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Inferring Individual Differences Between and Within Exemplar and
Decision-Bound Models of Categorization

Irina Danileiko (idanilei@uci.edu)
Michael D. Lee (mdlee@uci.edu)

Department of Cognitive Sciences, University of California, Irvine
Irvine, CA 92617 USA

Abstract

Different models of categorization are often treated as compet-
ing accounts, but specific models are often used to understand
individual differences, by estimating individual-level param-
eters. We develop an approach to understanding categoriza-
tion that allows for individual differences both between and
within models, using two prominent categorization models that
make different theoretical assumptions: the Generalized Con-
text Model (GCM) and General Recognition Theory (GRT).
We develop a latent-mixture model for inferring whether an
individual uses the GCM or GRT, while simultaneously allow-
ing for the use of special-case simpler strategies. The GCM
simple strategies involve attending to a single stimulus dimen-
sion, while the GRT simple strategies involve using unidimen-
sional decision bounds. Our model also allows for simple con-
taminant strategies. We apply the model to four previously
published categorization experiments, finding large and inter-
pretable individual differences in the use of both models and
specific strategies, depending on the nature of the stimuli and
category structures.
Keywords: category learning; exemplar models; decision
bound models; General Recognition Theory; Generalized
Context Model; Bayesian inference, latent-mixture model

Introduction
The ability to categorize is widely regarded as a cornerstone
of cognition (Murphy, 2002). It allows people to use in-
nate or learned concepts to give meaning to stimuli, and pro-
vides a basis for the key cognitive capabilities of general-
ization and prediction. Existing theories of categorization
vary in their assumptions about how people represent cate-
gories, and make decisions when categorizing stimuli. Ac-
cordingly, there are many different formal models of cate-
gorization, including prototype, exemplar, decision-bound,
and rule-based models, as well as various hybrid models
(Kruschke, 2008). Hybrid models involve representational
assumptions that combine two or more approaches such as
prototype with exemplar, or exemplar with rule-based repre-
sentations.

A prominent exemplar model is the Generalized Context
Model (GCM: Nosofsky, 1986), which assumes people store
exemplars of each category in memory, attend to the rel-
evant dimensions of the stimuli, and categorize a stimulus
using similarity-based generalization from these exemplars.
A prominent decision-bound model is General Recognition
Theory (GRT: Ashby & Townsend, 1986), which assumes
that people use a decision bound to partition the stimuli into
discrete categories. Categorization seems likely to depend
heavily on psychological components and processes such
as memory capacity, attentional control, decision-making
biases, and so on, all of which may vary across people.

Accordingly, it seems reasonable to expect meaningful in-
dividual differences in categorization, and this expectation
is supported by model-based and empirical evidence (e.g.,
Bartlema, Lee, Wetzels, & Vanpaemel, 2014; Soto, Vucovich,
Musgrave, & Ashby, 2015). Previous work has studied dif-
ferent types of strategies within models like the GCM and
GRT. For example, previous GRT modeling has emphasized
the possibility that different people might use different deci-
sion bounds, including special cases like unidimensional hor-
izontal or vertical bounds (Ashby & Gott, 1988; Maddox &
Ashby, 1993).

In this paper, we present an approach to inferring the gen-
eral models and specific strategies people use in categoriza-
tion tasks. We do this by allowing for individual differences
between the GCM and GRT models, and for individual differ-
ences in specific strategies, like unidimensional bounds, pos-
sible within each model. We develop a latent-mixture mod-
eling approach that infers the model and strategy each person
is using. Building on previous work in which both the GCM
and GRT have been implemented as Bayesian graphical mod-
els (Lee & Wagenmakers, 2013; Danileiko, Lee, & Kalish,
2015), we implement our latent-mixture approach also as a
graphical model, allowing for fully Bayesian inference. We
apply our model to four existing categorization experiments–
all involving stimuli that can be represented in terms of two
underlying psychological dimensions–but with various types
of stimuli and category structures. We find evidence for large
individual differences both between and within models. We
finish by discussing the implication of our model and results
for future research in understanding how people represent cat-
egories.

Latent-Mixture Model
Our latent-mixture approach assumes that each subject uses
one categorization model or specific strategy within that
model, and that the overall data set is therefore a mixture of
these specific components. We also allow for the possibil-
ity of contaminant subjects, who are guessing or repetitively
assigning stimuli to the same category. Instead of filtering
these people out, we model the contaminant behavior as an-
other mixture component (Zeigenfuse & Lee, 2010).

Figure 1 presents a schematic graphical model that sum-
marizes our approach. Each subject’s categorization data yyy is
generated by either the GCM, GRT, or a contaminant process.
Within each of these general models, there are specific possi-
bilities. For the GCM, either the original model with general
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Figure 1: Schematic graphical model representation of the
latent-mixture approach. A GCM or ,GRT, or contaminant
categorization process generates the observed behavior of
each individual. Within each model, special-case strategies
involving the nature of selective attention, the decision bound,
or the contaminant response probabilities are considered.

selective attention w is used, or attention is focused on only
one of the stimulus dimensions, w = 0 or w = 1. For the GRT,
either a general diagonal bound is used αD ,βD , or unidimen-
sional horizontal βH or vertical βV bounds are used. For the
contaminant processes, either a category is repeatedly chosen
θR or a guess is made on each trial θG .

GCM and Strategies
The GCM is an exemplar model that assumes people store
all stimuli in memory and categorize a new stimulus by com-
paring it the stored stimuli. It is based on a similarity com-
parison between the presented stimulus and every other stim-
ulus, using the concept of psychological distance (Shepard,
1957). If the stimuli are points in a two-dimensional co-
ordinate space, psychological distance is defined as di j =
[∑N

k=1 wk|xik − x jk|r]
1
r , where xik is the value of coordinate

point xi on dimension k, N is the number of dimensions, and
r is either equal to 1 or 2 for separable-dimension or integral-
dimension stimuli, respectively. The selective attention pa-
rameter w controls the level of attention given to one stim-
ulus dimension. The distance is used to calculate the sim-
ilarity ηi j = (e−cdi j)γ so as the distance between points gets
larger, their perceived similarity decreases exponentially. The
generalization parameter c controls the steepness of the gen-
eralization gradient. The response determinism parameter γk
controls probabilistic or deterministic responding (Ashby &
Maddox, 1993). The final probability based on these pro-
cesses can be affected by the bias toward each category. In
our implementation, we assume there is no bias, and so set
b = 1

2 . This means that the probability of responding J to

stimulus i is equal to θGCM = ∑ j∈C j ηi j/∑
m
K=1(∑k∈CK ηik).

In the full GCM, selective attention can range between 0
and 1. The special cases of w = 0 and w = 1 correspond to
attending to just one of the two stimulus dimensions, and con-
stitute theoretically interesting strategies. For example, if one
stimulus dimension is shape and the other is color, one person
might attend only to the shape dimension and place circles in
one category and squares in the other. However, another per-
son might attend only to the color dimension and place red
shapes in one category and blue shapes in the other. A third
person might attend to both dimensions and categorize red
circles separately from blue squares. These possibilities cor-
respond to the three GCM components included in our model,
represented by the w = 0, w = 1, and w nodes respectively.

GRT and Strategies
The GRT model assumes that instead of storing each stimulus
in memory, people partition the stimulus space into response
regions divided by boundaries. Response probabilities are de-
termined by these decision bounds, based on which region a
noisy perception of the presented stimulus, xpi = xi + εp, be-
longs. Our model considers only linear decision bounds, al-
though quadratic bounds have also been considered in the lit-
erature (Ashby & Maddox, 1992). A linear bound is defined
as a discriminant function of the two dimensions satisfying
the implicit line equation h(x1,x2) = b1x1 + b2x2 + c.

GRT assumes that there is variability in people’s memory
of the location of the bound. To account for this, the function
is adjusted to include criterial noise εc. The function is com-
pared to a bias parameter δ which captures bias toward a cate-
gory. If h(xpi) + εc is smaller than δ, the response is category
A. If it is larger than δ, the response is category B. If it is equal
to δ, the response will be a guess between A and B. We again
assumed no bias so that δ = 0. Thus, the probability of a cat-
egory A decision for stimulus i is θGRT = P(h(xpi)+εc < 0).

Special cases of the general GRT model that have previ-
ously been emphasized involve unidimensional boundaries
corresponding to vertical or horizontal lines. A vertical strat-
egy is defined by an intercept value βV , a horizontal strat-
egy is defined by an intercept value, βH , and a general diago-
nal boundary is defined by a slope and intercept αD and βD .
These possibilities correspond to the three GRT components
included in our model. Although the vertical and horizon-
tal strategies can be viewed as special cases of the diagonal
strategy, one way to think about this in the latent-mixture ap-
proach is as a single model with a theoretically-rich prior. In-
cluding the vertical and horizontal boundaries as special cases
corresponds to considering only a diagonal boundary with a
prior that places significant density on boundaries with infi-
nite and zero slope.

Contaminant Strategies
The three GCM strategies and the three GRT strategies make
up six mixture components in our model. The remaining
components capture contaminant subjects. In these cases,
the probability values θcont do not follow from a theoretical
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model, but are set directly. For guessing, the response prob-
ability is θG = 0.5, so that each category response is equally
likely on every trial. For a repetitive contaminant behavior,
the probability of a category A response is either θ

G
A = 0.99 or

θ
G
B = 0.01, depending on which category choice is repeated.

Adding these three contaminant possibilities leads to a total of
nine components of our latent mixture model, with Figure 1
combining the two repeated contaminant possibilities.

Modeling Results
We implemented the graphical model in JAGS (Plummer,
2003), and used fully Bayesian methods based on MCMC
sampling to make inferences.1 Advantage of this method-
ological approach include accounting coherently for uncer-
tainty about inferences, both in terms of model use and
model-specifc parameters, and automatically controlling for
the different complexity of the models and strategies consid-
ered (Lee & Wagenmakers, 2013).

We applied the model to four previously published cate-
gorization experiments. These experiments all involved a se-
ries of trials in which subjects viewed a stimulus and placed
it into one of two categories, with corrective feedback after
each trial. The stimuli used varied across experiments and in-
clude rectangles varying in size and interior line segment po-
sition (Kruschke, 1993), Shepard circles varying in size and
radial lines (Bartlema et al., 2014), Gabor patches varying
in frequency and orientation (Zeithamova & Maddox, 2006),
and faces (Navarro, Lee, & Nikkerud, 2005). For the first
three, there is a natural two-dimensional stimulus representa-
tion. For the faces, we assumed a two-dimensional represen-
tation based on multidimensional scaling modeling (Okada &
Lee, 2016). Details of the experiments, including the number
of subjects, blocks, nature of the experiment, and the various
conditions, are presented in Table 2. The code for the graphi-
cal model, categorization data, detailed analysis of every sub-
ject in every experiment and condition, and other supplemen-
tary material is available on the Open Science Framework
project page for this paper at https://osf.io/ckwsn/.

Overall Results
Table 1 summarizes our results by listing how many people
are inferred most likely be using each of the possible models
and strategies. The individual model-use inferences come are
seen in the indicator variable in the JAGS code that assumes a
uniform prior over all nine potential models, meaning that in
the prior, each person is equally likely to use any of the nine.
The “most likely” model for each person is taken from the
posterior distribution of the indicator variable. There are four
conditions in the Kruschke (1993) experiment: the first two
are filtration category structures, in which the stimuli can be
categorized correctly by using information from only one di-
mension, and the second two are condensation category struc-

1Our results are based on 3 independent chains with 100 samples
each, collected after discarding the first 500 burn-in ones from each
chain, and testing for convergence using the standard R̂ statistic.

tures, in which the stimuli can only be categorized correctly
by using information from both dimensions. The majority of
the 160 participants are inferred to use the GCM exemplar
approach, but the specific selective attention strategy varies
by condition. The Bartlema et al. (2014) experiment has two
conditions, named after the category structures, both of which
require information from both stimulus dimensions for cor-
rect categorization. The majority of the 65 participants use
a decision bound approach. The Zeithamova and Maddox
(2006) experiment has four conditions. The unidimensional
condition is similar to the filtration condition in the Kruschke
experiment and the information-integration condition is sim-
ilar to the condensation condition. The “+ load” label in Ta-
ble 1 indicates that that condition also involved a simultane-
ous working memory load task. The majority of the 170 par-
ticipants use the decision-bound approach, with the vertical
strategy being most common. This experiment involves the
most contaminant subjects, who are inferred primarily to be
guessing. The Navarro et al. (2005) experiment has four con-
ditions. These involved categorizing faces based on gender,
hair color, perceived level of trust, and a random condition
with no logical structure. The majority of the 40 subjects use
an exemplar approach, with selective attention that considers
both available dimensions, but there is large individual varia-
tion over both models and strategies across the conditions.

Kruschke (1993) Results The results from the Kruschke
(1993) experiment are shown at an individual level, for se-
lected subjects, in Figure 2. The circles show the eight stim-
uli. The dark-colored circles show a response of category A
while the light-colored circles show a response of category
B. The size of the circle shows the number out of the total
number of trials that each stimulus was placed in either cate-
gory. The smallest circle means that stimulus was placed into
that category exactly half of the time while the largest circle
means that stimulus was placed into that category all the time.
The bar graphs on the top of each panel show the uncertainty
in the inference about which model and strategy the subject
used. Each bar shows the posterior probability for a model or
strategy. A tall bar showing one strategy means that we can
be more certain of that person’s inferred strategy than when
there are shorter bars showing many strategies. The text at the
bottom right corner of each panel indicates the inferred most
likely strategy. For the general GCM w strategy, the 95%
credible intervals and posterior mean for w are listed. For
the GRT possibilities, the bound corresponding to the poste-
rior mean is shown as a thick line, and the upper and lower
bounds f to the 95% credible intervals are shown as thin lines.

These subject in Figure 2 are chosen to include at least
one subject from each condition. The top-left came subject
from the Filtration 1 condition, the top-middle subject came
from the Filtration 2 condition, the top-right and bottom-left
subjects came from the Condensation 1 condition, and the
bottom-middle and bottom-right subjects came from the Con-
densation 2 condition. The first two subjects from the filtra-
tion conditions are inferred to be most likely using an exem-
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Exemplar Bound Contam.
w 0 1 V H D G R

Kruschke Filtration 1 10 - 30 - - - - -
Filtration 2 6 30 1 3 - - - -
Condensation 1 15 4 5 - 4 8 4 -
Condensation 2 19 6 10 2 - 1 2 -
Total 50 40 46 5 4 9 6 -

Bartlema et al. Diagonal - 3 - 5 15 7 1 -
Criss-Cross - 3 4 8 8 4 7 -
Total - 6 4 13 23 11 8 -

Zeithamova & Maddox Unidimensional - 2 - 31 1 1 5 1
Unidimensional + load 3 5 7 22 5 2 5 1
Information-Integration - - - 20 - 11 2 1
Information-Integration + load 1 9 3 19 0 10 3 -
Total 4 16 10 92 6 24 15 3

Navarro et al. Gender 9 - 1 - - - - -
Hair 3 3 1 - 3 - - -
Trust 4 1 1 2 - 1 1 -
Random 4 - 2 - 1 - 3 -
Total 20 4 5 2 4 1 4 -

Table 1: Number of participants inferred to use an exemplar, decision bound, or contaminant strategy in each data set.
(w: uniform w strategy; 0: w=0 strategy; 1: w=1 strategy; V: vertical; H: horizontal; D: diagonal; G: guess; R: repeat (either )

plar strategy with w = 1 and w = 0, with some possibility of
the general GCM w strategy. The subjects from the conden-
sation conditions are inferred to be more likely to use either a
diagonal boundary or a general GCM w strategy with a mean
value close to w = 0.5 in one case, and w = 0.83 in the other.
The last subject is inferred to be a guessing contaminant, with
a larger degree of uncertainty.

Bartlema et al. (2014) Results The results from the
Bartlema et al. (2014) experiment are shown at an individual
level in Figure 3. The top panels come from the diagonal con-
dition and the bottom panels come from the criss-cross con-
dition. The top-left subject is inferred to be using a horizontal
boundary, but with some uncertainty about the possible use of
a more general diagonal boundary. The bottom-left subject is
also inferred to be using a horizontal boundary, but there is a
possibility of a diagonal boundary, or a contaminant guessing
strategy. The top-right subject is inferred to be using a di-
agonal boundary, with greater uncertainty. The bottom-right
subject is inferred to be using a vertical boundary, also with a
high level of certainty.

Zeithamova and Maddox (2006) Results The results from
the Zeithamova and Maddox (2006) experiment are shown at
an individual level in Figure 4. The top-left subject comes
from the unidimensional condition. The top-middle and top-
right subjects come from the unidimensional + load condi-
tion. The bottom-left subject come from the information-
integration condition. The bottom-middle and bottom right
subjects come from the information-integration + load con-
dition. In this experiment, very few of the subjects were in-

ferred to be using an exemplar strategy, perhaps as a result
of the large number of stimuli required to keep in memory.
Even though most subjects were inferred to be using a deci-
sion bound, there is still great variation in the specific shape
of the boundaries, with varying slopes and intercepts. Two
of the subjects selected for Figure 4 are inferred to be using
a vertical boundary, even though they come from conditions
with different category structures. Similarly, two of the sub-
jects are inferred to be using a diagonal boundary, but one
with more uncertainty than the other about the location of the
boundary. This experiment also involved a large number of
subjects inferred to be contaminants, one of whom is shown
in Figure 4. The top-right panel shows one subject who was
inferred to be using an exemplar approach with a w=1 strat-
egy, although there is large uncertainty about this inference,
consistent with the poor categorization performance shown.

Navarro et al. (2005) Results The results from the Navarro
et al. (2005) experiment are shown at an individual level in
Figure 5. The top-left subject comes from the gender con-

Experiment # Su # B # St # C Type of St

Kruschke 160 8 8 4 Rectangles
Bartlema et al. 65 40 8 2 Shepard circles
Zeithamova & Maddox 170 5 80 4 Gabor patches
Navarro et al. 40 8 25 4 Faces

Table 2: Properties of the categorization experiments (Su:
subjects; B: blocks; St: stimuli; C: conditions).
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Figure 2: Inferred model or strategy use, and attention values
or decision bounds, for selected subjects from the Kruschke
(1993) experiment.

dition, the top-middle and top-right subjects come from the
hair-color condition, the bottom-left subject comes from the
trust condition, and the bottom-middle and bottom-right sub-
jects come from the random condition. Most of the subjects
are inferred to be using the GCM, perhaps as a result of the
stimuli being faces and not easily separable into psychologi-
cally interpretable dimensions. Two of the selected subjects
are inferred to be using the general GCM w strategy, with
varying mean values depending on the condition. A few sub-
jects are inferred, with less certainty, to be using a decision-
bound approach. The random condition has the most contam-
inants, as for the subject in the bottom-right panel, typically
with large uncertainty about model use.

Discussion
We have presented a latent-mixture model that infers which
of the two models—the GCM or the GRT—each person is us-
ing, and whether they are using a specific strategy within that
model. Our individual differences analysis showed that dif-
ferent people’s categorization behavior can best be explained
by different model strategies, depending on the types and
number of stimuli involved, and the nature of the category
structures. Instead of continuing a debate of a “one model
fits all” answer where all behavioral data must be in accor-
dance with one type of model, applications of our model-
ing approach to individual subject data can potentially reveal
multiple models and strategies being used by different people.

Future work could apply our general method, and the spe-
cific model we have implemented and demonstrated, to other
categorization experiments, exploring how individual differ-
ences change with the type of stimuli and category structures
involves. It would be interesting to understand individual
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Figure 3: Inferred model or strategy use, and attention values
or decision bounds, for selected subjects from the Bartlema
et al. (2014) experiment.

differences for more complicated real-world stimuli, such as
faces, with the goal of understanding how people categorize
in everyday life. It is straightforward to extend our model to
include other theoretical accounts of categorization behavior,
and different specific strategies within them. These could in-
corporate other categorization models, such as hybrid models
that combine prototype with exemplar or rule-based represen-
tations. It would also be possible to extend the model to allow
for shifts in categorization within an individual, allowing for
possibilities like rapid shifts in attention, or the adaptation of
an overly simple unidimensional bound to a more general di-
agonal bound on the basis of feedback. Examination of the
strategy shifts that occur can be useful for further predic-
tive modeling of when we can expect participants to switch
strategies. Collectively, these extensions allow for broader
and deeper investigation of the individual differences in the
way people represent and use categories.

Acknowledgments
This work was supported by NSF Award 1431635.

References
Ashby, F. G., & Gott, R. E. (1988). Decision rules in the per-

ception and categorization of multidimensionalstimuli.
Journal of Experimental Psychology: Learning, Mem-
ory and Cognition, 14, 33–53.

Ashby, F. G., & Maddox, W. T. (1992). Complex decision
rules in categorization: Contrasting novice and experi-
enced performance. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 18, 50-71.

Ashby, F. G., & Maddox, W. T. (1993). Relations between
prototype, exemplar, and decision bound models of cat-

2829



V

w 0 1 V H
D

G

w=1

w 0 1 V H D G

Dimension 1

D
im

en
si

on
 2

V
D V

Guess

w 0 1 V H D G

Figure 4: Inferred model or strategy use, and attention values
or decision bounds, for selected subjects from the Zeithamova
and Maddox (2006) experiment.

egorization. Journal of Mathematical Psychology, 37,
372-400.

Ashby, F. G., & Townsend, J. T. (1986). Varieties of percep-
tual independence. Psychological Review, 93, 154–79.

Bartlema, A., Lee, M., Wetzels, R., & Vanpaemel, W. (2014).
A Bayesian hierarchical mixture approach to individ-
ual differences: Case studies in selective attention and
representation in category learning. Journal of Mathe-
matical Psychology, 59, 132–150.

Danileiko, I., Lee, M. D., & Kalish, M. L. (2015). A
Bayesian latent mixture approach to modeling individ-
ual differences in categorization using General Recog-
nition Theory. In D. C. Noelle et al. (Eds.), Proceedings
of the 37th Annual Conference of the Cognitive Science
Society (p. 501-506). Cognitive Science Society.

Kruschke, J. K. (1993). Human category learning: Implica-
tions for backpropagation models. Connection Science,
5, 3–36.

Kruschke, J. K. (2008). Models of categorization. In
R. Sun (Ed.), The Cambridge Handbook of Computa-
tional Psychology (pp. 267–301). New York: Cam-
bridge University Press.

Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian Cog-
nitive Modeling: A Practical Course. Cambridge Uni-
versity Press.

Maddox, W. T., & Ashby, F. G. (1993). Comparing decision
bound and exemplar models of categorization. Percep-
tion and Psychophysics, 53, 49–70.

Murphy, G. L. (2002). The big book of concepts. Cambridge,
MA: MIT Press.

Navarro, D. J., Lee, M. D., & Nikkerud, H. (2005). Learned

w=1

w 1
0 V

H
D G

w=(.05,.19,.32)

w

0

Dimension 1

D
im

en
si

on
 2

w 0 1 V H
D G

w=(.16,.47,.77)

w

Guess

w 0 1 V H D G

Figure 5: Inferred model or strategy use, and attention values
or decision bounds for selected subjects from the Navarro et
al. (2005) experiment.

categorical perception for natural faces. In B. G. Bara,
L. W. Barsalou, & M. Bucciarelli (Eds.), Proceedings
of the 27th Annual Conference of the Cognitive Science
Society (pp. 1600–1605). Mahwah, NJ: Erlbaum.

Nosofsky, R. M. (1986). Attention, similarity and the
idenitification-categorization relationship. Journal of
Experimental psychology: General, 115, 39–57.

Okada, K., & Lee, M. D. (2016). A Bayesian approach to
modeling group and individual differences in multidi-
mensional scaling. Journal of Mathematical Psychol-
ogy, 70, 35–44.

Plummer, M. (2003). JAGS: A program for analysis of
Bayesian graphical models using Gibbs sampling. In
K. Hornik, F. Leisch, & A. Zeileis (Eds.), Proceedings
of the 3rd International Workshop on Distributed Sta-
tistical Computing. Vienna, Austria.

Shepard, R. N. (1957). Stimulus and response generalization:
A stochastic model relating generalizationto distance in
psychological space. Psychometrika, 22, 325–345.

Soto, F. A., Vucovich, L., Musgrave, R., & Ashby, F. G.
(2015). General recognition theory with individual dif-
ferences: a new method for examining perceptual and
decisional interactions with an application to face per-
ception. Psychonomic Bulletin & Review, 1–24.

Zeigenfuse, M. D., & Lee, M. D. (2010). Finding the features
that represent stimuli. Acta Psychologica, 133, 283–
295.

Zeithamova, D., & Maddox, W. T. (2006). Dual task in-
terference in perceptual category learning. Memory &
Cognition, 34, 387–398.

2830




