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Attractor dynamics and parallelism in a connectionist sequential
machine

Michael 1. Jordan
Department of Computer and Information Science
University of Massachusetts

ABSTRACT

Fluent human sequential behavior, such as that observed in speech production, is
characterized by a high degree of parallelism, fuzzy boundaries, and insensitivity to
perturbations. In this paper, I consider a theoretical treatment of sequential behavior
which is based on data from speech production. A network is discussed which is
essentially a sequential machine built out of connectionist components. The network
relies on distributed representations and a high degree of parallelism at the level of the
component processing units. These properties lead to parallelism at the level at which
whole output vectors arise, and constraints must be imposed to make the performance
of the network more sequential. The sequential trajectories that are realized by the
network have dynamic properties that are analogous to those observed in networks
with point attractors (Hopfield, 1982): learned trajectories generalize, and attractors
such as limit cycles can arise.

INTRODUCTION

One of the arguments for “connectionist” or “parallel, distributed processing” networks
has been that they have properties that seem to reflect processes at which humans are most
naturally proficient (Hinton & Anderson, 1981; Rumelhart & McClelland, 1986). These
properties include the ability to generalize from instances, the ability to deal with partial
information, and insensitivity to noise. It has been suggested that it might be advisable to
base theories on such primitives rather than on those associated with sequential, symbolic
processing. These arguments have been made mostly in the context of models dealing with
the interpretation of incoming data, or with mappings from one set of data to another.
However, one need only consider the fluency of human speech to see that humans are
also very good at certain kinds of sequential behavior. Furthermore, such behavior is
often characterized by a high degree of parallelism, fuzzy boundaries, and insensitivity
to perturbations — properties which are difficult to capture in a formalism in which the
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underlying primitive is a sequential processor, but which are more natural in a connectionist
system. In this paper, I consider the problem of parallelism in speech production and
suggest a connectionist architecture that can exhibit behavior similar to that shown in
speech. My approach is based on the recent work on learning by Rumelhart, Hinton, and
Williams (1986) and is related to previous work by Henke (1966), Kohonen, Lehtio, and
Oja (1981), and Rumelhart and Norman (1982).

COARTICULATION

Much of the complexity of describing sequential processes in speech production comes
from the fact that speech gestures associated with nearby phonemes can overlap in time.
Such overlap, or coarticulation, is ubiquitous in utterances and can be quite complex, given
the many degrees of freedom of the speech apparatus. It is possible to see gestures that
anticipate future phonemes, referred to as forward coarticulation, as well as perseveratory
gestures, or backward coarticulation. The overall effect of coarticulation is to make the
utterance more smooth by merging nearby phonemes and to allow speech to proceed faster
than would otherwise be possible by taking advantage of opportunities for the parallel
execution of movements.

Several studies have investigated coarticulation by recording articulator trajectories
during utterances. Moll and Daniloff (1971) showed that in an utterance such as “freon”,
the velar opening for the nasal /n/ can begin as early as the first vowel, thereby nasalizing
the vowels. ! Benguerel and Cowan (1974) studied phrases such as “une sinistre structure,”
in which there is a string of the six consonants /strstr/ followed by the rounded vowel /y/.
? They showed that lip-rounding for the /y/ can begin as early as the first /s/, an example
of forward coarticulation over six phonemes.

One way to characterize these examples is to say that if certain degrees of freedom
are not being used in the production of a particular sound, then they may anticipate or
perseverate aspects of other phonemes in the utterance so that performance becomes more
parallel. However, such a conception of coarticulation ignores the constraints which must
be imposed on the parallelism. Certain anticipatory gestures, for example, would inflict
too much change on the sound currently being produced, and there must therefore be
a way to prevent such coarticulations while allowing others. In the case of “freon”, for
example, the velum is allowed to open during the production of the vowels because the
language being spoken is English. In a language such as French, in which nasal vowels

!The velum is a muscular tissue that opens to allow air to pass between the pharynx and the nasal
cavities.

2The vowel [y/ is the “u” in “tu”, and is somewhat like pronouncing the English sound “ee” with rounded
lips.
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are different phonemically from non-nasal vowels, the velum would not be allowed to
coarticulate. Thus the articulatory control system cannot blindly anticipate articulations,
but must be sensitive to phonemic distinctions in the language being spoken.

The implementation of constraints on parallelism is complicated by the fact that the
constraints cannot be encoded as relations between whole phonemes, but must be specific
to particular phonemic structure. For example, in the case of /strstry/, the rounding of
the /y/ can be anticipated during the preceding consonants, but the voicing of the /y/
cannot, because that would change the phonemic identities of the consonants (for example,
the /s/ would become a /z/). Other features of the /y/, such as those specifying tongue
position, may be more or less constrained, depending on the particular allowable variations
of the consonants. Again, such knowledge cannot come from consideration of strategies of
articulation, but must reflect higher-level phonemic constraints.

Thus, speech presents an interesting control problem in which constraints of various
kinds are imposed on the particular patternings of parallelism and sequentiality that can
be obtained in an utterance. What I wish to discuss in the remainder of this paper is an
approach to this problem based on connectionist mechanisms.

CONNECTIONIST NETWORKS

General discussions. of connectionist networks can be found in Feldman and Ballard
(1982) and Rumelhart and McClelland (1986). For present purposes, the main features
of the networks that are relevant involve distributed representations, nonlinearities, and
learning.

A one layer network with no recurrent connections computes a function from the vector
of activation of its input units to the vector of activation of its output units. It is possible
for such a network to learn to make associations between input vectors and output vectors.
This can be done by an error-correcting learning rule that changes the weights coming in
to each output unit in proportion to the difference between the actual output of that unit
and the desired output (Widrow & Hoff, 1960).

An important property of such networks, which is due to the weighted sums that
units form in determining their activations, is that similar input vectors tend to produce
similar output vectors. Many connectionist approaches take advantage of this property
by representing entities as distributed patterns of activation, so as to achieve a kind of
automatic generalization between similar patterns (Hinton & Anderson, 1981).

A one layer network has only a single weight matrix and is restricted to linear mappings.
By allowing more layers, with nonlinear activation functions on intermediate units, it is
Possible to implement arbitrary nonlinear mappings. Until recently, the learning rules in
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these networks were restricted to the single layer case. However, several rules have now
been developed for multilayer networks that allow essentially arbitrary associations to be
formed (Ackley, Hinton, & Sejnowski, 1985; Barto & Anandan, 1985; Rumelhart, Hinton,
& Williams, 1986). The back-propagation rule of Rumelhart, Hinton, and Williams has
been used in simulations of the network discussed in this paper. The back-propagation rule
is an error-correction procedure that generalizes the Widrow-Hoff rule. As before, errors
are generated at the output units by comparing the actual outputs to the desired outputs,
and these errors are used to change the weights of the output units. The errors are then
propagated back into the network to provide intermediate units with error signals so that
they can change their weights.

A NETWORK ARCHITECTURE FOR SEQUENTIAL PERFORMANCE

Let there be some sequence of actions x,,xz,...,X,, which are to be produced in order
in the presence of a plan p. Each action is a vector in a feature or parameter space, and
the plan can be treated as an action produced by a higher level of the system. The plan is
assumed to remain constant during the production of the sequence, and serves primarily
to designate the particular sequence which is to be performed.

We wish to construct a network that can perform arbitrary sequences by taking a
plan as input and producing the corresponding sequence. One approach is to explicitly
represent the state of a sequential machine as an activation vector and to produce actions
by evaluating a function from states to actions. At each moment in time, an action is
chosen based on the current state s, and the state is then updated to allow the next action
to be chosen. Thus, there is a function f which determines the output action x, at time
n,

X, = f(8s,P)

and a function g which determines the state 8,4,

Buy1 = g(.‘l p)‘l (l)

where both functions depend on the constant plan vector as well as the current state vector.
Following the terminology of automata theory (Booth, 1969), f will be referred to as the
output function, and g will be referred to as the nezt-state function. 3

The basic network architecture is shown in Figure 1. The entities in the state equations
— plans, states, and outputs — are all assumed to be represented as distributed patterns

SFrom the definition, it can be seen that the plan p plays the role of the input symbol in a sequential
machine. The use of the term “plan” is to emphasize the assumption that p remains constant during the
production of the sequence. That is, we are not allowed to assume temporal order in the input to the system.
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Figure 1: Basic network architecture. (Not all connections are shown).

of activation on separate pools of processing units. The plan units and the state units
together serve as the input units for a multilayer network. This network implements the
output function through weighted connections from the plan and state units to the output
units. The output function is generally nonlinear, as will be discussed below, therefore it is
also necessary to have hidden units in the path from the plan and state units to the output
upits. Finally, the next-state function is implemented with recurrent connections from the
state units to themselves, and from the output units to the state units. This allows the
current state to depend on the previous state and on the previous output (which is itself
a function of the previous state and the plan).

The network can learn to produce sequences of actions by changing the weights in the
network. Assume that the recurrent connections implementing the next-state function
are given fixed values (particular choices for these values are discussed below). At each
time step, an activation vector composed of the plan and the state is present on the
input units, and an association can be learned from this input vector to a desired output
vector. Clearly, one requirement for the network to be able to learn arbitrary sequences
is that the next-state function produce distinguishable state vectors at each time step. It
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is not necessary that these vectors be different between sequences, because the plan serves
to distinguish the sequences. A second requirement is that there be no restrictions on
the form of the associations that can be learned (such as a linearity restriction). This
requirement is met by using the back-propagation learning rule. Note that the ability
to learn arbitrary sequences does not imply that all sequences are equally easy to learn;
indeed, the network will have more difficulty in learning and performing sequences when
distinctions must be made similar states and plans.

A further requirement must be imposed on the next-state function so that the results
on parallelism will hold: State vectors at nearby points in time must be similar. There are
many ways to choose the recurrent connections so as to achieve this continuity property.
One particular choice, which has been used in many of the simulations of the network, is
based on a conception of the state as representing the temporal contezt of actions. Consider
the case of a sequence with a repeated subsequence or a pair of sequences with a common
subsequence. It seems appropriate, given the positive transfer which can occur in such
situations as well as the phenomena of capture errors (Norman, 1981), that the state
should be similar during the performance of similar subsequences. One way to achieve this
is to define the state in terms of the actions being produced. However, the representation
must provide an extensive enough temporal context so that there are no ambiguities in
cases involving repeated subsequences. If the state were to be defined as a function of
the last n outputs, for example, then the system would be unable to perform sequences
with repeated subsequences of length n, or to distinguish between pairs of sequences with
a common subsequence of length n. To avoid such problems, the state can be defined as
an exponentially weighted average of past outputs, so that the arbitrarily distant past has
some representation in the state, albeit with ever-diminishing strength. This representation
of the state can be obtained if each output unit feeds back to a state unit with a weight of
one, if each state unit feeds back to itself with a weight g, and if the state units are linear.
4 In this case, the state at time n is given by

Bn = WBa_y+Xa

n—1
o E pr-lxu_f.

r=1
Since this representation of the state is an average, it tends to have the desired property
that states nearby in time are similar. The similarity depends on the particular actions that
are added in at each time step and on the value of . In general, however, with sufficiently
large values of u, the similarity extends forward and backward in time, growing weaker
with increasing distance.

Other possible representations of the state are discussed in Jordan (1985). The major
differences between different representations is in the particular metrics they induce on the

“The linearity assumption gives the state a simple interpretation and also gives the state nnits a more
extended dynamic range, but is not essential for the operation of the network.
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difficulty of learning and performing particular sequences and also the kinds of generaliza-
tions that can be made between sequences. It is also possible to consider learning of the
next-state function. Indeed, the back-propagation algorithm applies to the case of recur-
rent networks, although in a more complex form, requiring units to store histories of their
activations (Rumelhart, Hinton, & Williams, 1986). However, in the current framework,
there is little to be gained by learning the next-state function; all the hard work can be
done in learning the output function.

LEARNING AND PARALLELISM

The network as described thus far would appear to be strictly sequential: there is no
overlap between neighboring actions. This is indeed the case and it is necessary to modify
the form in which desired output vectors are specified to see that the network is in fact
capable of highly parallel performance.

The form that desired output vectors are assumed to take is a generalization of the
approach used in traditional error-correction schemes (Duda & Hart, 1973; Rosenblatt,
1961; Rumelhart, Hinton, & Williams, 1986; Widrow & Hoff, 1960). Rather than assuming
that a value is specified for each output unit, it is assumed that in general there are
constraints specified on the values of the output units. Constraints may specify a range of
values which an output unit may have, a particular value, or no value at all. This latter
case is referred to as a “don’t-care condition.” It is also possible to consider constraints
which are defined among output units. For example, the sum of the activations of a set of
units may be required to have a particular value.

Constraints enter into the learning process in the following way: If the activation of an
output unit fits the constraints on that unit, then no error corrections are instigated from
that unit. If, however, a constraint is not met, then the error is defined as a proportion of
the degree to which that constraint is not met, and this error is used in the normal way
to change weights towards a configuration in which the constraint is met. An example of
this process is shown in Figure 2 for a desired output vector with three specified values
and two don’t-care conditions (represented by stars). As shown in the figure, errors are
propagated from only those units where constraints are imposed. In the case of constraints
among units, it is possible to impose constraints on units having fixed connections from
the output units. Errors generated at these units are propagated back to the output units.
This process is sketched in Figure 3, where the constraints z; + z; = .6 and z; + z5 = .4
are imposed. Note that if many constraints are imposed on the same unit, the errors are
simply added together, and the network will eventually find an activation value for the
unit that satisfies all of the constraints (given that such a value exists).

Consider now the case in which desired output vectors specify values for only a single
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Figure 2: Learning with don’t-care conditions.

output unit. This is essentially the case of local representations for actions, in which the
network is essentially being instructed to activate its output units in a particular order.
Suppose, for example, that a network with three output units is learning the sequence

]

At each time step, errors are propagated from only a single output unit, so that activation
of that unit becomes asscciated to the current state. Associations are learned from s, to
activation of the first output unit, from s; to activation of the second output unit, and
from 85 to activation of the third output unit. ®

Swhere 8; denotes the activation of the state units at time i. I am ignoring the plan vector to simplify
the exposition.
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Figure 3: Learning with constraints among units.

After learning, the presence of 8y on the state units will activate the first output unit. It
will also partially activate the second and third output units, even though no associations
from s, to these units have been learned. This occurs because s, is similar to s, and s,
(given the requirement made of the next-state function) and similar inputs tend to produce
similar outputs in these networks. The associations made to 8; and s also generalize, so
that after learning, the network will likely produce a sequence such as

B

Where at each time step, there are parallel activations of all output units. If the network is
driving a set of articulators that must travel a certain distance, or have a certain inertia,
then it will be possible to go faster with these parallel control signals than with signals
where only one output unit can be active at a time.
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The foregoing example is simply the least constrained case and further constraints can
be added. Suppose, for example, that the second output unit is not allowed to be active
during the first action. This can be encoded in the constraint vector for the first action so
that the network is instructed to learn the sequence

L]

After learning, the output sequence will likely be as follows:

HIHRE

where the added constraint is now met. In this example, the network must block the
generalization that is made from s, to s,. In general, the ability to block generalizations
in this manner implies the need for a nonlinear output function.

As further constraints are added, there are fewer generalizations across nearby states
that are allowed, and performance becomes less parallel. Minimal parallelism will arise
when neighboring actions specify conflicting values on all output units, in which case the
performance will be strictly sequential. Maximal parallelism should be expected when
neighboring actions specify values on non-overlapping sets of output units. Note that
there is no need to invoke a special process to program in the parallelism. Essentially,
the system generalizes naturally across similar state vectors, and given that state vectors
nearby in time are similar, the generalizations act so as to spread actions in time. In most
cases, it will be more difficult for the system to learn in the more sequential case when
there are more constraints imposed on the system which block the generalizations. These
observations are summarized in Figure 4, which shows the relationships between constraint
vectors and parallelism.

ATTRACTOR DYNAMICS

The properties of the system that lead to parallel performance also make the system
relatively insensitive to perturbations. Suppose that the system has learned a particular
sequence and that during performance of the sequence the state is perturbed somewhat.
Given that similar states tend to produce similar outputs, the output of the system will
not be greatly different from the unperturbed case. This would suggest that the network
will perform a sequence which is a “shifted” version of the learned sequence. However, a
stronger property appears to hold: The learned sequences become attractors for nearby
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Figure 4: Relationships between constraint and parallelism.

regions of the state space and perturbed trajectories return to the learned trajectories. This
property is demonstrated in Figures 5 and 6. A network with two output units learned to
follow a square in the two-dimensional space which corresponds to the activations of the
output units. As shown in the figures, when the network was started at other points in the
space, the trajectories moved toward the square. This occurred whether the trajectories
began inside or outside the square, showing that the square is a limit cycle for the system.
For a dynamical system to have limit cycles, it is necessary that the system be nonlinear
(Hirsch & Smale, 1974), which further demonstrates the need for the output function to
be nonlinear.

More globally, a network which has learned to produce several different cyclical se-
quences may have several regions of the state space which are attractor basins for the
learned cycles. If the network is started in one of these basins, then the performed tra-
jectory will approach the learned cycle, with the part of the cycle which first appears
depending on where in the basin the network is started relative to the configuration of
the cycle. The network can be regarded as a generalization of a content-addressable mem-
ory (cf. Hopfield, 1982) in which the memories correspond to cycles or other dynamic
trzjectories rather than static points.

Constraints on the output units in general define regions through which trajectories
can pass. The network is free to choose a particular trajectory within the region, and
this tends to be done in a way so as to avoid sharp changes in the trajectory. Whatever
trajectory is chosen by the network, it will tend to generalize so as to become an attractor
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that the network followed when started at the point (.4,
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for the surrounding space.

APPLICATIONS TO SPEECH PRODUCTION

In the case of speech, the constraint lists used by the learning process can be taken to
encode knowledge about the phonetic structure of the language, and it is natural to identify
these constraint lists with phonemes. Thus, in the current framework, the role of phonemes
18 to constrain the dynamical process that produces utterances by changing parameters
of the process until the constraints are met. The constraints that define phonemes are
themselves independent of context: They specify in what ways a phoneme can be altered
by its context, without specifying values for particular contexts. During the learning
process, parallel interactions between nearby phonemes can arise as long as they do not
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violate the constraints.

I have elsewhere presented simulations that show that the network can mimic coar-
ticulation data such as those presented earlier (Jordan, 1986). Several predictions were
also made on the basis of these simulations. The simulations show that there can be
non-adjacent interactions, so that, for example, the degree of anticipation of a feature can
depend on what follows the feature. It is also the case that there is more coarticulation in
the simulation over strings with homogeneous phonemic structure than over strings with
heterogeneous phonemic structure.

Finally, it should be noted that it is consistent with the current approach to treat the
state equations as discrete versions of a continuous process. In this case, the constraint
vectors can still be applied at discrete epochs during learning. Thus, the approach would
seem to have some promise for resolving some of the theoretical problems that arise at the
interface between discrete phonemic representations and continuous articulatory processes
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(Fowler, 1980).

DISCUSSION

One of the important problems that arises in the temporal domain is that there can
be interactions both forward and backward in time. One approach to this problem is
to represent actions explicitly in a spatial buffer, use relaxation techniques to allow in-
teractions between buffer positions, and then map space into time by gating connections
between actions (Feldman & Ballard, 1982). The present paper demonstrates a second
approach. In the proposed network, there is no explicit representation of temporal order
and no explicit representation of action sequences. There is only one set of output units
for the network, therefore output vectors must arise as a dynamic process. Representing
actions as distributed patterns on a common set of processing units has the virtue that
partial activations can blend together in a simple way to produce the output of the system.
Likewise, the representation of states as distributed patterns on a single set of units has the
advantage that similarity between states has a natun.] functional representation in terms
of the overlap of patterns. It is the similarity between nearby states.that is responsible
for interactions in time and this similarity has no time arrow associated with it, so that
forward and backward interactions are both possible.
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