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Article
Redox-Driven Proton Pumps
of the Respiratory Chain
Alexei A. Stuchebrukhov1,*
1Department of Chemistry, University of California Davis, Davis, California
ABSTRACT In aerobic cells, the proton gradient that drives ATP synthesis is created by three different proton pumps—mem-
brane enzymes of the respiratory electron transport chain known as complex I, III, and IV. Despite the striking dissimilarity of
structures and apparent differences in molecular mechanisms of proton pumping, all three enzymes have much in common
and employ the same universal physical principles of converting redox energy to proton pumping. In this study, we describe
a simple mathematical model that illustrates the general principles of redox-driven proton pumps and discuss their implemen-
tation in complex I, III, and IV of the respiratory chain.
INTRODUCTION
A proton pump is a membrane enzyme, which functions as a
molecular device that ‘‘catches’’ protons on one side of the
membrane and expels them on the other. The transfer of pro-
tons requires energy because the membrane is electrically
charged and protons need to overcome a potential differ-
ence; in addition, there is a proton concentration difference
on both sides of the membrane so that the transfer of protons
occurs against both the electric and the concentration
(‘‘electrochemical’’) gradient. In fact, the proton pumping
itself gives rise to an electrochemical gradient on the mem-
brane, as the expulsion of protons occurs either from or to a
closed organelle such as a mitochondrion, bacterial cell, or
chloroplast. According to Mitchell’s basic principles of bio-
energetics, it is this electrochemical proton gradient, also
known as the Proton Motive Force (PMF) that drives the
synthesis of ATP in the cell (1,2).

In a sense, a proton pump is a molecular version of
Maxwell’s demon (3,4) that operates in the membrane
but does require energy for its operation. There are
different types of proton pumps: some are powered by
ATP; others by a concentration gradient of an ion that ex-
changes with the proton or vice versa, the proton gradient
drives pumping of other ions (2). The pumps that create
PMF for ATP synthesis are powered by the redox energy
of oxygen reduction of cell respiration. In this process,
electrons are transferred from an initial substrate NADH
through a chain of enzymes—complexes I–IV and their in-
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termediates quinone and cytochrome c—to oxygen, which
is converted, with the addition of four electrons and
four protons, to two molecules of water. Three of the
four enzymes of the electron transport chain—NADH de-
hydrogenase, quinol:cytochrome c oxido-reductase, and cy-
tochrome c oxidase, also known as complex I, III, and IV,
respectively—are proton pumps (5). Sometimes com-
plex III is said to be not a true pump but rather a Mitchel-
lian proton-loop machine (because protons are not directly
translocated through the enzyme but instead carried by the
diffusing quinone molecules in the membrane); however,
we will show that all thee follow the same basic physical
principle of pumping despite their remarkably different
molecular mechanisms. These enzymes, therefore, are
molecular machines that convert redox energy into proton
pumping force (PPF), i.e., the ability to pump protons
against an electrochemical gradient. Quantitatively, PPF
can be defined as a maximal PMF against which a pump
can pump protons. (Both PMF and PPF are of course just
a difference of chemical potential of the protons on the
opposite sides of the membrane).

The structures of all proton pumps of the respiratory
chain have been solved in the past two decades, com-
plex I’s complete structure being the most recent achieve-
ment of the field (6). The revealed structures suggested
molecular mechanisms, and although important details are
still missing, a rough picture has already emerged (5).

The purpose of this work is to introduce a mathematical
model that describes the simplest and universal scheme of
pumping and to discuss the general pumping principles
that underlie the function of the respiratory chain; earlier
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Redox-Driven Proton Pumps
discussions of this subject include (7–12). Within the
framework of our model, we compare the molecular
mechanisms of three different pumps, placing special
emphasis on the question of how redox energy of electron
transfer reactions is converted to proton pumping power of
the enzymes. We show that all three enzymes employ
the same universal physical principle of generation of
PPF, although their molecular mechanisms are strikingly
different.
 P1 μ12

FIGURE 2 Schematics of the kinetic model. Two reservoirs (R1 and R2)

are described by concentrations/populations P1 and P2 and have different

chemical potentials: R1 is a low-potential and R2 is a high-potential reser-

voir. The enzyme is described by a single proton loading site (PLS) with

population P0. The energy of PLS (which defines its pKa) is ε0. The rates

k12 describe the on- (kþ) and off- (k�) proton transfers to/from the PLS

from R1 and R2.
METHODS

Pump equation

The schematic of the model is shown in Fig. 1. The protons on the opposite

sides of the membrane are described by two proton reservoirs, R1 and R2,

with concentrations p1 and p2 (p2 > p1), and energies, including their elec-

tric potentials, m01 and m02. For convenience, it will be assumed that both

reservoirs have unit volumes so that concentrations pi are proportional to

total number of protons in the reservoirs. The electrochemical potential

of the protons can then be written as

mi ¼ m0i þ kT ln pi; Dm0i ¼ eD4; (1)

where D4 is the membrane electric potential.

The two reservoirs are connected by the enzyme, E, which is repre-
sented by a single site called the proton loading site (PLS) located

in the enzyme. (The terminology of the PLS is from the original discus-

sion of pumping in cytochrome c oxidase, complex IV; see 13,14). There

is an access of protons from both sides of the membrane to this site.

The rate constants of on- and off- reactions are kiþ ¼ kipi and ki�. The
occupancy of the PLS is p0. A single occupancy (one proton maximum)

of the PLS will be assumed. The kinetics of the model is illustrated

in Fig. 2.

If the enzyme is in a resting state, i.e., does not do anything, the param-

eters of the model—rate constants, the energy of the PLS, and its popula-

tion—are fixed to certain values and do not change. Obviously, no matter

what the parameters of the model are, the stationary flux of protons will

be directed along the electrochemical gradient from high-potential R2 to

low-potential R1.

We now ask the question of whether it is possible to change the

parameters of the model—periodically, to reflect the cycles of the

enzyme turnovers—in such a way so as to reverse the direction of

the net flux. In other words, we ask what the enzyme ‘‘should do’’ to

generate PPF.

The equations that describe the kinetics of the system are as follows:

_p1 ¼ �p1ð1� p0Þk1 þ p0k�1;
_p0 ¼ þp1ð1� p0Þk1 þ p2ð1� p0Þk2 � p0ðk�1 þ k�2Þ; and

_p2 ¼ �p2ð1� p0Þk2 þ p0k�2:

(2)

The flux of protons between R1 and R2, J12, is defined as
J12 ¼ ð _p2 � _p1Þ=2: (3)
FIGURE 1 Schematics of the model. Two reservoirs (R1 and R2) are

exchanging particles (protons) through enzyme E.
We introduce the following notation

k5 ¼ k1p1
p01

5
k2p2
p02

p0i ¼
pi

pi þ Ki

; Ki ¼ k�i=ki

(4)

and define the stationary adiabatic PLS population and the flux (i.e., those

stationary values that would be in case of time-independent parameters of
the system):

J12 ¼ J12 þ dJ12: (5)

The stationary flux—assumed to be negative (backflow), from the high-

potential reservoir R2 to the low-potential R1—is

J12 ¼ k1p1k2p2
kþ

�
e
�m2
kT � e

�m1
kT

�
e
ε0

kT (6)

(for m2 > m1, J12 < 0). Whereas for additional nonstationary flux dJ12, we

have
dJ12 ¼ 1

2

k�
kþ

_p0: (7)

It can be either positive or negative (because both k� and _p0 can

have either sign). This contribution to the flux will be called the pumped

flux.

The total nonstationary pumped charge crossing the membrane over a

time interval T (e.g., during one cycle of the reaction) is

dQ12 ¼
ZT

0

dJ12dt ¼ 1

2

ZT

0

k�
kþ

_p0dt: (8)

If the PLS population p0 is treated as an independent variable and a periodic

cycling of the enzyme is assumed, for one cycle we have
dQ12 ¼ 1

2
#Gdp0; (9)

where we introduce the gate function G,
Biophysical Journal 115, 830–840, September 4, 2018 831
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FIGURE 3 The pumping cycle is described by a curve in the plane G vs.

p0, where G is the gate value and p0 is the PLS population, left (A). The

number of particles pumped in one cycle is the area of the enclosed curve

(filled). By definition, jGj < 1 and 0 < p0 < 1. The maximal pumping ef-

ficiency is achieved for the cycle of maximal area shown on the right (B).

Here, for comparison, we also show the cycle of (A) to emphasize that an

arbitrary cycle (A) has lower than the maximal enclosed area and hence

lower efficiency.

Stuchebrukhov
G ¼ k�
kþ

¼
k1p1
p01

� k2p2
p02

k1p1
p01

þ k2p2
p02

; (10)

which varies in the range from �1 to þ1. When the gate is open on the R1

side and closed on R2, then G ¼ þ1 (for dp > 0, this corresponds to
0

loading PLS from R1 only); in the opposite case, of a closed gate on the

R1 side/open on R2, G ¼ �1 (for dp0 < 0, this corresponds to unloading

PLS to R2 only). The factor of 1/2 in Eq. 9 is simply due to the fact that

getting a full proton from R1 to the PLS is equivalent only to a ‘‘half’’-trans-

ferred proton; the subsequent expulsion of the proton from the PLS to R2

would complete the full transfer. The obtained Eqs. 9 and 10 will be

referred to as the ‘‘pump equation.’’

The final expression Eq. 9 has a clear physical meaning. Namely, the net

pumped charge over a small time interval dt is a product of variation of PLS

population dp0(t) times the value of the gate G(t), which regulates to/from

which side of the membrane population dp0 is transferred. The product

Gdp0 is similar (this similarity is formal but useful nevertheless conceptu-

ally) to a familiar expression for a mechanical work, Fdx, or PdV, where dp0
is equivalent to the displacement, or volume change, and the gate function

G is equivalent (formally) to force, or pressure. Similar to the mechanical

work, if a periodic process is involved, the total work or transferred charge

is given by a cyclic integral (Eq. 9). This formal analogy goes further:

although population p0 is a unique function of time-dependent parameters

of the system and hence of the gateG, the reverse is not true, i.e., population

p0(t) does not uniquely define the parameters of the gate; we have the same

relation for coordinate x(t) and the force acting on the body F(t) (or V vs. P).

This is, in fact, the formal reason why the cyclic integral Eq. 9 is nonzero.

Other examples of physical systems involving a cyclic integral similar to

Eq. 9 are discussed in the Appendix.

From the above discussion, it is clear that if there is a periodic variation

of the PLS population in such a way that when dp0(t) > 0, G(t) > 0, and

when dp0(t) < 0, G(t) < 0, there will be nonzero nonstationary flux from

the low-potential reservoir R1 to the high-potential reservoir R2. Our

goal is now to see how to make this nonstationary flux the maximum

possible to successfully compete with a stationary flux in the opposite direc-

tion, i.e., the leak of protons through the pump.

The integral defining the number of pumped particles per cycle (Eq. 9) is

convenient to describe graphically in the plane of variable G and p0. The

number of pumped particles is the area enclosed by a closed curve in the

(p0,G) plane describing the cycle, as shown in Fig. 3 A. Obviously,

the maximal pumping efficiency is achieved for the cycle of maximal

area shown in Fig. 3 B. The maximal efficiency, achieved for a special cy-
832 Biophysical Journal 115, 830–840, September 4, 2018
cle, brings up the analogy with the Carnot engine (15). In this case, maximal

efficiency is known to be achieved for a special (Carnot) cycle consisting of

two isotherms and two adiabats in the (P,V) plane. But in the plane of en-

tropy S and temperature T, (S,T), the Carnot cycle is exactly equivalent to

what we described for the pump and have shown in Fig. 3 B. The analogy

with the Carnot engine goes further and is discussed in more detail later in

the study.

For the pump, the maximal efficiency cycle (Fig. 3 B, solid square

curve with arrows) is such that the PLS is first loaded from R1 (i.e., p0
is changing from 0 to 1 while G ¼ þ1) and then unloaded to R2 (i.e.,

p0 is changing from 1 to 0 while G ¼ �1). Such a process is shown sche-

matically in Fig. 4. Upon loading (Fig. 4, left), the energy of PLS ε0 is

made lower than the chemical potential of R1, or equivalently, pKa of

the PLS is higher than the pH of R1, whereas a high barrier blocks access

from R2. In the unloading stage (Fig. 4, right), the access from R1 is now

blocked by a high barrier, whereas the access to R2 is open; at the same

time, the energy of the loaded PLS is made higher than the potential of

R2, or equivalently, pKa of the PLS is now lower than the pH of R2,

providing unloading of the PLS proton to the R2 side. In such a cycle,

obviously, a proton is pumped from the low-potential reservoir R1 to

high-potential R2.

The efficiency of the cycle (i.e., the number of protons per cycle

pumped), as it follows from the above discussion, depends on the tight cor-

relation/coupling between the gate opening/closing and the kinetics of the

PLS protonation/deprotonation. However, the overall efficiency of the

pump depends also on the control of the backflow (leakage) of protons

through the pump. This will be discussed in the next subsection. To operate

the pump, one needs an input of energy, and there is also a question of the

efficiency of energy usage for the pumping; this will be still further dis-

cussed in the following (Adiabatic Pumping: Relation to Thermodynamics

and in Relation to Carnot Heat Engine on the connection to the Carnot

machine).
Net flux

The net flux is the sum of the stationary backflow in the direction from high-

potential R2 to low-potential R1 and the nonstationary pumped flux from

R1 to R2 (Eq. 5). The backflow, in principle, can be made arbitrary small

(by always keeping at least one of the barriers infinitely high), and thus

the net flux can be made to flow from the low-potential to the high-potential

reservoir.

To maintain the net flux positive (from R1 to R2), however, the changes

in the system cannot be arbitrary slow because during one cycle, a

maximum of one particle is transferred from R1 to R2, whereas the number

of transferred particles from the stationary backflow flux is proportional to

the cycle duration time. Hence, the changes should be fast enough so that

the negative stationary flux would not exceed the pumped one. On the other

hand, for efficient pumping, i.e., to pump the maximal possible number of

particles per cycle (in our case, one), the changes cannot be too fast, as it

follows from the previous discussion. The quantitative estimates can be

made as follows.

Consider the diffusion-limiting (maximal) rate of particles supply kon ¼
kBM[Hþ], where kBM is a bimolecular rate constant (for protons, on the order

of 1011 M�1 s�1) and [Hþ] concentration. (This rate is represented by kiþ ¼
kipi terms in the kinetic equations.) The corresponding timescale of proton-

ation is t0 ¼ 1/kon.

For efficient pumping, the cycle should be obviously slower than the time

needed for one protonation of PLS to occur, i.e., t0. On the other hand, the

stationary backflow flux is

J12 � kone
�Vmax

kBT ; (11)

where Vmax is the maximal barrier that blocks the access to PLS from the

‘‘wrong’’ side (i.e., from R2 upon loading and to R1 upon unloading).



FIGURE 4 Schematics of the maximal effi-

ciency pumping cycle. Upon loading (left), pKa

of the PLS is higher than the pH of R1, while a

high barrier blocks access from R2. In the unload-

ing stage (right), the access from R1 is blocked by a

high barrier, and pKa of the PLS is lower than the

pH of R2.

Redox-Driven Proton Pumps
Then the exact formal condition for the cycle duration Tcyc can be written as

follows:

t0 <Tcyc < t0e
Vmax

kBT : (12)

Adiabatic pumping: Relation to thermodynamics

The efficiency of energy usage to pump protons against the electrochemical

gradient also depends on the timescale of the cycle; as in general thermo-

dynamics, the maximal efficiency is achieved in an adiabatic process, which

is discussed next.

The gate G is an explicit function of various rate constants of the system

Eq. 10, which themselves depend on several kinetic parameters of the sys-

tem such as barrier heights separating the PLS from the two sides of the

membrane (V1 and V2), energy of the PLS (ε0), and others. If one or

more of such parameters varies in time, so does the gate function G(t).

This dependence on time is parametric in the sense that G at time t is

defined by the values of the parameters of the system at that moment of

time.

In contrast to G(t), the PLS population p0(t), the second variable in the

cyclic integral Eq. 9, is not a function, but a functional of time-dependent

parameters of the system. Unlike G(t), the external parameters at a given

time t define the rate of change of p0(t) (Eq. 2), not p0(t) itself; naturally,

then, p0(t) depends not only on those parameters at time t but also on the

previous moments of time—the system has memory. This is typical for a

dynamic variable that is driven by an external source. Explicitly, the expres-

sion for p0(t) in the integral form is given in the Appendix.

In general, therefore, in the contour integral Eq. 9, G is not a function of

p0 but rather a specific value of G(t), whereas the PLS population has its

own value p0(t) (and an increment dp0(t)) so that the integral is the sum

of G(ti)dp0(ti) over instances of time ti values. Thus, in general, there is

no correlation between G(t) and p0(t).

However, if parameters change slowly (the exact condition can be

deduced from the equation given in the Appendix), the population of the

PLS becomes a function of time-dependent parameters:

p0ðtÞ ¼ k1ðtÞp1 þ k2ðtÞp2
kþðtÞ : (13)

Similar to G(t), p0 now depends explicitly on a number of kinetic param-

eters—such as barrier heights, pKa value of the PLS, etc.—that change in

time, and so does p0ðtÞ. This is an ‘‘adiabatic’’ approximation of p0(t). Now

both G and p0 are functions of the same kinetic parameters, and therefore,

they are uniquely related to each other at a given instance of time. Both G

and p0 are now ‘‘state functions’’ and do not depend on the manner of how

state parameters change in time, i.e., G ¼ G(l1, l2,.), p0 ¼ p0(l1, l2,.),

and their time dependence is parametric: G(t) ¼ G(l1(t), l2(t), .), p0(t) ¼
p0(l1(t), l2(t), .).

This is similar to ‘‘reversible’’ and ‘‘irreversible’’ or quasi-equilibrium

changes in thermodynamics, which are key for the efficiency of energy us-

age. For reversibility, the change in the system parameters should be made

slowly so that the entropy of the system would always be close to its
equilibrium/maximal value for a given state of parameters of the system.

The rate of change obviously should be slower than the relaxation rate

with which the system finds its new state of equilibrium for changed

conditions.

In fact, our system depends most strongly only on two parameters: the

energy ε0 of the PLS (or its equivalent pKa), and the difference in the

heights of two barriers separating the PLS from the two reservoirs

(Fig. 2), defined as V ¼ V1 � V2. The explicit expressions for G(ε,V) and

p(ε,V) (for short, here we write εhε0 and php0) are given in the Appendix.
Given these explicit functions, the charge transferred in one adiabatic cycle

can be expressed as follows:

dQ12 ¼ 1

2
#Gdp ¼ 1

2

ZZ
dGdp

¼ 1

2

ZZ �
vG

vV

vp

vε
� vG

vε

vp

vV

�
dεdV: (14)

The total work needed per cycle is

W ¼ #pdε ¼
ZZ

dpdε ¼
ZZ �

vp

vV

�
ε

dεdV; (15)

where G and p are treated as functions of ‘‘state variables’’ ε and V.

In an adiabatic cycle, the work of pumping is the minimum possible, and

its expression is given above. If pumping is not adiabatic (i.e., not revers-

ible), the work is greater. This is similar to ordinary thermodynamic gas

expansion/contraction: minimal work to achieve a given volume change

is done in an adiabatic process (in which entropy is not changed; otherwise,

additional work is lost to increased entropy, i.e., heat). Here, too, the min-

imal work for a maximal number of protons per cycle is achieved in the

adiabatic process shown in Fig. 3 B; this work is

Wmin ¼ #pdε ¼ ðp ¼ 1Þ � Dε ¼ kT ln 10DpKa: (16)

On the other hand, the minimal work is just a difference in chemical po-

tentials of the reservoirs,Dm12¼ (m2� m1). Hence, we naturally find that in

general, the change of pKa of the PLS must be greater than Dm12, as ex-

pected, and the work spent is that needed to change pKa of the PLS during

the cycle. Additional thermodynamic energy and work relations are given in

the Appendix.
Relation to Carnot heat engine

First of all, it is noticed that the Carnot heat engine can be thought of as an

entropy pump. It takes entropy from a heated body and releases it to a cold

body; the difference in heat taken and returned is the work done by the Car-

not engine. In the reverse process, it pumps heat and entropy from a cold

body to a hot body, in which case the external work is needed. In an ideal

machine, the pumped entropy in the cycle is conserved and is analogous to

the pumped protons. This analogy can be extended further. The tempera-

tures of two heat reservoirs T1 and T2 in the Carnot machine play the role
Biophysical Journal 115, 830–840, September 4, 2018 833
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of the chemical potentials m1 and m2 in the proton pump model. This anal-

ogy is already seen in the expression

TdS ¼ dEþ PdV � mdN; (17)

namely, for energy E at constant V, temperature T plays the same role (con-

jugate) with respect to S as m with respect to N. The work to pump entropy
from a cold body to a heated body is

W ¼ �#PdV: (18)

Changing variables from (P,V) to (S,T) in the above expression (see Ap-

pendix), the work is

W ¼ �#TdS ¼ ðT2 � T1ÞDS; (19)

where the second expression gives the minimal work required to pump DS

from low temperature T1 to high temperature T2. This is analogous to our
expression for the work of the pump:

W ¼ �#εdp ¼ ðm2 � m1ÞDp (20)

(see Eq. A34 in the Appendix), where Dp is the average number of protons

pumped per cycle. In our case, Dp% 1, but this limitation is not important;

one can imagine that the pump has several PLSs and pumps several protons

in the cycle—e.g., as in complex I, for which Dp is 3 or 4, or anything less

than that depending on the efficiency of pumping.

In variables (P,V), the maximal work of the Carnot engine and corre-

sponding minimal work to run the Carnot engine in reverse is achieved

for a cycle (Eq. 18) consisting of two isotherms and two adiabats. In vari-

ables (S,T), the maximal efficiency cycle of the Carnot machine given by

Eq. 19 is represented now by a rectangle, with two sides representing the

change of entropy at constant temperature and two sides corresponding to

changing temperature at constant entropy. This is exactly analogous to a cy-

cle shown in Fig. 3 B. This analogy is further elaborated below.

The cycle for the working body of the Carnot engine (equivalent to the

PLS) consists of the following: 1) making a contact with the low-tempera-

ture reservoir R1, i.e., opening the gate G to R1, and isothermal expansion

at low temperature T1, i.e., taking entropy (and heat) from a cold body

(equivalent to loading); 2) closing the gate G to R1 and adiabatic compres-

sion to high temperature T2 (this is equivalent to raising the energy of the

PLS, ε0, from a low value m1 to a high value m2, or changing pKa of the

PLS from a high-value pH1 to a low-value pH2); 3) making contact with

R2, i.e., opening the gate G to R2, and isothermal compression at high tem-

perature T2, releasing entropy DS and heat to high-temperature reservoir

R2; and finally, 4) closing the gate G to R2 and adiabatic expansion in

which temperature is lowered from high T2 to a low-value T1.

This follows the cycle of the proton pump almost exactly; the only dif-

ference is that we assume no work is done upon transfer of particles

from/to the PLS. Instead, in proton pumps, there is heat exchange upon

binding and releasing protons, as described in the Appendix. This heat is

significant, on the order of 0.5 V or some 12 kcal/mol. Upon binding, this

heat is released (due to decrease of entropy of a proton) locally to solvent

water molecules, i.e., to the environment. In the reverse process of proton

dissociation, the same energy is needed to break the bond between the pro-

ton and the PLS; this energy obviously comes from the environment.

In the pump, the work is done only when we change the energy of

the PLS as given by 20; in the Carnot engine, the work is given by Eq.

Eq. 19. The analogy between T and m in Eqs. 19 and 20 is evident. The ef-

ficiency of the Carnot engine generating work by transferring heat from the

high-temperature (T2) reservoir to the lower one (T1) is defined as a fraction

of total energy (transferred) converted to work,

hC ¼ 1� T1

T2

: (21)
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The same can be done for the pump when it works in reverse (i.e., gener-

ating work by the natural flux of protons); the efficiency of conversion to

work of the high potential protons m2 (low pH, assuming for simplicity

no membrane potential (D4 ¼ 0)) to low potential protons m1 (high pH) is

hP ¼ 1� m1

m2

¼ 1� pH2

pH1

: (22)

The formal efficiency of an ideal pump defined in this way, however, is only

of limited practical use, as chemical potential can be negative or can take

arbitrary high or low values depending on the concentration of ions.

Also, unlike temperature, chemical potential difference Dm is directly

related to work w produced (for an ideal machine) or needs to be produced

to go from a low potential to a high potential. The potential difference in the

pump m2 � m1 ¼ w is in fact physically equivalent to w ¼ Q2 � Q1 of the

Carnot machine, and Eq. 22 is equivalent to hC ¼ 1 � Q2/Q1. Formal effi-

ciency is further discussed in the Appendix (Thermodynamic Energy and

Work by the Pump).

More practically important, when discussing the pumps, is how far or

close they are to ideal pumps. In fact, it is this aspect that is usually implied

when ‘‘efficiency’’ of the pumps is discussed. An ideal pump (100%) can

convert all the work/energy input (redox energy in case of redox-driven pro-

ton pumps) to proton-motive force, i.e., into Dm of the pumped protons.

Real systems are surprisingly close to this ideal, being in the range of

60–80% in the best-known cases. Such efficiency achieved in molecular

realization of the enzymes is truly remarkable. Three major proton pumping

enzymes of the respiratory chain are discussed next.
RESULTS AND DISCUSSION

As evident from their structure, the three proton pumps of
the respiratory chain—complexes I, III, and IV—operate
by drastically different molecular mechanisms, yet they all
appear to follow the same fundamental principles described
by our model. Namely, the mechanism, whatever its molec-
ular implementation, involves a PLS of variable pKa value
and two gates that control the access to the PLS from
each sides of the membrane. The pump works as a two-
stroke device, involving a ‘‘loading’’ stage, in which pKa
of the PLS is high (higher than the pH of the N-side of
the membrane) and the input gate is open from the N-side
of the membrane while the output gate from the P-side is
closed; and the unloading or ‘‘firing’’ stage, in which pKa
of the PLS is lowered (below the pH of the P-side of the
membrane), the input gate shuts the access to the N-side
of the membrane, and the output gate opens access to the
P-side. In the loading stroke, a proton from the N-side of
the membrane is transferred to the PLS, whereas in the firing
stroke, the same proton is expelled from the PLS to the
P-side of the membrane, Fig. 4. Several such pump channels
can operate synchronously, as in complex I.

The principles of the pumping scheme, involving a PLS
of variable energy and the alternating access of the PLS
from both sides of the membrane, of course are not new
and were recognized as such long ago. What the mathemat-
ical treatment presented here adds is a precise formulation
that allows a formal analysis of various aspect of the pump-
ing, such as adiabatic limit, efficiency, relation to thermody-
namics and Carnot engine, etc. Although the model is too
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general to be applied to specific enzymes, it is of interest to
discuss how these general principles are realized (i.e., their
molecular implementation) in enzymes of such different
structures and natures.
Complex IV

These principles are realized most clearly in cytochrome c
oxidase (complex IV); in fact, the model was developed
with complex IV in mind, as can be seen in our earlier
modeling (13,14). The role of the PLS here is played by a
group of protonatable sites that include two propionates of
heme a3 (5,16–18) and/or a His ligand to CuB (13) and/or
nearby water molecules (19); the exact identity of the
PLS is still difficult to pinpoint on the basis of current exper-
imental data (20). The two-stroke pumping cycle is driven
by the reduction and the following protonation of Fe-Cu
binuclear center, BNC. Upon reduction, pKa of the PLS in-
creases, and it gets protonated by a proton from the N-side
of the membrane; upon the following BNC protonation,
pKa of the PLS drops down, and the pump proton is
expelled from the PLS to the P-side of the membrane.
The access to the PLS is controlled by two gates. The input
gate has been suggested to be played by a conformational
motion of Glu286 (21), perhaps in conjunction with water
chains that connect Glu286 alternatively either to the PLS
or to the BNC (22–24) (cf. (25); other possibilities were
also discussed in the literature (24,26,27)).The output gate
was suggested to be operated by the correlated motion of
protons in the exit channel that connects the PLS (via
Prop A of heme a3) to the P-side of the membrane (14).
The energy profile of Fig. 4 was already envisioned in the
early studies (see Fig. 7 of (14)) as the most obvious mech-
anism of pumping.

Another possibility to prevent the backflow is based on a
remarkable fact that the PLS group is located ‘‘above’’ the
BNC along a one-dimensional proton transfer pathway
that connects the N- and P-side of the membrane. This
arrangement provides another possible mechanism by
which the chemical proton that arrives to the BNC, after
the pumped proton has been loaded to the PLS, naturally
pushes the pump proton along the path in the direction of
P-side and naturally blocks the transfer in the opposite di-
rection. This is a purely Coulomb-based mechanism that en-
sures kinetic gating (13,28).

The model discussed here shows that a minimum of two
independent parameters should control the pump: the en-
ergy of the PLS (or its pKa) and the difference in the barrier
heights of the input and the output gates. In other words,
only one gate can be operated, but another can remain the
same, provided it is high enough to slow down the stationary
backflow of protons.

This appears to be exactly the arrangement in complex IV,
in which the input gate undergoes periodic changes while
the output gate remains the same, providing only slow
back transfer of protons that needs to be compensated by
the faster rate of pumping (14) (Net Flux).
Complex III

In complex III, or bc1 complex (29), the mechanism is usu-
ally referred to as Mitchellian loop (5) rather than proper
proton pumping, yet the described mechanism can be recog-
nized here as well. The enzyme (which is a dimer (30,31),
but we discuss only one monomer) contains two binding
sites, Qo and Qi, for electron and proton carrier molecule
ubiquinone, Q. The ubiquinone molecule plays the role of
the ‘‘PLS’’ here. The unique aspect of the system is that
the proton loading site—the Q molecule—is physically
moving between two sites, Qi and Qo, where loading and
unloading occur, respectively.

Each site has exclusive proton access to only one side of
the membrane: the Qo site is connected to the outer (P-)
side, and Qi is connected to the inner (N-) side of the
membrane. There is no proton connectivity between the
sites. The redox process is organized in the form of a
Q-cycle (32,33). Upon reduction at the Qi site, ubiquinone
molecule Q receives two protons from the N-side of
the membrane, which obviously corresponds to loading
of the PLS.

Because protonation at Qi occurs exclusively from the
N-side, it corresponds to a low proton transfer barrier on
the N-side and a high barrier on the P-side of the membrane
(because there is no proton connectivity between the sites),
as shown in Fig. 4 (left). Upon reduction and proton loading
of Q, subsequent unbinding of QH2, and the following
migration across the membrane and the following binding
to Qo site, the protonated PLS (in the form of QH2) gets ac-
cess to the P-side of the membrane, which corresponds to
a configuration shown in Fig. 4 (right), with a low barrier
for proton transfer on the P-side and a high barrier on the
N-side.

The change of pKa of the PLS, in the form of a QH2/Q
couple, occurs as QH2 physically moves between the Qi
and Qo sites, where QH2/Q has different redox potentials
and pKa values. At the Qo site, QH2 is oxidized in a bifur-
cated ET reaction in which one electron is taken up by a
high-potential Rieske FeS cluster and the second by the
low-potential heme HbL; the protons are then released on
the P-side, which is clearly recognized as the ‘‘unloading’’
or firing stage of the pump cycle. At the Qi site, ubiquinone
Q is reduced by the electrons of the low potential chain, and
receives protons from the N-side, which is recognized as a
PLS loading stage, as already mentioned.

To pump protons in this scheme, the only additional
requirement that needs to be satisfied is that the redox poten-
tials of Q/QH and QH/QH2 couple at the Qi site have to be
higher, by the magnitude of the membrane potential Dm,
than the redox potential of QH/Q couple at the Qo site.
Otherwise, the analogy between the fundamental pumping
Biophysical Journal 115, 830–840, September 4, 2018 835
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scheme discussed in the study and redox-driven proton
translocation in bc1 complex is obvious.

It is of interest to mention one additional aspect of bc1
that might be also related to pumping—in this case, electron
pumping. It concerns the passage of electrons coming from
QH2 at the Qo site along the so-called high-potential chain.
The key fact here is that the first electron of QH2 oxidation
is of very high potential (high affinity of an electron to semi-
quinone QH)—perhaps in excess of some 0.5 V (data
collected in (34), whereas the final acceptor in the chain—
cytochrome c, which shuttles electrons between bc1 and cy-
tochrome c oxidase—has a potential only in the range of
0.25 V. Thus, the transfer is 0.25 V uphill in energy. This
obviously requires a special arrangement (electron pump-
ing), as the energy of a quarter of a volt is needed to push
the electron against the energy gradient along the chain.
The energy can only come from the second electron, which
in contrast has very low potential, some �0.3 V, so that the
total average potential of QH2 is around typicalþ0.1 V, i.e.,
sufficient to transfer two electrons. Exactly how the ex-
change of energy between the two electrons occurs is still
not clear (35,36). One theoretical possibility is suggested
by our model.

Namely, to get the first electron from QH2, the Rieske
FeS cluster, which plays the role of the electron loading
site of the pump here, in the proximal position to Qo,
should have a potential higher than that of QH2, i.e., in
excess of 0.5 V. Upon reduction, the Rieske group contain-
ing the FeS cluster (37) unbinds from the proximal docking
site and rebinds to a distal site, from which it passes the
electron to cytochrome c1, which has a potential of the
same order as that of cytochrome c, i.e., around 0.25 V
(34). After oxidation, the Rieske cluster returns to the prox-
imal position near the Qo site. If so, the redox potential of
the FeS cluster at the distal site should have redox potential
lower than that at the proximal site by �0.25 V. Hence, the
supply of energy is needed to lower the potential at the
distal site in exact analogy to lifting the PLS energy level
(or shifting its pKa) to a higher energy (shown in Fig. 4).
This energy can come from the second electron; quite
likely the energy transfer then occurs via a conformational
change generated by the transfer of the second electron to
the low potential chain, which is transmitted (somehow) to
the Rieske cluster (31). The mechanism of this electron
pumping then clearly follows the principles of our pumping
model.

The electron pumping along the high-potential chain in
bc1 complex is still debatable; what we described is only
one possibility. The other two possibilities for the mecha-
nism at the Qo site are discussed in (35,36).
Complex I

It seems that the described two-stroke proton pumping
mechanism is most directly realized in complex I. The
836 Biophysical Journal 115, 830–840, September 4, 2018
mechanism is suggestive by the solved structure of the
entire enzyme (6,38,39) and in particular by its membrane
part (40), in which several proton pumping conduits (three
or four) are well recognized (41). Each pumping unit con-
sists of two half-channels that connect a protonatable
group(s) PLS in the middle of the membrane to its
N- and P-sides. The exact identity of the PLS is still un-
known, but the only candidates are the Lys and Glu resi-
dues located in the middle of the mne, which stand out
as the most obvious candidates. The change of pKa of
the groups is likely regulated by the conformational
change (41) generated by either the alternating redox state
of the terminal FeS cluster N2 and/or by the reduction re-
action of a quinone acceptor (39). Evidently, the redox re-
action at the N2 center, not resolved in detail yet, drives
the cycling of the conformation of the enzyme between
two states, in which the two half channels in the mem-
brane part open and close, alternatively providing alter-
nating access to the PLS from the opposite sides of the
membrane; this occurs in concert with the corresponding
changes of pKa of the PLS groups, exactly as prescribed
by the model discussed. There is little doubt that the
fundamental principles of the pumping mechanism in
complex I are the same as those of other enzymes of the
respiratory chain and the same as in the model presented
here; however, the molecular implementation of these
pumping principles is strikingly different from two other
enzymes. The variability of molecular implementation of
the same principles in different enzymes is absolutely
remarkable.

In conclusion, all three redox-driven proton pumps of the
respiratory chain follow the same fundamental pumping
principles for which a mathematical description was out-
lined in this work. Whenever a transfer of a particle from
a low chemical potential to a high potential is needed, it
takes energy and a special arrangement, pumping, by which
the energy is spent to overcome the chemical potential dif-
ference. The model we described provides the simplest and
universal scheme for such a process. However, most remark-
able is the molecular realization of these general principles
found in specific enzymes; in particular, the variability of
implementation of the same idea in different respiratory
complexes of the electron transport chain is simply
astonishing.

APPENDIX

Adiabatic pumping: relation to thermodynamics

The gate G is an explicit function of various rate constants of the system

Eq. 10, which themselves depend on several kinetic parameters of the

system such as barrier heights separating the PLS from the two sides

of the membrane (V1 and V2), energy of the PLS (ε0), and others.

If one or more of these parameters varies in time, so does the gate func-

tion G. This dependence on time is parametric in the sense that G at

time t is defined by the values of kinetic parameters of the system at

that moment of time t.
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In general, in contrast toG(t), PLS population p0(t) is not a function but a

functional of time-dependent parameters of the system. Explicitly, one can

find from Eq. 2:

p0ðtÞ ¼ p0ð0Þexp
0
@�

Z t

0

kþðt0Þdt0
1
Aþ

Z t

0

kþðt � t0Þexp

�
0
@�

Z t

t0

kþðt}Þdt}
1
Adt0;

(A1)

where kþ and kþ are given by the following:
kþ ¼ k1p1
p01

þ k2p2
p02

p0i ¼
pi

pi þ Ki

; Ki ¼ k�i=ki

(A2)

and
kþ ¼ k1p1 þ k2p2: (A3)

If the parameters of the systems change sufficiently slowly (adiabatic

pumping), Eq. A1 simplifies to the following:

p0ðtÞzkþðtÞ
kþðtÞ ¼ k1ðtÞp1 þ k2ðtÞp2

kþðtÞ : (A4)

That is, the PLS population is now a simple function of time-dependent

parameters (not a functional) of the systems, as was stated in the main text

(Eq. 13). The parameters themselves depend on time, and so does the

PLS population. Both G(t) and p0(t) are now functions of the same set of

(time-dependent) parameters of the system. This is the key for adiabatic

approximation, which is equivalent to quasi-equilibrium processes in ther-

modynamics; see additional comments in the main text.

Our system depends most strongly only on two parameters: the energy

ε0 of the PLS (or its equivalent pKa), and the difference in the heights of

two barriers separating the PLS from the two reservoirs (Fig. 2), defined

as V ¼ V1 � V2. The explicit dependence of G(ε,V) and p(ε,V) (for short,

here we write εhε0 and php0) is as follows:

G ¼ 1� h

1þ h
; (A5)

p þ eε0=kT

h ¼ e�V=kT 2

p1 þ eε0=kT
; (A6)

and

p0 ¼ 1

1þ q
; (A7)

1þ e�V=kT
q ¼ eε0=kT
p1 þ p2e�V=kT

: (A8)

The last two equations, with time-dependent ε0(t) and V(t), are equivalent to

Eq. 13 of the main text.
Heat transfer in the pump process

The chemical potentials of protons are

mi ¼ εi � Tsi: (A9)

The work to pump a single proton is

W ¼ DEþ DQ ¼ Dε� TDs: (A10)

Heat released to the environment is
DQ ¼ Tðs1 � s2Þ ¼ kBT ln 10DpH: (A11)

In mitochondria,DpH is only around one pH unit andDQ is rather small.

More interesting is heat transfer upon loading and unloading; in this case,

the protonation brings a free proton to a bound state on the PLS (and re-

leases a proton in deprotonation). We assume that PLS entropy is zero

(this simply means that the entropy of a bound proton is much less than

that of a free solvated proton), which should be compared with that of a

free proton. For chemical potentials of the initial and final states, we have

ε0 ¼ εi � Tsi: (A12)

Hence, the heat released (upon protonation) is

DQi ¼ kBTDsi ¼ kBT ln
½H20�
½Hþ�z60mVðpHi þ 1:7Þz0:5V:

(A13)

This is quite a significant heat amount. It means that upon protonation,

this energy is released locally. A similar conclusion is reached when recall-

ing that pKa of a protonated water (hydronium ion) is about �2 and pKa of

the PLS is some 7 or 8; thus, the difference of energy between the nearest

Hþ on water and on the PLS must be released as heat. Upon unbinding or

deprotonation, however, about the same energy is taken up from the envi-

ronment. This would appear to be a much slower process, yet it is all nicely

accounted for in the relations for the ‘‘on’’ and ‘‘off’’ protonation reaction

rates:

konz1011�pH

koffz1011�pKa : (A14)

In an ideal pump, the total entropy in the system plus environment is

conserved because of heat exchange with the environment.
Analogy with the Carnot engine

A rigorous result of our pumping model is that the charge transferred

through the membrane is expressed by the cyclic integral (the pump

equation):

Q ¼ 1
�
2#Gdp0: (A15)

There is an analogy with the Carnot engine, or the more general thermo-

dynamic expression for the work done by the working body:

w ¼ #PdV: (A16)

As in the pump equation, the cyclic integral is nonzero because the inte-

grand is a function of not only V but also of some other parameter, like T;
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thus, it can be different for two halves of the cycle. (This additional param-

eter returns back to its initial value but varies independently of V, and this is

the key for nonzero value of the integral. It is interesting that a similar

mechanism is at work in many so-called geometric phase quantum systems

((35)), such as the Berry phase, or even in the action integral in classical

mechanics.)

To see the analogy clearly, we change variables and go from (V,T)

to (S,T):

w ¼ �#TdS ¼ �#dQ: (A17)

The change of variables is done as follows: we integrate the area� � � �

dPdV ¼ vðP;VÞ

vðS;VÞ
vðS;VÞ
vðS; TÞ dSdT ¼ vP

vS V

vV

vT S

dSdT;

(A18)

but from

TdS ¼ dEþ PdV; (A19)

we have �
vP

vS

�
V

¼ �
�
vT

vV

�
S

; hence

�
vP

vS

�
V

�
vV

vT

�
S

¼ �1:

(A20)

Thus, we have

dPdV ¼ �dSdT: (A21)

And thus, the integral

w ¼ #PdV ¼
ZZ

dPdV ¼ �
ZZ

dTdS ¼ �#TdS:

(A22)

This relation just reminds us that the work is related to the flux of heat

through the working body, similar to the flux through the pump site. In the

Carnot case, the overall integral is heat in minus heat out in one cycle; in the

pump site, it is flux in minus flux out, but because the total flux is conserved,

flux in is the same as flux out, and thus the factor 1/2 is needed.

It is of interest also to mention the formal (purely mathematical) relation

of the work integral of the Carnot machine to quantum phase integrals and

magnetic fluxes.

Consider the work integral

w ¼ #PdV

and introduce new variables (T,S). Then

w ¼ #PdV ¼ #PðT; SÞ
�
vV

vS
dSþ vV

vT
dT

�

¼ #ASdSþ ATdT ¼ #
�
~A , d~l

�
: (A23)

Here, we introduced the ‘‘vector potential’’ ~A, whose components are P
vV

vS

and P
vV

vT
in the line integral in the plane of (S,T). Applying Stocks’ theo-
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rem, the line integral becomes an area integral of the flux of the field, which

is the curl of ~A. The two-dimensional ‘‘curl of ~A’’ is�
vP

vS

�
T

�
vV

vT

�
S

�
�
vP

vT

�
S

�
vV

vS

�
T

¼ vðP;VÞ
vðS; TÞ ¼ �1:

(A24)

Thus, again, we conclude that the work integral is

w ¼ #PdV ¼ �
ZZ

dTdS ¼ �#TdS: (A25)

Thermodynamic energy and work by the pump

Additional thermodynamic energy and work relations of interest for the

pumping theory are as follows.

The total energy of the system is (here, to simplify notation, we assume

εhε0 and php0)

E ¼ εpþ m1N1 þ m2N2: (A26)

The change of total energy of the system is due to work, which is due to

change of energy of the PLS, dw ¼ pdε, and due to exchange of heat with

environment (heat reservoir)

dE ¼ pdεþ dQ: (A27)

Substitution to Eq. A26 gives the following:

dQ ¼ εdpþ ðm1dN1 þ m2dN2Þ: (A28)

Given conservation of total number of particles, p þ N1 þ N2 ¼ const and

the gate Eq. 9, we have

�dp ¼ dN1 þ dN2

�Gdp ¼ dN1 � dN2
: (A29)

Hence,

dN1 ¼ �1

2
ð1þ GÞdp

dN2 ¼ �1

2
ð1� GÞdp

; (A30)

and Eq. A28 takes the following form:

dQ ¼ εdp� m1

2
ð1þ GÞdp� m2

2
ð1� GÞdp

¼
�
ε� m1 þ m2

2

�
dp� 1

2
ðm1 � m2ÞGdp: (A31)

In one cycle,

#dQ ¼ #
�
ε� m1 þ m2

2

�
dp� 1

2
ðm1 � m2ÞGdp

¼ #εdpþ ðm2 � m1Þ
1

2
#Gdp: (A32)

On the other hand, in one cycle, the change of the total energy is
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DE ¼ ðm2 � m1Þ
1

2
#Gdp; (A33)

i.e., (m2 � m1) times number of pumped particles, dN ¼ 1=2#Gdp. Hence,
overall in one cycle, we have

�#εdp ¼ #dw: (A34)

If we assume a cycle in which loading occurs in the condition that ε< m1
and unloading ε> m2, and in loadingDp¼ 1 and in unloadingDp¼�1, we

have total work during the cycle

W ¼ #dwRðm2 � m1Þ; (A35)

as expected.

The above expression for work Eq. A34 could be derived more directly

from

#dðεpÞ ¼ 0; (A36)

and because work dw ¼ pdε, we immediately have expression Eq. A34.
On the general form of the pump equation

As shown in this work, the general theory of pumping can be described in

the framework of a simple three-level system with periodically changing ki-

netic parameters. Its key result—the pump equation—is formally related, in

its mathematical formulation, to a variety of other concepts such as the

Berry phase (and related subjects (42), such as electronic adiabatic pumping

(43)), the action variable, the Carnot cycle, and a general expression for

thermodynamic work, to name a few. All these seemingly unrelated sub-

jects involve a cyclic integral of the form

#
closed path

AdB: (A37)

The key is that in all such integrals, the integrand is not a single valued

function of the integration variable: for example, the momentum in the ac-

tion integral p(q) has two values different in sign; in thermodynamic work,

pressure P depends not only on V but also on T along the path; the phase

increment in the Berry phase integral (42) depends on the sign of the

coupling matrix element along the path, etc. In other words, in all of these

systems, the integrand depends on an additional ‘‘hidden’’ variable, which

makes the integrand a double-valued function of the integration variable,

which gives rise to a nonzero cyclic integral. In the pump equation, the

gate G is double valued, i.e., can be open either to R1 or to R2, for the

same value of the PLS population p0 along which the cyclic integration is

performed.

Finally, it is also worth mentioning a connection to Brownian ratchet

motors (44,45). The Brownian ratchet involves a particle in a periodic po-

tential U(x). Suppose the potential is also changing in time; if the timescale

of potential changes is much greater than the relaxation time t0, the particle

is always located at the bottom of the local minimum of U(x). If periodic

change is such that this local minimum is moving left or right, the particle

moves together with the minimum; i.e., if potential has the form U(x � vt),

the particle moves with velocity v (43). This is adiabatic pumping in the

Brownian ratchet. In a nonadiabatic ratchet, the potential can be thought

to change in sudden jumps between two periodic structures that are ob-

tained by repetition in the x-direction of the potential profiles shown in

Fig. 4 for two reservoirs of the same chemical potential, m1 ¼ m2. In this

case, the left-right symmetry of two identical reservoirs is broken and a

unique direction of the flux is generated, which is equivalent to pumping
ions in one specific direction (rectified diffusion) in a totally symmetric

system.
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