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Abstractl

Many researchers in Al and Cognitive Science believe
that the information processing complexity of a mecha-
nism is reflected in the complexity of a description of its
behavior. In this paper, we distinguish two types of com-
plexity and demonstrate that neither one can be an
objective property of the underlying physical system. A
shift in the method or granularity of observation can
cause a system's behavioral description to change in
both the number of apparent states and the complexity
class. These examples demonstrate how the act of obser-
vation itself can suggest frivolous explanations of physi-
cal phenomena, up to and including computation.

Introduction

Cognitive Science has generally worked under the
assumption that complex behaviors arise from complex
computational processes. The generative enterprise in
linguistics, for example, maintains that the simplest
models of animal behavior - as finite state or stochastic
processes - are inadequate for the task of describing lan-
guage. One needs at least a context-free or context sen-
sitive model to describe or explain language structure.

There are so many difficulties with the notion
of linguistic level based on left-to-right genera-
tion, both in terms of complexity of description
and lack of explanatory power, that it seems
pointless to pursue this approach any further.?

Even Newell and Simon's physical symbol system
hypothesis (Newell and Simon, 1976) has gone as far as
identifying recursive computation as the necessary and
sufficient condition for intelligent action. Since the pub-
lication of this hypothesis, the general consensus of
Cognitive Science has held that the brain is computing
something; determining exactly what it is computing
has emerged as the goal of this new field.

As a corollary to the results presented herein, we
believe that questions regarding the contents of the

1. This work was supported by Office of Naval
Research grant N0O0014-92-J-1195.
2. Chomsky (1957, p 24)
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mind’s program, or grammar, are fundamentally flawed.
Computational complexity, often used to separate cogni-
tive behaviors from other types of animal behavior, will
be shown to be dependent upon the observation mecha-
nism as well as the process under examination. While
Putnam (1988) has proved that all open physical system
can have post hoc interpretations as arbitrary abstract
finite state machines and Searle (1990) claims that
Wordstar must be running on the wall behind him (if
only we could pick out the right bits), neither considers
the effects of the observer on the complexity class of the
behavior.

The rest of the paper is organized as follows. We
first emphasize the difference between complexion, a
judgement related to the number of moving parts (or
rules, or lines of code) in a system, and the complexity
class, which may be viewed as the generative capacity
of the chosen descriptive framework. Once we recog-
nize that descriptive frameworks apply to measurements
of a system’s state, we can demonstrate that simple
changes of the observation method or measurement
granularity can affect either the system’s complexion or
its class. A mere shift in measurement granularity, in
other words, can increase the apparent complexity of a
system from a context free language to a context sensi-
tive language. Finally, we discuss the meaning of these
results to the Cognitive Science community.

Measurements and Complexity

The foundation of the assumption of the symbolic
nature of cognition lies in descriptions of human and
animal behavior. For example, a list of moves describes
the behavior of the chess player, a transcript records lin-
guistic behavior of conversation, a protocol of intro-
spected states during problem solving describes
deliberative means-ends analysis, and a sequence of
(x,y) locations over time is a record of eye movement in
a study of reading. To construct these descriptions of
behavior, one must first collect data from that behavior
in the form of measurements. We assume that our mea-
surements are discrete since we must be able to write

them down.? The measurement may be simple, as in the
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case of the cartesian coordinates, or it may be more
involved, like the transcript or protocol. To emphasize
the creation of discrete symbolic representations of the
physical events in the world, we will identify this pro-
cess as symbolization. Transcription of continuous
speech, for example, is a symbolization of speech pro-
duction. It is impossible to avoid symbolization; there is
simply too much information inherent in the physical
process to pass along without it. Imagine trying to
describe the conversation between two people on a
street corner. The information generated by such an
encounter is infinite due to large number of real dimen-
sions, of movement, sound, time, etc. Researchers avoid
these complications by symbolizing the physical action
into sequences of measurable events, such as phonemes,
words, and sentences.

Information is clearly lost during symbolization. A
continuous real value is a bottomless source of binary
digits, yet only a small number of distinctions are
retained through the transduction of measurement. Of
course, no one wants to be shuffling high precision real
numbers about when a few bits can do, but it is wrong to
believe that the information loss is mere modelling error
if, as we show below, it confuses our efforts at under-
standing the underlying system.

Although judgements of system complexity have
no globally accepted methodology, the existing
approaches are sharply divided into two groups. The
first appeals to the common sense notion which judges
the complexity of a system by the number of parts mov-
ing around inside it. Thus a system is more complex if it
has a larger number of unique states induced by their
changeable parts. The term complexion has been
adopted to refer to systems whose complexity derives
from the number of unique moving parts comprising the
system (Aida et al, 1984).

The second approach is much more subtle. Imagine
a sequence of mechanisms, as specified by a fixed
framework, with ever increasing complexion. As the
complexion of a device increases, it eventually reaches a
limit determined by the framework of changeable parts
used in the system. This framework-dependent limit can
be modified, however, through the addition or removal
of framework constraints. Followers of Chomsky’s early
work (1957, 1965) in computer science reported on this
phenomenon and enshrined the four classes of formal
languages, each with a different framework. Regular,
context free, context sensitive, and recursive languages

3. This becomes crucial when trying to measure an
apparent continuous quantity like temperature, velocity,
or mass. Recording continuous signals simply postpones
the eventual discretization. Rather than measuring the
original event, one measures its analog.
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FIGURE 1. Finite state descriptions of
equivalent complexity. The first subsequence is
from the sequence of all r’s. The second
subsequence is from a completely random
sequence. Both sequences could be generated
by a single state generator since each new
symbol is independent from all other preceding
symbols.

are separated by constraints on the grammars used to
specify them, and correlate quite beautifully with
automata operating under alternative constraints. Of
course, we now know that many other classes are possi-
ble by placing different constraints on how the change-
able parts interact (see many of the exercises in
(Hopcroft and Ullman, 1979)).

These notions of complexity have been traditionally
applied only to computational systems. However, recent
work by Crutchfield and Young (1991) suggests that one
may be able to talk similarly about the complexity class
of a physical process. Crutchfield and Young are inter-
ested in the problem of finding models for physical sys-
tems based solely on measurements of the systems’
state. Rather than assuming a stream of noisy numerical
measurements, they explore the limitations of taking
very crude measurements. The crudest measurement in
their eyes is a single decision boundary: either the state
of the system is to the left or the right of the boundary.
Unlike numerical measurements which can be described
mathematically, the binary sequence they collect
requires a computational description: i.e. it must have
been generated by a particular automaton. Their paper
provides two key insights into the problem of recogniz-
ing complexity as it arises in nature.

First, the minimality of the induced automaton is
important. Crutchfield and Young propose that the mini-
mal finite state generator induced from a sequence of
discrete measurements of a system, provides a realistic
judgement of the complexity of the physical system
under observation. Minimality creates equivalence
classes of descriptions based on the amount of structure
contained in the generated sequence. Consider two sys-
tems--the first constantly emits the same symbol, while
the second generates a completely random sequence of
two different symbols. Both systems can be described
by one-state machines capable of generating subse-
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FIGURE 2. The state machines induced
from periodic and chaotic systems. Note
that the lower system does not produce 11
pairs. This omission is the reason for the
increase in number of states.

quences of the observed sequences (Figure 1). In the
constant case, the machine has a single transition. The
random sequence, on the other hand, has a single state
but two stochastic transitions. The ability to describe
these sequences with single state generators is equiva-
lent to saying that any subsequence of either sequence
will provide no additional information concerning the
next symbol in the sequence. Thus total certainty and
total ignorance of future events are equivalent in this
framework.

Second, they show that physical systems with limit
cycles produced streams of bits which appear to be gen-
erated by minimal finite state machines with complex-
ion increasing with the period of the cycle. Thus a
system with a cycle of period two is held to be as com-
plex as a two-state machine. Similar complexion is
exhibited by systems with constrained ergodic behavior,
where the number of induced states is determined by the
regularities in the visiting of particular bands. These are
shown schematically in (Figure 2).

Third, Crutchfield and Young proved that the mini-
mal machines needed to describe the behavior of the
simple systems when tuned to criticality had an infinite
number of states. At criticality, a system displays
unbounded dependencies of behavior across space and/
or time (Schroeder, 1991). Examples of such self-simi-
lar behavior can be found in the spread of forest fires at
the percolation threshold of tree density (Bak et al.,
1990) and sand pile avalanches (Bak and Chen, 1991).
These behaviors are more compactly described as
indexed context free languages, a class thought to be
consistent with the weak generative capacity of natural
languages.

We began to explore the origins of computationally
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complex behavior in response to the question of genera-
tive capacity of certain neural network automata which
have finite specifications and yet infinite state spaces
(Pollack, 1992). Our original hypothesis began with an
assumption that there would be yet another mapping
between Chomsky’s hierarchy of languages and the
state space dynamics of the recurrent neural network.
We were encouraged by Crutchfield and Young’s paper
and a similar conjecture regarding Cellular Automata in
the work of Wolfram (1984) and Langton (1990). After
many attempts to reconcile our recurrent neural network
findings with both the dynamical systems results and the
traditional views of intrinsic complexity, we believe that
the difficulty of our endeavor lies in the assumption of
intrinsic complexity.

Apparent Complexion

While the number of states in the systems studied by
Crutchfield and Young can be selected by an external
control parameter, the task of merely increasing the
number of apparent states of a system is trivial. The key
lies in being more sensitive to distinct states. A rock at
one level of description never changes it state. By zoom-
ing to an atomic level, the rock now enters and exits a
myriad of unique states and appears highly complex.
Such increases are not interesting since this game can be
played with any physical system. Putnam (1988) has
proved that an open system has sufficient state genera-
tion capacity to support arbitrary finite state interpreta-
tions. Searle (1990) has also used this notion to question
the relevance of computational models to cognition with
his “Wordstar on my wall” example. Thus the apparent
complexion, i.e. number of moving parts, fluctuates as
the granularity of the observation changes.

Apparent Complexity

Both Putnam and Searle steered clear of the bulwark
designed by Chomsky, namely the issue of complexity
classes and generative capacity. Is generative capacity
also sensitive to manipulation of the observation
method? The answer is yes. We will present some sim-
ple systems with at least two computational interpreta-
tions: a context free language and a context sensitive
language.

Consider a point moving in a circular orbit with a
fixed rotational velocity, such as the end of a rotating
rod spinning around a fixed center, or imagine watching
a white dot on a spinning bicycle wheel. We measure the
location of the dot in the spirit of Crutchfield and Young,
by periodically sampling the location with a single deci-



FIGURE 3. Decision regions which induce a
context free language. 6 is the current angle of
rotation. At the time of sampling, if the point
is to the left (right) of the dividing line, an 1
(x) is generated.

c

FIGURE 4. Decision regions which induce a
context free language.

sion boundary (Figure 2). If the point is to the left of
boundary at the time of the sample, we write down an
“1”. Likewise, we write down an “r” when the point is

on the other side. (The probability of the point landing

on the boundary is zero and can arbitrarily be assigned
to either category without affecting the results below.)
In the limit, we will have recorded an infinite sequence
of symbols containing long sequences of r’s and 1’s.

The specific ordering of symbols observed in a long
sequence of multiple rotations is dependent upon the
initial rotational angle of the system. However, the
sequence does possess a number of recurring structural
regularities, which we call sentences: a run of x's fol-
lowed by a run of 1's. For a fixed rotational velocity
(rotations per time unit) and sampling rate, the observed
system will generate sentences of the form r"1™
(n, m>0). (The notation " indicates a sequence of n
r’s. A more rigorous derivation appears in (Kolen and
Pollack, 1993).) For a fixed sampling rate, each rota-
tional velocity specifies up to three sentences whose
number of r’s and 1’s differ by at most one. These sen-
tences repeat in an arbitrary manner. Thus a typical sub-

sequence of a rotator which produces sentences r"1",
"1™ £"*111 would look like

r“l"”r"l“r"l"* 1 rn+l 1"r"1"r"1"+l |

A language of sentences may be constructed by
examining the families of sentences generated by a large
collection of individuals, much like the English lan-
guage is induced from the unique language abilities of
its individual speakers. In this context, a language could
be induced from a population of rotators with different
rotational velocities where individuals generate sen-

tences of the form {x"1", x"1™! x"*11"} ;> 0. The
resulting language can be described by a context free
grammar and has unbounded dependencies; the number
of 1’s is a function of the number of preceding r’s.
These two constraints on the language imply that the
induced language is context free.

To show that this complexity class assignment is an
artifact of the observational mechanism, consider the
mechanism which reports three disjoint regions: 1, e,
and r (Figure 3). Now the same rotating point will gen-
erate sequences of the form

rr..rrcc..ccll.llrr..rrce..ccll..1ll...

For a fixed sampling rate, each rotational velocity
specifies up to seven sentences, r"e™1K, when n, m,
and k can differ no by no more than one. Again, a lan-
guage of sentences may be constructed containing all
sentences in which the number of x’s, ¢’s, and 1’s dif-
fers by no more than one. The resulting language is con-
text sensitive since it can be described by a context
sensitive grammar and cannot be context free as it is the
finite union of several context sensitive languages

related to x"c"1".

The previous example shows how a population of
system behaviors, e.g. the sentential behavior emerging
from the family of rotators with different rotational
velocities, can be described by computational models
from different classes. The two languages observed in
the family of rotators can also be observed in the
dynamics of a single deterministic system. A slow-mov-
ing chaotic dynamical system controlling the rotational
velocity parameter in a single system can express the
same behavior as a population of rotators with individ-
ual rotational velocities. The equations below describes
a rotating point with cartesian location (xg x;) and a

slowly changing rotational velocity 8 controlled by the
subsystem defined by x,, x5, and x,.

x, = tanh (x,— Otanhx,)
tanh (x, + 8tanhx;)

X

X, = 4x,(1—x,)

4 1
Xy = X+ 5%
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FIGURE 5. The two symbol discrimination
of the variable rotational speed system.

1,1 1
Xy = x4(1+x4(x2—§) (i—itanthg))

1. 4
0 = §9+§x4

This system slowly spirals around the (xg, x;) ori-
gin. The value of x, is a chaotic noise generator which
is smoothed by the dynamics of x5 and rotational accel-
eration of x,.

As before, we construct two measurement mecha-
nisms and examine the structures in the generated
sequence of measurements. The first measurement
device outputs an r if x is greater than zero, and an 1

otherwise. From this behavior, the graph in Figure 4
plots the number of consecutive x's versus the number
of consecutive 1's. The diagonal line is indicative of a
context free language as a simple corollary to the pump-
ing lemma for regular languages (Hopcroft and Ullman,
1979).

If the underlying language is regular then according
to the pumping lemma one would expect to find pumped

revisions of r"1", i.e. there exists some assignment of
u, v, and w such that uvw = r"1" which indicates that

the set of strings uv'w, for i >0, is also in the language.
Since the graph plots number of consecutive r’s versus

the number of consecutive 1’s, the uv'w relationship
constrains straight lines in the graph to be either vertical,
as in the case of v being all 1’s, or horizontal, as in the
case of v being all x’s. If v is a string of the form r"lb,
then the graph would not contain any straight lines. A
formal proof appears in (Kolen and Pollack, 1993).
When the measurement device is changed from two
regions to three, we see a parallel change in the Chom-
sky class of the measurement sequence from context
free to context sensitive. Figure 5 shows the relationship
between the number of consecutive x's, consecutive c's,
and consecutive 1's. As in the previous case, one can
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FIGURE 6. The three symbol discrimination
of the variable system.

interpret the diagonal line in the graph as the footprint of
a context sensitive generator.

Discussion: The Observers’ Paradox

The preceding example suggests a paradox: the variable
speed rotator, under slightly different measurement
granularities, can be seen as both a context free and con-
text sensitive generator. Yet how can this be if computa-
tional complexity is an inherent property of a physical
system, like mass or temperature? What attribute of the
rotator is responsible for the generative capacity of this
system? Obviously, there is no explicit stack pushing
and popping nonterminal symbols. The rotator does
have a particular invariant: equal angles are swept in
equal time. By dividing the orbit of the point into two
equal halves, we have ensured that the system will
spend almost the same amount of time in each decision
region, and thus “balancing the parentheses.” One may
argue that the rotational velocity and the current angle
together implement the stack, hence the stack is really
there. Such an argument ignores the properties of the
stack, namely the ability to arbitrarily push and pop
symbols. Likewise, claims regarding an internal Turing
machine tape are misguided.

The decision of the observer to break the infinite
sequence of symbols into sentences can also affect the
complexity class. Similar arguments for sentences of the
form "1™ (|4], |b] < C) gives rise to a context
sensitive language. From this perspective, we can see
that Crutchfield and Young accidentally biased the lan-
guages they found by assuming closure under sub-
strings, i.e., if string x is in language L then all
substrings of x are also in L, which undoubtedly



affected the induced minimal automata and criticality
languages. Strategic selection of measurement devices
can induce an infinite collection of languages from
many different complexity classes: the choice of method
and granularity of observation “selects” the computa-
tional complexity of a physical system.

In other words, the computational complexity of a
physical system cannot be an intrinsic, objective
property; rather, it emerges from the interaction of sys-
tem state dynamics and measurement as established by
an observer.

We believe this result has deep meaning for cogni-
tive science. It suggests that the hierarchy of formal lan-
guages and automata is irrelevant to the accounts of
complexity in physical systems. Since the brain is a
physical system, we cannot know the complexity class
of its behavior without establishing an observer. Thus
the Physical Symbol System Hypothesis relies on an
unmentioned observer to establish that an ant’s behavior
is not computational while problem-solving by humans
is. The necessary and sufficient conditions of universal
computation in the Physical Symbol System Hypothesis
provide no insight into cognitive behavior; rather, they it
implies that humans are capable of writing down behav-
ioral descriptions which require universal computation
to simulate. Even the computational intractability of a
competence model (e.g. Barton, et al, 1987) is depen-
dent on a particular symbolization of human behavior,
not an underlying mechanical capacity, implying that
the rejection of mathematical models on the basis of
insufficient computational complexity is groundless.

As our ability to establish good measurements has
increased, we now know that there are many areas in
nature where unbounded dependencies and systematic
forms of recursive structuring occur. The coding of the
genome, the immunological system, as well in the sim-
ple growth of botanical structures, are but a few. These
systems are proving as complex as human languages,
yet it is only Cognitive science which presumes upon
the “specialness” of language and human mental culture
to justify a different set of scientific tools and explana-
tions based upon the formal symbol manipulation
capacity of the computer. We may have to stop.
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