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ABSTRACT OF THE DISSERTATION 

Motivation for and within Online Courses 

By 

Peter McPartlan 

Doctor of Philosophy in Education 

University of California, Irvine, 2019 

Distinguished Professor Jacquelynne Eccles, Chair 

 
Online courses have been heralded as efficient and cost-effective higher education 

solutions, but have negative associations with student learning and retention. In light of online 

learning’s increasing prevalence, yet disappointing outcomes, it is imperative to investigate 

which features of online courses may be contributing to disparities in student performance. In 

this dissertation, I focus on a critical, yet understudied predictor of performance in online 

courses: motivation. I use Expectancy-Value Theory to investigate how motivation impacts who 

decides to take online courses, how motivation is affected by online courses, and how motivation 

can be improved within online courses. In my first study, I find  that students select into online 

courses largely due to the need for flexibility, and that motivational, behavioral, and performance 

differences between OL and F2F students become more apparent once students are grouped by 

their reasons for selecting into an OL course. In my second study, I identify that by increasing 

the transactional distance between students, asynchronous online courses degrade belonging, 

increasing social uncertainty around classmates and a perceived lack of access to the instructor. 

Furthermore, interview data suggest that students conceptualize belonging differently across 

contexts, and that quantitative measures designed to measure school belonging may produce 

misleading results when adapted to the classroom level. In my final study, I address a gap in the 
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theory behind the popular utility value intervention (UVI): the behavioral mechanisms linking 

greater motivation to greater performance. I was able to utilize click data to discover behaviors 

that are associated with both motivation and course performance, finding that motivated click 

behavior (i.e., interest) is best identified by the patterns of spacing one’s engagement with the 

course across many days, especially days not surrounding course deadlines. I identify lingering 

questions about the directionality in the strengthening association between motivation and 

engaged behavior over time, discussing their implications for future intervention work. Overall, 

this study uses motivational theory to improve performance in online courses, and online course 

performance to inform motivational theory, demonstrating the potential for a symbiotic 

relationship between the fields of online learning and motivation.  

 



 

 1 

INTRODUCTION – The state of online education in the U.S. 

 
The prevalence of online education  

Online courses have rapidly become available in the past decade. As of 2011, online 

course enrollment had grown by over 9% in each year of the previous decade (Allen & Seaman, 

2013). This growth rate bears remarkable resemblance to the growth witnessed for school 

acquisition of computers and Internet connections before that time (Means, Bakia, & Murphy, 

2014). In the years since, these growth rates have continued, with the most recent national report 

showing that one in three college students now takes at least one course online (Allen & Seaman, 

2017). The uptake of online courses into the curricula of higher education institutions has only 

increased with every passing year (excluding private, for-profit institution), and has showed no 

signs of plateauing. 

The growth of online courses throughout higher education institutions is largely because, 

amidst the growing expenses of and demand for higher education in the United States, online 

courses have been heralded as a cost-efficient remedy of the future (Bowen, 2012). In the wake 

of the United States’ recent economic recession, political and education leaders alike have 

advocated for investments in online education as a means of meeting the increasing demand for 

higher education without exacerbating the heavy financial burden imposed on students (Means et 

al., 2014). From 2012 to 2015, this idea was reflected by decreasing on-campus enrollment 

coupled with increasing distance enrollment (Allen & Seaman, 2017). 

This growth been especially evident in California following the 2008 recession, in which 

the CSU schools became the first university system in the country to cap enrollment even though 

applicant pools were increasing. Soon after, California’s UC and community college systems 

followed suit (Bowen, Chingos, Lack, & Nygren, 2012). Since then, in response to Governor 
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Brown’s call for increasing access to high-demand courses, California’s CSU and UC 

universities have rapidly expanded their fully online course offerings, making hundreds of them 

available for “cross-campus” enrollment. The CSU system offers fully online programs for over 

30 bachelor’s degrees (“CSU Degree Programs”, 2017), and the UC system’s Innovative 

Learning Technology Initiative is actively prioritizing funding for transforming face-to-face 

courses to fully online courses (“ILTI Request for Proposals”, 2017). Meanwhile, Governor 

Brown has even created a controversial new push within the community college system to create 

a fully-online college (Zinshteyn, 2017). Overall, both national trends and those among the 

hundreds of thousands of students in California alone suggest that fully online course 

development will receive ample funding in years to come.        

Fortunately, research seems to support the merits of adopting online education as a cost-

effective solution. Online courses are associated with lower costs for students (Deming et al., 

2015; Means et al., 2014), along with less of a need for transportation and greater flexibility for 

balancing school with other responsibilities (Rickard, 2010). Meanwhile, university cost analyses 

have reported that transitioning from traditional courses to online formats result in a significant 

amount of savings to the school without sacrificing student learning (Twigg, 2003). More recent, 

rigorous studies of these economic issues have been skeptical that contemporaneous assessments 

of costs between traditional and online courses can provide accurate predictions of future, large-

scale, state-wide expenses (Bowen, 2012). Still, there is optimism that online learning could help 

reduce the costs of higher education without reducing the quality of the educational experience 

(Bowen, 2012). Moreover, as the case of California depicts, policymakers have shown they are 

willing to use online learning to save money without rigorous cost-analyses to support the 

decision (Means et al., 2014). 
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Overall, the growing economic necessity of online education is coupled with optimism 

surrounding its other theoretical benefits, especially for traditionally disadvantaged students. 

Online courses have proven effective for granting access and flexibility to students who cannot 

travel to a physical campus, or for whom the residential experience is overly expensive (Rickard, 

2010). Additionally, they offer the promise of differentiated instruction and the ability to go at 

one’s own pace (Means et al., 2014). Furthermore, online courses also allow universities greater 

capacity to accommodate at-risk students who fail required courses (Means et al., 2014). This 

ability to offer cost-effective solutions that could be particularly helpful for at-risk and hard-to-

reach students has led some researchers to predict that both public and private universities will 

make the growth of online courses and the courtship of online course-takers a focal point of their 

plans for growth (Allen & Seaman, 2013; Deming et al., 2015).  

Defining online education 

 Synthesizing the body of literature on online education can be quite daunting if one does 

not understand the terms that help differentiate between various types of online learning. This is 

especially true when determining if studies on “hybrid” or “blended” courses should be lumped 

in with fully online courses. An overview of these terms is presented by Means and colleagues 

(2014), who point out that many interchangeable terms synonymous with online learning have 

emerged, including “Web-based learning” and “cyber learning.” Importantly, though, a course 

involving the Internet is not considered an “online course” if the amount of the course 

experienced online is below a certain threshold. The Babson Survey Research Group, which has 

been heavily cited for its annual surveys on online learning in higher education, considers an 

“online course” one that presents more than 80 percent of its content online (Allen & Seaman, 

2013; Means et al., 2014). “Hybrid” or “blended courses” are those that present over 30 percent 
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of their content online, but have at least 21 percent of their content in person. Meanwhile, “Web-

enhanced” courses are those that use online applications to support the face-to-face learning 

experience, with less than 30 percent of the course operating online. As several studies have 

noted, outcomes of hybrid and online courses are often quite different when analyzed separately 

(Alpert, Couch, & Harmon, 2016; Means, Toyama, Murphy, & Baki, 2013). In this dissertation, 

the courses examined will all be online courses that meet the criteria of having over 80 percent 

conducted online.  

Online or blended: What is being prioritized? 

 Up-to-date national trends are slowly emerging around which kinds of online education 

are growing most rapidly, but preliminary reports suggest that colleges are prioritizing the 

growth of fully online programs rather than blended learning programs. These data, coming from 

Quality Matters’ new Changing Landscape of Online Education (CHLOE) survey in 2017, were 

broken down among different types of institutions, including two-year public, four-year public, 

four-year private, and for-profit institutions. This breakdown showed that at public institutions, 

faculty are especially likely to be the main drivers of online course creation, and they are the 

least likely to have support available for designing their courses. This mirrors the situation in 

California’s UC system described above. Its Innovative Learning Technology Initiative (ILTI) 

has put funding directly into the hands of faculty as principal investigators for the development 

of online courses. At the same time, the UC ILTI explicitly states that funding for online course 

development is being prioritized over funding for new hybrid courses. Importantly, the top 

funding priority for the ILTI is transforming a face-to-face course to a fully online course. In line 

with this trend of course translation, as opposed to creation, the studies of this dissertation draw 

from online courses that faculty have recently converted from face-to-face iterations. 
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Trouble with the effectiveness of online education 

Working, shopping, and communicating with friends have all been made more 

convenient and efficient by the affordances of online tools. However, the quality of education 

has not experienced such benefits from the shift to online spaces. In fact, there is concern 

whether deficiencies in the quality of online education may end up overshadowing its cost-

saving virtues (Bowen, 2012; Deming et al., 2015). Although a majority of chief academic 

officers at U.S. universities report that online learning is just as effective, if not better, than face-

to-face offerings (Allen & Seaman, 2013), researchers have bemoaned the lack of hard evidence 

supporting this conclusion (Bowen, 2012). Though disappointing, the lack of rigorous research is 

unsurprising given the near impossibility of getting approval to randomly assign students to 

different course modalities (Means et al., 2014). Still, the most recent meta-analyses find that 

across a wide range of K-12, undergraduate, and graduate settings, only 45 studies rigorously 

compared equivalent face-to-face and online courses, and none involved random assignment 

between modalities. Results showed that whereas blended learning (combining face-to-face and 

Internet-based instruction) demonstrated a positive association with learning outcomes, there was 

no significant advantage to taking a course online (Lack, 2013; Means, Toyama, Murphy, Bakia, 

& Jones, 2009).  

More recent analyses of online course effectiveness have not painted online courses more 

favorably. On top of persistent concern for the relatively poor retention rates of online courses 

(Bettinger & Loeb, 2017; Dupin-Bryant, 2004), new evidence from randomized studies suggests 

that equivalent online courses are no better (Bowen, Chingos, Lack, & Nygren, 2012), if not 

worse than, equivalent face-to-face courses (Alpert et al., 2016; Figlio, Rush, & Yin, 2013). 

Among college students, for whom the traditional, passive, lecture style of learning is already 
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heavily criticized (Freeman et al., 2014; PCAST, 2012), it is troubling to think that online 

courses may be even poorer alternatives for learning. A recent study by Bettinger and colleagues 

(2017) used data from a for-profit institution in which the same instructors, curricula, and 

textbooks were used in both the online and face-to-face versions of its courses. Using a wide 

range of statistical controls with a very large sample (N=230,000), the authors were able to 

conclude that taking an online course was associated with higher rates of dropout. In addition, 

the decision to take a course online was associated with an average decrease in grade by one-

third of a standard deviation. In line with results from smaller randomized studies, this is a 

compelling finding amidst a field of research often criticized either for small sample sizes or an 

inability to control for selection effects (Bowen, 2012).  

Paradoxically, although one of the supposed benefits of online instruction is its potential 

to improve the experiences of low-performing students through differentiation of instruction, it is 

these very students for whom online instruction is often worse (Alpert et al., 2016; Bettinger & 

Loeb, 2017; Figlio, Rush, & Yin, 2013). This is particularly alarming considering the greater 

prevalence of online courses in less-selective public institutions (Deming et al., 2015). This 

includes community colleges, where online courses indeed have a significant negative impact on 

student grades and persistence (Xu & Jaggars, 2013). It is also concerning that online courses are 

often used as tools for remedial learning (Means et al., 2014) given the especially negative 

outcomes online courses have for below-average achievers (Figlio et al., 2013). In an American 

society that is experiencing the greatest levels of income inequality in nearly 50 years (Saez, 

2010), it is troubling that even our educational institutions feel forced to adopt a system that may 

further disadvantage traditionally low-performing segments of society. These trends further 
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emphasize the urgency with which researchers must identify the reasons for online education’s 

poor outcomes.  

Therefore, in this dissertation, I address theoretical and methodological questions 

associated with studying course outcomes in online education. I focus my studies on an 

increasingly relevant sample of online courses: those by California’s UC faculty who are in the 

process of translating their face-to-face courses into online courses (in which > 80% of course is 

delivered online). As the following literature review outlines, these studies attempt to address the 

lack of literature on the role motivation may be playing in online course outcomes. Specifically, 

these studies will explore students’ motivation for taking online courses and students’ motivation 

within online courses, as well as ways that online students’ motivation can be improved. 
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LITERATURE REVIEW – The role of motivation in online courses 

 

Does motivation explain who selects into online courses? (Intro to Study 1) 

 Despite the need to improve the quality of online education, our ability to rigorously 

assess it can be difficult. Often, researchers design studies in which online (OL) courses are 

compared to equivalent face-to-face (F2F) courses. As the traditional form of education, F2F 

courses are standards by which we intuitively judge newly developed OL courses (Means et al., 

2013). Although conducting randomized control trials would be ideal for this task, only a handful 

have ever been carried out (e.g. Figlio, Rush, & Yin, 2010) due to the near impossibility of 

getting approval to randomly assign students to different course modalities (Means et al., 2014). 

Without the benefit of randomization, the majority of researchers in this field must make do with 

quasi-experimental studies, using statistical techniques to estimate whether differences between 

OL and F2F course outcomes are caused by the course formats themselves, or are simply due to 

pre-existing differences in the students who choose OL courses. The validity of conclusions from 

these studies rests heavily on the assumption that selection effects can be statistically controlled.  

Unfortunately, most research overlooks potentially important psychological differences 

between students who choose OL and F2F courses. A review of studies comparing OL and F2F 

courses cited by prominent meta-analyses (Lack, 2013; Means et al., 2013) reveals that these 

studies rarely consider group differences beyond superficial demographic variables such as age, 

race, gender, and SES. This is likely due to the convenience of collecting demographic variables. 

However, psychological variables are just as, if not more important for predicting student 

success in a course. Students’ motivation when beginning a course, for example, is considered a 

much more proximal predictor of academic success than race or gender (Wigfield & Eccles, 

2000). Yet, motivation has not been accounted for as a pre-existing difference between OL and 
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F2F students by even the most rigorously controlled studies (e.g. Xu & Jaggars, 2011). This is 

especially concerning considering recent qualitative findings suggesting that students prefer to 

take more “important” or “interesting” courses face-to-face (Jaggars, 2014). According to the 

Eccles and colleagues (1983) Expectancy-Value Theory of motivation, finding a course 

important or interesting indicates that the student is more likely to value participating and 

succeeding in the course. Valuing a course, in turn, is predictive of achievement. Therefore, if 

online students are more likely to believe a course is less interesting or important, they are often 

less likely to succeed.  

Eccles and colleagues’ Expectancy-Value Theory of motivation 

 Although the past couple centuries have seen many different ideas of how motivation 

should be defined and measured, the Eccles and colleagues (1983) Expectancy-Value Theory 

offers one of the most prominent and nuanced frameworks of motivation available today (APA, 

2017). Building off the simple questions we often ask ourselves, “Can I do it?” and, “Do I want 

to do it?”, Expectancy-Value theories of motivation (e.g., Atkinson, 1957) suggest that people 

will be motivated to engage in a task if they expect they can succeed and if they see value in 

succeeding. A key contribution of the Eccles and colleagues model is the delineation of different 

reasons one might assign value to a task: utility, interest, attainment, and cost. Whereas utility 

value is the usefulness the task holds for helping achieve future goals, interest value is the 

natural enjoyment one gets out of a task, similar to the idea of intrinsic motivation as defined by 

Deci and Ryan’s Self-Determination Theory (Wigfield & Eccles, 1992). Meanwhile, tasks that 

are important to maintaining our desired personal identities hold attainment value. Finally, 

perceiving that there are costs to succeeding in a task detracts from its value. In recent years, an 

expanding body of research has even identified subcomponents of cost such as opportunity cost, 
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effort cost, and psychological cost (Flake, Barron, Hulleman, McCoach, & Welsh, 2015; Perez, 

Cromley, & Kaplan, 2014). Altogether, assessments of students’ expectancies of success and 

various values for school subjects have been used to successfully predict their choices, behavior, 

and performance (Eccles, 2005). Therefore, the present studies measure motivation by capturing 

students’ expectancies for success and subjective values of the specific course subjects they are 

studying. 

Who is more likely to choose online courses and why? 

Compounding the lack of work on motivational differences in OL and F2F students, large 

scale data sets have yielded limited findings on how selection effects play out in OL and F2F 

courses, as these data sets are armed with little beyond basic demographic information. Women 

are generally more likely to enroll in online courses than men (Price, 2006). Additionally, online 

students are more likely to be older (Moore & Kearsley, 2005; Romero & Usart, 2014), 

employed, and single parents (Escueta, Quan, Nickow, & Oreopoulos, 2017), reflecting the 

flexibility desired for completing studies alongside employment and family responsibilities 

(Bailey, Ifenthaler, Gosper, Kretzschmar, & Ware, 2015). These demographic characteristics are 

therefore seen as important covariates for controlling for bias due to selection effects.  

However, demographic differences such as being female or being older are not 

considered causes for poor performance in school. Rather, any observed associations between 

demographic characteristics and poor course performance should be mediated by behavioral or 

psychological processes conducive to poor course performance. Consequently, more nuanced 

information about students who choose OL courses is needed to understand what characteristics 

could make them predisposed to perform more poorly compared to F2F peers. To discover more 

meaningful differences between OL and F2F enrollees, students’ actual reasons for selecting into 
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OL courses may offer insight. Understanding the core reasons that students choose OL courses 

can lead to a more nuanced understanding of who these students are more likely to be in terms of 

behavioral and psychological processes. This information could even be used to improve our 

understanding of why certain demographics of people tend to choose OL courses.  

Only a handful of studies to date have explicitly examined students’ reported reasons for 

choosing between OL and F2F courses. Several have found that students do so for the flexibility 

it provides (Bailey et al., 2015; Johnson, Stewart, & Bachman, 2015; Vanslambrouck, Zhu, 

Lombaerts, Philipsen, & Tondeur, 2018), and not because they believe it will provide a better 

learning experience (Aslanian & Clinefelter, 2013; Jaggars, 2014). On the other hand, students 

who choose F2F courses seem to do so after considering their learning preferences. Often, there 

is a concern that interactions with the instructor would be diminished in an online environment, 

which is cited as a common reason for choosing F2F courses (Jaggars, 2014; O’Neill & Sai, 

2014). Similarly, students who believe online classes diminish interactional quality will often 

pick F2F courses if they value the social elements of their school experience or believe that 

interactional quality will help them self-regulate and manage their studies (Hagel & Shaw, 

2010). Finally, qualitative work has suggested that, when weighing the flexibility of OL courses 

against the higher interactivity of F2F courses, students will consider the difficulty of the class. If 

students believe the class is “easy,” and presumably, that they won’t need to depend upon 

interactions with the instructor, they may be more willing to take the course online (Jaggars, 

2014). Overall, the clear differences between OL and F2F students’ reasons for selecting their 

respective course modalities hints that selection effects may be responsible for disparities in 

course performance. Yet no studies have related students’ reasons for taking OL and F2F courses 

to their motivational, behavioral, and performance outcomes. 
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Research Questions 

 Online courses and the students that take them can vary dramatically from context to 

context. Therefore, it is important to consider that the present study was done in a large, research 

university of traditional college students.  

1. Are there baseline motivational differences in students who take courses online? 

2. What are the reasons that students take courses online and face-to-face at a large research 

university in the United States? 

3. How are student reasons for choosing OL courses associated with their motivation, 

behavior, and performance? 

4. How are demographic characteristics associated with choosing OL courses and reasons 

for  choosing OL courses? 

The first research question immediately addresses the lack of literature on the possibility that 

OL students may simply be less motivated to succeed than their F2F peers, as suggested by a 

recent qualitative study (Jaggars, 2014). The second research question then moves to a broader 

investigation of why students choose an OL or F2F course when both modalities are available. 

We anticipate that these results will largely reproduce previous findings in the literature. 

However, reproducing these findings in a large, American research university would confirm that 

patterns in students’ reasons are consistent with those from community college (Jaggars, 2014), 

professional development (Vanslambrouck et al., 2018), and international settings (Bailey et al., 

2015). The third research question extends this body of literature by connecting students’ reasons 

to their motivational, behavioral, and performance outcomes, leaving us with the most nuanced 

evidence to date of how selection effects may be impacting comparisons between student 

performance in OL and F2F courses. The fourth research question connects the body of literature 
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on the psychology of student choice to the quasi-experimental body of literature on estimating 

the effectiveness of OL courses relative to F2F courses. 

Do online courses affect students’ motivation? (Introduction to Study 2)  

 In light of the increasing prevalence of online course-taking, it is imperative to identify 

which features of online learning may be contributing to its relatively poor achievement 

outcomes. The phrase “distance” education itself highlights the most distinguishing characteristic 

of online courses: an increase in the physical distance between students and instructors. Since the 

advent of online education, scholars have noted how this physical distance impacts the 

“transactional” distance that colors interactions among instructors and students when those 

interactions are mediated by computers (Moore, 1993). Especially in asynchronous courses, 

students may be able to consume the entire curriculum of a course from wherever and whenever 

it most suits them, devoid of interpersonal interactions with both instructors and classmates. 

When they do interact, students are often forced to deal with the lower interactional quality 

afforded by computers. This may have important implications for online students’ motivation 

and subsequent course achievement.  

As Jaggars and Xu (2016) note, interpersonal interactions are hypothesized to promote 

students’ psychological connection to their course. They outline that this is done by addressing 

two fundamental features of online courses detrimental to a strong psychological connection. 

First, interpersonal interactions reduce “transactional distance,” or the separation of students and 

instructors from one another by space and/or time (Moore, 1993). At the same time, 

interpersonal interactions increase social presence, or the intimacy and immediacy that affect our 

perception of the other person as a “real person” (Short, Williams, & Christie, 1976). Theoretical 

and scale development on social presence have suggested that this concept comprises feeling 
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connectedness and accessibility in psychological, emotional, and social manners. Ultimately, as 

one meta-analysis has concluded, the quality of interpersonal interactions has been found to 

positively affect students’ performance outcomes (Bernard et al., 2009). This underscores the 

importance of addressing how a lack of quality interpersonal interactions may be undermining 

students’ psychological connection to their online courses.   

Potential motivational shortcomings of an online course – sense of belonging 

Research has indeed supported the hypothesis that students have lower psychological 

connections to courses when they are online. Although no study has yet measured this in terms 

of expectancy-value motivational constructs, the literature suggests that online students feel less 

classroom connectedness, which is highly related to an increasingly popular construct called 

sense of belonging (Cho, Hathcoat, Bridges, Mathew, & Bang, 2014; Rovai & Lucking, 2003). 

Notably, sense of belonging has been found to be positively associated with both expectancies 

and values (Freeman, Anderman, & Jensen, 2007; Goodenow, 1993; Goodenow & Grady, 1993; 

Zumbrunn, McKim, Buhs, & Hawley, 2014), and has been an increasingly well-recognized 

motivational construct since the early 1990s (Faircloth, 2011).  

 The motivational frameworks of Maslow (1954) and Deci and Ryan (1985), all recognize 

the need to belong as a fundamental human need, a claim which has been supported by 

Baumeister and Leary’s (1995) seminal review of empirical literature. As Eccles and Midgley 

(1989) point out, academic motivation is supported when the school environment meets these 

fundamental needs, making sense of belonging an important antecedent of students’ motivation. 

This notion is reflected in seminal theories of college persistence (Spady, 1971; Tinto, 1993), 

which posit that students’ sense of belonging is critical to their engagement and persistence (see 

Hurtado & Carter, 1997, for review). For this reason, sense of belonging has become a prominent 
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motivational construct, defined as the extent to which one feels personally accepted, respected, 

included, and supported by others (Goodenow, 1993). Additionally, sense of belonging is 

thought to be closely tied to “fit” and valued involvement (Hoffman, Richmond, Morrow, & 

Salomone, 2003), and implies the importance of lasting, positive, and significant interpersonal 

relationships (Baumeister & Leary, 1995).  

Given this definition, it is likely that students’ sense of belonging may be degraded by the 

features of online courses. The “transactional distance” between students and instructors may 

decrease their perceptions of the instructor’s respect and support for them. In asynchronous 

courses that offer few opportunities to interact with classmates, students may also be less likely 

to perceive that classmates will value the effort they invest in the course. Such hypotheses 

regarding these key components of belonging are supported by work showing that students 

report feeling less connected to both classmates and instructors in online courses (Cho et al., 

2014; Jaggars, 2014). Overall, then, one of the most promising hypotheses regarding the effects 

of online courses on students’ motivation is that it lowers their sense of belonging within the 

course.  

Issues with measuring belonging in online courses 

Though studies have compared OL and F2F students’ perceptions of classroom 

connectedness (Cho et al., 2014; Rovai & Lucking, 2003), a construct similar to sense of 

belonging (Summers & Svinicki, 2007), researchers have yet to compare OL and F2F students’ 

perceptions of belonging. However, an important theoretical and methodological issue may stand 

in the way of studying this. Due to a lack of theory regarding whether student’s conceptualize 

sense of belonging differently across context, quantitative studies have largely operated under 

the assumption that sense of belonging develops the same way in different contexts. Carol 
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Goodenow’s Psychological Sense of School Membership (PSSM) scale (1993) was created to 

assess belonging in the middle school context, but it has been adapted to measure belonging in 

universities and even in individual college classrooms (Freeman et al., 2007; Zumbrunn et al., 

2014). However, differences in these contexts could conceivably change the way that students 

think about sense of belonging.  

There are theoretical reasons to hypothesize that belonging in a university classroom 

context, not to mention an online classroom context, may occur differently than in the middle 

school context. Whereas middle school students are in early adolescence, college students are 

typically in late adolescence, which could potentially change collectively understood norms for 

the social interactions that form the foundation of belonging. Similarly, whereas middle school 

students are often in class sizes of 20-40, college students may experience class sizes of 200-400. 

These circumstances may deemphasize peer and instructor interactions, altering students’ 

expectations and criteria for developing a sense of belonging. Finally, a student’s experience in a 

college course can be as short as 10 weeks in duration, whereas their experience in middle school 

may last around three years. Such a short window of interacting with classmates may not afford 

the “temporally stable and enduring” interactions that Baumeister and Leary theorized are 

necessary conditions for developing belonging (Baumeister & Leary, 1995).  

Recent qualitative work suggests that belonging is indeed conceptualized differently 

when the context in which it is studied changes. Slaten and colleagues, for instance, recently 

developed a separate scale for measuring university belonging informed by qualitative data 

suggesting that belonging is thought of differently in university contexts than middle school 

contexts (Slaten et al., 2014; Slaten, Elison, Deemer, Hughes, & Shemwell, 2017). When 

narrowing our focus on belonging within a single classroom setting, it may be important to 
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consider that the context has a narrower range of valued outcomes: academic knowledge and 

achievement. Green and colleagues (2016) recently explored how belonging was conceptualized 

in a STEM school, noting the context as one that intentionally exudes a culture of advanced 

academic achievement. Importantly, they concluded from their interviews that belonging in that 

school context was tied more heavily to academic achievement than is typically discussed in 

other studies of school belonging. They therefore introduced the idea of complementary 

processes that can build belonging, social belonging and academic belonging. Whereas social 

belonging represents feelings of acceptance, respect, and inclusion that popular school belonging 

instruments are trying to measure as a result of interactions with others, academic belonging 

represents students’ experiences of meeting academic expectations and participating in a range of 

activities and sharing in educationally-oriented experiences with peers. Similarly, shifting focus 

from a school to a classroom context that exalts a narrower set of achievement-based goals may 

de-emphasize the value of social belonging and instead make more salient belonging that is tied 

to one’s academic achievement.   

Quantitative analyses also imply support for the idea that sense of belonging should be 

measured differently in different contexts. Factor analyses of Goodenow’s PSSM have 

consistently shown on multiple occasions that whereas school-level belonging can be broken 

down into three or more factors (Freeman et al., 2007; Ye & Wallace, 2013; You, Ritchey, 

Furlong, Shochet, & Boman, 2011), those same items produce only one factor when adapted to 

the classroom-level (Freeman et al., 2007; Zumbrunn et al., 2014). This is simply done by 

changing the word “school” to “class,” but clearly this change alone is enough to change the way 

students interpret and answer questions about belonging. The disparity provides empirical 

evidence that sense of belonging is conceptualized differently in university-wide and classroom-
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level contexts. Considering the differences between university-wide and classroom-level 

belonging, it is certainly possible that online college courses require a different form of 

measurement as well. 

Many different (often non-validated) measures of belonging have been used in college 

contexts for individual studies (e.g., Hausmann, Ye, Schofield, & Woods, 2009; Meeuwisse, 

Severiens, & Born, 2010; Summers & Svinicki, 2007), but Goodenow’s Psychological Sense of 

School Membership (PSSM) is considered the gold-standard for measuring school belonging 

among adolescents (Faircloth, 2011). This is becoming true even among late adolescents in 

college, despite the existence of instruments designed for college students (e.g., Hoffman et al., 

2003; Slaten et al., 2017). Likely, it is due to the positive reputation the PSSM has gained 

through its extensive use in middle school and high school (see You et al., 2011, for review). 

Because of this, we will use the PSSM in the present study to investigate whether belonging 

should be measured differently in different contexts and, if so, how.    

Research Questions 

 This study will address the methodological issue of measuring sense of belonging in 

online courses and offer insight into the elements of online courses that may hinder the 

development of belonging. The study will be guided by the following research questions: 

1. Do students conceptualize sense of belonging in different ways across contexts? 

(university, face-to-face classroom, online classroom) 

2. Does a popular instrument measure sense of belonging when adapted to an online 

classroom context?  

3. What are barriers to belonging in online courses?  
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These questions will address the theoretical gap regarding the measurement of sense of 

belonging across classroom contexts and test a promising hypothesis for the ways in which 

online courses impact students’ motivation.   

Are motivational interventions especially effective for online students? (Intro to Study 3)  

 To complement the previous study’s investigation of students’ motivation in online 

courses, I will also explore the potential of motivational interventions to help online course-

takers. Documenting and addressing online students’ motivation from an expectancy-value 

framework has yet to be done. This may be unsurprising given past studies that have found a 

disproportionately low number of publications regarding online students’ motivation (Huett, 

Kalinowski, Moller, & Huett, 2008; Visser, Plomp, Amirault, & Kuiper, 2002). Nevertheless, 

two recent studies suggest that online students may have lower value for their courses. First, a 

qualitative study by Jaggars (2014) reported that when students take courses that they find 

“important” or “interesting,” they prefer to take them face-to-face. According to Eccles and 

colleagues’ expectancy-value theory, this would imply that online students are likely to have 

lower interest and utility value. Second, preliminary data analyses from the first study of this 

dissertation suggests that even if online students’ baseline utility and interest values are 

equivalent to those of their face-to-face peers, their values are likely to go down over time, 

whereas, the values of face-to-face students are more likely to go up. This provides ample cause 

to examine how online students’ expectancies and values both at the beginning of the course and 

throughout the course compare to those of their face-to-face peers.  

 Theoretically, though, why might online students have lower values for their courses? 

One simple explanation proposed above is that the students who don’t value a particular subject 

are simply more likely to take the course online (Jaggars, 2014). However, the positive 
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correlation between student’s sense of belonging and their subjective task values hints at the 

possibility that it may be a process related to connectedness and belonging (Freeman, Anderman, 

& Jensen, 2007; Goodenow, 1993; Goodenow & Grady, 1993; Zumbrunn, McKim, Buhs, & 

Hawley, 2014), which is another way of referring to students’ “psychological connection” to 

their class (Jaggars & Xu, 2016). When online courses increase the “transactional distance” 

between students, classmates, and instructors, and decrease students’ connectedness and 

belonging in the class, students may find less utility value. Importantly, utility value can be 

derived from connecting course content to both professional and social goals. Whereas utility 

value is traditionally thought of as the connection that students make between course content and 

their academic/ professional goals, students may also find that engaging in a course is useful for 

engaging with and being accepted by peers (Gaspard et al., 2015). Therefore, if the online course 

context diminishes students’ sense of belonging (Cho et al., 2014; Rovai & Lucking, 2003), 

students may have fewer reasons to actively engage with the course material. 

Although this makes online courses an ideal context for interventions focusing on either 

sense of belonging or expectancy-value constructs, the far more established motivational 

interventions are those rooted in expectancy-value constructs (Harackiewicz & Priniski, 2018). 

Whereas a review of literature reveals no studies explicitly testing sense of belonging 

interventions at the college classroom level (Harackiewicz & Priniski, 2018), at least four studies 

specifically focusing on utility value in college classrooms have been conducted in the past 

several years (Canning et al., 2017; Harackiewicz, Canning, Tibbetts, Priniski, & Hyde, 2016; 

Hulleman, Godes, Hendricks, & Harackiewicz, 2010; Hulleman, Kosovich, Barron, & Daniel, 

2017). These utility value interventions (UVIs) have successfully promoted students’ value of 

and performance in both STEM and non-STEM courses (Harackiewicz & Priniski, 2018). 
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Because of the number of successful replications, as well as the increasingly nuanced 

understanding of the mechanisms driving that success (Wigfield, Rosenzweig, & Eccles, 2017), 

ample funding continues to be invested in the replication of this intervention in different 

university and classroom contexts. Yet, no research has investigated the effectiveness of UVIs in 

a classroom environment where they may be especially effective: online college courses. 

Therefore, the final study of my dissertation will investigate the effectiveness of a utility value 

intervention in an online college course. 

Theoretical underpinnings of utility value interventions 

Utility value is the perception that completing a task will hold relevance for one’s future 

goals (Wigfield & Eccles, 1992). Although it is just one of several subcomponents of value in 

Eccles and colleagues’ Expectancy-Value model, it is thought to be one of the most malleable, 

making it an appropriate target for intervention. As Harackiewicz and Priniski (2018) detail in 

their review, UVIs are driven by the hypothesis that if educators can help students connect 

course content to their short- or long-term goals, students will have stronger reasons, and thus 

stronger motivation, to engage with the material. Ultimately, this serves as a motivational 

mechanism responsible for improving students’ performance.  

 The majority of utility value interventions accomplish these outcomes by having students 

self-generate connections between their goals and the course content they are studying, often 

through writing assignments. In these assignments, students are asked to choose a topic covered 

in the current unit of course material and write about the relevance of that topic to their lives. 

This treatment condition is then juxtaposed with a control condition in which students write a 

summary of that topic (Harackiewicz & Priniski, 2018). Although some variations of this 

intervention involve having a researcher or instructor simply tell students about the utility of a 
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subject (e.g., Durik & Harackiewicz, 2007), or having students read quotes from other students 

(Gaspard et al., 2015), the majority of field-based experiments direct students to self-generate 

ideas. Because students essentially convince themselves of the benefits of learning the course 

material, researchers are able to limit the possibility that students actually view the exercise as an 

intervention, contributing to the theoretical validity of the findings by guarding against the 

possibility of a “good-subject” bias.     

Although positive effects have been found in many studies, the heterogeneous effects that 

often emerge suggest that online courses may be a context in which UVIs are the most impactful. 

A strength of the evolving body of work on UVIs is the number of moderators that have been 

identified. Although several of these focus on the delivery of the intervention (e.g., Tibbetts et 

al., 2016), another line of work has focused on identifying subsets of students for whom these 

interventions have been most effective. Foremost among them are students who begin the course 

with low initial exam grades (Harackiewicz et al., 2016; Hulleman et al., 2010, 2017). 

Sometimes these subgroups of students are the only ones for whom the intervention actually has 

a significant effect (e.g., Hulleman et al., 2010), though this should not necessarily be considered 

a weakness of the intervention if the goal is to close achievement gaps. The takeaway, however, 

is that UVIs have proven to be especially effective among students who seem to struggle the 

most. 

Although online college courses may be an especially appropriate context for 

motivational interventions, no researchers have implemented a UVI in this setting. That is not to 

say motivational interventions have not been tested in online settings. Recently, an unpublished 

study tested the effectiveness of a UVI on online high school students. This study had only 

modest findings regarding the success of a UVI featuring both quotes from other students and a 
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writing assignment connecting course material to personal goals. However, this study may have 

underestimated the intervention’s effectiveness because participants opted-in to the study, 

making it likely that many of the low-performing, less-motivated students who would stand to 

benefit the most were not represented in the sample (Rosenzweig, 2017).  

Meanwhile, a separate line of motivation research that has targeted online college 

students has found positive effects for interventions based on the ARCS model of motivation 

(Keller, 1987). This model, which focuses on building students’ (A)ttention, (R)elevance, 

(C)onfidence, and (S)atisfaction in their courses, is said to be based in several prominent 

motivational theories, including socio-cognitive theory and interest theories (Keller, 2010). 

Additionally, it is based in expectancy-value theory, as it reflects the importance of utility value 

(relevance) and expectancies of success (confidence) (Fritea & Opre, 2015). Studies have 

focused on the impact of things as simple as biweekly emails intended to convey the relevance of 

the course (Huett et al., 2008), to entire versions of courses intended to maximize links between 

content and learner’s objectives (Fritea & Opre, 2015). Although these randomized studies found 

positive effects on students’ motivation, effects on students’ task values were often not measured 

as defined by expectancy-value theories. In the one study in which utility value was targeted and 

significantly improved, the intervention was incredibly resource-intensive, involving the entire 

design of the course around the idea of utility value (Fritea & Opre, 2015). Therefore, this body 

of research shows that motivational interventions can be effective in online courses, but that 

work remains to be done to discover whether short, cost-effective interventions such as UVIs can 

impact students’ task value and performance in online college courses.   

Using click data to uncover behavioral mediators of UVIs 
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 Despite recent advances in the field of utility value interventions, a major question that 

remains is what behavioral changes mediate the well-documented relationship between higher 

motivation and higher course outcomes. Researchers of these interventions have insisted that the 

well-articulated nuances of the psychological theories behind their designs means they should 

not be regarded as “magic bullets” (Yeager & Walton, 2011). Yet, the conceptual models of 

these interventions are missing a long-overlooked link between higher motivation and higher 

performance (Harackiewicz, 2017). Implicit in all conceptual models linking motivation to 

higher performance are the behavioral or cognitive mechanisms directly responsible for 

academic performance. But it is still a mystery whether and how motivational interventions lead 

to behavioral and cognitive changes, as these mediational processes are overlooked in 

intervention researcher’s conceptual models and study designs.  

Fortunately, online courses may offer a solution to the cause of this oversight. It is likely 

that behavioral data sufficient for addressing the question of behavioral and cognitive mediators 

are simply too difficult to collect. Does the motivational intervention lead students to study 

more? Does the motivational intervention lead students to procrastinate less? Although intensive 

longitudinal survey data collection methods might help capture students’ daily or weekly 

behaviors, these questions would still have to be answered largely based on students’ self-reports 

of their study patterns. Furthermore, the intensity of these types of studies can be burdensome for 

students and lead to high rates of attrition (Sugie, 2016). Therefore, it would be beneficial to this 

field if researchers could collect behavioral data without being overly intrusive and without 

relying upon the questionable validity of self-report measures. 

Because of online courses’ ability to use clicks to collect trace data, online courses may 

provide the perfect context for answering long-standing questions about the behavioral processes 
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behind motivational interventions. When learning takes place in technology-enhanced 

environments, the interactions between a learner and the environment can be used to “trace” a 

learner’s actions during a task (Bernacki, Schunk, & Greene, 2018). In an online course, clicks 

on certain web pages can reflect important consequences of learners’ motivation, such as help-

seeking or challenge-seeking. Additionally, the timing of those clicks can be used to assess 

whether students are spacing their studying or procrastinating. In this way, the emerging field of 

learning analytics offers unique insights into behavioral processes that underlie student’s 

learning outcomes (Siemens, 2013), all without requiring students to actively participate in the 

process of data collection.  

Research Questions 

 Thus, the present study is driven by four research questions that explore the effectiveness 

of a utility value intervention in an online course: 

1. Do online students’ expectancies and values for their course differ from those of their 

face-to-face peers? 

2. Is a utility value intervention differentially effective in online and face-to-face courses? 

3. What are the behavioral correlates of expectancies and values in an online course? 

4. What are the behavioral mediators of an online utility-value intervention, if any? 

The first research question will use the control group in the present study to address the lack of 

literature documenting differences in values between OL and F2F students. This will involve 

measuring motivational constructs at the beginning of the course as well as changes in values 

throughout the course. Meanwhile, the intervention will compare the effectiveness of the 

intervention across the OL and F2F classes. Next, we will use correlational analyses to 

understand links between Expectancy-Value constructs of motivation and behavior in an online 
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course. Finally, if any significant effects of the intervention are found, and if any significant 

associations between motivation and click-data are found, models will be tested to identify 

potential behaviors that may be mediators of the intervention in an online course. 
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Modality Motivation: Selection Effects and Motivational Differences in Students Who 

Choose to Take Courses Online 

Research Questions 

1. Are there baseline motivational differences in students who take courses online? 

2. What are the reasons that students take courses online and face-to-face at a large research 

university in the United States? 

3. How are student reasons for choosing OL courses associated with their motivation, 

behavior, and performance? 

4. How are demographic characteristics associated with choosing OL courses and reasons 

for  choosing OL courses? 

The first research question immediately addresses the lack of literature on the possibility that 

OL students may simply be less motivated to succeed than their F2F peers, as suggested by a 

recent qualitative study (Jaggars, 2014). The second research question then moves to a broader 

investigation of why students choose an OL or F2F course when both modalities are available. 

We anticipate that these results will largely reproduce previous findings in the literature. 

However, reproducing these findings in a large, American research university would confirm that 

patterns in students’ reasons are consistent with those from community college (Jaggars, 2014), 

professional development (Vanslambrouck et al., 2018), and international settings (Bailey et al., 

2015). The third research question extends this body of literature by connecting students’ reasons 

to their motivational, behavioral, and performance outcomes, leaving us with the most nuanced 

evidence to date of how selection effects may be impacting comparisons between student 

performance in OL and F2F courses. The fourth research question connects the body of literature 
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on the psychology of student choice to the quasi-experimental body of literature on estimating 

the effectiveness of OL courses relative to F2F courses. 

Methods 

Participants 

 Participants were drawn from a large research university in the southwest United States. 

Because this university is both a Hispanic-serving institution (HSI) and an Asian-American 

serving institution (AASI), the racial-ethnic composition of the surveyed courses was diverse. 

Setting 

 The courses under study all have both an OL and F2F version of the same course. In 

order to limit the potential for teacher effects to influence results, only courses with the same 

instructor teaching both versions of the course are considered for the study. Additionally, 

because students’ reasons for choosing between OL and F2F has been shown to change over 

time (Bailey et al., 2015), we will survey courses at both introductory and advanced levels (see 

Table 1.1). These courses included Engineering, Chemistry, and Anatomy. Enrollment has been 

rapidly increasing at UCI, making it difficult for administrators to find space for all incoming 

Engineering students. Therefore, a small online section was added to supplement the limited 

number of spaces available in the traditional face-to-face introductory Engineering course. 

Furthermore, the Chemistry department’s online courses were only offered to students who were 

behind the typical introductory Chemistry series. Therefore, this setting reflects the diverse 

reasons for which universities are turning to online courses; specifically, a lack of enough 

physical space, and the desire to offer more remedial courses for underperforming students 

(Means et al., 2014).  
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Table 1.1 
 
Table 1.1 Overview of Courses Included in Study 

Course Modality Typical student Year Term Instructor N 

Intro Engineering F2F First year 2016 Fall Mr. Yen 315 

Intro Engineering OL First year 2016 Fall Mr. Yen 57 

Intro Chemistry F2F First year 2018 Winter Ms. Hatha 447 

Intro Chemistry OL First year 2018 Winter Ms. Hatha 210 

Adv. Anatomy F2F 3-4 year 2016 Summer Mr. Mina 47 

Adv. Anatomy OL 3-4 year 2016 Summer Mr. Mina 37 

Adv. Anatomy F2F 3-4 year 2017 Summer Mr. Mina 42 

Adv. Anatomy OL 3-4 year 2017 Summer Mr. Mina 41 

Note. All instructor names are pseudonyms. 

 

Procedure 

 In the first week of each course under study, students were consented and took a survey 

asking about their motivation for the upcoming course, as well as their reasons for choosing 

either the OL or F2F version of the course. In the final week of each course, students were again 

surveyed. In the post-survey, students were asked about how much time they spent on different 

course-related activities and a variety of non-course-related activities. Depending on the course, 

students were either given course credit or a $5 gift card for completing each survey. Because 

this was a part of a larger study with many research interests, each course had slightly different 

surveys. Although all students were asked about their reasons for choosing the course and 

various questions regarding motivation, not all students received the exact same battery of 

motivation items. 

Measures 
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 Reasons for choosing modality. Students’ reasons will be assessed by asking the 

question, “Why did you choose to take this course [online/ face-to-face] as opposed to [online/ 

face-to-face]?” This will be an open-ended response question, to which students are expected to 

give answers of 1-2 sentences.  

 Motivation. Motivation will be operationalized as students’ expectancies of success 

within the course and the value they attach to the subject of study, consistent with Eccles and 

colleague’s Expectancy-Value Theory of Motivation (Eccles et al., 1983). Specifically, we 

examined data on students’ self-concept of ability, utility value, interest value, attainment value, 

and cost value for their respective courses. Often, each of the constructs was measured using 

scales of two to three items. These items were adapted from Gaspard et al. (2015), but response 

scales were changed from a true/not true scale to item-specific scales.  

 Relative motivation. We also measured students’ perceptions of their course’s 

importance and interest relative to the other courses that they were taking that term. We first 

asked students to list their other courses, then had students rank the courses from most to least 

important, and then from most to least interesting. 

 Time spent on academic activities. This included hours spent per week on course, time 

spent meeting with instructor, and time spent meeting with study groups (Flynn, 2014). 

 Time spent on non-academic activities. This includes caring for dependents, driving to-

from class, and working for pay (Flynn, 2014).  

 Demographic variables. A wide array of variables provided by the university’s office of 

institutional records after the course was completed included gender, race/ethnicity, age, major, 

low-income status, first-generation status, SAT scores, high school GPA, prior college GPA, 

academic year in school, and units attempted during the same term. 
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 Grades. All graded assignments for the course were provided by the instructor. This 

included points assigned for all participations, homework, labs, projects, and exams.  

 Goal grades. During the survey, we also asked students to report the grade that they 

expected to get. For the Chemistry course, we were also able to ask students what grades they 

wanted to get and the worst grade that they would consider acceptable.  

 Goal grade achievement. The above variables allowed us to create an additional, 

meaningful measures of course performance, such as grade goal achievement, which we created 

by subtracting students’ final grade from their expected grade. 

Analysis Plan 

First (RQ 1), quantitative data of students’ self-reported motivation for the course was 

compared between OL and F2F versions of the same course. These comparisons were conducted 

upon the subsets of expectancies and task value outlined above, including self-concept of ability, 

utility value, interest value, attainment value, and cost value. For the introductory Chemistry 

course, we were also able to test for differences on measures of relative motivation and target 

grades. Although t-tests are normally conducted to compare two groups on normally distributed 

quantitative scales, many of the distributions of students’ value for the respective course subject 

were non-normal. This is unsurprising because students in these courses are often majoring in the 

discipline and are therefore likely to see immense value in the course. However, the non-

normality of the data required that non-parametric equality of medians tests be used to assess 

between-group differences. Importantly, this test of equal medians is much more robust to 

outliers and non-normality than those comparing means.  

Second (RQ 2), students’ qualitative reasons for choosing the OL or F2F modality were 

analyzed. Importantly, students were also asked if they were aware that the course had been 
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offered both OL and F2F, and the responses of those who reported they were not aware of this 

choice were excluded. Two lead authors first agreed upon a coding scheme after reviewing a 

subset of responses of both OL and F2F students. This was done through initial coding (Saldaña, 

2014), and was informed by a combination of previous findings and considerations relating to 

expectancy-value theory (Vanslambrouck et al., 2018). The coding scheme consisted of general 

themes, and subcategories for each of those themes. Responses were coded for whether they fell 

under any general themes, then given an additional code if they fit a subcategory of that theme. 

Some responses were given multiple codes, as they implied multiple reasons for making the 

choice. The coding scheme was then used by two to three research assistants to code the entirety 

of the data. After inter-rater reliability was assessed, these results were then examined for 

differences between course modality (OL and F2F), course subject (Engineering, Chemistry, 

Human Anatomy), course level (introductory and advanced), and term (regular academic year 

and summer terms).  

Third (RQ 3), OL students’ reasons for selecting the OL version of the course were 

associated with their academic outcomes, time on academic activities, time on non-academic 

activities, and motivational measures throughout the term. We collapsed the reasons students 

gave for choosing the OL course into a smaller number of categories in order to explore ether 

whether theoretically interesting distinctions were associated with course experiences. OL 

students who chose their course for each of these respective reasons were compared to all F2F 

students. Course experience variables were standardized within each course (combining OL and 

F2F distributions for each course, respectively). This eliminated variance due to course format 

while retaining variance associated with course modality. This was done to reflect the practical 

question of whether there were detectable differences between OL students and their F2F peers. 
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We conducted equality of medians tests between broad categories of reasons for selecting OL 

courses and the course experience variables described above. 

Finally (RQ 4), students’ demographic characteristics were associated with the same 

broad categories of reasons for choosing the course described above. Because each reason for 

selecting either OL or F2F courses is coded as either a 0 or 1, we used Chi-square tests to 

determine their associations with gender, race/ethnicity, low-income status, and first-generation 

status, whereas we will use t-tests to determine their association with age, SAT scores, high-

school GPA, prior college GPA, academic year in school, and units attempted during the same 

term (these variables are all Normally distributed).  

Results 

RQ1: Are there baseline motivational differences in students who take courses online? 

 Quantitative comparisons of motivational differences presented in Table 1.2 show there 

are no consistent significant differences between OL and F2F students in their expectancies or 

values for their courses. Only in introductory Chemistry was the interest of OL students less than 

that of F2F students. Similarly, when introductory Chemistry was also examined by 

conceptualizing motivation hierarchically, we saw that students who chose the OL version of the 

course believe that the course is less interesting when compared to interest in their concurrent 

other courses.  

Importantly, results did not show that OL students tend to desire or expect lower grades 

than their F2F peers. Table 1.3 displays these additional analyses, which were conducted on 

variables that were only in the introductory Chemistry course. Much like the literature on 

performance in MOOCs, it is important to consider that students’ differences in overall 

performance simply stem from differences in desired and expected performance at the beginning 
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of the course. But we do not see evidence here that OL students have less lofty performance 

goals than their F2F peers. However, students who chose the OL chemistry course reported that 

the lowest grade they would be satisfied with receiving was significantly lower than students in 

the F2F course.
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Table 1.2            
            
Table 1.2 Comparison of Motivation Variables by Course Modality 
 Intro Engineering  Adv. Anatomy  Intro Chemistry 

 F2F OL Test  F2F OL Test  F2F OL Test 

 Mean  Mean  X2  Mean  Mean  X2  Mean  Mean  X2 

  (Median) (Median) 
(p-

value)   (Median) (Median) 
(p-

value)   (Median) (Median) 
(p-

value) 
Expected course grade 11.4 11.2 0.00  11.4 10.9 1.32  10.4 10.2 0.23 
 (12) (12) (p=0.99)  (12) (12) (p=0.25)  (11) (10) (p=0.63) 
            
Self-concept of 
Ability 4.00 3.98 0.09  4.93 4.82 0.00  5.17 5.08 1.38 

 (4) (4) (p=0.76)  (5) (5) (p=0.99)  (5.25) (5) (p=0.24) 

            
Utility Value 6.67 6.78 0.11  6.25 5.93 3.61  5.00 4.78 0.13 

 (7) (7) (p=0.73)  (6.5) (6.25) (p=.06)  (5) (5) (p=0.72) 

            
Interest Value 8.96 8.70 2.06  5.15 5.36 1.00  4.41 3.92 10.15 

 (10) (9) (p=0.15)  (5.5) (5.5) (p=0.31)  (4.4) (4) (p<0.01) 
            

Attainment Value 6.55 6.47 0.59  6.16 6.05 0.01  4.30 4.12 0.39 

 (7) (7) (p=0.42)  (6.5) (6.5) (p=0.91)  (4.25) (4.13) (p=0.53) 

            
Opportunity Cost     5.64 5.08 3.21  4.63 4.65 0.00 

     (6) (5) (p=0.07)  (5) (5) (p=0.93) 
N 312 59     88 77     324 139   
Note. Expected course grade was letter grade recoded numerically, from A+ (13), A (12), A- (11), B+ (10), B (10), through D- (2), and F 
(1).   
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Table 1.3    
    
Table 1.3 Comparison of Relative Importance and Target 
Grades by Course Modality 
 Intro Chemistry 

 F2F OL Test 
 Mean  Mean  X2 

  (Median) (Median) (p-value) 
Relative importance 1.82 1.70 3.10 

 (2) (1) (p=0.08) 
    

Relative interest 2.12 2.58 13.6 
 (2) (2) (p<0.01) 
    

Desired grade 11.49 11.48 0.36 
 (12) (12) (p=.55) 
    

Expected grade 9.46 9.26 0.58 
 (9) (9) (p=0.45) 
    

Worst acceptable grade 7.88 7.40 10.0 
 (8) (7) (p<.01) 
    

N 318 146   
 

RQ2: What are the reasons that students take courses online and face-to-face at a large 

research university in the United States? 

After initial coding, four overarching themes emerged for why students chose online 

courses, including preference for flexibility, need for flexibility, university constraints, and 

learning preferences. As we detail the results, we note that the final coding scheme, including 

sample quotes, are available in the Appendix B. A visualization of the results can be seen 

immediately below in Figure 1.1. Of the 219 OL students who offered reasons for their choice, 

the most common overarching reason was a preference for flexibility (n = 86, 39%). Many of 

these students simply mentioned their general desire for flexibility (n = 54, 25%). Others 

included specific reasons for preferring flexibility, such as not wanting to commute to class (n = 

26, 12%), wanting to simplify the balance between school and employment (n = 6, 3%), and 
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wanting to simplify the balance between school and family (n = 2, 1%). The second most 

common theme was need for flexibility (n = 55, 25%). These students suggested they would not 

have been able to attend the course without the flexibility of an online option. Some of these 

students simply mentioned their general inability to attend the F2F version of the class (n = 17, 

8%). Others included specific reasons for needing the flexibility, including conflicts with other 

courses offered at the same time (n = 23, 11%), having to work during the F2F course (n = 8, 

4%), and living too far away to make commute to campus (n = 8, 4%). The third most common 

theme was university constraints (n = 52, 24%), or that the F2F course was full when they 

enrolled, so the OL option was the only one that remained. The final, least cited theme was 

learning preferences (n = 42, 19%). These students said that they generally liked the format of 

OL classes better than that of F2F classes (n = 12, 5%), that they liked the freedom to control the 

pace of the course material (n = 14, 6%), that they felt OL course environments improved their 

ability to self-regulate (n = 13, 6%), and that they preferred online peer interactions (n = 4, 2%).  

 Only two of these overarching themes were relevant for the 500 students who offered 

reasons why they chose F2F courses. By far, the most prominent of these was learning 

preferences (n = 469, 94%). Many students cited their general belief that face-to-face courses 

were better for their learning (n = 197, 39%), but many fell into one or more specific 

subcategories. Students commonly said that they were concerned about their self-regulation, 

referring to distractions in OL courses or feeling more engaged in F2F courses (n = 114, 23%). 

Students also said they desired peer interaction (n = 78, 16%), professor interaction (n = 62, 

12%), and the belief that they learn better when they can see/hear the professor giving a lecture 

from the same room (n = 49, 10%). Some students said that they had previous experiences with 

online courses and simply disliked them (n = 26, 5%). Finally, students also cited the theme of  
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Figure 1.1. PF = prefer flexibility. NF = need flexibility. UC = university constraint. LP = 
learning preference. For a full explanation of the coding scheme, see Appendix A.  
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“I have work obligations, so it 
would be easier for me scheduling 

wise to have more freedom for 
when to take class.” 

“I am unable to come to campus on 
the days the face-to-face class is 

offered.” 

“There was no more available spots 
for her face-to-face course.” 

“I tend to do a little better in 
environments where I have the 

freedom to teach myself and move 
at a slower or faster pace.” 

“I don’t feel that I can concentrate 
in the online version of the class.” 

“It is easier for me to learn when a 
professor is lecturing. Verbal 

lectures help me remember the 
information more.” 

“Most med school and graduate 
schools require this course to be 

taken face-to-face.” 
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university constraints (n = 23, 3%), saying they believed the OL version of required courses 

would not be accepted when applying to post-graduate programs.  

There was a considerable amount of between-course heterogeneity when comparing 

online courses (see Appendix A for full breakdown). In the introductory courses, Engineering 

and Chemistry, only 16% and 36% of the students, respectively, chose the online courses due to 

preference for flexibility. Meanwhile, preference for flexibility was a reason given by 59% of the 

online advanced summer students cited a preference for flexibility. Conversely, introductory 

students were much more likely to cite university constraints. 54% and 21% of introductory 

Engineering and Chemistry students, respectively, said that they chose the OL course simply 

because the F2F version of the course was full. Zero students in the advanced summer course 

mentioned the impact of university constraints. The OL and F2F versions of the advanced 

summer course were evenly enrolled, and the F2F course did not reach its enrollment capacity.  

Among F2F students, learning preferences were slightly different among Engineering 

students. Whereas Chemistry and Anatomy students most frequently cited self-regulation 

concerns (29% and 35%, respectively) and a desire for professor interaction (29% and 9%, 

respectively), Engineering students cited peer interactions as the most common factor (20%). 

Detailed responses revealed that they wanted this peer interaction because the course involved 

groupwork assignments for building vehicles. This provided a clear, discipline-related reason for 

why many Engineering students chose the F2F course. Additionally, the advanced Anatomy 

students were far more likely to say they avoided the OL course because it would not count for 

graduate school requirements (15%) compared to introductory Chemistry (1%) and Engineering 

(3%) students. This may suggest that advanced students are more likely to consider the 

implications of their modality choice for graduate admissions. 
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RQ3: How are student reasons for choosing OL courses associated with their motivation, 

behavior, and performance? 

To begin assessing this question, we collapsed the large array of codes given for choosing 

an OL course. The main themes that emerged from the codes were preferring flexibility, needing 

flexibility, learning preferences, and university constraints. However, we collapsed the codes to 

represent theoretically plausible ways in which selecting an OL course could be associated with 

an experience different from that of F2F students. We started by looking only at students who 

said they were in the OL course because the F2F course was full. Because these students implied 

that they would otherwise be in the F2F course if not for university constraints, we expected 

these students would be the least likely to differ from their F2F peers. Next, we broke down the 

large number of students who talked about flexibility, classifying them by whether they specified 

what other responsibilities led to their desire for flexibility (flexibility – specific), or whether 

they gave a general, unspecific reason for desiring flexibility (flexibility – general). We reasoned 

that students with general, unspecific reasons for desiring flexibility may not have competing 

responsibilities, and simply may not want to attend a F2F class. From a motivational perspective, 

we imagined that these students may struggle due to a lack of utility, interest, or attainment value 

for the course. Conversely, we believed that students who cited specific reasons for desiring 

flexibility, whether needed or preferred, might face challenges engaging in the course due to 

competing responsibilities. We imagined that these students would perceive higher cost to 

engaging in the course and that they would report doing more non-academic activities. Finally, 

we examined the experiences of students who cited learning preferences for OL courses, 

hypothesizing that these students were the most well-suited to have more motivation and report 

more academic behaviors than their F2F peers. The composition of each collapsed coding 
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category is presented in Table 1.4. Each of these groups was compared one at a time to the F2F 

students (n = 493). 

Table 1.4     
     
Table 1.4 Collapsed categories of reasons for choosing OL course 

 F2F full Flexibility 
(general) 

Flexibility 
(specific) Learning Preferences 

 "F2F full" 
"prefer flexibility - 
general" 

Any other "prefer 
flexibility" 

Any "learning 
preference" 

  
"need flexibility - 
general" 

Any other "need 
flexibility)  

N 48 67 66 38 
 

 In contrast to Tables 2 and 3, which compared all OL students to all F2F students, Table 

1.5 shows the results when comparing F2F students to specific subsets of OL students grouped 

by their reasons for selecting OL courses. As expected, students who were in OL courses simply 

because the F2F course was full showed no pre-survey differences in motivation, did not exhibit 

any significant behavioral differences, and did not significantly differ in their performance when 

compared to F2F students. The only significant difference that did emerge was significantly 

lower interest in the course at post-survey. Overall, the lack of pre-survey motivational 

differences mirrored the aggregate results present in Table 1.2. 

As opposed to the results in Table 1.2, Table 1.5 shows that OL students did exhibit less 

motivation than their F2F peers when focusing only on the OL students who picked the course 

out of a general desire for flexibility. These OL students did not show differential engagement in 

academic or nonacademic activity and did not perform significantly lower than their F2F peers.  

 OL students who cited specific reasons for desiring its flexibility (e.g., commuting, 

employment) did perform significantly worse than their F2F peers. However, unlike those who 
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chose the OL course for the sake of general flexibility, those citing specific reasons for wanting 

flexibility actually did report more time on nonacademic behaviors like working for pay and 

caring for dependents. Additionally, they reported significantly less time on academic behaviors, 

like time spent in study groups. They also reported significantly less pre-course interest, and 

significantly lower expectancies for success at the end of the course. Interestingly, although they 

simultaneously reported less time on academic activities and more time on nonacademic 

activities, these students did not report less cost at either the beginning or end of the course. This 

may be due to the fact that conceptualizing measures of cost may be contextualized differently 

within the F2F and OL versions of the course, which we discuss below. 

 OL students who cited learning preferences reported patterns of motivation, behavior, 

and performance contrary to our hypotheses. These students said they believed the OL course 

format better suited the way they preferred to learn. Understandably, then, these students had 

significantly higher expectancies for success than their F2F peers. However, these students also 

reported significantly less utility, interest, and attainment value for the course, significantly less 

time spent in study groups, and significantly lower course performance.  
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Table 1.5      
       
Table 1.5 Medians for Course Outcomes by Course Modality and Reasons for Selecting OL Course 
    F2F OL 

      F2F full General 
flexibility 

Specific 
flexibility 

Learning 
preferences 

Academic outcomes      
 Final grade 0.22 -0.06 0.08 -0.16 -0.05 
 Goal grade achievement 0.14 0.07 -0.11 -0.15 -0.43 

 Desired grade 0.37 0.37 0.37 0.37 0.37 

 Expected grade 0.40 -0.17 0.53 0.47 0.40 

 Worst acceptable grade 0.15 -0.36 -0.39 0.15 -0.39 
Academic behaviors      
 Time on course -0.23 -0.48 -0.55 -0.20 -0.48 

 Speaking with faculty -0.05 -0.05 -0.17 -0.17 -0.17 

 Study groups -0.12 0.32 -0.68 -0.72 -0.72 
Non-academic behaviors      
 Working for pay -0.40 -0.40 -0.58 -0.40 -0.40 

 Caring for dependents -0.41 -0.41 -0.41 -0.01 -0.51 

 Socializing -0.23 -0.23 -0.23 -0.04 -0.23 

 Commuting -0.11 -0.11 -0.20 -0.20 -0.20 
Expectancies and values      
 Expectancies (pre) 0.00 0.00 0.11 -0.02 0.22 

 Utility (pre) 0.49 0.49 0.17 0.44 -0.03 

 Interest (pre) 0.10 0.02 0.05 -0.27 -0.26 

 Attainment (pre) 0.62 0.26 -0.16 0.38 0.36 

 Cost (pre) 0.25 0.25 -0.28 -0.28 0.25 

 Expectancies (post) 0.15 -0.02 0.08 -0.21 -0.18 

 Utility (post) 0.15 -0.07 -0.43 0.15 0.11 

 Interest (post) -0.03 -0.43 -0.32 0.08 -0.16 

 Attainment (post) 0.29 -0.14 -0.14 0.29 0.17 

 Cost (post) 0.22 NA 0.22 0.22 0.22 

Note. Bolded cells represent statistically different distributions from those of the F2F course, as concluded from 
equality of medians tests (p < .05). All variables were first standardized within course to remove between-course 
variation and create a standard scale so that all courses could be analyzed together. NA is entered for measures of 
cost because the Anatomy course was the only one in which cost items were asked at post-survey, and in that 
course, no students selected into the OL course because the F2F version was full. 
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RQ 4: How are demographic characteristics associated with choosing OL courses and 

reasons for choosing OL courses? 

Demographic characteristics are indeed associated with selection into the OL courses in 

our sample. Table 1.6 shows that women, older students, and part-time students were more likely 

to enroll in face-to-face courses. Associations between these demographic variables and reasons 

for selecting OL courses showed that women in OL courses were more likely than men to make 

that selection due to employment conflicts. Men in OL courses, conversely, were more likely 

than women to cite that the F2F course was full, or that they had course conflicts. Part-time 

students in OL courses were more likely to cite long commutes as the reason for their choice 

relative to full-time students, who were more likely to cite that the F2F course was full. Finally, 

older students exhibited a similar trend, citing long commutes as the reason for their choice 

relative to younger students, who were more likely to cite that the F2F course was full. Overall, 

this trend suggests that certain demographics, such as gender, age, and part-time enrollment 

status, are associated with specific competing responsibilities as well as the decision to take the 

course online. Selecting OL courses and reasons for selecting OL courses were not associated 

with ethnicity, low-income status, first-generation status, home language, transfer student status, 

SAT score, or high school GPA. 
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Table 1.6      
      

Table 1.6 Association of Demographic Variables with Course Modality Choice and Modality 
Selection Reason 
Demographic 
variable 

obs More likely to 
select OL? 

obs OL – Associated with 
reasons for selection?  

Interpretation 

Gender 896 Women 188 Women = employment Women more likely to 
list specific reasons for 
desiring flexibility 

    Men = course conflict & F2F full 

Ethnicity 800  167   
Low income 886  184   
Part time status 899 Part-time 

students 
189 Part time = prefer 

flexibility, citing 
commute 

Part-time students more 
likely to list specific 
reasons for desiring 
flexibility  

    Full time = F2F full  

First 
generation  

866  177   

      
Home 
language 

886  184   

Transfer 
student 

878  184   

Age  898 Older students 189 Older = prefer flexibility, 
citing commute 
Younger = F2F full 

Older students more 
likely to list specific 
reasons for desiring 
flexibility  

SAT score 859  180   
High school 
GPA 

853  176   

Note. Each conclusion for course modality choice is supported by a X2 test for which p<.05, 
associating the demographic variable with the decision to select an OL or F2F course. Each 
conclusion for specific reason for selecting the OL or F2F course when limiting the sample to OL 
or F2F students, respectively.  
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Robustness Check: Are women, part-time students, and older students doing worse in OL 

courses?  

 Results from research question three suggest that students who choose OL courses 

desiring flexibility for specific purposes perform worse than F2F students, and results from 

research question four suggest that women, part-time students, and older students are 

significantly more likely to select into OL courses for those types of reasons (e.g., employment, 

commuting). Therefore, we should expect that women, part-time students, and older students in 

OL courses are performing worse than their counterparts in F2F courses. We compared OL and 

F2F students’ final grades and goal grade achievement after breaking down the sample by 

gender, part-time status, and age. 

 Table 1.7 reflects the accuracy of these hypotheses. Whereas females did worse in OL 

courses than F2F courses, males did not. Whereas part-time students did worse in OL courses 

than F2F courses, full-time students did not. Whereas older students (over age 18) did worse in 

OL courses than F2F courses, younger students did not. Except for women, these patterns also 

held true when comparing OL and F2F students’ grade goal achievement.  
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Table 1.7  
       

Table 1.7 Associations of Demographic Variables and Course Performance by Course Modality 
    Final grade   Goal grade achievement 

  F2F OL Test  F2F OL Test 
  Mean  Mean  X2  Mean  Mean  X2 
 obs (Median) (Median) (p-value)  (Median) (Median) (p-value) 

Female 285 0.19 -0.12 6.75   0.32 0.01 2.99 

  (.27) (-.09) (p=.009)  (.37) (.05) (p=.084) 
Male 340 .09 -0.09 0.35  0.07 -0.13 0.11 

  (.16) (.07) (p=.552)  (.02) (-.03) (p=.745) 

         
Part-time 38 0.49 -0.51 5.22  0.94 -0.29 8.62 

  (.68) (-.31) (p=.022)  (.99) (-.53) (p=.003) 
Full-time 590 0.11 -0.06 2.96  0.14 -0.03 0.14 

  (.17) (.04) (p=.085)  (.07) (.05) (p=.710) 

         
Age > 18 201 0.31 -0.26 8.15  0.31 0.11 6.88 

  (.44) (-.04) (p=.004)  (.36) (0.02) (p=.009) 
Age <= 18 452 0.08 -0.02 2.38  -0.20 0.02 0.31 
    (.15) (.03) (p=.123)   (-.16) (.07) (p=.580) 

 

Discussion 

Past research has suggested that OL courses are associated with lower performance when 

compared to F2F course formats (Bettinger et al., 2017). With the exception of a small number 

of randomized control trials (e.g., Alpert et al., 2016), these conclusions have relied heavily on 

the presumption that variance due to selection effects is being partialed out by controlling for 

demographic variables. In this study, we find evidence that specific demographic variables are 

indeed associated with selection processes and differential performance outcomes in online 

courses. More importantly, we used qualitative data and an Expectancy-Value motivation 

framework to depict how these selection effects may be occurring. We began by capturing 

students’ reasons for selection into OL courses, then used the heterogeneity that we found among 

those reasons to guide quantitative analyses. Doing so revealed potential processes by which OL 
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students may struggle to perform as well as their F2F peers. Finally, we connect these processes 

back to specific demographic characteristics, such as gender, age, and part-time status, and 

confirmed that only students with demographic characteristics associated with those processes 

had significantly lower grades in OL courses. Below, we discuss the implications of knowing OL 

students’ selection reasons for predicting students most likely to struggle and potential ways they 

can be helped.   

We found that students select into OL courses for a variety of different reasons, and the 

value of understanding those reasons became apparent in our quantitative analyses. One of the 

most important realizations was that many OL students in our sample did not willingly select 

into the OL version of the course. These students serve as a representation of the growing 

necessity of OL courses to exist as a cost-effective means of accommodating growing numbers 

of students in higher education (Bowen, 2012). Therefore, in our examination selection effects, it 

was important to begin by considering that many students did not willingly select. It is certainly 

likely that there are characteristics associated with not enrolling early enough to gain a spot in 

the F2F version of the course that we might also hypothesize are associated with worse course 

performance, such as lower academic standing or less motivation. However, even if these were 

true in our sample, we did not see these differences bear out in the form of motivational, 

behavioral, or performance differences compared to F2F peers. These students did not seem to 

struggle, and separating them from the others who did willingly select into the OL course helped 

paint a clearer picture of the selection effects that were at play. 

In our aggregated analyses, Table 1.2 seemed to suggest that students do not take courses 

OL due to lower levels of motivation, contrary to recent qualitative findings (Jaggars, 2014). 

However, breaking down the students by their selection reasons told a different story. We did 
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find that students who simply wanted the flexibility of an OL version of the course without 

pressure from outside responsibilities (i.e., general flexibility) found the course material less 

important to accomplishing their goals (utility value) and less important to their identity 

(attainment value). However, these students still reported spending an equivalent amount of time 

on the course, including conversations with faculty and time spent in study groups when 

compared to their F2F peers. Ultimately, these students did not perform significantly worse than 

their F2F peers. This suggests that many students may indeed choose OL courses due to lesser 

motivation for the course, but that these students are among many other OL course takers whose 

choice does not seem to be associated with a lack of positive value so much as higher amount of 

cost value.  

 The role of cost emerged much more clearly when examining students who cited specific 

reasons for selection into OL courses. The Expectancy-Value measures of motivation that we 

used were context-specific, meaning comparing them across contexts can produce misleading 

results. The item we were most concerned about when comparing across OL and F2F contexts 

was the cost item, asking students how many opportunities they would have to give up in order 

to succeed in the course. OL students’ responses likely differed from those of their F2F peers 

simply because having chosen the OL version of the course implied less commuting and more 

flexibility to plan coursework around other valued activities. Although our aggregated 

comparisons suggest OL and F2F students don’t differ in terms of their cost, the selection 

reasons that we qualitatively capture suggest a different story: that selection into the OL course is 

associated with competing responsibilities (e.g., employment conflict, long commute) that may 

create barriers to engaging in the course as much as their F2F peers. This represents the construct 

of opportunity cost construct by showing that in order to fully engage in the course, OL students 
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would often have to prioritize the course above the competing responsibilities they face. As 

expected, this qualitative representation of cost was simultaneously associated with less 

interaction with peers (i.e., study groups) and greater time spent working for pay and caring for 

dependents. As Vanslambrouck and colleagues (2018) concluded after taking an Expectancy-

Value approach to understand OL selection patterns, students engage in an weighing of positive 

and negative value when considering whether to take a course online. Our evidence again 

suggests that this is true, but additionally sheds light on the mechanisms by which this choice 

may be impacting students’ performance.   

Although we intentionally chose to study only courses that had identical OL and F2F 

versions of the same course, leading scholars have argued that the field of online education needs 

to move beyond studies that ask whether online learning “works.” In order for a truly unbiased 

test, all instructional elements must be held constant (Clark, 1994). When this is the case, 

outcomes will never theoretically differ, however, because instructional content drives learning 

outcomes, not its medium. Therefore, there has been a push to instead investigate the ability of 

technology to provide learning affordances that the traditional classroom cannot (Means et al., 

2014, p. 24). In other words, attempting to find an ideal comparison that holds everything 

imaginable about OL and F2F courses constant holds few practical implications because we 

should not merely aspire to make our OL courses duplicates of our F2F courses.  

Rather, OL and F2F course modalities offer different benefits (Means et al., 2014), and it 

should be incumbent upon future researchers and practitioners to help students identify which 

course modality is best suited for their learning preferences. Unfortunately, this well-intentioned 

line of research seems far off, given the reality that many students base their decision to take OL 

courses due to F2F enrollment caps and competing responsibilities with which they must balance 
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their coursework. In its current state, online learning is simply a necessity for many students due 

to a lack of space in F2F classrooms, and for many more who have competing responsibilities 

outside of school.  

Considering this, the most important affordances of online learning to take advantage of 

right now are those that can help tailor online learning experiences specifically to students who 

face the challenges of juggling online education with competing responsibilities. Additionally, 

instructors should be especially wary of the possibility that by virtue of enrolling in an online 

course, their OL students may be signaling greater amounts of competing responsibilities than 

students in their F2F courses. 

Importantly, though, even the students who chose OL courses due to the belief that it 

would provide a superior learning experience ended up performing worse than their F2F peers, 

contrary to our hypothesis that they would perform better. As we have learned from the lack of 

validity surrounding “learning styles” (Pashler, McDaniel, Rohrer, & Bjork, 2008), students’ 

preferences for content delivery does not seem to be causally related to their performance in a 

course. What these students may actually prefer is not interacting with their classmates as much, 

as evidenced by the lower amount of time they spent in study groups. Therefore, even once it 

becomes a priority to help students select the appropriate course format, it will be important to 

consider that students may not know which modality is best suited for them. 

A model of selection effects in OL courses 

Both the hypothesis testing and exploratory work done in this study can be taken together 

to suggest a model explaining how demographic variables may be successfully controlling for 

selection effects. We assert that demographic variables predict students’ competing 

responsibilities and motivation. This, in turn, should inform students’ decision about whether to 
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select into an OL course when F2F versions of the course are available. Because the choice to 

enter an OL course is often associated with greater amounts of competing responsibilities, and 

lesser value for the course (either absolute or relative), OL students are more likely to 

underperform compared to their F2F peers. This implies that demographic variables like age and 

gender that are associated with greater amounts of competing responsibilities or lesser 

motivation are important to control for when evaluating how OL delivery formats compare to 

F2F delivery formats.  

The findings of the present study suggest a model by which demographic characteristics 

are associated with competing responsibilities, motivation, and one’s reason for selecting 

between an OL and F2F course. This, in turn, is hypothesized to lead to differences in behavior 

and changes in motivation throughout the course, ultimately impacting students’ performance. 

We offer this model both to organize our findings as well as suggest avenues for future empirical 

work. In this study, we didn’t test such a model due to the conflation of course modality with our 

cost measure. In addition, directionality must be carefully considered between students’ 

motivation and their reason for choosing the course. Depending on the time point at which 

measures are collected, one could argue either that motivation predicts one’s reason for choosing 

a course, or vice-versa. Additionally, although it seems likely that the role of one’s prior 

achievement would be a mediating mechanism by which demographic characteristics are 

associated with course modality selection, we did not explore these links in the present study. 

Finally, when selecting an appropriate venue for further hypothesis testing, it is important to 

select the appropriate context. We discovered that students who do not willingly select into OL 

courses (i.e., “F2F full”) may be more likely to be found in introductory courses in which the OL 

course was developed as an accommodation for student overflow. In these situations, 
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performance differences between OL and F2F courses were very slight. Conversely, in advanced 

summer courses where OL course selection was more willfully enacted, motivation, behavior, 

and performance differences were readily apparent. Therefore, researchers attempting to limit the 

impact of selection effects when comparing OL and F2F courses are advised to choose impacted 

introductory courses in which students are unlikely to be making willful selection into the OL 

version of the course. 

Limitations 

 One important assumption underlies many of the comparisons that we made in this study 

between OL and F2F students: that the delivery of the OL course format was actually of equal 

quality compared to the F2F delivery formats. Of course, one of the reasons that students in OL 

courses may be doing worse than their F2F peers is simply because the OL delivery of the course 

is simply worse for students’ learning than the F2F version of the course (e.g., Bettinger et al., 

2017). Whether this might be due to less engaging or less comprehensible presentation of 

material, students in the OL version of the course would still be expected to exhibit lower 

performance, regardless of whether the mechanisms proposed in the present study are at play. 

Each of the courses under study were conducted in partnership with teaching faculty well known 

on campus for the quality of their teaching. Yet, transitioning one’s F2F course to an OL course 

may actually be even more difficult for instructors who benefit from the opportunities that in-

person lectures afford for delivering course material through charisma and an ability to articulate 

complex topics. 

 Additionally, it is important to consider the context of the present study before 

generalizing to other contexts. We were able to replicate the notion that students select into OL 

courses due to a desire for flexibility, which has also been found in community college (Jaggars, 
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2014), professional development (Vanslambrouck et al., 2018), and international settings (Bailey 

et al., 2015). However, the associations of these selection reasons with motivation, behavior, and 

performance must be tested and replicated beyond the three courses. The heterogeneity observed 

even among the few courses in this study exemplifies the importance of considering the context 

of online courses when understanding reasons for selection and the subsequent experiences that 

may follow.   

 Finally, we should note that of the 721 students of students who completed the pre-survey 

measures and explained why they selected into their course, 31% did not complete the post-

survey and 6.5% of dropped out of the course. OL students were significantly more likely to be 

missing post-survey data or have dropped out of the course. Because our study focused mainly 

on understanding how student’s outcomes are associated with their reasons for selecting the 

course, we analyzed whether missingness was associated with these reasons. Students who said 

they took the OL course due to a general desire for flexibility were overrepresented among those 

missing post-survey data and among those who dropped out of the course. Because these 

students showed less motivation during the pre-survey compared to their F2F peers, 

disproportionately missing their post-survey data suggests that we may be underestimating the 

behavioral and performance differences between students who select into OL courses due to 

general flexibility and their F2F peers.   

Conclusion 

Improving the quality of online course-taking should be an increasingly important 

priority among higher education administrators. Assessing the extent to which we are succeeding 

in doing so, however, must account for the differences of those who choose to take our online 

courses. Although accounting for demographic variables has been instrumental in accounting for 
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selection effects, our field stands to benefit greatly from understanding the processes by which 

people from different backgrounds select into and approach online courses. In the present study, 

we describe a variety of ways in which OL course selection occurs, and also identify the 

processes by which selection students may end up leading to poorer course performance. In 

doing so, we not only uncover key assumptions about how demographic characteristics may be 

helping researchers control for selection effects, but also highlight the ways in which online 

learning may be able to improve its effectiveness through a better understanding of challenges 

specific to its students.  

  



 

 56 

Belonging Across Contexts: Implications for Theory and Measurement of a Popular 

Motivational Construct 

Research Questions 

 This study will address the methodological issue of measuring sense of belonging in 

online courses and offer insight into the elements of online courses that may hinder the 

development of belonging. The study will be guided by the following research questions: 

1. Do students conceptualize sense of belonging in different ways across contexts? 

(university, face-to-face classroom, online classroom) 

2. Does a popular instrument measure sense of belonging when adapted to an online 

classroom context?  

3. What are barriers to belonging in online courses?  

These questions will address the theoretical gap regarding the measurement of sense of 

belonging across classroom contexts and test a promising hypothesis for the ways in which 

online courses impact students’ motivation.   

Methods 

Participants 

 Participants were drawn from an online, introductory Chemistry course at a large, 

ethnically diverse research university in the southwest United States. Because this is an 

introductory course, almost all students (85%) were in their first year of college, with a mean age 

of 19.0 years-old. The students in this course were 58% female, 39% Asian, 41% Hispanic, 15% 

White, and 5% Black. 71% of students were from households that primarily spoke a non-English 

language or a mix of English and non-English. 56% of students represented the first-generation 

in their family to attend college, and 37% were from low-income backgrounds (30% both first-
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generation and low-income). 59% of the online students said this was the first online course they 

had ever taken.  

Setting 

 The introductory Chemistry course will be taught in Winter 2018. This course will be 

offered both OL and F2F. The online course will be taught asynchronously by giving students 

access to recorded lectures often given by someone other than the course’s instructor. In-person 

interactions with the instructor will only be during office hours or exams. Weekly discussion 

sections, which will be led by a teaching assistant, will be available either online or in-person.  

Measures for cognitive interviewing and surveys 

Sense of belonging. This will be measured using the Goodenow (1993) Psychological 

Sense of School Membership scale, which was developed to assess the extent to which students 

feel accepted, respected, supported, and included in their school. Several studies that measure 

sense of belonging at the classroom level have adapted items from this scale (Freeman et al., 

2007; Zumbrunn et al., 2014). In the present study, its 18 items will be adapted to investigate 

sense of belonging in three different contexts: university, a face-to-face classroom, and an online 

classroom. As has been done in previous studies, this will be accomplished simply by changing 

references to one’s “school” to their “class” (Freeman et al., 2007; Zumbrunn et al., 2014). 

Procedure  

 Participants will be asked to complete baseline surveys in exchange for $5 as part of a 

larger study. These surveys will focus on a broad range of motivational constructs, including 

class-context sense of belonging. To elicit sense of belonging questions in alternative contexts, 

students will be asked to complete mid-term surveys in exchange for a small amount of extra 

credit. Splitting up these measures is done primarily to protect the validity of the data by keeping 
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the pre-surveys short enough so as to avoid fatigue from participants. These mid-term surveys 

will ask students to indicate their sense of belonging in their university context. Then, an 

additional midterm survey will ask online students to reflect on their sense of belonging in a 

current face-to-face science or mathematics course that they are taking. Finally, post-surveys will 

be administered in the final week of the term and will include class-context sense of belonging 

items that match with those from the baseline pre-surveys. This design will allow me to collect 

data from online students on their sense of belonging in three different contexts, as well as 

measure the class-context sense of belonging of all students at the beginning and end of the 

course. 

After completing the course, students in the online class will be given the opportunity to 

volunteer to participate in a 30-minute interview (either online or in-person) in exchange for a 

$15 gift card. Students will be asked to describe a time that they experienced a sense of 

belonging in the different contexts (university, face-to-face classroom, online classroom). In 

addition, the interviews will feature think-aloud cognitive interviews (Dillman, Smyth, & 

Melani, 2011) that will ask participants to answer and reflect upon items from the PSSM.  

Analysis Plan 

 Interviews (RQ 1). Audio data from the interviews will be transcribed and coded. Initial 

descriptive coding (Saldaña, 2014) will include theoretically grounded codes consistent with 

popular components of sense of belonging, including acceptance and respect (Carol Goodenow, 

1993), and “fit” and valued involvement (Hoffman et al., 2003). This deductive approach, based 

on prior definitions of belonging emphasizing social interactions, will be balanced with an 

inductive approach that will allow us to detect other processes related to belonging (e.g., 

academic belonging). Because participants’ descriptions of belonging are likely to be intimately 
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associated with the interpersonal interactions that precede them (Hoffman et al., 2003), pattern 

coding will then conducted to identify links between components of belonging and the 

interpersonal interactions associated with them (Saldaña, 2014). These themes will be expressed 

in a case dynamics matrix for each context of belonging: university, classroom, and online. They 

will then be compared for discrepancies across contexts (Miles & Huberman, 1994, 148-149).  

Cognitive interview data (RQ 2) will be coded using an open coding process framed 

around cognitive theories of how survey questions are answered (Tourangeau, Rips, & Rasinski, 

2000). This framework describes that questions are answered through the process of 1) 

comprehension of the item, 2) retrieving relevant information, 3) using that information to make 

required judgments, and 4) selecting an answer. I first report themes present in student’s general 

comprehension of the item and their retrieval of information relevant to the construct of 

belonging. In addition, I report themes that arose regarding the impact of online course context 

on the way students answer the questions. First, I report how online course contexts are affecting 

students’ interpretation of the question. This gives an idea of whether the instrument may be 

measuring a different construct when adapted to the online course context. Second, I report on 

whether elements unique to online course contexts are affecting students’ judgment of their 

answer, which represents how online courses may be impacting students’ sense of belonging.  

Ways of improving belonging in online courses (RQ 3) will be assessed through 

inductive coding of the interviews described above. As part of the semi-structured interviews, 

students who spoke about belonging in their OL courses were asked to elaborate on what could 

be done to improve their sense of belonging in their online course. These data will be coded to 

identify themes in students’ recommendations for how sense of belonging could be improved in 

online courses. 
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Results and Discussion 

RQ 1: Do students conceptualize sense of belonging in different ways across contexts? 

Many of the a priori codes regarding acceptance, respect, “fit,” and valued involvement 

consistently appeared across all contexts, suggesting that many of the social processes that 

characterize belonging can and do appear in different contexts. As expected, these emerged 

through a variety of processes involving interpersonal interactions. As can be seen in the Case 

Dynamics Matrices (Table X), common experiences, interest-driven discussions, and content-

driven discussions with either peers or the instructor appeared to support students’ feelings of 

acceptance, respect, “fit,” and valued involvement in various ways. Participant 12 highlighted 

how a common experience with peers led to a sense of valued involvement, “So I guess having 

to see each other and having to interact with each other and work together to that extent to get 

the job done made me feel like I was part of their group.” After describing interest-based 

discussions with classmates, Participant 13 emphasized how that experience could lead to 

feelings of respect and care from the group, saying “It's like they care about you being there. It's 

not like you're this random person and a benchwarmer. That's where I feel like I belong because 

it's like they want me to be there.” 

However, results also suggest that students do indeed conceptualize belonging differently 

across contexts because belonging does not solely comprise interpersonal interactions in some 

contexts. An important emergent code was students’ focus on the role of ability when describing 

their belonging. The role of ability and achievement came up only when describing belonging in 

face-to-face and classroom contexts, as opposed to describing belonging in more general 

contexts that they offered (e.g., campus clubs, dorm floors, church groups). Several students 

talked about how feeling a sense of belonging in a classroom was about knowing that their 
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ability was at an appropriate level to signal that they belonged to the class. Participant 21 said, 

“Like I would say my belonging, my sense of belonging came more from knowing that I was 

supposed to be taking the class in general. It wasn't from like people interactions, like how I was 

talking about earlier.” They chose to focus on belonging by describing the “fit” of their academic 

ability in the classroom rather than social phenomena such as acceptance or respect. 

Interestingly, students reported that academic belonging could be established through both 

objective and comparative standards. Whereas some students justified their sense of belonging 

by referring to the fact that they had satisfied the course’s prerequisites, others spoke about 

belonging by comparing their ability in their course to their ability in other courses. Participant 

16 explained, “Knowing more about the subject ... you actually know what you're doing, so that 

will make you feel like you belong into that class. Rather than like you trying to learn like a 

whole new kind of thing.” Others mentioned that their sense of belonging was related to how 

their ability compared to the ability of classmates, as Participant 8 mentioned, “Anytime we 

would do an assignment, and there was a hard question that no one understood, the teacher 

would call on me and ask if I knew it. If the teacher had that expectation from me, it made me 

feel like I'm doing well and I belong here.” Belonging also wavered when realizing that they 

weren’t keeping up with coursework. Interestingly, one of the experiences most closely tied to 

belonging was attending office hours and feeling reassured by the fact that other students were 

also struggling. This suggests not only that student’s sense of belonging is tied to their ability in 

the course, but also that assessing whether their ability is strong enough to signal belonging is a 

comparative process that may benefit from comparing oneself with peers who are also 

struggling. Because these comparison processes seemed to involve comparisons against ability in 

other courses and against ability of other students, we see strong similarities between the 
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construction of academic belonging and the I/E Model of academic self-concept construction 

(Marsh, 1986).  

Although students spoke primarily of social processes typically associated with belonging 

in classroom contexts, their focus on academic belonging is consistent with the findings of Green 

and colleagues (Green et al., 2016), who qualitatively captured students’ sense of belonging in a 

STEM-focused high school context. Although existing scales like the PSSM do have items 

measuring peer and teacher recognition of the students’ ability (e.g., “Teachers here know I can 

do good work”), our findings suggests that peer recognition may not be necessary for belonging. 

Instead, personal assessments of whether one’s ability is sufficient for a given context may affect 

perceptions of belonging regardless of peer recognition. Overall, a major theme that our findings 

reiterate is the likelihood that the criteria for belonging change as the context shifts. In classroom 

settings, this criterion seems to become much more heavily related to academic ability and 

performance.  

Building upon this idea, it is important to recognize that the growing body of literature on 

social belonging interventions also implies that we should expect belonging to be constructed 

differently across contexts. As interventions have attempted to replicate the results of seminal 

works such as Walton and Cohen (2011), a common issue has been the overlooked importance of 

thoroughly understanding what criteria compose belonging in a specific group (e.g., Broda et al., 

2018; Walton, Logel, Peach, Spencer, & Zanna, 2015). Discovering the criteria for group 

membership that students struggle with has become a critical component of adapting belonging 

interventions to the target population. “Tailoring” belonging interventions in this way 

underscores the different social and academic processes at play in different contexts as students 

calibrate their perceptions of belonging.  
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If the criteria for belonging can shift across contexts, an important question that arises is 

who determines the criteria for membership in a given group? By comparing general and 

classroom contexts, we found that authority figures, such as teachers, may play a larger role in 

classroom contexts. Students spoke much more about the role of teachers in reassuring them of 

both social and academic belonging when they spoke of belonging in their classrooms. 

Participant 1 mentioned the importance of interest-driven discussions with the teacher for 

conveying respect and care, “When our labs would finish early…[the instructor] would talk to 

us. She wouldn't just go on her phone, she would interact with her students.” Similarly, a lack of 

visibility and content-driven discussions with the instructor could have the opposite effect, as 

Participant 11 explained, “The teacher gave the impression that she was very busy and doesn't 

have time for questions because she would say we're college students and could figure it out.” In 

contrast, talking about belonging in more general contexts focused much more on acceptance and 

valued involvement with respect to peer groups. When we discovered this theme and prompted 

students to reflect on the role of authority figures in general contexts, a few did bring them up 

(e.g., church group leaders, club captains, senior students). However, most of these instances 

described the role of the authority figure as someone who simply facilitated interactions among 

students within that group. This suggests that as contexts change, so too may the authority 

figure’s role in signaling the criteria necessary for membership and helping students judge 

whether or not they meet these criteria.  

Subsequently, we conclude that the experience of belonging does indeed change across 

contexts. Specifically, our data highlight that typical conceptualizations and measures of 

belonging emphasize the social element of belonging, but not the ability-based or academic 

element of belonging that students frequently reference at the classroom level. Measures that 
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only measure the social element may therefore be missing a critical element of belonging, 

depending on the context. Furthermore, the extent to which interactions with peers and teachers 

are important for one’s overall sense of belonging may be different as the context changes. As 

factor analyses of the popular PSSM scale and SOBS show, scales of school belonging often 

measure interactions with both peers and teachers (Hoffman et al., 2003; Ye & Wallace, 2013; 

You et al., 2011). Yet, as we demonstrate, the relative importance of these interactions to one’s 

overall sense of belonging depends on the context.   

RQ2: Does a popular instrument measure sense of belonging when adapted to an online 

classroom context?  

Results from cognitive interviewing suggest that when scales such as the PSSM are 

adapted to gauge belonging in contexts other than the whole schools, it may provide misleading 

and incomplete results. One big issue with many of the items is that students’ answers are 

conflated with reasoning unrelated to social belonging. Whether students wish they were in a 

different class (item 16) is influenced by preferences for the timing of the class, and whether 

students sometimes feel as if they don’t belong in a classroom (item 6) is likely to be influenced 

by academic and/or social considerations. Importantly, this item is the only one out of the 18-

item scale that explicitly uses the word “belong.” Therefore, the salience of academic 

achievement when answering this question echoes recent findings about the role of academic 

achievement in one’s overall sense of belonging (Green et al., 2016; Slaten et al., 2017). This 

suggests that earlier scales that do not explicitly attempt to gauge academic belonging may be 

incomplete.  

Another issue is that some items attempt to gauge belonging through experiences that are 

not as relevant to college course contexts as they might be at the school-level. Pride for 
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belonging in one’s class (item 17) is not an emotion students report experiencing at the 

classroom level. And in online classes, specifically, students often recognize that there are few 

opportunities for classmates to notice when one is good at something (items 2 and 15), few 

opportunities for them to be included in activities (item 10), and few opportunities for the 

instructor to show interest in them (item 5). For such items, students occasionally said that they 

would skip this question if they could due to a lack of relevant information on which to make a 

judgment. Students admitted that variations in their perceptions may be influenced more by their 

personality traits rather than objective variations in classroom experiences.  

What may be the most dangerous issue with some of these items is that the nature of 

online courses inhibits students’ recognition that their responses are based on inaccurate 

information. Students were quick to report that their judgment of whether their instructor is 

interested in them (item 9), whether they are treated with as much respect as other classmates 

(item 11), and whether they can be themselves in the class (item 13) is based on a comparison 

between how they themselves are treated relative to how their classmates are treated. However, 

upon probing, students admitted that they don’t really get to see how their classmates are treated 

in online courses because most interactions occur through private email conversations. When 

students offered high endorsements of these items, they cited that it was not so much that they 

could recall experiencing respect or acceptance, but rather because they were unaware of 

experiences suggesting they were not respected or accepted. As the wording of these items 

implies, whether or not students believe that they belong to a group can be based on a subjective 

judgment of their experience in that group relative to that of others. However, students in online 

courses report that they have little access to information about others’ experiences in the course 

to which they can compare their own.  
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As students made their judgments, they reported that this lack of information about 

interactions in online courses had a double-edged effect on their responses: it simultaneously 

reduced both their endorsement of positive indicators of belonging and negative indicators of 

belonging. When answering positively worded items about feeling like a real part of the class 

(item 1), instructor interest (item 5), and others knowing that they can do good work (items 2 and 

15), students often cited the lack of interactions when offering a low level of endorsement. 

Conversely, when answering negatively worded items about it being hard to be accepted in class 

(item 3), feeling as if you don’t belong in the class (item 6), the instructor not being interested in 

you (item 9), and feeling very different from other students (item 12), students often cited the 

lack of negative experiences when offering a low level of endorsement. Subsequently, the lack of 

interactions that often characterize online course contexts may inhibit the development of 

students’ social belonging, but it may also protect students from witnessing interactions that 

suggest they don’t belong. 

These results have several general implications for measuring belonging in different 

contexts. First, researchers should carefully consider whether the specific experiences (e.g., 

involvement in activities) and emotions (e.g., pride) are actually relevant in the context to which 

an existing instrument is being adapted. When these experiences and emotions are not relevant, 

students may be inclined to skip the question or provide a judgment based more on personality 

traits than their experiences and emotions. Conversely, researchers should consider that 

belonging may be constructed from experiences (e.g., academic achievement) that previous 

instruments have not explicitly attempted to capture. Finally, it should be considered that certain 

phrases evoke different interpretations when adapted to different contexts, leading students to 

retrieve different information. Being a “real part” of a group may shift from considering the 
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quality of one’s social participation in that group (e.g. a school) to simply considering one’s 

ability to meet the prerequisites needed to gain entry into the group (e.g., a class). Similarly, 

whether “people” is interpreted to refer to classmates, instructors, or a combination of both may 

change depending on the salience of interactions with classmates and instructors, respectively 

(Ye & Wallace, 2013). Although it is important to understand how the interpretation of such 

phrases changes between contexts, it is just as important to understand how interpretation can 

vary within contexts. When this occurs, the validity of the instrument is reduced because 

variation is not due to differences in belonging, but differences in what the instrument is 

measuring. To combat variability in belonging caused by different interpretations, it is 

recommended that researchers ask questions using specific phrasing (e.g., “classmates” or 

“teachers” as opposed to “people”; “me” as opposed to “people like me”), and relevant 

experiences (“belong with my classmates” as opposed to “belong in this class”).  

These results also have implications for measuring belonging in online course contexts, 

specifically. A critical assumption of any self-report measure is that respondents have the ability 

to access relevant information. Here, we see that this is an especially problematic assumption in 

online course contexts. As the results of research question one show, judgments about belonging 

are largely tied to interactions we have with others. But as cognitive interviewing shows, whether 

these interactions are indicative of belonging is often judged through a process of social 

comparison. Similar to the way other motivational constructs are measured (e.g., self-concept of 

ability), when absolute standards of judgment do not exist, social comparisons are used as a 

standard of judgment (Festinger, 1954). On top of the fact that some belonging items explicitly 

tap these comparison processes (e.g., “I am treated with as much respect as other students”), 

students engaged in social comparison when judging their answers to other items as well (e.g., 
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“people in this class are friendly to me”). Students pointed out that when they are in an online 

course, expectations for friendliness can be different from face-to-face contexts, and they are 

therefore uncertain of an absolute standard of friendliness. This realization, for instance, seemed 

to lead students to judge the quality of their interactions with classmates by comparing them to 

other classmates’ interactions.  

Importantly, though, online courses make social comparisons incredibly difficult to 

execute because they naturally hide the information needed to compare one’s experiences to 

those of another. Participants said that their answers to many items would be affected by 

knowing that their classmates had been treated differently, either by seeing the instructor respond 

to other students more promptly or fully, or by seeing classmates offer more thoughtful to other 

students. Yet participants also admitted that they could not see whether this was happening, and 

they likely would not know if it was. Therefore, when measuring belonging in online courses, 

researchers must be especially cautious not to ask questions that respondents do not have enough 

information with which to make an accurate judgment. Adding a “not applicable” or “I am 

unsure” option to response scales would be especially useful for eliminating variance unrelated 

to belonging. And thoroughly understanding the full range of interactions within the course will 

be crucial for assessing students’ ability to answer questions that lead to social comparisons. 

 Considering the above findings, it seems clear that research on belonging has thus far not 

provided clear enough theoretical or methodological resources for understanding how belonging 

should be measured in online contexts. Those who seek to assess belonging in online course 

contexts by simply adapting an existing measure from a different context will product misleading 

results. For the present time, qualitative work is best suited to capture students’ belonging in 

online courses.   
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RQ3: What are barriers to belonging in online courses?  

Students reported two themes regarding how the transactional distance created by their 

online course created to barriers to belonging. Unsurprisingly, they focused on issues with the 

social nature of belonging in an online course, highlighting the social uncertainty and frustration 

when dealing with peers and the perceived lack of access to the instructor. Students spoke about 

the importance of knowing information about their peers when considering the quality of their 

relationships with their classmates. Participant 10 said, “When you don't know anything but 

someone's name, it's kind of hard to assume, like, would they even answer if I asked them any 

questions? When you don't really know about anyone, you're less likely to even ask them ‘cause 

you don't really know what expect.” It became clear that “knowing what to expect” depended 

heavily on cues normally gained from face-to-face interactions, as Participant 1 explained: “You 

can’t feel comfortable enough to ask them a question if you don’t really see them ever and you 

don’t know how they’ll react to your question.” Not being able to see classmates’ reactions to 

one’s questions or comments was a repeatedly brought up as a factor that degraded the likelihood 

interactions with classmates would produce feelings of belonging, as Participant 15 echoed, “ I 

like [face-to-face] interactions and I feel like it’s more genuine than online interaction. I think it 

would be more about seeing the other person’s emotions and reactions to what you say.” 

Laboratory studies have found that computer-mediated interactions often deprive people of 

bonding cues that are used to signal acceptance and respect (Greenfield, 2018). The students in 

our sample seemed to be missing out on these cues, emphasizing that acceptance and respect are 

best judged by others’ reactions to what one says, and that nonverbal cues may be especially 

helpful in this regard.   
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Another element of online courses that degraded the quality of peer interactions was the 

long, disjointed nature of digital conversations. Participant 3 said, “If I had to ask a question in a 

discussion online, I expect that question to be answered in a matter of minutes. But I have to wait 

an hour and then I’m like you know ‘why did you even ask?’” Altogether, the social uncertainty 

of not being able to see others’ reactions and the frustration that accompanied conversations 

drawn out over long pauses between communication culminated in the recognition that 

meaningful relationships with others are unlikely to be established in online courses, as 

Participant 4 summarized, “But like online you can’t be like ‘I’m going to email this person and 

try to be friends with them’ and try to study with them because I don’t think it works that way.”  

The second theme that emerged was a perceived lack of access to the instructor. Similar 

to students’ insistence that nonverbal signals from classmates would have helped signal 

acceptance and respect, a lack of synchronous interaction with the course’s instructor seemed to 

signal that the instructor did not want to be bothered. Participant 8 explained, “I don’t think 

belonging is possible in an online class. The teacher has to deal with so many students, and she’s 

not physically there.” Although students described how important physical, or at least 

synchronous, presence was for classmates and the instructor to indicate how they felt, Participant 

11 explained that the lack of presence itself can be interpreted as a powerful message, “You 

never really saw the person face-to-face unless, you like, Skyped. There was not really 

encouragement like ‘Oh, visit me after hours’ kind of thing. I kind of saw it like ‘I’m very busy 

like I don’t have time for questions.’  Like ‘You’re college students, you should be able to figure 

it out,’ kind of thing.”  

Other seemingly innocuous details about the way an instructor manages their class can 

send similar messages about a lack of availability, as Participant 18 described her instructor 
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posting lecture videos recorded by other faculty members, “If the videos are of other professors, 

it seems like my professor doesn’t care about the course. Even if they posted really good videos, 

it seems like the professor is lazy, and I don’t ask questions to teachers who seem pressed for 

time.” Several students reported reluctance about reaching out to faculty due to a fear of wasting 

professors’ time. Several students felt that their professor was busy and disinterested in 

discussing course material with students, and their conclusions seemed to be based on 

characteristics inherent to online courses that limit students’ exposure to their instructor, such as 

a lack of physical interactions and posting lectures of other professors. This makes it all the more 

critical for instructors to send explicit messages about their openness to discussions with 

students, as participant 13 offered, “I feel like it would have made a bigger difference if the 

teacher talked more and showed more of herself on the PowerPoints and probably said ‘Oh if 

you have any questions about this specific slide, not just in general, you can definitely shoot me 

an email.’ Just that reassurance that the teacher is there.”  

Many other suggestions were offered for how to improve the social elements of students’ 

belonging in their online courses, centering on introductions, synchronous elements, and 

signaling instructor openness. Students felt that interactions with classmates would be improved 

through higher quality introductions. Participant 10 suggested, “If we even had like pictures of 

people so we could actually even see who they are, maybe they could introduce themselves. 

Something you can be like ‘okay I can talk to them for help.” Participant 26 admitted “I know 

it’s annoying, but icebreakers would help. Like, now you at least know something about them.” 

Whereas those suggestions could theoretically be done asynchronously through a course 

management system, many students jumped at the chance to recommend that more synchronous 

elements be worked into the course. Participant 17 articulated a common sentiment to 
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demonstrate this need, saying “I only felt like I belonged when I came to the in-person 

discussion. Getting a laugh or a ‘I had the question too’ was very validating,” which Participant 

27 echoed by saying, “The in-person part of her OL class was most helpful.” Addressing this 

topic, online students advocated most strongly for video chatting, like Participant 3 explained, 

“Like my idea…it takes a lot of time to do this…kind of like Skype. I feel like if we did that at 

least once.” And Participant 26 agreed, “Discussion sections on zoom were great. Being able to 

ask questions or expand helps with engagement.  

Finally, students further addressed the problematic perception that the instructor was not 

open to being approached by students. Participant 23 suggested how the teacher could prevented 

this perception in her eyes, saying “She sent a message that had a picture of herself and her dogs. 

You can see she tried to get to know us.” This advocated for the use of self-disclosure as a means 

of showing students respect and care. Conversely, Participant 26 lamented, “In that class I 

literally never saw the professor, just slides and audio of her voice. It would help to understand 

who my teacher is.” Overall, the ideas that students had, from sharing pictures to doing 

icebreakers to hosting video discussions were quite simple, and certainly not new. But the 

implication that they can make a difference for students’ sense of belonging conveys just how 

easily asynchronous online courses can increase transactional distance and degrade interactional 

quality, leading to social uncertainty regarding classmates and a perception that the instructor 

does not want to be bothered. 

General Discussion 

Theoretical implications 

 In order to understand how to assess students’ sense of belonging across contexts, we 

need quantitative measures that are built with an understanding of how belonging conceptually 



 

 73 

changes across contexts. Yet, researchers in this field have not purposefully conducted cross-

context studies outside of Freeman’s (2007) work, leaving us with little understanding of what 

these findings mean for how belonging develops at a fundamental level, and how it is understood 

differently across people and across contexts. Considering this, the above findings may lay the 

foundation for a new theory of belonging by comparing and contrasting conceptualizations 

across all contexts, as well as the differences that can emerge between people even when the 

context is the same. A few themes that emerged from this study may be helpful in creating a 

general theory of belonging that can be more easily adapted to specific contexts and specific 

individuals. 

First, when we speak about belonging, it is important to recognize that we are implying a 

defined group for which there is membership criteria. What that membership criteria is can 

certainly change from group to group, and it likely depends on the goals of who is in the group. 

Consider two classroom contexts. In a class of advanced Biology students, recognition that many 

students share the desire to go to medical school can lead to the perception that strong academic 

ability is part of the criteria for belonging in the classroom. Conversely, in a middle school math 

classroom composed of students in the low-ability track, students may recognize that 

mathematics achievement is not a shared goal among peers. It is likely that there is a “collective 

negotiation” of what the group’s common goals are, which may drive perceptions of what 

attributes are valued in that group, thereby creating criteria for membership. 

Second, signals of membership may change in different contexts. Satisfaction of 

membership criteria may come in the form of payment (Mercedes owners) or prior 

accomplishment (Eagle scouts), participation (hiking groups), performance of ability (MENSA), 

or social contributions (undergraduate fraternities). It is crucial to consider who decides what 
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these signals are. As described in our results, teachers may play an especially important role in 

students’ perceptions of belonging once the context is limited to a single classroom. Academic 

settings may offer different ways for students to signal their belonging depending on the 

negotiation of what the group’s goals and valued attributes are. Whereas a performance-oriented 

science teacher may signal to students that consistently finding the correct answers represents 

membership, a mastery-oriented science teacher may signal to students that simply attempting to 

support an argument with facts meets the criteria for membership regardless of the outcome. In 

both cases, the teacher had control over signaling whether criteria for belonging were being met, 

but chose to emphasize different valued attributes that aligned with their respective goals for the 

class. In other contexts, peers, other authority figures, or even personal assessments may be in 

control of determining whether one belongs to a group.   

Finally, even as a group and membership criteria are defined and signals of membership 

are decided upon, one’s satisfaction of membership criteria (“fit”) may be discovered through 

experiences with the group. Interactions with others are likely key for gaining recognition from 

peers or an authority figure that membership is being satisfied. Such was the case when students 

described the acceptance from peers in clubs that they had joined or the respect and care from 

teachers in their classrooms. In some instances, however, it may be possible that peer or 

authority recognition may not be needed to feel a sense of belonging to a group, such as our 

students who maintained that they belonged in their classes because they had satisfied the 

prerequisites to enter the course.  

 The field of belonging in academic settings has highlighted the positive relationship 

between belonging and achievement, often suggesting a causal path from belonging to 

achievement (Zumbrunn et al., 2014). Yet it may not be the case that belonging in a group is 
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always related to success within that group. Two examples of belonging in academic contexts 

may illustrate why. The first offers an example of a mismatch between the “collective 

negotiation” of goals and valued attributes of the students and the goals and valued attributes of 

the authority figures. Stage-environment fit theory illustrates how students’ desire for autonomy 

and relatedness can contrast with teachers’ desire for control and limited socializing among 

students, leading to declining levels of motivation (J. S. Eccles & Midgley, 1989). In the 

example of a middle-school math class whose students see more value in socializing, feeling like 

you belong to the group may be associated with lesser motivation.  

 Second, despite the recognition that relatedness, or belonging, is a fundamental human 

need, theories of belonging do not suggest that belonging to every context one encounters is a 

fundamental human need (Baumeister & Leary, 1995; Deci & Ryan, 1985a). Students in our 

online course mentioned that discussing belonging in that context was a foreign concept to them, 

admitting they had never thought about the course as a place that they even could belong. As one 

student said when qualifying the importance of belonging to the university, more generally, “It’s 

important to me, but it doesn’t have to be. Like a lot of commuting students can just go home on 

the weekend anyway and belong back with their family, but for me I live here, so belonging is 

important.” Understanding whether belonging is actually important for predicting success in a 

given context may depend on the centrality of that context to the students’ life. In contrast to the 

majority of studies on school belonging, which focus on middle school, high school, or 

university contexts, individual courses may only last several weeks, and can be just one of many 

courses students may be taking. If students are able to retreat from a given context to another 

place that they belong or are unable to form “temporally stable and enduring” relationships 

within a course, then belonging may not be an important predictor of success. The disruption of 
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temporally stable and enduring relationships, as well as uncertainty over standards for 

achievement and academic belonging, may be the reason why transition periods (e.g., first year 

of college) are considered so crucial for students’ belonging and long-term achievement.  

Quantitative implications 
 
 What does this mean for the researcher who wants to measure belonging in a manner 

appropriate for a given context? First and foremost, to those interested in studying online 

courses,  I would recommend the connectedness subscale of Rovai’s sense of classroom 

community scale (Rovai, 2002). This scale is specifically designed for online students. Although 

it does not exactly measure students’ sense of belonging (and certainly does not capture any 

sense of academic belonging), it does not require comparative judgments of how the individual is 

being treated with respect to other classmates.  

 Considering the skepticism we may have over whether belonging is actually important in 

all contexts, we may instead choose to adopt measures that account for students’ own 

perceptions of whether or not they need to feel like they belong in that context. The relatedness 

subscale of the Basic Psychological Needs Scale – Revised builds items that adjust for this (Chen 

et al., 2015). Items like “I feel that people I care about also care about me” or “I feel that people 

who are important to me are cold and distant from me” may be better at capturing the 

experiences of students by accounting for their experience of belonging relative to their needs. A 

scale like this may measure a more meaningful construct: the gap between the social belonging 

we experience in a context and the social belonging we need in that context. A limitation is that 

this focuses on social relationships, not academic relationships.  

 Moving forward, it seems two important improvements must be made to quantitative 

measures of belonging in order to understand how belonging is associated with outcomes in 
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academic settings. The first is that academic belonging must be measured, as its role in students’ 

conceptualization of belonging is becoming particularly pronounced as research on belonging 

moves to contexts in which we might consider the “collectively negotiated” goals and values are 

increasingly aligned with academic achievement (i.e., undergraduate classrooms and STEM high 

schools). The second is that interindividual differences in the importance of social and academic 

belonging must be accounted for. When answering one of the most straightforward questions, 

“sometimes I feel I don’t belong in this class,” some students exclusively described their 

academic experiences, whereas others exclusively spoke about their social experiences. Future 

work in this area may uncover that individual differences in how students conceptualize 

belonging even within the same contexts has implications for their experiences.  

Conclusion 

 Sense of belonging has emerged as an increasingly popular motivational construct in 

educational psychology. Despite the lack of theory regarding how belonging may develop and 

operate differently in different contexts, attempts to quantitatively measure belonging in new 

contexts have proliferated. With a lack of theory to guide the development of measures 

appropriate for new contexts, data-driven approaches such as factor analyses have been relied 

upon to discover items that are not appropriate, leaving hints that belonging is conceptualized 

differently in different contexts. In this study, we discuss students’ conceptualizations of 

belonging across several different contexts, cementing the theoretical tenet that belonging is 

conceptualized differently across different contexts, but also why it is conceptualized differently, 

and just how misleading existing measures of school belonging may be when adapted to different 

contexts (specifically online college courses). The implications suggest a new model of 

contextualized belonging is needed, identifying elements of belonging that are constant across 
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contexts in order to situate the elements that can differ from context to context and even person 

to person. Meanwhile, qualitative descriptions of belonging offer helpful insight into the 

sophisticated processes behind belonging, and practical solutions for those in settings where 

belonging may be most difficult to cultivate (e.g., online courses). 
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The Utility of Click Data: Behavioral Mediators of Motivational Interventions 

Research Questions 

 The present study is driven by four research questions that explore the effectiveness of a 

utility value intervention in an online course: 

1. Do online students’ expectancies and values for their course differ from those of their 

face-to-face peers? 

2. Is a utility value intervention differentially effective in online and face-to-face courses? 

3. What are the behavioral correlates of expectancies and values in an online course? 

4. What are the behavioral mediators of an online utility-value intervention, if any? 

The first research question will use the control group in the present study to address the lack of 

literature documenting differences in values between OL and F2F students. This will involve 

measuring motivational constructs at the beginning of the course as well as changes in values 

throughout the course. Meanwhile, the intervention will compare the effectiveness of the 

intervention across the OL and F2F classes. Next, we will use correlational analyses to 

understand links between Expectancy-Value constructs of motivation and behavior in an online 

course. Finally, if any significant effects of the intervention are found, and if any significant 

associations between motivation and click-data are found, models will be tested to identify 

potential behaviors that may be mediators of the intervention in an online course. 

Methods 

Participants 

 Participants were drawn from an online, introductory Chemistry course at a large, 

ethnically diverse research university in the southwest United States. Because this is an 

introductory course, almost all students (85%) were in their first year of college, with a mean age 
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of 19.0 years-old. The students in this course were 58% female, 39% Asian, 41% Hispanic, 15% 

White, and 5% Black. 71% of students were from households that primarily spoke a non-English 

language or a mix of English and non-English. 56% of students represented the first-generation 

in their family to attend college, and 37% were from low-income backgrounds (30% both first-

generation and low-income). 59% of the online students said this was the first online course they 

had ever taken.  

Measures 

 Motivation. Students’ motivation will be measured according to Eccles and colleagues’ 

Expectancy-Value theory, capturing their perceived competence, competence valuation, affective 

interest, behavioral interest, attainment value, utility value, and behavioral intentions. Items for 

the each of these constructs are taken directly from recent studies on utility value interventions 

by Harackiewicz and colleagues (e.g., Harackiewicz et al., 2016), and are scales of two to six 

items each. Items were phrased as statements about each of these respective constructs that 

participants answered on a scale from 1 = Not at all true to 7 = Very true. A full list of items 

composing each construct, along with means and Cronbach’s alphas, can be found in the 

Appendix C.  

 Demographic variables. A wide array of variables provided by the universities office of 

institutional records after the course was completed included gender, low-income status, part-

time status, first-generation status, race/ethnicity, age, SAT scores, and high school GPA. 

 Grades. All graded assignments for the course were provided by the instructor. This 

included points assigned for all participation, homeworks, labs, projects, and exams.  

 Click data - course activity. This will be tracked using students’ total number of clicks 

per day. We will sum up total clicks throughout the entire course, number of days during which 
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students made at least one click on the course. We will also combine clicks from certain days to 

capture course activity immediately after midterm exams and on specific days of the week.  

 Click data – video pages. The course was delivered through assigned lecture videos that 

needed to be watched so that video quiz assignments could be completed by each Wednesday at 

midnight. Links to these videos were available each week on a web page specific to that week. 

We counted students’ total number of clicks on these pages per day. We will sum up total video 

page clicks throughout the entire course, as well as number of days during which students made 

at least one click on a video page. 

Click data - procrastination. This will be generated from the date and time data 

associated with the video quiz assignments due each Wednesday at midnight. There were 

roughly 7 video quiz assignments due each Wednesday. By subtracting the time of students’ first 

click to attempt a video quiz from the time associated with that assignment’s due date, we will be 

able to calculate how much time students had left before the deadline when they first attempted 

their weekly assignments. Because greater procrastination is indicated by a smaller amount of 

time between accessing the assignment and the assignment due date, this measure will be 

reverse-coded throughout analyses.  

 Click data - Spacing. Because weekly video quizzes in this course are intended to be 

completed on a cyclical, weekly schedule, the spacing of students’ clicks on assignment pages 

throughout the week (Monday through Sunday) will indicate whether their course activity was 

spaced out or completed all at once. After obtaining the time difference between completing a 

video quiz and its deadline, these standard deviation of these values for (roughly seven per week) 

for each student will indicate how much they “spaced” their work.  
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 Click data - challenge-seeking. In the present course, the instructor makes available sets 

of “toughie” problems. These are challenging sets of questions that the instructor tells students 

are designed for advanced students who want to cement their understanding and prepare 

themselves to earn the highest possible grades on exams. We hypothesized that clicking on the 

link to access the page with these problems would be considered an indicator of challenge-

seeking. 

Procedure 

 Within the OL and F2F versions of the course, students will be randomly assigned to the 

treatment or control conditions. In the first week of the term, students will be given the 

opportunity to complete a baseline survey, in exchange for a $5 gift card. Throughout the term, 

students will be given two writing assignments. For students in the control condition, these 

writing assignments will consist of choosing a topic that has been covered in lecture in the 

preceding two-week period. They will then have to formulate a question related to that topic and 

write roughly 500 words summarizing that topic. Students in the treatment condition will 

similarly be asked to formulate a question for a recent topic, but then will be asked to write about 

how the topic is relevant to their own life. They will be advised to either write an essay about this 

or to write a letter either to a friend or to a family member. Finally, at the end of the term, the 

students will be given the opportunity to complete another survey, in exchange for a $5 gift card. 

This procedure will be repeated in the second quarter of the study. 

Analysis Plan 

 First, I will compare the OL and F2F versions of the class on measures of motivation at 

pre-survey. Concurrently, I will conduct a missing data analysis to understand whether expected 
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differences between OL and F2F students’ motivation may be being underestimated or 

overestimated.  

 Second, I will compare whether the effects of the intervention are greater for OL or F2F 

students. I will start by conducting a randomization check in both OL and F2F courses, 

separately. Randomization will be assessed with respect to demographic data and pre-survey 

motivation data. I will then calculate the treatment effects of the intervention using an Intent-to-

Treat (ITT) design, followed by a Treatment on the Treated (TOT) design (Shadish, Cook, & 

Campbell, 2002). TOT effects will be measured as those who participated in both of the two 

treatment assignments. These may be especially different because this intervention was merely 

offered as a source of extra credit, not required. This will be done for each modality separately. 

Because these studies often reveal heterogeneous effects, these same procedures will also be 

conducted for subsets of the sample. In particular, I will focus on whether the intervention’s 

effectiveness is moderated by initial performance level, as defined by performance on the first 

exam (which will take place before the first intervention writing assignment). Additionally, I will 

test for moderation of intervention effectiveness by first-generation status, URM status, and 

gender. Finally, I will compare the distributions of the separate treatment effects to determine if 

the intervention worked significantly better for online students. 

 Next, I will use correlational analyses to establish relationships between motivational 

measures and behavior measurable through click data. I will start by establishing associations 

between expectancy-value constructs of motivation and course performance. Because this will be 

done for the purpose of gaining insight into how motivation constructs might influence 

performance, I will use partial correlations. Partialing out the variance due to prior performance 

will better control for the likelihood that performance may also be causing motivation. Then, I 
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will establish associations between click behaviors and course performance. This will include 

associations between course performance and totaled click behaviors for the course, as well as 

daily click behaviors for the course.  

Although it would make theoretical sense to jump directly to associations between 

motivation and click behaviors, it is important in this exploratory work to begin by establishing 

associations between motivation and course performance, as well as click behaviors and course 

performance. I will then examine relationships between specific expectancy-value constructs and 

click behavior, limiting my analysis to motivational and behavioral measures positively 

associated with course performance.  

Finally, if the intervention is successful among any subset of students, I will investigate 

whether receiving the intervention is associated with changes in course-related behavior, as 

indicated by students’ click patterns. Because much more click-data related to course activity is 

recorded in the online version of the course, this portion of the analyses will only include online 

students.  
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Results 

RQ 1: Do online students’ expectancies and values for their course differ from those of 

their face-to-face peers? 

 Results show that largely, OL students’ expectancies and values do not differ from those 

of their F2F peers. As can be seen in Table 3.1, the only significant difference is students’ 

interest in the course, with OL students exhibiting less interest (both affective and behavioral). 

Furthermore, significant differences in OL and F2F students’ value of their coursework does not 

appear over time, as indicated by students’ change in motivation.  

 However, motivational differences between OL and F2F students may be underestimated 

due to missing data. Table 3.2 shows that online students were significantly less likely to 

complete the pre-survey. Moreover, we can see that students with lower math ability (as 

determined by SAT scores), poorer exam performance, and lower overall course grades were less 

likely to complete the surveys. Under the assumption that lower-achieving students are likely to 

have lower motivation for the course, it is reasonable to hypothesize that missing data would 

have lowered the average means of motivational variables more for the OL course than the F2F 

course.    
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Table 3.1 
             
Table 3.1 Summary Statistics and Randomization Check of Demographic and Motivational Variables by Intervention Condition 
  Summary statistics  Randomization Check 
      F2F   OL 
    F2F OL p-value   Control UV p-value   Control UV p-value 
Demographics            
 Male 47% 31% 0.000  48% 45% 0.502  31% 31% 0.970 
 Low-income 37% 38% 0.949  36% 38% 0.647  37% 38% 0.868 
 Full-time status 100% 99% 0.010  100% 100% 1.000  100% 97% 0.078 
 First-generation status 58% 52% 0.157  60% 57% 0.571  58% 46% 0.086 
 Asian 37% 47% 0.027  36% 38% 0.696  45% 49% 0.644 
 Black 5% 6% 0.727  4% 6% 0.485  7% 4% 0.322 
 Hispanic 44% 35% 0.056  44% 43% 0.937  37% 33% 0.585 
 White 15% 13% 0.530  17% 13% 0.404  11% 15% 0.446 
 Age 18.92 19.15 0.097  18.8 19 0.228  19.1 19.2 0.828 
 N 438 198   218 220   100 98  
Motivation (Pre-survey)            
 Perceived Competence 5.23 5.10 0.059  5.27 5.18 0.750  5.21 4.97 0.474 
 Competence Valuation 6.44 6.48 0.279  6.45 6.43 0.852  6.49 6.47 0.687 
 Interest (Affective) 4.88 4.32 0.002  4.83 4.92 0.277  4.38 4.25 0.868 
 Interest (Behavioral) 3.76 3.43 0.044  3.66 3.87 0.486  3.51 3.34 0.068 
 Attainment Value 4.33 4.12 0.147  4.34 4.32 0.942  4.31 3.92 0.098 
 Utility Value 5.04 4.81 0.320  5.07 5.01 0.557  4.98 4.63 0.094 
 N 304 116   149 155   61 55  
Motivation (Change)            
 Perceived Competence -0.25 -0.78 0.089         
 Competence Valuation -0.49 -0.65 0.542         
 Interest (Affective) -0.07 -0.22 0.534         
 Interest (Behavioral) 0.35 0.22 0.621         
 Attainment Value 0.00 -0.01 0.969         
 Utility Value -0.41 -0.31 0.679         
 N 93 31          
Note. Bolded cells are statistically significant at the p<.05 level. p-values are for X2 tests for Male, full-time status, first-generation status, and all race 
categories. All other p-values are for t-tests of differences between Control and UV groups. Change in motivation is reported for students in control group. 



 

 87 

Table 3.2    
     

Table 3.2 Associations of Missing Pre-survey Data with Means of 
Demographic and Achievement Variables 

     
    Non-missing Missing p-value 
Course Modality    
 Online student 28% 38% 0.008 
Demographics    
 Male 35% 55% 0.000 

 Low-income 39% 34% 0.169 

 Full-time status 100% 99% 0.040a 

 First-generation status 60% 49% 0.010 

 Asian 38% 43% 0.356 

 Black 5% 6% 0.551 

 Hispanic 43% 37% 0.267 

 White 15% 14% 0.922 

 Age 18.88 19.25 0.009 
Achievement     
 SAT math 589.7 622.9 0.001 

 SAT verbal 554.8 559.6 0.627 

 SAT writing 544.5 552.1 0.105 

 SAT total  1689 1734.6 0.001 

 High school GPA 3.907 3.88 0.380 

 Final grade 67.05 59.45 0.000 

 Exam grades 109 97.74 0.001 

 N 420 216  
Note. Bolded cells are statistically significant at the p<.05 level. p-values are 
for X2 tests for Male, full-time status, first-generation status, and all race 
categories. aFisher's exact test used because expected cell sizes < 0. All other p-
values are for t-tests of differences between Control and UV groups in each 
modality. 

 

RQ 2: Is a utility value intervention differentially effective in OL and F2F courses? 

 A randomization check showed that there were no statistically significant differences 

between the treatment (UV) and control conditions in either the OL or F2F courses (see Table 

3.1). Results then showed that the main effects of the UVI were not statistically significant in 

either OL or F2F course modalities, whether assessing ITT or TOT estimates. This was true 
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regardless of whether the outcomes measured were with respect to performance (i.e., overall 

grade and final exam) or motivation (e.g., affective interest, utility value, behavioral intentions).  

 Interaction effects were also not statistically significant, except for the interaction of first-

generation status by treatment on the attainment value of students in the OL condition. This 

suggests that the effect of the UVI on OL students’ attainment value was significantly greater 

when the students came from a first-generation background. However, a similarly positive 

interaction between first-generation status and the UVI was not observed when analyzing the 

targeted mechanism of utility value or the targeted performance outcomes, suggesting that the 

statistical significance observed here may be due to chance.  

 Additional analyses show that the UV treatment did not interact with course modality. 

Table 1.5 shows that although the UVI did have a statistically significant main effect on overall 

course grades when analyzed across both courses using ITT estimates, this effect was not 

moderated by the course modality. It is important to note that the main effect of the UVI on 

overall course grades dropped to zero when analyzing the TOT estimates. Furthermore, the UVI 

did not show a positive main effect on any of the motivational variables that are proposed to 

mediate the UVI’s effect on performance outcomes. This suggests that the UV’s statistically 

significant main effect using an ITT model was likely due to a combination of chance variation 

and a sample size larger than any other estimated models.   
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Table 3.3        
         
Table 3.3 Effects of UVI in F2F Course - ITT and TOT Estimates 

    
Overall 
Grade 

Final 
Exam 

Affective 
Interest 

Behavioral 
Interest 

Attainment 
Value 

Utility 
Value 

Behavioral 
Intentions 

ITT - Main effect        
 UVI 0.16 0.13 -0.01 -0.04 -0.11 0.00 -0.13 

  (0.10) (0.10) (0.14) (0.14) (0.14) (0.14) (0.14) 
ITT - Interactions        
 Performance 

level  
-0.06 -0.04 -0.14 -0.14 -0.21 -0.13 -0.29 

 (0.07) (0.08) (0.15) (0.15) (0.15) (0.15) (0.15) 

 
First generation  

0.27 0.31 0.21 0.37 0.25 -0.09 -0.07 

 (0.20) (0.20) (0.29) (0.30) (0.30) (0.29) (0.30) 

 
Low income  

0.15 0.13 -0.07 -0.16 -0.21 -0.23 0.03 

 (0.20) (0.20) (0.28) (0.28) (0.28) (0.28) (0.29) 

 
URM  

-0.03 0.00 0.33 0.43 0.39 0.34 0.50 

 (0.20) (0.20) (0.27) (0.28) (0.28) (0.27) (0.28) 

 
Male  

-0.07 -0.10 -0.18 0.00 -0.39 -0.03 -0.01 

 (0.19) (0.19) (0.29) (0.30) (0.30) (0.29) (0.28) 
TOT - Observations 438 438 216 205 206 216 202 
TOT - Main effect        
 UVI -0.06 -0.01 -0.34 -0.09 -0.09 -0.26 -0.25 

  (0.14) (0.14) (0.19) (0.20) (0.21) (0.21) (0.20) 
TOT - Interactions        
 Performance 

level  
0.00 -0.02 -0.10 -0.10 -0.08 -0.10 -0.19 

 (0.10) (0.11) (0.21) (0.22) (0.22) (0.22) (0.22) 

 
First generation  

0.35 0.32 0.72 0.77 0.60 0.28 -0.13 

 (0.29) (0.28) (0.39) (0.42) (0.44) (0.43) (0.43) 

 
Low income  

0.29 0.19 -0.67 -0.37 -0.34 -0.61 -0.19 

 (0.30) (0.29) (0.40) (0.42) (0.43) (0.42) (0.41) 

 
URM  

0.14 0.11 0.65 0.75 0.49 0.76 0.46 

 (0.29) (0.28) (0.38) (0.40) (0.42) (0.41) (0.40) 

 
Male  

-0.11 -0.10 -0.45 -0.41 -0.84 -0.55 -0.37 

 (0.29) (0.29) (0.42) (0.46) (0.44) (0.43) (0.41) 
TOT - Observations 150 150 95 90 91 95 88 

Note. * p<.05, ** p<.01, *** p<.001. All coefficients are standardized. Standard errors in parentheses. Main 
effect estimate is from model in which UVI treatment was only predictor. Interaction estimates are from 
separate models in which each interaction term was entered as the only additional predictor.  
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Table 3.4 

         
Table 3.4 Effects of UVI in OL Course - ITT and TOT Estimates 

    
Overall 
Grade 

Final 
Exam 

Affective 
Interest 

Behavioral 
Interest 

Attainment 
Value 

Utility 
Value 

Behavioral 
Intentions 

ITT - Main effect        
 UVI 0.17 0.12 -0.12 -0.057 -0.22 -0.14 -0.09 

  (0.14) (0.14) (0.22) (0.22) (0.22) (0.22) (0.23) 
ITT - Interactions        
 Performance 

level  
0.15 0.21 0.11 0.06 -0.11 0.17 0.22 

 (0.10) (0.11) (0.22) (0.23) (0.23) (0.23) (0.24) 

 
First generation  

0.04 0.06 0.31 0.77 0.91* -0.04 -0.27 

 (0.29) (0.29) (0.44) (0.45) (0.44) (0.44) (0.46) 

 
Low income  

-0.20 -0.18 0.08 0.59 0.40 -0.52 -0.32 

 (0.30) (0.30) (0.45) (0.45) (0.45) (0.43) (0.46) 

 
URM  

0.16 0.09 -0.09 -0.40 -0.47 -0.55 -0.97 

 (0.30) (0.30) (0.47) (0.48) (0.48) (0.47) (0.49) 

 
Male  

-0.30 -0.28 -0.71 0.32 -0.17 -0.16 0.63 

 (0.31) (0.31) (0.49) (0.51) (0.50) (0.49) (0.49) 
TOT - Observations 198 198 86 81 81 86 78 
TOT - Main effect        
 UVI 0.12 0.03 -0.02 -0.40 -0.25 -0.12 -0.07 

  (0.20) (0.20) (0.31) (0.35) (0.35) (0.34) (0.29) 
TOT - Interactions        
 Performance 

level  
0.17 0.25 -0.11 -0.34 -0.55 0.22 -0.44 

 (0.12) (0.15) (0.32) (0.36) (0.37) (0.36) (0.34) 

 
First generation  

-0.35 -0.18 0.31 0.76 1.42* 0.09 0.61 

 (0.40) (0.42) (0.66) (0.72) (0.69) (0.71) (0.60) 

 
Low income  

-0.60 -0.67 -0.28 0.89 0.90 -0.54 0.62 

 (0.41) (0.43) (0.68) (0.72) (0.73) (0.72) (0.60) 

 
URM  

0.13 0.23 0.89 -0.76 1.41 1.07 0.36 

 (0.45) (0.48) (0.87) (1.21) (1.20) (0.93) (0.98) 

 
Male  

-0.76 -0.73 1.15 1.65 1.78 0.46 0.90 

 (0.49) (0.52) (0.97) (1.02) (1.02) (1.04) (0.84) 
TOT - Observations 68 68 38 35 35 38 34 

Note. * p<.05, ** p<.01, *** p<.001. All coefficients are standardized. Main effect estimate is from model in 
which UVI treatment was only predictor. Interaction estimates are from separate models in which each 
interaction term was entered as the only additional predictor.  
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Table 3.5 

                

Table 3.5 Effects of UVI by Course Modality - ITT and TOT Estimates 

    

Overall 

Grade 

Final 

Exam 

Affective 

Interest 

Behavioral 

Interest 

Attainment 

Value Utility Value 

Behavioral 

Intentions 

    m1 m2 m1 m2 m1 m2 m1 m2 m1 m2 m1 m2 m1 m2 

ITT - Main effects               

 UV 0.16* 0.15 0.13 0.12 -0.04 -0.01 -0.05 -0.04 -0.14 -0.10 -0.04 0.00 -0.12 -0.13 

  (0.08) (0.09) (0.08) (0.09) (0.12) (0.13) (0.12) (0.14) (0.12) (0.14) (0.12) (0.14) (0.12) (0.14) 

 OL  -0.47***  -0.54***  -0.35  -0.25  -0.10  -0.13  0.05 

   (0.12)  (0.12)  (0.18)  (0.19)  (0.19)  (0.18)  (0.19) 

ITT - Interaction               

 OL x UVI  0.03  0.00  -0.11  -0.02  -0.13  -0.14  0.04 

   (0.17)  (0.17)  (0.25)  (0.26)  (0.26)  (0.26)  (0.27) 

ITT - Observations 636 636 636 636 303 302 287 286 288 287 303 302 281 280 

TOT - Main effects               

 UV 0.00 -0.05 0.00 -0.01 -0.28 -0.34 -0.19 -0.08 -0.14 -0.09 -0.24 -0.26 -0.19 -0.25 

  (0.11) (0.13) (0.11) (0.13) (0.16) (0.19) (0.18) (0.21) (0.18) (0.21) (0.18) (0.21) (0.17) (0.20) 

 OL  -0.53**  -0.55**  

-

0.59*  -0.11  -0.01  -0.36  0.05 

   (0.17)  (0.17)  (0.26)  (0.29)  (0.29)  (0.28)  (0.27) 

TOT - Interaction               

 OL x UVI  0.19  0.04  0.32  -0.35  -0.17  0.15  0.18 

   (0.24)  (0.24)  (0.36)  (0.39)  (0.41)  (0.39)  (0.37) 

TOT - 
Observations 218 218 218 218 133 133 125 125 126 126 133 133 122 122 

Note. * p<.05, ** p<.01, *** p<.001. All coefficients are standardized. Standard errors in parentheses. 
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RQ 3: What are the behavioral correlates of expectancies and values in an online course? 

Surprisingly, students’ pre-survey measures of motivation did not show consistent, 

significant associations with their final grade in the course. This was the case even when using 

partial correlations (Table 3.6), which removed variance in these associations due to prior ability. 

Taken alone, these results could be used to suggest that motivation for a course is not a 

significant predictor of performance in that course. A more likely explanation, however, is that 

students’ responses during the first week of the course regarding their anticipated motivation 

throughout the course were simply not well-calibrated. Tellingly, even students’ perceived 

competence for the course was not significantly associated with their final grades (the raw 

correlation of perceived competence with final grade was also r = .09).  

Table 3.6    
     

Table 3.6 Partial Correlations of Final Grade with Expectancy-Value 

Constructs by Wave 

    Pre-survey Post-survey Change 

 
Perceived 
competence 0.09 0.57* 0.33* 

 Affective interest 0.18* 0.40* 0.39* 

 Behavioral interest 0.1 0.24* 0.12 

 Attainment value -0.08 0.17 0.27* 

 Utility value 0.02 0.28* 0.33* 

Note. Correlations partial out variance associated with prior ability. 
Prior ability is represented by student's SAT math score. 

 

Meanwhile, students’ post-survey motivational measures were much more strongly 

associated with course performance. The relationship between motivation and performance is 

certainly bi-directional. However, it is unlikely that this association appeared more strongly at 
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the end of the term purely because course-related behavior caused motivation to develop. Rather, 

it is more likely that students’ self-reported pre-survey measures of motivation were not well-

calibrated enough to offer insight into how motivated students would actually be as they learned 

more about the course. Because pre-survey affective interest, as well as post-survey perceived 

competence, behavioral interest, and utility value are significantly associated with students’ final 

grade, these motivational measures will be tested for associations with click behaviors.  

Click behavior showed many more significant associations with students’ final grade in 

the course. The weakest associations between click behavior and course performance were 

observed when looking at raw number of total clicks and raw number of clicks on different types 

of course pages. Although clicking on the course website more times was positively associated 

with course performance, it was one of the weaker associations observed. Meanwhile, number of 

clicks on video pages and number of clicks on “toughie problems” page were not significantly 

associated with course performance.  

A theme apparent from the results in Table 3.7 is that course performance is not so much 

associated with the raw numbers of clicks or even the amount of time spent on each course page 

as it is with the spacing of study behavior throughout the duration of the course. Procrastination 

(not accessing assignments until closer to the Wednesday deadline) and spacing (accessing 

assignments with more time between assignments) showed the strongest correlations between 

click behavior and course performance. Similarly, when the percentage of days students spent 

accessing videos was more heavily concentrated on Thursdays (the day after assignments were 

due), students were likely to have a lower course grade.  
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Table 3.7        
        
Table 3.7 Correlations of Final Course Grade with Click Behavior 

General course behavior   

General clicks on course 

website   Video watching 

Clicks on course 
website 0.22*  

Days with at least 
one click on course 
website 0.62*  

Days with at least 
one click on video 
pages 0.46* 

Clicks on video 
pages 0.00  

Mondays clicked at 
least once on course  0.52*  

Mondays with at 
least one click on 
video pages  0.39* 

Clicks on "toughie 
problems" page 0.06  

Tuesdays clicked at 
least once on course  0.46*  

Tuesdays with at 
least one click on 
video pages  0.30* 

Time on task 0.07a  

Wednesdays clicked 
at least once on 
course  0.47*  

Wednesdays with at 
least one click on 
video pages  0.33* 

Procrastination -0.33*  
Thursdays clicked at 
least once on course  0.39*  

Thursdays with at 
least one click on 
video pages  0.16* 

Spacing 0.27*  
Fridays clicked at 
least once on course  0.44*  

Fridays with at least 
one click on video 
pages  0.22* 

Days with at least 
one click on video 
pages in 5 days 
following each 
exam 0.27*  

Saturdays clicked at 
least once on course  0.46*  

Saturdays with at 
least one click on 
video pages  0.32* 

Percentage of days 
viewing video pages 
falling day after 
video due date -0.19*  

Sundays clicked at 
least once on course  0.39*  

Sundays with at 
least one click on 
video pages  0.27* 

Note. * p<.05. n = 199. a Correlation with time on task is partial correlation, partialing out variance 
associated with number of days with at least one click on course. Clicks with longer than one hour between 
subsequent clicks were rounded down to one hour for time-on-task. Because the final click during each 
day's online session would always be longer than one hour, students who accessed the course more days 
per week would be likely to exhibit more time on task due to larger numbers of artificially long. The 
correlation between time-on-task and days with at least one click on the course is r = 0.91. 

 

Following the logic that course grades are more strongly associated with the spacing of 

study behavior, we then see that the number of separate days with at least one click on the course 

website and days with at least one click on video pages were even more strongly associated with 

course grades. Breaking down these associations across days of the week adds further detail to 



 

 95 

our understanding of the relationship between spacing and course performance. Engaging with 

the course on Mondays (the beginning of the week and two days before assignments were due) 

showed the strongest association with course performance for both general clicks on the course 

website and video-watching, whereas the weakest associations fell on Thursdays (the day after 

assignments were due).  

 Finally, motivational measures showed that they were indeed associated with patterns of 

click behavior (Table 3.8). Suggesting the most compelling example of motivation influencing 

behavior,  higher affective interest at the beginning of the course was associated with more 

consistently accessing the course and doing so well before the deadlines. By the end of the 

course, students who had higher levels of perceived competence, affective interest, behavioral 

interest, and utility value were exhibiting similar trends, along with less procrastination and more 

spacing. When broken down by weekday, we see that higher levels of interest was significantly 

associated with accessing the course and watching videos specifically on Mondays, whereas it 

was unrelated to watching videos on Thursdays. This trend also appeared when examining post-

survey measures of motivation. Coupled with our previous findings showing that spacing out 

course engagement is the strongest behavioral predictor of course performance in this study, it 

seems that greater interest in the course may be what is leading students to engage in more 

beneficial study habits.      
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Table 3.8       
       
Table 3.8 Correlations of Motivational Variables with Click Behavior 

  Pre-survey   Post-survey 

  

Affective 

interest   

Perceived 

Competence 

Affective 

interest 

Behavioral 

interest Utility value 

Clicks on course website 0.06  0.03 -0.08 -0.02 0.05 
Procrastination -0.02  -0.34* -0.27* -0.23 -0.15 
Spacing 0.13  0.34* 0.28* 0.35* 0.17 

Days with at least one click 
on video pages in 5 days 
following each exam 0.01  0.14 0.13 0.03 0.06 

Percentage of days viewing 
video pages falling day 
after video due date -0.09  -0.14 -0.15 0.05 -0.15 

Days with at least one click 
on course website 0.20*  0.34* 0.31* 0.20* 0.23* 

Mondays clicked at least 
once on course  0.20*  0.33* 0.33* 0.05 0.22* 

Thursdays clicked at least 
once on course  0.00  0.09 0.10 0.12 0.04 

Days with at least one click 
on video pages 0.16*  0.30* 0.27* 0.23* 0.15 

Mondays with at least one 
click on video pages  0.22*  0.32* 0.37* 0.24* 0.23* 

Thursdays with at least one 
click on video pages  -0.02  -0.09 -0.07 0.05 -0.06 
N 118  87 87 82 87 
Note. * p<.05. n = 118.  

 

RQ 4: What are the behavioral mediators of a utility-value intervention, if any? 

 Due to the lack of significant effects from the intervention, we did not attempt to test an 

overarching model that positioned click behaviors as a mediator between the UVI and 

performance outcomes. Analyses of the intervention in the OL course suggested that the UVI did 

not work as intended, even among the students who did indeed participate in the treatment. With 

no direct effects of the UVI observable on either motivation or performance outcomes, we had 
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no reason to hypothesize or test whether the UVI would change any of the click behaviors 

associated with motivation.  

Discussion 

 In this study, we attempted to understand behaviors that might mediate motivational 

processes by examining click data within an online course. We conducted our analyses within 

the larger context of a Utility Value Intervention, with the intent of addressing a large gap in the 

conceptual model of task-value interventions regarding the behavioral differences that are 

promoted by the UVI treatment. Though we did not attempt a full mediation model in this study 

due to the lack of significant main effects of the UVI or interactions by various subgroups, we 

offer new insights regarding the behavioral correlates that future research can study in order to 

test for behavioral mediators of task value interventions or any other motivational processes. 

Effectiveness of a UVI in an online course 

 The intervention itself proved ineffective in the present study, which must be discussed in 

light of the need to understand the conditions under which psychological interventions should be 

expected to replicate (Pashler & Wagenmakers, 2012; Schwartz, Cheng, Salehi, & Wieman, 

2016). During this pilot phase of data collection within a larger study, it may have been an issue 

that many students did not engage in the treatment. Likely because it was offered as an extra-

credit assignment, only 34% of F2F students and 34% of OL course actually participated in both 

treatment assignments. The TOT estimates may have been biased more than usual due to an 

association with higher baseline levels of ability and motivation. Presence in the TOT analysis 

subset was significantly associated with higher baseline perceived competence at the 0.10 level, 

higher utility value at the 0.10 level, and higher exam scores at the .01 level. The fact that many 

of the students who would be hypothesized to benefit most from the intervention did not engage 
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in the treatment may be the reason that we did not see consistently positive effects of the 

treatment even on those who did engage in the treatment. In addition, it is likely that the 

relatively small number of short treatments (two) may not have been enough to significantly 

impact students’ beliefs. Even if students’ beliefs were positively affected, though, the brevity of 

the academic term (10 weeks) may not have left enough time for students to put those beliefs 

into action to a statistically significant degree. 

 Importantly, the intervention was not more effective for OL students than for F2F 

students. After conducting our initial analyses and finding no differences between OL and F2F 

students’ expectancies and values emerged over time, however, a large reason for suspecting that 

the UVI would be more effective among OL students proved unsubstantiated. We must note that 

the lack of a UVI x course modality interaction cannot be ruled out from an analysis of one OL 

course alone. Due to the large variations in how online courses are delivered, and the different 

reasons students select into OL and F2F courses (see Study 1), it will be important to test this 

hypothesis again in different types of OL courses. Given the results of Study 1, we might expect 

that the UVI x course modality interaction would be more likely to be seen when done by 

students who select into OL courses due to a general desire for flexibility or learning preferences. 

The results of Study 1 show that it is these OL students who seem to exhibit lesser positive value 

for their courses when compared to their F2F peers.  

Behavioral correlates of motivation 

 Despite the lack of significant effects in this pilot UVI intervention study, there exists a 

growing body of literature demonstrating the potential for short, motivational interventions that 

improve academic performance by targeting students’ task value. Yet, the question remains how 

exactly higher task value might be leading to higher grades for students. In the latter, exploratory 
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phase of our study, we use the click data available in our online course to offer evidence of how 

higher task values may be impacting students’ behavior.  

Our data show that expectancies and values, spacing one’s study behavior out over time, 

and higher grades are all positively associated with each other. This echoes emerging trends in 

educational data mining showing that procrastination is associated with lower grades (Park et al., 

2018), and then extends this work by identifying the motivational characteristics most likely to 

predict spaced study behavior and a lack of procrastination. Although almost all expectancy-

value constructs of motivation are associated with spacing behavior and higher grades when 

measured during the post-survey, only one construct appeared associated with behaviors and 

outcomes when measured at pre-survey: affective interest. It may be that students’ interest in this 

introductory STEM course may be the more important for predicting their choice to regularly 

engage with a course regardless. This emphasizes the critical role that interest plays in predicting 

students’ choices in STEM-related fields in higher education, perhaps more so than expectancies 

or even other sources of task value (Renninger, Nieswandt, & Hidi, 2015). Fittingly, the work of 

Hulleman and colleagues (2010, 2017) has demonstrated the potential of UVIs to increase 

students’ perceived interest in the course along with other expectancy-value constructs. 

The patterns of association observed in the present study between motivation and 

behaviors also underscores important questions about the directionality of that relationship. One 

explanation for why pre-survey measures of motivation were not correlated with final grades for 

the course, whereas post-survey measures were, was that students do not have enough 

information about the course they will be taking to be able to predict what their motivation will 

actually be as the course goes on. Predicting behaviors on course-specific tasks through click 

data should be most accurate when students’ self-reported motivation is judged with those 
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specific tasks in mind. But the students in this class, many of whom have never taken an online 

course before, may have been unaware of how motivated they would be as the course went on. It 

is possible, then, that predicting students’ behavioral engagement with a course from their 

baseline motivational measures can be best accomplished by surveying students after they have 

had one to two weeks to familiarize themselves with a course’s weekly routine and calibrate their 

motivation. 

An alternative explanation, though, is that the behaviors that students engage in during 

the course are what lead students to develop greater motivation. Even using the example of 

surveying students one to two weeks into a course, this effect could be at play. While we may 

argue that students are using that time to better calibrate their motivation for the course, these 

motivational changes may very well be happening as a result of the decisions to spend more time 

on the course during the first few weeks. More consistent time spent on the course may be 

creating opportunities to find value in the course, or simply leading students to reason that 

something they spend more time on must be more valuable.  

The puzzle surrounding how motivation and behavior become more correlated over time 

have implications for what types of interventions should be prioritized. Whereas task-value 

interventions such as UVIs may be able to improve student’s consistency of engagement in the 

course through motivation, “nudging” or implementation intention interventions seek to improve 

motivation and performance by improving students’ consistency of engagement in the course 

(Baker, Evans, Li, & Cung, 2018). If one directional pathway were to reveal itself as the 

strongest, it would make a strong case for which interventions are best for driving motivation, 

behavioral engagement in the course, and performance. However, it is likely that these processes 

are mutually reinforcing, as has been shown in interventions focused on self-concept 
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enhancement (Moller, Retelsdorf, Koller, & Marsh, 2011). Our own data suggest how this might 

be true. Greater interest at the beginning of the course may be leading some students to engage 

more consistently with the course, and this engagement in turn may be driving the growth of 

students’ perceived competence, interest, attainment value, and utility value. Researchers 

conducting further work in this area would be also be wise to investigate the role of self-

regulated learning in the trajectories of students’ motivation throughout a course, although it is 

worth noting that students’ self-reported self-regulation may also be poorly calibrated at the 

beginning of a course. 

Issues with uncovering motivated behavior using click data 

 Although the lack of correlations between pre-survey measures of motivation and click 

behavior led us to conclude that students’ pre-survey self-report data was poorly calibrated, more 

consistent associations may have appeared if we had generated “better” click measures. We 

specifically sought to generate click measures that would be theoretically associated with 

students’ expectancies and values. Number of total clicks, for instance, was not especially 

strongly associated with course performance and was not associated at all with motivation. 

Clicks may occur because students are simply confused with how the course website works. 

Additionally, understanding the context of the specific course under study and the student 

population under study is also critical for identifying click measures that are most likely to signal 

motivated behavior. Although our data supports the idea that procrastination and cramming (the 

opposite of spacing) are negatively associated with grades, researchers studying online courses 

should be aware that many students select into online courses due to the amount of competing 

demands on their time (see Study 1). Students who decide to take a course despite commitments 

to work, family, and other courses may be highly motivated, but relatively unable to access the 
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course every-other day. In our introductory course, among students who were mostly 19-year-old 

first-years, this seemed to pose less of an issue.  

 The future of this field would therefore benefit greatly from cognitive interviewing with 

students regarding how their course context and their personal contexts combine to determine 

what types of clicks signal motivated behavior. We believed that accessing “toughie problems” 

would be associated with perceived competence and higher value. However, a very small 

number of students accessed this page a very small number of times. The instructor later 

suggested that this may be because students print the page out at the beginning of the term. By 

sitting with students to discover how they navigate their course website, researchers will be 

better able to identify specific types of course pages that signal student motivation. Asking 

students about the timing of their course access will also shed light on what behavior is driven by 

motivation, such as whether late-night or before-the-deadline clicking is a signal that students are 

losing motivation for the course or have prioritized other courses ahead of this one. Furthermore, 

students can be asked about how their course activity evolves over time. If clicks during the first 

few weeks are caused by just trying to understand how to navigate a new course, it can guide 

researchers to exclude periods when clicks are not expected to be driven by motivation. Such 

work will be important for understanding how click data must be handled in order to parse out 

the difference between clicks that signal motivated behavior and clicks that don’t. 

Conclusion 

 The science of targeted psychological interventions has shown a great amount of promise 

in improving students’ performance and closing achievement gaps, but increased scrutiny over 

for whom and under what circumstances these findings will work puts additional pressure on 

researchers in this field to describe a clear theoretical picture of how improving motivational 
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beliefs can improve course performance. With the growth of online courses and the availability 

of click data, new opportunities have emerged to strengthen motivational theories by providing 

insight into the behavioral processes that may be linking motivational beliefs and performance 

outcomes. We provide insight into the types of click behaviors (specifically, spaced study 

behavior) that are associated with both motivational beliefs and performance in our sample and 

make recommendations for how future studies can ensure they generate relevant click measures 

of their own. More work should certainly be done to identify the role of self-regulation in these 

processes and the directionality between motivational beliefs and behavioral engagement in the 

course, but the tools to do so are more available than ever. 
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GENERAL DISCUSSION 

The number of online courses are rapidly increasing in higher education despite concerns 

about their quality. Although online courses may offer students access to courses that they would 

have otherwise been unable to take, data from Study 1 (Modality Motivation) shows that many 

students who choose to take courses online could also be taking these courses in-person. 

Students opt into the OL version of courses despite their assertion that their goals and values for 

the course are largely similar to those of their F2F peers, yet still struggle to achieve as much as 

their F2F peers. Although the ideal situation for practitioners would be to work on identifying 

which students will thrive in either OL or F2F course formats, the data I provide reinforce the 

reality that students who take courses online perform worse, on average, than their F2F peers 

despite similar goals for achievement. Regardless of whether this is purely a function of selection 

effects (i.e., lower positive value for the course; higher cost and competing responsibilities), or 

that the OL course experience is simply inferior, comparisons of OL students’ experiences with 

those of their F2F peers continue to demonstrate that the OL course experience must improve. 

Motivational approaches to improving the online course experience 

Although motivational processes are critical for understanding students’ choices and 

performance, they are still understudied in the context of online courses. In these studies, I shed 

light on the role of motivation both in students’ selection into online courses as well as their 

behaviors once they are in their online courses. Study 1 demonstrates that students’ value for a 

course is indeed associated with students’ decisions to select into online courses. Study 2 

demonstrates that once this choice is made, the asynchronous nature of online courses creates 

barriers to developing a sense of belonging, which students admitted impacted their willingness 

to seek interactions with classmates or teachers. As seen in Study 1, the students who showed 
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less motivation for the course and spent less time working in study groups were the ones who 

performed worse than their F2F peers. Given this fact, it should be especially troubling that the 

nature of online courses creates doubt in students’ minds as to their classmates’ and instructor’s 

openness to being approached for help. Finally, Study 3 showed not only that students’ interest 

in their courses is associated with better course grades, but also how this interest may be driving 

behavioral processes that produce better grades. 

By taking a motivational approach, I was able to illuminate the processes by which OL 

students may find themselves underperforming and suggest effective ways to solve motivational 

issues unique to online courses. Study 1 showed that students who select into OL courses do so 

for different reasons, which in turn may result in different reasons for underperformance. 

Whereas some students select into OL courses because they have more competing 

responsibilities, greater opportunity cost, and may have less time to engage in study groups as a 

result, other students select into OL courses because they see less value in the course. Both 

groups underperform relative to their F2F peers, but we can now see that a one-size fits-all 

approach to helping students is unlikely to be as effective as providing different students 

overcome their respective challenges.  

Recommendations for helping students with motivational were clearest when analyzing 

students’ qualitative accounts of barriers to belonging in online courses. Although asynchronous 

online courses have fewer interpersonal interactions by their very nature, students described that 

the inability to see other students compounded the issue, creating additional uncertainty about 

whether reaching out to students or teachers would be welcome. But students were quick to 

mention changes that could remedy motivational issues specific to online courses. Sharing 

personal information through discussion activities, adding synchronous elements to the course, 
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and encouraging the instructors to explicitly signal openness to their students’ questions were 

relatively simple options that students suggested could make an important difference in their 

motivation to engage with peers and teachers in online courses. 

Finally, identifying behavioral correlates of motivation suggests how psychological 

interventions may be able to encourage students to improve their course performance. Study 3 

was one of the first Expectancy-Value studies to measure behavioral processes that could 

mediate the relationship between motivation and performance outcomes. After identifying the 

large association between spaced studying behavior and students’ final grade, we can work 

backwards to understand the most appropriate motivational levers for encouraging that behavior. 

The relationships between motivational constructs and click behaviors will improve as our click 

measures become more sophisticated and in contexts where students’ pre-course motivation is 

better calibrated. For now, we still see that student’s affective interest towards students’ subject 

of study is predictive of this engagement, suggesting that fostering interest may be especially 

important for promoting study behavior that will lead to better grades.   

New measures for new contexts 

A critical theme running through each study is the need to construct contextually-relevant 

measures of motivation. In Study 1, it did not become clear that OL and F2F students differed in 

their values until students’ reasons for selecting the OL course helped identify groups of students 

whose choice was likely related to lower positive value. Conversely, measures of cost were not 

especially informative because students’ answers were likely conflated with their chosen course 

modality. Students’ qualitative reasons again helped by signaling students for whom opportunity 

cost would be higher, and indeed led me to identify a group that spent larger amounts of time on 

non-academic activities at the expense of academic activities, ultimately receiving lower grades. 
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In both cases, our understanding of the motivational differences between OL and F2F students 

were enhanced by a measure that specifically targeted the role of motivation in students’ self-

selection between the modalities. 

   In no study was the importance of context-specific measures more apparent than Study 

2, in which an accurate assessment of students’ course-level belonging was crippled by students’ 

misinterpretations of items adapted from a school-wide context. The initial goal of the study was 

to quantitatively test whether the OL course affected students’ belonging differently than it did in 

the F2F course. Although it has become common practice to adapt sense of belonging scales for 

use in different contexts, a qualitative investigation showed several reasons why researchers who 

do so are likely to produce misleading results. The study ended with no quantitative 

comparisons, but a much clearer understanding of how belonging is conceptualized in online 

courses and how it should be measured so that it is contextually relevant.  

 Finally, Study 3 showed the importance of measuring motivation using items that 

contextualized by the same level as the outcomes we are trying to predict. Students’ pre-survey 

levels of motivation did not seem to correlate strongly with their behaviors. This may have been 

because their pre-survey answers of more motivated students didn’t incorporate an understanding 

of what motivated behavior in on online course would look like. Although these items were 

worded to be specific to the course, motivational measures that ask about specific tasks that 

students will be required to do during the course may be an important new avenue to explore 

when trying to understand how motivation is associated with course performance.  

 Overall, I believe that these studies reiterate the urgency with which improving online 

courses must be improved and contend that the motivational approach that I have taken 

illuminate more about both the issues present in OL courses as well as potential solutions for 
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fixing them. The different motivational processes I have highlighted here and the individualized 

approaches that may be needed to improve the OL experience mirror the promise of OL courses 

themselves: that an understanding of individual differences can be combined with new 

technologies to drive the personalization of education. There is a long way to go, but continuing 

to study motivational processes will certainly help improve the exciting marriage between an 

appreciation of students’ individual differences and educational technology.  

  



 

 109 

REFERENCES 

Allen, I. E., & Seaman, J. (2013). Changing course: Ten years of tracking online education in 

the United States. Babson College, MA: The Sloan Consortium. 

http://doi.org/10.1177/0165551508095781 

Allen, I. E., & Seaman, J. (2017). Digital learning compass: Distance education enrollment 

report, 2017. Retrieved from 

https://onlinelearningsurvey.com/reports/digtiallearningcompassenrollment2017.pdf 

Alpert, W. T., Couch, K. A., & Harmon, O. R. (2016). A randomized assessment of online 

learning. American Economic Review: Papers & Proceedings, 106(5), 378–382. 

http://doi.org/10.1017/CBO9781107415324.004 

Aslanian, C. B., & Clinefelter, D. L. (2013). Online college students 2013: Comprehensive data 

on demands and preferences. Louisville, KY: The Learning House, Inc. 

Atkinson, J. W. (1957). Motivational determinants of risk taking behavior. Psychological 

Review, 64(6), 359–372. http://doi.org/10.1037/h0043445 

Award for Distinguished Scientific Applications of Psychology: Jacquelynne S. Eccles. (2017). 

American Psychologist, 72(9), 889–891. Retrieved from 

http://dx.doi.org/10.1037/amp0000269 

Bailey, M., Ifenthaler, D., Gosper, M., Kretzschmar, M., & Ware, C. (2015). The changing 

importance of factors influencing students’ choice of study mode. Technology, Knowledge 

and Learning, 20(2), 169–184. http://doi.org/10.1007/s10758-015-9253-9 

Baker, R., Evans, B., Li, Q., & Cung, B. (2018). Does inducing students to schedule lecture 

watching in online classes improve their academic performance? An experimental analysis 

of a time management intervention. Research in Higher Education. Springer Netherlands. 



 

 110 

http://doi.org/10.1007/s11162-018-9521-3 

Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal 

attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497–529. 

Bernacki, M. L., Schunk, D. H., & Greene, J. A. (2018). Examining the cyclical, loosely 

sequenced, and contingent features of self-regulated learning: trace data and their analysis. 

In B. J. Zimmerman & D. H. Schunk (Eds.), Handbook of Self-Regulation of Learning and 

Performance (pp. 370–387). New York, NY: Routledge. 

Bernard, R. M., Abrami, P. C., Borokhovski, E., Wade, C. A., Tamim, R. M., Surkes, M. A., & 

Bethel, E. C. (2009). A meta-analysis of three types of interaction treatments in distance 

education. Review of Educational Research, 79(3), 1243–1289. 

http://doi.org/10.3102/0034654309333844 

Bettinger, E., Fox, L., Loeb, S., & Taylor, E. (n.d.). Changing distributions: How online college 

classes alter student and professor performance. American Economic Review. 

Bettinger, E., & Loeb, S. (2017). Promises and pitfalls of online education. Evidence Speaks 

Reports (Vol. 2). Retrieved from https://www.brookings.edu/wp-

content/uploads/2017/06/ccf_20170609_loeb_evidence_speaks1.pdf 

Bettinger, E. P., Fox, L., Loeb, S., & Taylor, E. S. (2017). Virtual classrooms: How online 

college courses affect student success. American Economic Review, 107(9), 2855–2875. 

http://doi.org/10.1257/aer.20151193 

Bowen, W. G. (2012). The “cost disease” in higher education: Is technology the answer? The 

Tanner Lectures Stanford University, (October). Retrieved from 

http://new.oberlin.edu/dotAsset/a0e24144-e4f3-48fc-b856-

c407ff37b50e.pdf%5Cnpapers3://publication/uuid/7C85F2C6-3160-4D73-8828-



 

 111 

EF35ECDD796B 

Bowen, W. G., Chingos, M. M., Lack, K. A., & Nygren, T. I. (2012). Interactive learning online 

at public universities: Evidence from randomized trials. Ithaka S+R. Retrieved from 

http://mitcet.mit.edu/wp-content/uploads/2012/05/BowenReport-2012.pdf 

Broda, M., Yun, J., Schneider, B., Yeager, D. S., Walton, G. M., & Diemer, M. (2018). Reducing 

inequality in academic success for incoming college students: A randomized trial of growth 

mindset and belonging interventions. Journal of Research on Educational Effectiveness, 

11(3), 317–338. http://doi.org/10.1080/19345747.2018.1429037 

Canning, E. A., Harackiewicz, J. M., Priniski, S. J., Hecht, C. A., Tibbetts, Y., & Hyde, J. S. 

(2017). Improving performance and retention in introductory Biology with a utility-value 

intervention. Journal of Educational Psychology. http://doi.org/10.1037/edu0000244 

Chen, B., Vansteenkiste, M., Beyers, W., Boone, L., Deci, E. L., Van der Kaap-Deeder, J., … 

Verstuyf, J. (2015). Basic psychological need satisfaction, need frustration, and need 

strength across four cultures. Motivation and Emotion, 39(2), 216–236. 

http://doi.org/10.1007/s11031-014-9450-1 

Cho, Y., Hathcoat, J. D., Bridges, S. L., Mathew, S., & Bang, H. (2014). Factorial invariance of 

an integrated measure of classroom sense of community in face-to-face and online courses. 

Journal of Psychoeducational Assessment, 32(8), 725–736. 

http://doi.org/10.1177/0734282914543170 

Deci, E. L., & Ryan, R. M. (1985a). Intrinsic motivation and self-determination in human 

behavior. New York: Springer US. http://doi.org/10.1007/978-1-4899-2271-7 

Deci, E. L., & Ryan, R. M. (1985b). The general causality orientations scale: Self-determination 

in personality. Journal of Research in Personality, 19(2), 109–134. 



 

 112 

http://doi.org/10.1016/0092-6566(85)90023-6 

Deming, D. J., Goldin, C., Katz, L. F., & Yuchtman, N. (2015). Can online learning bend the 

higher education cost curve? American Economic Review, 105(5), 496–501. 

http://doi.org/10.1257/aer.p20151024 

Dillman, D. A., Smyth, J. D., & Melani, L. (2011). Internet, mail, and mixed-mode surveys: the 

tailored design method. Toronto: Wiley & Sons. 

Dupin-Bryant, P. A. (2004). Pre-entry variables related to retention in online distance education. 

American Journal of Distance Education, 18(4), 199–206. 

http://doi.org/10.1207/s15389286ajde1804 

Durik, A. M., & Harackiewicz, J. M. (2007). Different strokes for different folks: how individual 

interest moderates the effects of situational factors on task interest. Journal of Educational 

Psychology, 99(3), 597–610. http://doi.org/10.1037/0022-0663.99.3.597 

Eccles, J. S. (2005). Subjective task value and the Eccles et al. model of achievement-related 

choices. Handbook of Competence and Motivation, 105–121. Retrieved from 

https://books.google.com/books?hl=en&lr=&id=B14TMHRtYBcC&oi=fnd&pg=PA105&d

q=related:nMAKtzfz-

VYJ:scholar.google.com/&ots=ss7Gvbkvf9&sig=scexTRmD4YtYg0TCtkus1FsE30Y 

Eccles, J. S., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & Midgley, 

C. (1983). Expectancies, values, and academic behavior. In J. T. Spence (Ed.), Achievement 

and achievement motives: Psychological and sociological approaches (pp. 75–146). San 

Francisco, CA: W.H. Freeman. 

Eccles, J. S., & Midgley, C. (1989). Stage-environment fit: Developmentally appropriate 

classrooms for young adolescents. In C. Ames & R. Ames (Eds.), Research on motivation 



 

 113 

in education: Vol. 3. Goals and cognitions (pp. 13–44). New York: Academic Press. 

Escueta, M., Quan, V., Nickow, A. J., & Oreopoulos, P. (2017). Education technology: An 

Evidence-based review (NBER Working Series No. 23744). National Bureau of Economic 

Research. 

Faircloth, B. S. (2011). School Belonging. In R. J. R. Levesque (Ed.), Encyclopedia of 

Adolescence. New York: Springer. 

Festinger, L. (1954). A theory of social comparison processes. Human Relations, 7(2), 117–140. 

http://doi.org/0803973233 

Figlio, D., Rush, M., & Yin, L. (2013). Is it live or is it Internet? Experimental estimates of the 

effects of online instruction on student learning. Journal of Labor Economics, 31(4), 763–

784. http://doi.org/10.1086/669930 

Flake, J. K., Barron, K. E., Hulleman, C., McCoach, B. D., & Welsh, M. E. (2015). Measuring 

cost: The forgotten component of expectancy-value theory. Contemporary Educational 

Psychology, 41, 232–244. http://doi.org/10.1016/j.cedpsych.2015.03.002 

Flynn, D. (2014). Baccalaureate attainment of college students at 4-year institutions as a function 

of student engagement behaviors: Social and academic student engagement behaviors 

matter. Research in Higher Education, 55(5), 467–493. http://doi.org/10.1007/s11162-013-

9321-8 

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & 

Wenderoth, M. P. (2014). Active learning increases student performance in science, 

engineering, and mathematics. Proceedings of the National Academy of Sciences of the 

United States of America, 111(23), 8410–5. http://doi.org/10.1073/pnas.1319030111 

Freeman, T. M., Anderman, L. H., & Jensen, J. M. (2007). Sense of belonging in college 



 

 114 

freshmen at the classroom and campus levels. The Journal of Experimental Education, 

75(753), 203–220. http://doi.org/10.3200/JEXE.75.3.203-220 

Fritea, R., & Opre, A. (2015). Enhancing situational interest, perceived utility, and self-efficacy 

in online learning. An instructional design intervention. Cognition, Brain, Behavior, 19(4), 

285–298. 

Gaspard, H., Dicke, A.-L., Flunger, B., Schreier, B., Hafner, I., Trautwein, U., & Nagengast, B. 

(2015). More value through greater differentiation: Gender differences in value beliefs 

about math. Journal of Educational Psychology, 107(3). 

http://doi.org/doi:10.1037/edu0000003 

Goodenow, C. (1993). Classroom belonging among early adolescent students: Relationships to 

motivation and achievement. The Journal of Early Adolescence. 

http://doi.org/10.1177/0272431693013001002 

Goodenow, C. (1993). The psychological sense of school membership among adolescents: Scale 

development and educational correlates. Psychology in the Schools, 30, 79–90. 

Goodenow, C., & Grady, K. E. (1993). The relationship of school belonging and friends’ values 

to academic motivation among urban adolescent students. The Journal of Experimental 

Education, 62(1), 60–71. http://doi.org/10.1080/00220973.1993.9943831 

Green, M., Emery, A., Sanders, M., & Anderman, L. H. (2016). Another path to belonging: A 

case study of middle school students’ perspectives. The Educational and Developmental 

Psychologist, 33(01), 85–96. http://doi.org/10.1017/edp.2016.4 

Hagel, P., & Shaw, R. N. (2010). How important is study mode in student university choice? 

Higher Education Quarterly, 64(2), 161–182. http://doi.org/10.1111/j.1468-

2273.2009.00435.x 



 

 115 

Harackiewicz, J. M. (2017). Motivation theory and intervention: Progress and prospects. In 

AERA SIG-Motivation in Education; Invited Speaker Session. San Antonio, TX. 

Harackiewicz, J. M., Canning, E. A., Tibbetts, Y., Priniski, S. J., & Hyde, J. S. (2016). Closing 

achievement gaps with a utility-value intervention: Disentangling race and social class. 

Journal of Personality and Social Psychology, 111. http://doi.org/10.1037/pspp0000075 

Harackiewicz, J. M., & Priniski, S. J. (2018). Improving student outcomes in higher education: 

The science of targeted intervention. Annual Review of Psychology, 69(1). 

http://doi.org/10.1146/annurev-psych-122216-011725 

Hausmann, L. R. M., Ye, F., Schofield, J. W., & Woods, R. L. (2009). Sense of belonging and 

persistence in White and African American first-year students. Research in Higher 

Education, 50(7), 649–669. http://doi.org/10.1007/s11162-009-9137-8 

Hoffman, M., Richmond, J., Morrow, J., & Salomone, K. (2002). Investigating “Sense of 

Belonging” in First-Year College Students. Journal of College Student Retention: Research, 

Theory and Practice, 4(3), 227–256. http://doi.org/10.2190/DRYC-CXQ9-JQ8V-HT4V 

Hoffman, M., Richmond, J., Morrow, J., & Salomone, K. (2003). Investigating “sense of 

belonging" in first-year college students. Journal of College Student Retention, 4(3), 227–

256. 

Huett, J. B., Kalinowski, K. E., Moller, L., & Huett, K. C. (2008). Improving the motivation and 

retention of online students through the use of ARCS-based e-mails. American Journal of 

Distance Education, 22(3), 159–176. http://doi.org/10.1080/08923640802224451 

Hulleman, C. S., Godes, O., Hendricks, B. L., & Harackiewicz, J. M. (2010). Enhancing interest 

and performance with a utility value intervention. Journal of Educational Psychology, 

102(4), 880–895. http://doi.org/10.1037/a0019506 



 

 116 

Hulleman, C. S., Kosovich, J. J., Barron, K. E., & Daniel, D. B. (2017). Making connections: 

Replicating and extending the utility value intervention in the classroom. Journal of 

Educational Psychology, 109(3), 387–404. http://doi.org/10.1037/edu0000146 

Hurtado, S., & Carter, D. F. (1997). Effects of college transition and perceptions of the campus 

racial climate on Latino college students’ sense of belonging. Sociology of Education, 

70(4), 324–345. 

Jaggars, S. S. (2014). Choosing between online and face-to-face courses: Community college 

student voices. American Journal of Distance Education, 28(1), 27–38. 

http://doi.org/10.1080/08923647.2014.867697 

Jaggars, S. S., & Xu, D. (2016). How do online course design features influence student 

performance? Computers & Education, 95, 270–284. 

http://doi.org/10.1016/j.compedu.2016.01.014 

Johnson, R., Stewart, C., & Bachman, C. (2015). What drives students to complete online 

courses? What drives faculty to teach online? Validating a measure of motivation 

orientation in university students and faculty. Interactive Learning Environments, 23(4), 

528–543. http://doi.org/10.1080/10494820.2013.788037 

Lack, K. A. (2013). Current status of research on online learning in postsecondary education. 

Ithaka S+R, Retrieved from http://www.sr.ithaka.org/research-p. 

http://doi.org/10.18665/sr.22463 

Marsh, H. W. (1986). Verbal and math self-concepts: An internal/external frame of reference 

model. American Educational Research Journal, 23(7), 129–149. 

http://doi.org/10.3102/00028312023001129 

Maslow, A. (1954). Motivation and personality. New York: Harper. 



 

 117 

Means, B., Bakia, M., & Murphy, R. (2014). Learning online: What research tells us about 

whether, when and how. New York: Routledge. 

Means, B., Toyama, Y., Murphy, R., & Baki, M. (2013). The effectiveness of online and blended 

learning: A meta-analysis of the empirical literature. Teachers College Record, 

115(030303), 1–47. 

Means, B., Toyama, Y., Murphy, R., Bakia, M., & Jones, K. (2009). Evaluation of evidence-

based practices in online learning: A meta-analysis and review of online learning studies. 

U.S. Department of Education, Office of Planning, Evaluation, and Policy Development. 

Washington, DC. Retrieved from www.ed.gov/about/offices/list/opepd/ppss/reports.html 

Meeuwisse, M., Severiens, S. E., & Born, M. P. (2010). Learning environment, interaction, sense 

of belonging and study success in ethnically diverse student groups. Research in Higher 

Education, 51(6), 528–545. http://doi.org/10.1007/s11162-010-9168-1 

Moller, J., Retelsdorf, J., Koller, O., & Marsh, H. W. (2011). The Reciprocal Internal/External 

Frame of Reference Model: An integration of models of relations between academic 

achievement and self-concept. American Educational Research Journal (Vol. 48). 

http://doi.org/10.3102/0002831211419649 

Moore, M. G. (1993). Theory of transactional distance. In Theoretical Principles of Distance 

Education (pp. 22–38). http://doi.org/10.2307/3121685 

Moore, M. G., & Kearsley, G. (2005). Distance education: A systems view. Belmont: 

Wadsworth. 

O’Neill, D. K., & Sai, T. H. (2014). Why not? Examining college students’ reasons for avoiding 

an online course. Higher Education, 68(1), 1–14. http://doi.org/10.1007/s10734-013-9663-3 

Park, J., Yu, R., Rodriguez, F., Baker, R., Smyth, P., & Warschauer, M. (2018). Understanding 



 

 118 

student procrastination via mixture models. Proceedings of the 11th International 

Conference on Educational Data Mining, 187–197. Retrieved from 

http://educationaldatamining.org/files/conferences/EDM2018/papers/EDM2018_paper_122.

pdf 

Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles: Concepts and 

evidence. Psychological Science in the Public Interest, 9(3), 105–119. 

Pashler, H., & Wagenmakers, E. (2012). Editors’ introduction to the special section on 

replicability in psychological science. Perspectives on Psychological Science, 7(6), 528–

530. http://doi.org/10.1177/1745691612465253 

PCAST. (2012). Engage to Excel: Producing One Million Additional College Graduates With 

Degrees in Science, Technology, Engineering, and Mathematics. Washington, DC. 

Retrieved from http://www.whitehouse.gov/embeds/footer 

Perez, T., Cromley, J. G., & Kaplan, A. (2014). The role of identity development, values, and 

costs in college STEM retention. Journal of Educational Psychology, 106(1), 315–329. 

http://doi.org/10.1037/a0034027 

Price, L. (2006). Gender differences and similarities in online courses : challenging stereotypical 

views of women, 349–359. 

Renninger, A., Nieswandt, M., & Hidi, S. (2015). Interest in mathematics and science learning 

(American E). 

Rickard, W. (2010). The efficacy (and inevitability) of online learning in higher education. 

Retrieved December 5, 2017, from 

http://www.chronicle.com/items/biz/pdf/Pearson_WP_EfficacyOfOnlineLearning.pdf 

Romero, M., & Usart, M. (2014). The temporal perspective in higher education learners: 



 

 119 

Comparisons between online and onsite learning. European Journal of Open, Distance and 

e-Learning, 17(1), 190–209. http://doi.org/10.2478/eurodl-2014-0013 

Rovai, A. P. (2002). Development of an instrument to measure classroom community. Internet 

and Higher Education, 5(3), 197–211. http://doi.org/10.1016/S1096-7516(02)00102-1 

Rovai, A. P., & Lucking, R. (2003). Sense of community in a higher education television-based 

distance education program. Educational Technology Research and Development, 51(2), 5–

16. http://doi.org/10.1007/BF02504523 

Saez, E. (2010). Striking it richer: The evolution of top incomes in the United States (updated 

with 2008 estimates). Unpublished Manuscript, Department of Economics, Berkeley: 

University of California. 

Saldaña, J. (2014). The Coding Manual for Qualitative Researchers. Sage. London: SAGE 

Publications. http://doi.org/10.1007/s13398-014-0173-7.2 

Schwartz, D. L., Cheng, K. M., Salehi, S., & Wieman, C. (2016). The half empty question for 

socio-cognitive interventions. Journal of Educational Psychology, 108(3), 397–404. 

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental 

designs for generalized causal inference. Belmont, CA: Wadsworth Cengage Learning. 

Short, J., Williams, E., & Christie, B. (1976). The social psychology of telecommunications. 

London: John Wiley & Sons. 

Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral 

Scientist, 57(10), 1380–1400. http://doi.org/10.1177/0002764213498851 

Slaten, C. D., Elison, Z. M., Deemer, E. D., Hughes, H. A., & Shemwell, D. A. (2017). The 

development and validation of the University Belonging Questionnaire. Journal of 

Experimental Education, 0(0), 1–19. http://doi.org/10.1080/00220973.2017.1339009 



 

 120 

Slaten, C. D., Yough, M. S., Shemwell, D. A., Scalise, D. A., Elison, Z. M., & Hughes, H. A. 

(2014). Eat, sleep, breathe, study: Understanding what it means to belong at a university 

from the student perspective. Excellence in Higher Education, 5, 1–5. 

http://doi.org/10.5195/ehe.2014.117 

Spady, W. G. (1971). Dropouts from higher education: Toward an empirical model. Interchange, 

2(3), 38–62. http://doi.org/10.1007/BF02282469 

Sugie, N. F. (2016). Utilizing smartphones to study disadvantaged and hard-to-reach groups. 

Sociological Methods & Research. http://doi.org/10.1177/0049124115626176 

Summers, J. J., & Svinicki, M. D. (2007). Investigating classroom community in higher 

education. Learning and Individual Differences, 17(1), 55–67. 

http://doi.org/10.1016/j.lindif.2007.01.006 

Tibbetts, Y., Harackiewicz, J. M., Canning, E. A., Boston, J. S., Priniski, S. J., & Hyde, J. S. 

(2016). Affirming independence: Exploring mechanisms underlying a values affirmation 

intervention for first-generation students. Journal of Personality and Social Psychology, 

110(5), 635–659. http://doi.org/10.1037/pspa0000049.supp 

Tinto, V. (1993). Leaving college: Rethinking the causes and cures of student attrition (2nd ed.). 

Chicago, IL: University of Chicago Press. 

Tourangeau, R., Rips, L. J., & Rasinski, K. (2000). The psychology of survey response. 

Cambridge University Press. 

Twigg, C. A. (2003). Improving learning and reducing costs - New models for online learning. 

EDUCAUSE Review, 38(5), 28–38. http://doi.org/10.1016/j.ygeno.2009.08.012 

Vanslambrouck, S., Zhu, C., Lombaerts, K., Philipsen, B., & Tondeur, J. (2018). Students’ 

motivation and subjective task value of participating in online and blended learning 



 

 121 

environments. Internet and Higher Education, 36(September 2017), 33–40. 

http://doi.org/10.1016/j.iheduc.2017.09.002 

Visser, L., Plomp, T., Amirault, R. J. ., & Kuiper, W. (2002). Motivating students at a distance: 

The case of an international audience Author ( s ): Lya Visser , Tjeerd Plomp , Ray J . 

Amirault and Wilmad Kuiper Source : Educational Technology Research and Development 

, Vol . 50 , No . 2 ( 2002 ), pp . 94-110 Publi. Educational Technology Research and 

Development, 50(2), 94–110. 

Walton, G. M., & Cohen, G. L. (2011). A brief social-belonging intervention improves academic 

and health outcomes of minority students. Science, 331, 1579–1583. 

Walton, G. M., Logel, C., Peach, J. M., Spencer, S. J., & Zanna, M. P. (2015). Two brief 

interventions to mitigate a “chilly climate” transform women’s experience, relationships, 

and achievement in engineering. Journal of Educational Psychology, 107(2), 468–485. 

http://doi.org/10.1037/a0037461 

Wigfield, A., & Eccles, J. S. (1992). The development of achievement task values: A theoretical 

analysis. Developmental Review, 12, 1–46. 

Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. 

Contemporary Educational Psychology, 25(1), 68–81. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S0361476X99910159 

Wigfield, A., Rosenzweig, E., & Eccles, J. S. (2017). Achievement values: Interactions, 

interventions, and future directions. In A. J. Elliot, C. S. Dweck, & D. S. Yeager (Eds.), 

Handbook of Competence and Motivation (2nd ed., pp. 116–134). New York: Guilford 

Press. 

Xu, D., & Jaggars, S. S. (2011). The effectiveness of distance education across Virginia’s 



 

 122 

community colleges: Evidence from introductory college-level math and English courses. 

Educational Evaluation and Policy Analysis, 33(3), 360–377. 

http://doi.org/10.3102/0162373711413814 

Xu, D., & Jaggars, S. S. (2013). The impact of online learning on students’ course outcomes: 

Evidence from a large community and technical college system. Economics of Education 

Review, 37, 46–57. http://doi.org/10.1016/j.econedurev.2013.08.001 

Ye, F., & Wallace, T. L. (2013). Psychological Sense of School Membership Scale: Method 

effects associated with negatively worded items. Journal of Psychoeducational Assessment, 

32(3), 202–215. http://doi.org/10.1177/0734282913504816 

Yeager, D. S., & Walton, G. M. (2011). Social-psychological interventions in education: They’re 

not magic. Review of Educational Research, 81(2), 267–301. 

http://doi.org/10.3102/0034654311405999 

You, S., Ritchey, K. M., Furlong, M. J., Shochet, I., & Boman, P. (2011). Examination of the 

latent structure of the Psychological Sense of School Membership Scale. Journal of 

Psychoeducational Assessment, 29(3), 225–237. http://doi.org/10.1177/0734282910379968 

Zinshteyn, M. (n.d.). Gov. Brown’s plan for online-only community college provokes pushback. 

Retrieved December 5, 2017, from edsource.org 

Zumbrunn, S., McKim, C., Buhs, E., & Hawley, L. R. (2014). Support, belonging, motivation, 

and engagement in the college classroom: A mixed method study. Instructional Science, 

42(5), 661–684. http://doi.org/10.1007/s11251-014-9310-0 

 

  



 

 123 

APPENDIX A: STUDY 1 - MODALITY MOTIVATION REASONS BY COURSE 

Table A.1       

       
Table A.1 Introductory Engineering - Reasons for Choosing OL and F2F Courses       

Online (n = 57)   Face-to-face  (n = 272) 

11% - Learn Pref 
54% - Univ. 
Constraints 26% - Need Flex 16% - Pref. Flex   

4% - Univ. 
Constraint 88% - Learn. Pref 

4% - Peer 
Interaction 53% - F2F Full 

23% - Course 
Conflict 16% - General  

4% - F2F req. for 
future 44% - General 

4% - Self-
regulation  2% - Commute    20% - Self-regulation 

4% - Prof. Interaction 2% - General    16% - Peer interaction 

3% - General      
10% - Prof. 
Interaction 

      7% - Prof. Lecture 

      3% - Dislike OL 
 

Table A.2       
Table A.2 Advanced Anatomy - Reasons for Choosing OL and F2F Courses 

Online (n = 61)   Face-to-face (n = 71) 

20% - Learn Pref 
0% - Univ. 
Constraints 28% - Need Flex 67% - Pref. Flex   

15% - Univ. 
Constraint 87% - Learn. Pref 

8% - Pace Control  11% - Employment 34% - Commute  
15% - F2F req. for 
future 35% - Self-regulation 

7% - Self-
regulation  11% - Commute 26% - General   

30% - Prof. 
Interaction 

3% - General  5% - General 7% - Employment   
20% - Peer 
interaction 

2% - Peer 
Interaction  

3% - Course 
Conflict 3% - Family   14% - General 

      10% - Prof. Lecture 

      10% - Dislike OL 
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Table A.3       
Table A.3 Introductory Chemistry - Reasons for Choosing OL and F2F Courses 

Online (n = 126)   Face-to-face (n = 157) 

24% - Learn Pref 
21% - Univ. 
Constraints 23% - Need Flex 36% - Pref. Flex   

1% - Univ. 
Constraint 97% - Learn. Pref 

8% - Pace Control 21% - F2F Full 13% - General 29% - General  
1% - F2F req. for 
future 42% - General 

8% - Self-
regulation  

8% - Course 
Conflict 5% - Commute   29% - Self-regulation 

8% - General  1% - Employment 2% - Employment   15% - Prof. Lecture 

1% - Dislike OL  1% - Family    9% - Prof. Interaction 
1% - Peer 
Interaction      6% - Peer interaction 

      6% - Dislike OL 

      3% - Pace Control 
 

Table A.4    

     
Table A.4 Coding Scheme for Reasons for Choosing OL and F2F Courses   
Main 
Themes Subcategories Definition 

Key 
words/phrases Sample Quote 

Need Flexibility 
Any answer that specifies a reason for why the 
flexibility is needed 

"can't" ; 
"need" ; 
"interfered" 

"I am unable to come to campus on the days the face-to-
face class was offered." 

 Employment 
Work commitment is unchangeable, so can't 
take class in-person 

"work" ; 
"conflict" 

"Because I work full time during the week and would not 
be available to attend the in-person class due to my work 
schedule" 

Long Commute 
Unreasonably far from campus to travel 
consistently 

"far-away 
place" 

"I live in San Diego and commuting to Irvine is too 
difficult." 
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Course Schedule 
A different course is taught at the same time as 
this course's in-person lecture 

"same time" ; 
"conflict" 

"Because the face-to-face one conflicts with the other 
course I am taking." 

Family 
Family obligation completely prohibits taking 
course in-person 

"family" ; 
"kids" 

"I have to be home during the day to take care of my 
family." 

     

Prefer Flexibility 
Any answer about flexibility that indicates 
preference, but not necessarily need 

"prefer" ; 
"like" ; 
"convenient" 

"I decided to take online course because my time will be 
more flexible." 

 

Employment 
Work commitment makes flexibility helpful for 
planning schedule "work" 

"I have work obligations, so it would be easier for me 
scheduling wise to have more freedom for when to take 
class." 

Long commute 
The drive to campus could be made on a daily 
basis, but prefer avoiding it 

"would rather 
not" 

"I live 1.5 hours away from the school and would rather 
take it online than drive back and forth to come to class." 

Family 
Desire to spend time with family/ better fulfill 
family obligations "family" 

"It is summer vacation and I was hoping online would make 
my schedule a little more flexible so that I could spend 
more time with my family." 

     

Learning Preferences 
Any answer that indicates they think this 
course will be better for their learning "better" "I like online classes better than in class." 

 

Dislike 
If the student is choosing this course because of 
an unspecified dislike of the other course 

"hated" ; "bad 
experience" 

"The last time I took a science class online, it didn't end 
well. Face to face works better for me." 

Self-regulation 

Concern that they will be less able to stay 
motivated or complete requirements in the 
other course modality 

"distractions" ; 
"engagement";  
"management" 

"I don't feel that I can concentrate in the [other] version of 
the class." 
"More engaging." 

Pacing 

Student prefers the pacing/ spread of lecture 
material, either for being spaced out (OL) or 
for being all at once (F2F) 

"own pace" ; 
"space it out" 

"I tend to do a little better in environments where I have the 
freedom to teach myself and move at a slower or faster 
pace." 



 

 126 

Professor 
Interaction 

Student likes to interact with or ask questions 
to professor in person 

"active 
learning" ; 
"relationship" ; 
"ask" 

"The professor is more accessible and I can ask him 
questions then and there is something in the material doesn't 
make sense." 

Professor 
Lecture 

Student likes to receive lecture while sitting in 
a classroom 

"verbal" ; 
"lecture" ; "sit" 

"It is easier for me to learn when a professor is lecturing. 
Verbal lectures help me remember the information more." 

Peers 
Student likes to interact or be around other 
students 

"peers" ; 
"classmates" 

"When a class is offered in-person there are more 
opportunities to form study groups with other classmates." 

     

University Constraint 
Student mentions a restriction imposed by the 
university   

 F2F full 
OL student says spots were full in the F2F 
course "full" 

"There was no more available spots for her face-to-face 
course." 

Need F2F for 
higher degree OL is not accepted for student's future program 

"doesn't accept 
OL" 

"Most med school and graduate schools require this course 
to be taken face to face." 

     

Unclassified Responses that do not qualify for above themes    

 Unsure 
When response is too short to be sure about 
classifying response  "Better." 

Unaware 
They admit they didn't know the other course 
was an option 

"unaware" ; 
"didn't know" "I did not know there was an online course." 
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APPENDIX B: STUDY 2 - QUALITATIVE CODING SCHEME AND RESULTS 

 
Table B.1   

    
Table B.1 Coding Scheme for Interviews 
Codes Definition Example 
Belonging attributes ( a priori 
codes)   

 acceptance 
process of being received as 
adequate or suitable "I could be myself"  

 respect/ care 
action based on recognition of 
others' needs "people in the group are loyal and care for me" 

 valued involvement 
appreciation expressed by others for 
something one has offered "People care whether I'm there or not" 

 "fit" 

perception that one's context is 
well-suited for his or her own 
attributes "I have a lot in common with this group" 

    
Interpersonal interactions   

 Common experience 

Similarities perceived between one 
and others based on past 
experiences 

"I really connected with these people and I can relate to 
them so well" 

 Interest-driven discussion 
dialogue not centered on course 
content 

"She talked to us a lot about her, like her family, kids, 
and their accomplishments" 

 Content-driven discussion dialogue centered on course content "People actually discuss what the TA's talking about" 

 Visibility of others 
ability to see others/ otherwise 
sense their presence "she's not physically there…so it's harder"  

    
Other experiences   

 Ability level 
Process of judging how strong one's 
ability is  

"my sense of belonging came more from knowing that 
I was supposed to be taking the class in general" 

 Ability demonstration 
Showing one's ability in front of 
others in the class 

"I have the right answer and I can explain it clearly, so 
I feel like I'm being utilized" 
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Table B.2     
      
Table B.2 General Context: Case Dynamics Matrix Describing Belonging and its Antecedents 

  
Type of 
interaction 

Interacting 
with 

Supports/ 
diminishes 

Association 
with 
belonging  Sample Quote 

  
Common 
experience Peers Supports 

Acceptance 
"Fit" 
Valued 
involvement 

"We share a lot of the same interests, we have a lot of the same goals…and we get 
more familiar and more comfortable with each other" (P1) 
"I really connected with these people and I can relate to them so well, and I just felt 
like we could be really really good friends for potentially a long time" (P4) 
"I like cartoons and video games. If I find somebody else that likes cartoons like 
me, I feel like I would fit in" (P6) 
"I felt a sense of belonging, a lot of communication, like they just accepted me. I 
was friends with everyone. I knew everyone personally" (P10) 
"So I guess having to see each other and having to interact with each other and 
work together to that extent to get the job done made me feel like I was part of their 
group"(P12) 
"It's like we're each fingers and if you put us together we make a fist/rock because 
we do everything together" (P14) 

  
Interest-driven 
discussion Peers Supports 

Acceptance 
Valued 
involvement 

"Hanging out with like Intervarsity people, it was really fun and they're pretty open 
and like, accepting" (P2) 
"I'm in the robotics club there. Everybody else contributes and what I say matters" 
(P3) 
"I felt like other clubs weren't as friendly, more clique-y, less open, and the one I 
liked was less exclusive…I felt so welcomed and accepted" (P7) 
"It's like they care about you being there. It's not like you're this random person and 
a benchwarmer. That's where I feel like I belong because it's like they want me to 
be there" (P13) 
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Table B.3     
      
Table B.3 F2F Classroom Context: Case Dynamics Matrix Describing Belonging and its Antecedents 

  
Interpersonal 
interaction 

Interacting 
with 

Supports/ 
diminishes 

Association 
with 
belonging  Sample Quote 

  
Interest-driven 
discussion Instructor Supports 

Respect/care 
"Fit" 

"When our labs would finish early…[the instructor] would talk to us. She 
wouldn't just go on her phone; she would interact with her students."(P1) 
"Her words of advice that she'd give us were very meaningful to me. She talked 
to us a lot about her, like her family, kids, and their accomplishments. I can kind 
of relate to that. I understand what she was saying." (P9) 
"[The teacher] didn't really reprimand us for doing something wrong. In her eyes, 
there was nothing you could do wrong. You were only wrong if you didn't ask a 
question. So she definitely encouraged thinking outside of the box" (P11) 
"If someone missed a day, the teacher would ask what happened. She would 
definitely care, and you feel like you're not just another student there. You're 
important and you're loved" (P13) 

  
Content-driven 
discussion Peers Supports 

Valued 
involvement 

"If people actually…actually discuss what the TA's talking about…where 
everyone's, like, sharing ideas" (P2) 

  
Common 
experience Peers Supports "Fit" 

"They started talking about how closely they are tied with education and how it 
really matters to them. The same thing is applied in my culture" (P3) 

  
Common 
experience Peers Supports "Fit" 

"Just having a lot of friends around me that are going through the same stuff, I'm 
motivated to actually do like well, and I felt really good, knowing that there is so 
many people on the same boat as me" (P10) 
"They're taking those courses because they want to go to graduate school and that 
aligns with what I want to do too, so in that sense I feel like I belong" (P15) 

  
Ability 
demonstration 

Instructor 
or Peers Supports 

Valued 
involvement 

"She would have me demonstrate stuff when we would be learning how to cook 
something…people care about what you could offer" (P4) 
"What makes me feel like I belong in a group setting is if I have the right answer 
and I can explain it clearly, so I feel like I'm being utilized" (P6)  
"Anytime we would do an assignment, and there was a hard question that no one 
understood, the teacher would call on me and ask if I knew it. If the teacher had 
that expectation from me, it made me feel like I'm doing well and I belong here" 
(P8) 

  Ability level Peers Diminishes 
Valued 
Involvement 

"When I'm in science classes that are more competitive, it's tough. They're 
curved, so it doesn't foster a lot of growth and friendships" (P7) 
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Table B.4     
      
Table B.4 OL Classroom Context: Case Dynamics Matrix Describing Belonging and its Antecedents 

  
Interpersonal 
interaction 

Interacting 
with 

Supports/ 
diminishes 

Association 
with 
belonging  Sample Quotes 

  
(Lack of) 
visibility of others instructor Diminishes 

Acceptance 
Valued 
involvement 
Respect/care 

"You can't feel comfortable enough to ask them a question if you don't really see 
them ever and you don't know how they'll react to your question" (P1) 
"The teacher has to deal with so many students, and she's not physically 
there…so it's harder for the instructor to discern how different people might be 
doing better" (P8) 
"The teacher gave the impression that she was very busy and doesn't have time 
for questions because she would say we're college students and could figure it 
out" (P11) 

  
Content-driven 
conversation Peers Supports 

Valued 
involvement 

(P2) 
"If there was extra credit or part of the assignment was you had to cooperate or 
collaborate with other students on group quizzes or projects, that really creates 
comradery" (P6) 
"If you have a lot of team projects and projects where students get to know one 
another, that will encourage students to help each other and care about the other 
student's success" (P13) 

  
(Lack of) 
visibility of others Peers Diminishes 

"Fit" 
Valued 
involvement 
Acceptance 

"I really like surrounding myself with people who want to learn what I'm 
learning, where I can actually look at someone" (P3) 
"I feel like it's easier to make connections and friends in lecture, in a physical 
lecture hall, rather than online" (P4) 
"When you don't know anything but someone's name, it's kind of hard to assume 
like are they outgoing, would they even answer if I asked them any 
questions?"(P10) 
"I don't think it's necessarily what we would talk about because you can talk 
about the same things online so it wouldn't be that. I think it would be more 
about seeing the other person's emotions and reactions to what you say" (P15) 

  Ability level None Supports "Fit" 

"Knowing more about the subject ... you actually know what you're doing, so that 
will make you feel like you belong into that class. Rather than like you trying to 
learn like a whole new kind of thing" (P16) 
"Like I would say my belonging, my sense of belonging came more from 
knowing that I was supposed to be taking the class in general. It wasn't from like 
people interactions, like how I was talking about earlier" (P21) 
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Common 
experience Peers Supports 

Valued 
involvement 

"What brings people together the most is a common enemy I guess, so it would 
be something super-duper hard where you all have to figure out then you 
probably see a lot more activities" (P5). 

 

Table B.5   
    
Table B.5 Results of Cognitive Interviewing of PSSM in an Online College Course  

1 "I feel like a real part of this class" Conclusion 

 
Issues with comprehension of 
item 

Students have different criteria for what being a part of a something 
means (presence, participation, achievement) 

Question is okay. Some 
minor general and 

context-specific issues 
affecting interpretation. 

 Information retrieved  
Participation, interacting with teacher and classmates, more visual/ real-
time discussion (3 times) 

 Context affecting interpretation 
Notions of presence and participation can be different between OL 
courses and school-wide 

 Context affecting judgment 
Rarely seeing instructor or peers degrades this. Discussion boards may 
play a larger role 

    
2 "People in this class notice when I'm good at something" Conclusion 

 
Issues with comprehension of 
item none 

Question is okay. Some 
minor general and 

context-specific issues 
affecting interpretation. 

 Information retrieved  
Demonstrating ability during in-person tests and discussion board 
activities 

 Context affecting interpretation 
Lack of interactions with classmates leads students to question whether 
"people" includes teachers and TAs as well 

 Context affecting judgment 
Few opportunities to demonstrate performance to others reduces 
students' endorsement 

    
3 "It is hard for people like me to be accepted in this class" Conclusion 

 
Issues with comprehension of 
item 

Salience of peers and teachers differs between students. Acceptance not 
meaningful when coming from a figure presumably required to accept 
you (e.g., teachers). "People like me" can be interpreted as referring to 
gender or ethnicity 

Question is okay. Some 
minor general and 

context-specific issues 
affecting interpretation.  Information retrieved  Whether students and teachers are nice when you talk during discussion 
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 Context affecting interpretation none 

 Context affecting judgment 
Anonymity limits opportunities of others to ostracize as well as 
opportunities to show acceptance. "People can't see my face" 

    
4 "Other students in this class take my opinions seriously" Conclusion 

 
Issues with comprehension of 
item none 

Students' answers are 
admittedly based on 

little information 

 Information retrieved  How other students react when you speak in class 

 Context affecting interpretation 
Inability to see others' reactions limits ability to answer this question 
accurately. 

 Context affecting judgment How other students react when you speak in class 

    
    

5 "The instructor of this class is interested in me" Conclusion 

 
Issues with comprehension of 
item none Students' accuracy is 

diminished by 
conflation of 

experience with 
personal differences in 

seeking interactions 
with teacher 

 Information retrieved  Quality of interactions with instructor  

 Context affecting interpretation 

Interactions with instructor are crucial for answering this item, but OL 
courses do not require interactions. Students admit "I am not the type of 
person who goes to office hours" 

 Context affecting judgment Lack of interactions with instructor degrades endorsement of this item 

    
6 "Sometimes I feel as if I don't belong in this class" Conclusion 

 
Issues with comprehension of 
item Disagreement over whether performance is an indicator of belonging 

Students' answers may 
conflate academic and 

social belonging in 
classroom context 

more so than school-
wide context 

 Information retrieved  
Performance in class. Are group members taking what you say 
seriously? Is instructor responsive to you? 

 Context affecting interpretation 

Being in a class with prerequisites is a sign of belonging. "This seems 
like a question for middle school." Inability to see others makes it hard 
to judge fit relative to how others fit 

 Context affecting judgment none 

    
7 "I can talk to the instructor of this class if I have a problem" Conclusion 

 
Issues with comprehension of 
item none 

Question is okay. Some 
minor general and 
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 Information retrieved  
Instructor effort to reach out to students or how instructor responds to 
students' questions 

context-specific issues 
affecting interpretation. 

 Context affecting interpretation Disagreement over whether teaching assistants count as instructors 

 Context affecting judgment 
Lack of regular scheduled interactions with instructor may lead to 
perception that teacher doesn't care and/or doesn't have time for students 

    
8 "People in this class are friendly to me" Conclusion 

 
Issues with comprehension of 
item none 

Question is okay. Some 
minor general and 

context-specific issues 
affecting interpretation. 

 Information retrieved  
Do students respond to each other in discussions/ discussion boards 
more or less friendly than they do to others 

 Context affecting interpretation 
Students are less likely to look to make friends in OL courses, leaving 
them uncertain about expectations for what constitutes friendly treatment 

 Context affecting judgment There are few opportunities for students to be either mean or friendly 

    
9 "The instructor of this class is/are not interested in people like me" Conclusion 

 
Issues with comprehension of 
item "People like me" can be interpreted as referring to gender or ethnicity 

Students' accuracy is 
diminished by lack of 
information about how 
instructor interacts with 

other students 

 Information retrieved  Does instructor treat student differently from others 

 Context affecting interpretation 

Students do not observe instructor communication with other students, 
limiting students' ability to answer this question. Item may be skipped if 
there are no relevant experiences. 

 Context affecting judgment 
Students cannot really observe discrimination or differential treatment 
even if it is happening, leading most to reject this statement.  

    
10 "I am included in lots of activities in this class" Conclusion 

 
Issues with comprehension of 
item Hard to define what an activity is 

Students' accuracy is 
diminished by lack of 
information about how 
instructor interacts with 

other students 

 Information retrieved  
Considering the number of activities available, are you included as much 
as others. Item may be skipped if there are no activities 

 Context affecting interpretation 
OL courses often have few, if any collaborative activities. High response 
may come because students simply don't feel excluded. 
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 Context affecting judgment none 

    
11 "In this class, I am treated with as much respect as other students" Conclusion 

 
Issues with comprehension of 
item none 

Students' answers are 
admittedly limited 
based on lack of 

information about how 
instructor interacts with 

other students 

 Information retrieved  

Teacher considered more than peers. Whether teacher presents 
opportunities fairly or is disparaging relative to other students. How 
quickly students' questions are answered relative to those of other 
students 

 Context affecting interpretation 

Peers not considered because peers do not interact. Lack of insight into 
how teacher treats other students leaves students with little information 
on which to make this decision  

 Context affecting judgment Lack of information to the contrary leads students to endorse item highly 

    
12 "I feel very different from most other students in this class" Conclusion 

 
Issues with comprehension of 
item none Students' answers are 

admittedly limited 
based on lack of 

information about how 
they compare to other 

students 

 Information retrieved  comparisons with peers 

 Context affecting interpretation Most information available on which to compare is academic 

 Context affecting judgment Lack of information to the contrary leads students to endorse item highly 

    
13 "I can really be myself in this class" Conclusion 

 
Issues with comprehension of 
item none 

Question is interpreted 
differently in online 
contexts due to few 

interactions with peers. 

 Information retrieved  Whether or not your peers accept you 

 Context affecting interpretation 

Feeling that you can be yourself is endorsed not because you feel 
accepted by your peers, but rather because the nature of OL course gives 
peers few opportunities to show that they don't accept you 

 Context affecting judgment 
Lack of interactions with classmates reduces fear of judgment from 
others 

    
14 "The instructor in this class respects me" Conclusion 
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Issues with comprehension of 
item none 

Question is affected by 
context, changing the 
criteria that signals 

respect from the 
instructor  

 Information retrieved  Interactions with instructor 

 Context affecting interpretation 

Whether norms of interactions in online courses change what it means to 
be respected. Students do not expect instructor to engage with them 
individually  

 Context affecting judgment 
Lack of disrespect leads to high endorsement of this item, despite the 
absence of interactions signaling respect   

    
15 "People in this class know I can do good work" Conclusion 

 
Issues with comprehension of 
item none 

Question is okay. Some 
minor general and 

context-specific issues 
affecting interpretation. 

 Information retrieved  
Whether students, instructors, and TAs have observed ability through 
test scores  

 Context affecting interpretation 
Because only instructors and TAs can see performance, uncertainty 
whether answer should be based on instructor or classmate perceptions 

 Context affecting judgment 
Lack of interactions with classmates reduces students' endorsement of 
this item 

    
16 "I wish I were in a different class" Conclusion 

 
Issues with comprehension of 
item none 

Information retrieved is 
not relevant to sense of 
belonging in the class.  

 Information retrieved  
Desire to be in another version of this class due to time of the other class 
or modality of the other class 

 Context affecting interpretation 
Interactions with classmates and teachers are actually not a consideration 
because there are so few interactions with classmates 

 Context affecting judgment 
Students specifically in OL be more likely to endorse this because they 
often wanted to be in the F2F version, but it was full. 

    
17 "I feel proud of belonging to this class" Conclusion 

 
Issues with comprehension of 
item none Students do not report 

feeling pride as an 
emotion associated 

with the classes they 
are in  

 Information retrieved  Is this class perceived as special relative to other classes? 

 Context affecting interpretation 
Students unsure of where pride in a class would come from. Having an 
outstanding teacher was suggested 
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 Context affecting judgment none 

    
18 "Other students in this class like me the way I am" Conclusion 

 
Issues with comprehension of 
item none 

Response may be 
based on a lack of 

negative experiences 
rather than presence of 
positive experiences 

 Information retrieved  Negative reactions from classmates when posting to course page 

 Context affecting interpretation 
Lack of interactions led to uncertainty over whether this item should be 
considered true if other simply don't care to notice each other 

 Context affecting judgment 
Lack of negative experiences with others taken as a sign that other 
students do indeed like them the way they are 
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APPENDIX C: STUDY 3 – SURVEY MEASURES 

Table C.1     

Table C.1  Table of Survey Measures used to Measure Course-level Expectancies and Values 
    Cronbach's Alpha 
Item Response Scale Pre-

survey 
Post-survey 

Perceived Competence  
 

0.89 0.93 
I am confident that I will do well in this course. 1=Not at all true -7=Very true 

  

I expect to get a good grade in this course. 1=Not at all true -7=Very true 
  

I believe that I can be successful in CHEM 1A. 1=Not at all true -7=Very true 
  

I expect to do well in CHEM 1A  this quarter. 1=Not at all true -7=Very true 
  

    

Competence Valuation  
 

0.77 0.79 
It is important to me to do well in CHEM 1A. 1=Not at all true -7=Very true 

  

I want to do well in this course.  1=Not at all true -7=Very true 
  

    

Interest - Affective  
 

0.93 0.94 
I’m really looking forward to learning more 
about chemistry. 

1=Not at all true -7=Very true 
  

To be honest, I just don’t find chemistry 
interesting.* 

1=Not at all true -7=Very true 
  

Chemistry fascinates me.  1=Not at all true -7=Very true 
  

I think the field of chemistry is very interesting.  1=Not at all true -7=Very true 
  

I’m excited about chemistry.  1=Not at all true -7=Very true 
  

I enjoy learning about chemistry. 1=Not at all true -7=Very true 
  

    

Interest - Behavioral  
 

0.81 0.84 
I like to read about chemistry topics in my spare 
time. 

1=Not at all true -7=Very true 
  

I enjoy figuring out answers to chemistry 
problems. 

1=Not at all true -7=Very true 
  

I enjoy explaining chemistry ideas that I learn 
about to my friends. 

1=Not at all true -7=Very true 
  

If I had plenty of time, I would take a chemistry 
class outside of my major requirements just for 
fun. 

1=Not at all true -7=Very true 
  

Note. * Item was reverse coded. 
 

 

 

 



 

 138 

Table C.1 (Continued)     

Table of Survey Measures used to Measure Course-level Expectancies and Values 
    Cronbach's Alpha 
Item Response Scale Pre-survey Post-survey 
Attainment Value  

 
0.88 0.92 

The study of chemistry is personally 
meaningful to me. 

1=Not at all true -7=Very true 
  

The study of chemistry is personally 
important to me. 

1=Not at all true -7=Very true 
  

Learning about chemistry will help me 
become the person I want to be. 

1=Not at all true -7=Very true 
  

Learning about chemistry is relevant to how I 
see myself in the future. 

1=Not at all true -7=Very true 
  

    

Utility Value  
 

0.81 0.84 
Chemistry can be useful in my everyday life. 1=Not at all true -7=Very true 

  

I think what we are learning in this course is 
important.  

1=Not at all true -7=Very true 
  

I think the material we study in CHEM 1A  is 
useful for everyone to know.  

1=Not at all true -7=Very true 
  

CHEM 1A  is important to my future.  1=Not at all true -7=Very true 
  

    

Prosocial Utility Values 
 

0.81 0.89 
Chemistry can be useful for helping others. 1=Not at all true -7=Very true 

  

Chemistry can be useful for promoting human 
health and well-being. 

1=Not at all true -7=Very true 
  

Chemistry can be useful for finding solutions 
to problems people face in their everyday 
lives. 

1=Not at all true -7=Very true 
  

    

Behavioral Intentions  
 

0.91 0.94 
Do you plan to obtain a degree or certificate 
in the chemical and health sciences? 

1=Definitely will not - 
7=Definitely will 

  

Do you plan to pursue a career in the 
chemical and health sciences? 

1=Definitely will not - 
7=Definitely will 

  

Note. * Item was reverse coded. 
 




