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RESEARCH ARTICLE

Effects of a very high saturated fat diet on

LDL particles in adults with atherogenic

dyslipidemia: A randomized controlled trial

Sally Chiu, Paul T. Williams, Ronald M. Krauss*

Children’s Hospital Oakland Research Institute, Oakland, California, United States of America

* rkrauss@chori.org

Abstract

Background

Previous studies have shown that increases in LDL-cholesterol resulting from substitution of

dietary saturated fat for carbohydrate or unsaturated fat are due primarily to increases in

large cholesterol-enriched LDL, with minimal changes in small, dense LDL particles and

apolipoprotein B. However, individuals can differ by their LDL particle distribution, and it is

possible that this may influence LDL subclass response.

Objective

The objective of this study was to test whether the reported effects of saturated fat apply to

individuals with atherogenic dyslipidemia as characterized by a preponderance of small LDL

particles (LDL phenotype B).

Methods

Fifty-three phenotype B men and postmenopausal women consumed a baseline diet (55%E

carbohydrate, 15%E protein, 30%E fat, 8%E saturated fat) for 3 weeks, after which they

were randomized to either a moderate carbohydrate, very high saturated fat diet (HSF; 39%

E carbohydrate, 25%E protein, 36%E fat, 18%E saturated fat) or low saturated fat diet (LSF;

37%E carbohydrate, 25%E protein, 37%E fat, 9%E saturated fat) for 3 weeks.

Results

Compared to the LSF diet, consumption of the HSF diet resulted in significantly greater

increases from baseline (% change; 95% CI) in plasma concentrations of apolipoprotein B

(HSF vs. LSF: 9.5; 3.6 to 15.7 vs. -6.8; -11.7 to -1.76; p = 0.0003) and medium (8.8; -1.3 to

20.0 vs. -7.3; -15.7 to 2.0; p = 0.03), small (6.1; -10.3 to 25.6 vs. -20.8; -32.8 to -6.7; p =

0.02), and total LDL (3.6; -3.2 to 11.0 vs. -7.9; -13.9 to -1.5; p = 0.03) particles, with no differ-

ences in change of large and very small LDL concentrations. As expected, total-cholesterol

(11.0; 6.5 to 15.7 vs. -5.7; -9.4 to -1.8; p<0.0001) and LDL-cholesterol (16.7; 7.9 to 26.2 vs.

-8.7; -15.4 to -1.4; p = 0.0001) also increased with increased saturated fat intake.
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Conclusions

Because medium and small LDL particles are more highly associated with cardiovascular

disease than are larger LDL, the present results suggest that very high saturated fat intake

may increase cardiovascular disease risk in phenotype B individuals. This trial was regis-

tered at clinicaltrials.gov (NCT00895141).

Trial registration

Clinicaltrials.gov NCT00895141.

Introduction

Current dietary guidelines aim at limiting saturated fat intake in large part because of its ability

to increase LDL-cholesterol (LDL-C) levels and presumably, cardiovascular disease (CVD)

risk. However, several recent meta-analyses and systematic reviews have concluded that satu-

rated fat per se is not associated with greater CVD risk [1–3]. This may be due in part to differ-

ential effects of saturated fat on LDL subclass concentrations. Small and medium sized LDL

particles have been shown to be more strongly associated with CVD outcomes than larger

LDL [4–7]. We have previously reported results from a dietary intervention trial indicating

that increased intake of total saturated fatty acids, particularly myristic (14:0) and palmitic

(16:0) acids, correlated with increased plasma levels of larger LDL particles, but not with

change in smaller LDL or apoB concentrations [8]. Moreover, in a subsequent clinical trial, we

showed that in the context of reduced carbohydrate intake, the increase in LDL-C resulting

from exchange of dietary saturated fat for monounsaturated fat was due primarily to higher

concentrations of cholesterol-enriched larger LDL, without changes in smaller LDL or apoB

[9]. Saturated fat also raises HDL-cholesterol (HDL-C) [10], which could potentially offset an

atherogenic effect of raising LDL-C.

Atherogenic dyslipidemia is the most common dyslipidemia associated with obesity and

insulin resistance and is characterized by elevated plasma triglycerides, low HDL-C, and

increased levels of small, dense LDL particles [9]. Individuals with an abundance of small,

dense LDL particles have been categorized as LDL phenotype B, while individuals with pre-

dominantly larger LDL particles have been categorized as LDL phenotype A [11]. The expres-

sion of LDL phenotype B is influenced by genetic predisposition, dietary macronutrient

intake, and body weight [12]. High carbohydrate intake promotes increased plasma levels of

liver-derived triglyceride-rich lipoproteins (VLDL) that can give rise to small, dense LDL parti-

cles and a conversion to or exacerbation of phenotype B [12].

The objective of the present study was to determine the effects of high saturated fat intake,

primarily from dairy fat, on lipoprotein subclass concentrations in LDL phenotype B individu-

als. Based on our previous results [9] we hypothesized that the substitution of saturated fat for

monounsaturated fat would preferentially increase concentrations of large, but not small, LDL

particles, and that this would be accompanied by an increase in larger HDL particles.

Materials and methods

The trial protocol (S1 Protocol) and CONSORT (S1 CONSORT Checklist) checklist are avail-

able as supporting information.

Saturated fat and atherogenic dyslipidemia
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Study population

Participants were recruited through internet advertisements and from our extensive database

of previous study participants. Eligibility was based on the following criteria: male or postmen-

opausal female� 18 y, non-smoking, LDL phenotype B as determined by ion mobility (see

below), BMI 25–35 kg/m2, blood pressure < 150/90 mm Hg, fasting blood glucose < 7.0

mmol/L, plasma triglycerides < 5.65 mmol/L, and total-cholesterol (TC) and LDL-C� 95th

percentile for age and sex at screening. Participants had no history of diabetes, CVD, or other

chronic disease, and were not taking dietary supplements, recreational drugs, drugs known to

affect lipid metabolism, blood thinning agents, dietary supplements, or hormones. Premeno-

pausal women were excluded because of their low prevalence of LDL phenotype B [13].

The study was conducted in free-living participants at the Cholesterol Research Center

(Berkeley, CA). All participants provided written informed consent. The protocol was

reviewed and approved by the Institutional Review Board of the University of California, San

Francisco Benioff Children’s Hospital Oakland. The trial is registered at clinicaltrials.gov

(NCT00895141).

Study design and dietary intervention. The study was conducted between April 2009

and December 2010. Participants consumed a baseline diet for 3 weeks followed by randomi-

zation to a low saturated fat (LSF) or high saturated fat (HSF) experimental diet for 3 weeks.

They were randomly assigned to one of the two diets in randomly determined blocks of 2, 4, 6,

or 8 individuals using a uniform random-number generator by a statistician who was not oth-

erwise involved in recruitment or screening. Diet assignments were kept in sealed envelopes

and assigned to the participant by the clinic staff 1–2d before starting the experimental diet.

Investigators and staff assessing plasma outcomes were blinded to diet assignment, while clinic

staff was not. Participants were not informed of their diet assignment, but due to the nature of

the diets, were likely able to identify the experimental diet. Unblinding was performed after all

data collection for all participants was completed. During the 3 wk baseline diet and 3 wk

experimental diet, participants met with study staff weekly for dietary counseling, to receive

study foods, and to be weighed. Body weight was stabilized by adjusting energy intake if

needed. At the end of the baseline diet and experimental diet, participants visited the clinic for

clinical and laboratory measurements.

Composition of the diets is shown in Table 1. The LSF and HSF diets were designed to have

comparable amounts of carbohydrate, protein, and total fat with differences in saturated fat

Table 1. Composition of baseline and experimental dietsa.

Calculatedb Analyzedc

Baseline LSF HSF Baseline LSF HSF

Carbohydrate, %E 55 35 35 nm 37 39

Protein, %E 15 25 25 nm 25 25

Fat, %E 30 40 40 nm 37 36

SFA 8 9 21 nm 9 18

MUFA 12 24 11 nm 19 9

PUFA 8 7 6 nm 7 6

Cholesterol, mg 219 374 385 nm 281 367

aValues given for a 12,557 kJ menu. %E, % energy; MUFA, monounsaturated fatty acids; nm, not measured; PUFA, polyunsaturated fatty acids SFA,

saturated fatty acids.
bCalculated values include adjustments made after compositional analysis of individual SFA of dairy products and entrées performed during diet

development.
cCompositional analysis of a complete week of foods and beverages.

doi:10.1371/journal.pone.0170664.t001
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achieved by exchange for monounsaturated fat. Monounsaturated fat was chosen as the

exchanged nutrient because this substitution has a smaller effect on LDL-C than does substi-

tuting either carbohydrate or polyunsaturated fat [10]. High vs. low/non-fat dairy products

were the major sources of differences in saturated fatty acid content. Participants were pro-

vided with two standardized entrees and a snack per day and menus, shopping lists, and

instructions for preparation of remaining food items. Diets were prescribed using a rotating

4-day menu. Menus were designed and entrees produced by the Bionutrition Unit of the Uni-

versity of California, San Francisco Clinical and Translation Sciences Institute (San Francisco,

CA) using Pronutra software. Nutrient content of dairy products and daily menus was ana-

lyzed by compositional analysis (Covance Inc, Kalamazoo, MI).

Laboratory measurements

Blood samples were collected after a 12–14 h overnight fast at screening and on two consecu-

tive days after consumption of the baseline diet (day 20 and 21) and the randomized diet (day

41 and 42). Plasma TC, HDL-C, triglycerides (TG), and glucose were measured by enzymatic

end-point measurements utilizing enzyme reagent kits on an Express 550 Plus analyzer (Ciba-

Corning Diagnostics Corp., Oberlin, OH). TC, HDL-C, and TG were consistently in control as

monitored by the Centers for Disease Control and Prevention-National Heart, Lung, and

Blood Institute standardization program. LDL-C was calculated using the Friedewald equation

[14]. ApoB and apoAI were measured by immunoturbidimetric assays (Express 550 Plus Ana-

lyzer: Bacton Assay Systems, San Marcos, CA) [15, 16]. LDL peak particle diameter, LDL phe-

notype, and lipoprotein particle concentrations were measured by ion mobility, which uses

gas-phase differential electrophoretic macromolecular mobility to directly measure lipoprotein

particle concentrations [17]. Individuals with LDL peak particle diameter below< 217.5Å
(midpoint of intermediate zone) were defined as LDL phenotype B, whereas those with LDL

peak particle diameter� 217.5Å were defined as LDL phenotype A [18]. Nondenaturing gra-

dient gel electrophoresis with lipid staining of plasma was performed to confirm LDL ion

mobility results as previously described [19]; in this procedure, cholesterol concentration for

each LDL subclass was assessed by multiplying LDL cholesterol by the percentage of area

under the curve defined for each subclass. Plasma cholesteryl ester transfer protein (CETP)

activity was measured using a commercial assay (Roar Biomedical, New York, NY).

For measurements of hepatic lipase (HL) and lipoprotein lipase (LPL) activities, blood was

collected after a bolus of intravenous heparin (60U/kg). HL activity was measured by selective

inhibition of LPL with protamine sulfate as previously described [20]. LPL activity was calcu-

lated as the difference between lipase activities measured with and without protamine sulfate.

Statistical procedures

Fasting TC, LDL-C, nonHDL-C, TG, HDL-C, and lipoprotein particle concentrations were

calculated as the mean of two measurements. Participants’ characteristics at randomization

and at the end of the baseline diet are presented as mean ± SD. The primary outcomes were

differences in fasting plasma lipid and lipoprotein concentrations from baseline between the

LSF and HSF diets. Secondary outcomes were differences in CETP, HL, and LPL activities

from baseline between the diets. Analysis of covariance (ANCOVA) was used to test whether

the mean 3-wk changes from baseline differed between the LSF and HSF diets when adjusted

for sex, age, and baseline BMI. An N of 25 per group in a parallel design was estimated to yield

a detectable difference of percent change from baseline between groups at 80% power and 5%

significance (two-sided) of 22% for large LDL concentrations, 1.7% for LDL peak diameter,

and 25% for large HDL concentrations. Based on previous results [8] we estimated that these

Saturated fat and atherogenic dyslipidemia
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differences would be sufficient for detecting the expected effects of the low vs. high saturated

fat diets. All p-values for diet-induced differences in 3-wk changes were determined based on

differences in log transformed values. Log transformations were used to achieve greater consis-

tency with normally distributed outcome measures. The differences in the logs were converted

to percent change in the tables to be more easily interpreted. Spearman’s correlation coeffi-

cients (ρ) were used to evaluate the relationships between changes in lipoprotein measure-

ments and enzyme activities. Changes in CETP and HL activity were added to the ANCOVA

model described above to test for independent relationships with lipoprotein measurements.

A p-value < 0.05 was considered significant. Power calculations and tests of hypotheses were

performed using JMP 9.0 (SAS) without adjustment for multiple hypothesis testing.

Results

Study participants

Fig 1 shows the details of participant recruitment and enrollment. Forty-five men and eight

postmenopausal women completed the study. Their baseline characteristics are shown in

Table 2. Note that despite screening study participants for LDL phenotype B, changes in phe-

notypes in the period between enrollment and completion of the baseline diet resulted in 11

participants who were phenotype A at randomization; these changes did not differ signifi-

cantly between the two diet arms. Baseline BMI differed significantly between the LSF and

HSF groups and was therefore used as a covariate in analyses of the diet effects. There were no

other significant baseline differences between diet groups. There were also no significant

changes in body weight during the dietary intervention in either the LSF (-0.3 ± 0.2 kg,

p = 0.08) or HSF (0.1 ± 0.1 kg, p = 0.71) groups.

Plasma lipids and lipoproteins

Compared to the LSF diet, the HSF diet significantly increased plasma TC, LDL-C, and apoB

levels and marginally increased plasma TG (Table 3). There were no significant changes in

HDL-C or apoAI.

Total, medium, and small LDL particle concentrations as measured by the ion mobility

method were all increased after the HSF diet compared with the LSF diet (Table 4), although

the p-values (p = 0.02 to 0.03) were no longer significant after adjustment for multiple testing

using the Bonferroni correction. There were no other significant differences in VLDL, inter-

mediate density lipoprotein (IDL), LDL, or HDL subfraction concentrations or LDL peak par-

ticle diameter as measured by ion mobility after consuming the LSF vs. the HSF diets

(Table 4), and no differences in the proportion of LDL phenotype or LDL phenotype conver-

sions (p = 0.23, data not shown). Small LDL-C measured by gradient gel electrophoresis was

significantly higher after the HSF compared to the LSF diet (p<0.05, S1 Fig).

In these analyses, gender was included as a covariate and there were no gender by diet inter-

actions for outcomes. When analyses were restricted to males, results for lipid and lipoprotein

outcomes remained similar. However, the p-values increased slightly to become non-signifi-

cant for medium, small, and total LDL concentrations (p = 0.10, 0.06, and p = 0.06, respec-

tively) likely due to reduced sample size.

Plasma activities of HL, LPL, and CETP

Both plasma HL and CETP activities were higher on the HSF diet compared to the LSF diet,

but with borderline statistical significance (p = 0.04 and 0.05, respectively). There was no sig-

nificant difference in LPL activity (Table 4).

Saturated fat and atherogenic dyslipidemia
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We explored the relationships of changes in CETP and lipase activities with changes in lipid

and lipoprotein measurements. There were no significant diet interactions for these associa-

tions; thus the data for the two diets were combined for analysis (S1 Table). Changes in HL

activity were correlated positively with changes in TG, TC, apoB, non-HDLC, large and inter-

mediate VLDL particles, and small and very small LDL, and negatively with LDL peak particle

diameter. LPL activity changes were negatively correlated with changes in TG and large

VLDL. Changes in CETP activity were significantly positively correlated with changes in TG,

TC, apoB, non-HDLC, large, medium, and small VLDL, IDL, and medium and small LDL.

Finally, we tested whether HL or CETP activities were significant covariates for the effect of

increased saturated fat on small and medium LDL particles. In a model including age, gender,

baseline BMI, saturated fat level, and changes in CETP and HL activity, changes in CETP

Fig 1. CONSORT flow diagram.

doi:10.1371/journal.pone.0170664.g001
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activity remained significantly associated with small LDL (p = 0.009) and medium LDL

(p = 0.046), while changes in HL activity (p = 0.57 and 0.46, respectively) and saturated fat

intake (p = 0.12 and 0.09, respectively) were not.

Discussion

Recent evidence has shown that although increased intake of saturated fatty acids can raise

LDL-C when substituted for either carbohydrate or cis-unsaturated fatty acids [21], the substi-

tution for carbohydrate is not associated with higher CVD risk [22–25]. We hypothesized that

the dissociation of LDL-C change from effects on CVD risk may be due in part to a preferential

effect of saturated fat on cholesterol-enriched large LDL particles, which are not as strongly

Table 2. Participant characteristics at randomization (at the end of the baseline diet)a.

LSF HSF p-valueb

M/F, N 21/6 24/2 0.13

Age, y 40 ± 12 46 ± 14 0.11

BMI, kg/m2 30.7 ± 2.4 28.9 ± 2.9 0.018

Waist, cm 103 ± 7 101 ± 7 0.21

TC, mmol/L 4.77 ± 1.01 4.51 ± 0.78 0.27

LDL-C, mmol/L 2.75 ± 0.73 2.72 ± 0.73 0.85

HDL-C, mmol/L 0.95 ± 0.21 0.93 ± 0.12 0.70

Non-HDL-C, mmol/L 3.83 ± 0.88 3.57 ± 0.73 0.26

TGc, mmol/L 2.46 ± 1.45 1.91 ± 0.97 0.07

ApoB, g/dl 9.2 ± 2.0 8.4 ± 1.6 0.11

ApoAI, g/dl 10.5 ± 15 10.2 ± 1.2 0.50

LDL phenotype, N 4A/23B 7A/19B 0.28

LDL peak diameter, Å 213.3 ± 4.2 215.0 ± 4.8 0.16

Total VLDL, nmol/L 167.5 ± 46.8 150.6 ± 43.1 0.18

Large VLDL, nmol/L 32.8 ± 12.8 27.2 ± 15.1 0.15

Medium VLDL, nmol/L 75.6 ± 23.8 67.5 ± 22.1 0.21

Small VLDL, nmol/L 59.1 ±15.7 55.9 ± 11.4 0.40

IDL, nmol/L 135.9 ± 33.3 137.1 ± 31.8 0.89

Total LDL, nmol/L 1256 ± 229 1246 ± 314 0.90

Large LDL, nmol/L 444 ± 152 493 ± 173 0.28

Medium LDL, nmol/L 252 ± 79 255 ± 99 0.90

Small LDL, nmol/L 295 ± 104 262 ± 119 0.29

Very small LDL, nmol/L 265 ± 183 236 ± 171 0.56

Total HDL, nmol/L 4964 ± 1582 4880 ± 1041 0.82

Large HDL, nmol/L 793 ± 391 739 ± 168 0.93

Small HDL, nmol/L 4170 ± 1388 4141 ± 990 0.52

HL activityd, umol/ml/hr 22.7 ± 8.5 20.1 ± 6.9 0.26

LPL activityd, umol/ml/hr 5.2 ± 3.3 6.3 ± 2.5 0.21

CETP activity, nmol/ml/hr 21.7 ± 5.2 21.9 ± 5.2 0.88

aMean ± SD. Apo, apolipoprotein; CETP, cholesteryl ester transfer protein; HL, hepatic lipase; HDL-C, HDL-cholesterol; HSF, high saturated fat diet; IDL,

intermediate density lipoprotein; LPL, lipoprotein lipase; LDL-C, LDL cholesterol; LSF, low saturated fat diet; TC, total cholesterol; TG, triglycerides; VLDL,

very low density lipoprotein.
bStudent’s t-test or Chi-squared test.
cLog transformed prior to analysis.
dN = 20/6 (M/F) for the LSF group and 21/2 (M/F) for the HSF group. Missing data were due to participants who did not complete a postheparin blood draw.

doi:10.1371/journal.pone.0170664.t002

Saturated fat and atherogenic dyslipidemia

PLOS ONE | DOI:10.1371/journal.pone.0170664 February 6, 2017 7 / 14



Table 3. Percent changes from baseline in plasma lipid and lipoprotein concentrations in men and

women with atherogenic dyslipidemia after 3 wk of consuming either a low or high saturated fat dieta.

LSF (N = 26) HSF (N = 27) Pb

ΔTG -11.5 (-23.4, 2.2) 9.8 (-5.2, 27.2) 0.06

ΔTC -5.7 (-9.4, -1.8) 11.0 (6.5, 15.7) <0.0001

ΔLDL-C -8.7 (-15.4, -1.4) 16.7 (7.9, 26.2) 0.0001

ΔHDL-C 2.8 (-2.0, 7.8) 2.8 (-2.0, 7.9) 0.99

ΔNonHDL-C -7.9 (-12.3, -3.3) 13.2 (7.7, 19.0) <0.0001

ΔApoB -6.8 (-11.7, -1.6) 9.5 (3.6, 15.7) 0.0003

ΔApoAI -1.3 (-4.8, 2.2) 3.2 (-0.5, 7.1) 0.11

apercent change from baseline, mean (95% CI), adjusted for age, gender, and baseline BMI. Apo,

apolipoprotein; HDL-C, HDL-cholesterol; LDL-C, LDL cholesterol; TC, total cholesterol; TG, triglycerides.
bcalculated from one-way ANCOVA using the difference in the log transformed values, adjusted for age,

gender, and baseline BMI. Percent changes shown were derived by conversion from the differences in log

transformed values.

doi:10.1371/journal.pone.0170664.t003

Table 4. Percent changes from baseline in plasma lipoprotein subfractions and lipoprotein remodel-

ing enzyme activities in men and women with atherogenic dyslipidemia after 3 wk of consuming either

a low or high saturated fat dieta.

% Δ from baseline

LSF (N = 26) HSF (N = 27) Pb

ΔTotal VLDL -7.8 (-16.4, 1.6) -1.3 (-10.7, 9.0) 0.37

ΔLarge VLDL -13.3 (-26.3, 1.9) 0.0 (-15.3, 18.1) 0.26

ΔMedium VLDL -6.9 (-16.3, 3.6) -1.1 (-11.2, 10.3) 0.46

ΔSmall VLDL -7.9 (-15.7, 0.7) -0.7 (-9.3, 8.7) 0.28

ΔIDL -8.3 (-15.7, -0.4) 3.5 (-5.0, 12.7) 0.06

ΔTotal LDL -7.9 (-13.9, -1.5) 3.6 (-3.3, 11.0) 0.03

ΔLarge LDL 2.1 (-7.1, 12.2) 8.6 (-1.4, 19.6) 0.40

ΔMedium LDL -7.3 (-15.7, 2.0) 8.8 (-1.3, 20.0) 0.03

ΔSmall LDL -20.8 (-32.8, -6.7) 6.1 (-10.3, 25.6) 0.02

ΔVery small LDL -19.3 (-31.1, -5.3) -11.8 (-25.0, 3.7) 0.48

ΔLDL peak diameter 0.7 (0.1, 1.3) 0.2 (-0.5, 0.8) 0.27

ΔTotal HDL 0.6 (-9.2, 11.4) 6.3 (-4.3, 17.9) 0.49

ΔLarge HDL -2.6 (-11.0, 6.7) 0.5 (-8.4, 10.2) 0.66

ΔSmall HDL 1.0 (-9.4, 12.5) 7.1 (-4.1, 19.6) 0.48

ΔHL activityc -9.5 (-15.4, -3.2) 1.3 (-5.8, 8.8) 0.04

ΔLPL activityc -15.7 (-38.2, 15.2) -8.2 (-33.3, 26.2) 0.72

ΔCETP activity -0.6 (-7.0, 6.2) 10.0 (2.7, 17.7) 0.05

apercent change from baseline, mean (95%CI), adjusted for age, gender, and baseline BMI. CETP,

cholesteryl ester transfer protein; HL, hepatic lipase; IDL, intermediate density lipoprotein; LPL, lipoprotein

lipase; VLDL, very low density lipoprotein.
bcalculated from one-way ANCOVA using the difference in the log transformed values, adjusted for age,

gender, and baseline BMI. Percent changes shown were derived by conversion from the differences in log

transformed values.

doi:10.1371/journal.pone.0170664.t004
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associated with CVD risk as are small and medium sized LDL particles [4–6]. In contrast, we

and others have shown that higher carbohydrate intake promotes selective increases in levels

of small LDL particles [9, 26–28]. In one of these studies, we found that in the context of

reduced carbohydrate intake (26% E), increased intake of saturated fatty acids derived primar-

ily from dairy fat preferentially raised large LDL without increasing small LDL or apoB con-

centrations [9]. This is consistent with results from other intervention studies [8, 29–33] and

observational cohort studies [34–36] showing that diets high in saturated fat, derived in many

cases from dairy sources, increased peak LDL particle diameter, and/or levels of larger LDL

without raising levels of smaller LDL particles. Other studies however, have reported no signif-

icant effect of saturated fat on LDL particle size distribution [37–40]. In the present study, we

found that with substitution of saturated fatty acids derived primarily from dairy foods for

monounsaturated fatty acids, increased LDL-C was associated with increased apoB, and total,

small, and medium-sized LDL particle concentrations. There were, however, no significant

changes in large LDL, large HDL, or LDL peak diameter. We suggest a number of possible fac-

tors that may contribute, singly or in combination, to the discrepancy of these findings from

those that we reported previously [9].

First, in the present trial, we enrolled men and postmenopausal women, who on screening

expressed the small LDL particle phenotype B, whereas the majority of participants in our ear-

lier study expressed large LDL phenotype A, and there were insufficient numbers of phenotype

B individuals to permit testing the possibility of differential responses as a function of baseline

LDL particle size phenotypes or other lipid and lipoprotein parameters. We are aware of one

other report showing an effect of saturated fat on medium and smaller LDL particles. Gill,

et al., showed a stepwise decrease in medium and smaller LDL particles with decreasing satu-

rated fat intake (15%E to 11%E to 7%E) in 35 hypercholesterolemic individuals [41]. Thus is it

possible that dyslipidemic individuals may be preferentially susceptible to saturated fat-

induced increases in small and medium-sized LDL particles.

Second, the carbohydrate content of the diets in the present study was substantially greater

than in our earlier trial (37–39% vs, 26%E). It may be that the effects of higher carbohydrate

intake on pathways responsible for increased levels of smaller LDL particles create greater sus-

ceptibility to the effects of dietary saturated fat on small LDL particle concentrations. Further

studies would be required to confirm such an interaction between dietary carbohydrate and

saturated fat.

Finally, the saturated fatty acid content of the high saturated fat diet in the present study

was 20% greater than in our previous study (18% vs 15%E), compared in both cases with 9%

E. It is therefore possible that there is a threshold above which saturated fat induces meta-

bolic changes resulting in increased levels of smaller LDL particles. Saturated fat is thought

to increase LDL-C primarily through down-regulation of hepatic LDL receptor activity, lead-

ing to reduced clearance of LDL particles [42, 43]. While smaller LDL particles are less

dependent on LDL receptor-mediated uptake than larger LDL [44], it may be that the very

high level of saturated fat in the present study suppresses LDL receptor activity sufficiently

so as to reduce plasma clearance of smaller LDL in individuals with the small LDL pheno-

type. It is also conceivable that the high levels of saturated fat studied here might increase

direct hepatic secretion of small LDL or their precursors, or perhaps suppress non-LDL

receptor pathways responsible for clearance of smaller LDL particles. Consistent with the

possibility of a threshold effect of very high dietary saturated fatty acid intake on levels of

smaller vs. larger LDL particles is the observation from the Framingham cohort [36] that

LDL peak diameter was larger in individuals in the 25–75th percentile of saturated fat intake

(mean: 12.5%E), compared to those in either the < 25th percentile (mean: 9%E) or > 75th

percentile (mean: 17%E).
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We performed exploratory analyses using data from both diet arms to test for relationships

of changes in activities of factors involved in lipoprotein catabolism and remodeling with

changes in plasma lipids and lipoproteins. As expected, changes in LPL were inversely corre-

lated with changes in TG and TG-rich VLDL particles. Positive correlations of change in

hepatic lipase activity with changes in larger VLDL particles and smaller LDL particles, are

consistent with previous reports [45, 46] and with the role of hepatic lipase in generating

small, dense LDL [47]. A novel finding in the present study was the positive correlation of

changes in CETP activity with changes in all of the apoB-containing lipoprotein particle frac-

tions with the exception of large and very small LDL.

Although mean changes in both HL and CETP from the baseline diet showed only margin-

ally significant differences between the HSF and LSF diets, inclusion of both of these activities

in a model also containing diet assignment indicated that change in CETP but not HL activity

remained significantly associated with change in small LDL particle concentration, suggesting

that the increase in CETP may have contributed in part to the effect of high saturated fat intake

on these particles, and that the HL association was dependent on this CETP effect. This possi-

bility is consistent with previous studies demonstrating increases in CETP mass or activity

with very high saturated fat intakes (�19%E) [48–50], and positive correlations between

changes in CETP activity and changes in total- and LDL-cholesterol [48, 49]. Moreover, in

monkeys fed a high saturated fat diet, increased CETP activity was associated with reduced

LDL receptor activity [51].

Strengths of our study include a lack of confounding by weight loss, detailed lipoprotein

subclass measurements using two different analytical methods, and a saturated fat-induced

increase in LDL-C consistent with predictive formulas [21] (data not shown), indicative of

good dietary adherence. One limitation of the study is that since all participants were LDL phe-

notype B when enrolled, we are unable to determine whether the results are specific to individ-

uals with this metabolic trait. Although some individuals converted to LDL phenotype A after

the baseline diet, there were insufficient numbers to formally evaluate potential differences in

response between the two baseline LDL phenotypes. In addition, the dietary intervention was

short-term and may not reflect long-term intake of high saturated fat diets. Finally, the

increase in saturated fat content on the HSF diet was primarily derived from dairy foods, and

thus the findings may not be applicable to other sources of saturated fat.

In conclusion, we found that the increase in LDL-C resulting from very high saturated fat

intake in individuals with a preponderance of small LDL was associated with an increase in

apoB, and total, medium-sized, and small LDL particles. These results, in conjunction with

previous studies, suggest that saturated fat may have heterogeneous effects on levels of athero-

genic LDL particles that may depend on the amount of saturated fat consumed, the dietary

context, particularly concomitant carbohydrate intake, and/or predisposition to atherogenic

dyslipidemia.
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