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SALIENT: Ultra-Fast FPGA-based Short Read Alignment

Abstract—State-of-the-art high-throughput DNA sequencers
output terabytes of short reads that typically need to be aligned
to a reference genome in order to perform downstream analyses.
Because alignment typically dominates the total run time of
bioinformatics pipelines, a number of recent work sought to
accelerate it in hardware. However, existing FPGA implemen-
tations did not fully optimize the alignment algorithms for the
FPGA hardware and mainly focused on a subset of alignment
problems, e.g., ungapped alignment with a limited number of
mismatches, which hinder their practical utility. In this work, we
analyze the existing alignment methods and identify and leverage
opportunities for FPGA acceleration. Our alignment framework,
SALIENT, first carries out an ultra-fast ungapped alignment,
which supports a flexible number of mismatches. Based on the
underlying bioinformatics pipeline and the information provided
by the ungapped aligner, SALIENT then identifies a fraction of
reads that need to go through its gapped aligner, thus improving
alignment throughput. We extensively evaluate SALIENT using
diverse datasets. Experimental results indicate that SALIENT,
running on a single Xilinx Alveo U280 device, delivers an average
throughput of 546 million bases/second, outperforming the state-
of-the-art minimap2 software by 40×, and Bowtie2 by up to
107×, with comparable alignment accuracy. Compared to the
existing ungapped FPGA aligners [1]–[4], SALIENT has 9.4–
18× higher throughput/Watt, while compared to the gapped
aligners [5], [6], it is 28–35× better. SALIENT achieves 7.6×
higher throughput than Illumina DRAGEN Bio-IT Platform [7].

I. INTRODUCTION

Advances in high-throughput and low-cost sequencing tech-
nologies have dramatically accelerated the generation of ge-
nomics data. As a result, genomics data size now doubles
every seven months, outpacing Moore’s law. For instance,
the Illumina NovaSeq 6000 generates nearly 2.2 TB of data
within 44 hours [8]. By 2025, genomics data is predicted to
reach exabyte scale (1018) and surpass YouTube and Twitter,
requiring thousands of trillions of CPU hours for processing
[9]. The application space of genomics data is enormous,
from precision microbiome for personalized healthcare [10] to
phylogenetic inference of SARS-CoV-2 genomes that enables
global COVID-19 epidemiology [11].

Notwithstanding the diversity of applications, short read
alignment is a common and significant step of bioinformatics
pipelines, which finds the likely position of short DNA se-
quences of 25–200 base-pairs (bp) within a reference genome
of thousands to billions of bases. The alignment also finds
the edits (e.g., base change or insertion/deletion) between the
read and the aligned part of the reference genome. State-of-
the-art software such as minimap2 [12] have taken advantage
of novel algorithmic innovations and hardware advancement
to gain multiple times higher performance than previously
standard software [13], [14]. Nevertheless, aligning the alluded
massive data of a single sequencing run, even with recent soft-
ware (details in Section V), can take above 200 hours, which
is more than 4.5× slower than the sequencing throughput.

Recent work has also sought to accelerate read alignment
in hardware [15]–[17]. However, the vast majority of FPGA
alignment acceleration have only targeted ungapped alignment

[1]–[4], [18]–[20] which, unlike commonly used software
such as Bowtie2 [13] and minimap2 [12], does not support
insertions or deletions (aka indels or gaps) in the sequenced
reads. Indels or gaps are extremely common in all species [21]
and have implications in the causes of a number of Mendelian
diseases, acute myeloid leukemia, and other types of cancer
[22]. Our experiments reveal that ungapped alignment, on
average, fails to align 11.5% of the reads that could be
aligned with gapped alignment. The few FPGA accelerators
that support gaps [5], [6], [23] achieve at most 2× speedup
over baseline software.

In this paper, based on our analysis of a comprehensive set
of datasets that reveals ungapped reads are significantly more
abundant than gapped reads (6.4× on average), we propose
a framework dubbed SALIENT to speed up the alignment
by decoupling it into two steps, ungapped and gapped align-
ment. It is beneficial since the ungapped alignment does not
require costly pairwise sequence alignment (Smith-Waterman
dynamic programming algorithm [24]) between the read and
candidate chunks of the reference genome, which accounts
for 60% of Bowtie2 execution time [23]. The first step of
SALIENT performs an ultra-fast ungapped alignment that
supports a flexible number of mismatches (positions where
the read differs from the reference genome). This flexibility is
crucial, as we observed that 25% of the ungapped short reads
have more than two mismatches, whereas previous ungapped
aligners can align reads with up to two mismatches [1]–[4] due
to performance limitations. After that, SALIENT identifies the
reads that require gapped alignment and passes them through
its gapped aligner. It includes (1) reads that likely have gaps
and could thus not be aligned via ungapped alignment, and
(2) reads that were aligned via ungapped alignment but might
obtain better alignment quality with gapped alignment.

To deal with the mismatches and indels of the reads that
make the exact match of a read impossible, more recent
alignment algorithms break a given read into smaller pieces
called seeds, and look up the seeds on the reference. Our
investigation discloses that memory access is the bottleneck
of seed lookup and dictates the overall performance. Thus,
in the proposed accelerator, we leverage a hash-based lookup
which lowers the number of memory accesses of finding
the location of seeds. To make it practically possible, we
prudently optimize the hash-table by reducing its capacity and
the required number of accesses while avoiding alignment
accuracy degradation. To further improve the performance,
we prioritize the candidate locations and early terminate to
decrease the number of pairwise Smith-Waterman alignments.

We implemented our design on a Xilinx Alveo U280
FPGA [25] and compared it with previous FPGA-based
aligners, including Illumina’s DRAGEN platform, as well as
commonly-used Bowtie2 and minimap2 software in terms of
performance and accuracy. We evaluated SALIENT using a
total of 16 datasets gathered from previous work (while most
of the previous works try on one dataset each) to have a



 

 

REF: TTGGCTCACGTGGGCATTCAGATCCAATTCGCAGC 

R1: GACTACACTGC 

R2: CACCTGTTCGC 

 

TTGGCT-CACGTGGGCATTCAGATCCAATT--CAGC 

  GACTACAC-TGC     CA---CCTGTTCGC 

 

 

 

CIGAR1: 4M,1I,3M,1D,3M 

CIGAR2: 2M,3D,6M,2I,1M 

 

 

  G G C T C A C G ⋯ 

 0 0 0 0 0 0 0 0 0 ⋯ 

G 0 2 2 1 0 0 0 0 2 ⋯ 

A 0 1 1 1 0 0 2 1 1 ⋯ 

C 0 0 0 3 2 2 1 4 3 ⋯ 

T 0 0 0 2 5 4 3 3 3 ⋯ 

A 0 0 0 1 4 4 6 5 4 ⋯ 

C 0 0 0 2 3 6 5 8 7 ⋯ 

A 0 0 0 1 2 5 8 7 7 ⋯ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 

 

Mismatch Deletion Insertion 

Fig. 1. An example gapped alignment. Here, every match has a score of +2,
and mismatch and gap have a penalty of 1.

head-to-head comparison, especially since we observed that
the relative performance and accuracy vary based on dataset
statistics. SALIENT yields an average alignment throughput
of 546M bases/second (845M ungapped, 81M gapped) which
is 40× higher than minimap2 [12], and 37–107× better than
Bowtie2 [13], with a similar accuracy. SALIENT improves
the performance/Watt by 9.4–18× over the existing ungapped
FPGA-based aligners [2]–[4], by 28–35× over the gapped
FPGA platforms [5], [6], and by 7.6× over the commercial
DRAGEN platform of Illumina.

II. BACKGROUND AND ANALYSIS

A. Short Read Alignment

DNA is composed of paired strands of nucleotide bases
(A, T, G, C) which are identified through the sequencing
process, whereby the sequencing machine reads out the large
genome as smaller subsequences (aka reads) of ∼50–200
base-pairs (bp). Short read alignment process identifies the
locations wherein the short reads best align with the reference
DNA of thousands (e.g., bacteria) to billions of bases (e.g.,
human) and the type of the differences between the short
reads and the reference. Fig. 1 shows examples of gapped read
alignments of reads R1 and R2. Reads are prone to errors in
the form of insertions (indels), where an extra base is added,
or deletions (gaps), where a base is missing. These may occur
due to variants among species or sequencing errors. In Fig. 1,
mismatches between the read and reference are distinguished
by red, insertion with blue, and deletion by green.

Once the candidate positions are identified, the Smith-
Waterman algorithm [24] performs pairwise alignment with
the candidate locations of the reference to find the alignment
score and edits (i.e., mismatches and indels). Fig. 1 shows
the pairwise alignment for R1. The edits are represented by
a so-called CIGAR string, in which M indicates a match or
mismatch, and I/D means insertion/deletion. Note that since
ungapped alignment does not deal with insertions/deletions,
it does not need to run the Smith-Waterman algorithm and
can use a more efficient base-to-base comparison (Hamming
distance) to determine the mismatches between the short read
and the reference.

Various algorithms have been proposed to find the candidate
positions on the reference genome where the read may align.
These algorithms differ in indexing, i.e., whether (1) they look
up the entire read or (2) split the read into pieces (aka seeds),
look up the seeds, and extend the reference near the position
that a seed is found. Also, looking up the seeds can be done
differently, e.g., by FM-index or Hash-table. We categorize
and review the previous work based on their table generation
(indexing) and seed lookup approach in the subsections below,
along with more details regarding indexing algorithms.

 

 

 

REF:   TTGGCTACACGTGCGCAATGACACAATTG 

 

R1:    GACTACACTG 

Seed1: GACT 

Seed2:   CTAC 

Seed3:     ACAC 

Seed4:       ACTG 

 

TGGCTACACGTGC  CAATGAC-ACAATT 

 GACTACAC-TG      GACTACACTG 

 score=16       score=12 

 

 

 

Seed2 

Seed3 

Fig. 2. Example read alignment using seed-and-extend.

B. Indexing with Suffix Arrays
Suffix array-based indexing is used in many alignment tools

such as Bowtie [26] and BWA [27]. It converts the reference
into suffix-tree and returns the match position stored in the leaf
if a matching path is found. A popular algorithm is FM-index
that uses Burrows-Wheeler Transform (BWT). FM-index is
used in most of the FPGA accelerators [1]–[4], [6], [19].
FM-index is space-efficient, but it cannot handle gaps/indels.
To handle mismatches, backtracking and bi-directional FM-
index [26] are used, which replace the failed base (mismatch)
with other alternatives and traverse the read from different
directions to reduce the search space. Several FPGA accel-
erators have adopted this strategy while supporting only two
mismatches due to the intractable growth of search space with
the mismatch count [1], [2], [4].

C. Indexing using Suffix Array with Seed-and-Extend
Seed-and-extend technique facilitates the alignment in the

presence of gaps and mismatches by finding sub-reads (seeds)
instead of the whole reads, as seeds are shorter and have
a higher likelihood of being error-free. In suffix array with
seed-and-extend, the seeding step splits the reads into shorter
fragments and finds the perfectly matched locations of these
seeds in the reference using FM-index. Fig. 2 shows examples
of seed-and-extend alignment. Read R1 is split into seeds
seed1 to seed4. Seed1 and seed4 (shown in red) are not
found on the reference. Seed2 (blue) is found in one position
of the reference, which is distinguished by the same color
(solid blue line). Seed3 (green) is found in two sites of the
reference (one of which is the same position pointed by seed2).
The dashed lines indicate extending near the obtained seed
positions on the reference. Finally, a pairwise alignment using
the Smith-Waterman algorithm between the read and each of
the candidate locations finds the best alignment and its edits.

Several FPGA accelerators use FM-index with seed-and-
extend [3], [6], [19], [23]. Of these, only [6], [23] support
gapped alignment. The work in [6] supports gaps by calling
Smith-Waterman pairwise alignment on the candidate loca-
tions. Using Xilinx UltraScale+ VU9P, [6] is 2× faster than
Bowtie2 software [13] at the cost of 2.8% accuracy loss.
However, if we match Bowtie2 and [6] accuracy, it turns
out that Bowtie2 can be faster ( [14] shows that using the
fast setting of Bowtie2 makes it 4× faster with an accuracy
within 2% of the sensitive setting). The study in [23] integrates
Bowtie2 with Xilinx VU9P to offload the Smith-Waterman
calls to FPGA, but the end-to-end speedup is only 35%.

D. Indexing with Hash-based Seed-and-extend
The indexing step of hash-table techniques extract length-

L seeds of the reference and store their positions in a table.
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Fig. 3. Hash-based seed lookup.

This technique is used by software BLAT [28], BFAST [29],
and minimap2 [12], as well as in an FPGA accelerator [5].
To align a read, a subset of its length-L seeds are extracted,
and their positions on the reference is looked up using the
prebuilt hash-table that reduces memory accesses compared
to FM-index iterative table.

Fig. 3 shows the seed lookup using hash-table. A two-stage
table is adopted to handle seeds with multiple positions during
indexing the reference. When generating the table, each seed
of the reference is split into two parts, seed ptr (prefix) and
seed cal. The seed ptr is used as an address to point the row
in the CAL table where the positions of all reference seeds
starting with seed ptr prefix are stored successively. The rows
that correspond to a certain seed ptr are called a CAL bucket.
Note that not only a seed might appear on multiple positions
on the reference, several seeds might also share the same
seed ptr; hence, a bucket stores the positions of all seeds that
start with the same seed ptr prefix.

Items of the PTR table are unique, so access to it is
straightforward: to create and then access PTR[see ptr], we
can set A← 00, C← 01, G← 10, T← 11. Each seed is split
into seed ptr and seed cal parts. The value in the PTR table
refers to the row in the CAL table that stores the positions
of all seeds that begin with seed ptr. Starting from that row,
the CAL table is probed to find all seed cals. Fig. 3 shows an
example where seeds have a length of 4, split into seed ptr of
length three and seed cals of length one. To find the position
of the seed ACAC, it is likewise split to seed ptr =ACA and
seed cal =C. First, the ACAth cell in the PTR table is accessed
(i.e., PTR[see ptr]), which returns the proper row index of the
CAL table (bucket’s head) to search for seed cal =C.

E. Comparison of Indexing Techniques
Both the suffix-array and hash-based techniques heavily rely

on random memory accesses. To estimate and compare the
performance of these different indexing techniques, in Fig.
4 we benchmarked the random access throughput of Xilinx
Alveo U280 DDR4 bank by issuing 32b data random accesses
(black curve labeled as 32b) to a 4 GB table (representing
the FM-index and PTR tables). The latency of an access
includes the M-AXI adapter and AXI interconnect buffers,
and MIG to DDR latency [30]. When the number of kernels
is large enough, the throughput is saturated and a maximum
throughput of ∼96 M access/second is achieved. Since suffix-
array (FM-index) technique needs at least one access per each
read base, the throughput of these techniques is limited to
∼96 M base/second. In practice, the seeds can overlap, so more
than one access per base is needed (i.e., lower performance).

Using hash-table, however, we need fewer accesses per seed.
The seed length, L, is usually ∼20, and the sliding step of
seeds is at least 0.5
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high-sensitivity (accuracy) alignment [13]. Accordingly, Fig.
5 shows the upper bound throughput of hash-based indexing.
We can see that, e.g., a read length of 150 bp can achieve
a throughput of at least 758 M base/second. Accordingly, in
SALIENT, we leverage hash-based seed lookup. However,
realizing such a throughput in practice faces several challenges
that we elaborate on and address in the following section.

III. SALIENT ALGORITHM

A. SALIENT Alignment Flow

Overview: Fig. 6 depicts the alignment flow of SALIENT.
It takes advantage of a two-step alignment flow to decouple
the ungapped and gapped alignment to avoid costly Smith-
Waterman pairwise alignments needed in gapped alignment.
Both ungapped and gapped alignment require at least one seed
of the read exist on the reference. Thus, if no seed is found in
the hash-table, the read is flagged as ‘not aligned’. After that,
an ungapped alignment is first performed. If the read does not
align, it can be possible some insertion or deletion has shifted
some part of the read bases so a straight Hamming distance
could not find the similarity. Such as read is passed to our
gapped alignment, which itself is enhanced by prioritizing the
candidate locations suggested by seeds to lower the number
of pairwise Smith-Waterman calls. On the other hand, it is
also possible that a read could be aligned by the ungapped
aligner, but might need to be aligned with gapped alignment,
as well. It can happen, for example, when an insertion or
deletion is occurred in the tail of a read. It causes a small
part of the read tail to have a high percentage of mismatches
due to shifting versus the reference chunk. Fig. 7(a) shows
such an example, where the ungapped alignment achieves good
overall matching except in the last four bases. Such a read is
flagged as a potential read for gapped alignment, depending on
the application and requirements of the downstream analysis.
For instance, the host filtering step of microbiome pipeline
[14] aligns the microbial reads to the host (human genome)
to discard the human reads for the rest of pipeline. In such
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TTGGCTACACGTGCGCAATGATCCAATTG TTGGCTACACGTGCGCAATGATCCAATTG 

   GCCACACGTGCGCAAGATC    GGCTACTACGTGCGCAATG 

 

TTGGCTACACGTGCGCAATGATCCAATTG  TTGGCTAC-ACGTGCGCAATGATCCAATTG 

   GCCACACGTGCGCAA-GATC    GGCTACTACGTGCGCAATG 

  (a)      (b) 

 

 
Fig. 7. (a) Successful ungapped alignment as a gap (deletion) is occurred in
the end-point of the read. (b) Unsuccessful alignment as a gap (insertion) is
occurred in the middle of the read, causing many mismatches.

cases, the exact/best alignment of the reads and reference is not
obligatory as a successful alignment (that passes the threshold
score) by the ungapped stage provides enough information.

Algorithm 1 outlines the alignment (ungapped or gapped)
procedure of SALIENT. Length L seeds are extracted by a
moving step of S and split into seed ptr and seed cal parts.
For each seed S and its reverse complement Src, we keep the
smaller one (line 3) for the reason we explain in subsection
III-B. All seed ptrs are accessed in the PTR table to obtain
their bucket head in the CAL table. The bucket is fetched by
multiple wide memory accesses and is searched to compare its
seed cals with the query. The CAL table stores the position of
the reference seeds (not the read’s). To calculate the mapped
position of the read, we adjust the CAL value based on
the position of the queried seed on the read (line 10). The
pairwise alignment (line 19) carries out Hamming distance
for ungapped, and Smith-Waterman for gapped alignment.
Algorithm 1 returns the alignment position on the reference
and the edit information, which is used to decide whether a
read aligned by the ungapped stage needs gapped alignment.

Prioritizing: Multiple seeds may point to the same reference
position, e.g., when a read perfectly matches, all seeds return
the same position. Also a seed might exist on different sites
and return various positions. Therefore, we first store the
frequency of each candidate position and carry out pairwise
alignment (or Hamming distance in ungapped stage) starting
from the most-frequent position (lines 17–18). This is because
when k seeds of a read point to the same position on the
reference, at least L+(k−1)×S bases of the read match with
the reference (up to L×S when those seeds do not overlap).
Thus, a candidate position that is suggested with more seeds
has higher likelihood of alignment. We observed that priori-
tizing the candidate locations reduces the number of Smith-
Waterman calls by ∼2× before finding a valid alignment.

Efficacy: The two-stage alignment is critical for high perfor-
mance. We observed that we could integrate up to eight Smith-
Waterman units in the design (four parallel kernels, two units
per kernel), each takes 640 cycles for a pairwise alignment
of a read and the reference subsequence. The cycle count
could be reduced, but at a proportional cost of higher resource
utilization, so the overall Smith-Waterman throughput remains
similar. Operating at 100 MHz and ignoring memory and
control stalls, the aggregate throughput of Smith-Waterman
modules is ∼187 M base/second, which nullifies the seed
lookup throughput premise of the hash-table seed lookup. This
throughput further deteriorates as a read can have multiple
candidate locations for pairwise alignment.
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Algorithm 1: SALIENT alignment algorithm
Inputs: read Q, ref R, seed length L, seed step S, hash tables PTR and

CAL, alignment score threshold ξ
Output: position pos, CIGAR cigar
1: pos count ← {}
2: for i from 0 to |Q|−L

S
do

3: seed ← min
(
Q[i·S : i·S+L], rev cmp(Q[i·S : i·S+L])

)
4: seed ptr, seed cal ← seed[0:29], seed[30:2L]
5: row ← PTR[seed ptr]
6: if row ̸= −1 then
7: bucket ← CAL[row : row+3]
8: for j from 0 to 32 do
9: cal, pos ← bucket[j][0:16], bucket[j][16:48]

10: pos ← pos − i×S
11: if cal= seed cal then
12: pos count[pos]++
13: end if
14: end for
15: end if
16: end for
17: pos count = sort by value(pos count) // descending
18: for pos in pos count do
19: score, cigar ← Pairwise(Q, R[pos : pos+|Q|]) // or Hamming
20: if score ≥ ξ then
21: return pos, cigar
22: end if
23: end for
24: return −1

The efficacy of a two-stage alignment entails that the num-
ber of reads that require gapped alignment be non-dominant.
To investigate it, we gathered 16 short read datasets from
previous studies (11 of which are used in FPGA aligners,
detailed in Section V) and aligned using Bowtie2’s very sen-
sitive setting. As Fig. 8 shows, for the average alignment rate
of 85.32% among all datasets, only 17.05% of the reads ended
up in an alignment with gap (68.27% ungapped). Interestingly,
when we prevent gaps in aligning, the alignment rate becomes
73.88%, which is 5.61% higher than the expected 68.27%,
leaving only 11.4% of reads to need gapped alignment. The
reason that 5.61% of gapped alignments could be aligned
despite preventing gap is explained by the insertions/deletions
in the head or tail of a read that we discussed above. Recap
that an alignment is accepted if the penalty is higher less
a threshold. For instance, the default threshold of Bowtie2
for 150 bp reads is 90, and the mismatch (indel) penalty is
less than 6 (5 for indel). Hence, alignment of a 150 bp read
can tolerate at least 15 mismatches (18 gaps). Therefore, if a
gap exists in the head or tail bases of a read, it can still be
aligned with ungapped alignment since the penalties due to
insertion/deletion do not exceed the threshold.

B. Indexing Optimizations

There are two main challenges with hash-based indexing.
First, for large genomes such as the human reference, the size



of the CAL table that stores the position of all seeds becomes
larger than the FPGA DRAM capacity. Second, the buckets
sizes of CAL table are different and some buckets can have
hundreds of rows. Thus, while we can have high throughput
accesses to the PTR table, CAL table becomes bottleneck. In
the following, we explain our optimizations of the hash-based
indexing to address these challenges.

Storing numerically smaller seeds: For a reference genome
R, the CAL table consists of |R| rows, where each row stores
a seed cal with an integer indicating one position of the corre-
sponding seed on the reference, as shown in Fig. 3. Moreover,
in paired-end reads in which a genome is sequenced from both
ends, it is unknown whether a query read is in the forward or
reverse strand. Storing the seeds of both forward and reverse
strands increases the CAL table size to |R| rows. Accordingly,
the human genome CAL table needs 3.1 billion rows of eight
bytes (one int for seed cal and one for the position) for each
of the reference and its reverse complement, ending up in a
46.6 GB table. To avoid storing all the seeds of both reverse
and forward strand, during the reference indexing, instead of
storing both a seed S and its reverse complement Src, we only
store the numerically smaller one (by setting A← 00, C← 01,
G← 10, T← 11). Thereafter, for any extracted query seed S
of a read, we only look up min(S,Src) knowing that for that
position of the reference where the seed aligns to, we have also
stored only min(S,Src). Thus, without missing any seed, the
CAL table shrinks by half, i.e., 23.3 GB.

Limiting CAL row size: Each CAL row consists of a
seed cal cell that stores part of the seed bases, and another
cell that stores the seed position. The seed position needs to
be a 32 bit integer so it store any value between 0 and 3.1
billion for the large human genome. For the seed cal, we limit
the number of bases to eight, so that |seed cal| ≤ 16. Thus,
each row needs 48 bits and the CAL table size further reduces
to 17.5 GB. |seed cal| ≤ 16 bits is a reasonable decision as
usually seed length L is 20–22 bases (40–44 bits). Specifically,
we use a seed length of 21 bases and set seed cal to six bases
(12 bits) which leaves 15 bases to seed ptr part of the seed
and keeps the PTR table size small (4 GB). Note that we could
use larger seed cal (up to eight base) as well, but that makes
seed ptr length smaller and more seeds will share the same
seed ptr prefix. It increases the bucket sizes, and hence, search
latency of the CAL table.

Bucket size reduction and seed discarding: To avoid
making the CAL table search performance bottleneck, we
limit the number of rows to be searched (i.e., the bucket
size). According to Fig. 4, with four parallel kernels, we
can have 3×512 b searches (three 512 bits accesses to con-
secutive addresses) of the CAL table and yet keep up with
the throughput of the requests from the PTR table. With
3×512 bits, we can search at least 21 ( 2×512

48 ) and up to 32
( 3×512

48 ) rows of a bucket, depending on the head of the target
bucket in 512 bit packed data (more fine-grained access such
as 64 bit could mitigate the aligning issue but its throughput
will be significantly smaller as shown in Fig. 4). Therefore,
we limit the bucket size to 32 rows. However, a fraction of
buckets can exceed the 32 rows capacity as alluded above.
Some software such as BFAST [29] that leverage hash-table
simply discard the highly-frequent seeds during the reference
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Fig. 9. Top-level diagram of the aligner design. The ungapped and gapped
implementations differ in the pairwise aligners and number of kernels. The
tables are stored in DRAM banks.

indexing. Nevertheless, we observed such a solution results
in accuracy loss as certain reads do not find any seed after
discarding high-frequent reference seeds from the table. To
reduce the size of a bucket that exceed the maximum limit, we
sort its seed cals by the number of positions they point to, and
randomly discard half of the positions (i.e., CAL rows) of the
most frequent seed cal. We repetitively sort and discard until
the bucket size decreases to 32. With this strategy, we store as
many different seeds as possible, which not only precludes the
CAL table access bottleneck, but also shrinks it to 13.4 GB.

IV. SALIENT IMPLEMENTATION DETAILS

Fig. 9 shows the top-level diagram of SALIENT. Both the
ungapped and gapped stages have a similar architecture except
the pairwise alignment unit which is Hamming distance in the
ungapped, and Smith-Waterman in the gapped alignment. The
number of kernels is also different as Smith-Waterman engines
consume more resources. Multiple copies of the same kernel
are instantiated (which, in our implementation, is eased by
leveraging the Xilinx Vitis software platform).

A memory access faces the M-AXI adapter, AXI inter-
connect, and MIG to DDR latency that adds up to ∼80
cycles according to our experiments, which concurs with [30]
as well. Such latency cannot be circumvented by simply
issuing simultaneous requests by a limited number of kernels.
Therefore, we opted to hide the memory pipeline latency by
streaming the accesses. Instead of accessing the PTR table for
a seed, using its result for CAL fetch, performing pairwise
alignment, and repeating for the next seed, we separate these
stages in a dataflow fashion. The seeding module fetches a read
from a 512 bit HBM channel, extracts its seeds (in parallel,
i.e., unrolled loop), and issues 32b accesses to the PTR table
(stored in the DDR4[0] bank) using the seed ptr part of all
the seeds successively in a loop. Note that on the host side we
simply pack the ASCII characters into an int32 to avoid costly
preprocessing; converting the char to lower-bit nucleotides are
done in parallel over all bases in the same seeding function.
The result of each call to the PTR table is written to the output
dataflow buffer of the seeding module. Thus, the ∼80 cycle
latency is only observed once per a read (the first seed only).
It can be further improved by batching multiple reads together
to amortize the memory pipeline latency. However, we did not
find batching necessary since, by using dataflow and multiple
kernels, we could saturate the memory bandwidth.

The CAL module receives all the returned PTR values
(addresses to CAL buckets) along with the seed cal from the
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dataflow buffer. This module stores all the received inputs in
a local temporary array using BRAMs and starts fetching the
CAL buckets from DDR4[1] bank after receiving all the PTR
values from the previous module. It fetches each bucket with
512b×3 accesses. Searching the buckets and comparing with
the seed cal cell of each bucket is done next. In case of a
match, it saves the candidate position (the second element in
a bucket’s row; lines 9–12 of Algorithm 1) to a counter-like
structure to keep track of the candidates frequencies.

Fig. 10 shows the structure we use to track the frequency of
candidate positions. We use a 1024-element array for position-
frequency pairs and call it a hash array. For a given candidate
position, we find the right hash index by using modulo 1024,
e.g., 12705mod 1024=417. If the hash entry is empty, we
write ′12705, 1′. Otherwise, we update the frequency by one,
i.e., ′12705, 1′ replaces with ′12705, 2′. Also, an auxiliary list,
namely index list, tracks the non-empty hash indexes. When
an index of the hash is empty (i.e., new entry to that index),
the new index is added to the index list. Once all candidate
locations are processed, the index list is used to read the non-
empty hash entries and pass them through a bitonic sort that
sorts the pairs based on their frequency value. We limit the
candidate positions to 32, hence the bitonic sort has a constant
size. In case there are less than 32 locations, the rest inputs of
the sort module are set to −1. On very rare occasions, when
a read has more than one candidate location mapping to the
same hash entry, we skip the new values.

Finally, the sorted candidate positions are written to the
inputs buffer of the pairwise alignment unit. Since the number
of unique candidates is limited, and usually the first candidates
have a higher chance of successful alignment, this module
fetches the reference chunk only when a candidate location
needs to be examined (aligned). The reference is stored in the
HBM banks, packed and fetched as 32 bit as we need fine-
grained (base-level) access to the reference. In the gapped
alignment, we fetch extra 16 bases from each end of the
reference chunk to account for indels in the read.

For the Hamming distance in the ungapped alignment, we
use a bitwise XOR between the read and reference chunk,
followed by a pipelined popcount to count the number of
‘1’s (mismatches). For the gapped pairwise alignment, we
implement the Smith-Waterman algorithm according to Fig.
11. The value of a matrix cell depends only on its left, top,
and top-left cells. Thus, all the cells in the same anti-diagonal
can be computed simultaneously, given that the previous
anti-diagonal is computed before. At each cycle, the one-
dimensional array of processing engines (PEs) accomplishes
one anti-diagonal of the matrix. A PE only needs to store the
cell values of the same row (e.g., PE3 stores the third row’s
values in successive cycles). Thus, each PE has a simple stack
(BRAM) and pushes a new value in successive cycles. At cycle
n, the left, top, and top-left cells for a PEk are, respectively,
PEk,n−1, PEk−1,n−1, and PEk−1,n−2 where PEk,n denotes the
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Fig. 11. Smith-Waterman dynamic programming algorithm. σ is the score or
penalty of match, mismatch, insertion, and deletion.
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value of PE k at cycle n. Thus, in every cycle, each PE only
needs the top stack values of itself or its adjacent PE.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We implemented SALIENT using Xilinx Vitis HLS 2021.2
on Alveo U280 accelerator card [25]. The FPGA has two
16 GB DDR4 banks and an 8 GB High-Bandwidth Memory
with 32 pseudo channels. The ungapped aligner comprises
eight kernels instantiated using the Xilinx Vitis software plat-
form and achieved a frequency of 150 MHz. The kernels share
the same PTR table (DDR4[0] bank), CAL table (DDR4[1]
bank), and reference genome (HBM). The reads of each kernel
are in a different HBM bank. The gapped aligner consists
of four kernels, wherein each kernel comprises two Smith-
Waterman engines and could achieve 100 MHz. Since there are
usually more than one candidate location per read, we decided
to have two Smith-Waterman units per kernel to parallelize
the pairwise alignments of a read. Resource utilization of the
aligners is reported in Fig. 12. Eight ungapped aligner kernels
can saturate the hash-table access throughput, so we did not
increase the number of kernels. While the gapped aligner could
benefit from more kernels as the memory is not its bottleneck,
the routing fails when further increasing the kernels or the
Smith-Waterman units. A major part of the BRAMs in the
ungapped aligner are used by the AXI interfaces and dataflow
FIFOs of the kernels. The gapped aligner has fewer kernels,
but each kernel consists of two Smith-Waterman units, where
each PE uses a BRAM to store the relevant matrix cells.

Table I summarizes the total 16 datasets we used to evaluate
SALIENT, most of them are compiled from the previous
FPGA aligners (distinguished in bold). The datasets provide a
wide range of short read sizes from 75 to 150 bases. Also as
we showed in Fig. 8, the datasets present a wide range of gaps
from 0.02% up to 48.1%. This is crucial for a head-to-head
comparison and also a thorough evaluation of SALIENT as
the gap percentage is a decisive factor in the performance.

We compare the performance of SALIENT with Bowtie2
v2.4.5 and minimap2 v2.24-r1122, both running on Ubuntu
18.04 installed in a system with Intel Gen-11 Core i7-11700K
@4.8 GHz and 80 GB of physical memory. The Alveo U280
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TABLE I
SHORT READ DATASETS USED IN OUR EXPERIMENTS. DATASETS USED IN

PREVIOUS FPGA STUDIES ARE DISTINGUISHED IN BOLD.
Dataset Description
art illumina 100 bp synthetic human reads [6]
bisulfite 75 bp synthetic human chromosome 22 reads [2]
covid x (×3) 151 bp sequenced SARS-CoV-2 reads [31]
ERP001652 90 bp sequenced human reads [3]
ERRx (×3) 101 bp sequenced human reads [1]
human 0.2, 0.9 150 bp synthetic human reads contaminated with microbial [14]
human 300M 101 bp sequenced human reads [4]
human exome 76 bp sequenced human exome data [32] (as in [5])
rhodobac x (×2) 101 bp sequenced Rhodobacter sphaeroides reads [1]
staphy x 101 bp sequenced Staphylococcus aureus reads [1]

card is also installed on the same machine. We used all the
threads (16) for both softwares. For Bowtie2 we tried very-
fast (–VF), sensitive (–S), and very-sensitive (–VS) options.
In SALIENT, we use the same score/penalty of Bowtie2. We
also compare the performance with the previous FPGAs [1]–
[6] that report the absolute throughput numbers. We reviewed
the underlying alignment method of each study in Section II.
We also compare SALIENT with Illumina DRAGEN Bio-IT
Platform v3.5.7 [7] which embraces an Alveo U200 FPGA.

B. Performance Comparison

Comparison with CPU software: Fig. 13 compares the per-
formance of SALIENT and widely-used software aligners in
terms of million base/second. SALIENT on average, achieves
a throughput of 546 M base/second. Averaged over all the
benchmarks, SALIENT outperforms the minimap2 by 40×,
and Bowtie2 by 37×, 56×, and 107× when Bowtie2 runs in
very-fast, sensitive, and very-sensitive modes. The ungapped
stage of SALIENT uses a seeding step of 15 (similar Bowtie2
default) which, depending on the read length, can theoretically
achieve a seeding throughput of 1200–1750 M base/second
according to Fig. 5. However, since usually more than one
candidate location per read is found, the effective throughput
is diminishes. The gapped aligner of SALIENT uses a seeding
step of 7 (similar to the very-sensitive mode of Bowtie2), so
it can try more seeds for the unaligned reads.

In certain datasets such as art illumina that the percentage
of the gapped alignments is very low, SALIENT’s speedup is
massive, e.g., 112× over minimap2 and 356× over Bowtie2-
VS, whereas in ERR231578 which is another human dataset,
the speedup is 21× due to higher calls of the gapped aligner.
On the other hand, in datasets such as covid 43802 that
also has relatively high gap rate (12.8%, shown in Fig. 8),
SALIENT throughput is very high (938 Mbp/second) because
we observed that 10.8% out of the 12.8% could be mapped
with the fast ungapped aligner as the gaps occur in head/tail

TABLE II
DETAILED PERFORMANCE RESULTS OF SALIENT.

Dataset Gapped
calls %

Throughput (M bp/second) Throughput/Watt
Ungapped Gapped Overall Ungapped Overall

art illumina [6] 1.2% 750 92 683 19 18
bisulfite [2] 6.7% 563 69 363 14 10
covid 41819 0.9% 1073 72 941 28 25
covid 43802 1.0% 1073 72 938 28 25
covid 43853 0.6% 1073 72 978 28 25
ERP001652 [3] 19.7% 675 82 259 17 8
ERR231578 [1] 45.7% 758 93 160 19 5
ERR231579 43.4% 758 93 167 19 5
ERR231582 45.2% 758 93 161 19 5
human 0.2 [7] 4.7% 1066 71 625 27 17
human 0.9 [7] 3.3% 1066 71 716 27 20
human 300M [4] 6.5% 1066 71 539 27 15
human exome [5] 0.2% 570 70 562 15 14
rhodobac frag 4.8% 758 93 544 19 15
rhodobac jump 8.9% 758 93 437 19 12
staphy frag 1.6% 758 93 670 19 18

of the reads. Notice that for such small datasets, the indexing
tables of software tools is small and fits in the cache.

SALIENT performance details: Table II reports the (1)
ratio of reads that call the gapped aligner, (2) the ungapped
aligner throughput (which depends on the read length), (3)
our gapped aligner throughput, and (4) throughput (Mbp)/Watt
for the ungapped and overall flow. Note that calls to the
gapped aligner can be more or less than the gapped reads.
For instance, the majority of the COVID gapped reads could
be aligned using the ungapped aligner. On the other hand, a
dataset such as human 0.2 with only 0.07% gapped reads calls
the gapped aligner for 4.7% of the reads. The majority of such
reads contain at least one seed that (accidentally) overlap with
the reference genome, which, after an unsuccessful ungapped
alignment, needs to be examined with the gapped aligner. To
obtain the throughput/Watt, we measured the FPGA power
using the xbutil query utility. We observed an average power
of 39 W and 32.5 W for the ungapped and gapped aligners.

Comparison with ungapped FPGA aligners: We use the
information of Table II to compare SALIENT with previous
the FPGA-based aligners. Fig. 14 shows the performance
improvement of SALIENT over previous works. SALIENT
achieves 4.3–24.0× speedup over the previous ungapped
FPGA accelerators [1]–[4]. The main reason of SALIENT
efficiency is due to using hash-based indexing, as elaborated
on Section II-E, delivers significantly higher seed lookup
throughput over these FM-index-based techniques. To account
for the difference in power consumption, especially as several
of previous studies use multi-FPGA platforms, Fig. 14 also
compares throughput/Watt (note that [1] has not reported
power consumption). Since SALIENT consumes less power
than these platforms, its throughput/Watt range improves to
9.4–18×. Note that these works support up to 2 mismatches,
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while the default setting of ungapped SALIENT supports
6–9 mismatches depending on the read length. The relative
performance of SALIENT further improves if we limit the
number of mismatches (which reduces seed lookups).

Comparison with gapped FPGA aligners: According to
Fig. 14, SALIENT improves the throughput (throughput/Watt)
by 5–36.3× (28–35×) over gapped aligners, including DRA-
GEN [7]. Similar to SALIENT, [5] also uses hash-table
to lookup seeds, and achieves an overall throughput of
∼112 Mbp/second using a system of six Pico M-503 boards,
each equipped with a Virtex-6 LX240T. SALIENT improves
the throughput (throughput/Watt) by 5.0× (35×) over [5] on
a similar dataset. The main source SALIENT’s advantage
stems from the ungapped aligner that achieves a throughput of
570 Mbp/second (see Table II), and since the gapped aligner
is only called for 0.2% of reads, the overall throughput is
562 Mbp/second. Even if we merely compare the gapped stage
of SALIENT, it yields 70 Mbp/second on a single device
with two DIMMs, whereas [5] distributes the reads over six
boards with independent DIMMs with a total throughput
of 112 Mbp/second. Having multiple devices with separate
DIMMs (that alleviates per-device routing congestion) allows
having more Smith-Waterman units to further improve the
pairwise alignment bottleneck.

Compared to [6] that uses a Xilinx UltraScale+ VU9P,
SALIENT improves the throughput (throughput/Watt) by
36.3× (28×) on the same dataset. [6] uses FM-index for seed
lookup which, in Section II-E, we showed that has a limited
throughput. Especially, to reduce the size of FM-index table,
[6] uses bucketing that increases the number of accesses per
base and further degrades the effective throughput.

Finally, to compare with Illumina DRAGEN [7], we used
the human genome datasets human 0.2 and human 0.9 used in
microbiome pipeline [14]. Thanks to its two-stage flow with an
ungapped throughput of 1066 Mbp/second, SALIENT’s over-
all throughput on these two datasets (average 670 Mbp/second)
improves the DRAGEN’s throughput by 7.6×. The gapped
stage of SALIENT alone achieves 71 Mbp/second (Table II)
which is close to DRAGEN’s throughput. DRAGEN uses
Alveo U200 card that consists of four DDR4 banks, which can
be used to replicate either or both of our PTR and CAL tables
and place the Smith-Waterman units within the adjacent SLRs
(super logic regions) to alleviate the routing congestion and/or
improve the frequency, hence, further increase the throughput
of SALIENT’s gapped stage.

C. Alignment Rate

Fig. 15 compares the alignment rate of SALIENT frame-
work (ungapped alignment, followed by gapped on determined
reads) with minimap2 and Bowtie2. On average, SALIENT
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Fig. 15. Comparison of the SALIENT and software tools alignment rate.

TABLE III
ERROR, FALSE NEGATIVE, SENSITIVITY, AND SPECIFITY OF SALIENT

error false negative false positive
human 0.2 0.08% 0.07% 0.01%
human 0.9 0.28% 0.26% 0.02%

obtains an alignment rate of 85.4%, whereas minimap2,
Bowtie2-VS, Bowtie2-S, and Bowtie2-VF achieve 85.4%,
85.3%, 84.9%, and 84.1%, respectively. Therefore, SALIENT
achieves the same or slightly better accuracy than minimap2
and Bowtie2-VS. Recall that none of the previous ungapped
FPGA aligners can achieve such a high alignment rate. Indeed,
without gap, the average alignment rate became 73.9% (11.5%
drop, see Section III-A), while these works support only two
mismatches, which drops the accuracy by an additional 25%. It
is noteworthy that among the existing gapped FPGA aligners,
[5] does not compare the accuracy with gapped software
aligners, and [6] reports 2.8% lower accuracy versus Bowtie2.

False positives can misleadingly increase the alignment rate.
In Table III we calculated the false negative, false positive,
and error of SALIENT for the human 0.2 and human 0.9
datasets. It can be seen that the rate of false positives is trivial,
i.e., the aligned reads by SALIENT are indeed valid. Also
the error rate and false negative (i.e., failed to align) rate of
SALIENT are indeed better than minimap2 and Bowtie2-VS
for the same datasets. E.g., for human 0.9 dataset, the error
and false negative rate of minimap2 (Bowtie2-VS) is 0.4%
(0.7%) and 0.4% (0.8%), respectively [14].

VI. CONCLUSION

In this paper, we proposed SALIENT, an FPGA-based
short read aligner that takes advantage of the fact a significant
percentage of aligned reads do not contain gaps. Accordingly,
SALIENT decouples the flow into two successive stages of
ungapped and gapped alignments to avoid the costly pairwise
alignments used in gapped alignment. Then, SALIENT em-
ploys a hash-based seed lookup to combat the memory bottle-
neck of ungapped alignment and achieves a massive ungapped
throughput of 845 Mbase/second, over a versatile set of bench-
marks. The gapped stage of SALIENT also achieves a high
average throughput of 88 Mbp/second, which makes the over-
all throughput 546 M base/second. SALIENT achieves 40×
and 107× higher throughput over minimap2 and Bowtie2
with a similar or slightly better accuracy. SALIENT achieves
9.4–18× higher throughput/Watt compared to the previous
ungapped FPGA platforms while supporting higher number
of mismatches that leads to significantly higher alignment
rate, and 28× higher throughput compared to a state-of-the-art
gapped FPGA aligner.
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