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Abstract

Motivation: Structure methods are highly used population genetic methods for classifying individ-

uals in a sample fractionally into discrete ancestry components.

Contribution: We introduce a new optimization algorithm for the classical STRUCTURE model in a

maximum likelihood framework. Using analyses of real data we show that the new method finds

solutions with higher likelihoods than the state-of-the-art method in the same computational time.

The optimization algorithm is also applicable to models based on genotype likelihoods, that can ac-

count for the uncertainty in genotype-calling associated with Next Generation Sequencing (NGS)

data. We also present a new method for estimating population trees from ancestry components

using a Gaussian approximation. Using coalescence simulations of diverging populations, we ex-

plore the adequacy of the STRUCTURE-style models and the Gaussian assumption for identifying

ancestry components correctly and for inferring the correct tree. In most cases, ancestry compo-

nents are inferred correctly, although sample sizes and times since admixture can influence the re-

sults. We show that the popular Gaussian approximation tends to perform poorly under extreme

divergence scenarios e.g. with very long branch lengths, but the topologies of the population trees

are accurately inferred in all scenarios explored. The new methods are implemented together with

appropriate visualization tools in the software package Ohana.

Availability and Implementation: Ohana is publicly available at https://github.com/jade-cheng/

ohana. In addition to source code and installation instructions, we also provide example work-

flows in the project wiki site.

Contact: jade.cheng@birc.au.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

To quantify population structure, researchers often use methods

based on the STRUCTURE model (Pritchard et al., 2000). The basic

assumption in this model is that individuals belong to a set of K dis-

crete groups, each with unique allele frequencies and obeying

Hardy-Weinberg Equilibrium, although the latter assumption can be

relaxed (Gao et al., 2007). Furthermore, individuals are allowed to

have fractional memberships of each group. The groups are often

termed ‘ancestry components’ and are sometimes interpreted to

represent ancestral populations. This interpretation may be correct

in some scenarios, for example when analyzing balanced samples of

recently admixed individuals from otherwise highly divergent

groups, such as major human continental groups. However, if basic

model assumptions are violated, for example if populations truly are

not discrete units, such as in species that have geographic structure

that varies continuously, the interpretation is more unclear.

Nonetheless, inference under STRUCTURE-style models has proven

highly popular for quantifying population genetic variation and for
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exploring the basic structure and divisions of genetic diversity in a

sample.

STRUCTURE (Pritchard et al., 2000), FRAPPE (Tang et al.,

2005) and ADMIXTURE (Alexander et al., 2009) are arguably the

three most commonly used programs that apply the classical

STRUCTURE model. STRUCTURE uses a Bayesian approach and

relies on a Markov Chain Monte Carlo (MCMC) algorithm to jointly

sample the posterior distribution of allele frequencies and fractional

group memberships. FRAPPE uses a maximum likelihood estimate

(MLE) approach and optimizes the likelihood for both allele frequen-

cies and fractional group memberships using an expectation-

maximization (EM) algorithm. ADMIXTURE uses the same model

and statistical framework as FRAPPE but uses a faster optimization

algorithm. ADMIXTURE executes a two-stage process, first taking a

few fast EM steps and then executing a sequential quadratic program-

ming (QP) algorithm. ADMIXTURE uses a pivoting algorithm to

solve each QP problem and applies a quasi-Newton acceleration to

each iteration. This acceleration does not respect parameter bounds.

ADMIXTURE projects an illegal update to the nearest feasible point,

and the acceleration step contributes only when it results in a better

likelihood; otherwise the original QP update is used.

The interpretation of parameter estimates under the STRUCTURE

model is somewhat contentious (Royal et al., 2010; Weiss and Long,

2009). It is not clear exactly what the groups, or ancestry components,

represent, but in the most simple interpretation we can think of them

as estimates of some idealized ancestral populations. If a researcher has

inferred the existence of K ancestral populations and knows the frac-

tional memberships of each individual in these populations, a next

question would be to explore their evolutionary history. The estimated

allele frequencies can provide information about this.

The first approaches for using allele frequencies to estimate popula-

tion histories dates back to the seminal work by Edwards and Cavalli-

Sforza (Cavalli-Sforza et al., 1964, 1967). They used Gaussian models

for the joint distribution of allele frequencies of multiple populations to

estimate genetic distances and to infer population trees. The use of

Gaussian models to approximate genetic drift has recently had a resur-

gence after the availability of large Single Nucleotide Polymorphism

(SNP) datasets. It is used in numerous methods and studies, including

tests of local adaptation e.g. (Coop et al., 2010; Gunther et al., 2013)

and the popular TREEMIX program developed by (Pickrell and

Pritchard, 2012). The basic idea in these methods is that one can define

the joint allele frequencies among populations in terms of a Gaussian dis-

tribution with a covariance matrix dictated by a tree (or admixture

graph). Under the Gaussian model, a tree corresponds to exactly one

unique covariance matrix, and each covariance matrix corresponds to at

most one tree. Furthermore, the likelihood function can be calculated

very fast numerically without any need for pruning. The assumption of a

Gaussian model for the allele frequencies corresponds to an assumption

of a Brownian motion process to model genetic drift instead of, say, a

Wright-Fisher diffusion. For small time intervals, the Brownian motion

process can provide a close approximation to the Wright-Fisher diffusion.

However, for longer time intervals, especially when the allele frequency is

close to either of the boundaries (0 and 1), the Brownian motion model is

clearly not a very accurate approximation to the Wright-Fisher diffusion.

Nonetheless, the Gaussian models provide useful frameworks for infer-

ence because of the distinct computational advantages.

A natural extension of the STRUCTURE-style inference frame-

work is to use similar models on the inferred ancestry groups to ex-

plore their evolutionary histories. A primary objective of this paper

is to provide a computational tool for doing just this and to examine

the performance of the Gaussian model in this context.

We present ‘Ohana’, a tool suite for inferring global ancestry, popu-

lation covariances and constructing population trees using Gaussian

models. The Ohana tool suite includes the following innovations:

• A new optimization method for STRUCTURE-style modeling for

inferring admixture in an MLE framework. Our method is ap-

plicable both to called genotypes and to NGS data with uncer-

tainty regarding the true genotypes. The method solves the

sequential QP problem based on the Active Set (Murty and Feng-

Tien, 1988) algorithm, and tends, as we will show in the Results

section, to find higher maximum likelihood values than

ADMIXTURE in similar computational time.
• A new method for estimating population relationships from an-

cestry components using a Gaussian approximation. We estimate

the best covariance matrix compatible with a tree, thereby esti-

mating a tree, and we provide simple algorithms and visualiza-

tion tools to obtain the evolutionary trees.

We evaluate the performance of the methods on real and simulated

data, and we also present results on the limitations of the popular

Gaussian model. We show, perhaps unsurprisingly, that the assump-

tion of a Gaussian model in some cases can lead to severely biased

branch lengths of population trees that have evolved under a

Wright-Fisher diffusion process. This is a limitation of the approach

implemented in Ohana and in other approaches that use Brownian

motion models to approximate the Wright-Fisher diffusion.

2 Materials and methods

2.1 Statistical models
The familiar likelihood model, using genotype observations, from

STRUCTURE, FRAPPE, ADMIXTURE, SPA (Yang et al., 2012)

and other similar methods, is given by:

ln½PO
1 ðQ;FÞ�¼

XI

i

XJ

j

gij�ln
XK

k

qik�fkj

" #
þð2�gijÞ�ln

XK

k

qik�ð1�fkjÞ
" #( )

:

where K is the number of ancestry components, I is the number of indi-

viduals, and J is the number of polymorphic sites. The model can be ex-

tended to be applicable to NGS data without called genotypes, but with

genotype likelihoods, using the method by (Korneliussen et al., 2014):

ln½PL
1 ðQ; FÞ� ¼

XI

i

XJ

j

lnðgAA
ij � A2

ij þ gaa
ij B2

ij þ gAa
ij � 2AijBijÞ:

Aij ¼
XK

k

qik � fkj:

Bij ¼
XK

k

qik � ð1� fkjÞ

where gAA
ij ; gAa

ij and gaa
ij are the probabilities of observing the se-

quence data at the ith individual’s jth marker, conditioned on geno-

types AA, Aa (or aA) and aa, respectively. This representation

assumes markers with two alleles, although it could easily be gener-

alized to multiple alleles.

To infer population histories, we model the joint distribution of

allele frequencies across all ancestry components as a multivariate

Gaussian similar to TREEMIX (Pickrell and Pritchard, 2012) and

Bayenv (Gunther et al., 2013). The covariance matrix X of dimen-

sion K�K is assumed to be constant among all sites. We use

the sample allele frequency to approximate the ancestral allele
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frequency, lj at site j. For genotype observations, we simply count

and calculate the percentage of the major allele for each site. For

genotype likelihoods, we use an EM algorithm (Korneliussen et al.,

2014) to estimate the pooled sample allele frequency for each site.

The joint distribution of allele frequencies is then given by:

PðfjjX; ljÞ � N ðlj; ljð1� ljÞXÞ:

This system is under-determined (see e.g. Felsenstein, 1985), i.e. mul-

tiple covariance matrices induce the same probability distribution on

the allele frequencies. To circumvent this issue, we root the tree in one

of the observations. This corresponds to conditioning on the allele fre-

quencies in one of the populations when calculating the joint distribu-

tion of allele frequencies in the other populations. This idea is similar

to Felsenstein’s restricted maximum likelihood approach (Felsenstein,

1985). We emphasize that the rooting is arbitrary but that it does not

imply any assumptions of this population actually being ancestral (for

time reversible models). We then obtain a new covariance matrix X0,

which has size ðK� 1Þ � ðK� 1Þ and a joint density of the form:

ln P2 Fð Þ½ � ¼ ln
YJ

j

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2pcjX

0j
q exp �1

2
� f 0Tj � cjX

0� ��1 � f 0j
� �2

64
3
75

8><
>:

9>=
>;

¼ �1

2
�
XJ

j

K� 1ð Þ � ln 2pcj

� �
þ ln det X0ð Þ½ � þ 1

cj
� f 0Tj � X0�1 � f 0j

� �

where cj ¼ ljð1� ljÞ

f 0j ¼ fj � fj0 :

2.2 Parameter inference
2.2.1 Inference for individual ancestries

To estimate Q and F, we use Newton’s approach. In general, we can ap-

proximate a function FðxÞ by its second order Taylor expansion. We

proceed to minimize this second-order approximation by solving Dx. In

our problem, DQ and DF are constrained by 8Dqik; qik þ Dqik 2 ½0; 1�;
8Dfkj; fkj þ Dfkj 2 ½0; 1� and

PK
k Dqik ¼ 0 because

PK
k qik ¼ 1. The

analytical forms of the differential for ln½PO
1 ðQ; FÞ� are presented below:
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0 if j 6¼ j0

:

8>>>>>>>>><
>>>>>>>>>:

The analytical forms of the differential for ln½PL
1 ðQ; FÞ� can be found

below:

@ lnPL
1

� �
@qik

¼
XJ

j

GQ i; j; kð Þ
F i; jð Þ

	 


@2 lnPL
1

� �
@qik@qi0k0

¼

XJ

j

F i; jð Þ �HQ i; j; k;k0ð Þ �GQ i; j; kð Þ �GQ i; j; k0ð Þ
F2 i; jð Þ

	 

if i ¼ i0

0 if i 6¼ i0

8>>><
>>>:

F i; jð Þ ¼ gAA
ij � A2

ij þ gaa
ij � B2

ij þ gAa
ij � 2AijBij

GQ i; j; kð Þ ¼ @F i; jð Þ
@qik

¼ 2gAA
ij � fkj � Aij þ 2gaa

ij � 1� fkj

� �
� Bij

þ2gAa
ij � Aij � 1� fkj

� �
þ Bij � fkj

� �
HQ i; j; k;k0ð Þ ¼ @G i; j; kð Þ

@qik0

¼ 2gAA
ij � fkj � fk0 j þ 2gaa

ij � 1� fkj

� �
� 1� fk0 j

� �
þ 2gAa

ij fk0 j � 1� fkj

� �
þ 1� fk0 j

� �
� fkj

� �
:

@ lnPL
1

� �
@fkj

¼
XI

i

GF i; j;kð Þ
F i; jð Þ

	 


@2 lnPL
1

� �
@fkj@fk0 j0

¼

XI

i

F i; jð Þ �HF i; j; k; k0ð Þ �GF i; j; kð Þ �GF i; j;k0ð Þ
F2 i; jð Þ

	 

if j ¼ j0

0 if j 6¼ j0

8>>><
>>>:

F i; jð Þ ¼ gAA
ij � A2

ij þ gaa
ij � B2

ij þ gAa
ij � 2AijBij

GF i; j; kð Þ ¼ @F i; jð Þ
@fkj

¼ 2gij
AA � qik � Aij � 2gaa

ij � qik � Bij

þ 2gAa
ij � Bij � qik � Aij � qik

� �
HF i; j; k;k0ð Þ ¼ @G i; j; kð Þ

@fk0 j

¼ 2gAA
ij � qik � qik0 þ 2gaa

ij � qik � qik0 � 4gAa
ij � qik � qik0 :

To solve these inequality- and equality-constrained quadratic opti-

mization problems, we use an adaptation of the Active Set

Algorithm (Murty and Feng-Tien, 1988). To solve the equality

problem defined by the active set and to compute the Lagrange

multipliers of the active set, we use the Karush-Kuhn-Tucker

(KKT) approach (Karush, 1939; Kuhn and Tucker, 1951). In each

iteration, the algorithm searches for a better solution by consider-

ing the active constraints as equality constraints. It deviates from

the bounds when the Lagrange multipliers signal a better solution

toward the feasible region. These procedures are implemented in

the qpas program of Ohana. In Section S6 of the Supplementary

Information (SI), we provide algorithm details, its application

within STRUCTURE-style models, concrete examples, and com-

parisons with other solving strategies for the STRUCTURE-style

modeling. Readers unfamiliar with KKT, QP, or active set opti-

mization, and/or interested in the algorithmic details should refer

to this section.

We convert the problem of manipulating huge matrices into se-

quences of small matrix operations of size K by K as in (Alexander

et al., 2009). We do so by taking advantage of the fact that most off-

diagonal values in the Hessian diminish. Only sub-matrices of size K

by K are populated, and these off-diagonal zeros do not contribute

to the solutions at the KKT step when solving linear systems.

Further explanation and a concrete example of this matrix conver-

sion can be found in Section S7 of the SI.
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2.2.2 Inference for population covariances

To optimize the likelihood model defined in the last equation of

Section 2.1, we use a black-box style of optimizer, the Nelder-Mead

(NM) simplex method (Nelder and Mead, 1965). We use sample co-

variances, Sc ¼ 1
n �
Pn

i xi � �xið Þ xi � �xið ÞT , as the initial starting point

for the NM optimizer, and we use Cholesky decomposition

(Cholesky, 2005) to determine the positive semi-definiteness and to

compute matrix inverses and determinants. The nemeco program in

Ohana performs this analysis. More detail on this algorithm can be

found in Section S8 of the SI.

2.3 Estimation of phylogenetic trees
The algorithm described above estimates a covariance matrix com-

patible with exactly one tree. This covariance matrix can then be

used to construct a (phylogenetic) tree using the Neighbor-Joining

(NJ) method. We note that the NJ theorem (Saitou and Nei, 1987)

states that when a distance matrix is accurately estimated for data

evolved under a tree with positive branch lengths, the matrix will be

compatible with exactly one phylogentic tree, and this tree will be

accurately reconstructed by the NJ method. The covariance matrix

has a one-to-one mapping to a distance matrix given by

Dist ðp1; p2Þ ¼ Var ðp1Þ þVar ðp2Þ � 2� Cov ðp1; p2Þ. If the covari-

ance matrix is accurately estimated, the resulting tree will therefore

also be estimated accurately. Our software implementation also

allows for rendering of the estimated tree using the convert

program.

2.4 Implementation
The qpas program in Ohana implements sequential QP based on the

Active Set algorithm to solve the classical STRUCTURE model and

the model used in NGSADMIX. It infers admixture from called

genotype data, i.e. genotype observations, stored in the ped format

from Plink (Purcell et al., 2007) and genotype likelihoods in the bgl

format from beagle (Browning and Browning, 2007). Ohana’s nem-

eco program implements the NM optimization on the Gaussian

modeling, and it infers population covariances. The convert pro-

gram in Ohana facilitates different stages of the analysis by provid-

ing file conversions, fast approximations and visualizations. The

source code, installation instructions and example workflows are

available on GitHub at https://github.com/jade-cheng/ohana.

2.5 Simulated data
We used the software fastsimcoal2 (Excoffier et al., 2013) to pro-

duce genetic data using the Sequential Markov Coalescence (SMC)

model (Marjoram and Tavaré, 2006; McVean and Cardin, 2005).

We simulated populations of nucleotide sequences according to a

given demographic scenario. For each ancestry component, we

simulated 100 sequences of size 20 000 000 bp under an identical

population size of 50 000 for all components. We simulated demo-

graphic topologies with certain branch lengths by controlling popu-

lation splits and effective population sizes.

We simulated admixture proportions for un-admixed and

admixed scenarios. For un-admixed cases, we simply assigned a frac-

tion of the sample to each population. For admixed cases, we simu-

lated Qi independently from Dirichlet distributions Dir ða; a; aÞ,
similarly to the simulations used in (Pritchard et al., 2000) and

(Alexander et al., 2009).

Finally, we simulated genotype observations by first calculating

the major allele frequency fij for each individual at each marker

location and then sampling genotypes under the assumption of

Hardy-Weinberg Equilibrium, i.e. pAA
ij ¼ f 2

ij ; pAa
ij ¼ 2 � fij � ð1� fijÞ,

paa
ij ¼ ð1� fijÞ2, where fij ¼

PK
k qik � fkj, and pAA, pAa and paa are the

probabilities of observing major-major, major-minor, or minor–

minor genotypes for the locus (Fig. 1).

2.6 Real data
We used four datasets for the comparison with ADMIXTURE

shown in Figure 2 and Table 1:

• Dataset #1, a compilation of Europeans containing 17 507

markers and 118 individuals; this data was obtained from the

POPRES (Nelson et al., 2008), ALS (Laaksovirta et al., 2010),

Swedish Schizophrenia (Ripke et al., 2013) and NCNG

(Espeseth et al., 2012) projects. It is a subset of data compiled for

a study of Danish genetics (Athanasiadis et al., 2016)
• Dataset #2, a compilation of HapMap (2005) CEU, YRI, MEX

and ASW individuals containing 13 928 markers and 324 indi-

viduals. This is the benchmark dataset used in the original

ADMIXTURE paper (Alexander et al., 2009)
• Dataset #3, a compilation of Han Chinese samples from the HapMap

project (2005) containing 9822 markers and 171 individuals.
• Dataset #4, a compilation of HapMap (2005) world population of

4695 markers 60 individuals of 10 North European, 10 Japanese,

10 Guaharati, 10 Luhya, 10 Maasai Kinyawa and 10 Tuscan.

For the admixture and covariance data analysis shown in Figure 5,

we used a combination of world-wide samples containing 127 855

markers and 80 individuals from the HGDP project. We pruned

for minor allele frequencies and Linkage Disequilibrium (LD)

with Plink (Purcell et al., 2007) using the options –indep 50 5 2 –

geno 0.0 –maf 0.05.

Fig. 1. Phylogenetic tree construction pipeline. We estimate a rooted covari-

ance matrix, where the root is arbitrarily chosen. We then recover the full co-

variance matrix, compute the distance matrix, and approximate the distance

matrix as a tree structure using the NJ algorithm. Optionally, by supplying

the estimated tree into the covariance inference process, we refine the esti-

mated covariances to be most tree-compatible. Finally, we render the Newick

tree in SVG format. For better control of the graphics, we recommend using

our web service: http://www.jade-cheng.com/graphs/
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3 Results

3.1 Computational speed
ADMIXTURE has previously been shown to have the most efficient

optimization algorithm among the previously published methods for

the classical STRUCTURE model (Alexander et al., 2009). We

therefore compare our optimization algorithm to the algorithms im-

plemented in ADMIXTURE. For a fair comparison, we show the

distribution of likelihood values for the two methods, obtained after

a fixed amount of computational time, for multiple different runs of

Ohana and ADMIXTURE (Fig. 2 and Table 1). We verify that the

likelihood values are comparable between the two programs by cal-

culating likelihood values for the same parameter values for both

programs. We use four different real datasets described in the

Materials and methods section and explore a range of different val-

ues of K. For a very short amount of computational time,

ADMIXTURE tends to find higher likelihood values. ADMIXTURE

may possibly use better initial values for the optimization. However,

after a relative short amount of time, our method tends to find

higher likelihood values than ADMIXTURE for the same computa-

tional time.

3.2 Estimation of admixture and tree on simulated data
We simulated data on a tree using coalescence simulations as

described in the Materials and methods section and estimated for

different values of K (Fig. 3). This mimics the procedure often used

in real data analyses in which multiple values of K are explored and

presented without knowing the true value of K, although this value

can be estimated using a variety of methods (Alexander and Lange,

2011; Scheet and Stephens, 2006; Wold, 1978).

The plots show good correspondence between the true and the

estimated values, for both admixture proportions and demography.

Furthermore, the changes in tree topology as K changes reflect the

hierarchical structure of the tree. For example, at K¼4 the internal

branch reflects the split between populations (0, 1, 2) and (3, 4, 5).

(a)

(b)

(c)

(d)

Fig. 2. Comparison of computational speed and efficacy with ADMIXTURE.

The plots show the change in the distribution of log likelihood values, pro-

duced from the two programs over time. Our method produces lower likeli-

hood values initially, but it generally outperforms ADMIXTURE after

relatively few iterations. For each dataset, each program was executed 100

times using random seeds (0; 1; . . . ; 99) and K¼ 9. (a, b, c, d) are four different

datasets, same as in Table 1

Table 1. A table of the highest log likelihoods achieved from ADMIXTURE and our method for a range K values

Dataset #1 Dataset #2 Dataset #3 Dataset #4

K Ohana ADMIXTURE Diff Ohana ADMIXTURE Diff Ohana ADMIXTURE Diff Ohana ADMIXTURE Diff

2 �1967733 �1967733 0 �3835358 �3835365 7 �1857263 �1857263 0 �288991 �288991 0

3 �1956785 �1956799 14 �3799873 �3799887 14 �1848450 �1848451 1 �279462 �279463 1

4 �1946218 �1946244 26 �3788598 �3788607 10 �1841198 �1841199 1 �275212 �275213 1

5 �1935775 �1936025 250 �3777351 �3777361 11 �1834377 �1834378 1 �271807 �271808 1

6 �1925636 �1925877 241 �3766558 �3766540 �18 �1827829 �1827830 2 �268837 �268832 �5

7 �1915552 �1915743 191 �3755851 �3755860 9 �1821445 �1821458 13 �265907 �265923 17

8 �1905430 �1905638 209 �3746227 �3745412 �815 �1815214 �1815214 0 �263052 �263096 44

9 �1895372 �1895879 507 �3735240 �3736079 839 �1809084 �1809101 18 �260268 �260440 172

10 �1885306 �1885466 160 �3725558 �3725624 66 �1802911 �1802906 �5 �257539 �257736 197

11 �1875503 �1875853 350 �3715543 �3715157 �385 �1796763 �1796847 84 �254920 �254961 41

12 �1865492 �1865965 474 �3706069 �3707715 1646 �1790671 �1790811 140 �252196 �252266 70

13 �1855502 �1856262 760 �3697531 �3698519 987 �1784688 �1784765 77 �249456 �249468 12

14 �1845732 �1846490 758 �3688970 �3689124 154 �1778599 �1778671 73 �246760 �246817 56

15 �1836315 �1836775 460 �3681092 �3680829 �263 �1772555 �1772669 114 �244058 �244298 240

Note: For each dataset, each program, and each value of of K, we executed 100 times using random seeds 0; 1; . . . ; 99 and chose the highest value found in any

run. This mimics the procedure often used for real data analysis. In the vast majority of cases, our method found significantly higher likelihood values than

ADMIXTURE. Dataset #1 is a compilation of Europeans containing 17 507 markers and 118 individuals. Dataset #2 is the benchmark dataset used in

ADMIXTURE (Alexander et al., 2009) containing 324 CEU, YRI, MEX, and ASW individuals and 13 928 markers. Dataset #3 is a compilation of 171 Han

Chinese samples and 9822 markers. Dataset #4 is a worldwide population of 60 individuals and 4695 markers.
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3.3 Model limitations
There are at least three reasons why tree estimation using a

Gaussian model based on estimated allele frequencies may face chal-

lenges. First, the allele frequencies are treated as observed data, but

they are truly estimates. This has the potential for introducing a var-

iety of biases. Second, the use of a Brownian motion model to ap-

proximate genetic drift is inaccurate near the boundaries and for

long divergence times, likely leading to underestimates of the lengths

of long branches. Third, due to differences in sample sizes for differ-

ent populations, the STRUCTURE model may not identify groups

that correspond to natural units of a tree, even when the populations

truly have evolved in a tree-like fashion.

We explore some of these issues in the following simulation

study (Fig. 4) by simulating trees with different divergence times:

short, medium and long. For very short divergence times (Fig. 4a),

the covariance matrix was estimated poorly because of the small dif-

ferences in allele frequencies across populations. This in turn leads

to reduced accuracy in the estimation of the tree. While the topology

is recovered correctly, the lengths of the external branches are over-

estimated. This likely happens because the STRUCTURE-style mod-

eling tends to maximize allele frequency differences for finite sample

sizes, i.e. the estimated difference in allele frequencies between pairs

of populations tends to be larger than the true difference. This is an

issue that can be mitigated with larger sample sizes and tends to be a

problem only when branch lengths are very small. Nonetheless, it

will likely affect many real data analyses.

In the long divergence scenario (Fig. 4c) another problem arises.

For such long branches, the Brownian motion model is a poor ap-

proximation to genetic drift, and the mapping between the two tran-

sition probability functions (i.e. Wright-Fisher diffusion versus

Brownian motion) is such that divergence times tend to be underesti-

mated when they are long. The consequence is that the branch

lengths of the tree are underestimated. We verify that this is the

source of the bias by also simulating data under a Gaussian model

directly and showing that under this model there is no significant

bias for long branch lengths. This is described in SI Section S1. We

note that the poor approximation of the Brownian motion model to

the Wright-Fisher diffusion for long divergence times is a limitation

for any inference system using similar statistical models such as

TREEMIX (Pickrell and Pritchard, 2012) and Bayenv (Gunther and

Coop, 2013), and it might be worthwhile in future work to explore

the consequence of this effect for those methods as well.

In the medium-length divergence scenario (Fig. 4b), neither of

the two previously mention sources of bias affect the inference, and

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 3. An evaluation of the tree inference procedure using coalescence simula-

tions. We simulated 140 individuals in 7 groups, 20 individuals per group. The

first 6 groups were un-admixed. The last group was an equal mixture of the first

3 groups. (a) Simulated admixture (left) and simulated demography (right).

(b, c, d, e, f, g) Estimated admixture (left) and estimated demography (right) for

K ¼ 2; 3; 4; 5; 6; 7, respectively. For each of the 6 populations, we simulated 100

sequences of size 20 000 000 bp using fastsimcoal2 (Excoffier et al., 2013). We

used a mutation rate of 2� 10�8 per generation, a recombination rate of 10�8

per generation, and a population size of 50 000. The time parameters were

1000, 2000, 3000, and 4000 generations for t0, t1, t2 and t3, respectively. A total

of 125 787 markers survived filtration for being polymorphic, di-allelic, and with

minor allele frequency greater than 5%. We then estimated admixture fractions

and population trees using values of K ranging from 2 to 7

(a)

(b)

(c)

Fig. 4. A simulation study for different divergence times. We simulated 140

individuals in 7 groups, 20 individuals per group. The first 6 groups were

un-admixed. The last group was an equal mixture of the first 3 groups. We il-

lustrate the simulated demography on the top. We simulated 6 divergence

scenarios, 2 short shown in (a), 2 medium shown in (b) and 2 long shown in

(c). From the shortest to the longest divergence scenario (top to bottom), the

split times (t0, t1, t2, t3) in generation were: (10, 20, 30, 40), (100, 200, 300, 400),

(1000, 2000, 3000, 4000), (1500, 3000, 4500, 6000), (10000, 20000, 30000,

40000), (20000, 40000, 60000, 80000)
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the estimates of the branch lengths are therefore quite close to the

true values. In all three divergence scenarios, the tree topologies

were always estimated accurately.

3.4 Other simulation scenarios
We also evaluated the performance of the method under several

other simulation scenarios, and the results are presented in SI

Section S2–S5. A few noteworthy observations include:

• In more than one simulation scenario with ancient admixture,

the population was not inferred to be admixed but received a

unique admixture component, e.g. Supplementary Section S2

Figure S4 and Section S3 Figure S5. The probability of inferring

admixture likely depends on the amount of drift since admixture.

In the context of much human data showing evidence of ancient

admixture, it might be worthwhile in future studies to explore

how much drift after admixture is required to erase the signal of

admixture.
• When K is smaller than the true number of ancestry components,

populations with few individuals represented in the sample tend

to be (wrongly) inferred as admixed, e.g. Supplementary Section

S5 Figure S7. There is a clear dependence on sample size in infer-

ence of admixture components in STRUCTURE-style models.

Similarly, the outgroup tends to be identified as the first admix-

ture component that splits from the rest of the individuals, only

when the outgroup is well-represented in the sample in terms of

the number of individuals.

3.5 Real data analysis
We apply our method to analyze a panel of global human data using

a range of K values. Figure 5 summarizes the results. The topologies

of the trees largely mimic what is already known about human an-

cestry (e.g. Reich et al., 2012), i.e. using a root in Africa, Asians and

Native Americans cluster together, the European and middle

Eastern groups cluster together, etc. In addition to Yorubans having

a long branch because this group is an outgroup to the rest, we also

notice a relatively long branch leading to Native Americans, reflect-

ing the increased drift in this group due to the bottleneck into the

Americas and possibly small population sizes thereafter.

4 Discussion

In this paper, we introduce a new optimization method for the clas-

sical STRUCTURE model in an MLE framework. We compared the

new optimization algorithm to the one implemented in the hitherto

fastest program, ADMIXTURE. Our method generally outper-

formed ADMIXTURE by obtaining estimates with higher likelihood

values in similar computational time. The difference between our

method applied to called genotypes and ADMIXTURE is the algo-

rithm used to solve sequential QP. Our method uses an adaptation

of the Active Set algorithm while ADMIXTURE uses a pivoting

method plus a quasi-newton acceleration. We implemented a

pivoting-based QP solver, which is also published in Ohana under

the name cpax. We also tested the quasi-newton accelerator as well

as three other similar accelerators in the family of squared iterative

methods, SQUAREM, (Varadhan and Roland, 2008). In our bench-

mark tests, these techniques did not perform as well. Section S6 in

the SI provides more details on this topic.

We extend our new optimization algorithm to a similar model

(Skotte et al., 2013) that allows us to infer population structure

from genotype likelihoods. The advantage of working on genotype

likelihoods instead of called genotypes is that genotype likelihoods

incorporate the uncertainty regarding genotype calls inherent in

much NGS data, and this makes it more applicable to low- or

medium-coverage data (see e.g. Skotte et al., 2013).

In addition, we presented a new approach for estimating trees

from ancestry components. Using coalescence simulations, we

showed that when the trees are interpreted as reflecting true popula-

tion trees, external branch lengths tend to be overestimated for small

divergence times. However, for long divergence times, the use of a

Gaussian model and its inaccuracy in approximating genetic drift

cause branch length estimates to be downward biased. Nonetheless,

the estimates of tree topology appear reasonably robust. The tree es-

timation and visualization tool should be of use to other researchers

as an additional possible component of STRUCTURE-style analyses.

The tree is a visualization of the covariance structure of the

(a) (b)

(d) (c)

Fig. 5. Analysis of human global data. We used a dataset compiled from the

HGDP project containing 80 individuals from 8 populations, 10 per popula-

tion. We filtered markers using Plink (Purcell et al., 2007) with options –indep

50 5 2 –geno 0.0 –maf 0.05. A total of 125 787 markers survived the filtration

and were used for the analysis. For each K value, we dispatched 32 execu-

tions with random seeds from 0 to 31. We report only results from the execu-

tion that reached the best likelihood for each K. The plots show individual

admixture proportions and population trees for several different values of K.

The map combines the admixture results and geographical records of the

HGDP samples. Each slice of each pie chart shows the sum of one component

estimated in samples collected at that region. (a, b, c and d) show the admix-

ture and tree estimates for K ¼ 2; 4; 6; 8, respectively
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admixture components, and it may as such be useful even if a strict

interpretation of a evolutionary tree may not be warranted. There

might be several reasons why such an interpretation may not be ap-

propriate, most of all because the true nature of the evolution of the

ancestry components may not be well-described by a tree. Ancestry

components are constructions that may or may not reflect true an-

cestral populations.
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