
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Towards AI-Aided Multi-User AR: Cooperative Visual-Inertial Odometry Enhanced by Point-
Line Features and Neural Radiance Fields

Permalink
https://escholarship.org/uc/item/1ff6z9wk

Author
Zhang, Yanyu

Publication Date
2025

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1ff6z9wk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Towards AI-Aided Multi-User AR: Cooperative Visual-Inertial Odometry Enhanced
by Point-Line Features and Neural Radiance Fields

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Yanyu Zhang

March 2025

Dissertation Committee:

Dr. Wei Ren, Chairperson
Dr. Amit K. Roy-Chowdhury
Dr. Hyoseung Kim

Copyright by
Yanyu Zhang

2025

The Dissertation of Yanyu Zhang is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First and foremost, I would like to express my heartfelt gratitude to my advisor, Dr. Wei

Ren. This journey would not have been possible without his unwavering guidance, support,

and encouragement over the past four years. His dedication, expertise, and passion for

research have been a profound source of inspiration for me. He has provided me with

invaluable advice, the necessary tools and resources, and the flexibility to accomplish my

studies and succeed in my work. I feel extremely lucky to be his student. The skills and

knowledge I have gained under his mentorship will undoubtedly serve me well in my future

career.

I extend my thanks to the faculty members who have offered guidance and support

throughout my studies. I am particularly grateful to Dr. Hang Qiu, Dr. Srikanth V.

Krishnamurthy, Dr. Jiasi Chen, Dr. Matt Barth, and Dr. Guoyuan Wu for their insightful

suggestions and advice on my research. The discussions with them have greatly enriched

my work. I would also like to thank the members of my oral and defense committee, Dr.

Amit K. Roy-Chowdhury, Dr. Hyoseung Kim, Dr. Jay A. Farrell, Dr. Ran Cheng, and

Dr. Ahmed Eldawy, for their valuable feedback and constructive comments, which have

significantly enhanced the quality of this dissertation.

I am deeply appreciative of the financial support provided by the National Science

Foundation (Grant no. CMMI-2027139) and the Department of Electrical and Computer

Engineering at UCR. I also owe thanks to my amazing colleagues in the COVEN Lab, Jie

Xu, Dongming Wang, Yuhan Zhu, Shaoshu Su, Dr. Pengxiang Zhu, Dr. Yong Ding, Dr.

Shan Sun, as well as the visiting scholars. Your camaraderie, encouragement, and invaluable

iv

discussions have made this journey more enjoyable and enriching. Meanwhile, I would also

like to express my gratitude to my friends, Bo Wu, Haishan Liu, Haoge Zhou, Wenying

Wu, Xiaolin Luo, and Xingyu Lu, for bringing color and joy to my graduate life. Your

companionship has made this experience unforgettable, and I wish you all the best in your

future endeavors.

Finally, I owe my deepest gratitude to my family. I am forever indebted to my

parents, Jie Zhang and Haijuan Li, for their boundless love and care. To my wife, Mengyuan

Liu, thank you for standing by my side throughout this journey. Your unwavering support,

understanding, and encouragement have meant the world to me, and I am forever grateful.

v

Dedicated to my parents,

Jie Zhang and Haijuan Li,

and to my wife, Mengyuan Liu.

Your love lights my way and gives me strength.

vi

ABSTRACT OF THE DISSERTATION

Towards AI-Aided Multi-User AR: Cooperative Visual-Inertial Odometry Enhanced by
Point-Line Features and Neural Radiance Fields

by

Yanyu Zhang

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2025

Dr. Wei Ren, Chairperson

This dissertation presents a suite of novel methodologies designed to advance multi-user

augmented reality (AR) systems by addressing challenges in localization, mapping, and

real-time collaboration. Key contributions focus on enhancing visual-inertial odometry

(VIO) and introducing infrastructure-less cooperative SLAM techniques.

Firstly, a Point-Line Cooperative Visual-Inertial Odometry (PL-CVIO) framework

is proposed to improve localization accuracy, particularly in low-feature environments. By

integrating point and line features and enabling feature sharing between neighboring robots,

PL-CVIO leverages geometric constraints to achieve robust, cooperative localization. The

framework employs covariance intersection (CI) to ensure consistent state estimation across

multiple agents.

Secondly, a novel map-assisted VIO system is introduced by leveraging Neural

Radiance Fields (NeRF) to encode compact and photorealistic 3D maps. These maps

provide robust geometric constraints for localization, addressing key challenges such as pose

initialization, drift correction, and environmental adaptability. A pose initialization model

vii

is proposed by using geodesic errors. Besides, an online VIO algorithm is developed, which

leverages both real-world and NeRF-rendered images to update the state, demonstrating

significant improvements in accuracy and robustness.

Thirdly, we propose CooperSLAM, a lightweight, infrastructure-free cooperative

SLAM algorithm designed for multi-user AR in dynamic and resource-limited environments.

CooperSLAM enables efficient peer-to-peer communication and sparse map feature sharing,

enhancing scalability while reducing bandwidth requirements. By decoupling map points

and key frames and introducing opportunistic relocalization strategies, CooperSLAM facil-

itates effective collaboration without reliance on centralized infrastructure.

Extensive simulations and real-world experiments validate the performance of the

proposed methods. Results demonstrate substantial improvements in localization accuracy,

robustness, and scalability compared to existing methods. This work contributes to the

development of intelligent, collaborative AR systems designed to function effectively in

dynamic and infrastructure-less environments, offering potential applications in immersive

technologies, robotics, and related fields.

viii

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3

1.2.1 Point-Line Cooperative Visual-Inertial Odometry 3
1.2.2 Map-Based Visual-Inertial Odometry Leveraging NeRF 3
1.2.3 Infrastructure-less Cooperative SLAM for Multi-user AR 4

1.3 Organization . 4

2 Point-Line Cooperative Visual-Inertial Odometry 6
2.1 Introduction and Related Works . 6
2.2 Preliminaries . 9

2.2.1 JPL Quaternion . 9
2.2.2 Notations and Definitions . 11

2.3 Problem Formulation . 12
2.3.1 Visual-Inertial Odometry State Vector 12
2.3.2 Dynamic System Model . 14
2.3.3 Point and Line Measurement Models 16
2.3.4 Independent Point and Line Feature Update 18
2.3.5 Common Point and Line Feature Update 19

2.4 Simulations and Experiments . 21
2.4.1 Monte-Carlo Simulations . 22
2.4.2 Experiments . 26

2.5 Conclusions . 27

3 Map-Based Visual-Inertial Odometry Leveraging Neural Radiance Fields 30
3.1 Introduction and Related Works . 30
3.2 Preliminaries . 34

3.2.1 NeRF Map Generation and Image Rendering 34

ix

3.2.2 Notations and Definitions . 35
3.3 Problem Formulation . 35

3.3.1 NeRF-VIO State Vector . 36
3.3.2 IMU Dynamic Model . 37
3.3.3 Initialization Model . 38
3.3.4 Robustness to Environmental Alterations 43
3.3.5 Measurement Update using Captured Images 44
3.3.6 Measurement Update using Rendered Images 45

3.4 Experiments . 47
3.4.1 Initialization Performance . 47
3.4.2 VIO Performance . 49
3.4.3 Robust to Environment Changes . 51

3.5 Conclusions . 51

4 Infrastructure-less Cooperative SLAM for Multi-user Augmented Reality 54
4.1 Introduction and Related Works . 54
4.2 Preliminaries . 57

4.2.1 Pose Graph Optimization . 57
4.2.2 Gauss-Newton and Levenberg–Marquardt Algorithms 58

4.3 Problem Formulation . 60
4.3.1 Lightweight and Robust Map Alignment 61
4.3.2 Beacon and Alignment Orchestration 67
4.3.3 Fine-grained Refinement . 68

4.4 Experiments . 69
4.4.1 Data Collection . 70
4.4.2 Baselines and Evaluation Metrics . 71
4.4.3 Key Results . 73
4.4.4 Sensitivity Analysis . 77

4.5 Conclusions . 84

5 Conclusions 85

Bibliography 88

x

List of Figures

2.1 Overview of the PL-CVIO. Multiple robots observe point (square) and line
(line segment) features in the same environment, neighbors communicate and
share common points (green and orange squares) and common lines (orange
line). 10

2.2 Boxplot of the statistics of the Monte-Carlo simulation under the rich-feature
Udel gore environment by extracing 150 points per frame, and 50 lines if the
line update is used. 23

2.3 Boxplot of the statistics of the Monte-Carlo simulation under low-feature
Udel gore environment by extracing 50 points per frame, and 50 lines if the
line update is used. 24

2.4 Point and line feature detection of three different robots in the TUM dataset
[87]. A green edge denotes a line extracted from the current frame, and a blue
dot surrounded by a red square denotes a point extracted from the current
frame. 27

2.5 Boxplot of the result of Robot 0 (Room 1) in the TUM Visual-Inertial Dataset
by extracing 200 points per frame, and 50 lines if the line update is used. . 28

2.6 Boxplot of the result of Robot 0 (Room 1) in the TUM Visual-Inertial Dataset
by extracing 50 points per frame, and 50 lines if the line update is used. . . 28

3.1 An overview of our NeRF-VIO framework. Commencing with the initial cap-
tured image, the pre-trained initialization model (canary) outputs the first
pose of the camera frame. Utilizing IMU integration from the timestamp
of the initial IMU measurement to that of the first camera measurement,
we deduce the initial IMU state backward. Throughout online traveling, we
leverage both the pre-trained NeRF model (mint) and the onboard camera
to establish spatial constraints, facilitating the update of poses within the
current sliding window. These updated poses then undergo further IMU
propagation, serving as input to the NeRF model for the rendering of subse-
quent images. 33

xi

3.2 Comparison of input and output during model inference. The Init model
estimates the camera pose in the world frame of a prior map based on a cap-
tured image. Conversely, the NeRF model renders an image when provided
with a specific camera pose. 36

3.3 IMU pose initialization. From the init model, the relative pose between the
first camera frame and the prior map frame can be determined. With the
camera-IMU calibration parameters and the timestamps, the transformation
between the first camera frame and the first IMU frame can be found. . . . 43

3.4 The three timelines denote data received from different sensors and the NeRF
model. We define the closest camera frame {CC} as the frame closest in time
to when the NeRF model begins rendering. 45

3.5 Testing results of NeRF model. From left to right, the images represent
the groundtruth of the test image, the rendered image at iteration 1,000,
the rendered image at iteration 50,000, and the rendered image at iteration
200,000. 50

3.6 Comparison of NeRF-rendered images to ground truth under normal / minor-
change / large-change environments. The top row displays captured images
from the closest camera frame, while the second row showcases rendered
images at the same positions and orientations. Columns correspond to Table
3-6, progressing from left to right. 50

3.7 The RPE of MSCKF [65], NeRF-VIO (ours), and NeRF-VIO (GT Init) using
AR Table 4. NeRF-VIO initializes from the pre-trained model, while NeRF-
VIO (GT Init) initializes directly from groundtruth. 52

3.8 Comparison of pixel-level and grid-based SSIM. (a) A dark region denotes a
high similarity, while the white region denotes a huge luminance, contrast,
and structural difference weighted by [1, 0.5, 0.1]. (b) A grid-level similarity
map is used in our algorithm. The red text denotes the similarity of each
small grid. 53

4.1 An example of a pose graph: orange and green circles represent the robot
state and landmark nodes, while red squares indicate the IMU measurement
constraints. 58

4.2 CooperSLAM system architecture. 61
4.3 Key frame data structure used in CooperSLAM. Each key frame (KF) is

associated with multiple map points (MPs), shown as MapPoint 1 to N .
Blue rectangles denote the elements that are contained in a key frame, and
red rectangles represent map points. The half arrow denotes the pointer
between two objects. Other scraped objects are omitted. 63

4.4 MapPoint Message . 64
4.5 Beacon Message . 68
4.6 Evaluation scenarios and traces. We collect traces in two scenarios, a rectan-

gular hallway, denoted as corridor (a), and a half-circle courtyard, denoted
as yard (b). The lines of different colors indicate trajectories from different
users. The legend indicates the temporal interval of each spatial trajectory. 71

4.7 ATE within Different DE . 73

xii

4.8 ATE comparison between CooperSLAM and baselines using three agents’
trace from corridor . 74

4.9 ATE comparison between CooperSLAM and baselines using three agents’
trace from Vicon Room 1 of EuRoC . 75

4.10 Step-by-step process of Local SLAM, map switching, and global pose graph
optimization using the Newer College dataset. 76

4.11 Loss Rate Measurement Trajectory . 77
4.12 Map Point Latency Profile . 78
4.13 Packet Lose Rate over Time . 78
4.14 ATE under Different Map Points Loss Rates 79
4.15 ATE using Different Numbers of Shadow Key frames 81
4.16 Transformation matrix error distribution (shown in x, y, z, roll, pitch, yaw).

The red dashed lines indicate the 99% confidence intervals. 82
4.17 Comparison of ATE with and without Map Refinement (“CooperSLAM PGO”

and “CooperSLAM”, respectively). 83
4.18 The comparison between single key frame relocalization without refinement

(CarMap) and with a local pose graph optimization refinement (Cooper-
SLAM) using the EuRoC dataset. 84

xiii

List of Tables

2.1 Descriptions of various algorithms to be compared in the simulations and
experiments, focusing on the usage of independent features and common
features. 22

2.2 The RMSE of the orientation / position (degrees / meters) of three robots
using three different algorithms in rich-feature environments in different
EuRoC datasets. The average denotes mean of all three rooms per algorithm
per robot per environment. R0, R1, and R2 represent three robots following
three different trajectories in each environment. 25

2.3 The RMSE of the orientation / position (degrees / meters) of three robots
using three different algorithms in low-feature environments in different
EuRoC datasets. The average denotes mean of all three rooms per algorithm
per robot per environment. R0, R1, and R2 represent three robots following
three different trajectories in each environment. 25

2.4 The RMSE of the orientation / position (degrees / meters) of three robots
under the low-feature environments by using five different algorithms in the
TUM Visual-Inertial dataset. 29

3.1 The L2 norm of the orientation / position (degrees / centimeters) of the
initialization pose, utilizing iNeRF and our NeRF-VIO across AR table se-
quences 2-8. For iNeRF, we use different initial guesses: (a) a 10-degree
rotational error and a 20-centimeter translation error for each axis. (b) a
2-degree rotational error and a 5-centimeter translation error for each axis. 49

3.2 The latency (seconds) of pose generation, utilizing iNeRF and our NeRF-VIO
across AR table sequences 2-8. 49

3.3 The ATE of the orientation / position (degrees / meters) of three VIO meth-
ods in different AR Table sequences 2-8. For NeRF-VIO, Table 1 is trained
and used as a prior map for all sequences. 51

4.1 Feature comparison between baselines and the proposed algorithm w.r.t. four
key aspects: infrastructure independence, map-sharing strategy, tolerance to
packet loss, and collaboration method. 72

xiv

4.2 Key Results Summary. Compared to baselines, CooperSLAM achieves smaller
ATE within the interaction area, while requiring much less transmission data,
and achieving map alignment faster. 73

4.3 The ATE of the orientation / position (degrees / meters) of three agents
using Newer College sequences. 75

xv

Chapter 1

Introduction

1.1 Motivation

In the age of robotics and immersive technologies, precise localization, efficient

navigation, and robust sensor integration are the pillars of simultaneous localization and

mapping (SLAM), autonomous driving (AD), and augmented/virtual reality (AR/VR).

These systems rely on the seamless collaboration of multiple sensing modalities and agents,

with applications spanning autonomous driving, multi-agent exploration, disaster recovery,

and interactive AR. However, significant challenges persist, including infrastructure depen-

dence, high computational overhead, sensor synchronization, and robustness in complex

environments.

In GPS-denied environments, high-precision localization becomes essential for re-

liable operation. Visual-inertial navigation systems (VINS), which combine cameras and

inertial sensors, have emerged as lightweight and cost-effective solutions. However, tradi-

tional VINS approaches struggle with accumulated drift, reliance on dense environmental

1

features, and the inability to leverage multi-agent collaboration effectively. This is especially

problematic in human-made or low-feature environments, where traditional feature-based

methods face significant limitations.

Neural radiance fields (NeRF) provide a breakthrough in addressing these chal-

lenges by encoding 3D scene geometry and appearance into compact representations. Unlike

conventional maps based on sparse features or dense point clouds, NeRF employs a volu-

metric representation through a multi-layer perceptron, enabling photorealistic rendering

of any viewpoint. This capability facilitates the creation of 3D geometric and semantic

maps, which enhance visual-inertial odometry (VIO) systems by providing strong geomet-

ric constraints between the observed environment and the encoded prior map. However,

integrating NeRF into VIO systems introduces challenges such as achieving real-time per-

formance and accurately initializing the pose relative to the map.

Additionally, AR applications increasingly demand real-time, multi-user collabo-

ration in shared environments. Existing solutions often rely on cloud-based infrastructure

for localization and mapping, which introduces latency, high bandwidth requirements, and

dependency on stable network connectivity. These limitations restrict the scalability and

applicability of AR technologies in scenarios like disaster recovery, remote exploration, and

infrastructure-free environments.

2

1.2 Contributions

1.2.1 Point-Line Cooperative Visual-Inertial Odometry

Low-feature environments pose a significant challenge to traditional localization

and mapping systems. In such scenarios, geometric constraints derived from point and

line features offer a complementary solution. This thesis introduces PL-CVIO, a coopera-

tive visual-inertial odometry algorithm that integrates point-line features with a distributed

multi-robot framework. The proposed method employs the multi-state constraint Kalman

filter (MSCKF) architecture, utilizing left-nullspace projection for processing independent

features and the covariance intersection (CI) for updating common features observed by

multiple robots. Extensive simulations and real-world experiments validate the effective-

ness of PL-CVIO, demonstrating substantial improvements in localization accuracy and

robustness, particularly in low-feature environments.

1.2.2 Map-Based Visual-Inertial Odometry Leveraging NeRF

We also explores the integration of neural representations to enhance VIO. NeRF

provides a transformative approach to encoding environmental information into compact,

photorealistic representations, facilitating the creation of prior maps that significantly im-

prove localization accuracy. However, current NeRF-based methods often encounter chal-

lenges with real-time performance and robust initialization. To address these issues, we de-

velop a novel pose estimation model to initialize the first inertial measurement unit (IMU)

state of a VINS system within the prior map frame. This model leverages a multi-layer

perceptron (MLP) to encode map-pose relationships and introduces a novel loss function

3

based on geodesic errors on SE(3). Besides, we prove the left-invariant of our proposed loss

function. Additionally, we propose an online NeRF-based VIO algorithm (NeRF-VIO) that

integrates the NeRF-based prior map with the initialization model. By utilizing both real-

world images captured from an onboard camera and rendered images from the NeRF model,

NeRF-VIO performs state updates efficiently and accurately. Finally, the effectiveness of

the proposed method is validated using a real-world AR dataset.

1.2.3 Infrastructure-less Cooperative SLAM for Multi-user AR

We address the limitations of cloud-based infrastructure-dependent solutions for

multi-user AR and cooperative mapping, which restrict deployment in remote or infrastructure-

less environments. To overcome these challenges, this work introduces CooperSLAM, a

lightweight, infrastructure-free visual SLAM algorithm. CooperSLAM leverages peer-to-

peer communication and sparse map feature sharing to enable efficient collaborative local-

ization and mapping in dynamic settings without requiring centralized resources or stable

connectivity. A key innovation of CooperSLAM is the decoupling of map points and key

frames on individual robots, combined with an opportunistic encountering mechanism to re-

localize users and align maps. This design significantly enhances the scalability of multi-user

AR, enabling its use in diverse scenarios.

1.3 Organization

In the rest of this manuscript, we introduce a fully distributed multi-robot pose es-

timation algorithm that utilizes both common point and common line features in Chapter 2.

4

Each robot not only leverages its own point and line measurements while also cooperating

with neighboring robots to enhance localization accuracy. The effectiveness of the proposed

approach is demonstrated through extensive simulations and experiments. In Chapter 3,

we present a novel pose estimation model designed to initialize the first IMU state of VINS

within the prior map frame. Additionally, we propose an online NeRF-based VIO algorithm

that integrates a NeRF-based prior map with the online measurements from the camera.

The performance of this method is validated using a real-world dataset. In Chapter 4, we

propose an intelligent feature-based map alignment algorithm that facilitates sparse feature

exchanges over intermittent peer-to-peer connections. The approach decouples map points

from key frames and incorporates a lightweight data transmission mechanism tailored for

multi-robot groups. Finally, Chapter 5 concludes the manuscript by summarizing the main

findings and contributions.

5

Chapter 2

Point-Line Cooperative

Visual-Inertial Odometry

2.1 Introduction and Related Works

SLAM has garnered significant attention over the past few decades, becoming

a core technology in robotics and computer vision applications such as AR/VR [28], au-

tonomous driving [100], and robot navigation [104]. In GPS-denied environments, VINS

and related algorithms [74, 55, 93] have gained widespread popularity due to their ability

to leverage low-cost and lightweight onboard cameras and IMUs.

In human-made scenarios, lines serve as valuable complements to points, especially

in low-feature environments where only a limited number of point features can be extracted.

There are two main categories of methods for processing points and lines in VINS: indi-

rect (feature-based) and direct (epipolar constraint-based) methods. In particular, indirect

6

methods involve preprocessing image sequences by extracting feature descriptors and match-

ing them across frames [74, 53, 43, 65, 70, 111]. These methods optimize the system by

minimizing geometric errors, and ensuring accurate alignment of features over time. Direct

methods, in contrast, bypass feature extraction and instead optimize photometric error di-

rectly using raw pixel intensities [34, 33, 107]. These methods are computationally efficient

and benefit from leveraging epipolar constraints to maintain geometric consistency. How-

ever, direct methods typically assume brightness constancy (ignoring exposure changes),

which makes them sensitive to real-world variations in exposure and lighting.

Among the previous feature-based VINS literature, the solutions can be broadly

classified into two categories: filter-based methods [65, 21, 36, 71, 99, 96, 97, 103] and graph-

based methods [74, 26, 43, 53, 73, 67]. One of the state-of-the-art works of the filter-based

methods is MSCKF [65], which formed a multi-constraint update by using the measure-

ments of the same feature. A key contribution of MSCKF is the left-nullspace projection,

which efficiently marginalizes feature measurements from the state vector, retaining only the

robot’s state within the current sliding window. A tightly coupled monocular graph-based

VIO (VINS-Mono) and nonlinear optimization with robust initialization introduced in [74].

Besides, there are also some VINS algorithms using both point and line features. The

point-line visual-inertial odometry (PL-VIO) [43] is an extension of VINS-Mono, which

can optimize the re-projection errors of the point and line features in a sliding window.

PL-SLAM [73] proposed a point-line SLAM framework based on ORB-SLAM [67]. Line

features used in Plücker representation for rolling-shutter cameras were designed in [99].

Furthermore, article [96] proposed two line triangulation algorithms. An in-depth analysis

7

of three line representations (Plücker, Quaternion, Closest Point) along with their respective

observability properties was provided in [97].

One notable advantage of cooperative VINS (C-VINS) is the ability to share com-

mon features across multiple robots, thereby introducing additional geometric constraints

on these shared features. Unlike traditional approaches where each robot only processes its

own measurements, C-VINS enables robots to also incorporate observations from the entire

multi-robot group. By leveraging these shared constraints, robots can enhance localization

performance through updates informed by the collective data. However, a key question for

a multi-robot group is how to best utilize the environment information and other robots’

information.

Several centralized multi-robot solutions, such as those proposed in [61, 57, 47, 94],

have been developed. However, these approaches often demand significant computational

resources and extensive communication overhead. In contrast, distributed algorithms offer

distinct advantages in terms of scalability and efficiency. For instance, [20] presented a

distributed point-line cooperative SLAM (C-SLAM) algorithm using the M-Space represen-

tation for various features. However, this approach struggled with estimation consistency

due to repeated utilization of the same information within the robot group. Similarly, in

[48], they proposed a method where each robot processed its own measurements and fused

estimations and covariances with other robots within communication range, but only at spe-

cific time steps. More recently, DOOR-SLAM [52] introduced a fully distributed C-SLAM

algorithm featuring a pose graph optimizer and a data-efficient SLAM frontend, akin to

the approach in [31]. Additionally, [69] proposed a fully distributed algorithm based on the

8

maximum a posteriori (MAP) estimation. CVIO [108] contributed a fully distributed co-

operative algorithm that ensures consistency by employing the covariance intersection (CI)

update. However, CVIO did not address challenges posed by low-feature environments,

leaving room for further refinement in such scenarios.

These observations inspire the development of a fully distributed algorithm that

leverages both point and line features in the environment. In our approach (PL-CVIO),

each robot not only utilizes its own point and line measurements but also collaborates with

its neighbors to enhance localization accuracy as shown in Figure 2.1. This cooperation is

particularly beneficial in low-feature environments, where robust landmarks are sparse. By

fusing independent point and line features from each robot and applying the CI update,

our method effectively exploits the constraints introduced by commonly observed features

shared among neighbors. Built upon the foundation of the original MSCKF algorithm, we

extend it by incorporating closest point line constraints to maximize its robustness and

precision.

2.2 Preliminaries

2.2.1 JPL Quaternion

The JPL quaternion [101] is defined as the following linear combination:

q̄ = q4 + q1i + q2j + q3k, (2.1)

9

Figure 2.1: Overview of the PL-CVIO. Multiple robots observe point (square) and line (line
segment) features in the same environment, neighbors communicate and share common
points (green and orange squares) and common lines (orange line).

where i, j, k satisfy the quaternion algebra:

i2 = −1, j2 = −1, k2 = −1

−ij = ji = k, −jk = kj = i, −ki = ik = j.

(2.2)

Here, q4 represents the real (or scalar) component of the quaternion, while q1, q2, q3 make

up the imaginary (or vector) components. To simplify the notation, we split the quaternion

as follows:

q̄ =

[
q1 q2 q3 q4

]⊤
=

 q

q4

 . (2.3)

10

If rotate an angle θ around the axis k, the rotation can be represented by a unit quaternion

as:

q =


kx sin(θ/2)

ky sin(θ/2)

kz sin(θ/2)

 = k̂ sin(θ/2), q4 = cos(θ/2) (2.4)

where the elements q1, . . . , q4 are called quaternion of rotation or Euler symmetric param-

eters [88]. A quaternion of rotation is a unit quaternion, satisfying:

|q̄| =
√

q̄⊤q̄ =
√
|q|2 + q24 = 1. (2.5)

The relationship between a unit quaternion and its corresponding rotational matrix

is given by:

R(q̄) =
(
2q24 − 1

)
I3×3 − 2q4[q×] + 2qq⊤, (2.6)

where I3×3 denotes the 3 × 3 identity matrix, and ⌊·×⌋ denotes the skew-symmetric matrix

as:

⌊q×⌋ =


0 −qz qy

qz 0 −qx

−qy qx 0

 . (2.7)

Besides, note that q̄ and −q̄ describe the same rotation.

2.2.2 Notations and Definitions

Let the vector x represent the true state of a robot. The error state is defined as

x̃ = x − x̂, where (̂·) denotes the estimated state and (̃·) denotes the error state. Then,

11

the xk|k−1 and xk|k denote the prior and posterior estimates of the state at timestamp k,

respectively. And Pk|k−1 and Pk|k represent the covariance matrix corresponding to the

prior and posterior state estimates at timestamp k, respectively.

We define the global frame {G}, the IMU frame {I}, and the camera frame {C}.

To facilitate the cooperative case, {Ii} and {Ci} are the IMU and camera frames of robot i,

for i = 1, · · · , n, respectively. Additionally, xi,k represents the state of robot i at timestamp

k, and Gxi,k denotes the state of robot i at timestamp k in the global frame.

2.3 Problem Formulation

The objective of the point and line cooperative visual-inertial odometry (PL CVIO)

is to estimate and track the 3D pose of each robot in the global frame by leveraging both

point and line features. Unlike independent visual-inertial odometry, PL CVIO allows mul-

tiple robots to share common features (common point and common line) with their neigh-

bors, which collaboratively enhances localization accuracy.

2.3.1 Visual-Inertial Odometry State Vector

In order to perform the PL-CVIO, the state vector of each robot i is defined as:

xi =

[
x⊤
Ii

x⊤
Calibi

x⊤
Ci

tdi

]⊤
, (2.8)

where xIi denotes the IMU state vector, xCalibi denotes the rigid body tranformation

between the IMU frame and camera frame, xCi represents the cloned IMU states, and

tdi = tCi − tIi denotes the time-offset between robot i’s camera clock and IMU clock, which

12

treats the IMU clock as the true time [56, 75]. At any time step k, the state vector of each

IMU can be writen as:

xIi,k =

[
Ii,k
G q̄⊤ Gp⊤

Ii,k
Gv⊤

Ii,k
b⊤
gi,k

b⊤
ai,k

]⊤
, (2.9)

where
Ii,k
G q̄ denotes the JPL unit quaternion representing the rotation from the global frame

to the IMU frame at time step k. GpIi,k and GvIi,k are the IMU position and velocity in

the global frame at time step k. bgi,k and bai,k are the gyroscope and accelerometer biases

at time step k. Then, the error state of the IMU is defined as:

x̃Ii,k =

[
δ
Ii,k
G θ⊤ Gp̃⊤

Ii,k
Gṽ⊤

Ii,k
b̃⊤
gi,k

b̃⊤
ai,k

]⊤
, (2.10)

where the position, velocity, and bias errors utilize the standard additive error, while the

quaternion error state is described by

q̄ = δq̄ ⊗ ˆ̄q ≃
[

1

2
δθ⊤ 1

]⊤
⊗ ˆ̄q, (2.11)

where ⊗ is the quaternion multiplication operator.

In addition to robot i’s IMU state, the spatial calibration between its IMU frame

and camera frame will also be estimated. In particular, the calibration state vector con-

tains the unit quaternion rotation from the IMU frame to the camera frame Ci
Ii
q̄, and the

13

translation from the IMU frame to the camera frame CipIi as:

xCalibi =

[
Ci
Ii
q̄⊤ Cip⊤

Ii

]⊤
. (2.12)

Robot i maintains a sliding window with m cloned IMU poses at time step k written as:

xCi,k
=

[
Ii,k−1

G q̄⊤ Gp⊤
Ii,k−1

...
Ii,k−m

G q̄⊤ Gp⊤
Ii,k−m

]⊤
. (2.13)

2.3.2 Dynamic System Model

For each robot i, the measurement of the IMU linear acceleration Iiam and the

angular velocity Iiωm are modeled as:

Iiam = Iia + Ii
GR

Gg + bai + nai , (2.14)

Iiωm = Iiω + bgi + ngi , (2.15)

where Iia and Iiω are the true angular velocity and linear acceleration. nai and ngi represent

the continuous-time Gaussian noises that contaminate the IMU measurements. Gg denotes

the gravity expressed in the global frame. Then, the dynamic system of each IMU can be

modeled as [88]:

Ii
G

˙̄q(t) =
1

2
Ω
(
Iiω(t)

) Ii
G q̄(t), ḃgi(t) = nwgi(t),

Gv̇Ii(t) = Gai(t), ḃai(t) = nwai(t),
GṗIi(t) = GvIi(t)

(2.16)

14

where Gai is the body acceleration in the global frame. GvIi ,
GpIi are the velocity and

position of the IMU in the global frame. nwgi and nwai denote the zero-mean Gaussian

noises driving the IMU biases. ω = [ωx ωy ωz]⊤ is the rotational velocity in the IMU frame

and

Ω(ω) =

 −⌊ω×⌋ ω

−ωT 0

 .

After linearization, the continuous-time IMU error-state can be written as:

˙̃xi(t) ≃ Fi(t)x̃i(t) + Gi(t)ni(t), (2.17)

where Fi(t) is the 15 × 15 continuous-time IMU error-state Jacobian matrix, Gi(t) is the

15 × 12 noise Jacobian matrix, and ni(t) =
[
n⊤
gi n

⊤
wgi n

⊤
ai n

⊤
wai

]⊤
is the system noise with

the covariance matrix Qi.

In order to propagate the covariance matrix from discrete-time tk to tk+1, the state

transition matrix Φi (tk+1, tk) is computed by solving the differential equation:

Φ̇i (tk+1, tk) = FiΦi (tk+1, tk) , (2.18)

with the initial condition Φi (tk, tk) = I15. Thus, the discrete-time noise covariance can be

expressed as:

Qi,k =

∫ tk+1

tk

Φi(tk+1, τ)Gi(τ)QiG
⊤
i (τ)Φi(tk+1, τ)⊤dτ, (2.19)

15

and the propagated covariance can be written as:

Pi,k+1|k = Φi (tk+1, tk)Pi,k|kΦi (tk+1, tk)⊤ + Qi,k. (2.20)

2.3.3 Point and Line Measurement Models

In low-feature environments, lines are good complements to points. Hence we

consider both point and line measurements in this paper. The point measurements of robot

i can be described by:

Cizp = Π
(
Cixp

)
+ wpi , Π

(
[x y z]⊤

)
=

[x
z

y

z

]⊤
, (2.21)

where Cixp is the 3D position of the point in the camera frame, and wpi denotes the

corresponding measurement noise. Based on the relative transformation and time offset

definition in (3.3), the relationship between point feature in the global frame Gxp and in

the camera frame Cixp can be expressed as:

Cixp = Ci
Ii
RIi

GR (t̄i)
(
Gxp − GpIi (t̄i)

)
+ CipIi ,

(2.22)

where t̄i = ti−tdi is the exact camera time of the relative transformation between the global

frame and the IMU frame.

For a 3D line, we adopt the Closest Point representation [96], which represents the

3D line by multiplying a unit quaternion and the corresponding distance scalar from the

origin to this line. Given the 3D positions of two points pf1 and pf2 on a line, the Plücker

16

coordinate can be expressed by [112]:

 nl

vl

 =

 ⌊pf1×⌋pf2

pf2 − pf1

 , (2.23)

where nl denotes the normal direction of the line-plane and vl is the line direction. Then,

the Closest Point line can be expressed as:

Gxl = dlq̄l =
[
q⊤
l ql

]⊤
, (2.24)

where the distance scalar can be computed as dl = ∥nl∥ / ∥vl∥. The unit quaternion q̄l can

be transformed from R (q̄l) = [ne ve ⌊ne×⌋ve], where ne and ve are the unit 3D vectors of

nl and vl.

Moreover, for each robot i, we adopt the simple projective line measurement model

[18] to describe the 2D line distance from two line endpoints, xsi = [usi vsi 1]⊤ and xei =

[uei vei 1]⊤ to the 2D line segment:

Cizl =

[
x⊤
si
li√

l21+l22

x⊤
ei
li√

l21+l22

]⊤
, (2.25)

where li = [l1 l2 l3]
⊤ denotes the 2D line representation. The line measurement can be

17

projected from the 3D line in the camera frame as in [97]:


l1

l2

l3

 =


fvi 0 0 0 0 0

0 fui 0 0 0 0

−fvicui −fuicvi fuifvi 0 0 0


CiL, (2.26)

where fui , fvi , cui , cvi are the camera intrinsic parameters, and CiL =
[
Cidl

Cin⊤
e

Civ⊤
e

]⊤
is the Plücker coordinate representation of the 3D line in the camera frame. The line

transformation from the global frame to the camera frame can be written as:

CiL =

 Ci
Ii
R ⌊CiPIi×⌋

Ci
Ii
R

03
Ci
Ii
R

 IiL

and

IiL =

 Ii
GR (t̄i) −Ii

GR (t̄i) ⌊GPIi (t̄i)×⌋

03
Ii
GR (t̄i)

GL, (2.27)

where IiL and GL are the Plücker line representations in the IMU frame and the global

frame, respectively.

2.3.4 Independent Point and Line Feature Update

To perform the independent point or line feature update, a standard MSCKF

update [65] will be applied to each robot. In particular, we collect all of the point and line

measurements over the current sliding window. By stacking the measurements of one point

18

or line, we can triangulate the point feature or line feature utilizing the estimate of the IMU

poses. To simplify the notation, let x̃f denotes either a point feature or a line feature, and

the measurement residual of robot i can be linearized as:

ri = h
(
x̃i,

Gx̃f

)
+ wi ≃ Hi,xx̃i + Hi,f

Gx̃f + wi, (2.28)

where ri is the residual of a point or line measurement. Hi,x and Hi,f denote the Jaco-

bians w.r.t. the state vector and the feature, respectively. wi denotes the noise vector

corresponding to the point or line feature.

After that, we perform the left nullspace projection by applying the QR decom-

positon to Hi,f in (2.28) as:

 r1i

r2i

 =

 H1
i,x

H2
i,x

 x̃i +

 H1
i,f

0

Gx̃f +

 w1
i

w2
i

 . (2.29)

In this expression, r2i is only related to the state vector x̃i. Hence robot i will perform an

EKF update using r2i , while r1i will be dropped.

2.3.5 Common Point and Line Feature Update

Note that neighboring robots might observe a common point or line feature. Hence,

we will further exploit both point and line feature constraints among neighbors to improve

the localization accuracy. The robots can communicate with their neighbors to share infor-

mation.

19

Robot i and its neighbors will apply the linearization (2.28) and the left nullspace

projection (2.29) to the common feature, denoted as Gx̃f . As in Sec 2.3.4, robot i will

use r2i for an EKF update. However, instead of dropping r1i , robot i will exploit shared

information from its neighbors. It will construct a new residual system that depends on the

common point or line feature Gx̃f by stacking the top parts in (2.29) associated with itself

and its neighbors as in [108]:



r1i

r1i1

...

r1ij


= diag





H1
i,x

H1
i1,x

...

H1
ij ,x







x̃i

x̃i1

...

x̃ij


+



H1
i,f

H1
i1,f

...

H1
ij ,f


Gx̃f +



w1
i

w1
i1

...

w1
ij


, (2.30)

where diag denotes the block-diagonal matrix, and i1 . . . ij denote the neighbors of robot i.

Then, we utilize the left nullspace projection to the stacked common point or line feature

Jacobian matrix in (2.30) and obtain a new residual system that is independent of the

common feature as:

r′i =

[
H′

i,x H′
i1,x

· · · H′
ij ,x

]


x̃i

x̃i1

...

x̃ij


+ w′

i. (2.31)

In order to guarantee the consistency of estimation, we adopt the CI-EKF algo-

rithm in [108], where the weights of the CI are ωi > 0, ωil > 0, and ωi +

j∑
l=1

ωil = 1. The

20

Kalman gain of robot i is given by:

Ki =
Pi,k+1|kH

′⊤
i,x

ωi

∑
r∈Ni

1

ωr
H′

r,xPr,k+1|kH
′⊤
r,x + Ri

−1

, (2.32)

where Ni denotes the set of robot i’s neighboring robots that the current common feature

can be tracked, and Ri denote the covariance matrix associated with w′
i. Then, the state

correction of robot i can be written as:

∆xi,k = Kir
′
i. (2.33)

The state covariance matrix of robot i is updated using the CI as:

Pi,k+1|k+1 =
1

ωi

(
I−KiH

′
i,x

)
Pi,k+1|k. (2.34)

2.4 Simulations and Experiments

In this section, we utilize Monte-Carlo simulations and real-world datasets to verify

that (1) common line features can improve localization accuracy in cooperative cases, (2) line

features can also improve the accuracy in independent cases. We compare our PL-CVIO

algorithm with the previous works in Table 2.1 under two different environments, where

low-feature scenes contain a few features and rich-feature scenes contain enough features.

As shown in Table 2.1, P-VIO denotes the independent MSCKF algorithm [65], PL-VIO

denotes the independent point-line MSCKF algorithm [96], P-CVIO denotes our previous

work CVIO [108], IPL-CP-CVIO denotes the algorithm which not only utilizes independent

21

Table 2.1: Descriptions of various algorithms to be compared in the simulations and exper-
iments, focusing on the usage of independent features and common features.

Algorithm Independent Features Common Features

P-VIO [65] Points ✗

PL-VIO [96] Points w/ Lines ✗

P-CVIO [108] Points Points

IPL-CP-CVIO Points w/ Lines Points

PL-CVIO [Ours] Points w/ Lines Points w/ Lines

point-line features from each robot but also collects the common point features from the

neighbors, and PL-CVIO uses both independent and common point-line features.

2.4.1 Monte-Carlo Simulations

For our Monte-Carlo simulations, we utilize a group of three robots. Robot 0 in

the group follows the real trajectory of a dataset, and the trajectories of robot 1 and robot

2 are created by adding position and orientation offsets to the real one. After that, the 3D

features and the corresponding 2D measurements are generated if the number of the point

or line measurements is below the threshold in the current frame. Then, the constraints of

the same feature from one robot and the constraints of the common features from neighbors

are collected and utilized to update the current state.

The low-feature and rich-feature environments are divided by extracting different

numbers of point features. In the rich-feature environments, the number of point features

is 150 and the number of line features is 50 in each frame. We reduce the number of

point features to 50 for the low-feature cases. For both of these two environments, we

22

Figure 2.2: Boxplot of the statistics of the Monte-Carlo simulation under the rich-feature
Udel gore environment by extracing 150 points per frame, and 50 lines if the line update is
used.

utilize the First-Estimation Jacobian (FEJ) and online camera-IMU calibration [39]. After

running 30 Monte-Carlo loops, the statistics of the relative orientation error (ROE) and the

relative position error (RPE) under the rich-feature or low-feature Udel gore dataset are

shown in Figure 2.2 and Figure 2.3, respectively. We can see that our PL-CVIO algorithm

outperforms all other algorithms in both environments. Especially in the low-feature case,

we can find out that the common line can reduce the ROE and RPE obviously (blue and

red bar) as in Figure 2.3. Moreover, an interesting discovery is that PL-VIO outperforms

P-CVIO if a limited number of points are observed in each frame. In this case, the number

of common point features is also limited, and hence the cooperative method P-CVIO that

relies on only common point features has limited resources to resort to. In contrast, the

methods PL-VIO and PL-CVIO that further exploit line features exhibit better performance

23

Figure 2.3: Boxplot of the statistics of the Monte-Carlo simulation under low-feature
Udel gore environment by extracing 50 points per frame, and 50 lines if the line update
is used.

while PL-CVIO achieves the best performance as it exploits not only point and line features

but also cooperation with neighbors.

Additionally, we simulate our PL-CVIO algorithm in all of the EuRoC V1 datasets

[24] and compare it with P-VIO and P-CVIO in both low-feature and rich-feature environ-

ments. The RMSE of the orientation and position of each robot and the mean RMSE of

each algorithm in each environment are recorded in Table 2.2 and Table 2.3. The RMSE

results show that our PL-CVIO algorithm outperforms P-CVIO and P-VIO in all simulated

scenarios. Especially in low-feature environments, the PL-CVIO improves the RMSE of

orientation and position dramatically.

24

Table 2.2: The RMSE of the orientation / position (degrees / meters) of three robots using
three different algorithms in rich-feature environments in different EuRoC datasets. The
average denotes mean of all three rooms per algorithm per robot per environment. R0, R1,
and R2 represent three robots following three different trajectories in each environment.

V1 01 V1 02 V1 03 Average

R0 P-VIO 0.481/0.260 0.621/0.064 0.874/0.061 0.659/0.128

R0 P-CVIO 0.091/0.056 0.157/0.022 0.118/0.027 0.122/0.035

R0 PL-CVIO 0.090/0.047 0.147/0.021 0.101/0.025 0.113/0.031

R1 P-VIO 1.166/0.205 0.167/0.049 0.419/0.049 0.584/0.101

R1 P-CVIO 0.104/0.060 0.183/0.026 0.127/0.026 0.138/0.037

R1 PL-CVIO 0.089/0.052 0.176/0.021 0.096/0.026 0.120/0.033

R2 P-VIO 0.960/ 0.132 0.230/0.078 0.325/0.062 0.505/0.091

R2 P-CVIO 0.099/0.056 0.170/0.023 0.123/0.025 0.131/0.035

R2 PL-CVIO 0.095/0.056 0.167/0.022 0.109/0.021 0.127/0.033

Table 2.3: The RMSE of the orientation / position (degrees / meters) of three robots using
three different algorithms in low-feature environments in different EuRoC datasets. The
average denotes mean of all three rooms per algorithm per robot per environment. R0, R1,
and R2 represent three robots following three different trajectories in each environment.

V1 01 V1 02 V1 03 Average

R0 P-VIO 1.277/0.483 0.717/0.177 1.184/0.684 1.060/0.448

R0 P-CVIO 0.524/0.148 0.449/0.080 0.743/0.299 0.572/0.176

R0 PL-CVIO 0.159/0.078 0.167/0.064 0.182/0.099 0.169/0.080

R1 P-VIO 0.888/0.152 0.785/0.170 0.775/0.150 0.816/0.157

R1 P-CVIO 0.584/0.137 0.613/0.130 0.733/0.075 0.643/0.144

R1 PL-CVIO 0.213/0.092 0.231/0.078 0.249/0.074 0.231/0.081

R2 P-VIO 1.589/0.596 1.493/0.195 0.676/0.202 1.253/0.331

R2 P-CVIO 0.603/0.161 0.690/0.179 0.538/0.165 0.610/0.168

R2 PL-CVIO 0.150/0.096 0.167/0.081 0.182/0.073 0.166/0.083

25

2.4.2 Experiments

For the real-world experiments, the position and orientation of each robot are ini-

tialized corresponding to the ground truth. The point features are extracted from each

frame using FAST [78], and are tracked crossing frames or matched with the point obser-

vations from other robot utilizing ORB [79] with an 8-point RANSAC algorithm [59]. At

the same time, line segments are extracted by leveraging the LSD [42] and tracked by LBD

[102], as shown in Figure 2.4. Additionally, we add some outlier elimination strategies to

remove the line segment where (1) the LBD distance is larger than 50; (2) the length of the

line segment is smaller than 50 pixels; (3) the distance between the origin and this line is

smaller than 0.1 or larger than 100; (4) the line disparity is too small to avoid singularity

when applying the SVD [23] to triangulate this line.

We evaluate our PL-CVIO algorithm using the TUM Visual-Inertial Dataset Rooms

1, 3, and 5 [87], where the IMU operates at 200 Hz and the camera at 20Hz. Each dataset for

a given room is loaded separately, and all five algorithms are tested independently on three

robots. Besides, we extract a different number of point features to imitate low-feature and

rich-feature environments. As a result, we show the experimental results of our PL-CVIO

algorithm compared with the other four algorithms in respectively rich-feature environments

as in Figure 2.5 and low-feature environments as in Figure 2.6. We also show the RMSE

of the orientation and position of each robot by utilizing different algorithms in the TUM

dataset as in Table 2.4. From the ROE/RPE and the RMSE results, it is evident that

line features can improve the accuracy of P-VIO and the common point-line features can

improve the performance of the P-CVIO. Specifically, the improvement is particularly sig-

26

Figure 2.4: Point and line feature detection of three different robots in the TUM dataset [87].
A green edge denotes a line extracted from the current frame, and a blue dot surrounded
by a red square denotes a point extracted from the current frame.

nificant in low-feature environments, as observed when comparing P-VIO with PL-VIO, and

P-CVIO with IPL-CP-CVIO in Table 2.4. Overall, our PL-CVIO algorithm consistently

outperforms all four competing algorithms across all experimental scenarios.

2.5 Conclusions

In this chapter, we have proposed a fully distributed point-line cooperative visual-

inertial navigation system. We compared the performance of the proposed algorithm with

four other algorithms under rich-feature or low-feature environments in both Monte-Carlo

simulations and real-world datasets. All of the results indicated that our PL-CVIO out-

performed the independent MSCKF and CVIO. Also, we verified that the line feature can

improve the accuracy of localization in independent cases, and the common line features

can perform better in cooperative cases.

27

Figure 2.5: Boxplot of the result of Robot 0 (Room 1) in the TUM Visual-Inertial Dataset
by extracing 200 points per frame, and 50 lines if the line update is used.

Figure 2.6: Boxplot of the result of Robot 0 (Room 1) in the TUM Visual-Inertial Dataset
by extracing 50 points per frame, and 50 lines if the line update is used.

28

Table 2.4: The RMSE of the orientation / position (degrees / meters) of three robots under
the low-feature environments by using five different algorithms in the TUM Visual-Inertial
dataset.

Algorithm Robot 0 Robot 1 Robot 2

P-VIO 7.473 / 0.442 4.357 / 0.313 5.468 / 0.372

PL-VIO 2.367 / 0.295 1.798 / 0.254 1.872 / 0.240

P-CVIO 2.301 / 0.377 3.824 / 0.267 2.616 / 0.263

IPL-CP-CVIO 1.905 / 0.098 1.722 / 0.115 1.542 / 0.095

PL-CVIO 1.349 / 0.061 1.665 / 0.086 1.379 / 0.067

29

Chapter 3

Map-Based Visual-Inertial

Odometry Leveraging Neural

Radiance Fields

3.1 Introduction and Related Works

Recently, AR [2, 7] and VR [4, 1] have emerged as transformative technologies,

offering immersive experiences across various domains. One critical aspect shaping the

effectiveness of these experiences is the incorporation of prior maps [91]. These maps

provide essential spatial context, enabling accurate localization, tracking, and seamless

integration of virtual elements into the real world. To achieve high quality and low la-

tency user experiments, VINS have received considerable popularity in AR/VR applications

[65, 74, 39, 108, 105] through utilizing low-cost and lightweight onboard cameras and IMUs.

30

Using VINS, the drift of the pose will accumulate and the uncertainty of the

estimate will grow unbounded without global information, such as a prior map, GNSS

measurement, or loop closure. However, GNSS may not be applicable indoors, and loop

closure demands both a precise and efficient place recognition algorithm [38, 84, 30] and

substantial memory space to store historical features [67, 68]. Consequently, prior map-

based approaches have gained significant interest over the past few decades [49, 82, 80, 40,

32, 106].

One of the key challenges that the map-based VINS literature tackles is relocaliza-

tion based on one image and a prior map. Typically, descriptor-based methods are employed

to establish 2D-3D correspondences by reprojecting map points to the image frame and

matching them with features extracted from the image [58, 41]. Considering the increase in

optimization complexity with map size, DBoW [38] represents an image by the statistic of

different kinds of features from a visual vocabulary. Inspired by the DBoW, keyframe-based

loop closure detection and localization are employed in ORB-SLAM [67] and ORB-SLAM2

[68]. However, DBoW sacrifices spatial information about features, potentially leading to

ambiguities or inaccuracies.

Recently, NeRF [63] introduces an MLP to capture a radiance field representation

of a scene. During training, NeRF estimates the color and density of sampled particles

along each ray, and minimizes the photometric error between the estimated image and the

groundtruth. NICE-SLAM [110] proposes a dense simultaneous localization and mapping

(SLAM) system that incorporates depth information and minimizes depth loss during train-

ing. Subsequently, NICER-SLAM [109] further incorporates monocular normal estimators

31

and introduces a keyframe selection strategy. To expedite the training procedure, Nvidia

Corp. proposes Instant-NGP [66], which utilizes a versatile new input encoding, enabling

the use of a smaller network without compromising quality. Despite the notable enhance-

ment in training speed, there is no assurance of compatibility with online VIO and NeRF

map updates.

Among the NeRF-based localization literature, Loc-NeRF [62] introduces a real-

time visual odometry (VO) algorithm by combining a particle filter with a NeRF prior

map, which is trained offline. VO propagates the state of the pose, while rendered images

from NeRF are used for updates. Due to the large number of particles and rendering costs

from the NeRF model, Loc-NeRF operates at a much lower frequency of 0.6 Hz compared

to the normal camera rate. NeRF-VINS [50] proposes a real-time VINS framework by

integrating OpenVINS [39] and NeRF [63], utilizing both real and rendered images for

updates at varying frequencies. Nonetheless, none of the approaches above addresses pose

initialization at the first timestamp. In other words, they assume the rigid transformation

between the prior map frame and the online camera frame is known. The only map-based

relocalization work is iNeRF [98], they invert the NeRF pipeline and propose a gradient-

based pose estimator by inputting a single image and a pre-trained NeRF model, but it

heavily relies on a good initial guess.

To tackle the challenges outlined above, we proposes a real-time map-based VIO

algorithm with pose initialization as in Figure 3.1. Specifically, we introduce an initialization

model to estimate the first IMU state and a NeRF model to update the poses during

traveling. For the initialization, we introduce an MLP-based model, which establishes the

32

Figure 3.1: An overview of our NeRF-VIO framework. Commencing with the initial cap-
tured image, the pre-trained initialization model (canary) outputs the first pose of the
camera frame. Utilizing IMU integration from the timestamp of the initial IMU measure-
ment to that of the first camera measurement, we deduce the initial IMU state backward.
Throughout online traveling, we leverage both the pre-trained NeRF model (mint) and the
onboard camera to establish spatial constraints, facilitating the update of poses within the
current sliding window. These updated poses then undergo further IMU propagation, serv-
ing as input to the NeRF model for the rendering of subsequent images.

correlations between images and poses without necessitating an initial guess. We define a

novel loss function as the geodesic errors on SE(3) and construct a left-invariant metric on

se(3). Additionally, we train a NeRF model capable of rendering images from new poses.

During online traversal, the onboard camera captures images while the NeRF model renders

images based on the estimated poses from VIO. These two pipelines operate concurrently

but at different frequencies. Upon receiving a new rendered image, an object removal

strategy is deployed to environmental alterations between the real world and the prior map.

Subsequently, both captured and rendered images are utilized to update the robot’s state.

33

3.2 Preliminaries

3.2.1 NeRF Map Generation and Image Rendering

Neural radiance fields (NeRF) [63] employs a multilayer perceptron (MLP) to cap-

ture a radiance field representation of a scene and generate images from new perspectives.

The NeRF model can be trained offline given a sequence of RGB images and the corre-

sponding 3D location and the 2D viewing direction, where the 2D viewing direction can be

expressed as a 3D Cartesian unit vector. Once we get the NeRF map Nθ, a new image from

a novel pose can be generated and each pixel on the image is predicted by projecting a ray

r from the center of the camera to the position of this pixel on the image plane. Then some

particles are sampled uniformly within [tn, tf] along the ray and part of them are selected

based on the estimated density σ. Finally, the color value of this pixel is rendered based on

those selected particles as:

Ĉ(r) =

∫ tf

tn

T̂ (r, t)σ̂(r, t)ĉ(r, t)dt, (3.1)

where ˆ(·) denotes the estimated value and c denotes the RGB color to be predicted at one

particle. The accumulated transmittance follows T̂ (r, t) = exp
(
−
∫ t
tn
σ̂ (r, s) ds

)
. Then,

the loss function can be defined as:

L(Nθ) =
∑
r∈R
∥Ĉ(r)− C(r)∥22, (3.2)

34

where R denotes the set of rays. For a more comprehensive description, readers are referred

to [63].

3.2.2 Notations and Definitions

Let the vector x represent the true state of a robot. The error state is defined as

x̃ = x − x̂, where (̂·) denotes the estimated state and (̃·) denotes the error state. Then,

the xk|k−1 and xk|k denote the prior and posterior estimates of the state at timestamp k,

respectively. And Pk|k−1 and Pk|k represent the covariance matrix corresponding to the

prior and posterior state estimates at timestamp k, respectively.

We define the global frame {G}, the prior map frame {W}, the IMU frame {I},

and the camera frame {C}. After relocalization is completed and the relative transformation

between the global frame and the prior map frame is determined, they will share a common

coordinate system.

3.3 Problem Formulation

The goal of the NeRF-VIO is to estimate the 3D pose of the IMU frame in the

global frame given an initialization model Iθ and a prior map Nθ. Specifically, the prior

map is encoded by a NeRF model, which is trained offline using the image-pose pairs from

a different trajectory in the same environment. As illustrated in Fig. 3.2, the initialization

model is designed to relocalize a captured image from a prior map, while the NeRF model

renders an image based on the current pose. The initialization model runs only once before

online traversal. Note that the NeRF prior map resides within its own world frame, which

35

Figure 3.2: Comparison of input and output during model inference. The Init model es-
timates the camera pose in the world frame of a prior map based on a captured image.
Conversely, the NeRF model renders an image when provided with a specific camera pose.

is not coincident with the global frame before initialization. During online traveling, the

robot updates its state using both images rendered from the NeRF map and the captured

images from the onboard cameras in the camera frame. We assume the sensor platform

is pre-calibrated, ensuring that the relative transformation between the IMU frame and

camera frame, denoted as TC
I , is already determined.

3.3.1 NeRF-VIO State Vector

To perform the NeRF-VIO, we include the IMU state, cloned IMU state, SLAM

feature state, calibration state, and camera and IMU time-offset in the robot’s state vector

as:

x =

[
x⊤
I x⊤

Clone x⊤
f x⊤

Calib td

]⊤
, (3.3)

where td = tC − tI denotes the time-offset between the camera clock and the IMU clock,

which treats the IMU clock as the true time. The state vector of IMU at time step k can

36

be written as:

xIk =

[
Ik
G q̄⊤ Gp⊤

Ik
Gv⊤

Ik
b⊤
gk

b⊤
ak

]⊤
, (3.4)

where Ik
G q̄ denotes the JPL unit quaternion from the global frame to the IMU frame. GpIk

and GvIk are the position and velocity of IMU in the global frame. bgk and bak represent

the gyroscope and accelerometer biases. During inference, the robot maintains a sliding

window with m cloned IMU poses at time step k written as:

xClonek =
[
Ik−1
G q̄⊤ Gp⊤

Ik−1
...

Ik−m

G q̄⊤ Gp⊤
Ik−m

]⊤
. (3.5)

In addition to the IMU state, the historical SLAM features are also stored in the

state vector as:

xf =

[
Gp⊤

f1
... Gp⊤

fi

]⊤
, (3.6)

and spatial calibration between its IMU frame and camera frame will also be estimated as:

xCalibk =

[
Ck
Ik

q̄⊤ Ckp⊤
Ik

]⊤
. (3.7)

3.3.2 IMU Dynamic Model

The measurement of the IMU linear acceleration Iam and the angular velocity

Iωm are modeled as:

Iam = Ia + I
GR

Gg + ba + na, (3.8)

Iωm = Iω + bg + ng, (3.9)

37

where Ia and Iω are the true linear acceleration and angular velocity. na and ng represent

the continuous-time Gaussian noises that contaminate the IMU measurements. Gg denotes

the gravity expressed in the global frame. Then, the dynamic system of IMU can be modeled

the same as in Section 2.3.2.

3.3.3 Initialization Model

The purpose of the initialization model is to restore the IMU state at the first

timestamp xI0 from a prior map Nθ. In iNeRF[98], a 6 Degrees of Freedom (DoF) pose

estimation is proposed, leveraging gradient descent to reduce the residual between pixels

generated from a NeRF and those within an observed image. However, this approach heavily

depends on a good initial guess.

In this section, we introduce a novel MLP-based initialization model that directly

maps images to poses without needing an initial estimate. Specifically, we pre-collect images

and groundtruth data from the same environment and train a 7-layer MLP. This MLP en-

codes prior environmental knowledge, taking a sequence of images as input and outputting

6-DoF poses. Working with pose estimation in the context of se(3) requires careful consid-

eration of the underlying Lie group structure. The lack of invariance in the standard inner

product on se(3) has a potential drawback, as it can lead to discrepancies when comparing

poses in different coordinate frames. Hence, our contribution goes beyond just initialization,

as we define our loss function using geodesic distance on SE(3) with a left-invariant metric.

This ensures consistent and invariant pose comparisons, addressing the limitations tied to

inner product-based metrics.

38

In the establishment of a left-invariant metric on SE(3), the definition involves

specifying the inner product on the Lie algebra se(3) and subsequently extending it to a

Riemannian metric through left translation[72]. The left-invariant metric is established

when the following equation holds[37]:

⟨x1,x2⟩S =
〈
S−1x1,S

−1x2

〉
I
, (3.10)

where ⟨ · , · ⟩S represents the inner product within the tangent space TSSE(3) at an arbitrary

element S ∈ SE(3), x1,x2 ∈ TSSE(3), I denotes the identity, and (·)−1 denotes the inverse

operation in the Lie group SE(3).

Inspired by the definition of bi-invariant metric in SO(3), the metric in SE(3) can

be constructed similarly. We define

Mse(3) =

 I3×3 a

aT 1

,

where a ∈ R3. The eigenvalues of Mse(3) are 1, 1±∥a∥2, and the condition ∥a∥2 < 1 ensures

all eigenvalues are positive. Then, the metric on TSSE(3) is defined as:

⟨x1,x2⟩S = tr(xT
1 x2Mse(3)). (3.11)

Lemma 1 Left-invariant: The metric defined in (3.11) is left-invariant.

Proof. For S =

 Rs ps

0 1

 ∈ SE(3), let xi ∈ TSSE(3), i = {1, 2}, be xi =

 ⌊ωi,s×⌋ vi,s

0 0

,

39

we have

S−1xi =

 RT
s −RT

s ps

0 1


 ⌊ωi,s×⌋ vi,s

0 0



=

 RT
s ⌊ωi,s×⌋ RT

s vi,s

0 0

 .

Then, according to (3.11), we have

〈
S−1x1,S

−1x2

〉
I

= tr


 RT

s ⌊ω1,s×⌋ RT
s v1,s

0 0


T  RT

s ⌊ω2,s×⌋ RT
s v2,s

0 0

Mse(3)



= tr


 ⌊ω1,s×⌋T ⌊ω2,s×⌋ ⌊ω1,s×⌋Tv2,s

vT
1,s⌊ω2,s×⌋ vT

1,sv2,s

Mse(3)



= tr


 ⌊ω1,s×⌋ v1,s

0 0


T  ⌊ω2,s×⌋ v2,s

0 0

Mse(3)


= ⟨x1,x2⟩S ,

which means that the metric is left-invariant.

We denote f1, f2 as the corresponding local flows with

x1 = ḟ1(t) x2 = ḟ2(t) f1(t) = f2(t) = S. (3.12)

40

As fi(t) ∈ SE(3), it can be written as:

fi(t) =

 Ri(t) pi(t)

0 1

, (3.13)

and the corresponding twists at time t can be expressed as :

Ti = f−1
i (t)ḟi(t) =

 ⌊ωi×⌋ vi

0 0

. (3.14)

With the definition of the metric in (3.11), the inner product can be reformulated as:

⟨x1,x2⟩S = tr(ḟT
1 (t)ḟ2(t)Mse(3))

= tr(TT
1 T2Mse(3)) ←− Left Invariance

= tr(⌊ω1×⌋T ⌊ω2×⌋) + tr(⌊ω1×⌋Tv2a
T) + vT

1 ⌊ω2×⌋a + vT
1 v2

=

 ω1

v1


T  2I3×3 ⌊a×⌋

⌊−a×⌋ I3×3


 ω2

v2



:=

〈 ω1

v1

 ,

 ω2

v2


〉

Mse(3)

.

(3.15)

41

The left-invariant metric on se(3) allows us to define the geodesic loss on SE(3)

as follows:

d2(S1,S2) =
〈
logS1

(S2), logS1
(S2)

〉
S1

=

〈 ⌊ω×⌋ v

0 0

 ,

 ⌊ω×⌋ v

0 0


〉

S1

=

〈 ω

v

 ,

 ω

v


〉

Mse(3)

,

(3.16)

where S1,S2 ∈ SE(3), logS1
(·) represents Lie logarithm at S1, ω and v denote the ro-

tational velocity and translational velocity from S2 to S1, respectively. Since the original

data naturally lies in se(3), this metric formulation offers computational advantages over

the standard left-invariant metric on SE(3). Specifically, it eliminates the need for map-

ping between se(3) and SE(3), while maintaining mathematical rigor through the use of

the canonical inner product structure on se(3). This approach both simplifies computation

and preserves the geometric interpretation of the distance measure.

With this loss function, we train an MLP-based initialization model to relocalize

the first captured image in the prior map TC0
W :=

[
C0
W q̄⊤, C0p⊤

W

]
. Based on the IMU integra-

tion in (2.16) and (2.17), and the calibration parameters in (3.7), the relative transformation

from the first IMU pose to the first camera pose TI0
C0

:=
[
I0
C0
q̄⊤, I0p⊤

C0

]
can be obtained. As

shown in Figure 3.3, the first IMU frame can be relocalized in the prior map frame as:

TI0
W = TI0

C0
∗TC0

W . (3.17)

42

Figure 3.3: IMU pose initialization. From the init model, the relative pose between the
first camera frame and the prior map frame can be determined. With the camera-IMU
calibration parameters and the timestamps, the transformation between the first camera
frame and the first IMU frame can be found.

To further initialize
[
Gv⊤

I0
, b⊤

g0 , b
⊤
a0

]
, we collect a window of IMU readings from timestamp

0 to the time received the first image, and initialize using the average of velocities and bias

within this window.

3.3.4 Robustness to Environmental Alterations

To address dynamic objects and minor environmental alterations between the pre-

vious map and the current scenario, we introduce the grid-based Structural Similarity Index

(SSIM) [92] algorithm. This method involves partitioning both the captured and rendered

images into numerous small grids and computing the SSIM similarity for each grid pair

across the two images as:

SSIM (Ix, Iy) = [l(Ix, Iy)]α · [c(Ix, Iy)]β · [s(Ix, Iy)]γ , (3.18)

43

where l(Ix, Iy), c(Ix, Iy), and s(Ix, Iy) denote the local mean (luminance), standard devi-

ations (contrast), and cross-covariance (structural) similarity between two images. α, β,

and γ denote the weights for three terms. If the similarity of a grid pair surpasses a pre-

determined threshold, feature extraction will be applied to both grids. Conversely, regions

where the similarity falls below the threshold are deemed to contain dynamic objects, and

consequently, no feature will be extracted within those areas on the rendered image.

3.3.5 Measurement Update using Captured Images

The feature measurements captured from an onboard camera can be described by:

zc = Π
(
Cpf

)
+ wc, Π

(
[x y z]⊤

)
=

[x
z

y

z

]⊤
, (3.19)

where Cpf denotes the position of this feature in the camera frame, and wc denotes the

corresponding measurement noise. Based on the estimated relative transformation between

IMU and the global frame, the estimated calibration parameters, Cpf can be expressed as:

Cpf = C
I R

I
GR (t̄)

(
Gpf − GpI (t̄)

)
+ CpI , (3.20)

where t̄ = t− td is the exact camera time between the global and IMU frame.

To update a particular captured feature, we first gather all measurements of this

feature within the current sliding window. Then, the measurement residuals are computed

between each observation and the registered feature. By stacking all measurement residuals,

44

Figure 3.4: The three timelines denote data received from different sensors and the NeRF
model. We define the closest camera frame {CC} as the frame closest in time to when the
NeRF model begins rendering.

we linearize them at the estimated IMU pose as follows:

rc = hc

(
x̃,Gp̃f

)
+ wc ≃ Hx,cx̃ + Hf,c

Gx̃f + wc, (3.21)

where Hx,c and Hf,c denote the state and measurement Jacobians of captured features,

respectively. wc denotes the noise vector corresponding to the captured feature. Then, the

standard MSCKF update [65] is applied using left-nullspace projection for Hf .

3.3.6 Measurement Update using Rendered Images

To incorporate the observations from the rendered image and update the state

vector, we aim to update the state corresponding to the pose at which the image was

rendered. However, due to factors such as rendering delay and the fact that the camera

pose has already been updated based on captured features, we opt for the closest camera

frame {CC} relative to the original rendered one as shown in Fig. 3.4. The measurement

45

function of rendered features can be formulated as:

zr = Π
(
CCpf

)
+ wr, (3.22)

where wr denotes the rendered noise, and

CCpf =CC
I RI

GR (t̄)
((

G
WRWpf + GpW

)
− GpI (t̄)

)
+ CpI . (3.23)

The error state Jacobians w.r.t. the pose of IMU can be expressed as:

∂z̃r

∂δIGθ
= JΠ

CC
I R⌊IGR (t̄)

(
G
WRWpf + GpW − GpI (t̄)

)
×⌋,

∂z̃r
∂Gp̃I

= −JΠ
CC
I RI

GR (t̄) ,

(3.24)

where JΠ denotes the Jacobian of perspective model.

Note that the rigid transformation
(
G
WR,GpW

)
from the initialization model is

not perfect, but (3.23) has not modeled the initialization noise into it. Thus, we inflate the

noise term as:

w′
r = wr+

∂zr

∂δGW θ
∗ G
W θ̃ +

∂zr
∂Gp̃W

∗ Gp̃W , (3.25)

where
∂zr

∂G
WR

= JΠ
CC
I RI

GR⌊GWRWpf×⌋,

∂zr
∂GpW

= JΠ
CC
I RI

GR (t̄) .

(3.26)

46

Then, the linearized model can be expressed as:

rr = hr

(
x̃,W p̃f

)
+ w′

r ≃ Hx,rx̃ + Hf,r
W x̃f + w′

r, (3.27)

and an EKF update [65] will be employed.

3.4 Experiments

In this section, we validate the performance of NeRF-VIO initialization and local-

ization using a real-world AR table dataset [29]. The dataset comprises AR table sequences

1-4, recorded around a table adorned with a textured tablecloth. Table sequence 5 intro-

duces minor alterations by incorporating additional objects onto the table (minor environ-

ment change), while table sequences 6-8 place an additional large whiteboard to simulate the

large environment change. Throughout the training process, sequence 1 is utilized to train

both the initialization model and the NeRF model on an RTX 4090 GPU. In Sec. 3.4.1, we

compare the accuracy and latency of initialization with iNeRF [98]. Rendering performance

and VIO localization accuracy are evaluated and compared with MSCKF [65] in Sec. 3.4.2.

Additionally, Sec. 3.4.3 showcases an instance of grid-based SSIM.

3.4.1 Initialization Performance

The initialization model is trained as a 7-layer MLP using AR table sequence 1.

RGB images are extracted from a Rosbag, which records from an Intel RealSense D455

camera [3]. The IMU groundtruth are captured from the Vicon system [5], and camera

intrinsic and camera-IMU extrinsic parameters are calibrated using Kalibr [77]. Before for-

47

warding the images to MLP, the corresponding camera poses are determined using 4th-order

Runge-Kutta interpolation [25]. RGB images are then converted to grayscale, normalized

to a range between 0 and 1, and processed through the MLP.

To compare our initialization model with iNeRF, we leverage our pre-trained NeRF

model from NeRF-PyTorch1 as a prior map. Pose estimation of the first images in sequences

2-8 is conducted using iNeRF2 and our initialization model. Specifically, we initialized

iNeRF with two different initial guesses: (a) a 10-degree rotational error and a 20-centimeter

translation error for each axis. (b) a 2-degree rotational error and a 5-centimeter translation

error for each axis. We evaluate the L2 norm of position and orientation between estimated

values and groundtruth of those two models in Table 3.1, while latency is provided in

Table 3.2. We can figure out that our NeRF-VIO initialization model demonstrates superior

performance over iNeRF across all four trajectories, exhibiting significantly lower latency.

This can be attributed to iNeRF’s reliance on gradient-based optimization, which needs to

converge to local minima iteratively. Notable that we preload all models before initialization,

thus the model loading time is not contained in Table 3.2. Additionally, iNeRF relies on a

NeRF prior map, which renders it vulnerable to significant environmental changes, leading

to relocalization failures as observed in Table 5. In contrast, our model exhibits robustness

to minor environmental alterations and retains the capability to reconstruct images even

when a large environment changes.

1https://github.com/yenchenlin/nerf-pytorch.
2https://github.com/salykovaa/inerf.

48

https://github.com/yenchenlin/nerf-pytorch
https://github.com/salykovaa/inerf

Table 3.1: The L2 norm of the orientation / position (degrees / centimeters) of the ini-
tialization pose, utilizing iNeRF and our NeRF-VIO across AR table sequences 2-8. For
iNeRF, we use different initial guesses: (a) a 10-degree rotational error and a 20-centimeter
translation error for each axis. (b) a 2-degree rotational error and a 5-centimeter transla-
tion error for each axis.

iNeRF (a) iNeRF (b) NeRF-VIO

Table 2 20.33 / 23.39 2.81 / 5.49 2.02 / 1.48
Table 3 9.95 / 38.37 2.70 / 4.79 2.71 / 2.04
Table 4 10.61 / 22.95 3.35 / 6.55 3.16 / 1.90
Table 5 - 5.47 / 8.09 5.21 / 4.76
Table 6 - - 4.61 / 2.30
Table 7 - - 5.28 / 2.67
Table 8 - - 4.78 / 1.27

Table 3.2: The latency (seconds) of pose generation, utilizing iNeRF and our NeRF-VIO
across AR table sequences 2-8.

Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8

iNeRF 15.46 15.55 15.64 - - - -
NeRF-VIO 0.11 0.12 0.13 0.11 0.10 0.12 0.11

3.4.2 VIO Performance

The NeRF model is constructed with 8 fully connected layers, followed by con-

catenation with the viewing direction of the camera, and passed through an additional fully

connected layer. In addition to the image preprocessing outlined in Sec. 3.4.1, we further

rotate the camera by 180 degrees along the x-axis to maintain consistent rendering direc-

tion. Fig. 3.5 illustrates the testing results of the NeRF model at various iterations during

training. To evaluate the capability of NeRF-VIO to adapt to small or large environmental

changes, a comparison of rendered images and ground truth is presented in Fig. 3.6, utilizing

data from AR Table 3-6.

In assessing the impact of rendered image updates and initialization models on

VIO performance, we compare our NeRF-VIO with MSCKF [65] and NeRF-VIO (GT Init),

49

Figure 3.5: Testing results of NeRF model. From left to right, the images represent the
groundtruth of the test image, the rendered image at iteration 1,000, the rendered image
at iteration 50,000, and the rendered image at iteration 200,000.

Figure 3.6: Comparison of NeRF-rendered images to ground truth under normal / minor-
change / large-change environments. The top row displays captured images from the closest
camera frame, while the second row showcases rendered images at the same positions and
orientations. Columns correspond to Table 3-6, progressing from left to right.

which same as NeRF-VIO but initialized from ground truth. To ensure a fair comparison,

we employ the same seed and an equal number of KLT features [60] for all three methods.

For NeRF-VIO, we run the NeRF rendering at 2Hz and the onboard camera at 30Hz on an

Intel 9700K CPU. Table. 3.3 presents the absolute trajectory error (ATE) from Table 2-8,

while Fig. 3.7 displays the relative pose error (RPE) of AR Table 4. It is evident that our

NeRF-VIO outperforms MSCKF across all sequences and achieves performance nearly on

par with the groundtruth initialization.

50

Table 3.3: The ATE of the orientation / position (degrees / meters) of three VIO methods
in different AR Table sequences 2-8. For NeRF-VIO, Table 1 is trained and used as a prior
map for all sequences.

MSCKF NeRF-VIO NeRF-VIO (GT Init)

Table 2 1.142 / 0.034 0.686 / 0.023 0.750 / 0.024
Table 3 0.750 / 0.065 0.651 / 0.049 0.517 / 0.046
Table 4 2.095 / 0.077 0.886 / 0.038 0.766 / 0.040
Table 5 0.656 / 0.047 0.519 / 0.028 0.534 / 0.031
Table 6 0.961 / 0.049 0.737 / 0.036 0.564 / 0.028
Table 7 1.161 / 0.069 0.982 / 0.049 0.896 / 0.043
Table 8 1.319 / 0.063 0.963 / 0.038 0.881 / 0.025

Average 1.155 / 0.058 0.775 / 0.037 0.701 / 0.034

3.4.3 Robust to Environment Changes

To further classify the mechanics of the grid-based SSIM, we provide an example

in Fig. 3.8 to illustrate both pixel-level and grid-level similarity. Contrasting with the third

column of Fig. 3.6, the presence of dark pixels in Fig. 3.8(a) signifies a high similarity

computed between the rendered and captured images. In our implementation, we assign a

weight of [1, 0.5, 0.1] to the exponent term in (3.18), and the SSIM for each grid is shown

in Fig. 3.8(b). Then, only grids exhibiting a similarity that is larger than 0.8 are utilized

for FAST [90] feature extraction. This methodology ensures consistency between the NeRF

map and the real map while maintaining robustness against environmental changes.

3.5 Conclusions

In this chapter, we have proposed a map-based visual-inertial odometry algorithm

with pose initialization. We define a novel loss function for the initialization model and

train an MLP model to recover the pose from a prior map. Besides, we proposed a two-

stage update pipeline integrated into the MSCKF framework. Through the evaluation on

51

Figure 3.7: The RPE of MSCKF [65], NeRF-VIO (ours), and NeRF-VIO (GT Init) using
AR Table 4. NeRF-VIO initializes from the pre-trained model, while NeRF-VIO (GT Init)
initializes directly from groundtruth.

a real-world AR dataset, we demonstrate that our NeRF-VIO outperforms all baselines in

terms of both accuracy and efficiency.

52

(a) Pixel-level Similarity map

(b) Grid-level Similarity map

Figure 3.8: Comparison of pixel-level and grid-based SSIM. (a) A dark region denotes a
high similarity, while the white region denotes a huge luminance, contrast, and structural
difference weighted by [1, 0.5, 0.1]. (b) A grid-level similarity map is used in our algorithm.
The red text denotes the similarity of each small grid.

53

Chapter 4

Infrastructure-less Cooperative

SLAM for Multi-user Augmented

Reality

4.1 Introduction and Related Works

Immersive technologies have facilitated the development of numerous successful

mobile applications offering users AR experiences. These AR applications encompass a

wide range of use cases, much as mobile games [13], navigation apps [11, 22], in-vehicle AR

systems [8, 10], and social AR apps [14]. In these multi-user AR applications, multiple users

can simultaneously place, view, manipulate, and interact with shared virtual objects.

A fundamental requirement for enabling such interactions is precise six degree-of-

freedom (6DoF) localization within a common coordinate system. Collaborative simultane-

54

ous localization and mapping (C-SLAM) is a widely adopted approach to achieve this. By

employing C-SLAM, AR frameworks establish a shared reference frame among users, ensur-

ing that virtual objects appear correctly aligned across different perspectives. For instance,

some systems host a cloud server to maintain a global map, such that users can either

upload their local observations and get localization results [19], or keep a local map and

upload partial maps periodically for stitching and alignment [81, 15, 95]. However, these

approaches require a centralized edge/cloud server and assume stable connections from the

users to the server, as the users transmit a significant volume of data to the server for

mapping and localization. Instead of a full-fledged map, one can also define sparse cloud-

hosted anchors to position user headsets. These anchors are lightweight but still require a

centralized host as a bridge to connect users.

While centralized infrastructure offloads intensive computational tasks and fa-

cilitates user interaction, it is not always viable in scenarios like search-and-rescue op-

erations in remote areas, firefighting missions, or ad hoc gaming setups [16]. In such

cases, infrastructure-free solutions become essential to broaden AR applicability. Apple’s

ARKit [7], for example, employs a peer-to-peer (P2P) approach, synchronizing maps di-

rectly between users for localization. However, this synchronization introduces delays and

significant data transmission during initialization. Moreover, it restricts interactions with

users with pre-synchronized maps, requiring new users to synchronize before joining the

shared AR session. Furthermore, the approach confines interactions to pre-synchronized

areas, limiting AR experiences in newly explored environments that emerge after synchro-

nization.

55

To achieve the above design goals, there are three significant challenges that have

to be addressed. First, because there is no infrastructure support, AR users need to data

sharing amongst themselves using P2P links in an ad-hoc fashion. Intermittent P2P links

may be disconnected frequently, while the required data transfers for AR are relatively bulky.

Thus, a key challenge is to identify opportunities for sharing and enabling AR visualizations.

Instead of constantly uploading local maps to a server, users should share local maps only

when there are peer users nearby, to help themselves localize and interact with each other

and virtual objects. Second, transmitting and sharing bulky partial local maps over these

intermittent connections may result in packet loss and re-transmissions. This causes a delay

in the initiation of the AR experience, which may introduce inconsistent visual effects (such

as drifting virtual objects) that break the immersive experience. Finally, as the users explore

and encounter each other, the map and localization errors may be compounded, such as if

small errors build on each other. The problem may be further exacerbated if multiple users

have inconsistent local maps inherited from previous encounters.

To this end, we introduce CooperSLAM, a multi-agent, infrastructure-free SLAM

framework designed for seamless multi-user AR interactions. Unlike the PL-CVIO and

NeRF-VIO as discussed in Chapter 2 and Chapter 3, CooperSLAM prioritizes data com-

pression, efficient transmission, and rapid map alignment among multiple agents. To fa-

cilitate lightweight and fast data exchanges, CooperSLAM extracts key frames, eliminates

unnecessary complex data structures for localization, and shares only sparse features in

compact messages. As users encounter one another, CooperSLAM shares more sparse fea-

tures and refines the alignment. The collaborative mapping and refinement progress further

56

as users encounter more peers while traversing a larger spatial area.

Our evaluations demonstrate that CooperSLAM achieves an average of 13.4 cm

translation error within 10 meters from the position where users encountered each other,

which is 12.9%-37.9% better compared to the state-of-the-art centralized C-SLAM ap-

proaches. In the meantime, CooperSLAM only transmits 13 KB per frame, and in total

106 KB to successfully achieve map alignment, which is 71.7%-92.4% less data transmitted

per localized user. Furthermore, it takes the shortest time to achieve the map alignment;

the delay is up to 65% shorter than achievable with the baselines.

4.2 Preliminaries

4.2.1 Pose Graph Optimization

A pose graph [85, 44] is a structured representation used in SLAM to model the

relationships between different states of a robot and its surrounding environment. It consists

of two primary components: nodes and edges as shown in Figure 4.1.

The nodes represent discrete states of the robot over time, capturing its position,

orientation, and potentially other relevant parameters. Additionally, nodes can also cor-

respond to environmental landmarks, which serve as reference points for localization and

mapping. The edges define the constraints between these nodes, which are derived from

various sensor measurements. In this context, the edges are typically formed based on data

collected from IMU and camera observations. The IMU provides motion constraints by

measuring acceleration and angular velocity, while the camera captures visual features that

help in estimating relative transformations between different poses. By incorporating these

57

Figure 4.1: An example of a pose graph: orange and green circles represent the robot state
and landmark nodes, while red squares indicate the IMU measurement constraints.

measurement constraints, a pose graph enables optimization to refine the estimated pose of

the robot and improve mapping accuracy.

4.2.2 Gauss-Newton and Levenberg–Marquardt Algorithms

To optimize a pose graph in VIO/SLAM, the problem is typically formulated as a

nonlinear least squares optimization. The objective function can be written as:

Ax = b

⇒ f(x) = Minimize
x∈Rn

∥Ax− b∥2,
(4.1)

where A represents the linearized Jacobian matrix, x is the state vector to be optimized,

and Ax− b represents the residual error at the current estimate for a given feature. Since

the system is often overdetermined, instead of using a direct closed-form (least square)

solution, iterative optimization methods such as Gauss-Newton and Levenberg-Marquardt

are commonly employed.

58

The Gauss-Newton method is an approximation of Newton’s method [54] that is

widely used for nonlinear least squares problems. While it converges more slowly than the

full Newton’s method, it is more robust, especially when handling noisy or ill-conditioned

data. The Gauss-Newton approach minimizes the objective function by iteratively solving:

f(x + ∆x) ≃ ∥f(x) + J(x)∆x∥22

= ∆x⊤J⊤(x)J(x)∆x + 2f⊤(x)J(x)∆x + f⊤(x)f(x)

(4.2)

where f⊤(x)J(x) = J⊤(x)f(x), and J(x) denotes the Jacobian matrix evaluated at the

current estimate x. Setting the derivative of the cost function with respect to ∆x to zero,

we obtain the update step:

∂f(x + ∆x)

∂∆x
= 0

⇒ 2J⊤(x)J(x)∆x + 2f⊤(x)J(x) = 0

⇒ ∆x = −(J⊤(x)J(x))−1J⊤(x)f(x).

(4.3)

This iterative update refines the estimate x until convergence, effectively minimizing the

residual error.

The Levenberg-Marquardt algorithm is a hybrid approach that combines the Gauss-

Newton method (for fast convergence near the solution) with gradient descent (to improve

robustness against poor initial estimates and ill-conditioned problems). It modifies the

59

Gauss-Newton update by introducing a damping factor λ, resulting in the following system:

J⊤(x)J(x)∆x = −J⊤(x)f(x)

⇒ (J⊤(x)J(x) + λI)∆x = −J⊤(x)f(x)

⇒


λI∆x = −J⊤(x)f(x) if λ is large

J⊤(x)J(x)∆x = −J⊤(x)f(x) if λ is small

(4.4)

where λ controls the balance between Gauss-Newton and gradient descent. When the solu-

tion improves, λ is reduced, making Levenberg-Marquardt behave more like Gauss-Newton.

When the solution deteriorates, λ is increased, shifting the algorithm toward gradient de-

scent for better stability. This adaptive approach makes Levenberg-Marquardt a powerful

optimization method for nonlinear least squares problems in pose graph optimization, bal-

ancing convergence speed and robustness to poor initial conditions.

4.3 Problem Formulation

For multiple AR users to interact with the same virtual objects within the same

environment, their local SLAM systems must share a common coordinate frame of refer-

ence. This ensures that the virtual objects’ positions from one user’s perspective can be

accurately transformed into the perspectives of others. Unlike the PL-CVIO and NeRF-

VIO as discussed in Chapter 2 and Chapter 3, respectively, CooperSLAM focuses on data

compression, efficient transmission, and rapid map alignment among multiple agents. Fig-

ure 4.2 illustrates the end-to-end architecture of CooperSLAM, which is designed to achieve

this objective. Each AR user starts with no prior observations or maps of the environment,

60

Figure 4.2: CooperSLAM system architecture.

operating from an empty state. Using onboard cameras, users run a local visual SLAM

module that performs standard operations, including feature extraction, tracking, feature

registration, and map construction. When users encounter each other opportunistically,

they exchange discovery beacons as detailed in Section 4.3.2. Upon establishing a con-

nection, CooperSLAM facilitates the exchange of map points between users through these

intermittent P2P links. Shadow key frames are then reconstructed using the received map

points. These key frames are subsequently utilized for place recognition and map alignment

on the device as discussed in Section 4.3.1. The alignment results are fed back into the

local mapping and map refinement modules to improve alignment quality. The refinement

module in Section 4.3.3 further optimizes the local map by synthesizing multiple key frame

poses from both current and previous encounters, as logged in the encounter history.

4.3.1 Lightweight and Robust Map Alignment

A crucial step of C-SLAM is to stitch multiple map segments, which are often

generated by the independent local SLAM processes of multiple agents, into a unified map.

This process involves aligning these segments within a single coordinate system, enabling

61

accurate placement and representation of virtual AR objects in the physical environment.

To achieve this alignment, the common C-SLAM approach detects co-visible areas and

extracts and exchanges observations from different perspectives. Leveraging fine-grained

feature matching, C-SLAM systems can then determine the poses where these observations

are made by various users in each other’s coordinate system. The final alignment is achieved

by transforming all users’ local maps into a common coordinate system, typically one user’s

reference frame.

However, a significant challenge arises due to the disparity between the limited

communication bandwidth available to mobile users participating in the AR experience and

the large volume of map data generated by SLAM processes. Even in cloud or edge-assisted

environments with sufficient computational resources, this communication bottleneck pre-

vents real-time map alignment. To address this, existing literature [15, 95] propose com-

pressing map data to reduce its size and reconstructing key frame-based maps at the cloud.

Nonetheless, these reduced map representations remain bulky and inflexible. In scenarios

with intermittent P2P connectivity, such monolithic data transfers are prone to retransmis-

sions, introduce delays in alignment, and lack the robustness necessary to achieve high map

alignment accuracy.

Instead, we completely decompose the map data structure, and transmit the small-

est possible feature units, such as individual map points, over the unstable network using

a UDP-like approach. The key insight here is that to achieve reasonable map alignment

quality, key frames cannot be lost, but individual map points of a key frame can be partially

lost. This is because as long as a sufficient set of map points remains, map alignment can

62

Figure 4.3: Key frame data structure used in CooperSLAM. Each key frame (KF) is associ-
ated with multiple map points (MPs), shown as MapPoint 1 to N . Blue rectangles denote
the elements that are contained in a key frame, and red rectangles represent map points.
The half arrow denotes the pointer between two objects. Other scraped objects are omitted.

still be successful. Figure 4.3 illustrates the key frame data structure of ORB SLAM2 [68].

Each key frame contains numerous (tens or hundreds of) map points, which collectively can

be too large to transmit efficiently. In contrast, a communication message in CooperSLAM

is designed as a tiny packet that encapsulates a single map point. Each packet includes

the agent ID, key frame ID, map point ID, coordinates, and descriptors, as depicted in

Figure 4.4.

While sharing map points offers robustness against packet loss, the challenge lies in

reconstructing the map and achieving high alignment accuracy with a potentially reduced

set of map points. Existing methods address this by sharing or reconstructing complex

63

Figure 4.4: MapPoint Message

associated data structures, such as co-visibility graphs, to establish connections between

key frames and map points. These methods aim to restore as much data as possible,

effectively simulating the scenario where the receiver independently observes and processes

all key frames seen by other users using a full-fledged SLAM process.

To resolve the reconstruction complexity with fewer map points, we design a fast

initial alignment strategy followed by a robust multi-frame consensus approach. The key

observation here is that it does not take all of the associated data structure to accomplish

relocalization. Instead, by synthesizing the relocalization results of multiple independent

frames, we can achieve similar alignment quality compared to existing approaches.

Shadow Key frame To address this, we introduce the concept of a shadow key

frame, an independent key frame reconstructed on the receiver side, which contains only

the received map points. In contrast to key frames from SLAM, shadow key frames have

two main differences. (1) Due to potential map point loss during transmission, the shadow

key frame may not have the complete feature set compared to the corresponding key frame

on the sender side. Hence, its Bag of Words (BoW) histogram [38], which is based on the

feature set, will also differ. (2) The key frame is reconstructed with no context; therefore

it has no awareness of any common features shared with other shadow key frames, and no

dependency on or connections to other key frames.

64

Fast Initial Alignment To minimize map synchronization delay, CooperSLAM

achieves faster alignment compared to prior approaches by leveraging a majority of map

points from a single key frame to localize it in the local map. Specifically, consider two users,

A and B, whose local SLAM creates two coordinate systems, GA and GB, respectively. If A

receives enough map points from B, it can reconstruct a shadow key frame K and localize

the pose of K in GA as TK
A. Comparing to the estimated pose of the key frame TK

B in GB,

user A can align its map using (TK
B)

−1 ∗TK
A, where (·)−1 denotes SE(3) inverse as defined

in [88]. Using this alignment, all of user B’s key frame poses and the virtual objects’ poses

in GB can be transformed into A’s coordinate system GA. For instance, to transform an

virtual object O’s pose TO
B into A’s map, the following relationship can be used:

TO
A = TO

B ∗ (TK
B)

−1 ∗TK
A. (4.5)

Relocalization of the shadow key frame is possible because only the pose of each independent

shadow key frame is required. This process involves calculating BoW statistics from the

received map points to identify matching candidate frames, followed by fine-grained feature

matching to compute the precise transformation.

Alignment Refinement and Outlier Rejection Using map points from only a

single key frame can introduce errors. Instead, we propose a consensus multiple key frames

stitching algorithm with an outlier rejection strategy as in Algortihm 1. The core idea is

to minimize errors in relocalized frames by averaging over multiple frames, and rejecting

outlier frames that could skew the results. Specifically, following standard relocalization

65

Algorithm 1 Alignment Refinement and Outlier Rejection

1: Ki∈[1:I] = getAllKeyFrames (MapA)
2: Kj∈[1:J] = getAllKeyFrames (MapB)
3: for i = 1 : I do
4: for j = 1 : J do
5: Score = BoW Similarity (Ki,Kj)
6: if Score ≥ tb then
7: KC ← KC ⊕ (Ki,Kj)
8: end if
9: end for

10: end for
11: for m = 1 : length (KC) do
12: F1, F2 = Feature Extractor (KC [m, 1],KC [m, 2])
13: nMatches = Matcher (F1, F2)
14: if nMatches ≥ tm then
15: Tc = Calculate TF (F1, F2) ∈ SE(3)
16: TC ← TC ⊕ Tc
17: end if
18: end for
19: for n = 1 : length (TC) do
20: [x, y, z, ro, pi, ya] = Log (TC [n]) ∈ se(3)
21: X ← X ⊕ x, Y ← Y ⊕ y, Z ← Z ⊕ z
22: RO ← RO ⊕ ro, PI ← PI ⊕ pi, Y A← Y A⊕ ya

23: end for
24: Outlier Reject(X, Y, Z, RO, PI, Y A)
25: T B

A = Exp(mean(X, Y, Z, RO, PI, Y A))
26: return T B

A ∈ SE(3)

procedures, for each reconstructed key frame from received B’s map points, we find out

the matching key frame candidate from A based on the BoW statistics and the number of

matching inlier features. Then, we calculate the transformation matrix between these two

key frames using the PnP algorithm [35]. Once we have multiple relocalized key frames

between the two users, we convert the transformation matrices to tangent space se(3) [88].

To remove the outliers that could be produced when we calculate the transformation matrix

candidates, we take all six dimensions of estimates and calculate the mean and variance for

each of them. Then, we remove the elements out of the 99% confidential interval for each

66

dimension of the 6DoF. If any dimension of the current 6-DoF estimate is determined as

an outlier, the frame will be removed. This outlier rejection will only be done once, which

means the mean and variance will not be recalculated after removing the outliers. Finally,

the averaged pose will be transferred back to the transformation matrix on SE(3) [88]. By

using this algorithm, we reduce the stitching error and increase the robustness of stitching.

At the same time, it can guarantee the orthogonal property of the final rotational matrix

part.

4.3.2 Beacon and Alignment Orchestration

In distributed scenarios involving multiple AR users, effective coordination is cru-

cial to scale the pairwise map alignment process to all users in the vicinity. To achieve this,

CooperSLAM incorporates a beacon and orchestration mechanism to manage transmissions

efficiently.

Periodic beacons are a common method for discovery in mobile ad-hoc networks,

and CooperSLAM leverages this approach to establish an implicit handshake before trans-

mitting large volumes of map points. While these transmissions involve many map points,

their overall size remains manageable since each map point is individually small. Specifically,

when a user receives a beacon from a peer, it signals the potential for mutual communica-

tion. CooperSLAM utilizes this opportunity to begin broadcasting the map points of the

current key frame, assuming that the receiver may have seen and registered similar map

points in its local map. If multiple beacons are received from various agents, the broadcast

naturally extends to all users within range, facilitating opportunistic sharing among nearby

users.

67

Figure 4.5: Beacon Message

Figure 4.5 shows the composition of the beacon message. Rather than transmitting

key frame poses with each map point message, the map point message only includes the

associated key frame ID. Beacons are responsible for sending the key frame poses, a task

that occurs less frequently than map point transmissions, thereby improving communication

efficiency. On the receiver side, the reconstructed shadow key frame is matched to its

corresponding key frame in the sender’s coordinate frame. The poses of these key frames

are then used to calculate the transformation matrix, enabling map alignment.

4.3.3 Fine-grained Refinement

One limitation of aligning the map using only a few key frames is that it does not

adapt as users continue to encounter each other and exchange more features. Additionally,

small orientation errors at the initial encounter point can accumulate and degrade accu-

racy when extrapolated over larger distances as users explore new areas. To address these

issues, CooperSLAM incorporates a fine-grained refinement module that dynamically and

progressively improves alignment.

CooperSLAM achieves this by performing local bundle adjustment to optimize

key frames and map points within a sliding window in the local mapping thread. This

optimization uses the LM algorithm [64] to minimize the reprojection error across all feature

68

measurements with the following loss function:

J(xci ,
Gxfi) :=

K∑
k=1

∑
j∈Si,k

ρ
(∥∥Czi,j − h

(
x̂ci,k ,

Gxfi,j

)∥∥2
Σ

)
, (4.6)

where Si,k denotes a set of feature numbers that have matches at timestamp k, ρ denotes

the Huber norm [46], h denotes the perspective projection function [105], Czi,j denotes

the camera measurement for feature j from the camera frame of agent i, x̂ci,k denotes the

estimate of pose of camera frame at time step k, Gxfi,j is the registered position of feature

j in the global frame of agent i, and Σ is the covariance matrix.

As users encounter each other, they also share records of past interactions. For

example, if user A and B both encountered C before, their encounter logger would both

have the records of C. If A and B meet each other, they can use information from C to

help refine their alignment. Intuitively, this is because the records of C provide common

ground that helps with the refinement. Specifically, CooperSLAM employs a global pose

graph optimization (PGO) to correct the loop formed by A, B, and C, and refine the map

alignment estimates. In this thread, we minimize J(xci ,
Gxfi) for all i = 1 : n in Eq. 4.6

on each agent, where we collected not only the local pose-feature constraints but also the

common feature constraints from the received and reconstructed shadow key frames.

4.4 Experiments

In this section, we first evaluate the system in terms of localization accuracy, data

transmission size, and map alignment latency, comparing it to existing approaches. Then

we dive deeper into each component to analyze the sensitivity of each design choice and its

69

contribution. To evaluate the performance of CooperSLAM and compare its performance

against various baselines, we use both real-world traces that we collect and publicly EuRoC

[24] and Newer College [76] datasets.

4.4.1 Data Collection

We record our own dataset using three Zed2i cameras [6], capturing images from

their stereo cameras along with IMU data. Figure 4.6 shows the environment of two scenar-

ios used for collection: a circular hallway denoted as Corridor, and a half-circle courtyard

denoted as Yard. The figure illustrates one example trace collected for each scene. In the

corridor scenario, agent 1 (yellow) begins at the middle of the top hallway, turns left at

the top-left corner, and encounters agent 2 (red) between approximately 16 and 20 seconds.

agent 2 then proceeds toward the end of the bottom hallway, where it meets agent 3 for

around 32 to 35 seconds. Notably, agent 3 does not encounter agent 1. The exercise con-

cludes after 50 seconds. In the yard scenario, agents 2 and 3 start together, walking along

the rim of the yard in opposite directions until they encounter agent 1 at approximately

15 seconds and 25 seconds, respectively, at the indicated locations. Unlike the corridor

scenario, where each agent experiences only one encounter, the yard scenario involves two

encounters per agent. To emulate these encounters, we recorded three clockwise and three

counterclockwise traces for both the corridor and yard scenarios. Each trace includes more

than two traversals.

70

(a) Corridor (b) Yard

Figure 4.6: Evaluation scenarios and traces. We collect traces in two scenarios, a rectangular
hallway, denoted as corridor (a), and a half-circle courtyard, denoted as yard (b). The
lines of different colors indicate trajectories from different users. The legend indicates the
temporal interval of each spatial trajectory.

4.4.2 Baselines and Evaluation Metrics

We compare CooperSLAM against state-of-the-art C-SLAM baselines, as summa-

rized in Table 4.1. The table highlights the properties of these baselines and showcases where

CooperSLAM sets itself apart. Specifically, CCM-SLAM [81] shared entire key frames, in-

cluding all associated data structures, via a centralized server. CarMap [15] assumes that

each agent maintains a local copy of the global map and detects and shares only the differ-

ences of a map segment with the cloud. SwarmMap, built on top of CarMap, shares update

instructions rather than raw update data with the server. All the above methods rely on a

stable edge/cloud connection, making them vulnerable to packet losses. While SwarmMap

can tolerate the loss of trivial update commands (e.g., incrementing the number of obser-

vations for a map point), losing more critical updates compromises relocalization accuracy.

Additionally, CCM-SLAM and SwarmMap use monocular cameras instead of stereo cam-

eras. To address this limitation and ensure a fair comparison, we employ sim(3) alignment

71

Table 4.1: Feature comparison between baselines and the proposed algorithm w.r.t. four
key aspects: infrastructure independence, map-sharing strategy, tolerance to packet loss,
and collaboration method.

Infrastructure- Map Tolerate C-SLAM
less Sharing Packet Loss Method

CCM-SLAM [81] ✗ Key Frames ✗ Centralized
CarMap [15] ✗ Segments ✗ Centralized

SwarmMap [95] ✗ Key Frames ✓ Centralized
CooperSLAM [Ours] ✓ Map Points ✓ Distributed

in OpenVINS [39], which compensates for the scale ambiguity in monocular estimates.

We evaluate CooperSLAM in terms of the following rules:

• Localization Accuracy. To compare the localization accuracy between the esti-

mated trajectories and the ground truth, we use the absolute trajectory error (ATE)

to evaluate both location and orientation accuracy. ATE indicates the average pose

error over all frames. The precise definition of ATE is as follows:

eATE =

√√√√ 1

K

K∑
k=1

∥∥xk ⊟ x̂+
k

∥∥2
2

(4.7)

where, xk is the ground truth pose, x̂+
k is the aligned estimated trajectory pose, and

K denotes the number of poses/key frames. Note that ⊟ is used because state vector

involves quaternion.

• Distance to Encounter (DE). In multi-user AR settings, we care about mapping

accuracy at different locations in the environment, such as near where users encounter

each other. Therefore we evaluate the ATE of all poses within the vicinity of the first

relocalized inlier key frame, referred to as distance to encounter (DTE).

• Data Transmission Size. In totally decentralized settings, we care about data

72

Figure 4.7: ATE within Different DE .

transmission size as it directly impacts the alignment latency and battery life. For

each baseline, we evaluate the total size of the data needed to be shared before getting

good quality alignment as reflected by the ATE.

4.4.3 Key Results

We run CooperSLAM and all baselines in corridor, yard, EuRoC, and Newer

College datasets. We collect 20 user encounters across the corridor and yard and run Monte

Carlo simulations 10 times with random seeds for each encounter. Table 4.2 summarizes the

key results across all the three dimensions we evaluate. In the table, we show the average

Table 4.2: Key Results Summary. Compared to baselines, CooperSLAM achieves smaller
ATE within the interaction area, while requiring much less transmission data, and achieving
map alignment faster.

ATE Comm. Size / Est. Comm. Size Alignment
(DE < 10m) Frame (KB) to Alignment (KB) Latency (s)

CCM-SLAM [81] 0.154±0.164 55±2 1396 4.9±1.0
CarMap [15] 0.216±0.101 47±8 829 2.1±0.5

SwarmMap [95] 0.204±0.061 60±5 375 1.5±0.2

CooperSLAM 0.134±0.041 13±1 106 1.4±0.3

73

Figure 4.8: ATE comparison between CooperSLAM and baselines using three agents’ trace
from corridor

ATE within a distance to encounter of 5 m. Compared to all baselines, CooperSLAM

performs the best with minimum trajectory errors. Figure 4.7 shows the ATE with different

distances to encounter DE from 0-10m. The average translation error is less than 10 cm

within 2 meters, and below 15 cm within 10 meters.

For poses farther away from the encounter, we show the ATE of all three agents

in one example trace for corridor dataset in Figure 4.8, and Vicon Room 1 from EuRoC in

Figure 4.9. Different agents’ trajectories are different, yielding different localization errors.

CooperSLAM’s improvement against other baselines also varies. In most of the cases within

a small distance DE , CooperSLAM slightly outperforms baselines. However, in the most

extreme case, CooperSLAM outperforms CarMap by 66% (e.g. Agent 3 in corridor). In

some of the other extreme cases, baseline methods even fail to align agents with each other

(e.g. CCM-SLAM for Agent 3 and SwarmMap for Agent 2 in EuRoC traces).

In Figure 4.10, we illustrate the step-by-step process of Local SLAM, map switch-

ing, and global pose graph optimization using the Newer College dataset. Initially, each of

the three agents operates local SLAM independently. When Agent 1 approaches the starting

74

Figure 4.9: ATE comparison between CooperSLAM and baselines using three agents’ trace
from Vicon Room 1 of EuRoC

Table 4.3: The ATE of the orientation / position (degrees / meters) of three agents using
Newer College sequences.

CooperSLAM (wo PGO) CooperSLAM

Agent 1 2.351 / 1.153 1.800 / 0.946
Agent 2 3.328 / 1.349 2.356 / 1.056
Agent 3 2.287 / 1.708 1.261 / 0.994

position of Agent 2, they exchange data and share their maps. Similarly, Agent 3 integrates

all previously collected map points and keyframes during its data exchange. Finally, loop

closure detection and pose graph optimization are performed to refine all keyframe poses

and update the global map in a consistent manner. And, the ATE of localization accu-

racy before and after the pose graph refinement (last step in Figure 4.10) can be shown

in Table 4.3. The results indicate that the global refinement can improve the localization

accuracy by maintaining a consistence map.

Importantly, while achieving lower absolute trajectory error, CooperSLAM also

requires much less data to be transmitted for the map alignment. Because different methods

send various data structures for map alignment, to be fair, we compare both per frame data

sizes (Table 4.2, 4th column) under different schemes, as well as total data size to achieve

75

(a) Agent 1 (b) Agent 2 (c) Agent 3

(d) Stitch 1 & 2 (e) Stitch 1 & 2 & 3 (f) PGO

Figure 4.10: Step-by-step process of Local SLAM, map switching, and global pose graph
optimization using the Newer College dataset.

alignment (Table 4.2, 5th column). CooperSLAM’s flexible map point sharing requires an

average of only 13KB for each frame and 106KB to achieve alignment, whereas all baselines

need over 40KB per frame and up to 13x more data to achieve the alignment of quality

shown in Table 4.2.

In addition to sending less data, CooperSLAM is also robust to packet loss and

does not trigger retransmissions to delay the initial alignment. The last column of Table 4.2

76

Figure 4.11: Loss Rate Measurement Trajectory

shows that CooperSLAM needs only 1.4 s to finish the alignment, which is the lowest among

all baselines. Figure 4.12 shows a latency profile of sampled map point transmissions. On

average, transmissions takes less than 3.0 ms, while saving and loading together take less

than 1.7 ms.

4.4.4 Sensitivity Analysis

In this subsection, we dive deeper into each component. We study the localization

robustness to packet loss, evaluate the sensitivity of alignment consensus to the number of

shadow key frames available, validate the outlier rejection algorithm, and understand map

refinement performance.

• Packet Loss. To evaluate how much packet loss CooperSLAM can tolerate and

understand where does the system break, we first measure the packet loss rate in a

real-world setting (corridor) and then play back the traces while injecting the same

77

Figure 4.12: Map Point Latency Profile

Figure 4.13: Packet Lose Rate over Time

78

(a) Translation error (b) Orientation error

Figure 4.14: ATE under Different Map Points Loss Rates

packet loss rate to evaluate the localization accuracy.

First, to measure the packet loss rate, we put two agents in the corridor scene as shown

in Figure 4.11; one stationary agent located at the right bottom corner (marked as

a Vision Pro headset), who is connected to a WiFi router using an Ethernet cable.

The other agent (connected to the router wirelessly) walks the full loop of the hallway

starting from the bottom right corner. Each color represents a temporal segment; the

agent starts from second 0, arrives at the end of the right hallway at time 8 s (yellow),

turns left and walks through the top hallway in about 4 seconds (red), then makes its

way around the corner towards the middle of the left hallway (blue) and finishes the

rest at around 30s (green).

We measure the packet loss rate at 2 second intervals, as shown in Figure 4.13. The

maximum loss rate occurs when the agent is in the top hallway (red) and in the

farthest diagonal corner (blue) from the stationary agent. When the loss rate hits

the peak in Figure 4.13, the link is basically disconnected with 100% packet loss (no

79

real-time AR visualizations or interactions possible). When the second agent traverses

the green and yellow sections, the loss rate is less than 2%. The loss rate consistently

correlates with the latency numbers in Figure 4.12.

Now to understand when the system breaks, we play back the corridor traces and

inject uniform packet losses at various rates. Figure 4.14 shows the translation error

and orientation error when up to 30% of map points are lost. The impact of missing

map points is almost negligible; the difference in translation error within DE < 20 m

is under 1 cm, and the difference in orientation error is under 0.3 degrees. The only

visible difference on translation is when the distance to encounter DE > 40 m; the

translation error difference is caused by the extrapolation based on slightly erroneous

orientation (less than 1 degree off) at the matched frames (DE = 0). Note also

that because the extrapolation is based on a few key frames’ alignment, the trend in

orientation error under high or low loss rate is consistent.

Since map alignment is a premise for precise 3D AR interactions, CooperSLAM should

tolerate a higher loss rate than what is sustainable to support real-time interactions.

Figure 4.14 shows that CooperSLAM’s map alignment can tolerate very high packet

loss rates. Nevertheless, we also conducted a stress test. We find that CooperSLAM

completely fails if the missing map points exceed 60%.

• Key frame Synthesis. Next, we evaluate the map alignment performance using

different numbers of shadow key frames to understand its sensitivity. In this eval-

uation, we assume no packet loss. Specifically, during an encounter, we let Coop-

erSLAM transmit and collect map points until sufficient shadow key frames can be

80

(a) Translation error (b) Orientation error

Figure 4.15: ATE using Different Numbers of Shadow Key frames

reconstructed and accurately relocalized. Figure 4.15 shows the ATE over DE using

KFs ∈ [1, 3, 5, 10] key frames. Similar to Figure 4.14, the ATE is not very sensitive

to increasing number of shadow key frames being used, especially at small DE , e.g.

when close to the encounter position. When DE < 5m, synthesizing ten key frames

rather than one improves translation error by < 1 cm and orientation error by < 0.2

degree. The extrapolation from the orientation again factors in at longer distances

where the improvements with more shadow key frames can be up to 5 cm.

• Outlier Rejection. To validate CooperSLAM’s alignment outlier rejection policy,

we collect all of the relocalized frames from all encounters in corridor and yard and

randomly select 100 samples to study the statistics of the relocalization error distri-

bution. Figure 4.16 shows the distribution of translation (x, y, z) and orientation

(yaw, pitch, roll). The red dashed lines denote the left and right boundaries of 99%

confidential intervals. The results indicate that, for a high quality key frame relocal-

ization, errors above 0.5m in translation, 0.5 rad in yaw and roll, or 0.02 rad in pitch,

81

Figure 4.16: Transformation matrix error distribution (shown in x, y, z, roll, pitch, yaw).
The red dashed lines indicate the 99% confidence intervals.

are relatively rare. It is interesting to see the distribution for pitch and z is more con-

centrated than other dimension. This is possibly an artifact of our rigid sensor setup

and our horizontal motion pattern, such that there is not much vertical motion or

rotation around the pitch axis. Nevertheless, the results suggest that sampling a 99%

confidence interval within local records of relocalized frames would provide sufficient

statistics to reject outliers.

• Map Refinement. Finally, we evaluate the contribution of CooperSLAM’s map

82

(a) Corridor (b) Yard

Figure 4.17: Comparison of ATE with and without Map Refinement (“CooperSLAM PGO”
and “CooperSLAM”, respectively).

refinement module. We compare the ATE with and without the refinement process in

both corridor and yard encounters. In this evaluation, we also assume no packet loss.

As shown in Figure 4.17, map refinement improves ATE by up to approximately 16%

in the corridor scenario and up to about 30% in the yard scenario. The interesting

observation is that while the improvement may not look significant when DE < 10m,

because of the extrapolation of position based on orientation, a small improvement in

orientation can go a long way in correcting the translation error where the distance to

encounter is from 10 to 40 meters. This is helpful when some virtual objects left behind

by one user are revisited by other agents, or when agent encounters form a loop (e.g.

the yard trace shown in Figure 4.6 (b)). After exchanging encounter logs, commonly

encountered agent history can be exchanged to provide a good initial guess of the

transformation matrix, since the two devices participating in the current encounter

can use the coordinate system of the previously encountered common agent. These

83

(a) One-shot relocalization (b) Refined relocalization

Figure 4.18: The comparison between single key frame relocalization without refinement
(CarMap) and with a local pose graph optimization refinement (CooperSLAM) using the
EuRoC dataset.

records help refine the alignment because they can add common feature constraints

to the global pose graph optimization as shown in Figure 4.18. We can figure out that

after applying pose graph optimization, the feature points of the checkerboard align

perfectly.

4.5 Conclusions

In this chapter, we explore the problem of enabling rapid on-the-fly AR interac-

tions using infrastructure-less ad hoc cooperative SLAM. We design and implement Coop-

erSLAM, which exchanges lightweight map points among AR users over intermittent P2P

connections to achieve high-quality map alignment. Evaluations compared to state-of-the-

art baselines show that while transmitting 71%-92% less data, CooperSLAM is still able to

achieve 13%-38% better localization accuracy. Benefiting from the lightweight tiny messag-

ing design, CooperSLAM is robust to packet losses, requires no infrastructure support, and

enables interactions with minimal map synchronization delay. We believe that CooperSLAM

fills an important gap in enabling infrastructure-less mobile AR immersive experiences.

84

Chapter 5

Conclusions

This dissertation has presented a series of innovative methodologies to address

the pressing challenges in multi-user AR systems, focusing on advancing VIO and C-SLAM

techniques. The contributions span multiple aspects of AR localization, mapping, and multi-

user collaboration, with detailed experimental validation across simulation and real-world

datasets.

The PL-CVIO framework addresses the limitations of traditional VIO methods

in low-feature environments by integrating both point and line features. Through a novel

cooperative approach, neighboring robots share observations of common features, enabling

enhanced localization accuracy and robustness. The use of CI ensures consistent state

estimation while maintaining computational efficiency, which is critical for multi-robot sce-

narios. Experimental results demonstrate that the proposed PL-CVIO framework achieves

significant improvements over existing VIO and cooperative VIO methods, particularly in

environments with sparse features, such as human-made indoor spaces.

85

The integration of NeRF into map-based VIO represents a transformative ap-

proach to leveraging AI-driven models for localization and mapping. By encoding compact,

photorealistic representations of 3D environments, NeRF provides a powerful tool for ad-

dressing challenges related to initialization, drift correction, and robustness in dynamic

environments. A novel pose initialization model using geodesic errors on SE(3) and an

online NeRF-based VIO algorithm were developed to fully exploit the NeRF prior map.

The experimental results validate that NeRF-based VIO improves both pose accuracy and

robustness to environmental alterations, making it a promising direction for real-world AR

applications.

The CooperSLAM algorithm tackles the challenges of infrastructure dependency

in multi-user AR systems. By utilizing lightweight peer-to-peer communication and sparse

map feature sharing, CooperSLAM enables collaborative mapping and localization in dy-

namic, infrastructure-less settings. This approach decouples map points and key frames,

leveraging opportunistic encounters between users to align maps efficiently. The algorithm

demonstrated scalability and robust performance in diverse scenarios, including disaster

recovery and remote exploration, where centralized infrastructure is unavailable.

The combined contributions of this dissertation establish a robust foundation for

the next generation of AI-aided multi-user AR systems. By addressing the challenges of

feature sparsity, map initialization, and infrastructure dependence, this work significantly

advances the state-of-the-art in localization and mapping for AR. The extensive evaluations

using both synthetic and real-world datasets highlight the practical feasibility of the pro-

posed solutions, confirming their potential for deployment in various applications, including

86

immersive gaming, collaborative robotics, and emergency response.

Future work can extend these methodologies by exploring additional sensing modal-

ities, such as lidar or depth sensors, for environments with poor visual cues. Furthermore,

integrating learning-based approaches to enhance feature extraction and tracking in complex

or dynamic environments could further improve performance. Optimizing computational

efficiency for deployment on lightweight and resource-constrained AR devices also represents

a critical avenue for future research. Overall, this dissertation establishes a foundation for

developing AR systems that are robust, scalable, and capable of functioning effectively in

dynamic and resource-constrained environments. By addressing key challenges in multi-

agent SLAM and data efficiency, this work contributes to the broader advancement of AR

technologies, enabling their application across a wide range of domains.

87

Bibliography

[1] Apple vision pro. https://www.apple.com/apple-vision-pro.

[2] Google arcore. https://developers.google.com/ar.

[3] Intel realsense d455. https://www.intelrealsense.com.

[4] Meta quest 3. https://developer.oculus.com/meta-quest-3.

[5] Vicon. https://www.vicon.com.

[6] Zed2i camera. https://www.stereolabs.com/products/zed-2.

[7] Apple arkit. https://developer.apple.com/augmented-reality/arkit/,
2023.

[8] Bmw m mixed reality. https://www.bmw-m.com/en/topics/
magazine-article-pool/m-mixed-reality.html, 2023.

[9] Catan: World explorers. https://en.wikipedia.org/wiki/Catan:_World_
Explorers, 2023.

[10] Mercedes mbux. https://www.mercedes-benz.com.my/passengercars/
mercedes-benz-cars/mbux/mbux-stage.module.html, 2023.

[11] New maps updates: Immersive view for routes and other ai features. https:
//blog.google/products/maps/google-maps-october-2023-update/,
2023.

[12] New ways maps is getting more immersive and sus-
tainable. https://blog.google/products/maps/
sustainable-immersive-maps-announcements/, 2023.

[13] Pokemon go. https://pokemongolive.com/, 2023.

[14] Wallame. https://en.wikipedia.org/wiki/WallaMe, 2023.

88

https://www.apple.com/apple-vision-pro
https://developers.google.com/ar
https://www.intelrealsense.com
https://developer.oculus.com/meta-quest-3
https://www.vicon.com
https://www.stereolabs.com/products/zed-2
https://developer.apple.com/augmented-reality/arkit/
https://www.bmw-m.com/en/topics/magazine-article-pool/m-mixed-reality.html
https://www.bmw-m.com/en/topics/magazine-article-pool/m-mixed-reality.html
https://en.wikipedia.org/wiki/Catan:_World_Explorers
https://en.wikipedia.org/wiki/Catan:_World_Explorers
https://www.mercedes-benz.com.my/passengercars/mercedes-benz-cars/mbux/mbux-stage.module.html
https://www.mercedes-benz.com.my/passengercars/mercedes-benz-cars/mbux/mbux-stage.module.html
https://blog.google/products/maps/google-maps-october-2023-update/
https://blog.google/products/maps/google-maps-october-2023-update/
https://blog.google/products/maps/sustainable-immersive-maps-announcements/
https://blog.google/products/maps/sustainable-immersive-maps-announcements/
https://pokemongolive.com/
https://en.wikipedia.org/wiki/WallaMe

[15] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and Ramesh Govindan. CarMap: Fast
3d feature map updates for automobiles. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 1063–1081, Santa Clara, CA,
February 2020. USENIX Association.

[16] Kittipat Apicharttrisorn, Jiasi Chen, Vyas Sekar, Anthony Rowe, and Srikanth V.
Krishnamurthy. Breaking edge shackles: Infrastructure-free collaborative mobile aug-
mented reality. In Proceedings of the 20th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’22, page 1–15, New York, NY, USA, 2023. Association for
Computing Machinery.

[17] Alireza Bahremand, Linda Nguyen, Tanya Harrison, and Robert LiKamWa. Hololu-
cination: A framework for live augmented reality presentations across mobile devices.
In 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality
(AIVR), pages 243–2431. IEEE, 2019.

[18] Adrien Bartoli and Peter Sturm. Structure-from-motion using lines: Representation,
triangulation, and bundle adjustment. Computer Vision and Image Understanding,
100(3):416–441, 2005.

[19] Ali J. Ben Ali, Marziye Kouroshli, Sofiya Semenova, Zakieh Sadat Hashemifar,
Steven Y. Ko, and Karthik Dantu. Edge-slam: Edge-assisted visual simultaneous
localization and mapping. ACM Trans. Embed. Comput. Syst., 22(1), oct 2022.

[20] Daniele Benedettelli, Andrea Garulli, and Antonio Giannitrapani. Cooperative slam
using m-space representation of linear features. Robotics and Autonomous Systems,
60(10):1267–1278, 2012.

[21] Michael Bloesch, Sammy Omari, Marco Hutter, and Roland Siegwart. Robust visual
inertial odometry using a direct ekf-based approach. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 298–304, 2015.

[22] Chiara Boretti, Philippe Bich, Yanyu Zhang, and John Baillieul. Visual navigation
using sparse optical flow and time-to-transit. In 2022 International Conference on
Robotics and Automation (ICRA), pages 9397–9403, 2022.

[23] G Bradski. The opencv library. dr. dobb’s journal: Software tools for the professional
programmer. 2000.

[24] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,
Sammy Omari, Markus W Achtelik, and Roland Siegwart. The euroc micro aerial
vehicle datasets. The International Journal of Robotics Research, 35(10):1157–1163,
2016.

[25] J.C. Butcher. A history of runge-kutta methods. Applied Numerical Mathematics,
20(3):247–260, 1996.

89

[26] Carlos Campos, Richard Elvira, Juan J. Gómez Rodŕıguez, José M. M. Montiel,
and Juan D. Tardós. Orb-slam3: An accurate open-source library for visual, vi-
sual–inertial, and multimap slam. IEEE Transactions on Robotics, 37(6):1874–1890,
2021.

[27] M Jorge Cardoso, Tal Arbel, Gustavo Carneiro, Tanveer Syeda-Mahmood, João
Manuel RS Tavares, Mehdi Moradi, Andrew Bradley, Hayit Greenspan, João Paulo
Papa, Anant Madabhushi, et al. Deep Learning in Medical Image Analysis and Multi-
modal Learning for Clinical Decision Support: Third International Workshop, DLMIA
2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with
MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings, volume 10553.
Springer, 2017.

[28] Julie Carmigniani, Borko Furht, Marco Anisetti, Paolo Ceravolo, Ernesto Damiani,
and Misa Ivkovic. Augmented reality technologies, systems and applications. Multi-
media tools and applications, 51:341–377, 2011.

[29] Chuchu Chen, Patrick Geneva, Yuxiang Peng, Woosik Lee, and Guoquan Huang.
Monocular visual-inertial odometry with planar regularities. In 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 6224–6231, 2023.

[30] Zetao Chen, Adam Jacobson, Niko Sünderhauf, Ben Upcroft, Lingqiao Liu, Chunhua
Shen, Ian Reid, and Michael Milford. Deep learning features at scale for visual place
recognition. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 3223–3230, 2017.

[31] Titus Cieslewski, Siddharth Choudhary, and Davide Scaramuzza. Data-efficient de-
centralized visual slam. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 2466–2473, 2018.

[32] Andrei Cramariuc, Lukas Bernreiter, Florian Tschopp, Marius Fehr, Victor Reijgwart,
Juan Nieto, Roland Siegwart, and Cesar Cadena. maplab 2.0 – a modular and multi-
modal mapping framework. IEEE Robotics and Automation Letters, 8(2):520–527,
2023.

[33] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(3):611–625, 2018.

[34] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct
monocular slam. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuyte-
laars, editors, Computer Vision – ECCV 2014, pages 834–849, Cham, 2014. Springer
International Publishing.

[35] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24(6):381–395, jun 1981.

90

[36] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. Svo: Fast semi-direct
monocular visual odometry. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 15–22, 2014.

[37] Jean Gallier. Geometric methods and applications: for computer science and engi-
neering, volume 38. Springer Science & Business Media, 2011.

[38] Dorian Galvez-López and Juan D. Tardos. Bags of binary words for fast place recog-
nition in image sequences. IEEE Transactions on Robotics, 28(5):1188–1197, 2012.

[39] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan Huang.
Openvins: A research platform for visual-inertial estimation. In 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 4666–4672, 2020.

[40] Patrick Geneva and Guoquan Huang. Map-based visual-inertial localization: A nu-
merical study. In 2022 International Conference on Robotics and Automation (ICRA),
pages 7973–7979, 2022.

[41] Marcel Geppert, Peidong Liu, Zhaopeng Cui, Marc Pollefeys, and Torsten Sattler.
Efficient 2d-3d matching for multi-camera visual localization. In 2019 International
Conference on Robotics and Automation (ICRA), pages 5972–5978, 2019.

[42] Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-Michel Morel, and Gregory
Randall. Lsd: A fast line segment detector with a false detection control. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(4):722–732, 2010.

[43] Yijia He, Ji Zhao, Yue Guo, Wenhao He, and Kui Yuan. Pl-vio: Tightly-coupled
monocular visual–inertial odometry using point and line features. Sensors, 18(4),
2018.

[44] Wang Hu. Optimization-Based Risk-Averse Outlier Accommodation With Linear Per-
formance Constraints: Real-Time Computation and Constraint Feasibility in CAV
State Estimation. University of California, Riverside, 2024.

[45] Guoquan P. Huang, Nikolas Trawny, Anastasios I. Mourikis, and Stergios I. Roumeli-
otis. On the consistency of multi-robot cooperative localization. In Robotics: Science
and Systems V. The MIT Press, 07 2010.

[46] Peter J. Huber. Robust Estimation of a Location Parameter, pages 492–518. Springer
New York, New York, NY, 1992.

[47] Hangil Kang, Hoyoung Kim, and Young Min Kwon. Recen:resilient manet based
centralized multi robot system using mobile agent system. In 2019 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 1952–1958, 2019.

[48] Nadir Karam, Frederic Chausse, Romuald Aufrere, and Roland Chapuis. Localiza-
tion of a group of communicating vehicles by state exchange. In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 519–524, 2006.

91

[49] Anton Kasyanov, Francis Engelmann, Jörg Stückler, and Bastian Leibe. Keyframe-
based visual-inertial online slam with relocalization. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6662–6669, 2017.

[50] Saimouli Katragadda, Woosik Lee, Yuxiang Peng, Patrick Geneva, Chuchu Chen,
Chao Guo, Mingyang Li, and Guoquan Huang. Nerf-vins: A real-time neural radiance
field map-based visual-inertial navigation system, 2023.

[51] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional
network for real-time 6-dof camera relocalization. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2938–2946, 2015.

[52] Pierre-Yves Lajoie, Benjamin Ramtoula, Yun Chang, Luca Carlone, and Giovanni
Beltrame. Door-slam: Distributed, online, and outlier resilient slam for robotic teams.
IEEE Robotics and Automation Letters, 5(2):1656–1663, 2020.

[53] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Fur-
gale. Keyframe-based visual–inertial odometry using nonlinear optimization. The
International Journal of Robotics Research, 34(3):314–334, 2015.

[54] Adrian S Lewis and Michael L Overton. Nonsmooth optimization via quasi-newton
methods. Mathematical Programming, 141:135–163, 2013.

[55] Mingyang Li and Anastasios I. Mourikis. High-precision, consistent ekf-based visual-
inertial odometry. The International Journal of Robotics Research, 32(6):690–711,
2013.

[56] Mingyang Li and Anastasios I. Mourikis. Online temporal calibration for camera–imu
systems: Theory and algorithms. The International Journal of Robotics Research,
33(7):947–964, 2014.

[57] Chun Liu and Andreas Kroll. A centralized multi-robot task allocation for industrial
plant inspection by using a* and genetic algorithms. In Leszek Rutkowski, Marcin
Korytkowski, Rafa l Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M.
Zurada, editors, Artificial Intelligence and Soft Computing, pages 466–474, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[58] Liu Liu, Hongdong Li, and Yuchao Dai. Efficient global 2d-3d matching for cam-
era localization in a large-scale 3d map. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[59] H Christopher Longuet-Higgins. A computer algorithm for reconstructing a scene
from two projections. Nature, 293(5828):133–135, 1981.

[60] Bruce D Lucas and Takeo Kanade. An Iterative Image Registration Technique with
an Application to Stereo Vision. In IJCAI’81: 7th international joint conference on
Artificial intelligence, volume 2, pages 674–679, Vancouver, Canada, August 1981.

92

[61] Ryan Luna and Kostas E. Bekris. Efficient and complete centralized multi-robot path
planning. In 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3268–3275, 2011.

[62] Dominic Maggio, Marcus Abate, Jingnan Shi, Courtney Mario, and Luca Carlone.
Loc-nerf: Monte carlo localization using neural radiance fields. In 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 4018–4025, 2023.

[63] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for
view synthesis. In ECCV, 2020.

[64] Jorge J. Moré. The levenberg-marquardt algorithm: Implementation and theory. In
G. A. Watson, editor, Numerical Analysis, pages 105–116, Berlin, Heidelberg, 1978.
Springer Berlin Heidelberg.

[65] Anastasios I. Mourikis and Stergios I. Roumeliotis. A multi-state constraint kalman
filter for vision-aided inertial navigation. In Proceedings 2007 IEEE International
Conference on Robotics and Automation, pages 3565–3572, 2007.

[66] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural
graphics primitives with a multiresolution hash encoding. ACM Transactions on
Graphics (ToG), 41(4):1–15, 2022.

[67] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. Orb-slam: A versatile and
accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163,
2015.

[68] Raúl Mur-Artal and Juan D. Tardós. Orb-slam2: An open-source slam system for
monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics, 33(5):1255–
1262, 2017.

[69] Esha D. Nerurkar, Stergios I. Roumeliotis, and Agostino Martinelli. Distributed max-
imum a posteriori estimation for multi-robot cooperative localization. In 2009 IEEE
International Conference on Robotics and Automation, pages 1402–1409, 2009.

[70] Esha D. Nerurkar, Kejian J. Wu, and Stergios I. Roumeliotis. C-klam: Constrained
keyframe-based localization and mapping. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 3638–3643, 2014.

[71] Mrinal K. Paul, Kejian Wu, Joel A. Hesch, Esha D. Nerurkar, and Stergios I. Roume-
liotis. A comparative analysis of tightly-coupled monocular, binocular, and stereo
vins. In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 165–172, 2017.

[72] Peter Petersen. Riemannian geometry, volume 171. Springer, 2006.

93

[73] Albert Pumarola, Alexander Vakhitov, Antonio Agudo, Alberto Sanfeliu, and
Francese Moreno-Noguer. Pl-slam: Real-time monocular visual slam with points and
lines. In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 4503–4508, 2017.

[74] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–1020,
2018.

[75] Tong Qin and Shaojie Shen. Online temporal calibration for monocular visual-inertial
systems. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 3662–3669, 2018.

[76] Milad Ramezani, Yiduo Wang, Marco Camurri, David Wisth, Matias Mattamala, and
Maurice Fallon. The newer college dataset: Handheld lidar, inertial and vision with
ground truth. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4353–4360, 2020.

[77] Joern Rehder, Janosch Nikolic, Thomas Schneider, Timo Hinzmann, and Roland Sieg-
wart. Extending kalibr: Calibrating the extrinsics of multiple imus and of individual
axes. In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 4304–4311, 2016.

[78] Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A machine
learning approach to corner detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(1):105–119, 2010.

[79] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. In 2011 International Conference on Computer Vision,
pages 2564–2571, 2011.

[80] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. From
coarse to fine: Robust hierarchical localization at large scale. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[81] Patrik Schmuck and Margarita Chli. Ccm-slam: Robust and efficient centralized
collaborative monocular simultaneous localization and mapping for robotic teams.
Journal of Field Robotics, 36(4):763–781, 2019.

[82] Thomas Schneider, Marcin Dymczyk, Marius Fehr, Kevin Egger, Simon Lynen, Igor
Gilitschenski, and Roland Siegwart. Maplab: An open framework for research in
visual-inertial mapping and localization. IEEE Robotics and Automation Letters,
3(3):1418–1425, 2018.

[83] David Schubert, Thore Goll, Nikolaus Demmel, Vladyslav Usenko, Jörg Stückler, and
Daniel Cremers. The tum vi benchmark for evaluating visual-inertial odometry. In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1680–1687, 2018.

94

[84] Sayem Mohammad Siam and Hong Zhang. Fast-seqslam: A fast appearance based
place recognition algorithm. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 5702–5708, 2017.

[85] Felipe O. Silva, Álvaro H. A. Maia, Jean-Bernard Uwineza, Farzana S. Rahman,
Zeyi Jiang, Wang Hu, and Jay A. Farrell. Dual-antenna gnss-aided ins stationary
alignment with sensor parameter estimation. IEEE Transactions on Instrumentation
and Measurement, 74:1–16, 2025.

[86] James M Sloan, Keith A Goatman, and J Paul Siebert. Learning rigid image
registration-utilizing convolutional neural networks for medical image registration.
2018.

[87] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cre-
mers. A benchmark for the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 573–580, 2012.

[88] Nikolas Trawny and Stergios I Roumeliotis. Indirect kalman filter for 3d attitude
estimation. University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep, 2:2005,
2005.

[89] Ana Villanueva, Zhengzhe Zhu, Ziyi Liu, Kylie Peppler, Thomas Redick, and Karthik
Ramani. Meta-ar-app: An authoring platform for collaborative augmented reality in
stem classrooms. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, CHI ’20, page 1–14, New York, NY, USA, 2020. Association for
Computing Machinery.

[90] Deepak Geetha Viswanathan. Features from accelerated segment test (fast). In Pro-
ceedings of the 10th workshop on image analysis for multimedia interactive services,
London, UK, pages 6–8, 2009.

[91] Junyi Wang and Yue Qi. A multi-user collaborative ar system for industrial applica-
tions. Sensors, 22(4), 2022.

[92] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004.

[93] Kejian J. Wu, Ahmed M. Ahmed, Georgios A. Georgiou, and Stergios I. Roumeliotis.
A square root inverse filter for efficient vision-aided inertial navigation on mobile
devices. In Robotics: Science and Systems. 07 2015.

[94] Jie Xu, Pengxiang Zhu, Yanyu Zhang, and Wei Ren. Moving target estimation and
active tracking in multi-robot systems. In 2023 62nd IEEE Conference on Decision
and Control (CDC), pages 6972–6977, 2023.

[95] Jingao Xu, Hao Cao, Zheng Yang, Longfei Shangguan, Jialin Zhang, Xiaowu He,
and Yunhao Liu. SwarmMap: Scaling up real-time collaborative visual SLAM at the

95

edge. In 19th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), pages 977–993. USENIX Association, 2022.

[96] Yulin Yang, Patrick Geneva, Kevin Eckenhoff, and Guoquan Huang. Visual-inertial
odometry with point and line features. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2447–2454, 2019.

[97] Yulin Yang and Guoquan Huang. Aided inertial navigation: Unified feature repre-
sentations and observability analysis. In 2019 International Conference on Robotics
and Automation (ICRA), pages 3528–3534, 2019.

[98] Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto Rodriguez, Phillip Isola,
and Tsung-Yi Lin. inerf: Inverting neural radiance fields for pose estimation. In
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1323–1330, 2021.

[99] Hongsheng Yu and Anastasios I. Mourikis. Vision-aided inertial navigation with line
features and a rolling-shutter camera. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 892–899, 2015.

[100] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey
of autonomous driving: Common practices and emerging technologies. IEEE Access,
8:58443–58469, 2020.

[101] Fuzhen Zhang. Quaternions and matrices of quaternions. Linear Algebra and its
Applications, 251:21–57, 1997.

[102] Lilian Zhang and Reinhard Koch. An efficient and robust line segment matching
approach based on lbd descriptor and pairwise geometric consistency. Journal of
Visual Communication and Image Representation, 24(7):794–805, 2013.

[103] Yanyu Zhang, Marcus Greiff, Wei Ren, and Karl Berntorp. Distributed road-map
monitoring using onboard sensors. In 2024 American Control Conference (ACC),
pages 5049–5054, 2024.

[104] Yanyu Zhang, Xiu Wang, Xuan Wu, Wenjing Zhang, Meiqian Jiang, and Mahmood
Al-Khassaweneh. Intelligent hotel ros-based service robot. In 2019 IEEE International
Conference on Electro Information Technology (EIT), pages 399–403, 2019.

[105] Yanyu Zhang, Pengxiang Zhu, and Wei Ren. Pl-cvio: Point-line cooperative visual-
inertial odometry. In 2023 IEEE Conference on Control Technology and Applications
(CCTA), pages 859–865, 2023.

[106] Zhuqing Zhang, Yanmei Jiao, Shoudong Huang, Rong Xiong, and Yue Wang. Map-
based visual-inertial localization: Consistency and complexity. IEEE Robotics and
Automation Letters, 8(3):1407–1414, 2023.

[107] Lipu Zhou, Shengze Wang, and Michael Kaess. Dplvo: Direct point-line monocular
visual odometry. IEEE Robotics and Automation Letters, 6(4):7113–7120, 2021.

96

[108] Pengxiang Zhu, Yulin Yang, Wei Ren, and Guoquan Huang. Cooperative visual-
inertial odometry. In 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 13135–13141, 2021.

[109] Zihan Zhu, Songyou Peng, Viktor Larsson, Zhaopeng Cui, Martin R. Oswald, Andreas
Geiger, and Marc Pollefeys. Nicer-slam: Neural implicit scene encoding for rgb slam,
2023.

[110] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng Cui,
Martin R. Oswald, and Marc Pollefeys. Nice-slam: Neural implicit scalable encoding
for slam. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 12786–12796, June 2022.

[111] Xingxing Zuo, Nathaniel Merrill, Wei Li, Yong Liu, Marc Pollefeys, and Guoquan
Huang. Codevio: Visual-inertial odometry with learned optimizable dense depth.
In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
14382–14388, 2021.

[112] Xingxing Zuo, Xiaojia Xie, Yong Liu, and Guoquan Huang. Robust visual slam with
point and line features. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1775–1782, 2017.

97

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Point-Line Cooperative Visual-Inertial Odometry
	Map-Based Visual-Inertial Odometry Leveraging NeRF
	Infrastructure-less Cooperative SLAM for Multi-user AR

	Organization

	Point-Line Cooperative Visual-Inertial Odometry
	Introduction and Related Works
	Preliminaries
	JPL Quaternion
	Notations and Definitions

	Problem Formulation
	Visual-Inertial Odometry State Vector
	Dynamic System Model
	Point and Line Measurement Models
	Independent Point and Line Feature Update
	Common Point and Line Feature Update

	Simulations and Experiments
	Monte-Carlo Simulations
	Experiments

	Conclusions

	Map-Based Visual-Inertial Odometry Leveraging Neural Radiance Fields
	Introduction and Related Works
	Preliminaries
	NeRF Map Generation and Image Rendering
	Notations and Definitions

	Problem Formulation
	NeRF-VIO State Vector
	IMU Dynamic Model
	Initialization Model
	Robustness to Environmental Alterations
	Measurement Update using Captured Images
	Measurement Update using Rendered Images

	Experiments
	Initialization Performance
	VIO Performance
	Robust to Environment Changes

	Conclusions

	Infrastructure-less Cooperative SLAM for Multi-user Augmented Reality
	Introduction and Related Works
	Preliminaries
	Pose Graph Optimization
	Gauss-Newton and Levenberg–Marquardt Algorithms

	Problem Formulation
	Lightweight and Robust Map Alignment
	Beacon and Alignment Orchestration
	Fine-grained Refinement

	Experiments
	Data Collection
	Baselines and Evaluation Metrics
	Key Results
	Sensitivity Analysis

	Conclusions

	Conclusions
	Bibliography

