
UC Irvine
ICS Technical Reports

Title
Behavior description and safety in real time models

Permalink
https://escholarship.org/uc/item/1fn2w020

Author
Greenberg, Reuven

Publication Date
1991-03-03

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1fn2w020
https://escholarship.org
http://www.cdlib.org/

Behavior Description and Safety
---- ~

in Real Time Models

Reuven _2reenber~

Technical Report #91-21

March 3, 1991

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

/lo. 91-

Abstract

This paper includes a survey on sorne modern methods that are
used for describing and analyzing behavior of complex systems. It
is believed that most safety problems arise in the interface between
the controlling parts and other controlled subsystems. Therefore, a
prerequisite for a good interface is an accurate definition of the system.
Two objectives are evaluated: the description power and the analysis
power for safety and timing properties. This is done by describing and
analyzing a simple system that is composed of two doors, which are
restricted by time and "safety" requirements. It is found that although
good descriptiiJn methods do exist, their usefulness for analyzing safety
timed properties is very limited.

·f:\.'.
' ; ~ ' .

11

Contents

1 Introduction

2 Methods Presentation
2.1 State Based Methods

2.1.l STATECHARTS
2.1.2 RTL and MODECHARTS
2.1.3 ESM/RTTL ...
2.1.4 Timed Petri-nets

2.2 Process Based Methods .
2.2.1 CIRCAL
2.2.2 Time Acceptance Model

3 Other methods
3.1 Interval Calculus
3.2 ces
3.3 CSP .

4 Summary

List of Figures

1

2
4
5

10
18
30
39
39
48

54
54
57
60

63

1 The clean room example. 4
2 The behavior of the clean room problem in Statecharts. 6
3 Abstraction features of Statecharts. 8
4 Schematic definitions of state predica tes. 11
5 Representation of the clean room problem in Modecharts. . 13
6 An expanded representation of the clean room problem. . 14
7 ESM DOORi- 23
8 A partial reachability graph. 27
9 Execution of Petri-nets 32
10 Representation of the clean room behavior in Petri-nets. 33
11 Backward reachability graph for OS1 , OS2 marking . . 36
12 The "fixed" representation of the clean room problem. 38
13 Clean room problem represented in CIRCAL. 40
14 Composition of agents in CCS. 58

111

List of Tables

1 Transitions in the clean room example 24

IV

1 Introduction

As the use of cornputers in controlling systems increased, new methods for
system behavior description were introduced. The common denominator for
those methods is their attempt to describe and reason about concurrent pro
cesses. This is different from early requirement models by both the objectives
of the methods and their applicable areas. Not only do these methods specify
the intended behavior of the system (i.e., what is needed), but they enable
analysis of important properties as well, e.g., safety analysis.

The other difference, applicable areas, originated from the need to model
concurrent processes and time restrictions that are almost inherent proper
ties of reactive systems. Early methods were used for modeling environments
that are computer centralized, operating systems in particular. In these envi
ronments the peripheral equipment serves the needs of the computer and not
the converse. Reactive systems are entirely different; the computer services
the other components (which may also be reactive in this sense). Moreover,
the behavior of the environment in computer centralized systems is more or
less predictable, whereas less is known about the environment in which a
reactive system is installed. Here the environment is usually modeled and
the knowledge is almost always incomplete.

There are two important outcomes of this distinction. First, the de
velopment methodology is reversed. In computer centralized systems the
computer is the starting point and the requirements of the environment are
derived from it. The environment has to fit the computer characteristics.
The "design stream" is directed from the center to the periphery. In reactive
systems the methodology is entirely different. The starting point is the en
vironrnent out of which the system properties are derived and only then the
computer is defined. The "design stream" is now directed from the periphery
to the center. No longer does the computer defin~ the environment, rather
the environment defines the computer.

Another important outcome of this distinction is the way time and events
are dealt with. In computer centralized systems the number of events is small
and the arder in which they are handled is determined by the computer.
Therefore, the concept of "real time" is limited to the arder of events and
not to their exact physical time of occurrence. Obviously this is not the case
in reactive systems. Such systems are required to operate in an uncontrolled
environment, in which the number of events is usually very large and may

1

occur in any order as well as simultaneously. The computer is supposed to
respond to any type of event arder by initiating activities that will comply
with the environment.

Moreover, reactive systems are frequently safety critical as well. The
system response to certain events must be correct and on time. Thus, per
formance considerations become not only a matter of convenience, (i.e., will
the user receive a respond within one, two or three minutes), but the correct
operation is dependent on the time. "Correct" results that arrive too late
(or early) are often useless. Furthermore, a "correct" response but not on
time may lead to hazardous situations and damage justas "incorrect" results
could. A scram instruction for a nuclear reactor that is issued after core melt
clown has begun will bring the same consequences as if was not issued at all,
and an early detonation of a bomb may destroy the aircraft from which it is
released.

Many methods are considered to be "real-time" and indeed they were
applied for real time systems. But in many cases this use was not concurrent
or did not incorporate time properties. This survey is restricted to methods
that provide for both time definitions and concurrent description.

In the next section general properties of description methods are pre
sented and a simple "reactive system", the clean room, is portrayed. The
remainer of the second section contains a detailed description of six meth
ods, Statecharts [Harel86, HLN88], Modecharts [JM89, Mok85], ESM/RTTL
[OW87, Ostroff88, Ostroff89], Timed Petri-nets [Merlin74, Peterson81], QIR
CAL [Milne85, Milne82] and TAM [Zwarico88, LZ88]. The third section is
composed of other three methods, Interval Logic [Ladkin86.1, Ladkin86.2,
Ladkin87], CCS [Milner~O, Milner89] and CSP [Hoare78, Hoare85] which are
described in less detail. The fourth and last section is a summary.

2 Methods Presentation

Behavior description methods may be partitioned into two types: state based
and process based. State based methods describe the behavior in terms of
states and transitions. Usually they incorporate a pictorial representation
of finite state automata aided by operators for parallel execution, time re
strictions and features for avoiding a combinatorial explosion of states. The
analysis is either based on a formal theory that includes basic axioms and

2

inference rules, or on reachability graphs. Usually, the analysis is not tai
lored to a particular description, and it is possible to apply one analysis to a
system described in a different method.

Process based methods are usually algebraic. The process is described as
a sequence of events that "drives" the system. The analysis is usually done
on the possible traces of the events in which the process can be engaged or
by proving equivalence of the process and sorne "safe process". Here the
analysis methods are a "built-in" part of the description, and usually it is
not possible to apply an analysis method for a process that is described in a
different description method.

In choosing the following methods we tried to reflect the present status
in the area of specifications for reactive systems. As was mentioned we tried
to include the three main approaches to the problem, algebraic, logical and
semi-dynamic. Certainly there are other methods that are not included. We
did not include here the most well-known algebraic methods CCS and CSP.
However, we included two methods that are based on them. We start the
presentation with four state-based methods and conclude with two that are
process-based.

The usefulness of the methods is evaluated by describing and analyzing a
simple "reactive system", called the clean room system, which is presented in
figure l. Although this is a simple system, it includes many time properties
that can be found in more sophisticated systems. The fact that one system is
analyzed by all the methods provides the reader with a convenient medium
for comparison, so the evaluation can be done independently of the authors.
In fact, the reader is encouraged to do so and challenge the conclusíons of
thís paper. It is hoped that this paper provides enough tools for doing that
independent evaluation, though sorne more details can be found in the cited
referen ces.

We divide the presentation of each method ínto three parts. The first
part contains a general discussion and the second part brings the clean room
example. In the third part the method is evaluated. In the evaluation we are
going to stress the disadvantages of the method although we also assess its
advantages. It is not that we think that disadvantages of a method are more
important than its advantages, but we believe that the disadvantages of a
method are going to determine whether it is used. Besides, the advantages
can be found very easily in reading the original papers that describe each
method. It is also true that as safety engineers we are used to thinking in a

3

The Clean Room Requirements

A clean room is a room that has to be kept dust free. In order to
achieve it the air pressure in the room has to be kept above that of
the environment. It is required to plan a control mechanism for a clean
room containing two doors. Since the air-pressure mechanism can not
keep the high pressure when the two doors are opened simultaneously,
it is required that at most one <loor should be allowed to open at any
time. Opening or closing a <loor should be done by a button. Also,
each <loor should be closed after two minutes unless the open button
is touched again. Furthermore, given the conditions for allowing an
opening or closing a <loor exist, the door has to complete its movement
within 5 seconds after the respective button has been touched. If the
conditions do not exist the user should be notified to wait within 2
seconds.

Figure 1: The clean room example.

negative way.

2.1 State Based Methods

In this section four state based methods for behavior representation are evalu
ated: Statecharts [Harel86, HLN88], Modecharts [JM89, Mok85], ESM/RTTL
[OW87, Ostroff88, Ostroff89] and Timed Petri-nets [Merlin74, Peterson81] .
These methods represent a variety of approaches to the problem. Statecharts
and Modecharts are similar in their concept but the second contains a logic
part for proving time properties, whereas the first lacks any proof ability.
ESM/RTTL defines a mathematical theory that is based on temporal logic
as its proof scheme. Petri-nets is more suitable for the design stage and can
be analyzed in a semi-dynamic way by reachability graphs.

4

2.1.1 STATECHARTS

General: Statecharts were first introduced by D. Harel from the Weiz
mann Institute in Israel [Harel86]. It is an attempt to supply a pictorial
description for concurrent processes in reactive systems. The control of such
systems is infiuenced by states, events and conditions. Events trigger tran
sitions or start activities if given conditions (that guard the trahsition from
occurring inadvertently) are satisfied. For example, u pon sensing power in
crease (event) in automatic control mode (condition) the control rods should
be lowered (activity) to the nearest safe point. As will be seen, Statecharts
follows such representations.

Statecharts were developed for representing behavior in a visual manner.
Previous attempts to represent the behavior of reactive systems were unable
to overcome the "exponential explosion" of states and control lines in simple
fiat diagrams. It is well known that this problem must be handled by us
ing abstraction structures, modularity and hierarchy. Such representations
reduce the number of states and communication lines considered at any time.

Statecharts uses a Finite State Machine (FSM) formalism in which transi
tions are taken if specified events occur under certain conditions. Information
about conditions is "transmitted and received" in a broadcast mechanism.
Thus, no communication lines are specified. It is assumed that every FSM
has access to ali data items and thus "knows" the exact situation of the whole
system. The exponential explosion is avoided by using abstraction techniques
in which severa! states which are in the same level of abstraction and have
common characteristics, are encapsulated into a Superstate. Statecharts uses
the word "event" to represent time markers that consume no time. An "Ac
tivity", on the other hand, consumes time and therefore, can be captured as
a state. Moreover, an activity is bounded by two events, one for the starting
point and the other for its ending point. In general, transitions are repre
sented by arrows which are labeled by name(condition)/event. A transition
is taken when event name occurs if condition exists, thereby activating an
other event. Each of the conditions or events or both may be missing. The
clean room example will clarify these concepts.

The Clean Room Example: Figure 2 describes preliminary requirements
for the clean room problem. States are represented by "rectangles with
rounded corners". The states of each <loor are encapsulated in superstates.

5

SYSTEM

DOORa

Ca opo(C1) Oa
1--~~~--'-~---~~-

o p f no

cclo/opfn1

DOOR1

cclif opfno 01
--~~~~~~~~-·

opfn1

Figure 2: The behavior of the clean room problem in Statecharts.

The dashed line between the two subsystems represents two superstates that
co-exist simultaneously, i.e., parallel or orthogonal processes. The small ar
rows that are attached to the close states (Ca and C1) represent the default
state, i.e.; the doors are closed. A door is considered "closed" only if it
is completely closed. This means that a moving movement door, either to
open or to close is considered open. Since a <loor can open either when an
open button is pressed (if the other door is close), or after waiting for the
other door to close, two open events exist. These events are represented in
the figure by op ("open" button touched), or opfn ("open from noti:fication"
state). The third event ce! ("complete closing" activity) means that only
when the door is completely closed, it is enters state C. Although two events
can cause a door to close, pressing the close button or two minutes timeout,
only one event represents the fact that a <loor is closed again. As can be seen
a door changes states from C to O only if the other door is closed. This is ex
pressed in the notations op0(C1) and op1(Ca). The figure further shows that

6

events opfn0 and opf n1 are activated by ccl1 and celo, respectively, which
guarantees that the other <loor is closed.

It is obvious that many details are not addressed in this representation.
For example, a notification state, the opening and closing activities, etc.
These details are abstracted out of this figure and will be seen in the next level
which is represented in figure 3. Since the states of both doors are equivalent
only superstate DOOilo will be shown. As can be seen state C0 contains three
sub-states, FC0 ("Fully Closed"), TNA0 ("To Notification Activity") and
NOT0 ("NOTification" state). The transition from FC0 to NOT0 occurs as
a result of event op0 if DOOR1 is in state 0 1 . State T N A0 is an intermediate
state that represents the activity before the user is notified. It ends when
state NOT0 is entered by event ent0 ("end 'to notification' activity"). Notice
that state T N A0 may exist for 2 seconds at most. The superstate 0 0 includes
three states, OA0 ("Opening Activity"), F00 ("Fully Opened") and CA0

("Closing Activity"). As is obvious state OA0 that represents the movement
of DOOR0 , is entered first when superstate 0 0 is entered. State OA0 is exited
and state F00 is entered when event cop0 ("completely open") occurs, i.e.,
the door is completely open. The closing activity in DOOilo (state CA0)

starts either by event cl0 if the close button was pressed, or by event 2mn
if two minutes elapsed with no op0 event. Every occurrence of event op0 at
this stage will cause the two minutes tirner to restart counting. The closing
activity ends by event celo which (as mentioned earlier) activates an opening
activity in DOOR1 by event opfn1 , if DOOR1 is in state NOT11 .

There are still requirements that are missing in figure 3. First, the five
seconds restriction for the opening or closing process and second, the two
seconds restriction for notifying a user that the other door is open. They
can be represented by a timeout rnechanism or timeout events. The idea
is as follows: Suppose an exception handling state is defined for each time
restriction (in this case three states). Such a state is entered if ~n event did
not occur within its time restriction.

The idea of timeout can be further expended by incorporating exception
handling states for unexpected events. Such events can occur even in a simple
system as the clean room. For example, a button is out of order and is sensed

1This explanation hides sorne serious semantics issues. It is not clear when exactly
<loes event opfn1 occur relative to event cc/0 . Such fine problems may rise in real projects
and should be carefully considered. More about these problems and generally about
Statecharts semantics can be found in [HGdR88, HRdR88].

7

DOOilo

Ca

NOTo

DOOR

et no
TNA0 FCa

FOo clo CAo
cop0

2mn

Figure 3: Abstraction features of Statecharts.

as always pressed, ora door does not close after waiting two minutes in open
state and no button was pressed. Such events are usually not specified, but
should be regarded in a safety critica! systern [JLHM91, Leveson86]. We do
not include thern in this paper in order to avoid confusion.

Statecharts has many other features for representing common require
ments for reactive systerns. History conn~ctive ® to indicate that upon
entering to the superstate the assigned state is chosen: In case that the his
tory connective is applied recursively until the most inner state is reached,

the sign is changed to ~. Conditions are represented by @ and selec
tions, that allow transitions based on selected event, by @ . States that
include periodical moves (for example, check temperature every 2 seconds)
are represented by having jagged edge on the state rectangle and indicating
the period time. Other time constraints are inserted as part of conditions.
Recover procedures can also be handled in Statecharts by a "recover" state

8

(or states) which is entered if unexpected events occur or malfunctioning is
detected.

Evaluation: Statecharts is an evolving and promising method for repre
senting system behavior. The variety of features that are included in it
enables a good decomposition of complex systems. The fact that the sys
tem incorporates a visual facility makes the method easy to read and under
stand. Abstraction and hierarchy structuring avoid the exponential explosion
of other diagrammatic methods.

The state/superstate visual relation and the parallel or orthogonal FSMs
are the essence of Statecharts. Both make Statecharts intuitively understand
able. The introduction of orthogonal states reduces the number of states and
transitions drastically, thereby enabling a nice and appealing representation
of complex systems. Even a simple example such as the clean room may end
up with more than thirty states and transitions instead of figure 3. Another
advantage of Statecharts is the ability to adapt it for many purposes. The
method is very flexible and a user may decide what features to use or not.

The broadcast mechanism for information acquisition and access con
tribute to the representation simplicity but may become very confusing for
analyzing. The problem arises when complex systems are described. Such
projects usually deal with complex transitions in which the enabling condi
tions are very complex and dep.endent on many parameters. In these cases it
becomes very difficult to track the origin of each parameter. It may become
even more confusing when similar situations may exist in many different
states. This is very similar to the problem that programmers encountered
when complex programs were written in languages that did not have any
scoping restrictions.

Another disadvantage of Statecharts is the lack of time representation.
Time constraints are not represented in a natural and visual manner, rather
they may be incorporated as conditions that do not allow tolerance assign
ments to subsystems and may add to the difficulty of the analysis. This
can clearly be seen from the clean room example. No time restriction of the
problem is represented. As was mentioned the only time restrictions that are
included in Statecharts are periodical moves.

Statecharts were used successfuHy in many projects of various types and
and scale. The Israelí Aircraft Industries used it manually for the develop-

9

ment of the Lavi fighter. This project indicated the possibilities for using
the method for complicated systems. In an experiment that was conducted
in Microelectronics and Computer Technology Corporation (MCC) experi
enced software engineers were asked to learn Statecharts capabilities and use
it for specifying an elevator system. The results showed great advantage of
the method for the hierarchical decornposition of the system structure. It
also indicated that sorne of the notations were difficult to understand. Re
cently the method was incorporated in a development environment called
STATEMATE by i-Logix Inc. [HLN88]. Other developers used Statecharts
for communication protocols [ZJ89], VLSI [VN G90], aircraft collision avoid
ance system [LHHR091], etc. Each of these developers tailored the method
to his specific needs.

2.1.2 RTL and MODECHARTS

General: Modecharts was introduced by F. Jahanian and A. L. Mok [JM89]
as an implementation language for reasoning about time constraints in real
time systems. The language is based on the semantics of a timed first order
calculus called RTL (Real-Time Logic) which was invented by the same au
thors [JM86]. The main reason for introducing modecharts was to enhance
RTL with visual tools and to add hierarchical decomposition for large sys
tems. The purpose of both RTL and Modecharts is to apply accurate rea
soning to time constraints in real-time systems. The analysis is conducted
by showing that safety assertions are not violated by the requirements, i.e.,
the negation of safety assertions and system specifications are inconsistent.
The term mode, its use and representation, is very similar to the term state
in Statecharts. There is a slight difference between these two terms. Mode
refers to sorne way of operation, whereas state describes a situation of the
system. A nuclear reactor may be in a maintenance mode in which the state
of each subsystem is equal to the state in real operation.

RTL formalism is based on four concepts and several notations that are
applied to thém. The basic concepts are:

ACTIONS: are defined as units of work that can be done either in par
allel or in series, and are abbreviated as "XllY" or "X; Y", respec
tively. Synchronization points are aenoted by "!N", that is, "X!N"
and "!NY" denotes that time point N represents the end of action X

10

S[x, y]

S[x,y)=::

S[x, y>==

S(x,y)

S(x, y]

S(x, y>==

s < x, y>==

S < x,y]

S<x,y)

key:

- - - - -

- - - - -

r------
1

- - _J

r------
1

- - _J

r------
1

- - _J

r - - - -
1

- - _J

r----
1

- - _J

r----
1

- - _J

true

false

1----------

---------,
1

L----

------,
1

L------

---------,
1

L - - - - - - -

'-------------·

------,
1

L----

------,
1

L----

!--------------

------,
1

L-------·

X y

Figure 4: Schematic definitions of state predicates. x and y are events,
dashed and salid lines mean respectively "unknown" and "known" time of
occurrence.

11

/

and the beginning of action Y. The notations "i A" and "l A" de
note rnarkers (i.e., events, see below) for start and end of action A,
respectively.

STATE PREDICATE: is an assertion about the physical state of the sys
tem. It is a boolean variable that is assigned values according to the
physical system state. RTL supplies nine different forrns for represent
ing time assertions of a state predica te S, over a time interval T. Figure
4 defines them schematically.

EVENT: is a temporal marker that points of an occurrence which is signif
icant for the system behavior.

TIMING CONSTRAINT: is an assertion about the absolute timing of
certain events. RTL distinguishes between four different events: (a)
Externa! (denoted as "O"), (b) Start (i.e., action, etc. and is denoted
as i), (e) Stop (i.e., action, etc. and is denoted as l) and (d) Transition
(from mode to mode).

RTL uses an occurrence function, @, for capturing the event in the time
domain. @(e, i) represents the time of the ith occurrence of the event e.
Note that it is possible'to define all nine state predicates with the occurrence
function making use of the start and end action notations.

The visual representation of Modecharts is very similar to statecharts.
In facL the hierarchical structure in both methods is identical, i.e., modes
that correspond to a lower hierarchy level are encapsulated in supermodes.
Unlike Statecharts, Modecharts does not use special signs for representing
history, selection or default modes. Those can certainly be applied, but since
the only purpose of the method is to derive time constraints it does not need
thern. Other differences betw.een the two methods concern the semantics
that govern the procedures. Like Statecharts the concept activity is reserved
for actions that take non-zero time. Unlike Statecharts, Modecharts asso
ciates each mode to one action at most2 • In the clean room example that is

2The exact definitions of the concepts action and activity in both methods is different.
Statecharts reserves the word activity for representing sorne work that consumes time and
uses the word action to describe an event that starts or finishes the activity. Modecharts
<loes not make any restrictions for the exact use, i.e., action is used for activity and vise
versa. As was rnentioned, Modecharts associates events for starting and finishing actions
and for rnode transitions. ·

12

SYSTEM

D0014;

Co

DOOR1

1 C1 l

D.op /\e o , 1

opf no/\ C1 ºº
D.ccl0

flop1 /\Ca

j opfn1 /\Ca 01

D.ccl1

Figure 5: Representation of the clean room problem in Modecharts.

presented below, the exact moment of the mode transition from "close" to
"open" (or vice versa) is decided according to sorne variable that tells the
control system that the door is open or closed. The exact reasoning of the
time constraints and other time implications is done by the RTL formalism.
Both RTL and Modecharts have a syntactically and semantically accurate
description [JM86, JM89], out of which only parts are to be presented here
after using the clean room example.

The Clean Room Example: The description of the clean room problem
in Modecharts language is represented in figure .S. The similarity to State
charts representation is obvious and there is no need to explain each notation.
It is worth while to stress sorne differences. First the symbol n precedes the
op and ccl events, to indicate that they are externa! ones (respectively, as in
Statecharts, touching the "open" button and complete closing). Note that
event ccl is considered external since it causes sorne variable in the controller
to change its value. Second, Modecharts does not use brackets to denote

13

SYSTEM

DOORo

Ca

NOTo T NOTo TN00 _2,opo /\ 01 FCo

i ~

'ppj no /\ C1 Dopo/\ C1 ílcclo

001 7_
OAo FO o

2mno - CAo l OAo
ílclo -

J
Dopo

Figure 6: An expanded representation of the clean room problem.

conditions, it simply uses the /\ to express that the transition from mode C0

to mode 0 0 (respectively, from mode C1 to mode 0 1) will take place only
if C1 (respectively, C0) exists at that moment. This difference has a deeper
meaning. An event can be regarded as a condition and a transition must
take place immediately as all conditions for its occurrence become true. In
this case there are actually three conditions for the transition; DOORo is in
mode C0 , Dop0 occurs and DOOR1 is in mode C1 (respectively for the other
<loor).

It is obvious from figure 5 that parts of the problem were "abstracted
out" and it is necessary to expand it in order to include time details. This is
done in figure 6. Each "supermode" (i.e., C0 , 0 0 , C1 and Oi)3 was expanded
to include temporary modes. When the external event "ílop0 " is sensed and

3 The following description will be focused on door O, but a similar description can
obviously be made for door 1.

14

<loor 1 is closed (mode "C1 " is in effect) mode "OA0", (Open Actívity) is
entered and remains in effect until the event "l OA0 " (i.e., end of Open
Activíty) causes the system to enter mode F00 (i.e., Fully Open). At this
mode three events may take place; (a) the open button is pressed again
(í2op0) causing the 2 minutes timer to restart, (b) the close button is pressed
(nclo) causing the door to start closing and (e) start the closing process after
two minutes 2mn0 • The mode C A0 (i.e., Close Activity) is entered if one or
both the last events occur. This mode is in effect until the closing activity is
completed (Dccl0) and and DOO!io is again in its initial configuration. The
path that starts when an open button is pressed while the other door is open
is similar to the one in Statecharts. Notice that also here we used the special
Modecharts notation, j NOTo, to show the start point of state NOT0 .

There are two points that are worthwhile to stress: First, the purpose of
modes OA and CA is to stress the point that opening or closing a door is
an activity and therefore, need to exist in a mode. And second, event opf n0

that deriotes the start point of the opening activity is caused by cc/1 the end
of the closing activity of the other door.

It is easy to see that Modecharts do not include any time consideration,
they are merely a detailed representation of the modes. Time consideration
and time analysis are conducted by RTL tools. Since RTL regards timing
explicitly it is convenient to use a unified scale. We hereafter use seconds as
that scale, i.e., 2 minutes=120. The first step is to represent the fact that
the actual action of opening door-1 is less than 5 seconds.

Vt,i(FC0(t,t) A C1 [t,t) A t=@(Dop0 ,i))-t

::Jj @(l OAo,j) ::; t + 5 (1)

Vt, i (NOTa(t, t) /\ t = @(opfn0 , i)) -t 3j @(l OAo,j)::; t + 5 (2)
Vt, i @(opfn0 , i) = t -t 3t', j @(ccl1,j) = t' /\ t = t' + E (3)

Equations 1 and 2 express the fact that the opening activity (OA0) may start
either by pressing the open button (if C1 = true) or by event opfno. The
third equation (eq. 3) adds that opfn0 must be initiated by a ccl1 event. The E

preserves the causality relation and means that event opfn0 must be preceded
by ccl1 by an infinitesimal small amount of time. The time restriction of the
transition to mode NOTo after the open button was pressed can be written
as.

Vt, i (FC0(t, t] /\ 0 1 (t, t)) -t NOT0 [t', t') A t'::; t + 2 (4)

15

Here we took ful! advantage of the redundant way for expressing time con-.
straints by state predicates. FC0 (t, t] means that the system exited mode
FCa exactly on t while the other door was open (01 (t, t)), entered mode
NOT0 at a time t' which is no more than t + 2.

The closing activity is more complicated since there are two events that
may lead to it, Delo or 2mn0 and the second must have not preceded by f2op0

within the last 120 seconds. All these facts are expressed in the following
equation.

F00(t, t] --+ (::Jj t :S @(Dcclo,j) :S t + 5) /\

[(::Ji @(Delo, i) = t) V

(3k @(2mno, k) = t /\ -.::J/ t - 120 :S @(Dop0 , l) :S t)] (5)

RTL contains other features that were not represented here. Such an
important feature is its frame for expressing periodic behaviors. This feature
is very useful since many systems include periodic behaviors. For instance,
in the clean room problem one implementation possibility is by including a
periodic process for checking which button was touched. In such cases, it is
very common to find requirements for response time, thereby implying time
constraint on the period time.

RTL supplies a powerful mathematical "toolkit" for expressing time con
straints of system behavior. It enables a designer to compase the requirement
accurately and analyze them with the same technique. This is very impor
tant for real time applications especially in safety related systems. RTL
enables an analysis for consistency of the specifications with certain asser
tions. These assertions may be safety ones and therefore, it can be guar
anteed to a certain extent that planned behavior does not contradict safety
requirements. This is usually done by proving that a negation of the safety
assertion is inconsistent with the behavior definition and is known as a resolu
tion proof by refutation [LP81]. In the clean room problem a safety assertion
is: Vt (00 (t,t)/\01 (t,t)) 4 , which means that there does not exista situa
tion in which both doors ore opened. But this situation may occur only if
a door exited mode C and entered mode O while the other door is in mode
O (provided that in the initial mode both doors are closed). Mode change is
expressed in RTL as M - M' and thus our safety assertion becomes:

0 1 (t, t) /\ -,::Jj@((Co - Oo),j) = t (6)

4 We shall use the signs •x and x to denote the negation of x.

16

We again concentrate on the first <loor behavior. The negation of this asser
tion is obtained by removing the negation sign (') from both above equations.
Now, the transition C1 -01 can occur only by events opo/\C1 or opfn0 . More
over, both events can not occur simultaneously, i.e., the or between them is
actually an exclusive or (ffi). This is written as:

Vj@((Co - Oo),j) = t-+ 3!, k @(Dopo, l) = t /\ C1(t, t) EB @(opfno, k) = t (7)

Using the equivalences x -+ y = x V y and x EB y = (x /\y) V (x /\y),
equations 6 and 7 can be rewritten in clauses of a conjunctive normal form
after skolemizing.

Oa(t, t)
@((Co - Oo),j) = t
@((Co - Oo),j) = t
@((Co - Oo),j) = t V @(Dopo, I) = t V @(opfno, K) = t

@((Co - Oo),j) = t V C1(t, t) V@(opfno, K) = t
-------@((Co - Oo),J) = t V @(Dopo, I) = t V C1(t, t) V @(opfno,K) = t

where K and I are skolem constants. The details of the resolution process are
not shown here, but it is easy to see that the above equations are inconsistent,
since for each clause its negation can be found.

Evaluation The connection between the visual representation and RTL
language is "loosely coupled", and not natural. Modecharts gives no repre
sentation of the timing constraints, it merely helps in capturing the system
structure. From this aspect any other structural representation could do
as well. The attempt to combine the timing and structural representation
caused many limitations on the ability to comprehend the structural behav
ior of the system. For example, the fact that a mode can be associated with
at most one action forces partitioning of a system into parts that do not
correspond to actual modules in the system. In order to represent the fact
that mode transition can occur only after an action is completed, the mode
is partitioned into three submodes; one represents the initial state, another
represents the beginning of the action and yet another mode for representing
the state before the action is completed. This partition is not natural and

17

may cause difficulties in understanding the exact structural behavior of the
system.

Another disadvantage of Modecharts and RTL is the inability to distin
guish between deterministic and nondeterministic processes. Deterministic
processes are those whose timing constraints are known to the external en
vironment that uses them. In these cases the designer may make use of
that knowledge and implement processes that are time scheduled, whereas in
nondeterministic processes the arder of events are unknown and the designer
must insert check points in the externa! environment. These checkpoints are
time consumers and have to be considered. If, for instance, the clean room
is implemented in a way that requires two consecutive open instructions to
be separated with a time period larger than the time consumed for door
movement, the design may save a check point of door "fully closed".

The applicability of RTL is also problematic. It is clear from the above
description that its incorporation in big and complex systems is going to be
very difficult, perhaps impossible. This fact was already observed by the
authors [JM87]:

... However, they (i.e., RTL) may be impractical Jor use in ver
ifying an assertion against the ful! specification of a large and
complex real-time system (see [JM87] page 963).

One way of overcoming such difficulties is by isolating critica! sections of the
system from the rest of it and conducting RTL analysis only to these parts.
This is not unusual. There are many methods that apply such "divide and
concur" strategies in complex systems.

Modecharts and RTL serve as a front end in a graphical specification tool
called "SARTOR" (Software Automation for Real-Time OpeRation) which is
developed at the University of Texas at Austin [Mok85). SARTOR includes
a set of tools for analyzing safety specifications and rapid prototyping.

2.1.3 ESM/RTTL

General: Extended State Machine (ESM) was introduced by J. S. Ostroff
and W. M. Wonham [OW87, Ostroff88, Ostroff89] as a framework for real
time discrete processes. The idea behind the method can be understood from
its name. ESM is a finite state machine that uses a modular representation
in which a system is partitioned into a "plant" and "controller". In the first

18

step the plant is represented and the controller is then designed 5 . Both the
plant and the controller are driven by discrete events. A system may consist
of many ESMs that are interacting with each other through communication
channels. The proof system is an extension of Temporal Logic (TL)6 [MP83,
Pnueli86] called Real Time Temporal Logic (RTTL). Systems are represented
in this logic and by using inference rules, general and safety properties can
be deduced or proven.

Formally, a basic ESM is a 5-tuple that consists of sets of activity (X),
and data (Y) variables, communication channels (C), event labels (.C) and
basic actions (A). Each ESM is identified by a name, its activity variable,
which may be assigned with values that represent the ESM states. The data
variables has the usual meaning. An event is an operation, conditioned by
a guard (a boolean expression that has to be evaluated to true in order for
the transition to take place), that causes the ESM to move from source to
destination activities (ªª and ad, respectively). This can be represented as:

~ guard---. operation ~
6~--~---~6

The combination of the source activity and the guard can be referred to
as the enabling condition of the transition. The combination of the activity
variable and the ESM events is a basic action. An operation is either an as
signment of a value to a data variable (denoted as a[y1 : a1, Y2 : a2, ... Yn : an]
where a is the event label and the a's are values assigned to the correspond
ing variables, y's), send (denoted c!a where a is data or event label that is
sent via communication channel e) and receive (denoted c?a where e and
a have similar meanings as for the send event). Two or more ESMs are
interacting when all share any of their event labels. For example, a con
trolled two states switch (ON and OFF) may be represented by the 5-tuple:
({SWITCH}, 0, {e}, { on, off}, A}), where:

A = { {(SWITCH,(OFF,true,c?on,ON))},

{ (SWITCH, (ON, true, e? off, OFF))} } .

5The word "designed" wa.s chosen, since, as will be seen the method as described in the
references is more suitable for the design phase. It can be used for behavior description
with limited flexibility.

6The creators of ESM/RTTL use a notation that was introduced by Manna and Pnueli
and so do we.

19

This means that ESM SWITCH may be found in one of the activities ON or
OFF. In ESM terminology the activity variable SWITCH is of type { ON, OFF}.
The transitions between the activities are always allowed (the guard is true)
(later, we shall omit the guard -if it is always true), given that it received
a corresponding instruction via the communication channel (e? on or e? off).
The on and off are shared events labels.

The method further defines ways for parallel composition (denoted 11) of
action sets and ESMs. This definition is used for combining basic actions and
ESMs into higher level, thereby taking care of abstracting out inner details.
Thus, for example, common communication channels of basic ESMs, will not
be seen after the ESMs are composed.

Transitions between states or activities are of great importance as they
define the exact behavior of the system. Transitions may be labeled by the
event names that causes them to occur or by symbols (say r 3) when no name
is assigned. The sign n means "the next state" and is used for identifying
a transition, for example n =on. Every transition must be associated with
time restriction, i.e., the transition can occur between given lower and upper
time bounds. If the upper time bound is infinite (not limited) the event is
considered spontaneous (since it may always occur) and forced, otherwise.
Time restrictions are introduced by defining a dock ESM, that has always a
true guard, thus is always enabled to "tick". The parallel composition of the
dock ESM and the component ESM share the "tick" events. A sequence of
ESM transitions (within their time boundaries) is called "trajectory", and a
sequence of allowed (designed) transitions is called the "legal trajectories" of
the ESM.

As was mentioned, the proof scheme is based on temporal logic [MP83,
Pnueli86]. TL uses temporal operators in conjunction with first order logic
formulas that describe the system states (or activities, in ESM terminology).
There are two basic temporal operators that can be used for deriving others.
The basic operators are O (next) and U (until). If w is any state formula,
the following four operators can be derived7:

7Manna-Pnueli original temporal logic is using four ha.sic operators and many others are
derived. These operators extend the expressive power of temporal logic and can be divided
into two groups, past and future operators. The first group deals with state formulas that
existed in the past and the other with future states. These details were not included here
since they are less used.

\ 20

• Ow = trueliw which means that eventually w will be true.

• Dw = (-.(O(....,w))) which means that henceforth, w will always be true.

• w1Pw2 = (-i((-.w1)Uw2)) which means that if w2 occurs then w1 must
precede.

• w1Uw 2 = ((Dw1) V (w 1Uw2)) which means that henceforth,.w1 will be
true unless w2 will become true.

Notice that safety properties will be represented as 0 -+ Dsafe where saje is
sorne invariant property that must always exist and the symbol 0 is reserved
to indicate the initial state.

Based on the above definitions, TL applies a set of axioms and inference
rules for deducing system properties. RTTL uses the formal definition of TL
transitions (as described above), which enables all TL axioms, theorems and
inference rules to be valid in RTTL. The extension of RTTL is accomplished
by adding a set of axioms and rules that are applicable to the ESM domain.
It is out of this paper's scope to describe or even list all TL and RTTL axioms
and inference rules, those can be be found in [Pnueli86, Ostroff89], sorne of
those will be explained in the next section when the clean room example is
described.

The heuristic of the proof scheme can now be described. The first step is
to list all system transitions in a table. The table has to include the transition
name, enabling condition, transformation (or destination activity) and the
time boundaries. Proof diagrams, which are actually partial or complete
reachability graphs, are drawn. These represent legal trajectories of the
ESM. System properties are represented in RTTL so that the inference rules
in conjunction with the proof diagrams can be used for proving correctness or
incorrectness. The heuristics provide sorne basic approaches for expressions
that are frequently used. In the case of safety properties, that are of the type
Dsafe, reachability graphs are built and the following derived rule is used:

if (0 -+ 1f and { 1f }T {Vi}) then 01/i

where 1f is any property and T is the set of all transitions. Intuitively this
rule means that if a property is implied from the initial state and exists under
all system transitions then it always exist (i.e., nothing can be c;hanged within

21

a state!). The problem of such proof heuristics is quite obvious. Usually, for
big systems, reachability graphs are very complicated and difficult to build.

In an attempt to overcome this problem, the method supplies sorne ef
ficient algorithms for constructing reachability graphs. The method even
"pushes" towards an application of constraint logic programming languages
such as Prolog or CLP(~). Two algorithms are recommended: one for tran
sitions whose lower time limit is always zero and another algorithm that <loes
not contain this constraint. Even with these methods the reachability graph
is hard to handle.

Another technique that is useful for safety properties can be used. This
technique is based on a backward approach. In the backward approach unsafe
states are identified and traced backward to find critica! points, where choice
between unsafe and safe paths is made. Regardless to the problem whether
the unsafe choice can actually take place, an "interlock" that prevent it from
being chosen is installed. This approach is the same as the one used in [1887)
in Petri-nets.

The Clean Room Example: The first step is to build the "plant" of two
doors ESM. In [Ostroff89) it is further recommended to write "control code"
and "translate" it into ESM form using sorne heuristic method (in [Ostroff89)
Conic language [KMS84] is used). Such approach looks more like a design
and not as a behavior description. As will be discussed in the evaluation
this attitude limits the fiexibility of the behavior description. We, therefore,
proceed in a different way that is more behavior descriptive. This can be
seen in figure 7 where DOORi ESM (i = i mod 2) is represented. In this
representation the two doors are connected via mi channel which is used for
transferring inforrnation about the state of the ith door. In order to simplify
the figure the transmitting source was ornitted. In the complete description
transitions that are initiated by m¡ !DOO Ri (m¡ is the cornrnunication chan
nel and DOO R¡ represents the state of the corresponding door) should be
added to all states. The figure shows only the "receive" part of these events
(mi+1?y).

In the initial state (0) each door is closed and no button is pressed
(state CLOSEf). When an open button is pressed ·(event open_buti) the
ESM enters state GLOSE! where it waits for input inforrnation about the
other door's state (event mi+l ?y). When this happens, the door enters state

22

C LOSEf __ op_e_n __ b_u_t_; _...,.. C LOSE¡1 __ m_;+_1_?_Y ___ C LOSEf

y= CLOSEf+i __.open; y# CLOSE~+t -+ notify¡
et;[count¡ : O]

t _ 121 O count, $ 120-+ mc,[count, · count, + 1]

OPEN/ OPEN,º NOT:° ~o
~

y# CLOSE~+i -+ notify,(} 7
•+1 ·y

y= CLOSE~+t _,open¡
open_but¡

et; [count; : O] N OT/

~c_lo_s_e __ b_u_t;_ O p EN/

Figure 7: ESM DOO R.¡.

C LOS Ef, where the content of variable y is checked. This variable holds the
current state of the other <loor and is used to guard the transition. If the other
door is closed y = e LOS EP+1 the door opens (event open; that causes the
ESM to enter state OPEN;°). If the other door is not closed, y i= CLOSE;+1,
the user is notified (event notify; to states NOT¡). While notifying, the door
keeps track on the other's <loor state. This is done in a loop that is formed
between states NOT;° and NOT/. The receive event, m;+1 ?y, triggers the
"forward" transition and the guarded event notify; triggers the reverse tran
sition. Notice that states CLOSEf and NOT/ are similar, i.e., both are
entered and exited with the same transition.

The open state is a combination of three sub-states. Event inc; represents
the 120 seconds delay after which the door has to be closed automatically. As
can be seen this is an assignment event [count; : count¡ + 1 J that is guarded
by the condition count¡ ~ 120. Obviously, this transition has to be initiated
every second8 . Event open_but; represents an open button that is pressed
while the door is open. This has to reset the counter and is represented by the

8This transition may be represented in many other similar ways. For e~ample, count¡ i=
60-+ inc;[count; : count; + l] every two seconds is equa!Iy corrector many others, as long
as the event count¡ = 121 -+ O is changed accordingly.

23

Table 1: Transitions in the clean room example

Lower ~pper J
Transition La bel Enabling condition Transformation time time

TJ" 1
open_but; DOOR; =GLOSE'[DOOR;: GLOSE[J ¡rr uº

rl mi+1com DOOR; =GLOSE{ DOOR;: GLOSE""'{] ¡r uT

r(notify¡ DOOR; = GLOSE7/\ DOOR;: NOT¡"TI}" P" u7

y-::/ GLOSEf+ 1

if m;+lcom DOOR; = NOT¡11 [DOOR;: NOT¡T] F" u~

r:r • notify; DOO R;. = N 01'¡1 /\ [DOOR;: NOT¡11] rr u4

y-::/ GLOSEf±1
~ • open¡ DOOR; = NOT{/\ TDOOR; : OP ENTI T5" u"

y= GLOSE?.±_1

rI open¡ DOOR; = GLOSE7/\ [DOOR;: OPEN"""f] /f' u6

y= GLOSEI'±_1

r7
1

inc¡ DOOR;. =OPEN-Y/\ [DOOR; : OP EN"""f, rr u7

count; ::::; 120 count¡ : count¡ + 1]

rl open_but; DOOR; = OPEN([DOOR; : OPEN{] 18" u8

r[set¡ DOOR; =OPEN([DOOR; : OPEN{, ¡g- u9

count; : O]
r[íT close_but¡ DOOR;. =OPEN'[[DOOR; : OP EN?J ¡rrr ulU

7'.,11 • DOOR;. = OPEN[i/\ [DOOR; : OP EN?J ¡rr u"""Ií

count¡ = 121
7.12

1
close_but; DOOR; =OPEN([DOOR; : OPEN{] ¡rr u""TT

rP" set¡ DOOR;. =OPEN{ [DOOR;: GLOSE'{, p ul3

count; : O]
r/3 m¡com any-state same-state p u~

assignment event seti[counti: O]. State OPENl is a temporary one that is
reached before the door is completely closed. Either a close_buti event or the
elapsing of 120 seconds (guard counti = 121) causes the transition. (Notice
that the symbol [)is used to denote transitions that depend only on the guard
and are not involved in any assignment or communication event.) Event seti
completes the circle and the door is closed, while the counter is ready for
another use. As was mentioned, there is one more output transition that
is not depicted (transition micom). This transition· is initiated by output
events and its source aiid destination activities a.re the sarne. It continuously
reports its current activity through m¡ channel.

24

Table 1 summarizes the transitions of each door. The time limits are
not given explicitly, they will be shortly determined when the requirement
are represented in RTTL notation. Also, notice that event labels may be
overloaded (i.e., one event label can be used for more than one event). No
confusion exists, since the source state is part of the enabling condition of the
transition. This overloading enables the grouping of transitions with similar
meaning. In the following discussion, whenever an overloaded label is used,
all its transitions are referenced.

As is obvious, the initial state can be represented as:

G = ((n= initial) /\ (DOO~ = GLOSEo) /\

(DOOR 1 = G LOS Ei) /\ (counto = O)/\ (count1 =O))

Sorne other requirement are:

Rsafe: D[--,((DOO~ = OP EN0) /\ (DOOR1 = OP EN1))].
Henceforth the two doors should not be both opened.

RO: (n =open;) -t ((n = m;+1com) P (n =open;)).
Every open event must be preceded with an input event.

Rl: (n = open_but; /\ DOOR;+1 = GLOSEf+1 /\ DOOR; =GLOSE?/\ t =
T) -t O(DOOR; = OP ENP /\ t :S; T + 5) seconds.
If an open button is pressed the corresponding <loor should be opened
within 5 seconds, given that the other door is closed. This imposes
uº + u 1 + u6 :S; 5 seconds.

R2: (n = open_but; /\ DOOR;+1 f GLOSE?+i /\ DOOR; =GLOSE;/\ t =
T) -t O(DOOR; = NOT;° /\ t :::;; T + 2).
If an open button is pressed and the other <loor is not closed, the user
has to be notified within 2 seconds. This imposes uº + u1 + u2 :::;; 2
seconds.

R3: ((n = close_but; V n = T/1) /\ DOOR; = OPEN; /\ t = T) -t

O(DOOR; =GLOSE?/\ t:::;; T + 5).
As Rl for the closing process. This imposes that u10 + u 13 :::;; 5 seconds,
or u 11 + u13 :S; 5 seconds, or u12 + u13 :S; 5 seconds.

25

R4: (DOOR; = NOT; /\ n = r/;1 /\ t = T) -+ O(DOO.R; = OPEN?/\ t ~
T+ 5).
If a user is notified and the other door doses, the first door should
be opened within 5 seconds. This imposes u4 + u3 + u 5 ::; 5 seconds.
This takes into account the most critical situation in which r;1;1 occurs
simultaneously with r;4.

R5: (n = inc; /\ t = T)P(n = inc; /\ t = T') -+ (T' - T = 1 second).
Exactly one second has to elapse between two successive inc; transi
tions. This imposes !7 = u 7 = 1 second.

Now, it is required to show that the design fulfills the above requirements.
We will not show the whole proof but rather concentrate on the first two
requirements Rsafe and RO as both are important to safety. Also, these will
be done very briefiy. The proof of RO is obvious, m;+¡com = {r/,r?}, and
(m;+1com)-+ Q(DOOR; = NOT/ V DOO.R; =GLOSE?) and (DOOR; =
NOT/ V DOO.R; =GLOSE?) -+ Q(n = notify¡ V n =open;).

As was mentioned, safety requirements such as Rsafe are proven by show
ing that an unsafe situation is never reached in a reachability graph. This
may turn out to be very difficult, especially in concurrent systems (as ours)
where time constraints of one process are independent of the others9 . The
transitions of one door may happen when the other <loor is in any state. We,
therefore, are going to discuss sorne of the conclusions that may be reached
even without a rigorous graph representation.

Figure 8 is a partial reachability graph in which only part of the first
transitions and nodes are shown. The sign +- means that both transitions to
its left occurred simultaneously. Notice that state 'l/;2 can be reached either
when open_but0 and open_but1 are initiated simultaneously or consequently
before any communication event takes place. As we proceed with the pro
cess and reach any of the states 'l/;8 , 'l/;9 or 'l/;10 the value of variable y will
not be GLOSEº for both doors. This will cause both doors to take the
notify transitions and eventually reach a deadlock10 (dotted arrow), since
henceforth y f. GLOSEº for both doors. Now, although the deadlock state

9If a "design" of plant and controller were used, the task rnight have becorne easier.
The controller synchronizes the processes so that sirnultaneous events can not occur.

10This state may be cailed divergence instead of deadlock, since the loop NOTº NOT1

is always active.

26

STATE DESCRIPTION
1/Jo DOORo = GLOSE"J /\ DOOR1 = GLOSEf
¡/;¡ DOORa = GLOSEJ /\DOOR1 =GLOSE}
1/J2 DOORo = GLOSEJ /\ DOOR1 = GLOSEi
¡/;3 DOORo = GLOSE5 /\ DOOR1 = GLOsEr
¡/;4. DOORo = GLOSEg /\ DOOR1 = GLOSEr
¡/;5 DOORa = OPENg /\ DOOR1 = GLOsEr
¡/;5 DOORo = GLOSE5 /\ DOOR1 = GLOSEi
¡/;7 DOORo = OPENg /\ DOOR1 = GLOSEr
1/Js DOORo = GLOSE5 /\ DOOR1 = GLOSEi
¡/;9 DOORo = GLOSEJ /\ DOOR1 = GLOSEf

1/J10 DOORo = GLOSE5 /\ DOOR1 =GLOSE?

DOORo = NOTo /\ DOOR1 = NOT1

1 com open_buta

'!/Jo

e

Figure 8: A partial reachability graph.

27

is not inconsistent with requirement Rsafe (after all the two doors are kept
closed), it is still a situation that has to be avoided. Also, we are unable to
justify such a situation and ignore the simultaneous open_but transitions by
saying that there is no specific requirement for that case. State 'lj;2 may be
reached in a sequential process. But, what is even more crucial, it is hard
to handle simultaneous events in the method. The point is that informa
tion is transferred in a point-to-point fashion and no broadcasting is allowed.
This means that if we were given a specific requirement about priority for
the simultaneous open_but events, the information about the "button state"
("pressed", "not-pressed") had to be transferred in a communication event
that is not m;corn or m;+1 corn .

One way to overcome the sequential deadlock is to impose time constraints
on the transitions. Notice that the sequential process that gives rise to the
deadlock requires that both ?Pen_but transitions have to be completed before
any input event may take place. This can be prevented if the upper time
lirnit of a communication transition is less then the lower time limit of an
open_but transition, or u1 < /º.

In order to conduct timing analysis, sorne assumptions must be made. For
example, there is no reason to ha ve two m¡+i corn transitions with different
time constraints. Therefore, we may assurne that l 3 = l1 and u3 = u1 . The
same assurnption may be made for the two open_but¡, open¡ and notify¡
transitions. Furthermore, it may be assumed that open_but¡ and close_but;
transitions are subjected to similar time constraints. Therefore, Zº = [8

¡10 = ¡12, uº= us = u10 = u12, ¡2 = l4, u2 = u4, ¡s = ¡6 and us = u6.

Other constraints can be concluded by using the requirernent u1 < 1°
in conjunction with the above assumptions and the constraints which were
derived frorn the requirernents Rl-R4. For example, u1 may be omitted
from the equations in Rl and R2, and u3 can be ornitted frorn the equation
in R4. This will lead to interesting conclusions.

Evaluation: ESM/RTTL provides a complete scheme for designing and
analyzing systems. It includes a homogeneous structure that enables the
application of the description and the analysis in the same terms. The def
initions of events and actions is done according to the base TL theory and
thus remain unchanged in the analysis andas subsystems are joined to forrn
the entire system. TL and the added ESM tier supplies the designer and

28

analyzer with a rich set of rules that is of great help if used properly. From a
safety point of view, this is of great importance. Safety properties are usually
defined in a unique way by the henceforth (D) operator for which a proof
scheme is outlined.

Although the method description seems more suitable for the design stage,
it may be adopted to the early requirement stage. This enables a smooth
transition from the behavior description to the design and even implementa
tion phases. The theory, upan which the proof scheme is grounded, is kept
unchanged and valid. Moreover, since the design and the implementation
add constraints to the system, the analysis may become more efficient.

Although, ESM/RTTL is an event driven model, conditions and time
constraints can be expressed and analyzed. As such it is suitable for mod
eling reactive system. The method supplies tools for hierarchy buildup that
is coherent with the basic terms. For example, actions remain unchanged
as basic actions are becoming interactions, or when actions and ESMs are
combined in a parallel composition. This makes the method a powerful tool
in future applications.

The drawbacks of the method can be deduced from the clean room de
scription and the discussion that preceded. The hierarchy and abstraction
are not done easily, they are rather oriented towards component buildup
and not on behavior buildup. This means that subsystems are actually real
components and it is hard (sometimes impossible) to construct a hierarchi
cal structure of behavior. Such properties are more suited for the design or
implementation stages.

In addition the method is organized in a way that becomes most efficient
when a system is partitioned to plant and controller. This is really a design
decision. After all, a controller has to accomplish what is required from the
plant and it is not a stand alone subsystem. By doing so in the early stages
of the requirements, the developer is almost "forced" to build a centralized
system. It forces the developer to partition the system and assign logic
tasks to actual components. This may strongly limit future fiexibility. This
may become more clear if someone tries to salve the clean room example
in a "plant" and "controller" fashion. For example, the buttons must be
represented as ESMs with communication channels to the controller. This,
does not allow two simultaneous open_but events to occur, sin ce the controller
can be designed to handle one request at a time, at most. Also, the controller
must be connected to each <loor by two communication channels. One for

29

controlling and another for data.
Although the method is event driven, there are no facilities to allow han

dling simultaneous multiple events. This is partly due to the controller plant
approach and partly to the point-to-point cornmunication scheme. In the
clean room example, two data types "door state" and "button state" had to
be dealt with as two distinguished events.

The ESM/RTTL proof scheme is a very sophisticated task that requires
mastery of the various rules. This task is very dependent on the analyzer
skills and experience. The set of TL and RTTL rules is complicated by
itself and its application may becomes unsolvable for large scale systems. A
proof could exist, but could not be attained. Human factors may become
even worse since TL and RTTL are new concepts that most analyzers are
unfamiliar with. This means that almost any application of the method must
be preceded by a significant learning period.

Proofs of safety properties are even more problematic. Building reach
ability graphs is a very tedious and error prone task, especially during the
first stages of the project, when there are almost no limitations. Concurrent
systems are even worse, since time can not be ignored (which limits the ef
ficiency of the algorithms for building reachability graphs). This could be
seen in the clean room example. A simple calculation could show that the
number of "state-maps" 11 in the clean room example is on the order of 38 !
In this case more efficient tools, other then reachability graphs, are needed.

The usefulness of the method can hardly be evaluated since there are no
records of "real-life" use. The only records are small scale problems similar
to the clean room example.

2.1.4 Timed Petri-nets

General: Petri-nets were used to model systems and reason about prop
erties such as deadlocks, reachability and safety. Petri-nets enable a system
approach that incorporates one language for hardware, software and human
behavior [AVD76, Peterson81] and its dynarnic properties rnake it appropri
ate for real-time reactive systems. The lack of timing information in the

11 The term "state-maps" is used in the method to describe similar states that may be
reached in di:fferent event order or time frames. For example, the t/J2 states in figure 8 are
one state map.

30

original Petri-nets was a major disadvantage of the method that was over
come only lately by introducing time in various ways12 . In this paper we
adopt the Merlin [Merlin74] and Merlin and Farber [MF76] scheme. This
scheme was shown to be efficient for safety analysis by Leveson and Stolzy
[LS87].

Regular Petri-nets are composed of sets of places (P) and transitions (T)
that are connected by input (1) and output (O) functions. The dynamics of
the net is represented by movements of tokens according to specified rules.
The bag of places that contain tokens is called the marking (µ) of the net.
It is very convenient and useful to represent a Petri-net in a graph structure
in which places are represented by circles "O" and transitions by bars "I".
The input and output functions are represented by arrows from places to
transitions or forrn transitions to places, respectively. The tokens are repre
sented by black dots that are contained in places. A transition is enabled if
and only if each of its input places contains at least as rnany tokens as there
exists arrows from that place to the transition. An enabled transition may
fire and remove all enabling tokens from input places, and deposit a token in
each output places. Figure 9 shows an execution of a Petri-net. Part (d) of
the figure shows the input and output functions. Part (a) shows the initial
marking (µ0). Transition t 1 is enabled since there are enough tokens in each
of its input places. In this state, transition t 2 is not enabled. After transition
t 1 fires, four tokens are removed and two new ones are assigned to places P5

and P6 , which enables transition t 2 (figure 9 (b)). Aftertransition t 2 fires the
net is in a deadlock state (C) since places P2 and P3 do not contain tokens.

One significant conclusion that can be drawn from the above description
is that a system structure is totally represented by a Petri-net. The dy
namic execution of the system is represented by the various markings that
are encountered. This means that the system states are represented by the
markings.

As was mentioned, "original" Petri-nets do not include time restrictions.
We add time restrictions by assigning two numbers to each transition. These
numbers define a time interval in which the transition must fire after it was
enabled ("enabled" in the sense of regular Petri-nets). In the graph structure

12Ghezzi et al. [GMMP89] have shown that al! timed Petri-nets can be unified into a
general single net, called ER nets. However, also these researchers agree that in practice
it might be more convenient to use a different notation, tailored to the specific use. We
are following this recommendation.

31

(a)

I(t1) = {Pi,P2,P3,P4}

I(t2) = {Ps, P6}

µ1 = {Ps, Ps}

(b)

(d)

O(t1) = {Ps,P6}

O(t2) = {Pi, P1, P4}

Figure 9: Execution of Petri-nets

(c)

they are represented in brackets at the side of the transition. A transition
must fire during this interval and the firing <loes not consume time (example:
t1 (2 .. 5) means that transition t 1 must fire in the time interval that starts 2
time units and ends 5 time units after t1 was. enabled). A transition may not
fire during the assigned interval if and only if it was disabled before firing
and during that interval. We will use two conventions: (a) no numbers are
assigned if the firing must occur immediately after the transition is enabled,
and (b) one number (n) denotes that the transition must fire exactly n time
units after the transition was enabled.

The Clean Room Example: Now we are ready to analyze the clean·room
problem with Petri-nets. Figure 10 describes the problem in a Petri-net graph

32

obo(O .. oo)
no(0 .. 2) ni (0 .. 2)

--',_,_epa (O .. 5)

Figure 10: Representation of the clean room behavior in Petri-nets. (Cour

tesy of Jon Reese)

33

representation. The places and transitions of each <loor are distinguished by
a subscript number that is attached to each label. Places are labeled by
capitals and transitions by regular letters. Places LOC K and NT FY are
the only ones that lack subscripts as they are used for mutual purposes.
LOC K serves as an interlock that enables an opening process for one door
at most, and NT FY is used for enabling an autornatic opening of a door
when the other ended its closing process. In the initial rnarking only place
LOCK contains a token (i.e., µ0 = {LOCK}).

The process starts when an "open" button is pressed, say door O. This is
represented by the firing of transition ob0 which puts a token in place OB0

("Open Button"). Since, only transition so0 ("Start Open") is enabled, it
fires immediately. This removes the tokens from places LOC K and O B 0 ,

and deposits tokens in places OP0 ("Opening Process"), ST0 ("Status") and
NTFY ("Notify") (i.e., µ 1 = {OP0 ,ST0 ,NTFY}). Notice that by this
trap.sitian so1 is disabled, even if a token is placed in place O B1 • In terms of
the systern, it prevents door 1 frorn opening if its "open" button is pressed.
The opening process is represented by transition op0 that rnay fire within 5
seconds (0 .. 5). This removes the token from place OP0 and assigns one to
place 050 ("Open State"). Now three events may take place: (a) nothing is
done so the door has to be closed automatically after 2 minutes [transition
ct0 ("close on time") fires], (b) the close button is pressed [transition cb0

("close button")] which starts an immediate closing process by putting a
token in place CB0 which, in turn, causes transition ci0 ("close immediately")
to fire immediately, or (e) the open button is pressed again resetting the 2
minute timer. The last event is represented by transition rset0 ("reset") that
removes the tokens from places OB0 and 050 and returns a token to place
050 . This disables and reenables transition ct0 which restarts the counter
for that transition. The closing process is represented by place C P0 and
transition cp0 . U pon completion of the closing process a token is returned to
place LOC K while places ST0 and C Po are emptied.

If a door 1 "open" button is pressed while door O is open the system has
to notify the user within 2 seconds. This is represented by transition n1.

This transition is enabled since all its input places {NTFY, ST0 , OBi} have
tokens. The transition fires within 2 seconds giving rise to a marking that
includes places ST0 and O B1 but not NT FY. This · symbolizes the notify
state. Notice that as soon as transition cp0 fires it enables transition soi, i.e.,
door 1 starts the opening process frorn the notify state. It also empties place

34

STo.
There is only one point that is left to explain and that is the purpose of

transition guard. Notice that place NT FY is not cleared if a door is opened
and closed while no open request arrives from the the other door. This may
cause this place to be :filled with any number of tokens. If place NT FY
contains more than one token, it will prevent a notify state to be reached
(remember that this state is represented by a marking that includes OB and
ST places but not NT FY). To avoid this situation, transition guard fires
whenever there are more then one token in place NT FY until only one is
left. This will allow an empty NT FY place when either transition n1 or n2

fires.
Places O B0 , C B0 , O B1 and C B1 represent "open" or "close" requests

from a human user. Therefore, they may contain more then one token as
well (who is not acquainted with multiple pressing of an "open" elevator
button). This may cause to a strange behavior of our Petri-net. In order to
avoid it "guard" transitions has to be added to all those places. Without
explicitly representing this situation we will assume that all the above places
are guarded by guard transitions.

Any type of Petri-net analysis consists of building reachability graphs.
This means executing the net and tracing the markings. Despite the fact that
time restriction may reduce drastically the number of reachable markings,
this number may still remain too large to be analyzed [HV87]. Leveson and
Stolzy [LS87] offered backward reachability analysis that is usually suffi.cient
for safety analysis where only certain, known states have to be investigated
(i.e., hazardous states). In this case a marking that includes OS0 and OS1

is such a state. This marking corresponds to a state in which both doors are
open. Figure 11 is a backward reachability graph for this state. In this figure
we use the sign * to denote any marking and rectangles to denote "bottom
marking" that are not further developed.

Two observations are needed to understand the graph. First, since both
doors are equal, we may follow either of them along similar paths. Therefore,
whenever such a situation occurs <loor O is chosen leaving a circled = symbol
for door 1. The second observation regards the reachable path to place
OS0 and in particular its input transition rset0 . Notice that this transition
may fire only if place OS0 is already with a token. Such a firing will cause
place OB0 to loose its token, but will not change anything in place OSo.
From a reachability point of view, this :firing brings us back to the "top

35

ºº

OBo, LOCK, OS1, *

Figure 11: Backward reachability graph for OSi, OS2 marking

marking". This is shown as a loop in the reachability graph and needs no
further elaboration.

It is not difficult to see frorn figure 11 that in order for the system to
reach the unsafe marking {OS0 ,0S1 ,*} a previous critica} marking must
precede. This marking includes both LOCJ{ and one of the OS places. This
situation can occur if an "interlock" device changes states because of external
interference or malfunctioning.

The solution for this case follows the recomrnendation of Leveson and
Stolzy [LS87]. No matter if a critical marking can be reached, it must be
avoided. Figure 1213 shows how this is achieved. Two transitions saf e0

and safe1 are added. Transition safe1 will :fire whenever places LOCK and
OS1 have tokens. This will immediately rernove the tokens from these places
and deposit a token in place C P1 . Recalling that this place represents the
closing process of the door and noticing that since transition ob1 :fired place
ST1 must possess a token (figure 11, one of the * places), transition cp1 is
enabled. Thus, the saf e transitions represent a recovery process, that sense
an unsafe situation and "fixes" it. Notice that there is still another change

13We show the critica! markíng and discuss the solution, with respect to <loor 1, but
obviously a similar description can be made for <loor O.

36

in figure 12. A guard transition was attached to place LOC I<. The purpose
of this guard is to avoid a situation in which place LOC]{ starts a process
with more than one token, which eventually will enable the unsafe state.

Evaluation: The above discussion shows clearly the Petri-net interpreta
tion. Places represent system states while transitions stands for events. The
marking can be captured as the state that is in effect. As in other meth
ods actual states are used as predicates or conditions for future events. The
execution of a Petri-net follows very simple rules and thus is very easy to
trace. This, in turn, makes the analysis simple. The cost of this simplicity is
paid with large graphs that are hard to understand and interpret. Reacha
bility, which is the main tool for analyzing Petri-nets, may become complex
even for small system. The interpretation of markings as states is also not
straightforward. As an example, what is the interpretation of more then one
token in place S01? Is it a failure of the control that interpreted a close state
as open and thus issued a second open order?

Petri-nets model distributed control systems. Events (transitions) occur
(fire) according to sorne local arrangement ("partial marking") and are not
dependent on the entire state (marking) of the system. Information is trans
ferred in a point to point method. This increases the complexity of the net
especially when conditions are not simple. The only way to represent con
ditions on events using Petri-nets is by connecting transitions with desired
places. This means that the number of edges is proportional to the number
of predicates and their complexity. This can be seen in the clean room repre
sentation. Whenever events are dependent on states and may have different
meaning, more edges and transitions are present. The "open" request may
have three meanings that are state dependent, i.e., (a) start opening if the
other door is closed, (b) reset the timer if the door is already opened, and
(e) notify the user if the other door is not closed. These requirements are
"responsible" for more then half the transitions, places and edges.

The above discussion highlights other properties of Petri-nets. Many
details that were left unnoticed in other methods had to be dealt with in
Petri-nets. This has advantages and disadvantages. Details may turn out to
be very important as the development continues. It is well known that the
earlier a problem is identified, the less costly it is in fixing it. Many projects
suffer from small unnoticed problems that were discovered too late. Petri-net

37

rsett-r--

---1-- ct1(120)

---''"-epa (O .. 5)

Figure 12: The "fixed" representation of the clean room problem.

"º Jo

representations forces the developer to trace every detail, analyze it carefully
and decide on the best way to handle it. As for the disadvantages, too many
details at the beginning of the development may cover major properties. The
first stages of the development process are characterized by abstracting out
small details of the system in order to understand the basics of its behavior.
This is difficult to do in Petri-nets.

This leads to the conclusion that was already mentioned. Petri-nets are
a good design method but are less efficient for behavioral description. It is
recommended to use them during the late stages of the development process.

2.2 Process Based Methods

In this section two process based methods are presented, CIRCAL [Milne85,
Milne82] and TAM [Zwarico88, LZ88]. CIRCAL and TAM are algebraic
methods that include sorne basic axioms and definitions above which more
rules can be built. Systems are described and analyzed by the processes they
may execute, and properties are proven by applying those rules.

2.2.1 CIRCAL

General: CIRCAL or CIRcuit CALculus was introduced by G. J. Milne as
a framework for modeling of asynchronous and simultaneous behavior, mostly
for integrated circuits [Milne83, Milne85]. The method is based on, and is an
extension of a calculi for representing concurrency and intercommunication
called dot calculus [Milne80, Milne82]. CIRCAL is also an extension of CCS
[Milner80] in its ability to handle simultaneous events. Other properties
of CIRCAL are borrowed from Hennessy and Milner's acceptance semantics
[HM80, HM85, Hennessy85]. The idea behind this semantics is to use system
processes for determining whether an action is accepted and thus initiate a
change or not. When this decision is based on externa! processes, the decision
is said to be deterministic and nondeterministic otherwise.

In CIRCAL terminology, computing agents which are completely de
scribed by actions they wish to perform in cooperation with their environ
ment. The environment, in turn, is also described by agents and actions.
This means that actions is the interacting media among agents. This can
be depicted as boxes (representing agents) connected by ares via ports (rep
resenting actions). Both ports and agents may be labeled. Ports with the

39

open_butl

start_not

stop_not

start _open0

stop_open0

starLclose

stop_close

close_but

open_but2

open o

el oseo

DOORo

open

close1

..-------...-'open_butl1

t---------1'-loseo

DOOR1

f---------ll-lose1

tarLnot1

top_not 1

tart_open1

top_open1

tart_close1

top.,.close1

close_but1
.__ ____ __._,open_but21

Figure 13: Clean room problem represented in CIRCAL.

same label are connected.
There are two more concepts in CIRCAL term and sort. The first rep

resents agents or actions and the second is a set of actions. Properties of
agents are described by their sort, that is, according to the set of actions
they can be engaged in. The clean room can be depicted in this manner as is
shown in figure 13. The two doors ha ve common ports open0 , open1, close0

and close1. In the example, the agent DOOR;, (i =O, 1) is of sort14 :

{ open_butli, start_not;, stop_not;, start_openi, stop_open;, close_but;,

start_close;, stop_close;, open_but2;, clase;, open;+i, close;+d·

The process is described as a sequence of all possible ordered events (the
traces) that may occur during the term's life. This will become clearer as we
continue in the discussion.

Each term is characterized by its reaction to a given stímulus. There are
two possible reactions; the labeled stimulus is either accepted or rejected. In
the first case the term will evolve to a new one and in the other case a* will
be produced. The first case is denoted by TERM st~us TERM and the

d T'E'RM stimulus
secon 1---t *.

In CIRCAL there are four primitive operators:

14The exact meaning of each port wiH be explained later, when we show the clean room
representation.

40

• Guarding which is denoted as mP and means that the term mP desires
to perform the action m and evolve to the new term P,

P n { P if n = m m 1----+ . * 1f n #- m.

• Deterministic choice between two or more terms is denoted + or L:
respecti vely.

• N ondeterminism choice between two or more terms is denoted by EB or
Q:= , respectively.

• Termination of a process is denoted as ,6..

Concurrent composition of two or more processes is represented by a •.
For example, the expression A • B means two agents A and B executing in
parallel. The formal definition of this operator is:

for: A{::==
J

A. B {::== L >-;[A;. B] + L µj[A. Bj]
A¡nM=0 µ;nL=©

+ 2: (AiuµJ)[A;•Bj] (8)
(>.;nM)=(µ1nL)

Where {::== is used for defining new terms. This operator captures both
independent and synchronized execution of the two processes. This is done
in a rather sophisticated way. When two terms are executing in parallel, they
may interact with identical ports. The first two clauses represent independent
execution, i.e., guards of different sorts. If one of the A¡s that <loes not
intersect with M occurs first, the process A will ·evolve to A; and continue
to execute in parallel with B. This is represented by the first clause. The
second clause is similar and corresponds to a µj that does not intersect with
L.

The third clause represents simultaneous actions of two types. The first
type regards actions that are required to execute simultaneously, since they
have the same label (i.e., (Ai n M) = (µj n L) #- 0). The second type is
composed of actions that are included in only one sort and thus are not
required to, but may execute simultaneously, "if it so happens" (i.e., (>1.¡ n

41

M) = (µj n L) = 0). In both cases the simultaneous actions are written in
(o ¡3)

parentheses. For example, (a /3)P f---+ P' means that a and f3 must occur
simultaneously in order for P to change in to P' (a combination of two or
more simultaneous actions is considered a new action).

The • operation can capture deadlocks as well. For example, if P and Q
are of sort L ={a, b} and P {=a bP', Q {= b aQ', than P • Q deadlocks
on the first action. This happens because (anL) # (bnL) # 0, which means
that a and b must execute simultaneously (only the third clause of equation
8 exists). But, this is in contrast with both process P and process Q, since
each requires a sequential execution.

CIRCAL includes also several axioms that are used for deriving properties
and analyzing terms. There are axioms for commutative and associative
combination that are quite obvious and others that are more complicated.
Examples of axioms are: X• [Y EB Z] = [X• Y] EB[X • Z], [A• B] • C =
A• [B • C] or o:P + aQ = aPffio:Q.

There are two abstraction operators that are of particular interest. One
deals with connected ports and the other with isolated ports. Both are used
very often for representing systems in different levels of detail and both intro
duce nondeterminism. The first operator is called the abstraction operator
and is defined as:

(¿µ,?;) - a = LµE#.[µ; -a][P; - a]+ µ;#E<µ; µ;[P; - a]+ s] $S

where 5{= f:[Pi - o:] (9)
µ¡=o

The events that are in the set a are "internalized" and thus concealed from
the environment which can not control the choice or even know when it took
place. This introduces nondeterminism. The meaning of this equation is as
follows: If a = µi, then one of the events in a must occur first but because
of the abstraction, the environment lost control of it. This explains the
nondeterminism and the right most clause, S. The first summands within
the big rectangle brackets represents an occurrence of an event that is in µ;
but not in a. The second summand is similar to the first but represents a
case where anµi = 0. The third summand, S, is equal to the one outside the
brackets but represents a case where the agent is not able to interact with
the environment at all. In this case, only the internal events in a may occur,

42

but the environment can not know which one. For example,

[(b c)P + aQJ - a= [(b c)[P - a]+ [Q - a]]EB[Q - a]

If (b e) can occur, than either it occurs first giving rise to the term P - a

or a occurs first gi ving rise to the first Q - a. If (b e) can not occur, the
only possibility left is Q - a. Since abstraction introduces nondeterminism,
it distributes over nondeterminism, i.e.,

[E P¡] - Q = E [P; - Q J (10)
1

The other abstraction operator, the "hiding" operator (denoted \), is
used to hide isolated ports. Since isolated ports are members of one agent,
they may infiuence only that agent. Other agents may be affected as a result
of eventual simultaneous occurrence. The hiding operator causes all affected
ports, induding simultaneous ones, to disappear. For example, [(a b)P +
cQ]\b = c[Q\b] and [(a b)P + bQJ\b = ~ but [(a b)P + cQ] - b = a[P - b] +
c[Q - b] and [(a b)P + bQ] - b = [a[P - b] + [Q - b]]E:B[Q - b].

Another important feature of CIRCAL is value passing. CIRCAL can
represent passage of values between ports. This is done by using as many as
needed CIRCAL ports for each physical port. If a physical port is used for
passing boolean values, than only two CIRCAL ports are needed, however
if no limit is known, infinite nurnber of CIRCAL ports are required. For
example, an agent E with one physical port a is used for passing integers
from 1 to N (denoted as E<F== L,iEN ai E') will need N CIRCAL ports.

In order to distinguish between output and input values or ports, CIRCAL
uses the convention that output values are denoted by on "overbar". For
example, ai P • (3i Q means that the value i is passed from process P as
output through port a to process Q via port (3.

Time passage is modeled in CIRCAL by attaching each port to a dock
agent of sort t which represents time units. By including t in the sort of
every agent a dock synchronization is forced on the agent but not on the
dock. This is represented in equations of the form A<;:=(a t)A' + tA where
a is the port label.

The Clean Room Example: To simplify the problem, we shall assume
that the only delays in the clean room are those specified by the requirements.

43

This means for example, that checking the state of a <loor takes no time,
but the time needed for opening a <loor can get any value between O and
5 seconds 15 . We also assume that time units are seconds. The following
CIRCAL definitions will be used:

i times ,-..._,
ti {== tt ... t

a(O,n) /3 <==
n-1 times ,-..._,

[o:ffi(ta)EBt(ta)EB · · · EB tt ... t (ta)] /3

The first definition denotes passage of i seconds. The second definition uses
a(O, n)/3 to denote that event o: occurs within n seconds and is followed by
event /3. The nondeterministic choice, ffi, is used since the procedure is
interna! and the environment never knows exactly when event o: is going to
execute.

· The clean room process, C R, is combined of two sub-processes, one for
each door. We will call them DOORi for i =O, l.

GR {== DOO Ro • DOO R1 (11)
DOORi {== open_but li CH]{i OPEN _ST AT Ei DOO R¡. (12)

where:

CHJ<i {== openi+1 starLnoti(O, 2) CH J<f + closei+i
CHJ<~

i
{== openi+1 e H J<I + close;+1 stop_noti (l3)

and,

OPEN _ST AT Ei <== open; start_openi stop_open¡(O, 5)
FU L_OP E Ni starLclose; stop_closei(0,5) closei DOOR¡ (14)

FUL_OPENi <== [open_but2; FUL_OPEN¡]EB

[close_but¡)EB[t120] (15)

In these equations i = i mod 2.

15We can make this simplification even stronger. The time restrictions are given only to
events that involve interaction with the externa! environment. Usually, these interactions
take much more time than those required for interna! electronic interactions. Thus, we
may "safely" neglect interna! interactions.

44

The process starts in equation 12 when port open_butli is executed, that
is, the open button is touched. The suffix "1" distinguishes this CIRCAL port
from the other in equation 15 that represents the same physical operation
when the door is open.

CH I< represents the checking process that must precede the open state.
In this process, the state of the other door is checked. If it is closed (closei+I)
the door is allowed to open, otherwise (openi+I) the user has to be notified
within 2 seconds (startJwt¡(O, 2)). Process CH K' is similar: the process
checks far the other door state, once close¡+1 executes the <loor is allowed to
open, so the notification is removed (stop_not;) 16 .

Events start_open¡ and stop_open;(O, 5) (starLclose; and stop_c/ose;(O, 5))
represent the door's opening (closing) process. Process FUL_OPEN; (equa
tion 15 represents the various possibilities when the door is fully opened.
Closing may start if the clase button is touched (close_but;) or if 120 seconds
elapsed (t12º) with no open_but2¡ execution. Touching the open button while
the door is open will cause the whole FU L_OP EN; process to re-start. Since
no externa! involvernent can occur while the door is opened, these possibilities
are chosen nondeterministically.

The processes OPEN _ST ATE; (equation 14) represent critical atornic
sections. These sections must not be broken, i.e., once a section is started, the
other should not start unles.s the first ends. This is the safety specification.
The open and e/ose events can be used as start and end points far these
sections and the safety specification in CIRCAL terrninology will look like:

C R~[(open0 closei)C R] E9 [(open1 close0)C R] E9 [(close0 close1)C R] (16)

What is left is to show that the safety specifications are consistent with
equations 11 to 15. This is done by using the definition of the dot operation
(equation 8) and hiding (equations 9 and 10) all ports except those specified
in equation 16. This process is very tedious and dernands evaluation of long
and complicated CIRCAL expressions. Instead of showing the whole proce
dure, only the first steps are described. This will give sorne more insight to
the use of the CIRCAL definitions and axioms and allow sorne more "feel
ings" about the proof scheme. Using the dot operation on equations 11 and

16Notice that each door needs four different CIRCAL ports for the CH K process. Each
port is designated to transfer (receive) either open ore/ose for each <loor.· Also, we preferred
not to use value passing, as it does not reduce the number of CIRCAL ports and may cause
confusion.

45

12 we get:

GR ~ open_butl 0 [fGHK0 OPEN_STATE0 DOORo] • DOOR1]

+ open_butl 1 [DOOR0 • [GHK1 OPEN_STATE1 DOOR1 J]

+ (open_butlo open_butli)[[GHKo OPEN_STATEo DOORo]

•[GHK1 OPEN_STATE1 DOOR1J] (17)

This equation shows how powerful CIRCAL is. It represents all possible
combinations of open requests; either in series, as in the first and second
summands (first open_butl 1 and then open_but12 or vice-versa), or simulta
neously, as in the third summand. Now, the third summand pinpoints a
problem that was already mentioned. The system behavior in a situation
where both buttons were pressed simultaneously, is not specified. This prop
erty of CIRCAL is very important, especially when compared with other
algebraic rnethods such as CCS [Milner80J.

Now applying the hiding operator (equation 10) on the open_butl ports
of equation 17, and using again the dot operator results in:

GR~ L CHI<¡ OPEN_STATE¡ GR\{open_butla,open_butli}
í:=O,l

In a further development of this equation (using the abstraction operator
(equation 9)) the nondeterministic choice operator, [: will replace the de
terministic one, ¿, or the + will be replaced by EB, which is consistent with
the end result, i.e., equation 16.

Evaluation: CIRCAL is an event driven method. It models systems by
tracing their possible sequences of events. As was shown, CIRCAL can cap
ture and analyze synchronous and asynchronous processes. This is a real
advantage over previous algebraic methods. This ability was demonstrated
in equation 17 by pinpointing a missing requirement. More than that, this
result did not demand special treatment, it merely required the use of the
method primitives.

CIRCAL was found to be suitable for analyzing procedures in computer
operating systems and VLSI. Such systems are basically event driven and
incorporate multilevel design, concurrent and sequential processes. These

46

properties can be represented in CIRCAL; multilevel design by using abstrac
tion and the other properties by applying the dot calculus [Milne80, Milne82].
Tirning is achieved implicitly by defining an agent dock and using its "ticks"
as the driving events.

CIRCAL is very restrictive in its abilities to express many features that
cornplex systerns contain. For exarnple, it is difficult to express periodical
processes with time restriction and tolerances. Also, periodic processes for a
limited time followed by a different path of activities are not included in the
CIRCAL grarnmar. CIRCAL expressions for such processes are clumsy and
hard to comprehend. In general, CIRCAL may fit for describing accurate
processes without any tolerances. This is very restrictive and makes the
method almost useless for real time reactive systems.

Conditional expressions are also very clumsy in CIRCAL. Both the deter
ministic and the nondeterministic choice operators are efficient for selecting
different paths according to the events that may occur, but become very
awkward when the choice depends on a situation or value in another process.
In cases where the condition is a combination of many clauses the expression
may become very complicated and totally unmanageable. The reason for
this is the attempt to use only very primitive operators. In the clean room
example, only one way was presented; assigning a special port to every pos
sibility (actions open_butl in equation 12 and open_but2 in equation 15, as
well as, the open and clase actions in the CH]{ sub-process (equation 13)).

Another way for representing conditional expressions by value passing can
be used. But, this may become even more clumsy. As an example, in the
CHK sub-process two pairs of connected ports (e.g., labeled check) had to be
used, each for passing "open" or "close" values according to the specific <loor
state. As can be seen this <loes not reduce the number of CIRCAL ports but
may clarify that the selected path depends on a particular state and not on
the events.

Safety analysis in CIRCAL is also difficult and tedious. Long and sophis
ticated expressions are usually a result of even simple processes. This is error
prone and exposes the analyzer and the designer to similar problems. Such
problems rnay bring into question the usefulness of CIRCAL in its present
form, as a general purpose method.

CIRCAL can be used as good starting point for developing and definíng
other methods that will include, apart from CIRCAL primitives, more pow
erful expression tools. Such tools will allow better description and enhance

47

the analysis power. This may be done in two complementary ways. The
first by proceeding with the algebraic approach and defining tools that are
derived from the primitives of CIRCAL and probably used in special areas
rather then for general purpose. The second way is by applying sorne picto
rial aids that may ha ve more comprehensive power, and thus enable a better
analysis.

2.2.2 Time Acceptance Model

General: TAM or Time Acceptance Model was developed by Lee and
Zwarico [LZ88, GLZ88, Zwarico88] as a direct time description tool. By
the word "direct" we mean that time is represented explicitly and not only
through synchronization heuristics. This is an advantage over other meth
ods in which time has to be represented as synchronization points with sorne
imaginary clock. The method is an extension of Hennessy's Acceptance Trees
model for describing and ordering nondeterministic processes [Hennessy85]
and Hoare's Communícating Sequential Processes (CSP) [Hoare78, Hoare85].
This is done by adding explicit time stamps to each event and requiring it
to occur within a specified time interval. As other algebraic methods, TAM
is event driven. It incorporates notations for representing time intervals and
process decisions that are taken accordingly. Periodic and recursive processes
are described in a natural way that is easy to understand. Although the basic
theory of TAM is complicated, the syntax and the semantics of the model are
clear and can be used for evaluating, analyzing and proving time assertions
of the requirements.

The model is based on a process that is fully characterized by the se
quences of events it can execute and their time constraints. In the language
terminology, the events are the alphabet and the execution sequences are the
acceptance set. Every process execution cemsists of time traces, that rep
resents the time progress, and state set, that represent.s the set of possible
paths. Syntactically, a process is represented by a sequence of event time
pairs. These concepts are natural in the sense that system operation is de
pendent not only on the state of the system, but also on the time when events
occur. In other words an occurrence of an event in identical states may cause
different consequences depending on the occurrence time.

The model includes basic concepts that are combined into a domain of
time dependent processes (denoted as TV) over which time operators execute.

48

The basic concepts are:

Time Trace: is a finite sequence ((a1 ,n1),(a2,n2), ... ,(a1,n;)) E(¿ x N)*
where ¿ represents the alphabet and N the natural numbers including
oo. Each pair (ai, ni) represents the occurrence of event ai, n¡ time
units after the previous event.

States: are deterministic17 choices that a process may make in order to
decide its next action. A state is represented by event-time pairs
{(A1, n1), ... , (Am, nm)}. For example the process:

{ ({a}, 1), ({a}, 2), ({ b}, 1), ({ b}, 2), ({e}, 3), ({e}, 4), ({e}, 5), (0, 7)}

(which may be denoted as ({a b, [l, 2]), (e, [3, 5]), (0, 7)}) may choose to
execute event a or b during the interval [1, 2] or e during [3, 5] or stop
(0) at time 7.

State Sets: represent nondeterministic decisions of a process. For exarn
ple, {{(a,[1,2])}, {(a,[l,2]),(c,3)},{(c,[3,5])}} represents the nonde
terministic choice of one of the states: {(a, [l, 2])}, {(a, [l, 2]), (c,3)} or
{ (e, [3, 5])}}. (It is clear that in order to prove behavior of nondeter
rninistic processes sorne extra knowledge is needed. This knowledge can
be provided by sorne other sources or can be determined when more
details of the process are revealed.) State sets are denoted by a.

Acceptance: (s, O- f. 0) represents possible execution of a process, where
a is the set of states that can be reached after executing the trace s.
For example, the process (((a, 1), (b, 3), (e, 4)), { { (d, [l, 3]) }, { (d, 2)}})
can execute either { (d, [l, 3])} or { (d, 2)} after executing the trace
((a,l),(b,3),(c,4)) (i.e., a at 1, b at 4 ande at 8).

TD is defined in a way that guarantees a coherent operation of the pro
cess. Far exarnple, every process that is in TT> contains the ernpty trace ()
and must be prefix closed, that is, if process P executes a trace s, then it
must have executed all its prefixes first. Processes that are in TT> can be
shown to be in a complete order that is bounded from below and above and
all their set states can be arranged in a descending (ascending) arder. For

17Deterministic and nondeterministic processes, ha ve the same meaning as in CIRCAL.

49

every alphabet A the two boundaries are defined as STOPA and CHAOSA.
The first <loes nothing, and the second represent every possible trace of A.

TAM includes a set of primitive and derived operators. We shall use the
clean room example to represent most of them.

The Clean Room Example: As in CIRCAL we simplify the problem
by assuming that every information transfer is done promptly, so there are
no "electronic" delays. That is, only required and "Mechanical" delays are
taken into consideration. For example, a checking procedure takes zero time
but notifying a user about the state of the other door may be differed for 2
seconds.

The clean room behavior (C R) rnay be divided in to two parallel processes;
GR= DOORollDOOR1. As before we will use i = i mod 2 to stand for any
door.

DOOR¡
(O,oo) O

E ~ open_but¡ ~
(0,2) (O,oo)

[(open,:+1 ~ not,: ~ close¡+1)D(close,:+1)]

o (0,5) o
~ stari_open¡ ~ stop_open¡ ~ OPEN_STATE¡

o o
~ CLOSE_STATE,: ~ DOOR; (18)

where:

(0,120) o
OPEN_STATE; = (1: ~ open_but¡ ~ OPEN_STATE;)

(0,120) 120 n ((é ~ c/ose_but¡) n (E~ close_on_tÍme;)) (19)

and

o (0,5)
CLOSE_ST ATE;= E~ start_close¡ ~ stop_close; (20)

The process starts when an open button is touched (open_buti). This
event 's time restriction is denoted by the "deterministic time action opera
tor", ~- This operator represents a deterrninistic sequential execution of

(O,oo)
a process. The expression E ~ open_but1 means that event open_but; may
happen at any moment during the interval (O, oo). The symbol E represents

n m n+m
a time rnark but is notan actual event (i.e., a~ E~ b =a~ b).

50

The second line of equation 18 represents a choice between two sub
processes and depends on the first event, closei+I or openi+I · The choice
is deterministic which is represented by D. If the other door is open (event

openi+I) the process notifies the user within two seconds, openi+I ~ noti.
When DOORi determines that DOOR;+1 is closed (event closei+I), it starts
the opening process. If event closei+I (i.e., DOOR;+1 is closed) occurs when
the open button is touched, the opening procedure starts immediately.

The opening process can take any time between zero and five seconds,
which is represented by the "nondeterministic time action operator", ~.

(0,5)
The expression start_open¡ ~ stop_open¡ means that event stop_open¡ may
happen nondeterministically within five seconds. This represents the re
striction on the door movement. This process is nondeterministic since the
external environment can not infiuence it.

While the <loor is open, state OPEN _ST ATE;, three sub-processes may
take place (equation 19). Since the events in this process are not infl.uenced
by the environment, the time operators, ~, and the choice operator, n,
are nondeterministic. OP EN_STAT E¡ may remain for an arbitrary time
period. This is represented in the first part of equation 19 and may happen
if the close button is not touched (event close_but¡) and the open button is
touched again and again, such that the time interval between two successive
touches is always less than 120 seconds. Process CLOSE_STAT E; (equation
20) can start if either the the close button is touched orno button is touched
in a 120 second time interval (event close_on_time¡). This process is simple
and needs no further explanations.

The safety analysis can be conducted by specifying the safe operation of
the processes. The usual way of doing it is by defining a "SAFE" process
(a process that represents a safe operation) and showing that it is consistent
with the system process. In TAM this is done by showing that SAFE is
"contained" in the system process. The containe.d relation (denoted "~")
was not discussed here. Generally speaking it deals with the "amount" of the
"nondeterminism" property. P ~ Q if P is more nondeterministic than Q.
In a more accurate manner (but still without the exact definition which can
be found in [LZ88] and [Hennessy85]) a process P is more nondeterministic
than process Q if they both may accept the same alphabet (have the same
events) and Q must accept at least the alphabet that P may accept. Such
a relation means that SAFE is actually a part of the system process and

51

therefore, is consistent with it.
A safe operatíon of C R means that both doors are not open simultane

ously. This means that once a door starts to open, the other door may do
so only after the first door is closed. An external viewer will sense the sub
processes that take place from starLopen to stop_close, as atomic. Moreover,
he will not be able to infl.uence this process. In TAM terminology, the process
SAFE is represented as:

SAFE =
o (0.5) o

(close1 ~ stari_openo ~ stop_open0 ~
o o

OPEN_STATE0 ~ CLOSE_STATE0 ~ SAFE)
o (ü.5) o

n (close0 ~ stari_open 1 ~ stop_open1 ~
o o

OPEN_STATE1 ~ CLOSE_STATE1 ~ SAFE)

where the OPEN_STATE and CLOSE_STATE are defined in equations
19 and 20, respectively.

This can be represented as:

S AF E = (DOO Ro\ { open_but0 , open1 , not0 }) n
(DOO R1 \ { open_but1 , open0 , not1 })

The concealment operator, \, means the part of the process that does not
include the events "after the operator". In this case DOO Ri process without
events open_but;, openi+l and nok The mutual exclusiveness is guaran~eed
by the n. In this case i t can easily be seen that the relation S AF E ~ C R
does NOT exist since their alphabets are different (aS AF E =J aC R). This
can be overcome by proving that:

SAF E ~ C R\ { open_but0 , open1 , not0 , open_but1 , open0 , not1}

since aS AF E <;:;; aC R. The exact proof is omitted but here are sorne intuitive
explanations. As can be seen, process SAF E is a combination of the two
doors processes for which the non-critical part was removed. This means
that every event that SAF E may execute is also in C R and therefore, C R
must execute, which is exactly what is meant by the containment property.
The nondeterministic choice, n, guarantees that no external involvement is
possible, or whenever a process of one "side" of this operator starts it must
end befare the other "si de" starts. This means that once a door starts opening
it must close befare the other door moves.

52

Evaluation: TAM represents a procedural approach to the problem. It
stresses the events driven process as a part of the control stream. This enables
an easy and natural representation of passage of time along with process
relationships. Safety analysis with respect to time can be conducted using
the "contains" relationship. The superiority of TAM over other methods is in
the fact that it can represent events regardless of their synchronization with
the system dock. Time is captured and measured directly and thus enables
a natural approach that needs no further elaboration. Also, time tolerances,
that was found difficult to express in CIRCAL, can be easily represented.

As in other algebraic methods abstraction techniques are applied by using
nondeterminism. This is used for both the representation and proof scheme.
For this purpose, the method is built on accurate definitions of both time
and events.

One great disadvantage (that was already recognized in CIRCAL) of the
method ari.d probably the weakest part of it is its inability to account for
states, or values. In particular, conditional expressions are represented in
a clumsy way that makes the readability and comprehension difficult, or

1 even impossible if the condition is complicated. This could be seen in the
deterministic choice between a notification or an open process. In the simple
"if open¡+1 then not¡ else starLopen¡'' expressicin the open¡+1 was captured
as an event and not as a state.

Another difficulty in applying TAM is the complicated and long terms
that the user may encounter. Such equations are difficult to understand and
error prone. This can easily be seen in the equations presented here as well
as those presented in the original paper [LZ88] (for example, p. 19). This is
probably the reason that no real experience with the method is reported.

The above difficulty seems hard to overcome, at least by defining more
elaborated operators. TAM is built in a very delicate and connected structure
that makes necessary changes hard or even impossible to make. Therefore,
attempts to define useful operators in order to tailor the method for partic
ular areas may require major changes in the language itself. For example,
a real-time formalism for communicating processes called Communicating
Shared Resources (CSR) [GL89] that was recently introduced, suffers from
such restrictions and although it incorporates many of the original TAM
ideas, its structure is totally different. Since tailoring a method for specific
uses is done regularly, this is a very big deficiency.

53

3 Other methods

In this section we briefly describe three other methods that were suggested
in the literature. The first method, Interval Calculus, is state based but
represents a different approach from those described below. The two others,
CCS and CSP, are process based and were widely discussed in the literature
and implemented in many versions. CIRCAL and TAM are a~ong these
vers10ns.

3.1 Interval Calculus

Interval Calculus (IC) is a general approach that was introduced in artificial
intelligence as a scheme for temporal knowledge representation. This ap
proach was adapted for design and behavior description rnethod. We bring
here a method that was first introduced by J. F. Allen [Allen83] and then
improved by P. Ladkin [Ladkin86.l, Ladkin86.2, Ladkin87]. This method
seems to be the rnost progressive one in that context. The basic model uses
convex time intervals that represent time "slices" during which processes are
continuously operating, or system states continuously exist, i.e., there are no
gaps in which the process stops or the state changes. The basic argument of
the calculus is that it is possible to represent all temporal binary relations
between systern states.

Thus, IC is a rnethod that uses time intervals as its basic concept. It
defines states in terms of time intervals. This is in contrast to most other
methods (as seen above) in which states and events determine time. IC ex
haustively represents all binary relations between time intervals. The binary
relations are then used for reasoning about multiple state relations.

A system state can be represented by a predicate that evaluates to true in
the time interval during which the state exists, and is false otherwise. Thus,
for example, if door O of the clean room example is opened in interval d, the
predicate may be:

{
true if door0 is open in interval d

open(door0 , d) = false if door0 is not open in interval d

IC provides "operators" that describe binary relations between intervals.
These relations are actually predicates of the form i [always-]relation j

54

where i and j are sets of convex time intervals. The term always may or
may not exist depending on the specific case. Here is a partial list of predi cate
relations:

• i always-starts j

J

i and j start simultaneously but i is included in j.

• i always-meets j

J

i ends and j starts simultaneously.

• i always-(precedes-or-meets) j

J

i either ends before j starts, or i ends and j starts simultaneously.

• i bars j

J

Combining the i and j will result a convex interval.

• i disjoint-from j

J

i and j have no common subintervals

If we take the clean room' as an example, the basic "safety" property can
be described as:

interval-of (open(door0)) disj oint-from interval-of (open(door1))

55

re uses the operator combine to define the union of interval sets. com
bine ({ i, j, k}) is the union of the interval sets { i, j, k}, as follows:

)

k

combine({i,j,k})---

The strategy that is used in re for specifying a system is basically top
down. First global properties are described as time assertions, than as the
design proceeds more details, such as guarding intervals, synchronization
points, etc. are de:fined. Also, this refinement procedure applies a rich lan
guage of statements.

re represents a unique approach for time description. It attempts to
represent time as intervals and uses predicate calculus for reasoning. Thus,
it lacks the structure of process fl.ow. This has advantages and disadvantages
that are dependent on the nature of the developed system.

As for the the advantages, time intervals are intuitive and easy to un
derstand and represent. This makes the analysis and design easy and less
exposed to errors. Time intervals can be thought of "time pieces" during
which processes take place, so the description provides an indirect repre
sentation of the systern states. Moreover, since time intervals are directly
represented, the states are described as a function of time. This gives the
designer and the analyzer a clear and intuitive picture of the system state,
as a function of time, out of which the process fl.ow can be inferred.

The disadvantages of this approach rnay becorne more clear if we try
to think of the complernentary part of states, the transitions. Ie does not
provide any tools for representing transitions. Recalling that part of the
logic of the clean room example was concentrated in the transitions, makes
this disadvantage clear. A complete picture of a system is a combination of
its states and transitions, which means that Ie itself is inherently unable to
provide a complete description of a system.

The above discussion may lead us to a conclusion about the system depen
dency. The description of systems, in which most of the logic is concentrated
in the transitions, is less effi.cient and hard to understand in Ie. On the other
side, systems in which the transition are simple and easy to understand may
be. represented fn Ie. Also, systems that are strongly time dependent may

56

be found easy to be represented in re.

3.2 ces
CCS or Calculus of Communicating Systems was introduced by Milner in
1980 [Milner80, Milner89] as a theoretical basis for process control. The
ideas of this theory were later used for devising methods in particular areas.
For example, CIRCAL is one outcome of the theory, which is used for defining
VLSI installments.

The basic terminology of the theory is similar to the one described in
CIRCAL. Agents are defined in terms of the actions they can be engaged in.
As in CIRCAL, the actions are CCS ports that are labeled with a finite alpha
bet. "Overbared" labels denote output ports and are combined with regular
same labels (e.g., f, and f) in a synchronization line. The restrictions on the
actions define the processes that may take place. Agents are interacting and
may be combined to form larger systems. The interaction and composition
is subjected to a set of six rules or combinators in CCS terminology. Here is

a set of rules written in a form of assumfi~ion.
res u

Action: which is the basic response of an agent to stimulus in its alphabet.
--º- terma.E changes into E as a response of a.
a.E-+E

Summation: which is equivalent to the deterministic choice in CIRCAL.

L Ej..::.E~ , {j E I} if term Ej changes into Ej as a result of stimulus a,
iEIE,-.Ej

then it will choose this term out of a choice set { Ei}.

Composition: which acts as a parallel combinator among agents. The
mathematical notation includes three parts.

Eª E' Fª F' E!...E 1 F!._;F'
(a) EIF-;:E'IF (b) EIF-;:EIF' (e) EIF.:E'IF'

The first two rules show that this operator is commutative and that
each agent is independent as long as the specific port is not combined
with the other agent. The third rule shows that the two ports were com
bined so their activation synchronizes the operation of the two agents.
T is an internal silent action in the composed agent and thus is hidden
from the environment. Note that this definition gives meaning to the

57

send

OOR

receive

eceive 1.1---r_..,...hecko T

OOR

T

Befo re after relabeling after restriction

Figure 14: Cornposition of agents in CCS.

ernpty string in classic automata theory. r is also a complete action in
the sense that it incorporate both input and output.

Restriction: which internalizes sorne actions. E7E' (a, a1tL). No change
E\L-E'\L

is caused if the action labels are not in the internalized ones.

Relabeling: which assigns new labels to actions according to sorne relabel-
. f . f E~E' mg unct10n, . f(a)

E[J] - E'[!]

Constants: which is used for de:fining agents. E7E' (A ~f E).
·A-E'

Only these rules are de:fined, other properties rnay be derived from them.
For example, as in CIRCAL, value passing rnay be derived by defining CCS
ports, each for a value.

To see how these rules can be used, consider the two door example. Since,
each <loor agent has to check the state of the other <loor agent before opening,
suppose that each door has two ports send and receive. Using the relabeling,
composition and restriction operators the problem can be represented as:

((DOORo[check0 / send, checkif receive])I

(DOOR1 [checki/ send, check0 /receive])) \ { check0 , checki}

Each send port becornes checki and each receive port becornes check¡+l
(i = i mod 2). This rneans that a synchronization line combines two pairs of
the former send and receive ports, each port from a different <loor. According
to the third composition rule, each action on this line is internalized and is
no longer observed by the environment. This procedure is described in figure
14.

58

It is easy to see from the basic definitions that simultaneous events can
not be represented. The process evolution as captu~ed in the two first parts
of the composition rule, allows either process E or F to proceed. (Silent or
complete actions (f and 7!) are actually one action.) There are several ways
to overcome this disadvantage. CIRCAL, for example, overcome it by using
dot calculus as a concurrent combinator instead of ces composition.

The theory focuses on equivalence properties of processes. The ba.sic term
is bisimulation which was introduced by Park [Park80] and gives meaning to
the ability of distinguishing between processes according to their externa!
properties. Bisimulation is defined over a range of "equivalence" properties
recursively over all system states. This means that two processes may be
simulated if every state in one process can be matched to similar states in
the other. The main distinction between the bisimulations concentrates on
capturing the silent action, r, i.e., whether T is taken into account or not.
In Strong bisimulation, T is considered as a regular action whereas, in weak
bisimulation or observance equivalence it is not. This allows sorne of the states
in one to be matched with fewer in the other. Notice that this distinction
makes a difference in the external behavior of the agent. For example, the
following two agents:

are equal in the traditional autornata theory, but are different even according
to the weak bisimulation, since agent A will always accept the strings ab or
ac, whereas B may not! (For example, if B is in state "l" after receiving a
it will not receive c.) This means that an externa! observer can distinguish
between the two agents behavior. Another type of bisimulation, observation
congruence, requires each action in one process to be matched by at least
one action in the other. There are other types of bisimulation but they are
outside the scope of this paper.

The importance of CCS is not in its practica! use (which is very limited).
It is rather a theoretical handling of process control. It lays the foundation
for many other methods that may be defined above it. In fact, many meth
ods were developed in this way and applied successfully in various areas.
CIRCAL is only one of them. LOTOS, [Brinksma88] which is a language

59

for communication protocols is another example. Another study that refines
the theory and introduces convenient ways for abstraction can be found in
[BK85].

The bisimulation relations supply a basis for analyzing processes. For
example, in CIRCAL, the proof that equation 16 is consistent with equations
11 to 15 means that the process that is represented in the first equation is
a bisimulation with the process represented in the last ones. These relations
are not restricted to the requirement stage but may be used for consistency
checks later during the design. The power of this concept and its applicability
is not restricted to a particular method. It is of general interest. Far example
sorne properties of CSP can be shown to be bisimulation.

\
The theoretical power of CCS is wide enough to accept general properties

of processes. This is of great importance since many systems are specified
in such terms. This has also safety significance. In fact, safety invariants
or general invariants are part of process logic (P J:,) which was developed for
this purpose. Also, Manna and Pnueli temporal logic [MP83, Pnueli86] can
be incorporated in P J:, [HS85].

3.3 CSP

CSP or Communicating Sequential Processes was first introduced in 1978 by
Hoare [Hoare78] as a programming language for concurrent processes. Since
then it was used intensively in many areas and evolved in many versions
[OH86] 18 . It is probably the most cited algebraic method. TAM, which was
discussed above is one of these (indirect) versions. A more general discussion
on the basics of the method can be found in [Hoare85].

As with other algebraic methods, a process is a sequence of possible
events. All the events that a process can be engaged with, or the process
alphabet (denoted aP for sorne process P) is a finite _set. A process can. be
analyzed according to its traces, or its sequence of symbols recording the

18It is interesting to mention the differences in the basic approaches between ces and
CSP. The former is a theoretical approach for handling processes which is applicable to
almost any environment, software or hardware. In contrast CSP evolved as a programming
language which was later adapted to hardware areas. This has other implication as well.
For example, CCS contains only basic definitions and leaves the specific refinements to be
introduced at the application area. On the other hand, CSP has a very rich set of process
operators and special events definitions only part of which are applied in any area.

60

events in which the process has engaged up to sorne moment. CSP includes
two sets of operators for handling processes and traces. These operators form
a convenient structure for expressing both the process and its specifications.

It is easy to see that traces forma partial order. In fact, it can be proved
that for a given alphabet A a lower and upper bound can be defined. The
lower bound is the ernpty string, i.e., the state before the machine was turned
on. The trace of this is (). An u pper bound of a process is one that can do
everything but without any externa! influence or awareness. Such a process
is actually "chaotic" and thus was given a name CHAOSA.

To get more feeling about the use of the operators, consider the clean
room example. Each door process can be divided into three sub-processes,
CLOSEi, OPEN¡ and NOT¡ (i = O: 1), that represent the sequen.ces of
events that may occur while the <loor is closed, opened or notifying a user
respectively. This can be represented as:

(DOORo/IDOORi) =µX: A.

((open_buto-+ (OP E Non NOTo; OP ENo); CLOSE0 -+ X)I

(open_but 1 -+ (OP EN1 n NOT1 ; OP EN1); CLOSE1 -+X))

This equation describes a recursive process that is composed of two DOOR
processes executing in parallel (denoted '11 '). The environrnent supplies the
first event either open_but0 or open_but1 which initiate a sub-process in the
corresponding door. This choice is deterrninistic and is denoted by 'I'· The
<loor might either open or notify the user that it can not do so. This is a
nondeterrninistic choice which is denoted by 'n'. The '-+'denotes the prefix
of the process that is to its right side. The notation µX : A shows that the
process is recursive with alphabet A= a(DOORollDOOR1). X is a dummy
process variable and the semi colon ';' means a successful termination of the
process to the left and an immedíate initiation of ~he process to the right.
The safety requirernent of the clean room problem can be represented as:

SPEC = (tracesOPENi) l {aOPEN;+d =O (i = i mod2)

This equation requires that the number of occurrences of events (denoted l)
that are in the alphabet of process OP ENi+I in the trace of process OPEN¡
will be zero.

CSP operators are subjected to application laws. These laws are actually
definitions of the operators. Operators may be used for showing that a

61

process satisfies its specifications. In the clean room example this will be
written as DOORollDOOR 1 sat SPEC.

The parallel composition operator is of great importance. It allows two
or more processes to execute concurrently as long as their alphabets are
disjunctive. Mutual events have the same symbols and must executed simul
taneously. If this <loes not occur, the processes deadlock.

The nondeterminism was already represented in the clean room represen
tation. It is interesting to mention that CSP has two nondeterminism choices.
The one shown means that the external environment is totally unaware of the
internal process and thus can not infiuence it. The other operator (denoted
D) gives the external environment limited influence by allowing it to choose
the first event and then give up control.

Nondeterminism may be introduced by application of a hiding operator
(denoted \). This is similar to the restriction operator in CCS though there
is a slight difference between the two. CCS leaves a T sign in place of the
restricted label, whereas nothing is left in CSP after the hiding takes place.
This leads to another major difference in the possible evolution of a process
as described in the two methods. In ces The left T can be used to guard
the process and thus the process is still bounded even when it is completely
internalized. A complete internal CSP process is not guarded at all and thus
necessarily reduces to CHA OS.

CSP is a well developed method that has been used in many areas. Its
application has been extended far beyond the original programming lang1:1age
and is still applied to many areas. The original operators form a wide basis
for defining new special purpose ones (e.g., [Moore90]). The theory behind
CSP is simple and enables these new definitions.

CSP is event driven and is concentrated around the actions and not sys
tem states. This implies that system requirements have to be specified in
terms of events and not in terms of states. On the other hand many prop
erties of reactive systems are specified in terms of states. In these cases an
event interpretation may be hard to understand. For example, the safety
specifications of the clean room are clearly understood in state terms "the
two doors should not be opened simultaneously". This interpretation in event
terms as shown in the SPEC definition is not straightforward.

Another problem that is not unique to CSP but exists in many alge
braic methods is time application. Time has to be introduced through sorne
external dock component. This is not natural. It is more common to find

62

requirements specified in usual time units and not in term of computer cycles.

4 Summary

In this paper we presented several modern methods for behavior description
and discussed their abilities in practical use. Sorne of the methods were
discussed in more detail and others were briefly represented.

We restricted this survey to methods that can be used for behavior de
scription that include time and concurrent capabilities. The presented meth
ods include all three properties, i.e., they can be used for a black box descrip
tion, they include capabilities for parallel composition of many processes and
they can represent time passage and time restrictions that are imposed on
the system. We are aware to the fact that there are other methods that are
considered "behavior description", however, many of them do not include
one or more of the other properties. It is also true that it is hard to draw
a clear line between behavior description and design. In fact, two of the
described methods, Petri nets and ESM/RTTL, may also be considered as
design tools. However, we used them for describing the clean room behavior.
In view of the above, almost every programming language that includes con
current processes such as Ada, OCCAM, Concurrent Pascal, etc. can be used
for behavior description. Therefore, our choice could not be independent of
subjective discretion.

We tried to concentrate on methods that represent different approaches to
the problem. Statecharts is probably the first method that coped successfully
with the problem of exponential explosion of states and transitions. Mod
echarts and RTL represent an approach that maps time restrictions into the
domain of predicate calculus in an attempt to prove existence or nonexistence
or certain properties in a system. ESM/RTTL uses a different approach and
makes use of temporal logic for establishing a mathematical ·theory which,
in turn, serves as a basis for the proof scheme. Petri-nets is special in its
representation of states and transitions and was widely used since its in
troduction. TAM and CIRCAL are algebraic methods that represent two
different approaches. TAM uses a CSP structure enhanced with direct time
representation, while CIRCAL is based on CCS and needs to define a "dock"
agent for representing time. IC that was briefly discussed, uses time as its
only parameter for determining interrelations among states or events.

63

It is almost self evident from the discussion that no method is a "silver
bullet" for general use. It seems that more than one method are needed to
describe and analyze complex reactive systems. If a set of methods is used
other questions arise. For example, what combination of methods is best for
a given purpose? how should they integrate?

Although many methods are more powerful than finite state machines
their practical use is alrnost always restricted to handle that machine type.
Further, since every built systern is finite, it can be described as a finite
state machine. Therefore, a developer can avoid being entangled in complex
(high descriptive power) models and restrict hirnself to simple ones. The use
of simple models does not imply that plain finite state rnachine should be
used for now and ever. Ways for focusing attention, abstracting out detail
and enabling analyses should be incorporated in each method.

Most of the methods claim to be "event driven". Is this an advantage
in reactive systems? The answer to this question is not sharp. It is also
not clear to what extent is a method event driven. It seerns that behavior
of reactive systems is governed by a combination of events and conditions.
This means that both, events and conditions, matter and both need to be
represented and analyzed. In many cases the conditions are very complicated
and thus are more problematic than the pure events. As shown, state based
methods can represent such conditions, but the analysis is still difficult.

Process based methods are almost pure event driven. Systems are rep
resented as sequences of events executing sequentially or concurrently. As
a result, the description of branching becomes cumbersome when it is state
dependent. (Even a simple systems, such as the clean room, branching be
came less comprehensible in TAM and CIRCAL representation.) This limits
the practica! use of these methods.

Process based methods are usually less pictorial19 or at least their devel
opers did not attempt to introduce pictorial tools. Although pictorial rep
resentation is not always superior to programming-like languages [Green77,
FG79, Green86] it seems that in reactive systems it is superior. It might
be that the reason for this is the high interaction among interdisciplinary
personal that are used to pictorial representations. Almost every engineering
discipline uses pictorial tools for solving difficult control problems. For exam-

19 "Pictorial" is used here in a very wide meaning. For example, tables, decision trees,
etc. are considered to be pictorial.

64

ple, figures of system parts and their projections are used as communication
media in mechanical engineering, "blue prints" or block diagrarns are used in
electrical engineering. Even "pure physics" uses Finmam diagrams to reason
about quantum transitions. Notice also that control of reactive systems is
basically a rnapping of the behavior of each subsystem or component. This
means that the control fl.ow matches the system structure to a certain extent.
Such structures are almost always given in a pictorial description.

Another difficulty in using algebraic methods is their own cornplexity.
When many operators are used (as in CSP) the expressive power in creases,
but the ability to analyze decreases. This is also the reason that methods that
apply many operators (many "symbols") tend to be more human dependent.
The more experienced user, the better the results.

Despite the above critique on process based rnethods they seern to be
promising at least in safety critica! systems. In such systems it is desirable
to prove that the safety property is consistent with the system behavior.
Process-based methods have the property that proofs may be generated from
the requirements specification. However, the expressive power of process
based methods is relatively weak, making the proofs overly complicated.
A combination of process-based and state-based methods may increase the,
expressive power of the representation, thus making simpler safety proofs
possible.

Another factor that was briefl.y discussed in Statecharts is the way a
method handles unexpected events. There are two problems with these
events. The first is their representation. It is obvious that handling such
events will increase the number of states and transitions. As was shown, even
methods as Statecharts or Modecharts are unable to cope with this problem
efficiently. We are not aware of any method that handles unexpected events
efficiently.

The other problem with unexpected events is their generation. Jaffe at.
al. [JLHM91] use a plain finite state machine for listing and categorizing
unexpected events. Others use simple check lists [MMW84, Tuma84]. These
approaches are general and obviously help the user in creating unexpected
events. The problern with such approaches is that the user can very easily
overlook many of the events. Even if we consider the above approaches as
complete ones, i.e., containing all the possible unexpected events of a system,
we still miss the incorporation of these ideas into a development method that
will oblige their consideration. N ot that the user will ha ve to specify every

65

unexpected event (this is certainly impractical in large systems), but he will
be obliged to consider them.

The above discussion gains importance when dealing with safety critica!
systems. In such systems, catastrophe has to be avoided at all costs. It is well
known [Leveson86] that unexpected events highly contribute to catastrophe
development, and therefore, they have to be modeled into the system.

Time restriction is another point that is worth discussion. Every method
has its own difficulties in representing and analyzing time constraints. RTL
and temporal logic use operators that transfer temporal markers into another
mathematical domain. As a result, time restrictions and other requirements
are handled similarly, i.e., as predicates in the calculus, or axioms in a theory.
This has an obvious advantage since a single methodology is used for all
system constraints. The disadvantage of this attitude is the high cornplexity
and high sensitivity to errors.

The intuition and simplicity of interval. calculus has a great appeal for
being used for time description. It can certainly be analyzed. The disadvan
tage of this method is that only time descriptions can be handled, and it is
diffi.cult to generalize it. It rnight be used in cases where every requirement
has time constraints. It is also possible to use this rnethod in combination
with others.

There is still another factor that may be considered, simulation capabili
ties. This property is of particular irnportance in areas where a strong human
machine interface exists (but is not restricted to this area). In view of this,
it is also of significant safety importance. Many famous catastrophes were
related to human errors. Three mile island and Chernobyl are two examples.
Statecharts and Petri nets can be easily simulated and rnay be used for this
systern type.

References

[Allen83] J. F. Allen, "Maintaining Knowledge about Temporal In
tervals". Communication Of The A.C.M., vol. 26, pp. 832-843,
1983.

[AVD76] P. Azema, R. Valette and M. Diaz, "Petri-nets as a Comrnon
tool for Design Verification and Hardware Simulation". In

66

Proceedings of the '13-th IEEE Design Automation ConferenceJ pp.
109-116, June, 1976.

[BK85] J. A. Bergstra and J. W. Klop, "Algebra for Communication
Processes with Abstraction". Journal of Theoretical Computer
ScienceJ vol. 37. pp. 77-121, 1985.

[Brinksma88] E. Brinksma, "Information processing Systems - Open
Systems Interconnection - LOTOS - A Formal Description
Technique Bases U pon the Temporal Ordering of Observa
tional Behavior". Draft International Standard, IS08807, 1988.

[FG79] M. J. Fitter and T. R. G. Green, "When Do Diagrams Make
Good Computer Language?" Int. Journal of Man-Machine
Studies, vol. 11, pp. 235-261, 1979.

[GL89] R. Gerber and I. Lee, "Communicating Shared Resources: A
Model for Distributed Real-Time Systems". Proceedings of
the 1989 Real-Time Systems Symposium.

[GLZ88] R. Gerber, I. Lee and A. Zwarico, "A Complete Axiomatiza
tion of Real-Time Processes". Technical Report MS-CIS-88-88
GRASP LAB 162, Department of Computer and Information Sci
ence, University of Pennsylvania, Philadelphia.

[GMMP89] C. Ghessi, D. Mandrioli, S. Morasca and M. Pezze, "A General
Way to Put Time in Petri Nets".

[Green77] T. R. G. Green, "Conditional Program Statements and
Their Comprehensibility to Professional Programmers".
Journal of Occupational PsychologyJ vol. 50, pp. 93-1.09, 1977.

[Green86] T. R. G. Green, "Design and Use of Programming Lan
guage". Software System Design MethodsJ vol. F22, Springer
Verlag, 1986.

[Harel86] David Harel, · "Statecharts: A Visual Formalism for Com
plex Systems". Science of Computer ProgrammingJ 8, 231-274,
1987.

67

[Hennessy85] M. Hennessy, "Acceptance Trees". J. ACM, vol. 32, pp.
896-928, 1985.

[HGdR88] C. Huizing, R. Gerth and W. P. de Roever, "Modelling State
charts Behaviour in a Fully Abstract Way". Technical Report
CSN88/07, Eindhoven University of Technology, Department of
Mathematics and Computer Science, The Netherlands. July, 1988.

[HLN88] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sher
man and A. Shtul-Trauring, "STATEMATE: A Working En
vironment for the Development of Complex Reactive Sys
tems". In Proceedings of The 10-th International Conference on
Software Engineering, April 11-15, 1988, Singapore, pp. 396-406,
1988.

[HM80] M. Hennessy and R. Milner, "On Observing Nondeterminism
and Concurrency". Lecture Notes in Computer Science, vol. 85,
Springer-Verlag, New-York, 1980.

[HM85] M. Hennessy and R. Milner, "Algebraic Laws for Nondeter
minism and Concurrency". Journal of the ACM, vol. 32, pp.
137-161, 1985.

[Hoare78] C. A. R. Hoare, "Communicating Sequential Processes".
Communications of the ACM, vol. 21(8), pp. 666-667, 1987

[Hoare85] C. A. R. Hoare, "Communicating Sequential Processes".
Prentice Hall, 1985.

[HRdR88] J. Hooman, S. Ramesh and W. P. de Roever, '"'A Compositional
Axiomatization of Statecharts: Soundness and Cornplete
ness". DESCARTES, Document D4-2-2-2, Project 937, Package
4, October, 1988.

[HS85] M. C. Hennessy and C. P. Stirling, "The Power of Futúre Per
fect in Prograrn Logics". Information and Control, vol. 67, pp.
23-52, 1985.

68

[HV87] . M. A. Holliday and M. K. Vernon, "A Generalized Petri-Net
Model for Performance Analysis". IEEE Transactions on Soft
ware Engineering, SE-13(12) pp. 1297-1310, 1987.

[JLHM91] M. S. Jaffe, N. G. Leveson, M. Heimdahl and B. Melhart,
"Software Requirement Analysis Control for Real-Time
Process-Control Systems". IEEE Transactions on Software En
gineering, to appear March, 1991.

[JM86] F. Jahanian and A. K. Mok, "Safety Analysis of Timing Prop
erties in Real-Time Systems". IEEE Transactions on Software
Engineering, SE-12, pp. 890-904, September, 1986.

[JM87) F. Jahanian and A. K. Mok, "A Graph-Theoretic Approach
for Timing Analysis and its Implementation". IEEE Trans
actions on Computers, C-36, pp. 961-975, August, 1987.

[JM89] F. Jahanian and A. K. Mok, "Modechart: A Specification Lan
guage for Real-Time Systems". IEEE Transactíons on Software
Engineering, 1989.

[KMS84] J. Kramer, J. Magee, and M. Sloman, "A Software Architecture
for Distributed Control Systems". Automatica, vol. 20(1), pp.
93-102, 1984.

[Ladkin86.l] P. B. Ladkin, "Primitives and Units for Time Specifi
cations" .. In Proceeding of the AAAl-86, pp. 354-359, Morgan
Kaufmann, 1986.

[Ladkin86.2] P. B. Ladkin, "Time Representation: A Taxonomy of
Interval Relations". In Proceeding of the AAAI-86, pp. 360-366,
Morgan Kaufmann, 1986.

[Ladkin87] P. B. Ladkin, "Specification of Time Dependencies and
Synthesis of Concurrent Processes". In Proceeding of the 9-th
International Conference on Software Engineering, Monterey Cali
fornia, USA, pp. 106-115, 1987.

[Leveson86] N. G. Leveson, "Software Safety: Why, What and How".
Computíng Surveys, vol. 18(2), pp. 125-163, 1986.

69

[LP81] H. R. Lewis and C. H. Papadimitriou, "Elements of the Theory
of Computation". Prentice-Hall, Inc., 1981.

[LHHR091] N. G. Leveson et. al. "Experiences Using Statecharts on a
Complex System Requirements Specification".

[LS87] N. G. Leveson and J. L. Stolzy, "Safety Analysis Using Petri
Nets". IEEE Transactions on Software Engineering, SE-13(3), pp.
386-397, 1987.

[LZ88] l. Lee and A. Zwarico, "Timed Acceptances: A model of Time
Dependent Processes".

[MF76] P. M. Merlin and D. J. Farber, "Recoverability of Commu
nication Protocols-Implications of a Theoretical Study".
IEEE Transactions of Communication, vol. COM-24, pp. 1036-
1043, 1976.

[MMW84] P. Middleton and S. McWeathy, A Methodology For Improv
ing Software Safety Assurance". Minutes of the Third Software
System Working Group S 3WG, Crystal-City (Arlington), USA,
September, 1984.

[Moore90] A. P. Moore, "The Specification and Verified Decomposi
tion of System Requirements U sing CSP". IEEE Transac
tions on Software Engineering1 SE-16(9), pp. 932-948, 1990.

[MP83] Z. Manna and A. Pnueli, "How to Cook a Temporal Proof
System for your Pet Language". In Proceedings of the 10-th
Annual ACM Symposium on Principies of Programming Languages1

Austin, Texas, pp. 141-154, 1983.

[Merlin74] P. M. Merlin, "A Study of the Recoverability of Comput
ing Systems". Ph.D. Dissertation, Department of Information and
Computer Science, University oí California, Irvine. 1974.

[Milne80] G. J. Milne "The Representation of Communication and
Concurrency". Rep. 40881 Computer Science, California Insti
tute of Technology, 1980.

70

[Milne82] G. J. Milne "Abstraction and Nondeterminism in Concur
rent Systems". In Proceedings of 3rd International Conference
on Distributed Computing Systems, IEEE Computer Society Press,
~ew-York, pp. 358-364, 1982.

[Milne83] G. J. Milne "CIRCAL: A Calculus for Circuit Description".
INTEGRATION, the VLSJ Journal 1,2 and 3, pp. 121-160, 1983.

[l\1ilne85] G. J. :V1ilne "CIRCAL and Representation of Communica
tion Concurrency and Time". A CM Transactions on Program
ming Languages and Systems, vol. 7, pp. 270-298, April 1985.

[Milner80] R. Milner "A Calculus of Communicating Systems". Lec
ture Notes in Computer Science, vol. 92, Springer-Verlag, New
York, 1980.

[Milner89] R. Milner "Communication and Concurrency". Prentice
Hall, 1989.

[Mok85] A. K. Mok, "SARTOR-a Design Environment for Real-Time
Systems". Proceedings of 9-th IEEE COMPSAC, Chicago, Illinois,
pp. 174-181, 198.5.

[OH86] E. R. Oldberg and C. A. R. Hoare, "Specification-oriented Se
mantics for Communicating Processes". Acta Informatica,
vol. 23(1), pp. 9-66, 1986.

[Ostroff88] J. S. Ostroff, "Modular Reasoning in the ESM/RTTL
Framework for Real-Time Systems". Technical Report CS-88-
03, York University, North York, Ontario, Computer Science De-
partment.

[Ostroff89] J. S. Ostroff, "Temporal Logic for Real-Time Systems".
Research Studies Press Ltd., John Wiley & Sons Inc., 1989.

[OW87] J. S. Ostroff and W. M. Wonham, "State Machines, Temporal
Logic and Control: a Framework for Discrete Event Sys
tems". In Proceedings of the 26th IEEE Conference on Decision
and Control, Los Angeles, California, pp. 681-686, 1987.

71

[Park80] D. M. R. Park, "Concurrency and Automata on lnfinite Se
quences". Lecture Notes in Computer Science, vol. 104 Springer
Verlag, 1980.

[Peterson81) J. L. Peterson, "Petri Net, Theory and Modeling of Sys
tems". Englewood Cliffs, NJ: Prentice-Hall, 1981.

[Pnueli86] A. Pnueli, "Applications of Temporal Logic to the Specifi
cation of Reactive Systems: A Survey of Current Trends".
In J. de Bakker, W. P. de Roever and G. Rozenburg, editors, Cur
rent Trends in Concurrency, LNCS 244. Springer Verlag, 1986.

[Tuma84) F. A. Turna, "Verifying Software System Safety". Minutes
of the Third Software System Working Group S 3 WG, Crystal-City
(Arlington), USA, September, 1984.

[VNG90] F. Vahid, S. Narayan and D. D. Gajski, "Synthesis from Specifi
cations: Basic Concepts". Technícal Report 90-03, Information
and Computer Science, UCI, 1990.

[ZJ89] P. Zave and D. Jackson, "Practica! Specification Techniques
for Control-Oriented Systems". In G. X. Ritter, editor Infor
mation Processing, Elsevier Science Publishers, 1989.

[Zwarico88) A. Zwarico, "Timed Acceptance: An Algebra of of Time
Dependent Computing". PhD Thesis, Department of Computer
and Information Science, University of Pennsylvania, Philadelphia.

72

