen-activated protein kinase 

MMA3+              Methylaronous acid 

NRC             National Resource Council 

NRF1/2           Nuclear factor-erythroid related factor 1/2 

NTP             National Toxicology Program 

PEPCK        Phosphoenolpyruvate carboxykinase 

PERK  Eukaryotic translation initiation factor 2 alpha kinase 3  

PGC1 Peroxisome proliferator activated receptor gamma coactivator 1 alpha  

PI3K            Phosphoinositide 3-kinase 

PIP3  Phosphatidylinositol 3,4,5-triphosphate 

PKB/AKT    Protein kinase B 

PPAR        Peroxisome proliferator activated receptor gamma 

PPB               Parts per billion (g/L) 

PPM           Parts per million (mg/L) 

ROS             Reactive oxygen species 

SIRT3  Sirtuin 3 

SLC2A4 Glucose transporter type-4 

SNAP25 Synaptosome associated protein 25 

SOD2  Manganese-dependent superoxide dismutase 2  

SREBP         Sterol regulatory element-binding protein 

SVCs           Stromal vascular cells 

T2D              Type 2 diabetes 
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TRX               Thioredoxin reductase 

UPR             Unfolded protein response 

WHO           World Health Organization 
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Figure 1. Literature Tag-tree, illustrating the inclusion and exclusion criteria for arsenic 

and T2D studies selected. We used relevant MeSH terms and targeted searches using PubMed 

(https://www.ncbi.nlm.nih.gov/pubmed) and literature tagging and visualization tools from the 

HAWC Project (https://hawcproject.org/).  

https://www.ncbi.nlm.nih.gov/pubmed
https://hawcproject.org/
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Figure 2. Graphical representation of the direction of the associations between oral exposure 

to arsenite and (A) Insulin resistance, (B) Impaired glucose tolerance, (C) Organ weight, and 

(D) Body weight, from in vivo studies. Symbols: upward-pointing red triangle, significantly higher outcome; 

downward-pointing blue triangle, significantly lower outcome; black circle, no statistical effect. Abbreviations: 

Glucose tolerance test (GTT); Body weight (BW); Homeostatic model assessment for insulin resistance (HOMA-

IR); Insulin tolerance test (ITT); White adipose tissue (WAT). 
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 Figure 3. Graphical representation of the direction of the associations between arsenite 

treatment and (A) Differentiation, (B) Oxidative Stress and Inflammation, (C) Glucose-

Stimulated Insulin Secretion (GSIS), and (D) Insulin-Stimulated Glucose Uptake (ISGU), 

from in vitro studies. Symbols: upward-pointing red triangle, significantly higher outcome; downward-pointing 

blue triangle, significantly lower outcome; black circle, no statistical effect. Abbreviations: Peroxisome proliferator 

activated receptor (PPAR); CCAAT-enhancer-binding protein  and  (C/EBP); Nuclear factor-erythroid related 

factor 2 (NRF2); Apoptosis signal-regulating kinase 1(ASK1); Sirtuin 3 (SIRT3); Eukaryotic translation initiation 

factor 2 alpha kinase 3 (PERK); CCAAT-enhancer-binding protein homologous protein-10 (CHOP10); Reactive 

oxygen species (ROS); Glucose-6-phosphatase (G6Pase); Forkhead box transcription factor (FOXO); Oxygen 

consumption rate (OCR); Protein kinase B (AKT); Glucose transporter type (GLUT). 
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Figure 4. Chemical- and disease-related gene association data. Findings were obtained by 

searching the publicly available Comparative Toxicogenomics Database (CTD) 

(http://ctdbase.org) using MeSH identifiers (https://www.nlm.nih.gov/mesh/) for sodium arsenite 

(iAs3+) (MeSH:C017947), insulin resistance (MeSH: D007333), and Type 2 Diabetes (T2D) 

(MESH: D003924). On the left, a Venn diagram is shown depicting the overlapping genes 

between the different gene sets. On the right, 16 genes are presented. Venn diagrams were 

created using Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/). Abbreviations: CTD_AsIII = 

sodium arsenite associated genes obtained from the Comparative Toxicogenomics Database, CTD_T2DM = Type 2 

Diabetes Mellitus associated genes obtained from the Comparative Toxicogenomics Database, and CTD_IR = 

insulin resistance associated genes obtained from Comparative Toxicogenomics Database).  

 
 
 
 
 
 
 
 
 
 
 

http://ctdbase.org/
https://www.nlm.nih.gov/mesh/
http://bioinfogp.cnb.csic.es/tools/venny/
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Figure 5. A network of biological pathways and connected genes that were in common 

between arsenic (iAs3+), insulin resistance, and Type 2 Diabetes (T2D) as found using 

publicly available gene association data from the Comparative Toxicogenomics Database. A 

network of 12 biological pathways and 13 connected genes that were in common between 

arsenic (iAs3+) exposure, insulin resistance (IR) and Type 2 Diabetes (T2D) as found using 

publicly available gene association data from the Comparative Toxicogenomics Database. Gene 

set enrichment analysis (GSEA) was performed with the Cytoscape app ClueGO using the 

WikiPathways repository (https://www.wikipathways.org/index.php/WikiPathways) (version 

February 2, 2018 containing 418 human pathways and 5866 human genes). Only pathways 

containing, more than 3 genes or comprising 4% of the total number of genes in a pathway, are 

depicted in the network. Following GSEA, pathways and genes were assigned to either of the 9 

summarized phenotypes as described in the paper. The colored pie charts, depicted in the 

network nodes, represent the different phenotypes associated with that specific pathway or gene. 

For the label of the gene node the official HGNC-approved human gene name is used. The label 

of the pathway node contains the WikiPathway name of the pathway. 
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Figure 6. Arsenite impairs insulin stimulated glucose uptake (ISGU) in adipocytes and 

myotubes. Arsenite has been shown to downregulate AKT and glucose transporter translocation 

to the plasma membrane in both adipocytes and myotubes (Walton et al. 2004; Xue et al. 2011). 

Arsenite also upregulates antioxidant defenses such as NRF2 and GSH, inhibiting endogenous 

ROS involved in ISGU (Xue et al. 2011; Xu et al. 2012). In vitro, arsenite has been shown to 

inhibit SIRT3-FOXO3A signaling to reduce mitochondrial activity and impair ISGU (Padmaja 

Divya et al. 2015). Abbreviations: Protein kinase B (AKT/PKB); Nuclear factor-erythroid related factor 2 

(NRF2); Glutathione (GSH); Reactive oxygen species (ROS); Sirtuin 3 (SIRT3); Forkhead box O3 (FOXO3A); 

Insulin receptor (IR); Insulin receptor substrate-1 (IRS1); Phosphoinositide 3-kinase (PI3K); Phosphatidylinositol 

3,4,5-triphosphate (PIP3); Glucose transporter type (GLUT). 
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Figure 7. Arsenite disrupts glucose stimulated insulin secretion (GSIS) in pancreatic -cells. 

Arsenite treatment in vitro has been reported to decrease calpain activity, measured as SNAP25 

proteolysis. SNAP25 and CALPAIN10 are both needed to fuse insulin pre-secretory granules 

with the plasma membrane for insulin secretion. At higher doses, arenite has also been shown to 

increase ER oxidative stress, which can lead to apoptosis of pancreatic -cells due to the tissue’s 

low abundance of antioxidants (Wu et al. 2018; Pan et al. 2016; Yao et al. 2015). Abbreviations: 

Synaptosome associated protein 25 (SNAP25); Endoplasmic reticulum (ER); Reactive oxygen species (ROS); 

Glucose transporters (GLUT); Potassium (K); Calcium (Ca2+). 
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Supplementary Material  

 

Supplementary Figure 1 (SF1) – Office of Health Assessment and Translation (OHAT) Risk of 

Bias Rating Framework.  
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Figure SF1.Office of Health Assessment and Translation (OHAT) Risk of Bias Rating 

Framework. OHAT’s guidelines include 11 total risk-of-bias questions, with 9 applicable to 

experimental animal studies (OHAT 2015). A total of 14 in vivo studies were summarized in the 

manuscript, and therefore included in the risk-of-bias rating tool. Questions are rated based on 4 

possible answers: ++ Definitely low risk of bias, + Probability of low risk of bias, -NR 

Probability high risk of bias (or not reported due to insufficient information), -- Definitely high 

risk of bias. *None of these studies reported loss of animals; **Studies that included blinding in some of 

the outcomes assessment received ++. †Examples include issues with statistical methods, failure to adjust 

for litter, and unintended co-exposures 
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Abstract   

 

BACKGROUND: The prevalence of type 2 diabetes (T2D) has nearly doubled since 1980. 

Elevated body mass index (BMI) is the leading risk factor for T2D, mediated by inflammation 

and oxidative stress. Arsenic shares similar pathogenic processes, and may contribute to 

hyperglycemia and -cell dysfunction. 

 

OBJECTIVES: We assessed a unique situation of individuals living in Northern Chile with 

comprehensive data on lifetime drinking water arsenic exposure to evaluate the relationship 

between arsenic and T2D, and investigate possible interactions between arsenic and BMI.  

 

METHODS: We analyzed data collected from October 2007-December 2010 from an arsenic-

cancer case-control study. Information on self-reported weight and height, smoking, diet, and 

other factors were obtained. Diabetes was defined by self-reported physician-diagnoses or use of 

hypoglycemic medication. A total of 1053 individuals, 234 diabetics and 819 without known 

diabetes were included.  

 

RESULTS: The T2D odds ratio (OR) for cumulative arsenic exposures of 610-5279 and ≥5280 

g/L-years >40 years in the past were 0.97 (95% CI: 0.66-1.43) and 1.53 (95% CI: 1.05-2.23), 

respectively. Arsenic-associated T2D ORs were greater in subjects with increased BMIs. For 

example, the ORs for past cumulative exposures ≥5280 g/L-years was 1.45 (95% CI: 0.74-2.84) 

in participants with BMIs <25 kg/m2 but 2.64 (95% CI: 1.14-6.11) in those with BMIs ≥30 kg/m2 

(synergy index = 2.49, 95% CI: 0.87-7.09). Results were similar when cancer cases were 

excluded.  

 

CONCLUSIONS: These findings identify increased odds of T2D with arsenic exposure, which 

are significantly increased in individuals with excess BMI.  

 

KEYWORDS: Arsenic; Type 2 diabetes (T2D); Obesity; Body Mass Index (BMI); Synergy 
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Introduction 

More than 200 million individuals worldwide are exposed to arsenic-contaminated 

drinking water above the World Health Organization (WHO)’s permissible limit of 10 g/L 

(Naujokas et al. 2013). Ingested arsenic is an established carcinogen and prevalent at high 

concentrations in drinking water sources in Taiwan, Bangladesh, India, Chile, Argentina, the US, 

and elsewhere (ATSDR 2007; IARC 2004, 2012). In the US, an estimated 12% of all public 

water systems have arsenic concentrations near 10 µg/L (U.S. EPA 2000), the current US 

regulatory standard. Millions more people are likely exposed to even higher arsenic water 

concentrations from private wells, which are not regulated (Steinmaus 2005). Arsenic also occurs 

in apple juice, chicken, wine, and beer (Marshall 2012; Nachman et al. 2013; Schute 2013; 

Wilson et al. 2012), and the US Food and Drug Administration (FDA) found arsenic in almost all 

193 brands of rice, rice baby foods, and rice cereals tested (U.S. FDA 2012). Arsenic is also 

common at industrial waste sites and is currently ranked first on the Superfund hazardous waste 

site priority list in terms of toxicity and prevalence of exposure (ATSDR 2013).  

Type 2 diabetes (T2D) is a chronic condition of increasing prevalence, affecting an 

estimated 415 million individuals worldwide, projected to increase to 642 million by the year 

2040 (Zimmet et al. 2016). In Chile, the prevalence of diabetes mellitus has increased from 4.2% 

in 2003 to 12.3% in 2016 (Ministerio de Salud, 2017). Although obesity is the primary risk 

factor for T2D, other factors may also play a role in either directly causing T2D or in enhancing 

the role of excess BMI on T2D risks (Thayer et al. 2012). Arsenic has been linked to T2D in 

areas with high exposures (Huang et al. 2011; Maull et al. 2012), but studies of lower exposures 

(e.g., <100 µg/L) have produced very mixed and unclear or unusual results (Smith, 2013). 

Although the primary mechanism of arsenic toxicity is unknown, it has been shown to affect 

several mechanistic pathways that are linked to both obesity and T2D. For example, both arsenic 

and obesity have been associated with mitochondrial dysfunction and with increases in reactive 

oxygen species (ROS), two processes that are thought to play an important role in T2D 

development (Pan et al. 2016; Tseng et al. 2004; Bournat and Brown 2010). Given these and 

other shared pathologic processes, we hypothesized that arsenic and obesity might interact to 

increase T2D risk.  

Many of the water sources in Northern Chile are contaminated with naturally-occurring 

arsenic, with concentrations ranging from <10 to >800 µg/L. This geographical area contains the 

Atacama Desert, which is the driest inhabited place on earth. Because it is so dry, almost 

everyone in the area lives in one of the cities or towns in the area, and each city and town has its 

own single water supply. Extensive historical records of arsenic concentrations in all this area’s 

major water sources are available, and because of this, comprehensive estimates of people’s 

lifetime arsenic exposure, from birth through adulthood, can be made simply by knowing the 

cities or towns in which they have lived (Ferreccio et al. 2000). These types of lifetime exposure 

data are not available anywhere else in the world. The largest city in the area, Antofagasta, 

experienced a period of very high arsenic exposure (average of 860 µg/L) starting in 1958, when 

two rivers with high arsenic concentrations were diverted to the city for drinking. The high 

exposures ended in the 1970s, when arsenic treatment plants were installed. Except for the 

installation of arsenic treatment plants in Antofagasta and several other cities, arsenic 

concentrations in drinking water have been very stable over time (Ferreccio et al. 2000).  

For this paper, we used this unique exposure scenario to assess the effects of arsenic 

exposure on T2D development, and to evaluate whether arsenic and obesity may act 
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synergistically to increase T2D risk. To our knowledge, the present study is the first to examine 

the possible interaction between arsenic and obesity on the development of T2D. 

 

Materials and Methods 

 

Study area and subject ascertainment 

 Study design details are published elsewhere (Steinmaus et al. 2013). Briefly, all subjects 

were participants in an arsenic-cancer case-control study which involved two contiguous regions 

(Regions I and II) in Northern Chile. Institutional review board approval was obtained in both 

the US and Chile. Participation was voluntary, and written informed consent was obtained from 

all subjects or next of kin. Cancer cases in the underlying study included all people who: (i) had 

newly diagnosed primary lung, bladder, or kidney cancer between October 2007 and December 

2010; (ii) lived in Regions I or II at the time of diagnosis; (iii) were >25 years old when 

diagnosed; and (iv) were able to provide interview data or had a close relative who could. Cases 

were ascertained using a rapid case ascertainment system established for the study which 

involved all pathologists, hospitals, and radiologists in the study area, and most cases were 

interviewed within three months of diagnosis. Hospital cancer committees and death records 

were used to identify missing cases. Cancer-free controls, frequency matched to cancer cases by 

sex and five-year age groups, were randomly selected from the Chile Electoral Registry. This 

Registry contains >95% of people over age 50 years based on population numbers for Regions I 

and II recorded in the Chilean Census.  

 

Participant interviews 

 Participants were interviewed in person using a standardized study questionnaire. For deceased 

participants, we interviewed the next of kin (proxy). Participants were asked to provide all lifetime 

residences, water sources (e.g. public water, bottled) and water filter use at each residence, and all 

jobs held for at least six months. Participants were also asked about specific occupational 

exposures including asbestos, arsenic, silica, and solvents. Questions regarding tobacco smoke 

included age of smoking began, periods of no smoking, years smoked, number of cigarettes 

smoked per day, and childhood or adult secondhand smoke exposure. Participants were also asked 

about typical water intake, both currently and 20 years ago. Typical dietary intakes in the year 

preceding interview and 20 years earlier were assessed using a modified version of the National 

Cancer Institute’s Diet History Questionnaire. A 14-point socioeconomic status (SES) scoring 

system was developed by asking subjects about household items (e.g. computer), cars, and use of 

domestic help. Information on all medical conditions (e.g. hypertension) and medications were 

collected. For the analyses presented here, diabetics were defined as people who self-reported 

physician-diagnosed diabetes or who used a hypoglycemic medication.  

 

Body mass index (BMI) 

Subjects and proxy respondents were asked to provide the subjects’ adult height, typical 

weight at ages 20 and 40, and typical weight in the ten years preceding the interview or cancer 

diagnosis. BMI at each period in time was calculated as weight (kg)/height (m2). Category cut-off 

points were based on the WHO definition for overweight and obesity in adults of 25 mg/kg2 and 

30 mg/kg2, respectively, for both men and women.   
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Exposure indices 

 For each subject, each residence in Chile was linked to a water arsenic measurement for 

that location and the years the subject lived there. Using this process, we could assign an arsenic 

concentration to each year of each subject's life. Arsenic water records for all cities and towns in 

Regions I and II, and for all large cities in Chile outside these regions, were collected from 

governmental agencies, research studies, and water suppliers (Ferreccio et al. 2000). Overall, 

arsenic water concentrations could be linked to >95% of all subject residences. Use of bottled 

water or sources with reverse osmosis filtering were assigned arsenic concentrations of zero. The 

yearly arsenic exposure estimates for each subject were then used to calculate several metrics of 

arsenic exposure. These included lifetime cumulative exposure (the sum of each subjects’ yearly 

water concentrations), average exposure (the mean of all of each subject’s yearly water 

concentrations), and lifetime highest (the single highest arsenic water concentration at any year in 

a subject’s life). Results are given for each of these metrics since it is unknown which might be 

most strongly associated with arsenic-related diabetes. Forty-year lag periods, which ignored all 

arsenic exposure in the 40 years preceding cancer diagnosis (cases) or interviews (cancer-free 

controls), were applied in some analyses. This was done because exposures in the area were highest 

>40 years ago (before arsenic treatment plants were installed in several cities). Category cut-off 

points are tertiles unless otherwise stated.  

 

Statistical analysis 

Odds ratios (OR) for T2D were calculated using unconditional logistic regression for 

various categories and metrics of arsenic exposure. No heterogeneity in results was observed by 

sex in analyses of arsenic and T2D, thus males and females were combined. Our inclusion of our 

lung, bladder and kidney cancer cases could potentially introduce bias if these types of cancers 

were associated with T2D. In unadjusted analyses we found that T2D was more common among 

the bladder cancer cases than among cancer-free controls (OR=1.34, 95% CI: 0.95-1.88). Although 

not statistically significant, the fact that this OR was moderately above 1.0 suggests including these 

bladder cancer cases could introduce some bias. For this reason, these subjects were excluded here. 

Neither lung nor kidney cancers were associated with T2D in our study (see Results section and 

Table 1). As such, all kidney and lung cancer cases were included in most of the analyses. The 

advantage of including these cases is that it leads to a greater sample size and thus more precise 

estimates of odds ratios. Possible bias from including these cases was assessed by performing 

separate analyses with these subjects excluded.  

Potential biological interactions between arsenic and increased BMI were assessed by 

calculating T2D odds ratios for various levels of arsenic exposure in analyses stratified by healthy 

(<25 kg/m2), overweight (25 to <30 kg/m2), and obese (30 kg/m2) BMI. BMI based on subjects 

typical height and weight in the ten years preceding cancer diagnosis (cancer cases) or interview 

(cancer-free controls) was used in our main analyses, although BMIs at other periods (ages 20 or 

40 years) were also assessed. Greater than additive interaction was assessed using the Rothman 

synergy index (Rothman 1976). Here, T2D ORs were calculated separately for people with 

elevated BMI (≥30 kg/m2) and low arsenic, people with elevated arsenic and low BMI (<30 kg/m2), 

and people with both elevated arsenic and elevated BMI, using people with low BMI and low 

arsenic as the reference group. For these analyses, high and low arsenic was defined as exposures 

above or below the upper tertile cut-off point for cumulative exposure lagged 40 years. The impact 

of BMI on arsenic-related T2D risk was displayed visually by calculating T2D ORs for a 10,000 

g/L-year increase in cumulative arsenic exposure (lagged 40 years) in analyses of subjects below 



   
  

 42 

each integral of BMI, beginning at 20 and ending at 34 kg/m2  (Figure 1). Here, 10,000 g/L-year 

was selected because this was the approximate difference in the means of the upper and lower 

tertiles. Potential confounding variables entered into the final logistic regression models included 

sex, age (age <60, 60-70, >70 years), BMI (in analyses not stratified by BMI; <25, 25-<30, ≥30 

kg/m2), and smoking (average cigarettes per day of 0, >0-<10, 10 when smoking). These were 

entered a priori since each is a known risk factor for T2D, as shown in the directed acyclic causal 

graph in Supplementary Figure 1. Age can potentially confound analyses of cumulative exposure 

so additional analyses were done entering age in 5-year categories, as a continuous variable (each 

1 year), and by restricting subjects to narrower age groups (e.g. ages 60-70). Sixteen subjects with 

no BMI information were excluded. The impact on results of adjustments for other factors 

potentially related to arsenic exposure or diabetes risk was also assessed. These factors included 

mining work (ever vs. never), occupational arsenic exposure (ever vs. never), typical fruit and 

vegetable consumption (above or below one serving per day), water intake (typical intake in 

L/day), education (high school diploma), adult and child second hand smoke, SES scores (above 

or below the lower tertile), hypertension, and race (European vs. other descent). The impact of 

including proxy respondents was evaluated by performing analyses after excluding these subjects. 

Analyses were conducted using STATA version 13.1 (StataCorp, College Station, TX) and SAS 

version 9.2 (SAS Institute Inc., Cary NC).  

 

Results  

A total of 1053 subjects were included in the main analyses, 634 cancer-free participants and 

419 cancer cases, and 234 and 819 people with and without known diabetes. The mean age, BMI, 

and unlagged cumulative arsenic exposure in these participants were 65.7 years (standard deviation 

(SD)=11.2), 26.4 kg/m2 (SD=4.6), and 6527.3 µg/L-years (SD=5646.8), respectively. Clear 

evidence of an association between T2D and either kidney or lung cancer was not seen, with 

unadjusted T2D odds ratios for both cancers below 1.0 (Table 1). Adjustment for age, sex, and 

smoking gave similar results. Subjects with T2D were more likely to be females, above the age of 

70, not currently smoking, hypertensive, and have elevated BMIs (≥30 mg/kg2) (Table 1).  

Compared with subjects in the lowest tertile of cumulative arsenic exposure lagged 40 years 

(0-609 g/L-years), adjusted T2D ORs were 0.97 (95% CI: 0.66-1.43) and 1.53 (95% CI: 1.05-

2.23) for those in the middle (610-5279 g/L-years) and highest (5280 g/L-years) exposure 

categories, respectively (Table 2). Similar ORs were seen for unlagged cumulative and average 

lifetime exposure metrics (Table 2), and in analyses using other arsenic category cut-offs (Table 

S1). Additional adjustments for daily fruit and vegetable consumption, typical water intake, SES 

scores, occupation, hypertension, and race had little impact on results. For example, the T2D ORs 

for cumulative exposures lagged 40 years 5280 g/L were 1.53 (95% CI: 1.05-2.23) and 1.61 

(95% CI: 1.04-2.50), respectively, before and after adjustment for these additional factors. 

Entering age in 5-year categories, as a continuous variable, and restricting subjects to narrower 

age groups (e.g. ages 60-75) gave similar results. In addition, arsenic-T2D ORs were similar after 

excluding cancer cases (Table S2). For example, the T2D OR for lagged cumulative arsenic 

exposures ≥5280 vs. <610 µg/L-years was 1.53 (95% CI:1.05-2.23) in the analyses that included 

these cases and 1.56 (95% CI: 0.97-2.51, p-trend=0.03) in analyses where they were excluded. 

Similar findings were also observed when bladder cancer cases were included; the T2D OR for 

lagged cumulative arsenic exposures ≥5280 vs. <610 µg/L-years was 1.59 (95% CI: 1.13-2.23).  

In analyses excluding proxy subjects, arsenic-related T2D ORs were mostly higher. For example, 

the T2D OR for the highest vs. lowest tertile of cumulative arsenic exposure (lagged 40 years) was 
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1.67 (95% CI: 1.10-2.54) after excluding proxy subjects. 

When analyses were stratified by BMI, ORs for T2D associated with arsenic were markedly 

higher in subjects who were obese (BMI 30 mg/kg2) (Table 3). For example, adjusted T2D ORs 

for cumulative arsenic exposures lagged 40 years of >5280 vs. <610 g/L-years were 1.45 (95% 

CI: 0.74-2.84) in those with healthy BMIs, but 2.64 (95% CI: 1.14-6.11) in obese subjects. When 

cancer cases were excluded, the corresponding ORs were 1.41 (95% CI: 0.58-3.38) and 2.23 (95% 

CI: 0.74-6.70), respectively (Table S3). A similar pattern was seen for other arsenic exposure 

metrics although with somewhat lower ORs (data not shown). Figure 1 shows the T2D ORs for 

each 10,000 g/L increase in cumulative arsenic exposure (lagged 40 years) by increasing levels 

of BMI. As shown, arsenic-related T2D ORs increase as BMI increases beginning at BMIs of 

about 24-25 kg/m2. Similar patterns were seen for unlagged cumulative exposure and average 

lifetime arsenic exposure although with slightly lower ORs.  

The ORs used in the calculations of the Rothman synergy index are shown in Table 4. The 

T2D adjusted ORs for people with elevated BMI and low arsenic, people with elevated arsenic 

and low BMI, and people with both elevated arsenic and BMI were 1.99 (95% CI: 1.30-3.05), 1.41 

(95% CI: 0.99-2.00), and 4.48 (95% CI: 2.25-8.92), respectively, with a Rothman synergy index 

of 2.49 (95% CI: 0.87-7.09) (Table 4). When cancer cases were excluded, the corresponding ORs 

were 2.29 (95% CI: 1.36-3.87), 1.43 (95% CI: 0.90-2.28), and 6.39 (95% CI: 2.63-15.55), with a 

Rothman synergy index of 3.12 (95% CI: 0.91-10.70) (Table S4). Clear evidence of synergy was 

not seen for BMI at ages 20 or 40 (data not shown).  

 

Discussion 

Overall, we found evidence of an association between high exposures to arsenic in drinking 

water and increased risks of T2D. These results are consistent with several other studies which 

have found associations at high exposure levels (e.g. arsenic water concentrations >200 µg/L) 

(Huang et al. 2011; Maull et al. 2012). We did not find evidence of strong associations at more 

moderate exposure levels (e.g. <200 µg/L). However, our study did not have sufficient statistical 

power to detect ORs much below 1.5 in each tertile, which may have limited our ability to detect 

associations at these more moderate exposure levels. A unique aspect of our study is that we 

identified higher arsenic-associated T2D ORs in subjects with higher BMIs, results that provide 

evidence that arsenic and excess BMI interact in a greater than additive manner to increase the risk 

of T2D. The consistency of findings across several arsenic exposure metrics and cut-off points 

further support these conclusions (Table S1).  

Findings from other investigations support the biological plausibility of our results. For 

example, a number of studies have shown that arsenic can play a role in glucose dysfunction and 

insulin resistance (Tseng 2004). Arsenic increases the production of ROS and free radicals, which 

have been implicated in chronic inflammation and apoptosis of pancreatic -cells (Martin et al. 

2017). Arsenic also upregulates the expression of inflammatory genes such as NFB, tumor 

necrosis factor-α(TNF-α), and interleukin (IL)-6 (Tseng 2004). These inflammatory factors can 

injure the pancreas and interfere with glucose-mediated insulin secretion (Martin et al. 2017; 

Walton et al. 2004). Several environmental pollutants have been shown to impair thermogenic 

adipose tissue involved in glucose and lipid metabolism (Zhang et al. 2016), and arsenic’s effect 

on adiposity, specifically on brown and beige adipocytes, may also be a mechanism by which it 

affects diabetes risk (Maull et al. 2012).  

The results from previous studies also support our findings that arsenic and obesity may 

act synergistically. In Taiwan, although T2D was not specifically assessed, chronic arsenic 
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exposure and obesity were reported to synergistically contribute to insulin resistance in children 

(Lin et al. 2014). In Bangladesh, some evidence of synergy for T2D was seen between arsenic in 

water and BMIs >25 kg/m2, although <10% of subjects had diabetes and <1% were obese (Pan et 

al., 2013). In mice, chronic arsenic exposure was shown to act synergistically with high fat diet-

induced obesity to produce glucose intolerance (Paul et al. 2007; 2011).  

Although the mechanism by which arsenic and excess BMI may act synergistically is 

unknown, several possibilities exist. Obesity is associated with chronic inflammation and pro-

inflammatory markers like C-reactive protein (CRP), TNF-α, interleukins (IL)-6, -8, -12, 

plasminogen activator inhibitor (PAI)-1, vascular endothelial growth factor (VEGF), and 

monocyte chemoattractant protein (MCP)-1 (Dutta et al. 2015; Ramos et al. 2003; van Kruijsdijk 

et al. 2009; Weisberg et al. 2003). These same markers are also increased by arsenic. For example, 

in two studies from arsenic-exposed regions in West Bengal, increased IL-6, IL-8, IL-12 and MCP-

1, CRP, TNF-αwere observed in subjects chronically exposed to arsenic via drinking water (Das 

et al. 2012; Sinha et al. 2014). Another mechanism may involve mitochondrial dysfunction (Divya 

et al. 2015; Pan et al. 2016; Bournat and Brown 2010; Jelenik and Roden 2013). Obesity is 

associated with a decreased number and function of mitochondria. This decline in density and 

function impairs fatty acid oxidation, contributing to lipid accumulation, increases in ROS and 

stress kinases, and decreased glucose uptake (Koves et al. 2008; Bournat and Brown 2010). A 

number of studies have also linked arsenic to increases in ROS (Tseng et al. 2004; Maull et al. 

2012), and mitochondrial dysfunction has been shown to be a significant contributor to arsenic-

induced ROS (Divya et al. 2015; Pan et al. 2016). For example, arsenic has been shown to 

downregulate the expression of key proteins involved in mitochondrial respiration and biogenesis 

in both adipose tissue and skeletal muscle (Divya et al. 2015). Chronic arsenic exposure increases 

oxidative stress, which may induce changes in the mitochondrial membrane potential that decrease 

the expression of important ROS scavengers, affecting glucose transporters and insulin-stimulated 

glucose uptake (Divya et al. 2015; Pan et al. 2016). Overall, arsenic and obesity have been shown 

to impact a variety of the same processes thought to be involved in T2D development. Importantly 

though, the actual mechanism by which arsenic impacts T2D and the mechanism by which it may 

interact with obesity are unknown, and further research is needed to explore these issues.   

Misclassification of BMI could have resulted from our use of self-reported height and 

weight. The literature suggests that women and men tend to under- and over-estimate their weights, 

respectively (Perry et al. 1995). Importantly though, despite these individual-level errors, self-

reports seem to be fairly accurate for classifying subjects relative to one another. For example, in 

a study of 6,101 subjects in the US National Health and Nutrition Examination Survey (NHANES), 

measured weights from 10-20 years prior were recalled incorrectly by an average of 3.9 lbs. 

(Kovalchik 2009). However, the correlation coefficient between measured and recalled weights 

was 0.96. This high correlation suggests that despite widespread under- or over-estimation, 

recalled weight can be used to fairly accurately place subjects into low and high categories, like 

those used in our study. In addition, despite the presence of inherent biases in the self-reporting of 

anthropometric data, research suggests self-reported weight, height, and BMI to be adequate 

estimates in population studies (Fonseca et al. 2004). Data from the NHANES show that shifting 

social attitudes since the 1990s regarding obesity have increased the accuracy of self-reported 

weight and height metrics, leading to more accurate BMI categorizations from questionnaires 

(Stommel and Osier 2013).  

Another potential issue is confounding. Obesity and increasing age are by far the greatest 

risk factors for T2D but our results were either adjusted for or stratified on both of these factors. 
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Other factors including diet, smoking, race and SES can be related to both obesity and T2D but 

these were either not associated with or were only weakly associated with arsenic exposure in our 

study, or adjusting for them had little impact on results. Other factors like rare genetic or medical 

conditions are likely not prevalent enough to cause major confounding in this study (Axelson, 

1978). Overall, while residual confounding by the factors we evaluated or confounding by some 

unknown variable is possible, this seems an unlikely cause for the associations observed in this 

study.  

It has been estimated that 22.5% of diabetics in Chile are not diagnosed (Ministerio de 

Salud, 2009).  Chile has a public health care system with wide access. As such, the bias from 

under-diagnosis of diabetes would most likely be non-differential and towards the null, not towards 

the positive results we identified. Correcting the OR of 1.53 we identified for cumulative arsenic 

exposure >5280 µg/L-year for a non-differential under-diagnosis rate of 22.5% would give an OR 

of 1.57, a relatively small increase. Misclassification of arsenic exposure may have occurred from 

missing exposure data, inexact residential history, or arsenic exposure from non-water sources 

(Steinmaus et al. 2015). Since arsenic exposure was assessed similarly in diabetics and non-

diabetics, any bias would likely be non-differential, and most likely bias ORs towards the null. 

Furthermore, arsenic exposure assessment was primarily based on the cities and towns where the 

subjects lived, and errors in the subjects’ recall of their residential history is most likely minimal. 

Non-water sources of arsenic exposure are probably negligible compared to historical exposures 

from water, as most of the food in this region is imported due to the arid climate and limited land 

use for agriculture. Air and food samples tested for arsenic revealed relatively low arsenic 

concentrations, with similar levels in the parts of our study area with and without high arsenic 

water concentrations, and generally accounted for inorganic arsenic intakes of roughly <1-13 

g/day (Ferreccio and Sancha 2006). In contrast, intakes from water would be about 1720 g/day 

in those drinking 2 L/day of water with arsenic concentrations of 860 µg/L, the level in the large 

city of Antofagasta during the high exposure period. 

We evaluated whether the cancer case-control study design we used here could have 

introduced major bias, and found fairly strong evidence that it did not. Cancer cases were 

ascertained identically throughout the study region, regardless of arsenic exposure levels 

(Steinmaus et al. 2014). Most importantly, bias might have occurred if the cancer cases in our 

study had higher rates of T2D than the cancer-free controls. Importantly, we did not find any 

evidence of an association between T2D and lung and kidney cancer, the two cancer types we 

included here. We did find evidence that bladder cancer might be related to T2D in our study 

population, but these subjects were excluded from all analyses. In addition, we repeated all 

analyses after excluding all cancer cases, and found that these exclusions had little impact on the 

odds ratio estimates, although precision was reduced by having smaller numbers.  

The non-cancer control participants in our study were randomly selected from the Chilean 

voter registration list, matched to cases by age and sex. At the time of selection, the cities of 

residence of the participating controls were similar to the population distribution of the 2002 

Chilean census, providing evidence that the selected controls were a good representation of the 

study area given the matching criteria (Steinmaus et al. 2014). Matching of controls to cancer cases 

was done in our original study to help limit the impact of these variables on our arsenic-cancer 

analyses. Importantly though, this matching was done independently of either arsenic exposure or 

of T2D status. As such, it is unlikely to have introduced selection bias or to have caused the 

elevated ORs for T2D we identified. Overall, we found little evidence that the underlying case-

control study design used here caused major bias.  
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Conclusions  

Overall, our study is the first human epidemiologic investigation of T2D to identify a 

synergistic relationship between arsenic and obesity. Clearly, obesity is the primary risk factor for 

T2D and most efforts aimed at preventing and treating T2D should focus on preventing or reducing 

obesity. However, the synergistic relationship we identified between arsenic and BMI suggests 

that arsenic might worsen or increase the risk of obesity-related T2D. Given the current obesity 

epidemic and the widespread occurrence of arsenic exposure worldwide, this synergistic 

relationship could have significant public health implications. Because our findings are novel, 

future research in arsenic exposed areas like Northern Chile, which have a wide range of arsenic 

exposure, good data on lifetime exposure, and adequate information on potential confounding 

variables, should seek to replicate these findings. The mechanism of the synergistic relationship 

we identified is unknown although several possibilities exist. New information on this mechanism 

could help further support the biologic plausibility for our findings and might provide insights into 

new ways to diagnose, prevent, or treat T2D.   
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Table 1. Sociodemographic characteristics of study participants with and 

without diabetes  

  

Diabetes 

Yes                                  No 

n                                     n 

OR (95% CI) 

Total  234   819   

Sex    

Male 144 556 1.00 (Ref) 

Female  90 263 1.32 (0.98-1.79) 

Age (years old)    

<60 46 258 1.00 (Ref) 

>60-70 88 285 1.73 (1.17-2.57) 

>70 100 276 2.03 (1.38-3.00) 

Cancer case-control status    

Control 145 489 1.00 (Ref) 

Cancer cases: all 89 330 0.91 (0.67-1.23) 

   Lung 67 234 0.97 (0.70-1.34) 

   Kidney 22 96 0.77 (0.47-1.27) 

Proxy    

No 187 657 1.00 (Ref) 

Yes 47 162 1.02 (0.71-1.47) 

Mining work    

No 186 637 1.00 (Ref) 

Yes 48 182 0.90 (0.63-1.29) 

Cigarette smoking    

Never 84 252 1.00 (Ref) 

Former 103 322 0.96 (0.69-1.34) 

Current 47  245 0.58 (0.39-0.86) 

Average cigarettes (per day)*    

>0-5 15 82 1.00 (Ref) 

6-15 19 61 1.70 (0.80-3.62) 

    >15 13 102 0.70 (0.31-1.55) 

Cumulative pack years*    

Low  18  87 1.00 (Ref) 

Middle 27 146 0.89 (0.47-1.72) 

High 2 12 0.81 (0.17-3.91) 

Adult secondhand smoke**    

No 58 188 1.00 (Ref) 

Yes 26 64 1.32 (0.77-2.27) 

Childhood secondhand smoke**    

No 59 181 1.00 (Ref) 

Yes 25 71 1.08 (0.63-1.86) 

BMI recent (kg/m2)#    

<25 66 346 1.00 (Ref) 

25-30 105 344 1.60 (1.14-2.25) 

30 63 129 2.56 (1.72-3.82) 

BMI age 40 (kg/m2)    

<25 93 472 1.00 (Ref) 

25-30 84 255 1.78 (1.28-2.46) 

30 49 84 2.96 (1.95-4.49) 

BMI age 20 (kg/m2)    

<25 159 638 1.00 (Ref) 

25-30 55 148 1.49 (1.05-2.13) 

30 20 33 2.43 (1.36-4.35) 

Hypertension    

No 149 653 1.00 (Ref) 

Yes 85 166 2.24 (1.64-3.08) 

Fruit and vegetable intake##    

1/day 14 74 1.00 (Ref) 

1-2/day 50 208 1.27 (0.66-2.43) 



   
  

 53 

>2/day 114 362 1.66 (0.91-3.06) 

Race    

Hispanic/European descent 171 600 0.99 (0.71-1.37) 

Other 63 219 1.00 (Ref) 

SES scores    

Low 73 208 1.00 (Ref) 

Middle 80 364 0.63 (0.44-0.90) 

High 81 247 0.93 (0.65-1.35) 

Abbreviations: BMI, body mass index; CI, confidence interval; OR, odds ratio; SES, socioeconomic 

*Among current smokers only  

**Among never smokers only  

#Typical BMI in the ten years preceding cancer diagnosis (cancer cases) or interview (cancer-free controls) 
##Dietary data only collected in non-proxy subjects 
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Table 2. Diabetes odds ratios for tertiles of various metrics of arsenic water 

concentrations   

Arsenic metric 
Arsenic  

level 

Diabetes Unadjusted 

OR (95% CI) 

Adjusted* 

OR (95% CI) Yes No 

Cumulative exposure:  

0 year lag (µg/L-years) 

0-2416 70 281 1.00 (Ref) 1.00 (Ref) 

2417-8664 74 276 1.08 (0.75-1.55) 1.14 (0.78-1.66) 

 ≥8665 90 262 1.38 (0.97-1.97) 1.50 (1.03-2.19) 

 p-trend   0.06 0.03 

      

Cumulative exposure:  

40 year lag (µg/L-years) 

0-609 70 276 1.00 (Ref) 1.00 (Ref) 

610-5279 68 278 0.96 (0.66-1.40) 0.97 (0.66-1.43) 

 ≥5280 93 254 1.44 (1.01-2.06) 1.53 (1.05-2.23) 

 p-trend   0.016 0.009 

      

Highest year exposure:  

0 year lag (µg/L) 

0-60 85 326 1.00 (Ref) 1.00 (Ref) 

61-635 68 222 1.17 (0.82-1.69) 1.28 (0.88-1.85) 

 636 81 271 1.15 (0.81-1.62) 1.28 (0.89-1.84) 

 p-trend   0.63 0.25  
     

Highest year exposure:  

40 year lag (µg/L) 

0-60 102 364 1.00 (Ref) 1.00 (Ref) 

61-286 49 176 0.99 (0.68-1.46) 1.04 (0.70-1.55) 

 287 80 268 1.07 (0.76-1.49) 1.16 (0.82-1.64) 

 p-trend   0.69 0.39  
     

Average lifetime exposure:  

0 year lag (µg/L) 

0-38 74 276 1.00 (Ref) 1.00 (Ref) 

39-129 72 279 0.96 (0.67-1.39) 1.02 (0.70-1.48) 

 130 88 264 1.24 (0.87-1.77) 1.43 (0.98-2.07) 

 p-trend   0.16 0.04  
     

Average exposure:  

40 year lag (µg/L) 
0-22       73 273 1.00 (Ref) 1.00 (Ref) 

23-222 74 272 1.02 (0.71-1.46) 0.99 (0.68-1.44) 

 223 84 263 1.19 (0.84-1.71) 1.36 (0.93-1.97) 

 p-trend   0.28 0.07 

Abbreviations: CI, confidence interval; OR, odds ratio; Ref, reference group 
*Adjusted for age (<60, 60-70, >70 years old), sex, BMI (<25, 25-30, ≥30 kg/m2), cancer status, smoking (never-smokers, >0 to 

<10, ≥10 cigarettes/day) 
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Table 3. Diabetes odds ratios for categories of cumulative arsenic water concentrations 

lagged 40 years stratified by healthy (<25 kg/m2), overweight (25 to <30 kg/m2), and obese 

(≥30 kg/m2) BMI 

BMI level 

(kg/m2) 

Arsenic level 

(µg/L) 

Diabetes Unadjusted 

OR (95% CI) 

Adjusted* 

OR (95% CI) Yes No 
Healthy  

(<25) 

0-609 18 102 1.00 (Ref) 1.00 (Ref) 

610-5279 16 116 0.78 (0.38-1.61) 0.75 (0.36-1.56) 

 ≥5280 32 123 1.47 (0.78-2.78) 1.45 (0.74-2.84) 

 p-trend   0.08 0.09 

 
 

    

Overweight  

(25 to <30) 

0-609 27 113 1.00 (Ref) 1.00 (Ref) 

610-5279 34 117 1.22 (0.69-2.15) 1.12 (0.62-2.00) 

≥5280 43 111 1.62 (0.94-2.80) 1.34 (0.76-2.35) 

 p-trend   0.08 0.31 

 
 

    

Obese  

(≥30) 

0-609 25 61 1.00 (Ref) 1.00 (Ref) 

610-5279 18 45 0.98 (0.48-2.00) 1.04 (0.49-2.20) 

 ≥5280 18 20 2.20 (1.00-4.83) 2.64 (1.14-6.11) 

 p-trend   0.04 0.02 

Abbreviations: BMI, body mass index; CI, confidence interval; OR, odds ratio; Ref, reference group 

*Adjusted for age (<60, 60-70, >70 years old), sex, cancer status, smoking (never-smokers, >0 to <10, ≥10 cigarettes/day) 
#Similar findings among cancer cases vs controls 
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Table 4. Diabetes odds ratios and Rothman synergy indices by categories of low 

and high BMI and arsenic   

BMI* Arsenic* 
Diabetes Unadjusted 

OR (95% CI) 

Adjusted# 

OR (95% CI) Yes No 

Low Low 95 448 1.00 (Ref) 1.00 (Ref) 

High Low 43 106 1.91 (1.26-2.91) 1.99 (1.30-3.05) 

Low High 75 234 1.51 (1.07-2.13) 1.41 (0.99-2.00) 

High High 18 20 4.24 (2.16-8.33) 4.48 (2.25-8.92) 

Rothman synergy index   2.28 (0.82-6.36) 2.49 (0.87-7.09) 

Abbreviations: BMI, body mass index; CI, confidence interval; OR, odds ratio; Ref, reference group 

*Low and high BMI defined as < and 30 kg/m2. Low and high arsenic defined as <5280 and ≥5280 cumulative arsenic water 

concentration lagged 40 years 
#Adjusted for age (<60, 60-70, >70 years old), sex, cancer status, smoking (never-smokers, >0 to <10, ≥10 cigarettes/day) 
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Figure 1. Odds ratios for diabetes for high arsenic exposure (each 10,000 µg/L-year increase 

in cumulative exposure lagged 40 years) by increasing levels of BMI. Dark line represents the 

odds ratios. Shaded area represents the 95% confidence intervals. 10,000 µg/L is approximately 

the range between lower and upper tertile groups of arsenic exposure. 
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Supplementary Material  

 

Supplementary Figure 1 (SF1) – Directed acyclic graph of arsenic and T2D  

 

Supplementary Table 1 (S1) – Diabetes odds ratios for various cut-offs of cumulative and 

average cumulative metrics of arsenic water concentrations 

 

Supplementary Table 2 (S2) – Diabetes odds ratios for tertiles of various metrics of arsenic 

water concentrations among cancer cases or non-cancer controls 

 

Supplementary Table 3 (S3) - Diabetes odds ratios for categories of cumulative arsenic water 

concentrations lagged 40 years stratified by healthy (<25 kg/m2), overweight (≤25 to <30 

kg/m2), and obese (≥30 kg/m2) BMI among all subjects and in only non-cancer controls 

 

Supplementary Table 4 (S4) - Diabetes odds ratios and Rothman synergy indices by categories 

of low and high BMI and arsenic among all subjects and in only non-cancer controls   
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Figure SF1. Directed acyclic graph of arsenic and T2D based on covariate data collected 
*Abbreviations: BMI, body mass index; T2D, type 2 diabetes 

**The explanation for the edges drawn are as follows: Arsenic is a known human carcinogen, and thereby causes 

cancer status. Some cancer types are related to T2D, while others are not. For lung and kidney cancers, most studies 

show that they are not related to T2D (Giovannucci et al, 2010; Larsson and Wolk, 2011). A recent meta-analysis 

involving 21 cohort studies found a summary relative risk for T2D and bladder cancer of 1.21, therefore bladder 

cancer cases were excluded from our analyses (Xu et al, 2017). Since cigarettes contain arsenic, smoking causes 

arsenic exposure, and smoking is also associated with a 30 to 40 percent increased risk of T2D development (CDC 

2014). Age is associated with both the exposure and the outcome; age determines whether the individuals were alive 

and exposed during the period of arsenic-contaminated municipal drinking water, and T2D risk also increases with 

age. Excess BMI contributes to 70 percent of the etiology of T2D development. 
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Table S1. Diabetes odds ratios for various cut-offs of cumulative and average metrics 

of arsenic water concentrations  

Arsenic metric Arsenic level  

(µg/L) 

Diabetes Unadjusted 

OR (95% CI) 
Adjusted* 

OR (95% CI) Yes No 
Cumulative exposure:  

40 year lag (µg/L-years) 

0-1000 82  317 1.00 (Ref) 1.00 (Ref) 

1001-5000 54  230 0.91 (0.62-1.33) 0.89 (0.60-1.32) 

 5001 95  261 1.41 (1.00-1.97) 1.46 (1.02-2.10) 

 p-trend   0.019 0.012 

Cumulative exposure:  

40 year lag (µg/L-years) 

0-2000 115  430  1.00 (Ref) 1.00 (Ref) 

2001-8000 42  182  0.86 (0.58-1.28) 0.92 (0.61-1.38) 

 8001 74  196  1.41 (1.01-1.98) 1.51 (1.05-2.16) 

 p-trend   0.03 0.02 

Average lifetime exposure:  

40 year lag (µg/L) 

0-49 99 338  1.00 (Ref) 1.00 (Ref) 

50-149 33  156 0.72 (0.47-1.12) 0.75 (0.48-1.17) 

 150 98  309  1.08 (0.79-1.49) 1.22 (0.87-1.71) 

 p-trend   0.37 0.11 

Average exposure:  

40 year lag (µg/L) 

0-99 126  453  1.00 (Ref) 1.00 (Ref) 

100-199 17  74  0.83 (0.47-1.45) 0.85 (0.48-1.50) 

 200 87  281  1.11 (0.82-1.52) 1.27 (0.91-1.75) 

 p-trend   0.48 0.15 

Abbreviations: BMI, body mass index; CI, confidence interval; OR, odds ratio; Ref, reference group 

*Adjusted for age (<60, 60-70, >70 years old), sex, BMI (<25, 25-30, ≥30 kg/m2), cancer status, smoking (never-smokers, >0 to <10 

≥10 cigarettes/day) 
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Table S2. Diabetes odds ratios for tertiles of various metrics of arsenic 

water concentrations among all subjects and in only non-cancer controls 

Arsenic metric 
Arsenic level  

(µg/L) 

 

All subjects 

  

Non-cancer 

controls only 

OR (95% CI)*  OR (95% CI)* 

Cumulative exposure:  

0 year lag (µg/L-year) 

0-2416 1.00 (Ref)  1.00 (Ref) 

2417-8664 1.14 (0.78-1.66)  1.19 (0.75-1.89) 

≥8665 1.50 (1.03-2.19)  1.53 (0.94-2.47) 

 p-trend 0.03  0.09 

Cumulative exposure:  

40 year lag (µg/L-year) 

0-609 1.00 (Ref)  1.00 (Ref) 

610-5279 0.97 (0.66-1.43)  0.93 (0.58-1.49) 

 ≥5280 1.53 (1.05-2.23)  1.56 (0.97-2.51) 

 p-trend 0.009  0.03 

Highest year exposure:  

0 year lag (µg/L) 
0-60 1.00 (Ref)  1.00 (Ref) 

61-635 1.28 (0.88-1.85)  1.33 (0.83-2.10) 

 636 1.28 (0.89-1.84)  1.34 (0.84-2.13) 

 p-trend 0.25  0.27 

Highest year exposure:  

40 year lag (µg/L) 
0-60 1.00 (Ref)  1.00 (Ref) 

61-286 1.04 (0.70-1.55)  1.04 (0.63-1.72) 

 287 1.16 (0.82-1.64)  1.15 (0.73-1.79) 

 p-trend 0.39  0.55 

Average lifetime 

exposure:  

0 year lag (µg/L) 

0-38 1.00 (Ref)  1.00 (Ref) 

39-129 
1.02 (0.70-1.48) 

 1.03 (0.65-1.62) 

 130 1.43 (0.98-2.07)  1.44 (0.89-2.32) 

 p-trend 0.04  0.11 

Average exposure:  

40 year lag (µg/L) 
0-22 1.00 (Ref)  1.00 (Ref) 

23-222 0.99 (0.68-1.44)  0.97 (0.61-1.53) 

 223 1.36 (0.93-1.97)  1.32 (0.82-2.13) 

 p-trend 0.07  0.20 

Abbreviations: CI, confidence interval; OR, odds ratio; Ref, reference group 

*Adjusted for age (<60, 60-70, >70 years old), sex, cancer status (in all subjects analysis only), BMI (<25, 25-30, 

≥30 kg/m2), smoking (never-smokers, >0 to <10, ≥10 cigarettes/day) 
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Table S3. Diabetes odds ratios for categories of cumulative arsenic 

water concentrations lagged 40 years stratified by healthy (<25 

kg/m2), overweight (≤25 to <30 kg/m2), and obese (≥30 kg/m2) BMI 

among all subjects and in only non-cancer controls 

BMI level 

(kg/m2) 

Arsenic level 

(µg/L) 

All subjects 
 Non-cancer 

controls only 

OR (95% CI)*  OR (95% CI)* 

Healthy  

(<25) 

0-609 1.00 (Ref)  1.00 (Ref) 

610-5279 0.75 (0.36-1.56)  0.78 (0.32-1.88) 

 ≥5280 1.45 (0.74-2.84)  1.41 (0.58-3.38) 

 p-trend 0.09  0.36 

 
 

   

Overweight  

(≤25 to <30) 

0-609 1.00 (Ref)  1.00 (Ref) 

610-5279 1.12 (0.62-2.00)  1.75 (0.85-3.61) 

≥5280 1.34 (0.76-2.35)  1.55 (0.74-3.25) 

 p-trend 0.31  0.33 

 
    

Obese  

(≥30) 

0-609 1.00 (Ref)  1.00 (Ref) 

610-5279 1.04 (0.49-2.20)  0.55 (0.21-1.46) 

 ≥5280 2.64 (1.14-6.11)  2.23 (0.74-6.70) 

 p-trend 0.02  0.15 

Abbreviations: BMI, body mass index; CI, confidence interval; OR, odds ratio; Ref, reference group 
*Adjusted for age (<60, 60-70, >70 years old), sex, cancer status (in all subjects analysis only), and 

smoking (never-smokers, >0 to <10, ≥10 cigarettes/day) 
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Table S4. Diabetes odds ratios and Rothman synergy 

indices by categories of low and high BMI and arsenic 

among all subjects and in only non-cancer controls   

BMI* Arsenic* 
All subjects 

 Non-cancer 

controls only 

OR (95% CI)#  OR (95% CI)# 

Low Low 1.00 (Ref)  1.00 (Ref) 

High Low 1.99 (1.30-3.05)   2.29 (1.36-3.87) 

Low High 1.41 (0.99-2.00)   1.43 (0.90-2.28) 

High High 4.48 (2.25-8.92)   6.39 (2.63-15.55) 

Rothman synergy index 2.49 (0.87-7.09)  3.12 (0.91-10.70) 

Abbreviations: BMI, body mass index; CI, confidence interval; OR, odds ratio; Ref, 

reference group 

*Low and high BMI defined as < and 30 kg/m2. Low and high arsenic defined as <5280 and 

≥5280 µg/L-year cumulative arsenic water concentration lagged 40 years 

#Adjusted for age (<60, 60-70, >70 years old), sex, cancer status (in all subjects analysis 
only), smoking (never-smokers, >0 to <10, ≥10 cigarettes/day) 
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Abstract   

The global prevalence of type 2 diabetes (T2D) has doubled since 1980. Human studies 

worldwide support arsenic exposure as an emerging risk factor for T2D. We propose that low-

dose chronic arsenic ingestion impairs another emerging T2D risk factor called adaptive 

thermogenesis, e.g. heat production in cold environments. Male C57BL/6J mice exposed to 

arsenic-contaminated drinking water (300 parts per billion (ppb) for 9 weeks) experienced 

significantly decreased metabolic heat production when acclimated to chronic cold tolerance 

testing, as evidenced by indirect calorimetry, despite no change in physical activity. Arsenic 

increased total fat mass, and increased unilocular lipid droplet size in both subcutaneous inguinal 

white-adipose tissue (iWAT) and brown adipose tissue (BAT). This hypertrophy appeared to be 

specific to BAT and WAT, given the lack of observed liver lipidosis. RNA sequencing analysis 

of iWAT indicated that arsenic dysregulated mitochondrial processes, including fatty acid 

metabolism. Western blotting of adipose confirmed that arsenic significantly decreased 

TOMM20 in both BAT and WAT, a correlate of mitochondrial abundance, while in iWAT alone 

arsenic decreased PPARG2, a glucose-sensitizing master regulator of adipogenesis; PGC1A, a 

master regulator of mitochondrial biogenesis; and, CPT1B, the rate limiting step of fatty acid 

oxidation.  Our findings reveal the impact of chronic low-level arsenic exposure on thermogenic 

tissues involved in energy expenditure and glucose regulation, thereby providing novel 

mechanistic evidence for arsenic’s role in T2D development.  

 

Introduction  

Type 2 diabetes (T2D) is a chronic disease, affecting 8.3% of adults worldwide (Peng et al. 

2015). This metabolic disorder is characterized by hyperglycemia, insulin resistance, and 

abnormal insulin secretion. Arsenic has been classified as a metabolic disrupting chemical due to 

its potential to interfere in metabolic pathways (Heindel et al. 2017). Epidemiological studies of 

people residing in South America, Asia, and North America indicate that exposure to arsenic-

contaminated drinking water is associated with an increased risk of T2D (Huang et al, 2014; 

Islam, 2012; Lai et al, 1994; Navas-Acien et al 2008; Pan et al, 2013; Rahman 1998; Rahman 

1999; Rahman 1996; Steinmaus et al, 2009; Wang 2014; Tseng 2000; Tseng 2000b; Tseng et al. 

2004). Further, individuals with excess body mass index (BMI) have increased susceptibility to 

arsenic-induced T2D, raising the possibility that WAT is a potential target tissue of arsenic 

toxicity (Castriota et al. 2018). 

The mechanism by which arsenic leads to T2D has been evaluated in experimental systems, 

yet their relevance to the human condition is unclear given that these studies have often been 

conducted at doses outside the range relevant to humans. For example, a recent study 

demonstrated that mice with chronic exposure to high doses of arsenic had a lower defense of 

body temperature maintenance in response to acute cold exposure, couple with impaired 

expression of RNA and proteins critical to adipogenesis, thermogenesis, and mitochondrial 

activity in BAT (Zuo et al. 2019). However, BAT may not be the only or primary target tissue of 

this impaired thermogenesis as this acute cold exposure would elicit shivering thermogenesis 

from skeletal muscle (Cannon and Nedergaard 2010), and could extend to other thermogenic 

tissues, such as beige adipose tissue and liver, none of which were examined (Seale et al. 2008; 

Young et al. 1984). Despite the limited scope of identifying the target tissue, whether the 

molecular and physiological impairments in thermogenesis observed in mice exposed to high 

levels of arsenic (Zuo et al. 2019) would occur after exposure to doses of arsenic relevant to 

humans is a logical follow-up question given the association of BAT and metabolic pathologies 
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in rodent transplant- and human studies (Liu et al. 2015; Gunawardana and Piston 2012; 

Gunawardana and Piston 2015; Soler-Vásquez et al. 2018).  

An expert panel assembled by the National Toxicology Program (NTP) workshop urged 

researchers to elucidate the influence of white and brown adipose tissue on arsenic-induced T2D 

(Maull et al. 2012; Thayer et al. 2012). The research presented here aims to address this 

knowledge gap, and clarify the role of different adipose tissues in arsenic pathogenesis consistent 

with risk of developing T2D. We hypothesize that impaired adaptive thermogenesis is a key 

mechanism involved in arsenic-induced metabolic disruption, with both BAT and recruitable 

beige adipocytes in iWAT as targets of arsenic toxicity. We utilized a mouse model of low dose 

arsenic exposure relevant to public health to evaluate its effects on adaptive thermogenesis using 

a step-wise gradient of cold exposure during indirect calorimetry assessment combined with a 

survey of thermogenic tissue pathology and its molecular validation.  

 

Materials and Methods  

 

Animals and Treatment 

Wildtype C57BL/6J male mice (Mus musculus) were purchased at five weeks of age 

from Jackson Laboratory (Bar Harbor, ME, USA). This mouse strain is a well-accepted model 

for arsenic toxicity (Ellacott et al. 2010), as well as diet-induced obesity and insulin resistance 

(Tschöp et al. 2012), and the strain used by the Genome Reference Consortium for the mouse 

reference genome assembly (GRC 2019). Mice were group-housed in sterile ventilated cages 

with Sani-Chip wood bedding (Lab Supply, Fort Worth, TX, USA) on a 12-hr light/dark cycle at 

23C, after acclimation for seven days. This study included an initial cohort of 10 mice 

(n=5/treatment), and a subsequent cohort of 16 mice (n=8/treatment), in order to ensure 

reproducibility. Therefore, this manuscript includes a total of 26 mice (n=13/treatment). After 

one-week of acclimation, male mice (n=13/treatment) were administered 300 ppb inorganic 

arsenic in the form of sodium (meta)arsenite (NaAsO2, Sigma-Aldrich) for nine weeks. NaAsO2 

was dissolved at a final concentration of 300 ppb using autoclaved water. Both arsenic-treated 

and control water were freshly prepared and replaced thrice weekly, in order to minimize 

oxidation from trivalent to pentavalent arsenical species. The mice were fed ad libitum purified 

casein-based AIN-76A chow (Teklad Adjusted Vitamins Diet; Harlan Laboratories, Inc). 

Published trace metal analyses have shown the AIN-76A diet to have the lowest inorganic 

arsenic concentrations (<20 ppb), as compared to non-purified diets, which can yield changes in 

gene and protein expression consistent with arsenic contamination (Kozul et al. 2008). Water 

intake was measured thrice weekly to coincide with water changes. All mice were euthanized by 

cervical dislocation following isoflurane overdose. These methods are consistent with the 

American Veterinary Medical Association Guidelines for the Euthanasia of Animals and 

approved by both the UC Berkeley and UC Davis Animal Care and Use Committees (ACUC), 

protocols #2015-06-2681 and #20429, respectively. All personnel working with mice were 

specially trained and followed specific standard operating procedures (SOPs) as required by both 

ACUC and the National Institute of Health (NIH).  

 

Respirometry via Indirect Calorimetry  

Respirometry was performed using ventilated, open-circuit indirect calorimetry 

(CLAMS, Columbus Instruments, Columbus, OH). Indirect calorimetry is the gold standard for 

assessing in vivo energy expenditure (Cannon and Nedergaard 2010; Meyer et al. 2015). For the 
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energy balance studies, we housed a maximum of 16 mice (8 mice/treatment) individually in 

metabolic chambers with a constant light and dark cycle of 12h. We repeated the experiment, 

with a total of 13 mice/treatment. Pulverized diet (AIN-76A) and water were provided ad 

libitum. Oxygen consumption, carbon dioxide production, food intake, and three plane 

locomotion were monitored in sequential intervals (≤35s). A minimum 24h acclimation period 

allowed the mice to adjust to their new housing conditions (Tschöp et al. 2012). A cold tolerance 

acclimation test was performed, comprising of a slow, step-wise decrease in temperature. The 

metabolic cages were set to the following temperatures: 30°C, 23°C, 12°C, and 4°C, each for a 

24h interval. Acute cold exposure without prior acclimation was avoided in order to prevent 

prolonged muscle shivering (Cannon and Nedergaard 2004; 2010; 2011). Energy expenditure 

and respiratory exchange ratio (RER), a quotient of vCO2/vO2, was calculated for each treatment, 

ambient temperature, and photoperiod. Once indirect calorimetry was completed, all mice were 

re-acclimated to the ambient temperature (22°C) of their long-term vivarium where they were 

housed in standard caging for one week prior to any additional experiments.  

 

Body Composition 

 We measured body composition by either EchoMRITM (Echo Medical Systems, Houston, 

TX) or Dual-energy X-ray absorptiometry (DEXA) (PixiMus densitometer, GE Medical 

Systems, LUNAR) of each mouse at week six of exposure, prior to indirect calorimetry. Body 

weights and food intake were measured weekly. Tissue weights were weighed and collected 

post-mortem for additional analysis. 

 

Histopathology 

Upon dissection, liver, BAT, and iWAT were submerged in 10% neutral buffered 

formalin for at least 24 hr at room temperature. Formalin-fixed samples were routinely processed 

for histology, embedded in paraffin, cut into 5uM sections and stained with Hematoxylin and 

Eosin (H&E). Liver sections were evaluated blindly by a board-certified veterinary pathologist. 

Hepatic lipidosis was scored based on percentage of hepatocytes that contain lipid: 0 = no lipid; 

1 = < 10% of area within a 200x field contains lipid; 2 = 11 - 33%; 3 = 34 - 66%; 4 = > 66%. 

Object area fraction was calculated at 200x magnification using a binary threshold of 185 to 238 

on red, green and blue channels. Fat content was calculated as percent region of interest in 

epididymal, brown and inguinal fat. Light microscopy was performed using a BX43 Olympus 

microscope fitted with an Olympus DP74 camera. Digital measurements were done using Cell 

Sens Dimensions 2.1 with Count and Measure.  All histological sectioning and evaluation were 

conducted at the UC Davis Comparative Pathology Laboratory and performed by a trained 

veterinary pathologist.  

 

RNA Isolation and Sequencing  

Total RNA was isolated and extracted from iWAT (~30 mg) using a lipid-specific 

RNeasy kit (Qiagen, Hilden, Germany), according to the manufacturer’s protocol. The quantity 

of total RNA was calculated using QubitTM Fluorometer (Invitrogen, Burlington, ON, Canada). 

Library preparation and RNA sequencing performed at the Beijing Genome Institute (BGI, Hong 

Kong) using the BGISEQ-500 instrumentation. The sequence was aligned with the Genome 

Reference Consortium Mouse Build 38 (GRCm38, mm10), generating 20 M mapped reads per 

sample.  
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Protein Quantification and Western Blotting   

Inguinal white (~250 mg) and brown adipose tissues (~100 mg) were homogenized in 

RIPA buffer containing a protease and phosphatase inhibitor cocktail (HaltTM, ThermoFisher 

Scientific) for tissue disruption (TissueLyser II, Qiagen). A bicinchoninic acid assay (BCA) 

was performed to quantify protein lysate concentrations (PierceTM BCA Protein Assay Kit, 

ThermoFisher Scientific). Western Blotting was conducted on 4-15% Mini-PROTEAN TGX 

Precast 15-well protein gels (BioRad), according to the manufacturer’s protocol, with ~50 µg 

total protein per well. Western blot analysis was performed with primary antibodies UCP1 

(14670; Cell Signaling), ELOVL6 (ab69857; Abcam), PGC1A (ab54481; Abcam), PPARG2 

(sc7273 E-8; Santa Cruz Biotechnology), CPT1B (ab134988; Abcam), ATGL (ab109251; 

Abcam), TOMM20 (ab186735; Abcam), ACTB (A2228; Sigma), and TUBB (T8328; Sigma). 

The secondary antibodies were goat anti-mouse 680 (925-68020) and goat anti-rabbit 800 

(925-32211) (Li-Cor). Proteins were detected by chemiluminescence (Western Lighting Plus-

ECL; Perkin Elmer), with signal intensity identified with Li-Cor Odyssey Software. Image 

Studio Lite software (Li-Cor) was used to quantify band intensity, dividing the signal intensity 

of the protein of interest by the intensity of housekeeping gene ACTB or TUBB.   

 

Statistical Analysis  

We performed statistical analyses for treatment differences in body weight, consumption 

of water and calories, body composition, and tissue weights in R (v. 3.5.2) using linear mixed 

models based on previously published methods (La Merrill et al. 2014). We accounted for cohort 

as a random effect in order to capture differences between experimental blocks. To identify the 

effects of temperature and circadian rhythm on differences in energy expenditure during indirect 

calorimetry, longitudinal modeling was performed with treatment and percent body fat as fixed-

effects and both cohort and mouse identifiers (ID) as random effects while stratifying by 

photoperiod and ambient temperature (La Merrill et al. 2014). Since percent body fat differed 

significantly between arsenic and controls, this was included as a covariate in the indirect 

calorimetry analyses (La Merrill et al. 2014). Downregulated genes that exhibited a log2-fold 

change < -1 (i.e., 50% decrease in expression) were considered in Gene Set Enrichment Analysis 

(GSEA). GSEA was performed in R (v. 3.5.2) using the clusterProfiler package, and included 

the following enrichment analyses: Gene Ontology (GO) for biological processes, Kyoto 

Encyclopedia Of Genes And Genomes (KEGG), and WikiPathways. GSEA findings were 

deemed significant based on Benjamini-Hochberg adjusted p-values. The signal intensity of the 

proteins examined were divided by the intensity of the housekeeping protein for normalization. 

Fold changes were calculated by dividing the normalized signal of the arsenic exposed mice by 

the average of the controls.  

 

Results  

 

Chronic arsenic exposure increases percent body fat, but not body weight or food consumption 

 To determine whether chronic arsenic exposure increased body weight and measures of 

food and water consumption, adult mice were monitored weekly for the status of these 

parameters (Figure 1A). No significant differences were observed in body weight throughout the 

duration of the study (Figure 1B). While caloric intake was not significantly different across 

treatments throughout the majority of the study duration, significant differences between 

treatment groups were observed during weeks one and eight, in which arsenic-exposed mice had 
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increased caloric intake, and week nine, during which controls had increased caloric intake 

(Figure 1D). Water intake was consistently increased among controls, with significant 

differences noted in weeks two, three, four, and eight (Figure 1C). Arsenic exposed mice had a 

significantly higher body fat percentage when compared to controls, despite no treatment 

differences in lean-, fat-, or total body- mass (Figure 2).  

 

Chronic arsenic exposure decreases energy expenditure during cold-tolerance acclimation 

 To examine the effect of chronic arsenic exposure on non-shivering thermogenesis, 

arsenic and control adult mice were subjected to a cold tolerance acclimation test at 6 weeks of 

exposure (Cannon and Nedergaard 2010). Arsenic-treated mice exhibited significantly decreased 

energy expenditure when challenged with progressively colder ambient temperatures (Figure 

3A). Upon reaching 4C, arsenic exposed mice had a 7% reduction in energy expenditure, as 

compared to controls during both light and dark photoperiods  (Figure 3A). Oxygen consumption 

reduction by arsenic treatment followed a similar pattern (Figure 3B). Further the reduction of 

oxygen consumption decreased by 8% at 4C, suggestive of impaired thermogenesis (Cannon 

and Nedergaard 2011). Despite the reduced energy expenditure and oxygen consumption by 

arsenic treatment, no significant treatment differences were observed in movement, indicating 

that decreased energy expenditure was independent of physical activity of mice (Figure 3C). 

Indeed we observed a qualitatively increased activity of arsenic exposed mice during the dark 

photoperiod. No significant differences were observed in RER (data not shown), suggesting that 

the effect of arsenic exposure on energy expenditure and oxygen consumption is not mediated by 

an interference with substrate utilization.  

 

Chronic arsenic exposure induces whitening of thermogenic adipose tissues 

To determine the tissue site responsible for reduced energy expenditure by arsenic during 

indirect calorimetry, histopathological analysis of liver, iWAT, and BAT were conducted at 

study week nine. H&E staining of iWAT and BAT sections revealed increased unilocular lipid 

droplet accumulation in arsenic exposed mice compared to controls (Figure 4A-D), consistent 

with adipose whitening (Kotzbeck et al. 2018). Tissue weight was also determined at dissection 

in order to assess changes in relative and absolute organ mass as an indicator of tissue 

dysfunction. Absolute and relative weight of iWAT was significantly increased among arsenic 

exposed mice compared to controls (Figure 4E, D). However we did not observe an increase in 

the absolute or relative weight of other thermogenic tissue, e.g. BAT, skeletal muscle, heart, or 

liver (Figure 4E, D).  Furthermore, no evidence of hepatic lipid accumulation or other lesions 

were observed (Figure SF1), consistent with increased lipid droplet formation that is specific to 

thermogenic adipose tissues.   

 

Chronic arsenic exposure downregulates the expression of genes involved thermogenesis and 

fatty acid oxidation in inguinal WAT 

 Given the increased iWAT mass (Virtue and Vidual-Puig 2013) and increasing 

biomedical evidence for a role of recruitable beige adipocytes in energy balance (Kajimura et al. 

2015), we sought to establish whether arsenic exposure interferes with the beiging of iWAT by 

performing RNA sequencing analysis of iWAT from arsenic exposed and control mice. Arsenic 

significantly decreased the expression of genes in involved in adaptive thermogenesis, 

adipogenesis, lipolysis, inflammation, and metabolism (Figure 5, Table 1, Figure SF2). Arsenic 

exposure decreased the expression of Ucp1 in iWAT, the primary gene responsible for energy 
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dissipation and non-shivering thermogenesis (Table 1, Figure SF2). Several additional genes 

critical to beiging and energy generation were also significantly reduced with arsenic exposure, 

including Dio2, Cidea, and both Acss1 and Acss2 (Table 1).  

Genes that were expressed differentially with respect to arsenic among the significantly 

enriched KEGG pathways (Table 1) were validated via protein quantification in both iWAT and 

BAT given both tissues exhibited increased whitening (Figure 4). Arsenic induced changes in 

protein expression were more pronounced in iWAT than those observed in BAT (Figure 6). For 

example, although mitochondrial membrane protein TOMM20 was significantly downregulated 

in BAT, no significant differences were observed in BAT proteins associated with adaptive 

thermogenesis (Figure 6). In contrast, arsenic exposure significantly decreased the expression of 

not only TOMM20, but also PGC1A, PPARG2, and CPT1B in iWAT (Figure 6). This 39.3% 

decrease in CPT1B protein levels in iWAT from arsenic exposed mice validated the 46.3% 

decrease in Cpt1b expression revealed by RNA sequencing (Table 1). Further, the trend of 

57.8% decreased UCP1 expression in iWAT (p-value: 0.08) corroborated with the RNA 

sequencing results, where Ucp1 was decreased 42.3% due to arsenic exposure (Table 1).  

 

Discussion  

We tested our hypothesis that low-dose chronic arsenic exposure impairs adaptive 

thermogenesis in adult male C57BL/6J mice. Low dose chronic arsenic exposure reduced 

adaptive thermogenesis and induced thermogenic adipose tissue whitening. Histopathologic 

analyses revealed that brown fat and especially subcutaneous fat, but not liver, were target 

tissues of this thermogenic impairment by arsenic. Our research indicates that arsenic does this, 

at least in part, by remodeling adipose tissue. 

Arsenic increased the presence of unilocular lipid droplets in both subcutaneous and 

brown adipose tissue. This may explain the significantly increased body fat percentage and 

subcutaneous adipose tissue mass in arsenic exposed mice compared to controls. Consistent with 

our observations, previous studies have reported arsenic exposure to decrease the expression of 

the master regulator of adipogenesis, PPARG (Hou et al. 2013; Wauson et al. 2002). Arsenic has 

also been shown to inhibit the interaction between C/EBPA and PPARG, a critical step in 

adipogenic differentiation (Yadav et al. 2012). Based on our findings, we confirm Maull et al’s 

speculation regarding arsenic’s effects on both brown and white adiposity in the context of T2D 

(Maull et al. 2012). 

A strength of this study lies in the administered exposure concentration, which was 

designed to be highly relevant to the route and dose of exposure experienced by communities 

worldwide (Maull et al. 2012). An allometric scaling approach was used to convert treatment 

concentrations administered to animals to human equivalence doses (FDA 2005). The dose of 

300 ppb in mice approximates 58.5 ppb in humans, which corresponds to the current standard of 

inorganic arsenic exposure in drinking water established in several nations, including Bahrain, 

Bangladesh, Bolivia, China, Egypt, India, Indonesia, Oman, Philippines, Saudi Arabia, Sri 

Lanka, Vietnam, and Zimbabwe (Yamamura et al. 2001). This study also relies on low-dose 

chronic arsenic ingestion via oral exposure, unconfounded by the ingestion of arsenic-rich 

dietary sources. Our study adds to the experimental animal literature by relying on a study design 

that is not only applicable to human exposures but also informed with established methodologies 

in the field of metabolic biology.  

Our molecular studies also suggest that arsenic targeted mitochondria in its impairment of 

adipose thermogenesis, either the numbers or functions of mitochondria, or both. With respect to 
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mitochondria abundance, chronic cold exposure should have remodeled adipose to increase 

mitochondria, and consequently, thermogenic capacity (Choe et al. 2016; Altshuler and Kajimura 

2017). Instead, arsenic exposure appeared to diminish mitochondrial abundance in both white 

and brown adipose tissue following cold exposure, as evidenced by the significantly decreased 

expression of TOMM20. This is consistent with the decreased mitochondrial abundance 

observed with the ‘anti-thermogenic’ phenomenon of increased whitening, also known as beige-

to-white adipocyte conversion (Altshuler-Keylin et al. 2016).  

We present molecular evidence suggesting that arsenic impairs numerous mitochondria 

functions. Previous research has shown high arsenic exposure is associated with mitochondrial 

dysfunction (Pan et al. 2014; Tseng et al. 2004), with arsenic decreasing expression of electron 

transport related genes (COX IV, COX7a1, COX8B) in BAT (Zuo et al. 2019). Because 

thermogenic adipose tissue prefers using fatty acids as a substrate for thermogenesis (Bartelt and 

Heeren 2014), the reduction of the rate limiting step of mitochondrial fatty acid oxidation 

(CPT1B) in the subcutaneous white adipose of arsenic -exposed mice after a cold challenge 

supports the role of chronic low-dose arsenic exposure in maladaptive thermogenesis and 

impaired beiging observed here (Inagaki et al. 2016). Indeed, the decreased expression of CPT1B 

and UCP1 which we observed across protein and RNA after arsenic exposure further underscore 

the biological plausibility of arsenic decreasing mitochondrial lipid oxidation and uncoupled 

respiration, respectively (Greenland et al. 2016). It remains to be determined whether arsenic 

interferes with adaptive thermogenesis and fatty acid metabolism in adipose tissue through 

impaired adipogenesis, reduced mitochondria abundance or by targeting mitochondrial function 

independent of these pathologies. Future studies should be conducted to examine the effects of 

arsenic exposure on mitochondrial degradation in thermogenic adipose tissue, and its association 

with metabolic pathologies (Altshuler-Keylin and Kajimura 2017).  

 

Conclusions 

 This is the first study to investigate the effects of inorganic arsenic exposure on adaptive 

thermogenesis. While chronic arsenic exposure is associated with increased susceptibility to T2D 

in communities worldwide, the exact mechanism by which arsenic exerts its diabetogenic effects 

remains unclear. Our findings provide additional evidence of potential pathways by which 

chronic low-dose arsenic exposure impairs thermogenesis, fatty acid oxidation, and 

mitochondrial abundance, increasing the risk of metabolic diseases such as T2D. shift in adipose 

tissue architecture to more lipid droplets with molecular analysis suggesting they have less 

mitochondria and thermogenic capacity. There is increasing interest in the role of environmental 

toxicants on thermogenic adipose tissues, linking environmental health to the growing 

prevalence of metabolic diseases worldwide.  
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Glossary 

 

Acly ATP citrate lyase 

Adcy3 Adenylate cyclase 3 

Acot1 Acyl-CoA thioesterase 1 

Acot11 Acyl-CoA thioesterase 11 

Acsl5 Acyl-CoA synthetase long-chain family member 5 

Acss1 Acyl-CoA synthetase short-chain family member 1 

Acss2 Acyl-CoA synthetase short-chain family member 2 

ACUC Animal Care And Use Committee 

Amd1 S-adenosylmethionine decarboxylase 1 

ATB Beta actin  

BAT Brown adipose tissue 

BMI  Body mass index  

C/EBPA CCAAT-enhancer binding protein alpha 

Ccl8 Chemokine (C-C Motif) ligand 8 

Ccl19 Chemokine (C-C Motif) ligand 19 

Ccl21a Chemokine (C-C Motif) ligand 21a (serine) 

Cidea Cell death-inducing DNA fragmentation factor, alpha subunit-like effector a 

Cox8b Cytochrome c oxidase subunit 8b 

Cpt1b Carnitine palmitoyltransferase 1b 

Cyp2b10 Cytochrome P450, family 2, subfamily b,  polypeptide 10 

Cyp51 Cytochrome P450, family 51 

Cxcr6 Chemokine (C-X-C motif) receptor 6 

Dhrs9 Dehydrogenase/reductase (SDR Family) member 9 

Dio2 Deiodinase, iodothyronine, type II 

Dnmt3l DNA (cytosine-5-)-methyltransferase 3-like 

ELOVL6 ELOVL family member 6, elongation of long chain fatty acids 

EPA Environmental Protection Agency 

Fabp3 Fatty acid binding protein 3 

Fbp2 Fructose bisphosphatase 2 

Gyk Glycerol kinase 

Idi1 Isopentenyl-diphosphate delta isomerase  

Impa2 Inositol (myo)-1(or 4)-monophosphatase 2 

iWAT  Subcutaneous inguinal white adipose tissue 

KEGG Kyoto Encyclopedia Of Genes And Genomes 

Lipg Lipase, endothelial  

MDC Metabolic disrupting chemical 

Me1 Malic enzyme 1, NADP(+)-dependent, cytosolic  

NIH National Institute of Health  

NTP National Toxicology Program 

Odc1 Ornithine decarboxylase, structural 1 

Pank1 Pantothenate kinase 1 

PGC1A Peroxisome proliferator activated receptor, gamma, coactivator 1 alpha  

Phosopho1 Phosphatase, orphan 1  
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Plcb2 Phospholipase c, beta 2 

Plcd4 Phospholipase c, delta 4 

PPARG2 Peroxisome proliferator activated receptor gamma 2 

Ppb  Parts per billion  

RER Respiratory exchange ratio  

Slc27a2 Solute carrier family 27 (fatty acid transporter), member 2 

Scd2 Stearoyl-Coenzyme A desaturase 2 

SOP Standard Operating Procedure 

St3gal5 ST3 beta-galactoside alpha-2,3-sialyltransferase 5 

T2D Type 2 diabetes 

TOMM20 Translocase of outer mitochondrial membrane 20 

TUBB Beta tubulin 

Ucp1 Uncoupling protein 1 (mitochondrial, proton carrier) 

Uqcr10 Ubiquinol-cytochrome c reductase, complex III subunit X 

USGS United States Geological Survey  
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Figure 1. Chronic arsenic exposure does not significantly alter body weight. (A) Study design 

of male C57BL.6J mice exposed to arsenic (300 ppb) in drinking water for 9 weeks (B) 

Body weight, (C) Body weight adjusted water intake, (D) Weekly caloric intake; (n=26; 13 

arsenic vs 13 controls). Data represented as LS means  SEM arsenic vs controls, with statistical 

significance determined by linear mixed models; ***p<0.001; **p<0.01; *p<0.05; arsenic vs 

controls. Data from week 7 omitted, as mice were in the metabolic chambers.  
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Figure 2. Chronic arsenic exposure significantly increases percent body fat, but not lean or fat 

body mass. (A) Fat and lean body mass, (B) Percent body fat, and (C) Percent lean mass, 

determined via DEXA and EchoMRI at week 6. No significant differences observed comparing 

arsenic (n=26; 13 arsenic vs 13 controls). Data represented in least squares (LS) means, with 

statistical significance determined by linear mixed models accounting for cohort as a random 

effect; ***p<0.001; **p<0.01; *p<0.05. 
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Figure 3. Chronic arsenic exposure decreases adaptive thermogenesis during chronic cold 

tolerance testing. (A) Energy expenditure, (B) Oxygen consumption, (C) Movement;  

(n=26; 13 arsenic vs 13 controls). Black bars indicate the dark photoperiod. Data represented as 

LS means  SEM arsenic vs controls, with statistical significance determined by linear mixed 

models accounting for both cohort and mouse ID as random effects; ***p<0.001; **p<0.01; 

*p<0.05; †p<0.1 arsenic vs controls. 
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Figure 4. Chronic arsenic exposure induces whitening of iWAT and BAT, and increases 

iWAT relative and absolute tissue weight. Representative Hematoxylin and eosin (H&E) 

staining (10x) depicting (A) Control iWAT (B) Arsenic-treated iWAT (C) Control BAT (D) 

Arsenic-treated BAT; (n=10; 5 arsenic vs 5 controls). (E) Absolute tissue weight and (F) 

Relative tissue weight; (n = 13 arsenic vs n = 13 controls). Data represented as LS means + 

SEM, with statistical significance determined by linear mixed models accounting for cohort as a 

random effect; ***p<0.001; **p<0.01; *p<0.05; †p=0.05 arsenic vs controls. Abbreviations: 

iWAT, inguinal WAT; eWAT, epididymal WAT; BAT, brown adipose tissue; TA, tibilias 

anterior; GM, gastrocnemius muscle. No statistical differences in pancreas absolute or relative 

weight tissue observed (data not shown).  
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Figure 5. GO Biological Process Enrichment Analysis of arsenic downregulated genes in 

iWAT. Downregulated biological processes (doubling) shown with Benjamini-Hochberg 

adjusted p-values; (n=6; 3 arsenic vs 3 controls). Analysis conducted in R using the 

clusterProfiler package. 
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Table 1. KEGG Pathway Analysis of arsenic downregulated genes in iWAT. Pathway-specific 

Benjamini-Hochberg adjusted p-values, with gene-specific log2 fold changes and percent 

decrease in expression; (n=6; 3 arsenic vs 3 controls). Pathway-specific analysis conducted in R 

using the clusterProfiler package. 
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Figure 6. Chronic arsenic exposure downregulates fatty acid oxidation, adipogenesis and 

thermogenesis targets in iWAT. (A) Immunoblots and densitometry analyses of (B) BAT and 

(C) iWAT; (n=14; 7 arsenic vs 7 controls). Data represented as relative protein levels (fold of control 

samples), normalized by either ACTB, or TUBB. Statistical significance determined by an unpaired 

one-tailed Student t-test analysis using Prism (GraphPad). ***p<0.001; **p<0.01; *p<0.05, †p<0.09 

(UCP1 p-value: 0.08) arsenic vs controls.  
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Supplementary Material 

Supplementary Figure 1 (SF1). Arsenic exposure does not cause histomorphological changes 

or liver lesions (lipidosis) 

 

Supplementary Figure 2 (SF2). Significant WikiPathway PPAR Signaling (Mus musculus) 

downregulated genes 
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Figure SF1. Arsenic exposure does not cause histomorphological changes or liver lesions 

(lipidosis). Representative Hematoxylin and eosin (H&E) staining (10x) depicting liver sections 

in (A) Controls and (B) Arsenic-exposed mice. (C) Liver lipidosis scores based on scoring from 

a certified pathologist. (n=10; 5 arsenic vs 5 controls). Data are represented as means ± SEM. 

Statistical significance determined by unpaired two-tailed Student t-test analysis using Prism 

(GraphPad). ***p<0.001; *p<0.001; *p<0.05 arsenic vs controls.   
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Figure SF2. Significant WikiPathway PPAR Signaling (Mus musculus) downregulated genes.  

Highlighted genes (in blue) were downregulated due to arsenic exposure, and found in adaptive 

thermogenesis, fatty acid transport, fatty acid oxidation, and gluconeogenesis.  

(n=6; 3 arsenic vs 3 controls).  
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Abstract 

Indirect calorimetry is considered the gold standard for energy expenditure analysis, with 

vast applications in diverse research settings. Biologists studying pharmaceutical, toxicological, 

dietary, or genetic interventions use indirect calorimetry to quantify energy expenditure. These 

studies are longitudinal, measuring outcomes such as energy expenditure and substrate 

metabolism repeatedly, across many time intervals for each animal. This longitudinal data 

structure can provide researchers with an understanding of changes in metabolic outcomes 

between intervention groups over time. These experiments induce within-animal dependency, as 

the outcome of an animal measured from one time point to the next is correlated. Another feature 

of indirect calorimetry studies is that they often randomize animals to intervention groups. With 

randomized experiments, researchers can identify and estimate causal effects. Further, 

randomization-based statistical inference can be used to test null hypotheses. Randomization 

inference does not depend on distributional assumptions or asymptotic theory (large sample 

approximations) to obtain p-values and confidence intervals. Unfortunately, the current practice 

of indirect calorimetry analysis does not leverage randomization for statistical inference. It 

instead, relies on large sample theory that is unlikely to hold, since these studies typically consist 

of small sample sizes. Here, we point out the limitations of the current statistical approaches and 

present alternatives that do not rely on asymptotic theory to obtain p-values. We provide an 

intuitive comparison of the methods and include R code to facilitate implementation. 

 

Introduction 

Indirect calorimetry is the gold standard of energy metabolism research, and relevant to 

the study of the effects of genetic manipulations, as well as dietary and pharmaceutical 

interventions on metabolic outcomes, such as respiratory exchange ratio (RER), oxygen 

consumption (VO2), carbon dioxide production (VCO2), and energy expenditure (EE) (Rozman 

et al. 2014). Indirect calorimetry is performed in gas-tight metabolic chambers, each hosting a 

single animal with access to both food and water. Repeated measures are obtained for each 

animal over a determined period of time, and studies are commonly conducted during both light 

and dark photoperiods in order to account for differences in circadian rhythm and activity levels 

(Meyer et al. 2015).  Since animal studies are costly, and indirect calorimetry studies are typically 

limited by the number of chambers available, researchers often employ studies with small sample 

sizes to test hypotheses. In settings of small sample experiments, researchers commonly 

randomize animals to intervention groups. This randomization of treatment allocation allows 

them to use randomization-based inference instead of asymptotic-based inference. Asymptotic-

based inference is based on the Central Limit Theorem (CLT), a statement that holds as sample 

size grows to infinity. Randomization-based inference does not depend on distributional 

assumptions (i.e., it is model-free) or on the CLT to obtain p-values and confidence intervals. By 

eliminating procedures that are based on approximations, randomization-based inference 

produces more accurate results which are valid for any sample size, also known as exact 

statistics. Further, researchers eliminate confounding by body mass and composition with 

randomization, since the intervention assignment does not depend on any covariates (i.e., the act 

of randomization itself removes confounding). Covariates in a randomized design may still be 

correlated, so randomized block designs (such as matched pairs) or regression adjustment may be 

a reasonable addition to randomization. For these reasons, we highly recommend metabolic 

biologists to utilize randomization in their experimental design in order to unlock the statistical 

power of randomization-based inference in their analysis.  
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Experiments with repeated observations over time are known as longitudinal. 

Longitudinal studies differ from cross-sectional studies, in which data is captured as a single 

snapshot in time. Longitudinal data, such as those derived from indirect calorimetry experiments, 

includes both time-independent (such as sex and age) and time-dependent variables (such as 

RER, VO2, VCO2, and EE). Since longitudinal studies include data from both time-independent 

and time-dependent variables, they can be used to (1) assess an animal’s change in an outcome 

over time (longitudinal differences), and (2) compare an outcome between animals under varying 

interventions (cross-sectional differences). Cross-sectional methods have become the standard 

for the analysis of indirect calorimetry studies. These cross-sectional approaches require 

reducing the repeated observations to a single summary measure for each animal (e.g., average 

EE across time, slope of EE, change in EE between two time points). Longitudinal approaches 

enhance the sensitivity of indirect calorimetry analyses because they (1) do not require the user 

to compress the data to a summary measure per animal and condition (such as the mean per 

intervention and photoperiod combination), and (2) are capable of modeling non-independent 

data as is typically encountered with the repeated measures of indirect calorimetry.  

In this perspective, we shed light on the flaws associated with popularized methods for 

indirect calorimetry analysis. We also present randomization-based approaches that (1) are 

commonly used, just not yet standardized in metabolic biology analyses; (2) take advantage of 

repeated measures in estimating potential longitudinal effects of interest; and (3) produce honest 

statistical inference that does not rely on large samples. We compare the methods we consider 

and include relevant R code to assist users in implementing these more robust methods. 

 

Randomization-based inference for indirect calorimetry  

In indirect calorimetry studies, the null hypothesis (the hypothesis that researchers aim to 

refute) routinely claims no difference in the outcome between animals in the intervention versus 

control groups. Evidence in support of or against the null hypothesis is determined by specifying 

an appropriate test statistic, such as the difference in means between intervention versus control 

groups. The choice of both the test statistic and null hypothesis should be guided by the research 

question of interest. Once these are decided upon, the distribution of the test statistic under the 

null (i.e., the p-value) is calculated, and defined as the probability that the test statistic is at least 

as extreme as its observed value, given the null hypothesis is true. Under the null distribution of 

no intervention effect, the intervention assignment does not matter, as it would not change the 

observed distribution of the outcome (Kempthorne 1995). Randomization-based inference 

utilizes this fact to obtain statistical inference. Specifically, the intervention assignments are 

reshuffled among the animals while the outcomes remain fixed, and the test statistic is calculated 

for each reshuffle, thus generating a distribution of test statistics that exhibit a null intervention 

effect (Kempthorne 1995). If a true difference in the outcome is present between intervention 

groups, then the p-value ascertained from the experiment will be sufficiently small (i.e., p-value 

< 0.05) (Kempthorne 1996). The randomization based hypothesis test is valid in that for a test 

rejection threshold of 5% (𝛼 = 0.05), this randomization based hypothesis test will falsely reject 

the null less than 5% of the time. Moreover, randomized intervention assignment tends to 

balance any additional covariates in the data (i.e., body mass), since randomization is 

independent of covariate values (Kempthorne 1996). Randomization is especially practical in 

low powered studies, where the sample size is small (Kempthorne 1996). Randomization-based 

inference approaches can easily be applied to both the longitudinal and cross-sectional 

approaches outlined in Figure 1, and discussed in detail in the following sections.  
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Cross-sectional analysis of indirect calorimetry data 

The field of indirect calorimetry analysis has attempted to implement statistical 

approaches that account for body mass and composition as potential confounders of energy 

metabolism (Poehlman and Toth 2018; Arch et al. 2006; Kaiyala and Schwartz 2011). The 

practice of ratio normalization, which involves dividing the outcome of interest by lean body 

mass (LBM), was widely practiced until studies revealed spurious findings due to an 

overestimation of the effect of LBM on EE (Tschöp et al. 2012). Later, the Mouse Metabolic 

Phenotyping Centers (MMPC) of the National Institute of Diabetes and Digestive and Kidney 

Diseases (NIDDK) adopted the analysis of covariance (ANCOVA) as the standardized model for 

indirect calorimetry research (Kaiyala et al. 2017; 2017b; 2017c; 2017d). ANCOVA adjusts the 

outcome estimates for a confounder such as LBM or fat mass (FM). This assumes that the size of 

the effect of LBM or FM on the outcome is the same (i.e., equal regression slopes) across all 

intervention groups (Laughlin et al. 2012). Depending on the research question (and the 

experimental design, this assumption (often termed homogeneity of regression slopes) is likely to 

be violated (Kaiyala et al. 2017; 2017b; 2017c; 2017d). Examples of research questions and 

study designs that may violate this assumption include those with obese versus wildtype mice, or 

adaptive thermogenesis (Kaiyala et al. 2017; 2017b; 2017c; 2017d; Cannon and Nedergaard 

2011). As a cautionary note, the MMPC website does not notify users that repeated measures 

indirect calorimetry data must be condensed into a single value for each animal before uploading 

it to the website. It is severely problematic to apply the repeated measures data structure to cross-

sectional approaches. That is, a single summary measure from all repeated measures on a single 

mouse must be calculated before implementing a cross-sectional approach (Figure 2). Otherwise, 

all observations are assumed to be uncorrelated, and independently sampled. This naive 

implementation leads to severely underestimated variances and incorrectly small p-values.  

Researchers at Harvard University recently developed a web-based analytical tool called 

CalR, which allows users to input their raw repeated measures data and perform cross-sectional 

approaches (Mina et al. 2018). CalR and MMPC are functionally different; CalR derives the 

summary measure for each animal as a preliminary step before implementing the cross-sectional 

statistical approach, whereas MMPC assumes the repeated measures data has already been 

summarized to a single measurement for each animal. CalR also boasts an adaptive methodology 

that provides users with an alternative model that relaxes the assumptions implicit in MMPC, in 

the case that the regression slopes between intervention groups are not homogeneous (Mina et al. 

2018). The R statistical software syntax for the cross-sectional approaches implemented by CalR 

and MMPC are provided in red in Figure 1. Condensing the data into a single value for each 

animal is statistically sound, and can be equivalent in validity to longitudinal methods that 

maintain the repeated measures structure. These cross-sectional approaches however, limit our 

understanding of within-animal patterns that vary over time. 

 

Longitudinal analysis of indirect calorimetry data 

An intrinsic property of indirect calorimetry data is the repeated measures. Simply taking 

an average of these repeated measures significantly diminishes statistical power by condensing 

the data into a single summary value per subject (often as a mean). This single summary value 

neglects to capture within-subject variability. For example, if relative to the control, the 

intervention produces greater minute to minute variability in gas exchange or has greater gas 

exchange values at opposite ends of the photoperiod, a mean of that overall gas exchange would 

fail to capture these differences. 
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Indirect calorimetry data analyses that utilize longitudinal approaches can assess (1) how 

characteristics such as LBM, FM, and treatment, affect an animal’s change in an outcome across 

time, known as longitudinal differences, and (2) how an outcome differs at one point in time 

between groups of animals under varying interventions, known as cross-sectional differences 

(Morrell et al. 2009). Linear mixed effect models (LME) are a common longitudinal approach, 

and have greatly advanced our understanding of longitudinal events (Morrell et al. 2009). LME 

captures patterns at both the individual level, or “random” effects, and group averages level, or 

“fixed” effects (Morrell et al. 2009). In LME, the random effects capture the within-animal 

variance. In indirect calorimetry, random effects capture the fluctuations of gas exchange 

measured within a single animal during an experimental condition (such as during an 

administered treatment, a given photoperiod, or temperature setting). In LME, similar to typical 

ANCOVA, the fixed effects model the between-animal variance (Figure 2) such that error bars 

can be included, representing the variance in the outcome observed in multiple animals within an 

experimental condition. LME accounts for both within- and between- animal sources of 

variation, and therefore allows researchers to utilize their raw indirect calorimetry repeated 

measures data directly. In contrast, ANCOVA only accounts for the variance between animals, 

and ignores the variance within an animal over time. LME models the dependency in the 

outcome nested within an individual through the correlation structure between repeated 

measurements within each animal. LME also supports higher-order nesting/hierarchical data 

structures (such as a cohort). For example, in the case for which an indirect calorimetry system 

holds a maximum of ten animals but the investigator wants to evaluate 20 animals, there will be 

two cohorts. These two cohorts would often differ from each other beyond intervention and 

photoperiod status in a random manner that generates experimental noise. This noise may mask 

the intervention effect. Examples of random cohort to cohort variability often include unexpected 

changes in the facility environment between cohorts. Also, mixed effect models extend 

ANCOVA by allowing varying intercepts and slopes across animals.  

Other popular longitudinal modeling approaches include the use of repeated measures 

ANOVA and generalized estimating equations (GEE). Repeated measures ANOVA cannot 

handle missing data and requires the same number of repeated observations for all animals. 

Indirect calorimetry data can be missing due to equipment malfunctions but also can occur due to 

non-symmetrical data collection, where one animal is measured for more intervals in a given 

photoperiod compared to another. LME and GEE are more flexible longitudinal approaches. 

LME and GEE are both sound modeling choices. Both LME and GEE model the within-animal 

correlation, but their difference lies in how they model this structure. GEE and LME are also 

different in the interpretation of the model coefficients. Of note, GEE is robust to 

misspecification of the structure of the within-animal correlation; however, GEE assesses the 

population average effect of a treatment and cannot assess animal-specific effects. For an in-

depth review of LME, GEE, and repeated measures ANOVA, we refer to the literature (Zeger 

and Liang 1992; Burton et al. 1998). The R statistical software implementation for LME and 

GEE is provided in Figure 1.  

 

Conclusion 

Indirect calorimetry studies that explore the effects of genetic, dietary, or compound 

administration on energy dissipation have considerable therapeutic potential for chronic diseases 

such as obesity and type 2 diabetes. The metabolic biology community must adopt statistical 

approaches that limit the potential for false discoveries and unreliable conclusions. In this 
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perspective, we aim to advance the literature on the use of longitudinal approaches and 

randomization-based statistical inference for indirect calorimetry research.  
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Glossary 

 

NIDDK National Institute of Diabetes and Digestive and Kidney Diseases 

MMPC Mouse Metabolic Phenotyping Center  

Cross-sectional Study design that examines an association based on a snapshot in time  

Longitudinal Study design that examines an association based on repeated measures over time 

ANOVA Analysis of Variance 

 Statistical model that analyzes differences among group means  

ANCOVA Analysis of Covariance  

General linear model that analyzes differences among group means, while controlling for 

a continuous covariate 

GEE Generalized Estimating Equations 

General linear model that analyzes differences among group means, and not only controls 

for covariates but also includes subject-specific random effects. 

LME Linear Mixed Effect models  

 General linear model that allows for both fixed and random effects 

Random effects Capture subject-level variation 

Fixed effects Capture group-level variation 

EE Energy Expenditure (heat) 

VO2 Oxygen consumption (mL/kg/hr) 

VCO2 Carbon dioxide production (mL/kg/hr) 

RER Respiratory exchange ratio (VCO2/VO2) 

A value between 0.7 and 1.0 that indicates the predominant fuel source utilized 

LBM Lean body mass (grams) 

FM Fat mass (grams) 

BW Body weight (grams) 

ID Mouse identification number  

Unique individual mouse identifiers, commonly determined by ear notches via ear 

punching, but may also be determined via ear tags, tattoos, or microchip implants  

TX Treatment  

 Treatment may refer to a genetic or dietary intervention, or compound administration 

CLT Central limit theorem 

Given repeated samples of size n from a population, the distribution of the sample means 

will approach a Normal distribution as the sample size n increases.  

p-value Probability value  

The probability that the statistical summary (i.e., such as the difference in sample means) 

is greater than or equal to the actual observed value, given the null hypothesis (H0) is 

true. 

Randomization A mechanism that allocates intervention assignment according to a known 

 distribution. A coin toss for example, can be used to allocate individuals to the 

 intervention with probability of 0.5 for a fair coin. 

Null hypothesis (H0) A general statement that there is no relationship or difference of statistical 

significance among groups.   

Test statistic A statistical summary which measures the degree of agreement between the 

 observed data and the null hypothesis. 
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Figure 1. Flow chart of the relevant R syntax based on experimental characteristics. 
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Figure 2. Experimental design demonstrating group-level versus subject-level variation, and 

data structures demonstrating repeated measures (represented as subscripts 1-3) versus 

summarized EE data. 
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Chapter 5. Conclusions  

 

The objective of this dissertation is to examine the effects of arsenic on T2D development 

using a multi-disciplinary approach that relies on both human epidemiologic data and mammalian 

experimental models. Arsenic has been classified as an endocrine disruptor due to its inhibitory 

effects on hormone receptors, glucose-stimulated insulin secretion, glucose homeostasis, and 

adipogenesis (Gore et al. 2015; Hou et al; 2012). Both epidemiologic and experimental research 

studies have reported an increased risk of T2D with chronic exposure to inorganic arsenic, with 

increasing interest in the interaction of arsenic and obesity on T2D susceptibility (Huang et al. 

2018; Castriota et al. 2018).  

Chapter 1 is a comprehensive state-of-the-science review of experimental research 

conducted specifically on arsenite exposure and its effects on glucose homeostasis. Findings 

from both in vitro and in vivo studies highlight arsenic’s widespread toxicity in multiple 

metabolic pathways, including insulin-stimulated glucose uptake, glucose-stimulated insulin 

secretion, hepatic glucose metabolism, and both adipose and pancreatic -cell dysfunction. 

Chapter 1 however, also highlights the discrepancies in the dose, duration, and route of 

administration in the published literature, which can yield varying results. Our ability to fully 

capture these differences and understand their effects on physiology and susceptibility to T2D, 

has the potential to inform future medical treatment and current public health interventions for 

susceptible individuals.  

The cross-sectional analysis in Chapter 2 is the first human epidemiologic investigation of 

a synergistic relationship between arsenic and obesity for the development of T2D. Given the 

current obesity epidemic and the widespread occurrence of arsenic exposure worldwide, this 

synergistic relationship could have significant public health implications. A unique aspect of the 

epidemiology study in northern Chile is the ability to assess the effects of past arsenic exposure 

on T2D risk, relying on comprehensive exposure estimates and detailed demographic information.  

Because these analyses are novel, future research in arsenic exposed areas similar to northern 

Chile, with a wide range of arsenic exposure and adequate information on potential confounding 

variables, should seek to replicate these findings. The interdisciplinary nature of my research 

builds upon epidemiologic findings with the use of in vivo models. Markers of tissue alterations 

and gene expression profiles in target organs of arsenic toxicity are viewed as necessary in linking 

findings from human studies, which report exposure-disease associations. This is crucial to 

identifying the causal pathways of arsenic-induced diseases, which rely on cell-specific responses 

(States et al. 2011).  

The state-of-the-science review of experimental research in Chapter 1 and epidemiologic 

analyses in Chapter 2 are complemented by explorations in mammalian models in Chapter 3. 

Chapter 3 relies on in vivo experiments, as no alternative model incorporates all elements of 

mammalian metabolism. One of the principal advantages of the mouse is the ability to assess 

arsenic’s systemic effects on whole body composition and thermogenesis. Chapter 3 relies on the 

extensive use of animal monitoring equipment and next-generation sequencing technology. The 

use of metabolic chambers, rectal thermometry, DEXA and EchoMRI, are all gold standards in 

the assessment of energy expenditure and whole body composition. Moreover, the use of both 

RNA sequencing and western blot provide a greater understanding of the role that arsenic has on 

gene regulation in pathways involved in adipogenesis, thermogenesis, and fatty acid oxidation.  

This is the first study to examine the effect of inorganic arsenic on adaptive thermogenesis and 

recruitable beige adipocytes. Future studies should confirm our findings in different mouse 
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strains and both murine- and human-derived cell lines.  

The scientific advances of the past decades in the field of metabolic biology have clearly 

demonstrated the importance of thermogenic adipose tissues, and their role in energy 

expenditure, glucose homeostasis, and insulin resistance (Kajimura 2017; Kiefer 2017). As a 

consequence, energy expenditure instrumentation is now widely utilized across academic, 

government, and industry research settings. Our understanding of how environmental exposures 

drive energy expenditure can have significant implications for public health interventions for 

highly prevalent metabolic diseases. Energy expenditure data is however, limited by the current 

use of statistical approaches that ignore the correlated structure of dependent observations, which 

can lead to biased inference. Chapter 4 educates biologists in longitudinal data statistical 

techniques that take advantage of the repeated measures study designs implicit in indirect 

calorimetry. Since animal studies are limited by their small sample sizes, the implementation of 

longitudinal mixed models and randomization-based approaches should be applied to yield more 

valid inference.  

This dissertation integrates advanced knowledge in the fields of toxicology, 

epidemiology, and metabolic biology. The advancement of environmental health research 

requires interdisciplinary training in both experimental study design and statistical approaches 

that allow for the quantification of bias. Since randomized control trials are inherently unethical 

in our field, novel findings must integrate these methods in order to pinpoint the exact 

mechanisms of action of ubiquitous environmental pollutants. In 2012, an expert panel 

assembled by the National Toxicology Program (NTP) reviewed the association between arsenic 

and T2D based on available epidemiologic and experimental studies (Maull et al. 2012). The 

committee encouraged researchers to address current gaps in the literature by assessing the effect 

of adiposity on arsenic and T2D risk, particularly within brown and beige adipocytes (Maull et 

al. 2012). My dissertation aims to address this knowledge gap via the use of both human data and 

experimental research. These findings lend mechanistic support to epidemiologic studies that 

consistently report the role of arsenic in the etiology of T2D in communities worldwide. 
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