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ABSTRACT OF THE DISSERTATION

Statistical methods for the analysis of unbalanced matched case-control designs.

By

Sevan K. Gulesserian

Doctor of Philosophy in Statistics

University of California, Irvine, 2016

Professor Daniel L. Gillen, Chair

The research presented in this thesis focuses on the analysis of data arising from matched

case-control designs, with particular emphasis on case-crossover designs. We begin by provid-

ing a scientific example that motivates the research presented, highlighting statistical issues

raised in addressing the scientific goal of study. We provide background and notation that

lays the foundation for the remainder of the dissertation. The occurrence of repeated events

per patient or cluster and an imbalance in cluster sizes poses statistical challenges in the

analysis of case-crossover studies (or more generally in matched case-control studies). We

begin with a background of existing methods, then focus on methods to estimate association

parameters in matched cases control designs while accounting for within-subject correlation

in the data. The methods discussed assume the willingness to break the individual matched

case-control bonds within matched sets, thereby accounting for within-subject correlation

directly in the estimation procedure. It is illustrated that existing estimation procedures

can result in severe bias depending upon the number of repeated events per patient/cluster

and the magnitude of covariate effect on the response.

Then, methods are discussed where it is no longer acceptable to break the matched case-

control bonds. These methods employ substantially different weighting methods to obtain

parameter estimates, and the resulting estimand consistently estimated by each procedure

xiv



is investigated. We focus on the scenario of varying matched set sizes (varying cluster sizes),

where effect modification exists across clusters. It is shown that currently implemented

frequentist methods for analyzing case-crossover data with unbalanced cluster sizes force

one to choose between weighting schemes that estimate marginal or conditionally-weighted

covariate effects.

In order to directly model and contrast marginal and subject-specific estimates of association

in matched case-control studies, a novel method for obtaining estimates is developed. The

proposed methodology allows for simultaneous estimation of both marginal and subject-

specific covariate effects by implementing a semi-parametric Bayesian hierarchical framework.

Throughout, the utility of the resulting methodology is illustrated using data obtained from

a case-crossover study of children sampled from Orange County, CA seeking to quantify the

effect of air pollution exposure on the risk of asthma-related hospital encounters.
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Chapter 1

Introduction

1.1 Motivating Example

Past studies have shown acute adverse changes in respiratory outcomes among children

with asthma from short-term increases in exposure to ambient air pollutants, including fine

particulate matter measuring 2.5 microns or less in width (PM2.5), ozone (O3), and nitrogen

dioxide (NO2) (Trasande and Thurston [2005]). Given this background, it was hypothesized

that higher exposure to residential traffic-related air pollutants would be positively associated

with exacerbated asthma events.

While considered the gold-standard for establishing cause-and-effect, an interventional study

of the effect of exposure to residential traffic-related air pollutants on the risk of exacerbated

asthma events, where individuals are randomly assigned an exposure level and monitored

for the development of exacerbated asthma, would clearly be unethical. Further, since the

event of interest is rare (exacerbated asthma events occur with low frequency, even in the

pediatric asthma population), a prospective observational cohort study would be infeasible

as it would require a large sample prospectively followed for an extended duration in order

1



to produce adequate statistical information for estimating the association of interest.

Due to the above constraints, a retrospective sampling design was implemented to test

the hypothesis that higher exposure to residential traffic-related air pollutants would be

positively associated with exacerbated asthma events. Specifically, asthma-related hospital

admissions and emergency department visits (hospital encounters) for children under 18 years

of age were collected from hospital records at the Children’s Hospital of Orange County

(CHOC) and the University of California at Irvine’s Medical Center (UCIMC) through

the years of 2000-2008 (Delfino et al. [2014]). In addition, time-varying traffic-related air

pollutant exposures including ambient PM2.5, O3, nitric oxide (NO), carbon monoxide (CO),

NO2, as well as temperature and relative humidity were recorded daily from the start of 2000

to the end of 2008.

The primary objective of the study was to evaluate the effect of traffic-related air pollution

exposure on the risk of an asthma-related hospital encounter. In order to estimate the

association between traffic-related air pollution exposure on the risk of an asthma-related

hospital encounter, a type of matched case-control design termed the case-crossover design

was utilized. In the case-crossover design, matching occurs within the subject, allowing

for each patient to act as his/her own control because exposures are sampled from that

patient’s time-varying distribution of exposure. Under this design, the exposure at a time

just before the patient’s event (hospital encounter) can be compared with a set of referent

times representing the expected distribution of exposure for nonevent follow-up times.
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No. Hospital Encounters
Emer. Dept. Visit Hosp. Admission Total Encounters No. Uniq. Subj.

Subj. Char. % (n=8229) (n=3165) (n=11394) (n=7751)
Boys 62 62 62 63

Age in years
0-4 52 62 55 55

5-12 38 32 36 36
13-18 10 6 9 9

Race/ethnicity
White non-hispanic 36 35 36 36

White Hispanic 54 53 54 52
African American 3 4 3 3

Asian 3 4 3 4
Other/unkown 4 4 4 5

Source of payment
Private insurance 36 41 37 38

Government or uninsured 62 53 60 58
Unkown 2 6 3 4

Table 1.1: Summary of socio-economic factors.

Figure 1.1: Distribution of cases across Orange County
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Table 1.1 depicts basic summary statistics and socio-economic factors for patients included

in the study. Figure 1.1 displays the distribution of cases across a map of Orange County. In

total, N = 7, 751 unique children were recorded to have at least one asthma-related hospital

encounter between 2000 and 2008, and 11, 394 total encounters were recorded. As gleaned

from comparing the total number of observed encounters to the number of unique children

experiencing at least one encounter, some children experienced more than one hospital en-

counter over the study period. In fact, the number of encounters for a child varied from 1

to 17 over the course of the study.

1.1.1 Statistical Issues Presented by the Motivating Example

The design and resulting data described in the motivating example raise multiple statistical

issues that must be considered. As is true with the asthma-related hospital encounters data,

studies that utilize the case-crossover design often have an event of interest that can be

experienced numerous times per subject. Additional examples include the effect of alcohol

consumption on gout attacks (Zhang et al. [2006]) or the effect of medication changes on the

risk of falls in elderly patients (Luo and Sorock [2008]). In the broader context of matched

case-control designs, individual subjects in a case-crossover design represent a matching

cluster (or matched set), and when repeated events can occur within the same subject,

each cluster is comprised of the collection of the individual matched case-control pairs for

each event within the subject. Further, data resulting from a case-crossover study with

repeated events are likely to yield unbalanced cluster sizes since some individuals may have an

inherently higher or lower propensity for the event than others. For example, in the context

of the motivating example, patients with more severe asthma would likely be observed for

greater numbers of asthma-related hospital encounters. The result is that the number of

observed matched pairs for these patients would be greater than that of patients with less

severe forms of asthma.
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The occurrence of repeated events per patient or cluster and an imbalance in cluster sizes

poses unique statistical challenges in the analysis of case-crossover studies (or more generally

in matched case-control studies). First, one must consider how to accurately and efficiently

estimate association parameters while accounting for the correlation within patients. While

the conditional logistic regression model is almost universally used for the analysis of matched

case-control studies, in Chapter 2 it is shown that the likelihood corresponding to this model

is mathematically equivalent Cox’s proportional hazard (PH) partial likelihood (Cox [1975]).

Further, it is emphasized in Chapter 2 that the largest statistical software packages revert to

fitting the Cox PH model when estimating the parameters in a conditional logistic regression

model. One approach to accounting for within-patient correlation is to analyze the resulting

data at the patient- or cluster-level. However, this approach yields multiple matched pairs

within each cluster resulting in an analogous situation of multiple tied event times in the Cox

PH partial likelihood. While several methods for accounting for ties in the Cox PH model

have been proposed, the operating characteristics of these methods have not been considered

in the setting of clustered matched case-control data.

While one can account for within-patient correlation by analyzing clustered matched case-

control data at the patient- or cluster-level, beyond introducing ties into the likelihood, this

approach breaks the matching bond between each index case and the corresponding con-

trol(s). The result is that parameter estimates may be biased due to the unfair comparisons

between case and control exposures within the same cluster. When it is necessary to main-

tain the case-control pair bond, each individual index case and corresponding control can

be incorporated separately into the conditional logistic regression likelihood. While vari-

ances of parameter estimates can be adjusted post-hoc in order to account for within-patient

correlations, maintaining case-control bonds forces one to choose how individual index visits

should be weighted during parameter estimation and the choice of weighting scheme can have

substantial impacts on the scientific interpretation of the resulting parameter estimates.
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1.2 Overview of the Thesis

The remainder of the thesis builds on the motivating example presented in Section 1.1 and

the statistical issues raised in Section 1.1.1. The work presented here seeks (1) to describe

past statistical contributions to the design and analysis of case-crossover studies, (2) to

carefully examine operating characteristics of currently used methods and point out the

deficiencies in these approaches, and (3) to propose a novel statistical methods that address

the discovered deficiencies. To this end, in Chapter 2 a general review of the methodology to

be used throughout the remaining chapters is provided. In Chapter 3, it is shown that the

conditional logistic likelihood under numerous events per matched set (i.e. numerous events

per subject in a case-crossover design) is mathematically equivalent to a Cox proportional

hazards (PH) partial likelihood with tied event times within strata (matched sets). This

is done in order to demonstrate that current software obtains parameter estimates in a

matched case-control study design by maximizing the Cox PH partial likelihood using a

transformation of the data. The methods discussed in this chapter assume the willingness

to break the individual matched case-control bonds within matched sets, thereby accounting

for within-subject correlation directly in the estimation procedure. In Chapter 4, methods

are discussed where it is no longer acceptable to break the matched case-control bonds. The

methods discussed in Chapter 4 employ substantially different weighting methods used to

obtain parameter estimates, and the resulting estimand target by each estimation procedure

is described. Throughout Chapter 4 the focus is on the scenario of varying matched set sizes

(varying cluster sizes) as found in the asthma ER admissions motivating dataset, where effect

modification exists across clusters.

In Chapter 4 it is shown that currently implemented frequentist methods for analyzing case-

crossover data with unbalanced cluster sizes force one to choose between weighting schemes

that estimate marginal or conditionally-weighted covariate effects. While both approaches

address reasonable scientific goals, it would be desirable to directly model and contrast each
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of these estimands simultaneously. Building on the results of Chapter 4, in Chapter 5 a novel

method for obtaining estimates and drawing inference in case-crossover studies with repeated

events where effect modification across subjects may exist is developed. The methodology

allows for simultaneous estimation of both marginal and subject-specific covariate effects.

Specifically, a semi-parametric Bayesian hierarchical model to estimate subject-specific co-

variate effects is proposed.

Throughout the remainder of the thesis, the asthma hospital admissions study described in

Section 1.1 motivates the developed research and illustrative examples are presented using

data from this study. While the asthma hospital admissions study provides an excellent

application for the developed methodology, the research presented throughout is presented

in a general fashion that can be applied to any matched case-control study with numerous

matched pairs within clusters.
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Chapter 2

Background and Review

2.1 Review: Case-Control Studies with a Binary Ex-

posure

In a prospective design seeking to study the effect of a factor (or factors) on the risk of

experiencing a particular outcome, a healthy cohort of subjects sampled from the target

population is followed throughout the course of a study. Baseline and possibly longitudinal

measures of the factor(s) they are exposed to are collected and the outcome status of each

subject in the cohort is ascertained. At the completion of the study, the estimated probability

of the outcome occurring conditional upon factor level can be contrasted to estimate the

association between the factor and the outcome. However, if the outcome occurs rarely in

the target population, then with high probability there will be a low number of subjects

that are observed to experience the outcome and a large number of subjects that did not.

Hence little information will be attained on the difference in the probability of the outcome

occurring based on the differing levels of the factor(s) of interest.
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If the outcome rate is low, a prospective study is generally infeasible for the reasons described

above. A more feasible approach is to consider a retrospective design. A retrospective design

first samples subjects based on their outcome status, and then retrospectively measures

their factor levels. This type of design ensures that a sufficient number of subjects with and

without the outcome are included in the analysis. When the outcome of interest is binary,

the retrospective design termed a case-control design since cases (or subjects known to have

experienced the outcome of interest) and controls (or subjects known to not have experienced

the outcome of interest) are first sampled, then the risk factor (or exposure) of interest is

measured and hence is random by design.

Because of the efficiency of the case-control design for studying rare outcomes, this retro-

spective design is used throughout medical and health related fields where the determinants

of rare adverse health outcomes are often of scientific interest. Historically, the retrospec-

tive case-control design gained popularity in the early 1920’s in the field of cancer research

(Broders [1920], Lombard and Doering [1928], Lane-Claypon [1926]) and has roots dating

back nearly one and a half centuries when researchers employed a retrospective design to

compare the occupations of men with pulmonary consumption to the occupations of men

having other diseases (Lileinfield and Lilienfield [1979]).

2.1.1 Inference for Case-Control Studies with a Single Binary Ex-

posure

Consider data resulting from case-control study with binary outcome, D (commonly used to

indicate disease (D = 1) or no disease (D = 0)) and a single binary exposure, X (eg. X = 1

for exposed and X = 0 for non-exposed). Let a denote the total number of diseased subjects

that were exposed, b denote the number of non-diseased subjects that were exposed, c denote

the number of diseased subjects that were not exposed subjects, and d denote the number of
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Exposure\Disease D = 1 D = 0 Total
X = 1 a b t
X = 0 c d N − t
Total N1 N0 N

Table 2.1: 2 × 2 contingency table depicting case-control data with a single binary outcome
and single binary exposure

non-diseased that were not exposed. Letting N denote the total number of subjects sampled

in the study, these data can then be represented using a 2 × 2 contingency table of the form

given in Table 2.1.

One approach to drawing inference regarding the association between exposure and outcome

using the data depicted in Table 2.1 is via Pearson’s chi-square test for independence (Pearson

[1900]). This approach focuses on testing the null hypothesis of independence between the

column and row variable versus the alternative hypothesis of an association between the

column and row variables (or disease and exposure in the context of the case-control study

giving rise to table Table 2.1). Pearson’s chi-square test statistics is intuitively formulated by

contrasting (and standardizing) the observed count in each table cell with the expected count

under the null hypothesis of independence between columns and rows. More specifically,

Pearson’s chi-square statistic a general I × J contingency table is is given by

X 2 =
K∑
k=1

(Ok − Ek)2

Ek
,

where K is the number of cells in the table (Table 2.1 has K = 4), Ok is the observed counts

in cell k, and Ek = rowk total×columnk total
N

is the expected count in cell k under the null

hypothesis, k = 1, ..., K. Under the null hypothesis and assuming independence between

observations conditional upon disease status, it can be shown that X 2 is asymptotically

distributed as a chi-square random variable with degrees of freedom equal to (I−1)×(J−1),

where I and J denotes the number of rows and columns of the table that are used to formulate

the test statistic, respectively.
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Cornfield [1951] aimed to address criticisms that Pearson’s chi-square test for independence

does not directly assess the probability of disease by exposure level, a functional of primary

interest to researchers. To this end, focus shifted to the odds of a disease given by p
1−p

where p denotes the probability of disease. The corresponding odds ratio is then defined

as the ratio of odds comparing two different levels of exposure. Thus in the context of a

case-control study with a single binary exposure, letting p1 ≡ P (D = 1|X = 1) denote the

probability of disease for exposed subjects and p2 ≡ P (D = 1|X = 0) be the probability of

disease for non-exposed subjects, the odds ratio comparing exposed to unexposed subjects

is given by p1(1−p2)
p2(1−p1) . Cornfield [1951] demonstrated that the exposure odds ratio comparing

diseased to non-diseased subjects, (ORE), which can be estimated using a retrospective

design, is the same as the disease odds ratio comparing exposed to non-exposed subjects,

(ORD), which is what would be obtained in a prospective design. The equivalence results

from a straightforward application of Bayes’ theorem relating the conditional probability of

exposure (conditional on disease) to the joint probability of exposure and disease and the

marginal probability of disease:

P (X = j|D = l) =
P (X = j,D = l)

P (D = l)
j=0,1, l=0,1.

From Bayes’ result it is then trivial to see that

ORE =
P (X = 1|D = 1)P (X = 0|D = 0)

P (X = 0|D = 1)P (X = 1|D = 0)

=
P (D = 1|X = 1)P (D = 0|X = 0)

P (D = 0|X = 1)P (D = 1|X = 0)

= ORD. (2.1)

It is also worth noting that if the disease is rare (the primary motivation for using a retro-

spective design), then P (D = 0|X = j) ≈ 1 for j = 0, 1 and thus ORD approximates the

relative risk of disease, RRD = P (D=1|X=1)
P (D=1|X=0)

. More generally, ORD = RRD
1−P (D=1|X=1)
1−P (D=1|X=0)

. Thus
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only in the rare outcome setting can the odds ratio obtained from a retrospective design ap-

proximate the prospective relative risk. However, in general from Eq (2.1) under the scenario

of a single binary exposure and a binary disease status, the case-control study provides an

estimate for inferences regarding the disease odds ratio the same as if a prospective design

had been implemented.

Using the notation of Table 2.1, a consistent estimator of the odds ratio is given by

ÔR =
ad

cb
, (2.2)

and statistical inference for the odds ratio proceed as follows: In a retrospective sampling

design, the column totals N1 and N0 are fixed. Therefore, a|N1 ∼ Binomial(N1, p1 = P (X =

1|D = 1)) and b|N0 ∼ Binomial(N0, p0 = P (X = 1|D = 0)). Noting that a and b are the

sum of N1 and N0 independent and identically distributed Bernoulli random variables, it

follows from the central limit theorem that:

√
N

(
a

N1

− p1
)

D→ N(0, p1(1− p1)/γ1), (2.3)

and similarly for b
N0

, where lim
N→∞

Nj
N

= γj for j = 0, 1. Using the results in (2.3) a straight-

forward application of the delta method yields

ln(ÔRD)
.∼ N(ln(ORD), var(ln(ORD)), (2.4)

where var(ln(ORD)) = 1
γ1p1(1−p1) + 1

γ0p0(1−p0) can be consistently estimated by v̂ar = 1
a

+ 1
b

+

1
c

+ 1
d
.

Formal statistical testing and inference for the disease odds ratio can thus be obtained using

the result in (2.4).
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Exposure\Disease D = 1 D = 0 Total
X = 0 a01 b00 t0
X = 1 a11 b10 t1

...
...

...
...

X = K aK1 bK0 tK
Total N1 N0 N

Table 2.2: 2-way table for K levels of exposures.

2.1.2 Extensions to Ordinal Discrete Exposures

The methodology discussed above for the analysis of 2×2 tables has been extended to settings

where the exposure level has K > 1 levels. Early work addressing this was presented by

Cochran [1954] and Armitage [1955]. This led to expanding the work on the chi-square test

set forth by Pearson, where the aim was to assess the presence of an association between a

variable with two categories and a variable with K ordered categories. In this case, one is

considered with the analysis of a K × 2 table as shown in Table 2.2. The test modifies the

Pearson chi-square test of independence to incorporate an assumed ordering in the effects

of the K categories of the exposure variable. Taking an example of treatment level effects

on disease status, doses of a treatment can be ordered as ’low’, ’medium’, and ’high’, and

it might reasonably be hypothesized that treatment benefit increases with escalating dose.

Details of the Cochran-Armitage test for trends can be found in Cochran [1954] and Armitage

[1955].

Finally, a common theme throughout the statistical literature focused on the analysis of

contingency tables is the reconciliation in what can be inferred from a retrospective sampling

design and the more natural, but often less efficient, prospective sampling design. Along these

lines, Mantel and Haenszel [1959] clarified the relationship between a cohort (prospective)

and case-control (retrospective) study with the observation that the primary goal with the

retrospective study is to reach the same conclusions had a prospective study been performed.

This fundamental goal continues to drive much of the regression methods considered in the
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following sections, as well as the methodology developed in the remainder of the thesis.

2.1.3 Adjustment for Confounding in Contingency Tables

Continuing the discussion from the previous section of the effect of a single binary exposure

on a disease outcome, the issue of confounding arises. Multiple definitions of confounding

have been proposed in the statistical and epidemiological literature. For the purposes of this

thesis, a confounding variable is defined as a factor that is causally associated with both the

outcome and the explanatory variable of interest. Confounding is a critical concept in the

analysis and interpretation of observational data since unadjusted confounding can lead to

the appearance of an association between the outcome and the explanatory variable interest,

even though such an association may not truly exist. As such, methods for adjusting for

potential confounding factors are critical when analyzing data arising from an observational

study.

Exposure\Disease D = 1 D = 0 Total
X = 1 ak bk tk
X = 0 ck dk Nk − tk
Total N1k N0k Nk

Table 2.3: 2-way table with a single binary outcome and single binary exposure for the k-th
level of a confounder.

Assuming a categorical confounding variable with K > 1 levels, Mantel and Haenszel [1959]

considered the adjustment for confounding by arranging the data into a series of K inde-

pendent two-way contingency tables, one at each level of the potential confounder. In this

case, it is assumed that the confounder is both observable and was measured. For nota-

tional purposes, the two-way table (assuming a single binary exposure) at the k-th level of

the confounder is depicted in Table 2.3. The Mantel-Haenszel (MH) summary odds ratio

estimator inherently assumes a common odds ratio at each level of the confounder (ie. no

interaction exists between the exposure covariate and confounding covariate), and is defined
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as ψ̂MH =

∑
k
Rk∑

k
Sk

, where Rk = akdk
Nk

and Sk = bkck
Nk

. Intuitively, by first stratifying on the level of

the confounder, the effect of confounding is conditioned out and the conditional odds ratios

can then be marginalized over the levels of the confounder. This procedure was eventually

adopted for routine use by epidemiologists, who benefited from seeing their data arranged in

tabular form and making comparisons of individual and summary relative risks that signaled

possible heterogeneity across the k levels of the confounder (Breslow [1996]). Robins et al.

[1986] and Phillips and Holland [1987] later developed an estimator for the variance of ψ̂MH ,

and asymptotic approximations of the distribution of the estimate were developed to allow

for inference regarding the adjusted odds ratio.

To further expand on the development of the MH estimator, first note that E(Rk) = ψkE(Sk)

, where ψk denotes the true odds ratio in table k . Then assuming a common value for ψk and

setting R =
∑
k

Rk and S =
∑
k

Sk, ψ̂MH is the solution to the unbiased estimating equation

R − ψS = 0. Further, under paired binomial sampling, the variance of the k-th table’s

contribution to the estimating equation is given by

N2
k var(Rk − ψSk) = E[(akdk + ψbkck)(ak + dk + ψ(bk + ck))]. (2.5)

Letting β = ln(ψ), it can be shown that

β̂MH = ln(ψ̂MH) = β +
R− ψS
E(R)

+ op

(
var(R)

E2(R)
+

var(S)

E2(S)

)
. (2.6)

Combining Eqs. (2.5) and (2.6), an estimate of the variance of ln(ψ̂MH) is given by

v̂ar(β̂MH) =
1

R2

∑
k

1

N2
k

[(akdk + ψ̂MHbkck)(ak + dk + ψ̂MH(bk + ck))]. (2.7)

Further, from Eqs. (2.6) and (2.7) the asymptotic distribution of can be found β̂MH and

shown to be

β̂MH = ln(ψ̂MH)
.∼ Normal(ln(ψ), v̂ar(ln(ψ̂MH)). (2.8)
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From the result in (2.8), asymptotic inference regarding the confounding adjusted odds ratio

can be conducted using usual frequentist methods.

As previously noted, marginalization of the conditional odds ratio across the K strata of

the confounding covariate only tends to make sense when the the strata-specific odds ratio

are homogeneous. To test the hypothesis of homogeneity, the Breslow test of homogeneity

can be conducted (Breslow and Day [1980]). Further, if one simply wishes to test whether

the association between exposure and disease exists at any level of the confounding factor

(without first marginalizing over the levels of the confounder) the Cochran-Mantel-Haenszel

test (Mantel [1963]) can be used. Specifically, the Cochran-Mantel-Haenszel considers a null

hypothesis of the form H0 : ψ1 = ψ2 = ... = ψK = 1, where ψk is the odds ratio comparing

exposed to unexposed among subjects with confounding covariate level k, k = 1, . . . , K.

The Cochran-Mantel-Haenszel test statistic is then constructed as the standard sum, over

all strata, of the contrasted observed and expected cell counts with asymptotic distribution

given by:

χCMH =

∑
k

(ak − tkN1k

Nk
)∑

k

tkN1kN0k(Nk−tk)
N2(1−N)

.∼ χ2
1.

2.2 Review: Case-Control Studies with Continuous and

Categorical Exposures

The discussion up to now has primarily focused on the setting of a single binary exposure and

it’s association with the the probability of a binary outcome (disease or no disease). Methods

to evaluate the simultaneous effects of multiple quantitative risk factors on disease rates

began to appear in the 1960s. The goal was not just to differentiate between two populations

(exposed and non-exposed), but rather to make inference on the risk of developing disease
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during a specified time period as a function of one or more exposures variables measured on

each subject.

Cornfield et al. [1961] showed that if the multivariate exposureX among the diseased and the

non-diseased population is normally distributed with different means but a common covari-

ance matrix, then given a subject’s exposure values X = x , the probability of developing

the disease can be represented by the logistic response curve:

P (D = 1|X = x) =
exp(α + xβ)

1 + exp(α + xβ)
,

where the parameters ,α and β, are simple functions of the moments of the exposure distribu-

tions and the marginal distribution of the disease. The direct use of the logistic specification

above (not the normality of the exposure distribution) was recommended by Cox [1966], as

it required fewer assumptions. Day and Kerridge [1967] later noted that the full likelihood

based on the joint distribution of (D,X) can be factored into two pieces, the conditional like-

lihood specified by the logistic model, and the marginal likelihood of the exposures. Both

pieces could then be maximized separately, allowing for the exposure distributions among

the controls to be arbitrary.

Let x be a 1 by p vector of covariates and β = (β1, ..., βp)
T . Based on the work of Cox [1966],

Seigel and Greenhouse [1973] noted a key feature of the logistic model for case-control studies.

Namely, they noted that

P (D = 1|X = x1)P (D = 0|X = x0)

P (D = 0|X = x1)P (D = 1|X = x0)
= exp[(x1 − x0)β], (2.9)

which is to say the disease odds ratio for comparing exposure levels of x1 to x0 has an

exponential form, and thus (x1 − x0)β is the log odds ratio for comparing x1 to x0. The

issue is that the case-control sampling design will contain terms of the form P (X|D), not

P (D|X).
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Again, noting the need to reconcile inference obtained from a retrospective sampling design

to that from a prospective design, Prentice and Pyke [1979] set out to show how the param-

eter estimates in the directly specified logistic case-control model can be obtained from a

retrospective design and related to the corresponding prospective estimands. Let x0 denote

a baseline 1× p vector of covariates (i.e. vector of 0s) and βj a p× 1 vector of parameters.

The prospective model for the probability of disease conditional on x0 is given by

p(D = j|x) =
exp(αj + xβj)
1∑
j=0

exp(αj + xβj)

, j = 0, 1, (2.10)

with β0 = 0 and γ0 = 0 for uniqueness. Then the odds ratio of comparing exposure levels x

to the baseline or referent level is calculated to be:

exp [(x− x0)βj ] (2.11)

Additionally, (2.10) can be recovered by beginning with (2.11) and defining α as follows:

αj = log

(
p(D = j|x)

p(D = 0|x0)

)
− x0βj .

Utilizing the equality between the prospective and retrospective odds ratios, and the repre-

sentation in (2.11), the following can be calculated for j = 0, 1:

P (X = x|D = j) = cjexp[γ(x) + xβj], (2.12)

where γ(x1) = log
(
P (x|D=0)
P (x0|D=0)

)
for all x and cj = cj(γ,βj), a normalization factor.

Now consider a retrospective design and suppose n0 controls and n1 cases are sampled from

their respective subpopulations. Let xji for i = 1, 2, ..., nj denote the nj regressor variables

(a 1 × p vector) in disease group j, j = 0, 1, and set n = n0 + n1. The likelihood function

resulting from the retrospective sampling design is then given by
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1∏
j=0

nj∏
i=1

P (xji|D = j) =
1∏
j=0

nj∏
i=1

cjexp[γ(xji) + xjiβj]. (2.13)

As noted by Prentice and Pyke [1979], re-parameterization can clarify the estimation prob-

lem. To this end, let q(x) = [exp(γ(x)]
1∑
l=0

nl
n
clexp(xβl). Solving for exp(γ(x)), and plugging

in the result into (2.12):

P (x|D = j) =

[
exp(δj + xβj)/

1∑
l=0

exp(δl + xβl)

]
q(x)

n

nj
, (2.14)

where δj = log(cjnj/n).

The likelihood in (2.13) can then be written as

L ∝

[
1∏
j=0

nj∏
i=1

pj(xji)

][
1∏
j=0

nj∏
i=1

q(xji)

]
= L1L2,

where pj(x) = exp(δj + xβj)/
1∑
l=0

exp(δl + xβl) for j = 0, 1.

The parameters and q(.) are restricted by the constraint that (2.12) is a probability distri-

bution for each j and hence must satisfy

nj
n

=

∫
pj(x)q(x)dx, (2.15)

where if x is discrete the integration becomes a summation.

Maximizing L without considering the constraints, the parameter estimates are solutions to

the following estimating equations:

∂logL1

∂δj
= nj −

1∑
m=0

nm∑
i=1

pj(xmi) = 0.
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∂logL1

∂βj
=

nj∑
i=1

x
′

ji −
1∑

m=0

nm∑
i=1

x
′

mipj(xmi) = 0.

However, Prentice and Pyke [1979] note that the non-parametric maximum likelihood esti-

mator of q(.) is the empirical probability function q̂(.) that assigns mass s/n to any value

of x that is observed with multiplicity s and 0 elsewhere. Prentice and Pyke [1979] then go

on to show that unconstrained maximum likelihood estimators δ̂1, β̂1 (again setting δ0 = 0

and β0 = 0 for uniqueness) and q̂(.) satisfy the constraint in (2.15). Along with the fact

that
∫
q̂(x)dx = 1, the conclusion is reached that ((δ̂1, β̂1, q̂(.)) are the desired constrained

maximum likelihood estimators.

The implication of the above results from Prentice and Pyke [1979] is that if the prospective

model were applied to retrospectively sampled case-control data, the likelihood equations

would be identical, with α in the place of δ. Most importantly, this implies that the disease

odds ratio parameters can be obtained by maximizing the retrospective likelihood and hence

usual logistic regression techniques are justified for estimating the disease odds ratio based

upon retrospectively sample data.

Standard maximum likelihood theory can be used to obtain asymptotic distribution of the

MLEs obtained above, namely that
√
n(β̂−β)

d→ N(0, I−1) where I denotes the information

matrix. Hypothesis tests for β can utilize methods like the score test or likelihood ratio tests.
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2.3 Matched Case-Control Designs and the Conditional

Logistic Regression Model

In Section 2.1.3 the need for confounding adjustment in observational studies was reviewed.

In that section, the Mantel-Haenszel estimator was introduced as a means to adjust for a

single discrete confounding factor in the analysis of contingency tables that may arise from a

retrospective study design. In Section 2.2 the logistic regression model was discussed, which

allows for adjustment of multiple continuous and/or discrete confounding factors and the

seminal results of Prentice and Pyke [1979] that established the justification for use of stan-

dard logistic regression modeling of retrospectively sampled data was reviewed. However,

regression-based adjustment for confounding still has limitations. First, it is generally infea-

sible, in terms of estimating parameters given a fixed sample size, to control for too many

confounding factors. In addition, regression-based adjustment forces the decision of func-

tional form when modeling a confounding factor, and if the functional form of the confounder

is mis-specified, residual confounding can still exist. Given these potential drawbacks, it can

be advantageous to adjust for confounding by design through matching. In the context of a

case-control study, matching cases to controls with respect to confounding factors will fully

adjust for confounding since since both case and controls will have the same value for the

factor. In this section, the statistical analytic techniques that have been proposed for the

analysis of data stemming from a retrospective matched design are reviewed.

2.3.1 Analysis of Matched Data with a Single Binary Exposure

For a moment, return to the 2× 2 contingency table setting and consider the matched pair

data depicted in Table 2.4. Suppose interest lies in a single binary exposure and that N cases

are sampled with a matched control to each case. Due to the matching, which introduces
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Control pair member
Case pair member Exposed Non-exposed Total

Exposed a b t
Non-exposed c d N − t

Total N1 N0 N

Table 2.4: 2-way table for matched pairs with a single binary outcome and single binary
exposure

correlation among observations, the observations within the sample are not independent

and hence the previously reviewed methods for drawing inference between exposure and

outcome do not apply. Instead, McNemar’s test (McNemar [1947]) can be used to test

for the association of interest. In order to test if exposure is associated with outcome,

McNemar’s test uses only the number discordant pairs (b and c in Table 2.4), since the other

pairs provide no information regarding the differential status of exposure among cases and

controls. Intuitively, if the difference between b and c is large, this would imply that cases to

be more (or less) exposed than their matched controls. This lays the foundation for the test.

More precisely, McNemar’s test statistic and the asymptotic distribution of the statistic are

given by:

χ2
MN =

(b− c)2

b+ c

.∼ χ1

In addition, it can be easily shown that a consistent estimator of the odds ratio based upon

data arranged as in Table 2.4 is given by

ÔR =
b

c
.

2.3.2 Analysis of Matched Data with Multiple Adjustment Co-

variates

Returning to the scenario of multiple continuous and categorical exposures, Breslow et al.

[1978a] and Breslow and Day [1980] began to investigate what they termed the stratified
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logistic regression in the context of matched case-control data. Suppose that each case is

matched to M ≥ 1 controls base upon some set of potential confounding factors. Such

a design is referred to as a 1-to-M (1 : M) matched design. Further suppose that the

population at risk is stratified on such a fine grid that each case and its matched controls

are drawn from the same stratum. Letting Si denote the observed and unobserved matching

factors that define the ith stratum (i = 1, 2, ..., n), a prospective model for the probability

of disease can be written as

P (D = 1|Si,X = x) =
exp(αi + xβ)

1 + exp(αi + xβ)
. (2.16)

The model in (2.16) involves a separate parameter, αi, for each of the n strata and allows

for inclusion of possible interactions between matching variables and exposures included

in the explanatory vector x. In this model specification, the curse of dimensionality is

evident since as the sample size increases, the number of parameters to estimate increases

proportionally. As such, it would be inefficient to estimate each αi separately. To highlight

this issue, consider the extreme case of a single case and a single matched control (a 1:1

matched design) in each strata. In this scenario, a sample of only size 2 would be available

for estimation of each stratum specific parameter regardless of how large n is, resulting in the

Neyman-Scott paradox. Fortunately, as pointed out by Breslow and Day [1980], the stratum

specific αi can be eliminated from the likelihood by conditioning on an ancillary statistic.

In this case, the conditioning is done with the unordered set of exposures for the cases and

controls in each stratum, which is equivalent to the number of cases in each stratum. This

conditioning is elaborated for the remainder of this section.

Consider a single stratum’s contribution to the full conditional likelihood. Continuing with

the setting of 1 : M matching in each stratum, let Y i be a vector of size M + 1 , where

each element can be a 0 to denote no disease and 1 for disease. Further, let j denote the

jth observation in the ith strata, i = 1, . . . , n, j = 1, . . . ,M + 1. Then the unconditional
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probability for the jth observation in strata i can be modeled as

P (Yij = yij|Si) =
exp(yij[αi + xijβ])

1 + exp(αi + xijβ)
,

and noting independence within strata we have

P (Y i = yi|Si) = exp

(
M+1∑
j=1

yij[αi + xijβ]

)
/
M+1∏
j=1

(1 + exp(αi + xijβ)). (2.17)

If the likelihood contribution from strata i is conditioned on the number of cases in that

strata, namely
M+1∑
j=1

yij = 1, then (2.17) will factor into

P (Y i = yi|
M+1∑
j=1

yij = 1,Si) =

P (Y i = yi)× I(
M+1∑
j=1

yij = 1)∑
{y∗i :

∑
j
y∗ij=1}

P (Y i = y∗i )

=


exp{αi+

∑
j
yijxijβ}∑

{y∗
i
:
∑
j
y∗
ij

=1}

∏
j
P (Yij=y∗ij)

,
M+1∑
j=1

yij = 1

0 ,
M+1∑
j=1

yij 6= 1

=


exp(αi+

∑
j
yijxijβ)∑

{y∗
i
:
∑
j
y∗
ij

=1}
exp(αi+

∑
j
y∗ijxijβ)

,
M+1∑
j=1

yij = 1

0 ,
M+1∑
j=1

yij 6= 1

=


exp(

∑
yijxijβ)∑

{y∗
i
:
∑
j
y∗
ij

=1}
exp(

∑
j
y∗ijxijβ)

,
M+1∑
j=1

yij = 1

0 ,
M+1∑
j=1

yij 6= 1.

(2.18)

From (2.18) it can be seen that upon conditioning on the strata and number of cases within

the strata, the stratum specific parameters αi are factored out of the likelihood contribution

for strata i, and hence do not require estimation. Without loss of generality, let xi1 be the
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exposure values for the case and xij ,j = 2, 3, ...,M + 1 be the values for the controls. Then

the above likelihood contribution for the ith strata from (2.18) is given by

exp(xi1β)

exp(xi1β) +
M+1∑
j=2

exp(xijβ)

. (2.19)

Note that exp(xijβ) is the odds ratio for comparing exposure levels of xij to exposure levels

of 0 for all exposures, x = 0. Intuitively, the likelihood contribution for the ith stratum in

(2.19) reduces to comparing the covariate values for the case to the covariate values of all

members within the same strata, which includes both the case and the matched controls.

The above model specification and likelihood contribution gives rise to the full conditional

logistic likelihood based on the full study sample:

L(β) =
n∏
i=1

P (Y i = yi|
M+1∑
j=1

yij = 1,Si). (2.20)

The conditional logistic likelihood shown in (2.20) can be maximized to obtain parameter

estimates for β, which can in-turn be used to obtain disease odds ratio estimates.

One of the difficulties of retrospective sampling designs is appropriate matching of controls

to cases. For example, consider matching a case child admitted to the hospital for a disease

outcome to a similarly aged control child identified at home. The matching factor of age will

be controlled for by design, but there is potential for confounding to other socio-economic

factors, such as health insurance status. As a result, unmatched factors would need to be

included in the model via regression adjustment (assuming they were observed). This will

result in the estimation of additional parameters and the potential for residual confounding

as previously mentioned. Unfortunately, due to logistical consideration, it is often infeasible

to identify appropriate controls when matching on many criteria. However, in some studies

it is possible to use a case as his/her own control, hence creating a matching scheme that

controls for all within-subject invariant factors by design. In the next section, such a design

25



is elaborated on.

2.3.3 The Case-Crossover Design

The case-crossover design can be viewed as a hybrid between a matched case-control de-

sign and a traditional crossover design. As previously noted, in a retrospective matched

case-control design inference is based on the comparison of the exposures between the case

and control(s) within each matching set, where controls are matched to cases based on a

specified set of criteria. In a traditional crossover design investigating two treatments, each

subject receives each treatment once, in a randomized order, and the outcome following each

treatment regime is contrasted within the subject. Merging these two designs results in the

case-crossover design. In this setting, each case subject serves as his/her own control, but is

from a different time period where the event that defines case status was not experienced.

Thus, since the same subject is both the case and control, observed and unobserved time

in-variant matching factors are controlled for by design.

Historically, the case-crossover design was initially developed to study the effects of transient,

short-term exposures on the risk of acute events (Maclure [1991]). This type of design rep-

resents a valid and efficient design for studying relationships between exposures and events

with the following characteristics: 1) the individual exposure varies within short time inter-

vals; 2) the disease has abrupt onset and short latency for detection; and 3) the induction

period is short (Jaakola [2003]). The above implies that subject level exposures must vary

within short time periods and induce the event of interest within a short time period. Addi-

tionally, the event’s onset must be able to be defined and observed. As previously noted, by

comparing exposures near event periods to exposures during non-event periods, each subject

is able to act as his/her own control.

Implementation of the case-crossover design does require careful thought. Once the data
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for cases are obtained, the case subject’s exposure from a different time period (past or

future) sufficiently distant from the case exposure period is used as the controls exposure

(Navidi [1998], Navidi and Weinhandl [2002]). This window of time for the control is known

as the referent period. Since controls are created from the case subjects, there is no risk

of selection bias, which occurs when controls are not representative of the population from

which the cases arise from. However, there is a risk of overlap bias, meaning that the score

equations resulting from the likelihood based on the case-crossover data do not have mean

zero. Improperly choosing referent times will lead to overlap bias, which in turn will lead

to increased bias in coefficient estimates. As such, the choice of referent periods is further

elaborated on in the coming paragraphs.

Let x be a shared exposure series, defined at times t = 1, 2, ..., T common to all i = 1, 2, ..., n

subjects. Let the index (case) time for subject i be denoted by ti, the exposure at the

index time be denoted by xti , and let Wi represent the referent window for subject i (which

includes the index and all referent periods).

To begin, consider the estimating equations from a conditional logistic regression likelihood.

Because the case-crossover design represents a special case of the matched case-control de-

sign, the conditional logistic regression likelihood derived earlier still applies here, and the

resulting estimating equations obtained from the conditional logistic regression likelihood in

the current context are given by

n∑
i=1

Ui(β) ≡
n∑
i=1

(xiti −
∑
t∈Wi

xt
exp(xtβ)∑

s∈Wi

exp(xsβ)
) = 0.

Typically, the underlying model for the case-crossover design is the proportional hazards

model for a rare disease (Navidi and Weinhandl [2002], Janes et al. [2005a]), with a constant

baseline hazard (ie. an exponential model for time). In this case, the hazard for subject i at

time t, given time-varying covariates xit is given by
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λi(t; xit) = λiexp(xitβ).

The goal in choosing a referent selection scheme that will pick referent window Wi for sub-

ject i is to obtain a localizable and non-ignorable design. A localizable referent design means

there exists an unbiased estimating equation restricted to the referent windows. Within

localizable referent selection schemes, an ignorable referent selection scheme means that the

referent sampling scheme can be ignored in conducting the analysis (i.e. the data likelihood

does not depend on the referent scheme). Therefore the derivatives of the true conditional

log-likelihood of the data with respect to the model parameters, β, will be equal to the

conditional logistic likelihood estimating equations, which are unbiased, and thus the con-

ditional logistic likelihood estimating equations can be used to obtain consistent parameter

estimates.

The likelihood function in terms of a defined referent selection scheme is constructed as

follows. Assume a single event within each matched set i and let Yit be an indicator of whether

subject i’s index time was on day t. If a localizable and ignorable referent selection scheme is

chosen, then the likelihood of the data conditioning on the referent window, exposure series,

and number of cases from subject i is:

P (Ti = ti|x,Wi,
T∑
s=1

Yis = 1) =

P (Ti = ti,
T∑
s=1

Yis = 1|x,Wi)

T∑
t=1

P (Ti = ti,
T∑
s=1

Yis = 1|x,Wi)

=
λiexp(xtiβ)∑

t∈Wi

λiexp(xtβ)

=
exp(xtiβ)∑

t∈Wi

exp(xtβ)
. (2.21)
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The likelihood in (2.21) only depends on exposures at times within the referent windows,

and the derivative of the natural log of this likelihood set to zero gives the conditional

logistic likelihood estimating equations. Thus, the conditional logistic likelihood can be used

to estimate the parameters β, provided that a localizable and ignorable referent selection

scheme is implemented.

An example of a non-localizable referent selection is the symmetric bi-directional design,

which picks referent times based upon a fixed number of days before and after the index

time. In this design the likelihood of the index times conditional on the referent windows

reduces to equalling 1. This is a direct result of the fact that, based on this design, the referent

window will determine the index time, since the index time is always the center of the referent

window. Alternatively, the semi-symmetric bi-directional design picks referent times to be

at either a pre-determined number of days, δ, before the index, or a pre-determined number

of days after the index, with equal probability of picking the early or later referent time. In

this referent selection design, Wi = {ti ± δ} with probability 0.5 in each direction (+ or -),

and the conditional likelihood obtained from this referent selection scheme is given by

P (Ti = ti|x,Wi,

T∑
s=1

Yis = 1) =

P (Wi = wi|x, Ti = ti,
T∑
s=1

Yis = 1)P (Ti = ti,
T∑
s=1

Yis = 1|x)

T∑
t=1
P (Wi = wi|x, Ti = t,

T∑
s=1

Yis = 1)P (Ti = t,
T∑
s=1

Yis = 1|x)

=

P (Wi = wi|x, Ti = ti,
T∑
s=1

Yis = 1)P (Ti = ti,
T∑
s=1

Yis = 1|x)

∑
t∈Wi

P (Wi = wi|x, Ti = t,
T∑
s=1

Yis = 1)P (Ti = t,
T∑
s=1

Yis = 1|x)

=


π(Wi|ti)λiexp(xtiβ)

π(Wi|ti)λiexp(xtiβ)+π(Wi|ti−δ)λiexp(xti−δβ)
,Wi = {ti − δ, ti}

π(Wi|ti)λiexp(xtiβ)

π(Wi|ti)λiexp(xtiβ)+π(Wi|ti+δ)λiexp(xti−δβ)
,Wi = {ti, ti + δ},

(2.22)
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where π(Wi|t) = P (Wi = wi|Ti = ti,x,
∑
Yis = 1). In a semi-symmetric bi-directional design

π(Wi|tj) = 0.5 if tj is in the middle of the exposure series, which is to say that both before

and after referent periods are available to be selected. If π(Wi|tj) = π(Wi|tk) ∀ (tj, tk) ∈ Wi,

then the likelihood in (2.22) reduces to that of the conditional logistic likelihood. However,

subjects who have index times at the beginning or end of the exposure time series have only

one referent period available for choosing. For example, a subject that has an event at the

start of the study will not have a referent period from the past available, as the exposures

for that time were not recorded. This results in overlap bias unless the likelihood in (2.22)

is modified. Specifically, if an offset of ln(2) is added for days at the beginning and end of

the exposure series, (2.22) reduces to the conditional logistic likelihood as a result of the π’s

canceling out (since 0.5 ∗ exp(ln(2) + xtβ) = exp(xtβ)).

Using the above results, Janes et al. [2005a] deduced that this referent selection scheme,

called the adjusted semi-symmetric bi-directional design, is both localizable and ignorable,

and can be used to select referents for a given case index. No overlap bias will occur in

this design as the estimating equations of the conditional logistic likelihood will be used

to estimate parameters. Alternatively, if referent times are randomly chosen for cases at

the beginning and end of the exposure time series, and those referent times are outside the

exposure series, those cases can be dropped from the analysis. This is equivalent to weighting

cases at the beginning or end of the exposure series as 0.5, which means the above will again

reduce to the conditional logistic likelihood.

For the remainder of the thesis the adjusted semi-symmetric bi-directional referent design

will be utilized to create the case-crossover dataset that will be used in applied analyses.

Referent times that are available to be chosen for a specific index day will be multiples of 7,

which will control for day of week confounding (Bateson and Schwarts [1999], Bateson and

Schwarts [2001]). Specifically, using a lagged referent time of 14 days prior to the index day

and a lead referent time of 14 days past the event day will control for seasonal trend (Levy
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and Lumley [2000]). Since these confounders are controlled for by design, they do not need

to be included in the model. To illustrate, if the case index time is set to be a day before the

event date (a lag of 1), then the past referent time will be 15 days before the event time (14

days before the lag 1 time) and the future referent time will be 13 days ahead of the event

time (14 days ahead of the event time). A similar approach will be used when computing

moving averages. If the day of the event and the previous 6 days are used to create an average

exposure for the case, then the control moving averages are defined to be the average of the

14th-20th day exposures in the past or the average of 8th-14th day exposures in the future.

The symmetry about the day(s) used for the case index is maintained in all cases. Note that

the previous derivations can be easily extended to include 1 : M matching per event. For

example, given an index day, the referent times can be picked to be the 14th and 21st day

prior or the 14th and 21st day after the index day. This will result in 1 : 2 matching.

It is worth noting that a second type of localizable and ignorable referent selection strategy

is called the time-stratified design. This method of picking referent times divides time into

disjoint strata (for example stratifying a year into disjoint sets of 28 days). The index day

is then used to determine which strata to pick, and all of the same days of the week as the

index day that belong to the strata are chosen as referent times (or a random sample of

these days is chosen). This, like the semi-symmetric method mentioned earlier, will control

for day of week and season confounding.

Here, the time-stratified referent design having score equation with mean 0 is shown. First,

note that the expectation of the estimating equation for a single subject (with respect to ti),

regardless of the referent selection is:

Eti(Ui(β)) =
T∑
ti=1

exp{xtiβ}
T∑
s=1

exp{xsβ}
(xti −

∑
u∈Wi

xu
exp{xuβ}∑

v∈Wi

exp{xvβ}
) (2.23)
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since P (T = t|x,
T∑
s=1

Yis = 1) =
exp{xtβ}
T∑
s=1

exp{xsβ}
. Setting t = ti and Wi = Wt, (2.23) factors into:

Eti(Ui(β)) =
T∑
ti=1

vt(xt − x(Wt)) (2.24)

where vt =
exp{xtβ}
T∑
s=1

exp{xsβ}
, Wt is the referent window to which t belongs to, and

x(Wt) =
∑
u∈Wt

xu ∗ exp{xuβ}∑
v∈Wt

exp{xvβ}
.

In a time-stratified design, the sum over all times can rewritten as a sum over strata s =

1, 2, ..., S and time within strata, since time is partitioned into a complete set of disjoint

strata. Then (2.24) becomes

Eti(Ui(β)) =
S∑
s=1

1
T∑
u=1

exp{xuβ}
(
∑
t∈s

xtexp{xtβ} −
∑
u∈s

xuexp{xuβ}
exp{xuβ}∑

v∈Wi

exp{xvβ}
)

= 0

Thus the time-stratified design yields a score equation with mean 0, and therefore is a

localizable and ignorable referent selection strategy as well.

2.4 Review: Conditional Logistic Likelihood Parame-

ter Estimation via Cox Proportional Hazard Par-

tial Likelihood Maximization

Here a brief review of the Cox proportional hazards partial likelihood from survival analysis

is provided as it will later be shown to have a connection to the conditional logistic likelihood

function, and will play a key role in the research presented in Chapters 3 and 4. Begin by
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assuming time, T , is a continuous, positive random variable denoting survival time. In the

context of a survival study, subjects experiencing events during the study have their event

times recorded. Subjects that do not experience an event during the study, nor do they

dropout of the study, have what is termed a right-censored event time. What is known

about a censored subject’s event time is that it is beyond their censoring time, but the

subject is considered at risk throughout the observed follow-up.

First consider functionals of the survival distribution that are often of scientific interest.

Define the probability density function f(t), cumulative distribution function F (t), survival

function S(t), hazard function λ(t) and cumulative hazard function Λ(t) as:

f(t) = lim
4t→0+

1

4t
P [t ≤ T < t+4t]

F (t) = P [T ≤ t]

S(t) = P [T > t] = 1− F (t) = 1−
t∫
0

f(s)ds

λ(t) = lim
4t→0+

1

4t
P [t ≤ T < t+4t|T ≥ t] = f(t)/S(t)

Λ(t) =

t∫
0

λ(s)ds

The hazard at time t is as the instantaneous rate of an event at time t given no event

up to time t. In a proportional hazards model, the effect of an increase in a covariate

is multiplicative with respect to the hazard rate, where the multiplicative effect remains

constant at all times. Cox [1972] developed a model used for survival data based on the

proportional hazards assumption. Specifically, the Cox proportional hazards model is given

by

λ(t|X) = λ0(t)exp(xβ) = λ0(t)exp{β1xi1 + ...+ βpxip},
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where x is a 1 × p vector of covariates, β is a p × 1 vector of parameters and λ0(t), which

need not be specified, represents the baseline hazard function at time t. That is to say λ0(t)

is the hazard at time t for a subpopulation with all covariate values equal to 0, x = 0. βk

denotes the log relative risk comparing xik + 1 to xik for k = 1, 2, .., p, assuming all other

x’s are held constant. Since λ0(t) is not specified, β cannot be estimated using a standard

parametric likelihood, as that would require full specification of the underlying probability

model. To avoid modeling the baseline hazard function, Cox [1975] derived what is termed

the partial likelihood, which can be used to obtain estimates for β.

To construct the partial likelihood, the notation of Fleming and Harrington [1991] is used.

Begin by assuming that for a sample size of n, {t(1), ..., t(K)} denote the ordered failure times

with no ties, k = 1, . . . , K. Further, let (A1, B1), (A2, B2), ..., (AK , BK) be a collection of 2K

events, where Ak be the event specifying the labels that failed at time t(k) and Bk be the

event describing the observed times of censoring in the interval [t(k−1), t(k)), along with the

labels associated with the censoring times, given the fact that an observation failed at time

t(k), k = 1, . . . , K. Then the likelihood for these 2K events is

P (A1, B1, ..., AK , BK) =

[
K∏
k=2

P (Ak, Bk|Ak−1, Bk−1, ..., A1, B1)

]
P (A1, B1)

=

[
K∏
k=2

P (Ak|Bk, Ak−1, Bk−1, ..., A1, B1)

]
P (A1|B1)

×

[
K∏
k=2

P (Bk|Ak−1, Bk−1, ..., A1, B1)

]
P (B1)

(2.25)

All four terms in the right hand side of (2.25) depend on parameters defining the survival

distribution of interest. Thus taking only the first two terms out of the four constitutes a

partial likelihood. Let R(t) denote the labels of the observations still at risk at time just

prior to t, t−. In many scenarios it is a reasonable assumption that the censoring times are
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independent of the actual failure times, and hence do not provide additional information

about the failure distribution that would not be available if censoring were not present.

Thus, it is reasonable to assume that the events Bk contain little information about β. This

is the initial reasoning on neglecting the last 2 terms out of the 4 in (2.25) when constructing

the partial likelihood.

The partial likelihood is constructed by comparing the risk of the subjects that experienced

an event, given their covariate values, to the risk of subjects still at risk for the event, given

their covariate values. More specifically, for the subject failing at time t(k) , the likelihood

contribution is

L(k)(β) = P (Ak|Bk, Ak−1, Bk−1, ..., A1, B1)

= P [subject with x(k) fails at t(k)|some subject failed at t(k)]

=
P [subject with x(k) fails at t(k)]

P [some subject fails at t(k)]

=

[
λk(t(k))(4t)

∏
j∈R(t(k))−(k){1− λj(t(k))(4t)}

]
[∑

l∈R(t(k))−l λl(t(k))(4t)
∏

j∈R(t(k))−l{1− λj(t(k))(4t)}
]

=

[
λk(t(k))(4t)

][∑
l∈R(t(k))

λl(t(k))(4t){1− λk(t(k))(4t)}/{1− λl(t(k))(4t)}
] (2.26)

Now, since 4t is small,
1−λk(t(k))(4t)
1−λl(t(k))(4t)

≈ 1, and (2.26) factors as

L(k)(β) =
λk(t(k))(4t)∑

l∈R(t(k))
λl(t(k))(4t)

=
λk(t(k))∑

l∈R(t(k))
λl(t(k))

=
λ0(t(k))exp(x(k)β)∑

l∈R(t(k))
λ0(t(k))exp(xlβ)

=
exp(x(k)β)∑

l∈R(t(k))
exp(xlβ)

(2.27)
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Let δi be an event indicator for subject i, such that δi = 1 if the true event time was observed

for subject i and 0 otherwise, i = 1, . . . , n. Then using (2.27), the partial likelihood across

all observed failure time becomes

LP (β) =
K∏
k=1

exp(x(k)β)∑
l∈R(t(k))

exp(xlβ)
=

n∏
i=1

[
exp(xiβ)∑

l∈R(ti)
exp(xiβ)

]δi
.

If the data are stratified into G > 1 independent strata, and if Lg represents the likelihood

contribution corresponding to strata g, then the partial likelihood across all strata is given

by

LP (β) =
G∏
g=1

Lg =
G∏
g=1

K∏
k=1

exp(xg(k)β)∑
l∈R(t(gk))

exp(xglβ)

The log likelihood, l(β), and score equation, Uj(β), for the Cox proportional hazard likeli-

hood are as follows:

l(β) =
K∑
k=1

x(k)β − log

∑
i∈R(k)

exp(xiβ)



Uj(β) =
K∑
k=1

x(k)j − x̄(k)j

for j = 1, 2, ..., p, where K is the total number of distinct observed event times, x̄(k)j =∑
i∈R(k)

xijw(k)i(β) and w(k)i(β) =
exp(xiβ)∑

i∈R(k)
exp(xiβ)

.

Additionally, the observed information matrix, I(β), is defined by elements

Ijh(β) = Ihj(β) =
K∑
k=1

 ∑
i∈R(k)

(xij − x̄(k)j)(xih − x̄(k)h)w(k)i(β)

 , j, h = 1, 2, ..., p.

Parameter estimates for β are obtained by setting the score equations to 0 and solving. Cox

[1975] noted that since the sets Bk provide little information about β, that the partial like-
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lihood can be maximized to obtain reasonably efficient estimates for β. Efron [1977] showed

that the maximum partial likelihood estimator is asymptotically locally efficient under mild

conditions when the proportional hazards assumption holds. Presenting survival data in a

counting process setting and borrowing results from martingale theory, Andersen and Gill

[1982] derived the asymptotic distribution of the maximum partial likelihood, namely that

β
.∼ N(β, I−1β ),

under regularity conditions analogous to those assumed under standard likelihood theory.

The review on time-to-event analysis via the Cox proportional hazards partial model is

presented in order to establish a key relationship between Cox’s partial likelihood and the

conditional logistic likelihood. More specifically, Breslow and Day [1980] noted an equiv-

alence between the conditional logistic likelihood and the Cox’s partial likelihood. This

derivation is recreated below.

For ease of notation, assume 1 : 1 matching and a single event in each matched set. From

a conditional logistic likelihood viewpoint, subject i will have Y i = (Yi1, Yi2), i = 1, . . . , n.

Without loss of generality, assume the first observation, Yi1 denotes the event, and the second,

Yi2 is the matched control. It was shown in (2.19) that the likelihood contribution for this

subject is

Li = P (Y i = yi|Si,
∑
j

yij = 1)

=
exp(xi1β)

exp(xi1β) + exp(xi2β)
(2.28)

Now, from a time to event analysis viewpoint, assume the data are stratified, and each

stratification contains a single matched pair. Thus, each strata has only a single event. For

a specific stratum (i) the likelihood contribution was shown in (2.27) to be:
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L(i) =
exp(x(1)iβ)∑
j∈Ri

exp(xjiβ)
(2.29)

Given the conditional logistic likelihood data, if the event time within each subject is created

and set to a constant, and control times are created and set to a number higher than the event

time, (2.28) and (2.29) will be equivalent. Therefore taking the product of the individual

subject/strata likelihood contributions across all i subjects will maintain equality and thus

the conditional logistic likelihood is mathematically equivalent to Cox’s partial likelihood.

Because of this equivalence, the most common statistical software packages used to analyze

matched case-control data via the conditional logistic model proceed to do so by transforming

the data to an equivalent Cox partial likelihood maximization procedure. The more general

case involving 1 : M matching and numerous events within subject is discussed in Chapter

3.

2.5 Review: Bayesian Analysis of Case-Control Stud-

ies

Exposure\Disease D = 1 D = 0 Total
X = 1 a b t
X = 0 c d N − t
Total N1 N0 N

Table 2.5: 2-way table with a single binary outcome and single binary exposure

The earliest Bayesian inference on case-control studies began with Zelen and Parker [1986],

Nurminen and Mutanen [1987], and Marshall [1988]. Each of these authors considered a

Bayesian model formulation of a case-control model with a single binary exposure, X. To

summarize the model, let p1 denote the probability of exposure in the control population

and let p2 denote the probability of exposure in the case population. Recall the two-way

table as presented in Table 2.5. Since the individual cell counts given the column totals are
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binomially distributed, the likelihood is proportional to

L(p1, p2) ∝ pb1(1− p1)d pa2(1− p2)c (2.30)

One approach is to specify independent conjugate priors for pi, i = 1, 2, where p1 ∼

Beta(µ1, µ2) and p2 ∼ Beta(ν1, v2), where the parameter of scientific interest is again the log

odds ratio, namely β = log
(
p2(1−p1)
p1(1−p2)

)
. After re-parameterization and a change of variables

via a Jacobian transformation, a prior on β is induced and the posterior of β based on this

prior and the likelihood in (2.30) is given by

p(β|a, b, c, d) ∝ exp([a+ ν1])

1∫
0

pa+c+ν1+µ2−11 (1− p1)b+d+ν2+µ2−1

(1− p1 + p1exp(β))a+b+ν1+ν2
dp1 (2.31)

The posterior in (2.31) is not a closed form density and numerical methods can be applied

to evaluate the integral, and thus sample from the posterior distribution of β.

Müller and Roeder [1997] investigated Bayesian modeling of case-control studies by consid-

ering continuous exposures with measurement error. This scenario expanded on the single

binary exposure approaches. Let D denote the event outcome (0 or 1), X denote the ex-

posure of interest with possible measurement error, and a completely observed covariate Z.

Error in variables occurs when for a subset of the data (referred to as reduced data or R)

a proxy W is measured instead of the true covariate X. For the complete data (C), both

the true X and W is recorded. For the reduced data let XR denote the missing exposure

and let XC denote the observed exposures for the complete data. The retrospective sample

is chosen as follows: n1 = n1R + n1C cases are sampled and n0 = n0R + n0C controls are

sampled.

For the prospective probability of event, a logistic link is assumed i.e. P (D = 1|X,Z,W ) =

exp(β0+β1T1(X)+β2T2(Z))

1+exp(β0+β1T1(X)+β2T2(Z))
, where T1(.) and T2(.) are monotonic transformations. Let β denote

the vector of parameters in the logistic link (the log odds ratio parameters) and let θ denote
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the parameters for the marginal distribution of the exposure X and covariates Z and W .

Assume D and W are conditionally independent given X ,which is to assume non-differential

measurement error (Carroll 1993):

P (D|X,Z,W, β) = P (D|X,Z, β).

Choosing a prior, p(β, θ), for β and θ , the joint posterior is of the form

p(β, θ|XC ,W,D,Z) ∝ p(β, θ)
∏
i∈C

p(Xi, Zi,Wi|Di,β, θ)
∏
i∈R

[∫
p(Xi, Zi,Wi|Di.β,θ)dXi

]
.

Augmenting the parameters with the latent vector XR, the joint posterior of the parameters

and the reduced data exposures is given by

p(β,θ, XR|XC ,W,D,Z) ∝ p(β,θ)
n∏
i=1

p(Xi, Zi,Wi|Di.β,θ)

Invoking the assumption of non-differential measurement error, the joint posterior of the

parameters and reduced data exposures becomes

p(β,θ, XR|XC ,W,D,Z) ∝ p(β,θ)
n∏
i=1

p(Xi, Zi,Wi|θ)p(Di|Xi, Zi,β)/p(Di|β,θ)

where P (Di|β,θ) =
∫
P (Di|Xi, Zi,Wi,β)dP (Xi, Zi,Wi|θ) since the distribution of Di con-

ditional on Xi, Zi,Wi does not depend on θ, and the distribution of Xi, Zi,Wi only depends

on θ.

In the work of Müller and Roeder [1997], the joint distribution of (Xi, Zi,Wi) assumes a

mixture model with a multivariate normal kernel φθi using a Dirichlet process mixture model

such that

p(Xi, Zi,Wi|θi = (µi,Σi)) ∼ N(µi,Σi)
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θi = (µi,Σi)|G ∼ G

G ∼ DP (α,G0)

where α is the concentration parameter and G0 is the base measure (a more in-depth review

of the Dirichlet process and its properties follows in the next section). This non-parametric

approach models the joint distribution of (XR, Z,W ) for the reduced data and (XC , Z,W )

for the complete data. Using a mixture of normal models with a Dirchlet process prior on

the mixing measure (Ferguson [1973], Escobar [1994], Escobar and West [1995]), a class of

flexible mixture distributions is obtained for the joint distribution of the exposure and the

covariates.

Müller and Roeder [1997] complete their Bayesian semi-parametric hierarchical model by

setting G0 ≡ N(µ0,Σ0), specifying a gamma prior for α, and specifying a diffuse prior on

β. This approach assumes a mixture of multivariate normal models for the distribution of

(X,Z,W ), with a Dirichlet process prior model on the unknown mixture measure. Note that

since XR is latent, it is sampled according to p(XR|β,θ,W,D,Z,XC). Finally, note that the

above model setup can easily be extended to multivariate covariates, X, W , and Z.

Markov chain Monte Carlo methods are implemented for sampling from the posterior dis-

tribution of the model parameters. When the the dimension of the space of (X,W ,Z)

increases, computation becomes intensive since p(Di|β,θ) is numerically integrated over

(X,Z,W ).

The work by Müller and Roeder [1997] introduced the idea of incorporating continuous ex-

posures and flexible nonparametric modeling of the exposure distribution for the Bayesian

analysis of case-control data. In this formulation, categorical exposures required a differ-

ent treatment as the normal kernel of the Dirichlet process implicitly assumed continuous
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exposures.

In related work, Seaman and Richardson [2001] replaced the binomial likelihood of the two-

way table with a multinomial likelihood, thus extending the binary exposure model of Zelen

and Parker [1986]. In this work, the set of multinomial probabilities that would correspond

to the exposure categories in case and control populations was assumed to have a discrete

Dirichlet prior. A diffuse Dirichlet(0,0,...,0) prior for the exposure probabilities is assumed,

which then implies an induced improper uniform prior on β. A continuous exposure can also

be used, but only by discretizing them into groups.

2.5.1 Bayesian Analysis of Matched Case-Control Studies

The first Bayesian approach for matched case-control studies was proposed by Diggle et al.

[2000], where a nuisance parameter to represent the separate effects of matching in each

matched set is introduced. Of consideration in this study is an exposure of interest that is

defined by the spatial location of an individual relative to a point or line source of pollution.

For an unmatched design, the set up is as follows. Let g(x) denote the intensity function of a

non-homogenous Poisson process that defines the locations of individuals in the population

at risk. Given a subject’s location x , let p∗(x) be the probability of becoming a case. The

odds of disease amongst sampled subjects is

r(x) =
a

b

p∗(x)

1− p∗(x)

where a and b are the sampled proportions of cases and controls. Commonly, r(x) ≡ r(x, θ),

denoting that the odds, involves an unknown parameter θ. This is modeled as r(x, θ) =

ρh(x, θ) where h(x, θ) involves the interpretable parameter of interest θ.

Extending the above setup to J matched case-control pairs proceeds as follows. Let x0j and
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x1j denote the J locations for the cases and controls respectively, j = 1, 2, ..., J . Given a

subject at location x in stratum j, the probability of becoming a case is given by

pj(x, θ) =
rj(x, θ)

1 + rj(x, θ)
=

ρjh(x, θ)

1 + ρjh(x, θ)
,

where the ρj’s represent the baseline odds that vary among the matched pairs, and are

considered nuisance parameters. The probability of disease for a subject at distance x in

stratum j conditional on the unordered set of exposures within that matched pair is:

pc(xj0, θ) =
h(xjo, θ)

h(xjo, θ) + h(xj1, θ)
.

In the case of 1 : M matching and q additional covariates, zk(xji) (k = 1, 2, ..., q), measured

for subject i at the j-th stratum (i = 1, 2, ...,M+1; j = 1, 2, ..., J), the conditional probability

is of the form

pc(xj0, θ,φ) =
h(xjo.θ)exp(

∑q
k=1 zk(xj0)φk)∑M+1

i=1 h(xjo.θ)exp(
∑q

k=1 zk(xj0)φk)
, (2.32)

where φ = (φ1, ..., φq). The conditional likelihood based on (??) is then given by

L(θ,φ) =
J∑
j=1

log(pc(xj0, θ,φ)).

In the type of spatial studies that motivated the work of Diggle et al. [2000], there is a point

source of interest at location x∗, and interest is on how risk changes with locations in relation

to x∗ . Letting d = ||x − x∗|| be the distance to the source from location x. Diggle [1990]

suggests h be of the form:

h(x) = 1 + αexp(−(
d

β
)2) for fixed x∗

The parameter α represents the proportional increase in disease odds at the source and β

measures the rate of decay with increasing distance from the source in units of distance.
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Diggle [1990] conduct the Bayesian analysis by putting independent priors on φk’s, φk
iid∼

N(µ, σ2) and uniform priors on α and β. Posterior draws are obtained via Markov chain

Monte Carlo sampling that incorporated a component wise Metropolis-Hastings algorithm.

This approach represented an alternative to likelihood methods as the likelihood in this

model is highly irregular.

More recently Ghosh and Chen [2002] developed a Bayesian technique for matched case-

control studies with one or more binary exposures. In this model, they work with the

unconditional likelihood. As a result, the matched set specific parameters γi are in the

likelihood, as well as the parameter of interest β. In their approach, they assume independent

priors for each of the γi and the β. Mukherjee et al. [2007] apply a semi-parametric approach

to case-control data in a study of gene-environment association with disease status. Similar to

Müller and Roeder, the covariate distribution is assumed to come from a mixture of normals,

where the mixing proportions are specified a Dirichlet process prior. The most recent work

on matched case-control studies via Bayesian modeling will be discussed in chapter 5 (Sinha

et al. [2004] ,Sinha et al. [2005])

2.5.2 Equivalence of Retrospective and Prospective Analysis in a

Bayesian Framework

Seaman and Richardson [2004] showed that the posterior for β obtained using a retrospective

likelihood is the same as the posterior obtained using a prospective likelihood. This is the

Bayesian analogue of the results of Prentice and Pyke [1979]. Seaman and Richardson [2004]

first revisit the multinomial-Poisson transformation presented by Baker [1994].

Let X be a discrete exposure with J support points z1, ...,zJ . Let n0j and n1j denote

the number of cases and controls with values X = zj respectively, for j = 1, ..., J . If
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P (X = zj|D = 0) =
θj∑
j
θj

and odds of disease for X = x is exp(xβ) then the natural

retrospective likelihood is:

LMR =
1∏
d=0

J∏
j=1

 θjexp(dzjβ)
J∑
j=1

θjexp(dzjβ)


ndj

In a cohort study, the natural prospective likelihood is:

LMP =
J∏
j=1

1∏
d=0

 αdexp(dzjβ)
1∑

k=0

αkexp(dzjβ)


ndj

.

The parameter α represents the odds of disease when exposure is 0, i.e. the baseline odds.

Now let Ydj (d = 0, 1; j = 1, ..., J) be independently distributed as Ydj ∼ Poisson(λdj) where

log(λdj) = log(µ) + dlog(α) + log(θj) + dzjβ with θ1 = 1 for identifiability. The likelihood

for (µ, α,β, θ) where θ = (θ1, ..., θJ) is then given by

Lpo(µ, α,β, θ; y) =
1∏
d=0

J∏
j=1

(λdj)
ydjexp(−λdj)

The profile likelihood of a parameter β based on a likelihood involving two parameters (α,β)

,L(β, α), is Lβ(β) = L(β|α̂) where α̂ = arg max
α

L(α,β|β). Baker [1994] points out that

LMR is the profile likelihood for (β, θ) after maximizing Lpo with respect to (µ, α) and

similarly the profile likelihood for (β, α) after maximizing Lpo with respect to (µ,θ) is LMP .

Since the order of maximization is arbitrary, it follows that the profile likelihood for β after

maximizing over the nuisance parameters is equivalent regardless if the starting likelihood

is Lpo, LM , or LMR. This is an analogous result of derivation of Prentice and Pyke [1979],

which showed that under this construction, one can start with either a prospective likelihood

or retrospective likelihood to obtain equivalent estimates for β. From the perspective of
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maximization, the LMP model is easier to fit as it only involves a single nuisance parameter,

α. On the other hand the LMR model contains J > 1 many nuisance parameters.

The Bayesian analogue of this involves integration as opposed to maximization. Moving

to a Bayesian framework with the same initial data generating setup, specify independent

improper priors for α and θ, p(α) ∝ α−1 and p(θj) ∝ θ
aj−1
j . Specify a prior on β, p(β) such

that β is independent of α and θ, and that for some q and r such that y0q ≥ 1 and y0r ≥ 1,

E(zqβ) and E(zrβ) exist and are finite.

Let y+j = y0j + y1j and yd+ =
J∑
j=1

ydj. Then the following statements hold:

1. Letting ω = log(α) the posterior of (ω,β) is

p(ω,β|y) ∝ p(β)
J∏
j=1

[exp(ω + zjβ)]y1j

[1 + exp(zjβ)]y+j+aj
(2.33)

2. The posterior of (δ,β) where δ = (δ1, ..., δJ) and δj = θj/
J∑
j=1

θj is

p(δ, β|y) ∝ p(β)
J∏
j=1

δ
aj−1
j

1∏
d=0

∏
j

[δjexp(dzjβ)]ydj

[
∑
j

δjexp(zjβ)]yd+
(2.34)

To show (1.), begin with the posterior of (α,θ, β) given by

p(α,θ, β|y) ∝ p(β)
1

α

J∏
j=1

θ
aj−1
j

1∏
d=0

J∏
j=1

(λdj)
ydjexp(−λdj) (2.35)

Integrating (2.35) with respect to θ and then conducting a transformation of variable from

α to ω yields (2.33).

To show (2.), begin with (2.35) and transform θ to (δ, ψ) where ψ =
J∑
j=1

θj. Then integrate

out α followed by ψ . The Jacobian going from θ to (δ, ψ) is | ∂(θ1,...,θJ )
∂(δ1,...,.δJ−1,ψ)

| = ψJ−1. Using
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this transformation in (2.35), the posterior becomes:

p(α, δ, ψ,β|y) ∝ p(β)αy1+−1ψy+++a+−1
J∏
j=1

δ
y+j+aj−1
j

×exp(
J∑
j=1

y1jzjβ)exp

(
−ψ

[
J∑
j=1

δj(1 + αexp(zjβ))

])

where y++ =
1∑
d=0

J∑
j=1

ydj and a+ =
J∑
j=1

aj. Integrating this over α and ψ , (2.34) is obtained.

Finally, p(β|y) can be obtained by integrating the joint posterior of (α,θ, β), p(α,θ, β|y),

over α,θ. Since the order of integration does not matter, one can integrate (2.33) with

respect to ω or integrate (2.34) with respect to δ and obtain the same p(β|y). With respect

to a case-control study, the following interpretation can be made. The equation in (2.33)

corresponds to a prospective model for the data where ω is the baseline odds of disease.

Similarly, equation (2.34) can be viewed as the retrospective model for the data in which δj

is the probability that a control has exposure level zj. Although this derivation is constrained

as it only applies to a discrete exposure with a Dirichlet prior, it is a significant contribution

to the Bayesian analysis of case-control studies as it lays the foundation for the justifying

the use of the retrospective likelihood to obtain the same posterior distribution of β had a

prospective likelihood been used.

2.5.3 The Dirichlet Process

This chapter is concluded with a review of the Dirichlet process (DP), as it will play an

integral role in the methods developed in Chapter 5. The Dirichlet process is a stochastic

process whose realizations are probability distribution. The most common intuitive expla-

nation of the Dirichlet process is that it is a probability distribution whose domain is itself a

set of probability distributions. Moreover, it is a random probability measure. Draws from

a Dirichlet process are distributions themselves.
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A review of the Dirichlet distribution follows. A vector, x, of size K > 1 is said to follow

a Dirichlet distribution with parameters α1, ..., αK if f(x|α) ∝
K∏
i=1

xαi−1i where x1, ..., xK ∈

(0, 1) and
K∑
i=1

xi = 1.

There are a few useful properties of the Dirichlet distribution. First, if zi
ind.∼ Gamma(αi, θ)

then  z1
K∑
i=1

zi

, ...,
zK
K∑
i=1

zi

 ∼ Dirichlet(α1, ..., αK).

Additionally, the additive property of the Dirichlet distribution is such that if (x1, ..., xK) ∼

Dirichlet(α1, ..., αK) then

(x1, ..., xi + xj, ..., xK) ∼ Dirichlet(α1, ..., αi + αj, ..., αK).

The technical definition of a Dirichlet process is as follows. Let G ∼ DP(α,G0) where

α > 0 is the concentration parameter and G0 is the base distribution. Consider a sample

space Ω and F a σ-algebra on Ω. Then G ∼ DP(α,G0) if for all measurable partitions of

Ω(A1, , , ., AK):

(G(A1), ..., G(AK)) ∼ Dirichlet(αG0(A1), ..., αG0(AK)) (2.36)

This collection of finite dimensional distributions defines a stochastic process whose sample

path is a probability distribution over Ω. Ferguson [1973] introduced the Dirichlet pro-

cess and using properties of the Dirichlet distribution proved its existence by showing the

definition in (2.36) satisfies the Kolmogorov consistency criteria.

Additional useful properties of the Dirichlet process are follows. The posterior of a Dirichlet
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process is also a Dirichlet process. To see this, let θi|G ∼ G and G ∼ DP(α,G0), then

G|θ1, ..., θn ∼ DP

(
α + n, (α + n)−1(αG0 +

n∑
i=1

δθi(·)

)
.

The mean and the variance of G can be shown to be E[G(A)] = G0(A) and Var[G(A)] =

G0(A)[1−G0(A)]
α+1

. The expected shape of the random distribution G is G0 and α controls the

variability of the realizations around G0.

Let yi|θi ∼ f(θi), θi|G ∼ G and where G ∼ DP(α,G0) and f(·) is some parametric distribu-

tion. Blackwell and MacQueen [1973] obtained a representation of the marginal distribution

of θi’s in terms of the successive conditional distributions by integrating over G. The resulting

characterization is

θi|θ1, ..., θi−1 ∼
1

i− 1 + α

i−1∑
j=1

δθj(·) +
α

i− 1 + α
G0(·) for i = 1, 2, 3, ... (2.37)

where δθj(.) is the point mass distribution concentrated at θj (the Dirac delta function, an

indicator that equals 1 when θ = θj and 0 otherwise) and θ1 ∼ G0. The process described

in (2.37) is also known as the Pólya urn scheme.

The Dirichlet process can also be obtained by taking the limit as K goes to infinity in the

following model:

yi|ci,φ ∼ f(φci)

ci|p ∼ Discrete(p1, ..., pK)

p ∼ Dirichlet(α/K, ...., α/K)

φci ∼ G0

where p = (p1, ..., pK), φ = (φ1, ..., φK) and ci is a latent label indicating which of the φc’s

are equal. This is known as the latent Dirichlet allocation. Let GK =
K∑
i=1

piδφi where φi
iid∼ G0.

49



Ishwaran and Zarepour [2002] show that GK
D→ G where G ∼ DP (α,G0).

If i and j, i 6= j, have the same label (ci = cj) then φci = φcj . Integrating over the proportion

p, the marginal probability that label ci = c is given by

P (ci = c|c1, ..., ci−1) =
ni,c + α/K

i− 1 + α

where ni,c is the number of cj = c for j < i. Letting K go to infinity, the probabilities have

the following limits:

P (ci = c|c1, ..., ci−1)→
ni,c

i− 1 + α

P (ci 6= cj for allj < i|c1, ..., ci−1)→
α

i− 1 + α

As a result, the conditional probability distribution of θi where θi = φci is given by

θi|θ1, ..., θi−1 ∼
1

i− 1 + α

∑
j<i

δθj(·) +
α

i− 1 + α
G0(·). (2.38)

Note (2.37) and (2.38) have the same form. After integrating over G, the observations θi are

exchangeable but not independent. Therefore for ease of notation can set i ≡ n, and (2.38)

becomes:

θi|θ−i ∼
1

n− 1 + α

∑
j 6=i

δθj(·) +
α

n− 1 + α
G0(·). (2.39)

Given data y1, ..., yn from the distribution f(y|θ), the posterior of (2.38) is given by

p(θi|θ−i, yi) ∝
1

n− 1 + α

∑
j 6=i

δθj(·)× f(yi|θj) +
α

n− 1 + α

(∫
G0(·) ∗ f(yi|θ)dθ

)
π(θi|yi).
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Since the posterior of θi based on the prior π(θi) = G0 is

π(θi|yi) =
π(θi)f(yi|θi)∫
π(θi)f(yi|θi)dθi

,

this leads to a distribution of the form:

θi|θ−i, yi ∼
∑
j 6=i

qijδθj(·) + riHi(·) (2.40)

where qi,j = bf(yi|θj) and ri = bα
∫
f(yi|θ)dG0(θ). Hi is the posterior distribution for θi

with prior G0 and a single observation yi, and b is such that
∑
j 6=i
qi,j + ri = 1.

An example of using (2.40) follows. Let the data be generated as:

Y i = β0i + β1X i + ei, (2.41)

where Y i = (Yi1, ..., Yimi)
T has mi many observations, X i = (1, 2, ..,mi)

T and ei ∼ N(0,Σ =

σ2Imi) where Imi is a mi by mi identity matrix. X can be viewed as a covariate. Assume

the following true values, n = 30, mi ∼ Uniform{5, 6, ..., 10}, β1 = 1, σ2 = 0.5, and β0i =

{−5, 0, 5} with 10 subjects (i’s) allocated to each. Finally, consider the following prior

specification for the parameters in (2.41):

β1 ∼ N(µβ1 = 0, σ2
β1

= 5)

β0i|G ∼ G

G ∼ DP(α = 1.5, G0 ≡ N(µ0 = 0, σ2
0 = 10))

Let σ2 be fixed. To estimate the model in (2.41), the full augmented data likelihood is needed

and is given by
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L(Y |β0i, β1) =
n∏
i=1

mi∏
k=1

1√
2πσ2

exp

[
− 1

2σ2
(yij − β0i − xijβ1)2

]
.

Further, the qij’s and ri’s are as follows:

qij ∝ f(Yi = yi|β1, β0j; i 6= j)

=

mi∏
k=1

1√
2πσ2

exp

[
− 1

2σ2
(yik − β0j − β1xik)2

]

ri ∝ α

∫
f(yi|β0i, β1)dG0(β0i)

= α

∫ mi∏
k=1

1√
2πσ2

exp

[
− 1

2σ2
(yij − β0i − xijβ1)2

]
1√

2πσ2
0

exp

[
− 1

2σ2
0

β2
0i

]
dβ0i

= α

(
1

2πσ2

)mi/2√ σ2

miσ2
0 + σ2

exp

[
−1

2

(
σ2 + σ2

0(mi − 1)

σ2(σ2 + σ2
0mi)

) mi∑
j=1

(yij − xijβ1)2
]

Based on the above specification, the full conditional posterior distribution of β0i is given by

f(β0i|β1, Yi, Xi) ∝ exp

[
− 1

2σ2

mi∑
j=1

(β0i − (yij − xijβ1))2 −
1

2σ2
0

β2
0i

]
,
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and completing the squares yields

β0i|β1, Yi, Xi ∼ N

( 1

σ2
+
mi

σ2
0

)−1 
mi∑
j=1

(yij − xijβ1)2

σ2

 ,( 1

σ2
+
mi

σ2
0

)−1 .

To obtain Hi, the posterior of β0i, it is necessary need to integrate the full conditional

posterior with respect to β1:

∫
f(β0i|β1, Yi, Xi)f(β1|Y )dβ1,

Alternatively, one can use the full conditional posterior distribution (i.e. Gibbs sampling).

Finally, the full conditional posterior distribution of β1 is given by

f(β1|β0i, Yi, Xi) ∝

[
n∏
i=1

mi∏
k=1

1√
2πσ2

exp

[
− 1

2σ2
(yij − β0i − xijβ1)2

]]
exp

(
− 1

2σ2
β1

β2
1

)
.

The model is fit by implementing a Metropolis-Hastings algorithm to sample β1 with a N(0,1)

proposal distribution and samples of β0i are obtained by (2.40). 5,000 samples are taken and

a burn-in period of 2,000 samples is used. Based upon these draws, the posterior mean of

β1 is computed as 1.045 and Figure 2.1 shows the fitted values of β0i. The Figure 2.1 also

shows appropriate clustering of the β0i’s.
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Figure 2.1: Plot of true value of β0i and posterior means, by i. Circles are the true value
and X’s are the fitted values.

Sethuraman [1994] introduced a constructive definition of G. This definition allows for

the direct construction of G. To begin, assume G ∼ DP(α,G0). Let vj
iid∼ Beta(1, α) for

j = 1, 2, ..., and πl = vl
l−1∏
j=1

(1− vj) for l = 1, 2, ..., . The construction of G
′

is then as follows:

G
′

=
∞∑
l=1

πlδθl(·)

θl
iid∼ G0

(2.42)

Sethuraman showed that for all partitions of Ω (A1, , , ., AK)

(G
′
(A1), ..., G

′
(AK)) ∼ Dirichlet(αG0(A1), ..., αG0(AK)) (2.43)

Thus G
′ D

= G and hence G
′ ∼ DP(α,G0). (2.39) and (2.43) show that realizations from
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a Dirichlet process are almost surely discrete distributions. The probability that any two

draws from a Dirichlet process random measure are equal is non-zero. If the parameter of

interest is believed to be from a continuous distribution, then putting a Dirichlet process

prior on this parameter will result in discrete draws. Referring back to the example model

given in (2.41), assume that β1 = 0. The β0i had a Dirichlet process prior, and therefore

there is the possibility of equality of the posterior draws of β0i (i = 1, 2, ..., n) at any given

iteration of the Markov chain, hence the clustering characteristic of the Dirichlet process

prior.

Antoniak [1974] showed that the expected number of unique clusters is
n∑
i=1

α
α+i−1 which can be

approximated by αlog
(
n+α
α

)
. If the interest is in modeling the Yi’s, the Dirichlet process prior

on the prior mean of the Yi’s normal distribution allows for a flexible class of continuous

distributions for Yi. This is referred to as a Dirichlet process mixture model, and was

first discussed by Antoniak [1974]. The idea was to use a Dirichlet process as a mixing

distribution. Ferguson [1983] showed how density estimation could be peformed by mixtures

of normals, where the parameters of the normal distribution are given a Dirichlet process

prior. Lo [1984] shows that a Dirichlet process location-scale mixture of normals has full

support on the space of absolutely continuous distributions. Dirichlet process mixtures are

countable mixtures with an infinite number of components and a specific prior on the weights

and the component-specific parameters. Modeling Yi as being from mixture of normals, where

the number of components is unknown, proceeds as follows (letting θi = (µi, σ
2
i )) :

Yi ∼ N(µi, σ
2
i )

θi|G ∼ G

G ∼ DP(α,G0)

where an appropriate G0 is chosen to have support on R×R+.

Escobar [1994] and Escobar and West [1995] implement such a model which implies that the
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data Yi come from a Dirichlet process mixture of normals. They set G0 to be an appropriate

distribution for θi, namely the normal-inverse-gamma distribution. Sampling is done via

a Gibbs sampler on the full conditionals. The conjugacy of the normal likelihood and the

normal-inverse-gamma distribution allow for full conditionals to be analytically derived.

Additionally, Escobar and West [1995] introduce an approach to update the concentration

parameter α. Let k denote the number of unique parameters drawn according to the DP

prior and the prior on α is G(a, b). If η|α, k ∼ B(α+1, n) then α|η, k ∼ πG(a+k, b−log(η))+

(1−π)G(a+k−1, b− log(η)) where π
1−π = a+k−1

n(b−log(η))
. MacEachern and Muller [1998] expand

on this DP mixture model by considering the case of non-conjugate base distributions and

likelihood.

Finally, Neal [2000] summarizes several algorithms that can be used to generate draws from

a DP, with (2.39) being the first of the algorithms, and expands to cases where several θi are

updated at once. The subsequent algorithms presented in Neal [2000] address non-conjugacy

of the priors, such as the sampling methods set forth by MacEachern and Muller [1998].
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Chapter 3

Estimation of Covariate Effects in

Matched Case-Control Designs with

Multiple Events per Cluster

3.1 Introduction

As noted in Chapter 2, the case-crossover design is a hybrid between a matched case-control

design and a traditional crossover design. In a matched case-control design, controls are

matched to cases based upon a pre-specified set of criteria (i.e. age, location, etc.). In this

case, inference is based on the comparison of the the exposure between the case and control(s)

in each matching set. In a traditional crossover design investigating two treatments, each

subject receives each treatment once, in a randomized order. The outcome following each

treatment regime is then contrasted within the subject. Combining these two designs in the

context of an observational study yields the case-crossover design.

The case-crossover design was originally developed to study the effects of transient, short-
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term exposures on the risk of acute events (Maclure [1991]). This type of design represents

a valid and efficient design for studying relationships between exposures and an event of

interest with the following characteristics: (1) the individual exposure varies within short

time intervals; (2) the disease has abrupt onset and short latency for detection; and (3)

the induction period is short (Jaakola [2003]). This is to say that subject level exposures

vary within short time periods, the event of interest’s onset can be defined and observed,

and the exposures induce the event of interest within a short time period. By comparing

exposures near the event period to exposures during non-event periods, each subject is able

to act as their own control. As such, the case-crossover design is a powerful method for

studying the effect of an exposure on the risk of a rare event because the study design allows

for inherent control of within subject invariant confounding factors. Since all subjects in

the data set are cases, and have therefore experienced the event of interest at least once,

inference is based on a comparison of the exposure distribution among cases and controls

(ie. a retrospective analysis) rather than a comparison of risk conditional on exposure (ie. a

prospective analysis).

Implementation of the case-crossover design proceeds by first obtaining data on case subjects,

or those subjects known to have experienced the event of interest. Once the data for the

cases are obtained, the case subject’s exposure from a different time period (past or future)

sufficiently distant from the case exposure period is used as the control’s exposure (Navidi

[1998], Navidi and Weinhandl [2002]). This window of time for the control is known as the

referent period. Since controls are created from the case subjects, there is no risk of selection

bias, which occurs when controls are not representative of the population from which the

cases arise from. However, there is risk of overlap bias, which occurs when the score equations

from the likelihood based on the case-crossover data are biased, implying in that they do not

have expectation zero (see Chapter 2). As a result, the estimating equations used to obtain

parameter estimates will not have mean zero and hence the resulting estimates obtained

by solving the estimating equations may show larger bias than estimators obtained from
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solving an unbiased estimating equation. Improperly choosing referent times will lead to

overlap bias.

In a case-crossover design, the event (case) index day is taken to be the day of event. The

case exposure will be that of the case index day and possibly the few days before the index

day to account for lingering effects of the exposure and also to incorporate information from

several days of exposures (this is typically done by taking the moving average of the case

index day and a specified number of days before). To obtain the control exposures, a modified

semi-symmetric bidirectional control referent selection scheme can be implemented. (Levy

and Lumley [2000], Janes et al. [2005b], Janes et al. [2005a]). This control referent selection

scheme picks control index times to be from either some time before or after the case index

time, with equal probability. It is assumed that no event was experienced by the subject

at either of the two possible times. As reviewed in Chapter 2, for those subjects at the

beginning or end of the exposure time series, an offset term of log(2) is added, since these

subjects will have only only one choice of control referent time available for selecting.

Figure 3.1: Semi-symmetric bidirectional design (Delfino et al. [2014]).

To further explain the modified semi-symmetric bidirectional control referent selection scheme,

consider the example depicted in Figure 3.1 that considers a moving average of 7 days as

the exposure of interest. Here we assume that the control referent index days come from the

same day of the week as the case index day either 14 days before the case index day or 14
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days after the case index day. By picking the same day of the week for the control index

as is for the case index, confounding by day of week is mitigated, and by choosing referent

times close to the case time, confounding by seasonality trends in the exposure are hopefully

avoided (Bateson and Schwarts [1999]).

The modified semi-symmetric bidirectional control referent selection scheme described above

gives rise to what is termed a localizable and ignorable design (Janes et al. [2005b]). A

localizable referent selection scheme means there exists an unbiased estimating equation

restricted to the referent windows and an ignorable referent selection scheme means that the

referent sampling scheme can be ignored in conducting the analysis (the likelihood of the

data does not depend on the referent sampling scheme). As such, localizable and ignorable

referent selection schemes will result in no overlap bias.

Once the case-crossover dataset is created using a localizable and ignorable referent selection

scheme, conditional logistic regression (CLR) can be used to obtain parameter estimates and

inferences. Utilizing the mathematical equivalence between the CLR likelihood and the Cox

PH partial likelihood, most current software implements the CLR model by fitting a Cox

proportional hazards (Cox PH) model on a transformation of the data. The derivation

of the equivalence of the conditional logistic likelihood and the Cox PH partial likelihood

under the scenario of a single event experienced by each subject was shown in Chapter 2,

Section 2.4. In Section 3.2 of the current chapter this result is further expanded on and

the notion that repeated events within a matched set (subject) results in a CLR likelihood

that is mathematically equivalent to tied survival times within strata in the Cox PH partial

likelihood is shown.

In many studies that utilize a case-crossover design, there are repeated events observed on

each subject over the course of the study. Examples of recurrent events studied in a case-

crossover design are the number of falls in elderly people after changes in medication (Luo

and Sorock [2008]) or asthma related hospital visits after exposure to environmental elements
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(Delfino et al. [2014]). In this chapter, the discussion will focus on methods used to obtain

parameter estimates that take into account the correlation structure among the clustered

observations in the estimation procedure. These methods maintain the clustering of the

data by combining all cases and controls for a given subject into a single strata with the

likelihood. When simultaneously using all events and their accompanying controls from a

subject to obtain parameter estimates the issue of dealing with tied event times under a Cox

PH partial likelihood setting in terms of computational intensity arises. Additionally, the

issue of breaking the bond between the matched case-control pairs arises. When accounting

for the correlation among the data in the estimation procedure, all methods discussed in this

chapter assume the willingness to break the individual matched case-control bonds. This

implies that within each subject, all the case exposure values and the control values create

a single risk set for this subject, which will thus be a set of the unordered exposures from

that subject. In doing so, it will no longer be apparent which control was matched to which

case.

The issue in breaking the bonds between each matched case-control pairing causes concern

when there is evidence of seasonality trends in the exposure time series. For example, assume

a subject experiences two events, one in summer and one in winter. The summer case will

have a matched control which will also be from summer, based on the control selection

explained previously. Similarly, the winter case will have a control matched to it from

winter. If exposures in summer are generally higher than winter, then it is likely the summer

control will have a value higher than that of the winter control. If both matched case-control

pairs from summer and winter were to be combined to create a single risk set, the matched

pair bonds would be broken. As noted in Chapter 2, Section 2.4, using the Cox PH partial

likelihood to obtain parameter estimates will result in each strata’s (subject’s) likelihood

contribution comparing the events exposures to the risk sets exposures. If the bond between

matched case-control pairs is maintained, the case exposure will be strictly compared to only

its risk set, which includes the case itself and its matched control. If the bonds are broken,
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then each case exposure will be compared to the entire risk set within that subject, which

will contain case and control exposures from other seasons. In the hypothetical example

presented, the case exposure from summer will be compared to the matched case-control

pair from winter (and similarly the winter case exposure will be compared to the summer

matched pair). If seasonality trend is evident in the exposure series, breaking of the bond

will give rise to the potential of obtaining inaccurate parameter estimates.

The four most widely available methods to obtain parameter estimates for a Cox PH partial

likelihood with tied event times are investigated in this chapter. The use of such methods

implies that it has been deemed scientifically reasonable to break the bonds between the

individually matched case-control pairs and will account for the correlation among the data

(i.e. the clustering of the data) in the estimation procedure. The four methods considered

are the Breslow method (Breslow [1975]), the Efron method (Efron [1977]), the Kalbfleisch

and Prentice (KP) method (Kalbfleisch and Prentice [1976]), and the discrete method (Cox

[1972]). Previous literature has partially studied the operating characteristics among some

of the different methods (Hertz-Picciotto and Rockhill [1997], Fung et al. [2007]). Hertz-

Picciotto and Rockhill [1997] investigate parameter estimation strictly from time to event

viewpoint, not a case-crossover approach. In their paper they induce tied event times among

the subjects by grouping together the truly continuous times of the events. Using only simu-

lation studies based on just a single true value for the coefficient parameter, they investigate

the Breslow, Efron, and discrete methods. In the simulation studies under a moderate sam-

ple size (n = 500), all methods range in bias from -2% to 3%, and they conclude the Efron

method is the most appropriate. They do not investigate when the true parameter value

approaches a null effect. It is mentioned that the discrete method could be appropriate if

the number of ties is large, but this is not investigated. Fung et. al. investigate parameter

estimation from a case-crossover viewpoint and only discuss the discrete method.

This chapter expands on previous work by investigating the operating characteristics, in
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terms of bias and mean squared error, of all four of the stated methods commonly used to

compute parameter estimates in a case-crossover study with numerous events per subject

(large number of ties in the Cox PH partial likelihood). Section 3.2 provides a review of the

methodology for fitting data stemming from a case-crossover study and shows the equivalence

between the CLR likelihood and Cox’s partial likelihood when numerous events are observed

per person. Section 3.3 highlights issues with methods used to obtain parameter estimates

under tied event times in the Cox PH partial likelihood. Simulation studies under a variety

of parameter settings and number of tied event times are discussed. The bias among the

methods is shown to exhibit a distinct ordering the further the true parameter value deviates

from 0. Section 3.4 presents an illustrated example using applied results from the study of

air pollution exposure effects on asthma-related hospital encounters that was introduced in

Chapter 1 and presented in Delfino et al. [2014].

3.2 The Conditional Logistic Regression

In a case-crossover study, all observed subjects experience the event of interests at least once

since each subject acts as both the case and the control subject. A standard approach to

estimating the association between the exposure and outcome in a case-crossover design is

to use a conditional logistic regression (CLR) model. This method expands a simple logistic

model by conditioning on the matching set and the number of events known to happen in

each matched set (subjects in a case-crossover design).

We begin by showing the equivalence between the CLR likelihood with numerous matched

pairs for each subject and Cox’s partial likelihood with tied event times within strata. First,

the likelihood contribution for the individual matched sets in the conditional logistic likeli-

hood will be derived. Si denote the observed and unobserved matching covariates used to

define strata/subject i, i = 1, . . . , n. To this end, let Y i denote the vector of binary obser-
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vations indicating occurrence of the event for each observation of subject i. Assuming each

subject may experience the event more than once, the size of the vector Y i will depend on

how many events a subject experienced and the number of controls matched to each of the

events. If subject i experiences di many events, and has 1:M matching for each event, Y i will

be a vector length di(1 +M) = di + diM (j = 1, 2, ..., di + diM), where each element either

takes on a value of 1 for an event or 0 for no event. For ease of exposition, this chapter will

focus on the case of 1:1 matching (1 control matched to each event) in terms of simulation

output and illustrations, but the derivations will be for a general 1 : M matching design.

We first specify the prospective probability of an event given covariates to be of the logistic

form. That is to say the probability, πij, of an event for the jth observation for subject

i is given by πij = e
β0i+xijβ

1+e
β0i+xijβ

and (1 − πij) = 1

1+e
β0i+xijβ

where β = (β1, . . . , βp)
T and

xij = (xij1, . . . , xijp). Observe that each subject has there own specific intercept, β0i, which

varies across i.

To obtain the conditional logistic likelihood contribution for subject i, begin with a standard

logistic regression likelihood contribution for subject i, P (Y i = yi|Si), and condition on the

di-many events known to have occurred within subject i (ie. condition on the quantity
di(M+1)∑
j=1

yij = di). Then the likelihood contribution for subject i is given by
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P (Y i = yi|
∑
j

yij = di,Si) =

P (Y i = yi and
∑
j
yij = di |Si)

P (
∑
j
yij = di |Si)

=

di(M+1)∏
j=1

P (Yij = yij) ∗ I(
∑
j
yij = di)∑

{y∗i :
∑
j
y∗ij=di}

P (Y i = y∗i )

=

di(M+1)∏
j=1

π
yij
ij (1− πij)1−yij ∗ I(

∑
j
yij = di)

∑
{y∗i :

∑
j
y∗ij=di}

di(M+1)∏
j=1

π
yij∗
ij (1− πij)1−yij∗

=

di(M+1)∏
j=1

( e
β0i

+xijβ

1+e
β0i

+xijβ
)yij ( 1

1+e
β0i

+xijβ
)1−yij ∗ I(

∑
j
yij = di)

∑
{y∗i :

∑
j
y∗ij=di}

di(M+1)∏
j=1

( e
β0i

+xijβ

1+e
β0i

+xijβ
)y
∗
ij ( 1

1+e
β0i

+xijβ
)1−y

∗
ij

=

di(M+1)∏
j=1

(eβ0i+xijβ)yij ∗ I(
∑
j
yij = di)

∑
{y∗i :

∑
j
y∗ij=di}

t(M+1)∏
j=1

(eβ0i+xijβ)y
∗
ij

=

e

∑
j
(β0i+xijβ)yij

∗ I(
∑
j
yij = di)

∑
{y∗i :

∑
j
y∗ij=di}

e

∑
j
(β0i+xijβ)y

∗
ij

=


exp{tβ0i+

∑
j
xijβyij}∑

{y∗
i
:
∑
j
y∗
ij

=di}
exp{tβ0i+

∑
j
xijβy

∗
ij}

, if
∑
j
yij = di

0 , otherwise

=


exp{

∑
j
xijβyij}∑

{y∗
i
:
∑
j
y∗
ij

=di}
exp{

∑
j
xijβy

∗
ij}

, if
∑
j
yij = di

0 , otherwise

. (3.1)
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To illustrate, let di = 1 and assume 1:1 matching (M = 1). Without loss of generality let

the first observation, xi1 be the case exposure values and xi2 be the control exposure value.

Then from Eq. (3.1), the likelihood contribution for the ith subject reduces to

exp{xi1β}
exp{xi1β}+ exp{xi2β}

. (3.2)

3.2.1 Equivalence Between the CLR likelihood and Cox’s Partial

Likelihood

In Chapter 2 it was shown that with a single event per matched set, the conditional logistic

likelihood is mathematically equivalent to the Cox’s partial likelihood provided that the

“survival times” for controls were specified to be greater than the specified “survival times”

for cases. Here we consider Cox’s partial likelihood in the setting of tied event times within

a strata.

Let i denote the stratum, d(i) denote the number of events (all with tied times) in stratum

i, D(i) be the set of events, and (R(i); d(i)) denote all sets of size d(i) from R(i), the risk set

for this stratum consisting of all observations (cases and controls). Under the proportional

hazards model presented in Chapter 2, the partial likelihood contribution for this stratum

is given by

L(i) = P{all xil ∈ D(i) experience an event| d(i) subjects in R(i) experience an event}

=
P{all xil ∈ D(i) experience an event}

P{d(i) subjects in R(i) experience an event}

=

∏
l∈D(i)

exp{xilβ}∑
L∈(R(i);d(i))

∏
l∈L

exp{xilβ}
(3.3)
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It is easily seen that (3.1) and (3.3) are mathematically equivalent as long as all event times

within strata are set to be equal and control times are set to be greater than the event times.

With respect to a case-crossover design, where there is no time element, it can be viewed that

the subscript (i) refers to the individual subject. Each subject i experiences di many events,

with D(i) being the event set (the cases) and R(i) being the risk set for that subject (which

contains all the events (cases) experienced by the subject and the accompanying controls

matched for each case). The full data partial likelihood across all subjects is then taken as

the product of these individual contributions across all i, L =
∏
i

L(i).

In practice, maximization of the CLR likelihood is implemented by maximizing Cox’s partial

likelihood. The procedure involves manipulating the data to be used in the conditional

logistic likelihood by creating a time variable, where all event (case) times are set to a

certain fixed time and all control times are set to any times such that the event time is less

than or equal to the control times. If event times are not set to be equal to each other, then

this would imply there is some inherent ordering to the events, which is not generally the

case in a matched retrospective design.

The more events a single subject experiences is analogous to more tied event times within

each strata in the partial likelihood. The likelihood presented in (3.3) will combine all case

and control exposures from a single subject to create the risk set. This amounts to breaking

the bonds between each matched case-control pairing and is reasonable to do if there is

no evidence of trends in the exposure covariates. If there are trends then breaking of the

matched pair bonds could potentially lead to biased estimates as discussed in Section 3.1.

All methods discussed in the following section will break the bonds between each individual

matched case-control pair for subjects with numerous matched pairs. If a subject has only

a single matched pair, then the bonds will be maintained.
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3.2.2 Tied Event Times Under the Cox PH Setting

In the presence of numerous tied event times in a Cox PH model (numerous events within

a subject in a CLR setting), several methods to obtain parameter estimates are available.

The issue is that the denominator, which involves (R(i); d(i)), for each likelihood contribution

in (3.3) becomes computationally intensive to compute. For example in a 1:1 matching

setting and having a subject with 10 events over the course of a study, there are 184,756

terms (number of possible ways to choose 10 events among 20 trials) required to compute

for the denominator. This difficulty is analogous to conditioning on
di(M+1)∑
j=1

yij = di > 1 in

the conditional logistic regression likelihood.

There are two widely used methods which attempt to approximate the partial likelihood

with tied event times. These methods were proposed by Breslow (Breslow [1975]) and Efron

(Efron [1977]). Both methods try to circumvent the need to calculate the computationally

intensive denominator in (3.3).

The Breslow approximation assumes the risk set stays constant across the events. As such,

denominator in the likelihood has the same exposures (event and non-event) across all the

events so that

LBreslow(i) =

∏
l∈D(i)

exp{xilβ}[ ∑
l∈R(i)

exp{xilβ}

]d(i) . (3.4)

The Efron approximation attempts to account for the fact that observations associated with

an observed event should not be in the risk set by giving them lower weights in the product
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across events. In this case, the resulting partial likelihood contribution is given by

LEfron(i) =

∏
l∈D(i)

exp{xilβ}

d(i)∏
h=1

[ ∑
l∈R(i)

exp{xilβ} − h−1
d(i)

∑
k∈D(i)

exp{xikβ}

] . (3.5)

An approach provided by Kalbfleisch and Prentice (KP) assumes that time is truly continuous

and that the probability of tied event times is 0 (Kalbfleisch and Prentice [1973], Kalbfleisch

and Prentice [1980]). Under this setting, it is assumed tied event times are observed due to

not being able to measure time on a finer scale. If the time of event was to be observed on

a finer scale (eg. down to the millisecond), this method assumes that there is an inherent

ordering to the event times. This approach then accounts for all possible ordering of event

times and Kalbfleisch and Prentice consider the average partial likelihood contribution at

time t(j) that arises from breaking the ties in all possible ways.

Let Q(i) denote the set of d(i)! permutations of the events in stratum i and P = (p1, . . . , pd(i))

be an element in Q(i). Let R(i, P, r) = R(i) − {p1, . . . , pr−1}. Setting s(i) =
∑
l∈Di

xil then

yields the likelihood contribution:

LKP(i) =
1

d(i)!
exp{s(i)β}

∑
P∈Q(i)

d(i)∏
r=1

 ∑
l∈R(i,P,r)

exp{xilβ}


−1

. (3.6)

Given the combinatorial complexity of the KP method, it is generally implemented in soft-

ware by using an integral representation to the likelihood contribution for strata i, L(i)

(DeLong et al. [1994]) such that

L(i) =

∞∫
0

∏
k∈Di

{1− exp(−λikt)}exp(−t)dt,
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where wl = exp(xilβ) and λik = wk∑
l∈Ri/Di

wl
. Details of this approach are in Appendix 3.6.2.

The last considered approach for handling ties in the partial likellihood is due to Cox [1972]

and does not assume there is an inherent ordering, and that the event times are truly

discrete and tied. This method computes the likelihood under truly tied event times by

using a recursive method to compute the computationally intensive combinatoric of the

denominator in (3.3) (Gail et al. [1981]). Letting r(j) be the size of the risk set R(j), the

main difficulty in computing the likelihood in (3.3) is the computation of B(d(j), r(j)) =∑
I∈(R(j);d(j))

∏
i∈I

exp{xiβ} which requires
r(j)!

(r(j)−d(j))!(d(j)−1)!
− 1 arithmetic operations, but reduces

to 2d(j)(r(j) − d(j) + 1) operations using recursion. This is accomplished by noting that

B(d(j), r(j)) = B(d(j), r(j) − 1) + exp{xrjβ}B(d(j) − 1, r(j) − 1). Numerical differentiation

is employed to obtain the score equations needed to obtain parameter estimates. Further

details of this approach are provided in Appendix 3.6.1

All quantities above were for a single strata’s contribution to the full likelihood. For stratified

data with numerous independent strata, the partial likelihood over the full data is obtained

by taking the product across all strata, yielding

Lp =
n∏
i=1

L(i),

where L(i) is the likelihood contribution from strata/subject i, defined in equations (3.3),

(3.4), (3.5), or (3.6) depending upon the method chosen for handling tied event times.

3.3 Simulation Study

In this section a simulation study is conducted to highlight the operating characteristics of

the four methods discussed in the previous section. The goal is to show that as the true

value of the parameter to be estimated deviates further from zero, there is an ordering in
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terms of bias among the four different computational methods.

3.3.1 Data Simulation

The focus of the data simulation procedure is to mimic data that would be obtained from

an air exposure study similar to the motivating example presented in Chapter 1. In this

case, the scientific objective is to make inference on the association between atmospheric

exposures and a adverse health event, namely asthma-related hospital encounters. In this

case, each subject has there own recorded exposure time series values, which can possibly be

shared among other subjects living in close proximity. From those exposure values, a case

exposure and control(s) exposure(s) are created.

To simulate the data, four strings of exposures were generated via an autoregressive time

series of order 1, AR(1). For k = 1, 2, 3, 4 and t = 1, . . . , T , where T = 3, 650 to signify a 10

year study with daily exposures, an AR(1) process was generated for the exposure, x such

that

xkt = c+ ϕxkt−1 + εkt where εkt
iid∼ N(0, 1).

Each subject, i = 1, . . . , n, was assigned to one of the four generated exposure time series

with equal probability. For t = 1, . . . , 3, 650, the probability of an event on a given day was

computed using the logistic link for a prospective probability of event. Specifically, it was

assumed that πkit =
exp(β0i+β1xkit)

1+exp(β0i+β1xkit)
, where ki is the monitoring center assigned to subject i

and k ∈ {1, 2, 3, 4}.

For each πit, a Bernoulli random variable with p = πit was sampled. Given the pre-specified

number of events per subject (v) to be investigated, v many events were randomly sampled

from the success’ generated from the T many Bernoulli trials. If a subject did not produce

enough events via the Bernoulli simulation based on the πit’s as they were set to have (events

71



simulated< v), then all events that were produced for that subject were chosen.

Once the event days are selected, a control day was chosen for each event based on the

suggestions of Navidi and Weinhandl [2002]. For a given event day, the control exposure

values were taken to be the moving average of the 7 days between the 14-th and 20-th days

prior to the event or the moving average of 7 days between the 8-th and 14-th days past

the event, with each window being picked with equal probability. The event exposures are

set to the be the average of the event day and the previous 6 days. This is done in air

pollution studies to account for any lingering effect of the exposure on the risk of an adverse

health outcome, and also to be able to incorporate the information from several days into

the analysis. For events that had only a single available referent window to be selected, in

cases where the event happens in the start or end of the exposure series or if another event is

observed in one of the two available referent windows, an offset of log(2) was included in the

parameter estimation methods (Janes et al. [2005a]). If for a specific event both available

referent windows had events observed in them, then this event was dropped from the analysis

(this occurred in less than 0.1% of the total events).

The time series used for generating exposures specified c = 2 and ϕ = 0.5, so that

cov(xkt, xkt+r) = 1
1−ϕ2ϕ

|r|. The random intercept for each subject was generated according

to β0i
iid∼ N(µ0, 1) where, depending on the scenario of the true value of β1 and the number

of events desired within each subject, µ0 was varied from -7.5 to -5.5 in order to ensure a

sufficient expected number of events occurred across the 3650 days. The expected number

of events in a strata was computed using the Monte Carlo integral approximation given by
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E(v) = Ex[Ev(v|x)]

= Ex

[
T

exp(β0i + β1x)

1+exp(β0i + β1x)

]
= TEx

[
exp(β0i + β1x)

1+exp(β0i + β1x)

]
= T

∫
x

exp(β0i + β1x)

1+exp(β0i + β1x)
dF (x).

where F (x) represents the normal cumulative distribution function with µ = 2 and σ2 =

1
1−ϕ2 = 4

3
.

3.3.2 Simulation Output

The simulation studies presented here consider three different numbers of subjects per sim-

ulation: n=500, 1000, and 5000. For each sample size, four different true parameter values

were used, β1 = log(1)=0, log(1.3)=0.2624, log(1.5)=0.4055, and log(2.0)=0.6931, and three

different number of events for each subject (3,5, and 10 events each) were considered. In each

scenario, 5,000 simulated datasets were analyzed. The summarized output for each scenario

of sample size, true β value, and number of events within subject are provided in Tables 3.1,

3.2, and 3.3.

Focusing on the scenarios with β > 0, for any number of events per subject there is a

general ordering of bias among the methods. The ordering (from lowest to highest observed

bias) is discrete, KP, Efron ,and then Breslow. The Breslow method provides estimates

with approximately 45% bias, the Efron method about 30%, the KP method 23%, and the

discrete method about 1%. The underestimation of the Breslow approximation method has

been noted in previous work (Cox and Oakes [1984]). This approximation’s estimates are
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β = log(1) = 0 Events=3
Bias Model SE Empirical SE MSE

Breslow 0.0003 0.0634 0.0500 0.0023
Efron 0.0003 0.0640 0.0615 0.0037
Cont. (KP) 0.0003 0.0664 0.0663 0.0044
Discrete 0.0004 0.0800 0.0810 0.0060

Events=5
Breslow 0.0008 0.0472 0.0354 0.0012
Efron 0.0011 0.0475 0.0464 0.0021
Cont. (KP) 0.0011 0.0630 0.0638 0.0022
Discrete 0.0015 0.0500 0.0494 0.0041

Events=10
Breslow 0.0001 0.0324 0.0318 0.0010
Efron 0.0002 0.0326 0.0235 0.0005
Cont. (KP) 0.0003 0.0400 0.0440 0.0011
Discrete 0.0002 0.0334 0.0335 0.0020
β = log(1.3) = 0.2624 Events=3

Bias Model SE Empirical SE MSE
Breslow -0.1076 0.0635 0.0484 0.0139
Efron -0.0675 0.0642 0.0610 0.0082
Cont. (KP) -0.0497 0.0677 0.0681 0.0071
Discrete 0.0009 0.0840 0.0848 0.0070

Events=5
Breslow -0.1188 0.0471 0.0339 0.0152
Efron -0.0736 0.0476 0.0448 0.0074
Cont. (KP) -0.0596 0.0497 0.06430 0.0059
Discrete 0.0010 0.0600 0.0492 0.0041

Events=10
Breslow -0.1265 0.0324 0.0232 0.0165
Efron -0.0782 0.0326 0.0316 0.0071
Cont. (KP) -0.0671 0.0458 0.0341 0.0056
Discrete 0.0005 0.0337 0.0463 0.0021
β = log(1.5) = 0.4055 Events=3

Bias Model SE Empirical SE MSE
Breslow -0.1706 0.0637 0.0466 0.0312
Efron -0.1095 0.0645 0.0589 0.0154
Cont. (KP) -0.0771 0.0700 0.0694 0.0107
Discrete 0.0026 0.0870 0.0870 0.0075

Events=5
Breslow -0.1884 0.0471 0.0332 0.0366
Efron -0.1193 0.0477 0.0442 0.0160
Cont. (KP) -0.0938 0.0505 0.0505 0.0113
Discrete 0.0017 0.0671 0.0671 0.0045

Events=10
Breslow -0.2000 0.0323 0.0224 0.0405
Efron -0.1261 0.0326 0.0310 0.0168
Cont. (KP) -0.1061 0.0342 0.0346 0.0124
Discrete 0.0010 0.0473 0.0479 0.0023
β = log(2) = 0.6931 Events=3

Bias Model SE Empirical SE MSE
Breslow -0.3163 0.0643 0.0440 0.1019
Efron -0.2177 0.0652 0.0550 0.0504
Cont. (KP) -0.1362 0.0759 0.0764 0.0244
Discrete 0.0051 0.0960 0.0960 0.0093

Events=5
Breslow -0.3463 0.0472 0.0320 0.1209
Efron -0.2333 0.0479 0.0417 0.0561
Cont. (KP) -0.1693 0.0543 0.0550 0.0317
Discrete 0.0022 0.0738 0.0744 0.0055

Events=10
Breslow -0.365 0.0322 0.0210 0.1336
Efron -0.2427 0.0326 0.2823 0.0597
Cont. (KP) -0.1925 0.0361 0.0357 0.0383
Discrete 0.0013 0.0518 0.0511 0.0026

Table 3.1: Simulation output for methods to obtain estimates under tied event times in a
Cox PH partial likelihood. Sample size n = 500.
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β = log(1) = 0 Events=3
Bias Model SE Empirical SE MSE

Breslow 0.0001 0.0200 0.0153 0.0002
Efron 0.0001 0.0202 0.0193 0.0003
Cont. (KP) 0.0001 0.0210 0.0208 0.0004
Discrete 0.0001 0.0258 0.0256 0.0005

Events=5
Breslow 0.0002 0.0150 0.0111 0.0001
Efron 0.0003 0.0149 0.01459 0.0002
Cont. (KP) 0.0003 0.0154 0.0155 0.0002
Discrete 0.0004 0.0200 0.0200 0.0003

Events=10
Breslow 0.0000 0.0102 0.0080 0.0001
Efron 0.0000 0.0103 0.0102 0.0001
Cont. (KP) 0.0000 0.0105 0.0108 0.0001
Discrete 0.0000 0.0141 0.0144 0.0001
β = log(1.3) = 0.2624 Events=3

Bias Model SE Empirical SE MSE
Breslow -0.107 0.0200 0.0150 0.0117
Efron -0.0670 0.0202 0.0190 0.0048
Cont. (KP) -0.0500 0.0213 0.0210 0.0029
Discrete 0.0005 0.0265 0.0265 0.0006

Events=5
Breslow -0.1188 0.0149 0.0110 0.0142
Efron -0.0735 0.0150 0.0144 0.0056
Cont. (KP) -0.0600 0.0157 0.0157 0.0038
Discrete 0.0004 0.0205 0.0206 0.0004

Events=10
Breslow -0.1265 0.0102 0.0080 0.0160
Efron -0.0783 0.0103 0.0100 0.0062
Cont. (KP) -0.0674 0.0106 0.0106 0.0046
Discrete 0.0001 0.0144 0.0144 0.0002
β = log(1.5) = 0.4055 Events=3

Bias Model SE Empirical SE MSE
Breslow -0.1708 0.0201 0.0150 0.0293
Efron -0.1097 0.0203 0.0185 0.0123
Cont. (KP) -0.0786 0.0219 0.0216 0.0066
Discrete 0.0007 0.0274 0.0270 0.0007

Events=5
Breslow -0.1885 0.0149 0.0110 0.0356
Efron -0.1194 0.0150 0.0140 0.0144
Cont. (KP) -0.0946 0.0160 0.0160 0.0092
Discrete 0.0005 0.0211 0.0210 0.0004

Events=10
Breslow -0.2001 0.0102 0.0069 0.0401
Efron -0.1262 0.0103 0.0095 0.0160
Cont. (KP) -0.1065 0.0108 0.0106 0.0114
Discrete 0.0002 0.0149 0.0146 0.0002
β = log(2) = 0.6931 Events=3

Bias Model SE Empirical SE MSE
Breslow -0.3172 0.0203 0.0140 0.1008
Efron -0.2186 0.0206 0.0178 0.0481
Cont. (KP) -0.1397 0.0238 0.0242 0.0201
Discrete 0.0010 0.0303 0.0306 0.0009

Events=5
Breslow -0.3463 0.0149 0.0100 0.1200
Efron -0.2333 0.0151 0.01320 0.0546
Cont. (KP) -0.1704 0.0171 0.01735 0.0294
Discrete 0.0006 0.0233 0.0230 0.0005

Events=10
Breslow -0.3652 0.0101 0.0070 0.1334
Efron -0.2431 0.0103 0.0090 0.0592
Cont. (KP) -0.1935 0.0114 0.0114 0.0375
Discrete 0.0001 0.0163 0.0163 0.0002

Table 3.2: Simulation output for methods to obtain estimates under tied event times in a
Cox PH partial likelihood. Sample size n = 1000.
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β = log(1) = 0 Events=3
Bias Model SE Empirical SE MSE

Breslow -0.0001 0.0089 0.0070 0.0001
Efron -0.0001 0.0090 0.0086 0.0001
Cont. (KP) -0.0001 0.0093 0.009 0.0001
Discrete -0.0001 0.0115 0.0114 0.0001

Events=5
Breslow 0.0000 0.0066 0.0049 0.0000
Efron 0.0000 0.0067 0.0064 0.0000
Cont. (KP) 0.0000 0.0069 0.0068 0.0000
Discrete 0.0000 0.0089 0.0088 0.0000

Events=10
Breslow 0.0000 0.0045 0.0034 0.0000
Efron 0.0000 0.0046 0.0045 0.0000
Cont. (KP) 0.0000 0.0047 0.0047 0.0000
Discrete 0.0000 0.0063 0.0063 0.0000
β = log(1.3) = 0.2624 Events=3

Bias Model SE Empirical SE MSE
Breslow -0.1073 0.0090 0.0070 0.0115
Efron -0.0671 0.0090 0.0085 0.0045
Cont. (KP) -0.0502 0.0095 0.0095 0.0026
Discrete 0.0002 0.0118 0.0118 0.0001

Events=5
Breslow -0.1190 0.0066 0.0050 0.0142
Efron -0.0739 0.0067 0.0064 0.0051
Cont. (KP) -0.0603 0.0070 0.0071 0.0036
Discrete 0.0000 0.0091 0.0090 0.0001

Events=10
Breslow -0.1267 0.0045 0.0033 0.0160
Efron -0.0785 0.0046 0.0045 0.0061
Cont. (KP) -0.0675 0.0047 0.0048 0.0045
Discrete 0.0000 0.0064 0.0065 0.0000
β = log(1.5) = 0.4055 Events=3

Bias Model SE Empirical SE MSE
Breslow -0.1711 0.0090 0.0082 0.0293
Efron -0.1101 0.0091 0.0065 0.0121
Cont. (KP) -0.0791 0.0097 0.0096 0.0063
Discrete 0.0001 0.0122 0.0120 0.0001

Events=5
Breslow -0.1888 0.0067 0.0050 0.0350
Efron -0.1199 0.0067 0.0063 0.0144
Cont. (KP) -0.0952 0.0071 0.0072 0.0091
Discrete -0.0001 0.0094 0.0096 0.0000

Events=10
Breslow -0.2002 0.0045 0.0031 0.0401
Efron -0.1264 0.0046 0.0043 0.0160
Cont. (KP) -0.1067 0.0048 0.0048 0.0110
Discrete 0.0000 0.0066 0.0066 0.0000
β = log(2) = 0.6931 Events=3

Bias Model SE Empirical SE MSE
Breslow -0.3175 0.0090 0.0063 0.1008
Efron -0.2191 0.0092 0.0080 0.0480
Cont. (KP) -0.1406 0.0106 0.0109 0.0198
Discrete 0.0000 0.0135 0.0137 0.0001

Events=5
Breslow -0.3466 0.0067 0.0044 0.1201
Efron -0.2337 0.0067 0.0059 0.0546
Cont. (KP) -0.1711 0.0076 0.0077 0.0293
Discrete -0.0001 0.0104 0.0104 0.0001

Events=10
Breslow -0.3653 0.0045 0.0030 0.1330
Efron -0.2433 0.0046 0.0041 0.0592
Cont. (KP) -0.1938 0.0051 0.0051 0.0370
Discrete -0.0001 0.0073 0.0074 0.0000

Table 3.3: Simulation output for methods to obtain estimates under tied event times in a
Cox PH partial likelihood. Sample size n = 5000.
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heavily attenuated towards the null (β1 = 0), and for any given true parameter value greater

than 0, the bias increases as the number of events increases. Previously it was noted that

as the number of events per strata increases, the exposure values will be over represented in

the effective risk set (the denominator of the likelihood contribution for a strata). The more

events per strata leads to more tied event times in the Cox PH partial likelihood, which

results in more event exposure values being overrepresented in the effective risk set of that

strata. The KP method is also attenuated towards 0 but not as much as the Breslow and

Efron approximation methods.

What can also be seen from the simulation results is that as the true β value deviates

further from 0, the bias among the approximations and KP methods becomes more apparent.

Looking at Table 3.2, where sample size n = 1, 000 with 10 events within each subject, the

bias among these methods when β = 0.2624 ranges from -0.1265 to -0.0674. When the true

value is β = 0.6934 the bias range increases to -0.3652 to -0.1935. The bias associated with

the discrete method is approximately 0 across these comparisons. When β = 0, there is

virtually no difference among the methods in terms of bias, and each method has virtually 0

bias. Intuitively, this is because in the absence of an association between the exposure and

the event, the exposure of all observation within a risk set are exchangeable within the risk

set.

The simulations confirm that inference will depend on what method is chosen to analyze

case-crossover data with repeated events when the true coefficient value is not 0. Most

software used to analyze case-crossover data in the presence of numerous events among the

subjects will automatically default to one of the approximation methods. In time-to-event

analyses it is uncommon to have a high number of tied event times, with a large number of

events occurring at each of these times. As a result, when only a few distinct times have a

relatively few number of events occurring simultaneously, the approximation methods will

obtain parameter estimates with relatively low bias. In the setting of case-crossover data
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with repeated events, relative to the strata size there are a large number of tied event times

occurring in each strata. As a result, the approximation methods exhibit large bias when

the true coefficient value is not 0.

The biases for each of the four methods are plotted against the true β parameter value are

in Figures 3.2, Figure 3.3, and Figure 3.4. Mean squared error (MSE) plots are provided in

Figures 3.5, 3.6, and 3.7. As can be seen across all figures, the further the true coefficient

parameter value differs from zero, increases in bias occur at an almost linear rate among

the approximation and KP methods, while the bias associated with the discrete method

increases only slightly. As a result, the MSE plots show an increase in MSE among the

approximation and KP methods as the true β value differs further from zero.
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Figure 3.2: Plot of bias against the true β value for the Breslow, Efron, KP, and discrete
estimation method. n = 100
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Figure 3.3: Plot of bias against the true β value for the Breslow, Efron, KP, and discrete
estimation method. n = 1000
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Figure 3.4: Plot of bias against the true β value for the Breslow, Efron, KP, and discrete
estimation method. n = 5000
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Figure 3.5: Plot of mean squared error against the true β value for the Breslow, Efron, KP,
and discrete estimation method. n = 100
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Figure 3.6: Plot of mean squared error against the true β value for the Breslow, Efron, KP,
and discrete estimation method. n = 1000
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Figure 3.7: Plot of mean squared error against the true β value for the Breslow, Efron, KP,
and discrete estimation method. n = 5000
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3.4 Illustration: Air Pollution Study

Here the resulting inference when the four estimation methods considered in this chapter

are applied to the air pollution study introduced in Chapter 1 are considered. As previously

noted, the outcome event is exacerbated asthma requiring a hospital encounter, and the

covariates of interest are ambient traffic-related air pollution exposures including carbon

oxide (CO) and fine particulate matter (PM2.5).

Briefly, the data are comprised of n=7,751 children who made 11,394 visits to the hospi-

tal emergency room (Children’s Hospital of Orange County or University of California, at

Irvine’s Medical Center) for asthma related issues between the start of the year 2000 and the

end of 2008. 1,893 of these children experienced the event of interest at least twice, and the

range of the number of events for a child varied from 1 to 17 events over the course of the

study. The covariates of interest were recorded at four central site locations spread across

Orange County. Exposure observations contain daily measurements of the environmental

exposure factors of interest. Hospital admissions data were abstracted to obtain each pa-

tient’s date of hospital admission for each visit and the patient’s residency zipcode, along

with their age, sex, insurance status and other socio-economic factors. Given a subject’s

date of event and their home zipcode, they were assigned to the nearest exposure monitoring

station, which was then used to obtain exposures for their case and control values.

The referent selection scheme is precisely like the one mentioned in the simulation study.

Once the control index day is chosen using the semi-symmetric bidirectional scheme, moving

averages of 7 days (index day and previous 6 days) for both the case and control exposures

were calculated. Additionally, the data were stratified based on whether the admission date

was in the cold season (winter and fall, defined to between the months November and April

) or the warm season (summer and spring, defined to be between the months May-October).

Associations between environmental exposures and adverse health effects have the potential
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to vary depending on season (Chang et al. [2009]). Also, this is done with the hope that the

effect of breaking the individual matched case-control pairing bonds will not be a significant

issue. Additionally to alleviate any potential issues of breaking the bonds, each model is also

adjusted for relative humidity and temperature.

Table 3.8 presents output using cold season data with the covariate of interest CO computed

as a moving average of 7 days. The model includes adjustment covariates of relative humidity

and outside temperature with the same moving average of the predictor of interest. The event

odds ratio estimate is comparing the odds of an event for being in the top 90th percentile of

the exposure to the odds of an event for being in the bottom 10th percentile of the exposure

(a change of 1 unit of measurement for CO). Since most statistical software defaults to the

Breslow method in the presence of numerous matched pairs within matched set (i.e. tied

event times) and that the discrete method is the theoretically appropriate approach to handle

case-crossover data with numerous events per subject, the focus will be on comparing the

output from the Breslow method to the discrete method.

Method CO MA7 Est. Std. Error OR Est.
Discrete 0.1308 0.0608 1.14

Cont. KP 0.1062 0.0533 1.11
Efron 0.0991 0.0518 1.10

Breslow 0.0876 0.0517 1.09

Figure 3.8: Event odds ratio estimates comparing a change in CO from the bottom 10% to
top 90%. Using cold season data.

From Table 3.8, comparing the discrete to the Breslow approximation, it can be seen that

the discrete method yields an estimate of the OR associated with CO that is 1.55 times that

of the Breslow approxiation (a 9% increase compared to a 14% increase, which constitutes

a 55% increase). This difference is substantial in the context of daily exposures to traffic

related pollutants. The results suggests that choosing one of the approximation methods can

result in substantial underestimation of the effect of the exposure on the risk of an event.
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As was shown in Figure 3.2, Figure 3.3, and Figure 3.4, there is an ordering among the

methods in terms of parameter estimates being biased towards the null value of 0 when the

true parameter value differs from 0. Table 3.8 shows that parameter estimates are attenuated

towards 0 as one goes from the discrete method to the KP method to the Efron method and

to the Breslow method, with the Breslow method having the most attenuated parameter

estimates.

Method PM2.5 MA7 Est. Std. Error OR Est.
Discrete 0.0077 0.0033 1.20

Cont. KP 0.0065 0.0030 1.16
Efron 0.0055 0.0026 1.13

Breslow 0.0045 0.0026 1.11

Figure 3.9: Event odds ratio estimates comparing a change in PM2.5 from the bottom 10%
to top 90%. Using cold season data and only subjects with more than 1 event.

To further highlight the issue of the approximation methods attenuating parameter esti-

mates towards 0, an analysis was conducted using only subjects who had more than 1 event

experienced. The data is stratified using cold season observations only. The predictor of

interest is PM2.5 summarized by a moving average of 7 days. The output for this analysis is

provided in Table 3.9. Again, the model includes adjustment covariates of relative humidity

and outside temperature with the same moving average of the predictor of interest and the

odds ratio estimate compares the change in odds of an event going from the bottom 10% to

the top 90% of exposure values (a change of 23 units of measurement for PM2.5).

As can be seen from Table 3.9, the Breslow method yields an odds ratio estimate of 1.11

while the discrete estimate is 1.20. In the PM2.5 case, comparing the discrete and Breslow,

methods, the discrete method has a change in estimated OR that is 1.81 times that of

the Breslow method (20% increase compared to a 11% increase, which constitutes an 81%

increase).

Similar to the simulation output, the Breslow approximation method returns a parameter
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estimate that is roughly 45% below of what the discrete method estimate is, the Efron

method returns a parameter estimate that is about 28% below the discrete method estimate,

and the KP method returns a parameter estimate that is roughly 16% below the discrete

method estimate. Considering that these are odds ratio increases for daily exposures, there

is substantial difference between the methods both in the mathematical and scientific sense.

In summary, application to the asthma-related hospital encounter data demonstrates that

the choice of method for handling ties in the partial likelihood can result in substantially

biased inference on the effect of a covariate on the risk of an event of interest.

3.5 Discussion

Environmental exposure studies using case-crossover designs, such as air pollution studies,

aim to study the association between an event outcome and an exposure by comparing the

exposure distributions between cases and controls. The real world impact of such studies can

be far reaching as policy making can potentially hinge on the inferences made in these studies,

as the goal of such types of studies is to estimate the effect of an exposure on the risk of an

adverse health event. It is crucial that the appropriate methods are utilized when analyzing

data from a case-crossover design in order to ensure reliable parameter estimates. In this

chapter, it was shown that the conditional logistic likelihood with numerous matched pairs

per matched set (subject) is mathematically equivalent to the Cox PH partial likelihood with

tied event times within strata. As a result, parameter estimates for case-crossover data with

numerous events within subjects are obtained by fitting a Cox PH model to a transformation

of the data. Four commonly used approaches for computing Cox’s partial likelihood in the

presence of tied event times were discussed and shown to result in varying degrees of bias in

resulting parameter estimates.
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In the presence of tied event times within strata (numerous events within subjects), most

software will default to an approximation method to reduce the burden of computing the

discrete Cox PH partial likelihood. This is done because in most time-to-event data it is

rare to have a large number of tied event times where numerous events occur. As a result,

these approximation methods will generally yield estimates with low bias. However, in the

case-crossover design where subjects may experience multiple events, each strata will contain

a large number of tied observations relative to the strata size.

It was demonstrated that the trade-off made by reducing computational complexity through

the use of an approximation method comes at the cost of having parameter estimates that

are attenuated towards zero. If the true parameter value is zero, then there is no issue and

all methods behave the same way in terms of obtaining parameter estimates. However, if the

true parameter value differs greatly from zero, then it was shown that the bias will increase

from method to method, with the approximation methods having the most bias while the

discrete partial likelihood yields parameter estimates with relatively no bias. Additionally,

if each strata has only a single event, then all methods will produce identical results since

no “ties” will be present in the partial likelihood in this case.
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3.6 Appendix

3.6.1 Computation of the Discrete Likelihood

Letting r(j) be the size of the risk set R(j), the primary challenge in evaluating the partial

likelihood in (3.3) lies in computing B(d(j), r(j)) =
∑

I∈(R(j);d(j))

∏
i∈I
exp{xiβ} which requires

r(j)!

(r(j)−d(j))!(d(j)−1)!
− 1 arithmetic operations, that reduce to 2d(j)(r(j) − d(j) + 1) operations

using recursion. (Gail et al. [1981]) consider a recursive approach to obtain

B(d(j), r(j)) = B(d(j), r(j) − 1) + exp{xrjβ}B(d(j) − 1, r(j) − 1).

Using B(d(j), r(j)), each subject’s likelihood contribution can be calculated, and numerical

derivatives using symmetric differentiation can be utilized to get the score and the informa-

tion matrix. Let β = (β1, β2) and h ≈ 0. Then the score equations are given by

U(β1) =
∂L

∂β1
=
L(β1 + h, β2)− L(β1 − h, β2)

2h
= 0

U(β2) =
∂L

∂β2
=
L(β1, β2 + h)− L(β1, β2 − h)

2h
= 0.

In addition, the second derivatives used to obtain the information matrix are:

∂2L

∂β2
1

=
L(β1 + h, β2) + L(β1 − h, β2)− 2L(β1, β2)

h2

∂2L

∂β2
2

=
L(β1β2 + h) + L(β1, β2 − h)− 2L(β1, β2)

h2

∂2L

∂β1∂β2
=
L(β1 + h, β2) + L(β1, β2 − h)− L(β1 + h, β2 − h)− L(β1, β2)

h2
.
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Note that as h→ 0 the definition of the first and second derivative are obtained.

3.6.2 Integral Representation of the Kalbfleisch-Prentice Likeli-

hood

DeLong et al. [1994] present an integral representation to the KP likelihood shown in (3.6).

This likelihood assumes there is a true ordering in the event times, and constructs the

likelihood permuting all possible orderings of the tied event times.

Let t1 < t2 < ... < tk denote k ordered distinct event times. Let wl = exp(xilβ) , Rj be the

risk set just before tj, Dj be the set that fail at tj and R∗j = Rj/Dj.

Under the proportional hazard model, Sl(t) = S(t)wl , where S(.) is the unknown baseline

survival distribution function and Sl is the survival function of survival time Tl of the lth

unit for the population. Let λik = wk∑
l∈R∗

i

wl
.

The probability that all units in Di fail before those in R∗i is given by

Pi = p(max
l∈Di

Tl < min
l∈R∗i

Tl).

In addition, the cumulative distribution function of max
l∈Dj

Tl is given by

G(t) =
∏
l∈Di

{1− Sl(t)} =
∏
l∈Di

{1− S(t)wl},

and the cumulative distribution function of min
l∈R∗j

Tl is given by

F (t) = 1−
∏
l∈R∗j

Sl(t) = 1−
∏
l∈R∗j

S(t)wl .
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Using the convolution

Pi =

∞∫
0

G(t)dF (t) =

∞∫
0

∏
k∈Di

{1− exp(−λikt)}exp(−t)dt,

Therefore

∂2Lg
∂λgm∂λgn

=


∞∫
0

∏
k∈Dg ,i 6=m,j 6=n

{1− exp(−λgkt)}exp(−t)t2 exp(−(λgm + λgn)t)dt if n 6= m

∞
−
∫
0

∏
k∈Dg ,,i 6=m

{1− exp(−λgkt)}exp(−t)t2 exp(−(λgmt)dt if n = m.

Then the chain rule can be implemented to evaluate ∂λgm
∂βk

and ∂2λgm
∂βk∂βl

to obtain ∂Lg
∂βk

and ∂2Lg
∂βk∂βl

respectively.

Now, suppose subject i has di many events and risk set Ri. Thus λ = (λ1, λ2, ..., λdi) and so

∂λ
∂βk

= (∂λ1
∂βk

, ...,
∂λdi
∂βk

)
′

a di × 1 vector. Also ∂2λ
∂βk∂βl

= ( ∂2λ1
∂βk∂βl

, ...,
∂2λdi
∂βk∂βl

)
′

another di × 1 vector.

Now note that ∂L
∂βk

= ∂L
∂λ

∂λ
∂βk

and ∂2L
∂βk∂βl

= ∂
∂βl

∂L
∂λ

∂λ
∂βk

= ∂L
∂λ

∂2λ
∂βk∂βl

+ ∂λ
∂βj

∂2L
∂λ2

∂λ
∂βk

where ∂2L
∂λ2 is a

d× d square matrix.

Noting that l = log(L), ∂l
∂β

= 1
L
∂L
∂β
, and ∂2l

∂βkβl
= − 1

L2
∂l
∂βk

∂l
∂βl

+ 1
L

∂2L
∂βk∂βl

, the score equations

and information matrix can be computed.
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Chapter 4

On Frequentist Parameter Estimation

of Matched Case-Control Studies with

Unbalanced Cluster Sizes

4.1 Introduction

In a wide range of epidemiologic studies, the aim is to investigate the effect of an exposure

on the risk of a rare event. When the incidence of the event of interest is low, a prospec-

tive cohort design is infeasible, as only a relatively few cases will be observed in a given

sample over the course of a study. To study a rare event, a more feasible study design is

the case-control design. In this design, a pre-determined number of cases and controls are

selected from the target population, and the exposure levels of the sample are retrospectively

measured. Once the exposures for the cases and controls are determined, the distribution of

the exposure is compared between the case sample and the control sample. In order to con-

trol for confounding covariates without having to explicitly include them in the model (thus
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avoiding potential misspecification of functional form reducing the number of parameters to

be estimated), matching controls to cases based on a specified criteria is suggested (Pike and

Morrow [1970] for binary exposures and Breslow et al. [1978b] for continuous exposures).

The difficulty with adjusting for confounders is to ensure no confounding factor is left un-

accounted for, whether by matching controls to cases or by including them as factors in the

model. If a confounder is left unaccounted for, either unmeasured by design or omitted from

the model, then the estimation procedure runs the risk of yielding biased estimates for the

association of interest. For example, if the case subject is a child admitted to the hospital for

an adverse health outcome, and the control is a healthy child of similar age and gender, but

not admitted to the hospital, confounding socio-economic factors such as insurance status

will be left unaccounted for by design and should be included in the model presuming such

data were collected. If it is believed controls are appropriately matched to cases but in fact

mis-matching is occurring, these unaccounted confounding factors will not be included in

the model, and therefore will not be adjusted for by the model nor by design.

The case-crossover design lends itself naturally to a matched case-control study, as the control

subject is the same subject as the case. In this manner, time in-variant within subject

confounders are controlled for by design. In a case-crossover design, a subject’s control

exposures are the exposures experienced by the subject in a time period where no event

was experienced (Navidi [1998]). However, not all matched case-control studies can utilize

the case-crossover design. The case-crossover design was developed to study the effects

of transient, short-term exposures on the risk of acute events (Maclure [1991]). When it

comes to environmental air exposure studies, it is believed that the effect of exposure to

environmental factors, for example particulate matter 2.5 and ozone, on the risk of an adverse

health outcome are transient and therefore the case-crossover design can be utilized (Chang

et al. [2009]). The specifics of choosing controls properly given a case index day in order to

ensure unbiased estimates were covered in Section 2.3.3 and Section 3.1.
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4.2 Unbalanced Cluster Sizes in Matched Case-Control

Studies

Studies that utilize the case-crossover design commonly have events of interest that can

be experienced numerous times by a subject, such as gout attacks as a result of alcohol

consumption (Zhang et al. [2006]) or falls in the elderly as a result of medication changes

(Neutel et al. [2002]). Therefore it is likely that the number of events varies across subjects,

with some subjects experiencing the event with low frequency and others experiencing the

event with much higher frequency. It is reasonable to think that the effect of an exposure is

not constant across subjects/clusters, and that the cluster size could possibly be informative

of the effect modification. Let i denote the subject and j denote the index of the jth

observation, where i = 1, 2, . . . , n and j = 1, 2, . . . ,mi. If Yij is the jth binary response for

subject i, and Xij are the covariate values for this observation, non-ignorable cluster size

is defined to be any violation of the property E(Yij|mi,Xij) = E(Yij|Xij) (Hoffman et al.

[2001]).

When effect modification is present across clusters, subject-specific measures of effect can

be included in the model (Laird and Ware [1982]). This approach requires the specification

of the covariance matrix for within-cluster observations, and mis-specification can lead to

invalid inference. Marginal approaches that utilize generalized estimating equations (GEE)

can be used to obtain the marginal effect of an exposure on risk of an event (Zeger and

Liang [1986], Liang and Zeger [1986]). These methods based on GEE implicitly presume

the cluster size is unrelated to the parameter being estimated, which is to assume ignorable

cluster sizes. Within-cluster and between-cluster covariate effects being equal is implied

under this setting.

An illustrative applied example relates to a study of the effect of exposure to air pollution

on the risk of experiencing exacerbated asthma which will be used as an example in a
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later section and was previously introduced in Chapter 1 (Delfino et al. [2014]). In this

study, the number of events across subjects varies from 1 to 17. It can be postulated

that the subjects that are experiencing a higher number of events are doing so because

they are more susceptible to changes in the exposure, and therefore have a larger positive

value for the coefficient of the exposure on the risk of an event than the subjects who have

only a few events. Estimation methods based on GEE can account for the within cluster

correlation. One possibility is to treat all observations as independent during parameter

estimation, but then account for clustering in the estimation of model variances via the

robust variance estimator. However, this estimation procedure will proportionally weight

each cluster’s contribution to the overall marginal parameter estimate by the precision within

the cluster. Clusters that have a large number of observations, with relatively low correlation

among the covariates, will have high precision compared to clusters with a low number of

observations. As a result, the marginal parameter estimate will be attenuated towards that

of the larger clusters estimates.

As an example, assume a case-crossover study with 1:1 matching of controls to cases and that

there are 2 subjects in the study. Furthermore, assume the 1st subject contributes a single

event (and a single control matched to it), and the 2nd subject contributes 9 events (with a

single control matched to each of the events) to the dataset. In terms of contribution to the

data to be analyzed, the 2nd subject contributes 90% of the observations and the 1st subject

only 10%. Alternatively, one can weight each cluster equally, regardless of the size. If the

goal is to make inference that addresses each subject equally, such as implementing policy

to improve overall health of the populations represented by the sample, using estimation

methods that account for within cluster correlation in the estimation procedure will result in

inferences that are heavily biased towards the 2nd subject. If the goal is to make inference

that addresses each observation equally, such as implementing policy to address the cost of

treating events, using methods that weight each subject equally will not give enough weight

to subjects that are a larger portion of the costs (by having more events than other subjects).
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Neuhaus and Kalbfleisch [1998] suggest estimating both the within-cluster and between-

cluster covariate effects. In this approach, the covariates Xij have two components, one is

the within-cluster component Xij − X̄i. and the between-cluster component
ni∑
j=1

Xij = X̄i.

Neuhaus and Kalbfleisch do not assume the coefficients of these terms are equal. As a result,

both terms are included in the model as factors. Kim et al. [2011] develop a semi-parametric

regression model for detecting effect modification across the matched sets (subjects) in a

case-crossover study, but do so with respect to how the covariate coefficient changes across

the matched sets as a result of the matching factors. Thus, in this approach, the matching

factors that are believed to be influencing the differences in the effect of the exposure across

subjects must be explicitly defined and measured. The approach then proceeds to include

interactions between the exposure and the matching factor of interest into the exponentiated

linear predictors of the likelihood contribution for each matched set.

The methods previously discussed in Chapter 3 combine all the matched pairs of case-controls

from within a subject to create a single set of observations for that cluster, which will denote

the risk set for that subject. This results in breaking the bond between each individually

matched case-control pair for each event within a subject. Revisiting the example presented

in Chapter 3, assume a subject has two events, one in the summer months and one in the

winter months. Using the semi-symmetric bi-directional referent selection scheme discussed

in Section 2.3.3 and Section 3.1, the summer event will have a control matched to it that

will also be from summer and similarly for the winter event’s control. When using methods

that account for within-cluster correlation by analyzing the data at the cluster level, the two

event exposures and the two control exposures will be combined to form a single risk set for

that subject. The inherent bond between each matched case-control pair is broken, and it

is no longer apparent which control exposure value was matched to each of the events.

In Chapter 2 Section 2.3 and Chapter 3 Section 3.2, it was discussed that the conditional lo-

gistic provides one commonly used approach for obtaining parameter estimates in a matched
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case-control design (Breslow and Day [1980]). Continuing the above example of a sub-

ject with two events, let Yi = (Yi1, ..., Yi4) denote the vector of binary outcomes, and

xij = (xij1, . . . , xijp) denote the p many covariate values for each of the j observations,

j = 1, 2, 3, 4. The conditional logistic likelihood contribution ,Li , for this subject is given

by

Li =


=

exp{∑
j
βxijyij}∑

{~y∗
i
:
∑
j
y∗
ij

=2}
exp{∑

j
βxijy

∗
ij}

, if
∑
j

yij = 2

= 0 , otherwise

. (4.1)

Intuitively, (4.1) is comparing the covariate values for each of the events to the covariate

values among the risk set, which include all the events and the controls matched to each

event. When all events and their matched controls are combined to form a single risk set, an

event’s exposure from summer will be compared to the entire risk set, which will contain the

matched pair from winter (and similarly for the winter event exposure being compared to the

matched pair from summer). If there exists a seasonality trend in the exposure series, this

could potentially lead to biased estimates being obtained and inaccurate inferences being

made. If the bond is maintained, then the event exposure value will be compared to the risk

set attributed to that event, which will only include the event itself and the matched control.

In the current chapter, three methods that can be readily implemented with standard soft-

ware in order to analyze case-crossover data with unbalanced cluster sizes are explored. The

first is what was termed the discrete method from Chapter 3, which uses the conditional

logistic likelihood shown in (4.1) and was discussed in Section 3.2. In Chapter 3, it was

shown that this method is the appropriate method for obtaining approximately unbiased

parameter estimates in a case-crossover design with numerous events per subject, when the

goal is to account for the correlation among the data in the estimation procedure and it is

deemed reasonable to break the bond between matched cases and controls. The second is a
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working independence approach that assumes independence between clusters and among ob-

servations within cluster for parameter estimation, then corrects variance estimates post-hoc

using a robust variance estimator. The third method is a within cluster resampling scheme

(Hoffman et al. [2001]) which samples a single matched pair from each subject to create

a subsampled dataset (of independent observations) that is used to obtain parameter esti-

mates. Resampling and estimation is repeated multiple times and the resulting parameter

estimates are then averaged to obtain a single marginal estimate.

The operating characteristics of each method are explored, and the advantages and disad-

vantages of each method are highlighted under the scenario of heavily unbalanced cluster

sizes with and without effect modification across clusters. Simulations will show that the dis-

crete and working independence methods will result in parameter estimates that are heavily

attenuated towards the coefficient value of the clusters with larger number of events, and

the within-cluster resampling method will result in parameter estimates that assigns equal

weight to each cluster, regardless of its size. An illustrative example using hospital admis-

sion data from a study of air pollution on the risk of experiencing an event of exacerbated

asthma (Delfino et al. [2014]) is used to show that the methods under investigation will

return substantially different parameter estimates and inferences.

4.3 Methodology

As noted, the conditional logistic regression provides one commonly used approach for ob-

taining parameter estimates in a matched case-control design. Breslow and Day [1980]

derived the conditional logistic likelihood under stratified binary outcome data. Assume a

1 : M matching scheme and suppose that di events are observed for subject i, i = 1, . . . , n.

Under the conditional logistic regression model the probability of an event occurring for jth
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observation within subject i, is given by

πij =
eβ0i+βxij

1 + eβ0i+βxij
, j = 1, ..., (M + 1)di, i = 1, . . . , n. (4.2)

Conditioning on the number of events known to happen in each cluster/subject , the random

intercepts β0i in (4.2) are eliminated from the conditional likelihood, and as a result are

treated as nuisance parameters. It was shown in Chapter 3 Section 3.2 and Section 3.2.2

that the conditional logistic likelihood is mathematically equivalent to the Cox’s partial

likelihood if all the event times within a subject are set to be equal, and all control times

set to be greater than or equal to the event times.

4.3.1 Discrete likelihood method

The discrete method proceeds with parameter estimation by using Cox’s partial likelihood

under the assumption of tied event times. Let Di be the set of the di many events for subject

i (i = 1, 2, . . . , n), and Ri be this subjects risk set, which is all the events and their matched

controls. Additionally let (Ri, di) be all possible sets of Ri of size di. The conditional

likelihood is of the form:

LD =
n∏
i=1

∏
j∈Di

exp{βxij}∑
J∈(Ri,di)

∏
j∈J

exp{βxij}
. (4.3)

As mentioned earlier, the inherent bond between each case-control matched pair is now

broken, as all case exposure values and control values are combined to form a single risk

set, R. This method is computationally intensive due the combinatoric in the denominator.

Computation of the denominator is facilitated by the use of a recursion formula (Gail et al.

[1981]). Parameter estimates are obtained by maximizing the likelihood (4.3) using numerical

derivatives as shown in the appendix of Chapter 3. The discrete method will proportionately
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weight each cluster/subject’s contribution to the estimation of a (marginal) parameter by

the precision within the cluster. Clusters with a large number of observations, and low

correlation among its covariates, will tend to contribute more weight to the overall marginal

parameter estimate than clusters with few observations, or highly correlated covariate values.

In Chapter 3 it was shown that the discrete method is the proper method to use when

obtaining parameter estimates in a case-crossover study when the goal is to maintain the

clustering of the data and account for the correlation in the data in the parameter estimation

procedure.

4.3.2 Working Independence Likelihood Method

A method that does not require the intensive combinatorial computation required for com-

puting the denominator in the likelihood (4.3) is considered. The approach proceeds with

estimation by treating the data as independent across all matched pairs. Thus it ignores

the clustering of observations based on subject, and treats each matched pair independently.

Let di denote the number of events observed for subject i and assume the matching of M

many controls to each event (1 : M matching). Additionally, let yijl = 0, 1 be the indica-

tor for an event for the lth observation (l = 1, 2, . . . ,M + 1) within the j-th matched pair

(j = 1, 2, . . . , di) for subject i, and xijl be the covariate values for the l-th observation in

the j-th matched set for subject i. The working indepence likelihood is then given by

LI =
n∏
i=1

di∏
j=1

exp(
M+1∑
l=1

yijlβxijl)

M+1∑
l=1

exp(βxijl)

. (4.4)

It can be seen that likelihood in (4.4) does not break the bond between the matched pairs

of case-controls. Each event’s covariate values are compared strictly to that of the event’s

risk set, which now only includes the event itself and the controls matched to it. However,
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the correlation among the clustered observations will not be accounted for in the parameter

estimation procedure. Treating correlated outcomes as independent will tend to produce

inconsistent standard errors estimates, resulting in invalid inference. To address this, a post-

hoc sandwich variance estimator can be used to obtain robust standard errors (Huber [1967],

Lin and Wei [1989]).

The sandwich variance estimator in the context of the current problem is introduced. First

note that the likelihood in (4.4) can be written as

LI =
n∏
i=1

di∏
j=1

M+1∏
l=1

yijl

 exp(xijlβ)
M+1∑
l=1

exp(xijlβ)

 . (4.5)

Then from (4.5), the score equation is given by

U(β) =
n∑
i=1

di∑
j=1

M+1∑
l=1

yijl

[
xijl −

S1
ijl

S0
ijl

]
, (4.6)

where S0
ijl =

M+1∑
l=1

exp(xijlβ) and S1
ijl =

M+1∑
l=1

xijlexp(xijlβ).

Setting S2
ijl =

M+1∑
l=1

xijl
⊗2exp(xijlβ) ,the observed information matrix is given by

I∗(β) =
∂2log(L(β))

∂β2 =
n∑
i=1

di∑
j=1

M+1∑
l=1

yijl

[
S2
ijl

S0
ijl

−
(S1

ijl)
⊗2

(S0
ijl)
⊗2

]
,

where a⊗2 = aa′.

Now, let

Wji(β) =
M+1∑
l=1

yijl

[
xijl −

S1
ijl

S0
ijl

]
−

n∑
r=1

di∑
k=1

M+1∑
l=1

yijl
exp(xrjkβ)

S0
ijl

[
xijl −

S1
ijl

S0
ijl

]
.
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and construct the matrix B as follows:

B(β) =
n∑
i=1

di∑
j=1

di∑
k=1

Wji(β)Wki(β)′. (4.7)

Finally, using a first-order Taylor expansion of the score equation in (4.6) Lin and Wei [1989]

show that

β̂
.∼ N(β, V ),

where V = I∗(β)−1B(β)I∗(β)−1 and can be consistently estimated with

V̂ = I∗(β̂)−1B(β̂)I∗(β̂)−1. Under correct model specification (not ignoring the clustering

of observations) I∗(β)−1 = B(β)−1, and as a result under correct model specification V =

I∗(β)−1. Hence, relying on the result of Lin and Wei [1989], the within cluster correlation

can be for when estimating the variance of the parameter estimate in a post-hoc fashion by

using (4.7) .

4.3.3 Within-cluster resampling

A within-cluster resampling (WCR) scheme for the analysis of clustered data was proposed by

Hoffman et al. [2001] when the cluster sizes vary and it is believed that the covariate effects

are not constant across clusters. The notion that covariate effects differ across clusters

as a result of the differing sizes of the clusters is termed non-ignorable cluster size. This

framework, adapted here to a case-crossover design, proceeds by sampling one matched pair

(case and matched control) from each cluster with replacement, with equal probability. The

resulting subsample of the full data set is then analyzed using any independent method as no

clustering within the subsampled data exists. In the case-crossover setting, the independent

method used to obtain parameter estimates is the one that maximizes the likelihood (4.3)

or (4.4) with di = 1 for all i. Since only a single matched pair is within each subject, (4.3)

and (4.4) are equivalent. This procedure is repeated many times, and an overall parameter
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estimate, and it’s estimated variance is computed from the numerous model fits from the

sub-samples. This procedure was termed ”multiple outputation” by Follman et al. [2003]

as it leaves parts of the data out of the estimation procedure across each iteration. This

is essentially the converse of ”multiple imputation”, where parts of the missing data are

repeatedly filled in (Rubin [1996]).

The WCR method is implemented as follows:

1. For each unique cluster (subject), randomly sample one matched pair (case event and

its matched control), giving each matched pair equal probability of being selected.

2. Estimate β̂(q) with this reduced dataset using the conditional logistic likelihood. Note

there is only 1 case and it’s matched controls for each subject.

3. Repeat steps (1.) and (2.) Q many times (q = 1, 2, ..., Q), storing each β̂(q) and

v̂ar(β̂(q)), the estimated model variance of the parameter estimate from fitting the

model in step (2.).

4. Compute β̂WCR = 1
Q

Q∑
q=1

β̂(q) and

V̂WCR = v̂ar(β̂WCR) = 1
Q

Q∑
q=1

var(β̂(q))− 1
Q

Q∑
q=1

(β̂(q) − β̂WCR)(β̂(q) − β̂WCR)′

Next some of the more important properties of the WCR estimator are considered. Let the

randomly chosen index for subject i be J(i). Let J = (J(1), ..., J(n)) and J q be the qth

outputation. Note that J has d1 × ....× dn many support points, each equally likely.

Assume 1:1 matching for ease of notation and let

X = [X111,X112,X121,X122, . . . ,X1d11,X1di2, . . . ,Xn11,Xn12 . . . ,Xndn1,Xndn2]

denote the entire data set for all clusters, where X ijl is the covariate vector for the lth

observation for the ith subject’s jth matched pair (l = 1, 2 and j = 1, . . . , di). Additionally

set X(J) to be the n data points for an outputation, and let β̂ = β̂(X(J)) be the parameter
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estimate based on this outputation.

If each subject has di multiple matched pairs, define β̂
∞
WCR = 1∏

i
di

∑
J

β̂(J), the average of the

parameter estimates obtained across all possible outputations. Note that since conditional

on X the β̂(X(J))’s are independent and identically distributed, lim
Q→∞

β̂WCR = β̂
∞
WCR and

β̂
∞
WCR = EJ

[
β̂(X(J))|X

]
.

Hoffman et al. [2001] use the variance decomposition formula to obtain the variance of β̂
∞
WCR

as

var(β̂(X(J))) = E(var[β̂(X(J))|X) + var(E[β̂(X(J))|X)

σ2 = σ2
c + var(β̂

∞
WCR),

where σ2
c is the variance conditional on upon the outputation set. An estimate of the variance

of β̂WCR is then given by

v̂ar(β̂WCR) =
1

Q

Q∑
q=1

var(β̂(q))−
1

Q

Q∑
q=1

(β̂(q) − β̂WCR)(β̂(q) − β̂WCR)′. (4.8)

Hoffman et al. [2001] proved the consistency of this estimate under standard regularity

conditions. Further, they showed that for large Q:

√
n(β̂WCR − β)

D→ N(0,Σ),

where Σ is consistently estimated by the variance shown in (4.8).

It is worth noting that Williamson et al. [2003] presented the WCR method in a weighted

estimating equations (WEE) framework. They observed that since the sampling scheme

within subject is essentially a discrete uniform with probability mass of 1/di for each matched

pair, then one can derive a WEE method which assigns weights of 1/di for each matched

pair within subject i’s estimating equations. The details of this approach are in the chapter

appendix.
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The inspiration for drawing the relationship between multiple outputation estimator and

the WEE estimator was because of the intensive computation sometimes necessary to yield

the multiple outputation estimator, as Q needs to be large. Processing power has increased

greatly since and as a result the WCR method only takes marginal more time to compute

than the WEE. Since both methods are shown to give similar results, the focus is on the

WCR method in terms of simulation studies and applied data illustration.

4.3.4 Method Comparisons

As noted, the working independence approach treats each matched pair as an individual

cluster, constructs a likelihood based on the independent observations, and then proceeds

to maximize the likelihood with respect to the parameters to obtain estimates. As such,

this method inherently assigns higher weight to larger clusters as the clusters with a higher

frequency of observations will contribute a larger percentage of the data set used to obtain

the parameter estimate.

Return to the hypothetical example mentioned earlier where 2 subjects are in the study and

the first one experiences a single event and the second one experiences 9 events. In terms of

cluster representation, each subject represents 50% of the clusters, but in terms of the data

that the working independence approach will use to obtain estimates, the second subject

will account for 90% of the observations. Using the working independence approach will

return parameter estimates that are heavily attenuated towards the true parameter value of

the second subject. However, this method does not break the inherent bond between each

matched pair within subjects, as each matched pair is treated as its own cluster. For a given

subjects event, the likelihood contribution for this event will compare the covariate value of

the event to only the risk set for that event, which includes the event itself and the control

matched to it.
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The discrete method assumes independence across clusters, but not within cluster. The

product in the likelihood (4.3) is therefore across clusters only. Within each cluster, the

event exposures are compared to the exposures of the risk set for that cluster, which will

comprise of all events and the controls matched to those events. Within the risk set of a

given subject, it is no longer apparent which control was matched to which event and as

a result the inherent bond between each matched case-control pair is broken. If there are

seasonality trends in the exposure time series, this could lead to potentially biased results.

!"#$%&% !"#$%'%

!"#$%&% !"#$%'%!()*+(,%&% !()*+(,%'%

Figure 4.1: Matched case-control pair bonds are maintained.

!"#$%&% !"#$%'%

!"#$%&% !"#$%'%!()*+(,%&% !()*+(,%'%

Figure 4.2: Matched case-control pair bonds are not maintained.

Consider the example mentioned earlier of a subject with two events, one in summer and one

in winter. The summer event will have a control matched to it that will be from summer,

and similarly for the winter event. Cold seasons tend to have higher levels of environmental

exposures such as NO2 and NOx. By breaking the matched case-control bonds, the summer
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event exposure will be compared to both the summer and winter matched pair exposures,

and likewise for the winter event. Figure 4.1 shows when the bonds are maintained. Each

case exposure value is compared to its own risk set (i.e. matched pair). In Figure 4.2, the

bonds are no longer maintained, and each case exposure is compared to the risk set of the

subject (i.e. both matched pairs).

To try and alleviate the issue of the bonds being broken, the air pollution data is stratified

into seasons, cold and warm, and additionally all models are adjusted for temperature and

relative humidity. The hope is that breaking the bonds will not be a substantial issue as

each events risk set within a subject will contain controls from only the same season as the

event itself.

The discrete method will tend to compute parameters that are attenuated towards the co-

efficient value of the larger clusters similar to the working independence approach, but the

contribution of each cluster to the overall marginal parameter estimate is mitigated by the

fact that each clusters contribution to the marginal parameter estimate is weighted by the

precision of the estimate from within the cluster. If a cluster has highly correlated covariates,

then it will contribute less information as compared to a similar cluster with covariates with

little to no correlation among the matched pairs.

Finally, the WCR estimator attempts to neutralize the disproportionate attenuation of the

marginal parameter estimate to the coefficient parameter of the larger clusters by only sam-

pling a single matched case-control pair from each cluster. At each iteration of the multiple

outputation procedure, a dataset is created that contains only a single matched pair from

each cluster, thus alleviating the issue of varying cluster sizes since the parameter estimated

from one of the multiple outputation iterations will weight each subject equally (as all clusters

are the same size). This method does not break the bonds since each matched case-control

pair is sampled together. Within each cluster in the subsampled data, there will be only a

single event, whose exposure values will be compared to only its risk set, which will be the
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event itself and its matched control. This method will result in parameter estimates that will

weight each subject equally, regardless of the number of observations within each subject.

Note that if each subject has only a single event, then the working independence method.

the discrete method, and the WCR method are identical.

In the hypothetical example of 2 subjects, the WCR method will tend to compute an estimate

that is the equally weighted average of each subjects parameter value. At the same time, since

at each iteration of this procedure a single matched pair is randomly sampled within clusters

that have numerous pair, all observations will still be used in the estimation procedure

(assuming the number of iterations is large compared to the number of pairs within clusters).

The precision in the overall marginal parameter gained by using all pairs from clusters is

evident in the variance estimate in (4.8).

The estimated variance of WCR parameter estimate is the mean of the model based variance

estimates over the Q many outputations, but with the subtraction of a correction term.

How to view this correction term is it measures how the parameter estimates varies over

the Q many outputations. The less correlated the observations are within a cluster, the

more variability the parameter estimate β̂(q) will exhibit across the outputations. Thus,

the precision of the overall marginal parameter β̂WCR will increase due to the information

gained by sampling different matched pairs from the clusters with several pairs. The higher

the correlation among the observations in a cluster, the smaller the correction term will be

as the estimated parameter, β̂(q), will vary only slightly across the outputations.

No modification Yes modification
No trend Discrete=Ind.=WCR Discrete ≈ Ind. 6= WCR
Yes trend Discrete 6= Ind. = WCR Discrete 6= Ind. 6= WCR

Table 4.1: Comparison of WCR, discrete, and Working Independence (Ind.).

Table 4.1 summarizes the three methods depending upon whether or not seasonality trends

are evident in the exposure series (yes/no) and whether or not effect modification across

109



clusters exists (yes/no). If there is a seasonality trend in the exposures, then breaking the

bonds between each matched pairs will result in the discrete method computing parameter

estimates that will differ than both the multiple outputation and the working independence

method. Within the scenario of seasonality trend in exposures, if there is effect modification

across clusters, then the working independence method assigns higher weight to the larger

clusters, which will have a different parameter estimate than the smaller clusters due to the

effect modification. Since the WCR method will assign equal weight to all subjects whereas

the working independence method will assign equal weight to the individual matched pairs,

the WCR method and the working independence method will obtain different results. If

there is no seasonality trend and no effect modification across clusters, all methods will be

equivalent. If there is no seasonality trend in the exposures, but there is effect modification,

then the discrete method will yield estimates similar to that of the working independence

model. The multiple outputation procedure will yield a parameter estimate that will differ

from the discrete and working independence methods since it will weight each subject equally,

which will prevent the attenuation of the overall parameter estimate towards the parameter

value of the larger clusters, unlike the working independence and discrete methods.

4.4 Simulation study

Luo and Sorock [2008] conducted a simulation study in which they investigated the operating

characteristics of the methods mentioned in this chapter, but in their simulations cluster sizes

varied only slightly (average of two events per cluster), and all clusters had the same true

parameter value. As a result, all methods produced similar results. As described in the

simulation process in the following section, cluster sizes can vary greatly, as they do in

practice with the applied hospital admission data presented in Chapter 1. Here, a variety

of parameter values are used to induce effect modification across the clusters (informative
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cluster sizes) and also scenarios where no effect modification are evident (non informative

cluster sizes). It will be shown that the working independence method will obtain parameter

estimates that are attenuated heavily towards the coefficient value of the high frequency

clusters, βh. The discrete method will return estimates that are near that of the working

independence method, but not as attenuated towards βh because in this method the high

frequency clusters will have their contributions towards the overall marginal parameters

reduced due the correlation in the covariates within the cluster. The WCR method will

not take cluster size into account, and will have an estimand that assigns equal weight to

clusters/subjects regardless of number of observations in the cluster. Parameter estimates

will be attenuated towards the true value of the subjects that make up a majority of the

subject sample size.

4.4.1 Data simulation

The data generation scheme used for this simulation study is similar to the one described

in Section 3.3.1, but with some modifications. For a given sample size of n many subjects,

90% of subjects are set to represent clusters with low frequency observations, and 10% are

set to represent clusters with high frequency of observations. To represent a fixed number of

monitoring stations, 4 strings of exposures were generated via an auto regressive time series

of order 1, AR(1). For k = 1, 2, 3, 4 and t = 1, 2, . . . , T where T = 3, 650 to signify a 10 year

study with daily exposures, an AR(1) process was generated for the exposures, x:

xkt = c+ ϕxkt−1 + εkt where εkt
iid∼ N(0, 1).

Each subject, i (i = 1, 2, . . . , n) was assigned be either a low or high frequency cluster with

probability of 0.9 and 0.1, respectively and also was assigned to one of the four generated ex-

posure time series with equal probability. If assigned to low frequency, the number of events,

vi, for this subject was sampled from the set {1, 2, 3} with probability p = (0.9, 0.05, 0.05).
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If assigned to high frequency, number of events for this subject was sampled from a uni-

form{5,6,...,17}.

For t = 1, 2, ..., 3650, the probability of an event on a given day using the logistic link for

a prospective probability of event, πkit =
exp(β0i+β1xkit)

1+exp(β0i+β1xkit)
, where ki is the monitoring center

assigned to subject i (1,2,3, or 4) was computed. For the low frequency clusters, β1 ≡ βl,

and for the high frequency clusters β1 ≡ βh. Values used for βl and βh will be stated when

simulation results are presented. For each πit, a Bernoulli random variable with p = πit was

sampled. Given the pre-specified number of events for each subject (vi), vi many events

were randomly sampled from the successes generated from the T many Bernoulli trials. If

a subject did not produce enough events via the Bernoulli simulation based on the πit’s as

they were set to have (events simulated< vi), then all events that were produced for that

subject were chosen.

Once the event days are selected, a control day was chosen for each event based on the

suggestions of Navidi and Weinhandl [2002]. For a given event day, the control exposure

values were the moving average of the 7 days between the 14-th and 20-th days prior to the

event or the moving average of 7 days between the 8-th and 14-th days past the event, with

each window being picked with equal probability. The event exposures are set to the be the

average of the event day and the previous 6 days. This is done in air pollution studies to

account for any lingering effect of the exposure on the risk of an adverse health outcome,

and also to be able to incorporate the information from several days into the analysis. For

events that had only a single available referent window to be selected, in cases where the

event happens in the start or end of the exposure series or if another event is observed in

one of the two available referent windows, an offset of log(2) was used (Janes et al. [2005a]).

If for a specific event both available referent windows had events observed in them, then this

event is dropped from the analysis (this occurred in less than 0.1% of the total events).

The parameters in the time series were specified as c = 2 and ϕ = 0.5 ,leading to
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cov(xkt, xkt+r) = 1
1−ϕ2ϕ

|r|. A variety of different scenarios were simulated. Let βl denote

the true parameter value for the subjects in the low frequency clusters and βh be the

true parameter value for the high frequency clusters. Six different pairs of (βl, βh) values

were investigated, those respectively being (log(1),log(1)) ,(log(1),log(1.5)) ,(log(1),log(2)),

(log(1.2),log(1.2)), (log(1.2),log(1.5)), and (log(1.2),log(2)). The random intercept for each

subject was generated according to β0i
iid∼ N(µ0, 1) where depending on the scenario of

(βl, βh), µ0 varied from -7.5 to -6, in order to ensure a sufficient expected number of events

occurring across the 3,650 days. Sample sizes of n = 500, 1, 000, and 5, 000 were considered.

4.4.2 Simulation results

The means of the parameter estimates, mean of model standard errors, and empirical stan-

dard errors of parameter estimates over the simulation runs are given in Table 4.2, Table 4.3,

and Table 4.4. 10,000 data sets were simulated for each scenario and Q = 250 outputions

were used for the multiple outputation algorithm.

According to the 90-10 breakdown of low frequency to high frequency clusters in the sim-

ulation explained in the prior section, it is expected that the WCR method will compute

estimates close to a subject weighted parameter, θs, where

θs = P (low)× βl + P (high)× βh

= 0.9× βl + 0.1× βh,

and where P (low) and P (high) are the probability of being a low and high frequency cluster,

respectively. Additionally let E[vl] and E[vh] be the expected number of events in the low

and high frequency clusters, respectively. The working independence method will estimate a

parameter that is weighted on the events, θe. Noting that based on the simulation procedure

the expected number of events in the low frequency group is 1.15 and for the high frequency
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it is 11, this parameter amounts to

θe =
E[vl]× P (low)× n

E[vl]× P (low)× n+ E[vh]× P (high)× n
βl

+
E[vl]× P (low)× n

E[vh]× P (high)× n)× n+ E[vh]× P (high)× n
βh

=
1.15× 0.9× n

1.15× 0.9× n+ 11× 0.1× n
βl +

11× 0.1× n
1.15× 0.9× n+ 11× 0.1× n

βh

where n denotes the number of subjects.

As mentioned earlier, the parameter estimates obtained from the working independence

method will tend to be attenuated towards the coefficient value of the subjects who make

up a majority of the observations. This can be seen in tables across all tables of simulation

outputs. The discrete method is close to the parameter estimate of the working indepen-

dence method, but since each clusters contribution to the estimation procedure is weighted

proportionally by the precision within that cluster, the parameter estimate from this method

is attenuated away from the working independence method towards the coefficient value of

the smaller clusters due to the correlation among the observations within clusters. The WCR

method will compute a parameter estimate that is attenuated towards the coefficient value

of the subjects who make a majority of the subject cohort.

As can be seen, when the coefficient for clusters with high frequency of events and the

coefficient for clusters with low frequency of events differs, the working independence method

obtains parameter estimates that are attenuated to the high frequency clusters coefficient

value and the discrete method’s estimate is close to the working independence method but

its parameter estimate is attenuated away from the working independence method towards

the coefficient value of the low frequency clusters. The WCR method’s estimate is always

attenuated towards the low frequency clusters (as these clusters make up a majority of the

cluster sample size). This is highlighted in the scenario where βl = 0 and βh = 0.693. The

114



βl = βh = log(1) = 0

Mean β̂ Model SE Emp. SE
WCR 0-0.0004 0.0587 0.0585

Discrete 0.0002 0.0351 0.0337
Working Ind. -0.0002 0.0431 0.0425

βl = log(1) = 0 , βh = log(1.5) = 0.4055

Mean β̂ Model SE Emp. SE
WCR 0.0400 0.0586 0.0581

Discrete 0.1792 0.0351 0.0338
Working Ind. 0.2025 0.0461 0.0435

βl = log(1) = 0 , βh = log(2) = 0.6931

Mean β̂ Model SE Emp. SE
WCR 0.0664 0.0586 0.0581

Discrete 0.2952 0.0351 0.0340
Working Ind. 0.3313 0.0506 0.0452

βl = βh = log(1.2) = 0.1823

Mean β̂ Model SE Emp. SE
WCR 0.1823 0.0597 0.0608

Discrete 0.1822 0.0352 0.0443
Working Ind. 0.1800 0.0352 0.0344

βl = log(1.2) = 0.1823 , βh = log(1.5) = 0.4055

Mean β̂ Model SE Emp. SE
WCR 0.2045 0.0602 0.0611

Discrete 0.2394 0.0353 0.0452
Working Ind. 0.2943 0.0458 0.0452

βl = log(1.2) = 0.1823 , βh = log(2) = 0.6931

Mean β̂ Model SE Emp. SE
WCR 0.2302 0.0607 0.017

Discrete 0.3551 0.03535 0.0338
Working Ind. 0.4281 0.0501 0.0481

Table 4.2: Simulation summaries for within cluster resampling (WCR), discrete, and work-
ing independence methods under heavily unbalanced cluster sizes with and without effect
modification across clusters. Sample size n=500 subjects

115



βl = βh = log(1) = 0

Mean β̂ Model SE Emp. SE
WCR 0.0002 0.0185 0.0187

Discrete 0.0002 0.0111 0.0109
Working Ind. 0.0002 0.0136 0.0137

βl = log(1) = 0 , βh = log(1.5) = 0.4055

Mean β̂ Model SE Emp. SE
WCR 0.0405 0.0185 0.0182

Discrete 0.1808 0.0111 0.0106
Working Ind. 0.2041 0.0145 0.0136

βl = log(1) = 0 , βh = log(2) = 0.6931

Mean β̂ Model SE Emp. SE
WCR 0.0664 0.0185 0.0182

Discrete 0.2965 0.0111 0.0104
Working Ind. 0.3325 0.0160 0.0139

βl = βh = log(1.2) = 0.1823

Mean β̂ Model SE Emp. SE
WCR 0.1823 0.0188 0.0188

Discrete 0.1828 0.0111 0.0107
Working Ind. 0.1823 0.0139 0.0138

βl = log(1.2) = 0.1823 , βh = log(1.5) = 0.4055

Mean β̂ Model SE Emp. SE
WCR 0.2040 0.0190 0.0190

Discrete 0.2404 0.0111 0.0107
Working Ind. 0.2950 0.0144 0.0143

βl = log(1.2) = 0.1823 , βh = log(2) = 0.6931

Mean β̂ Model SE Emp. SE
WCR 0.2293 0.0191 0.0188

Discrete 0.3557 0.0112 0.0104
Working Ind. 0.4283 0.0158 0.0146

Table 4.3: Simulation summaries for within cluster resampling (WCR), discrete, and work-
ing independence methods under heavily unbalanced cluster sizes with and without effect
modification across clusters. Sample size n=1000 subjects
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βl = βh = log(1) = 0

Mean β̂ Model SE Emp. SE
WCR 0-0.0004 0.0131 0.0129

Discrete -0.0002 0.0078 0.0072
Working Ind. -0.0002 0.0096 0.0096

βl = log(1) = 0 , βh = log(1.5) = 0.4055

Mean β̂ Model SE Emp. SE
WCR 0.0400 0.0131 0.0129

Discrete 0.1805 0.0078 0.0075
Working Ind. 0.2037 0.0103 0.0097

βl = log(1) = 0 , βh = log(2) = 0.6931

Mean β̂ Model SE Emp. SE
WCR 0.0656 0.0131 0.0128

Discrete 0.2963 0.0078 0.0073
Working Ind. 0.3321 0.0113 0.0098

βl = βh = log(1.2) = 0.1823

Mean β̂ Model SE Emp. SE
WCR 0.1824 0.0133 0.0132

Discrete 0.1822 0.0078 0.0076
Working Ind. 0.1828 0.0098 0.0098

βl = log(1.2) = 0.1823 , βh = log(1.5) = 0.4055

Mean β̂ Model SE Emp. SE
WCR 0.2043 0.0134 0.0132

Discrete 0.2405 0.0078 0.0075
Working Ind. 0.2951 0.0102 0.0100

βl = log(1.2) = 0.1823 , βh = log(2) = 0.6931

Mean β̂ Model SE Emp. SE
WCR 0.2297 0.0135 0.0131

Discrete 0.4286 0.0112 0.0102
Working Ind. 0.3559 0.0078 0.0072

Table 4.4: Simulation summaries for within cluster resampling (WCR), discrete, and work-
ing independence methods under heavily unbalanced cluster sizes with and without effect
modification across clusters. Sample size n=5000 subjects
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working independence and discrete method have mean parameter value of roughly 0.30 while

the WCR method is only about 0.06. When both low and high frequency clusters have the

same true coefficient value, as is the case when βl = βh = 0 and βl = βh = 0.1823, there

is virtually no difference among the methods in terms of parameter estimate. The WCR

method does have higher standard errors because in each outputation the data set used to

compute a parameter estimate is substantially smaller than the whole data of all observations

from all subjects and since each clusters does have correlated covariate values, the correction

term in (4.8) is not large.

In terms of scientific significance of this simulation study, the estimand of interest needs to

be defined prior to conducting the analysis. If there is no effect modification across clusters

((βl = βh), then all methods will obtain similar results, given no evidence of seasonality

trend in the exposure series. But when cluster sizes vary and effect modification is present

(βl 6= βh)), the estimands of the different methods discussed earlier in this section will result

in substantially different estimates.

To illustrate the difference in estimands, take for example the air pollution study that has

been under focus throughout the dissertation, where the predictor of interest is PM2.5 and

the response variable is admission to the hospital for exacerbated asthma. If the aim of the

analysis is to obtain inference in order to create public policy that will improve the overall

health of the target population (by reducing risk of an event with respect to the exposure),

then it reasonable to think that the estimand of interest should be the one that weights each

subject equally. If it is believed each subject equally represents the target population, then

subjects with more events observed should not receive higher weight and have the inference

biased towards there effects. If the goal of the study is to obtain inference in order to create

policy that will address the cost of treating such events, then it is reasonable that the subjects

with higher number of events receive higher weight. Subjects with a large number of events

account for a higher proportion of the costs of treatment (compared to subjects with a low
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number of events), and as a result should have higher weight when obtaining parameter

estimates. In this scenario, it would be more appropriate to choose the discrete or working

independence method to obtain estimates as one would want the inference procedure to be

biased towards subjects with more events observed. Additionally, if seasonality trends are

evident in the exposure series, then the discrete method will obtain biased estimates as a

result of breaking the matched case-control bonds for subjects with numerous events.

In the simulation study, the exposure series was exchangeable, and as a result the discrete

method obtained parameter estimates similar to the working independence method. It will

be seen in the following section that in the applied illustrative example that this is not

the case. Even though the data set was stratified based on season, and each model was

adjusted for relative humidity and temperature, the discrete method obtains estimates that

are substantially different from the working independence method. This could be because

of the issue of breaking the bonds for subjects with numerous events or that subjects with

numerous events have highly correlated observations.

4.5 Illustration: Air Pollution Study

The methods discussed up to now are applied to the asthma-related hospital encounters

study discussed in Chapter 1. During the study, n = 7, 751 children made a total of 11,394

visits to the hospital. The number of events across subjects varied from 1 to 17 with 1, 893

children experiencing the event of interest at least twice. The covariates of interest were

recorded at four locations spread across Orange County. Exposure observations contained

daily measurements of the environmental exposure factors of interest. The event of interest

was a asthma-related hospital encounter. Hospital admissions data contain each subjects

date of hospital admission for each visit and the home address zip code, along with subjects

age, sex, insurance status and other socio-economic factors. Given a subject’s date of event
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and their home zip code, they are assigned to the nearest exposure monitoring station,

which is then used to obtain exposures for their case and control values. For each event day,

a referent was selected using the adjusted semi-symmetric bidirectional referent sampling

scheme mentioned in the simulation study.

Vines and Farrington [2001] explored the potential for biased estimates from analyzing case-

crossover data using the conditional logistic likelihood under a binary exposure. They suggest

that the conditional logistic likelihood has the potential to obtain biased estimates unless

there is global exchangeability in the exposure series. This is referring to in part to the

discussion earlier about the issue of breaking the bonds between the matched pairs within

a subject, which is what the discrete method is doing but is not an issue with the other

methods. In the simulation study, the exposure series was exchangeable. With the applied

data, the observations are stratified into the cold and warm seasons. Along with stratifying

the data in terms of season, each model mentioned in this section also controls for relative

humidity and temperature of the same moving average as the predictor of interest. The goal

in doing so is to obtain global exchangeability of exposures within each stratified dataset.

Additionally, it is worth noting that previous environmental exposure studies suggests that

the effect of an environmental exposure can vary across season (Delfino et al. [2014]). The

cold season is defined as containing events that occurred between the months of November

to April, and the warm season is defined as containing events that occurred between the

months of May to October.

In the following illustrative examples, all odds ratios are computed for an interquartile change

in exposure (comparing the odds of event going from the bottom 25th percentile of an ex-

posure to the top 75th percentile). Additionally the odds ratio confidence intervals are for

interquartile changes. All estimates are adjusted for temperature and relative humidity of

the same moving average time as the exposure of interest.
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PM2.5 MA7 Est. S.E. Odds Ratio 95% C.I.
WCR 0.0088 0.0030 (1.0416 , 1.2425)
Discrete 0.0083 0.0023 (1.0586 , 1.2118)
Working Independence 0.0123 0.0027 (1.1105 , 1.3015)

Table 4.5: Parameter estimates using cold season data and adjusting for relative humidity
and temperature of the same averaging time as the predictor of interest. PM2.5 IQR of 15.

O3 MA7 Est. S.E. Odds Ratio 95% C.I.
WCR 0.0143 0.0050 (1.0674 , 1.2306)
Discrete 0.0124 0.0037 (1.0775 , 1.3297)
Working Independence 0.0161 0.0045 (1.1113 , 1.4352)

Table 4.6: Parameter estimates using warm season data and adjusting for relative humidity
and temperature of the same averaging time as the predictor of interest. O3 IQR of 14.5.

PM2.5 MA7 Est. S.E. Odds Ratio 95% C.I.
WCR 0.0043 0.0040 (0.9483 , 1.2000)
Discrete 0.0056 0.0030 (0.9223 , 1.2823)
Working Independence 0.0091 0.0036 (1.0312 , 1.2742)

Table 4.7: Parameter estimates using cold season data and only subjects living in zipcodes
with population levels below the median level for Orange county and adjusting for relative
humidity and temperature of the same averaging time as the predictor of interest. PM2.5

IQR of 15.

The results presented in Table 4.5, Table 4.6, and Table 4.7 show that the parameter estimate

and inference of the effect of an exposure on the risk of an event of experiencing exacerbated

asthma differs among the methods mentioned in this chapter. The data stratification used is

mentioned in each table. Focusing on Table 4.5, the estimated odds ratio for an IQR change

in PM2.5 in the cold season for the WCR method is 1.14 while for the working independence

method it is 1.20. This signifies that the working independence method’s estimated increase

in odds for an IQR change in PM2.5 is 43% higher than the estimated increase in odds for

the WCR method (comparing a %14 increase to a %20 increase). Looking at Table 4.6, the

discrete method’s estimate is the smallest of all methods. The discrete method’s estimated

odds ratio for an IQR increase if O3 is 1.19 while for the working independent method it

is 1.26. This implies the working independent method’s estimated increase in odds for an
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IQR change is 26% higher than the increase estimated with the discrete method. Table 4.7

uses data that is further stratified to only subjects living in areas with population levels

below the median level for Orange County (rural areas). Output shows that the working

independence method is the only one that returns a 95% confidence interval for the odds

ratio for an IQR change in PM2.5 in the cold season and among subjects that live below the

median population level that does not contain 1 (thus the other methods would fail to reject

the null hypothesis of equal odds based on a significance level of 5%).

As can be seen, the discrete method yields estimates that are sometimes heavily attenuated

away from the working independence method’s estimates, such as in Table 4.7. This could

be a result of bias caused by breaking the bonds between matched pairs for subjects with

numerous pairs or that observations among subjects with numerous events are highly cor-

related. As a result, this next example will only use the working independence and WCR

method. Since both these methods maintain the matched case-control bond, there is no need

to stratify the data based on season.

PM2.5 MA7 Est. S.E. Odds Ratio 95% C.I.
WCR 0.0045 0.0033 (0.9710,1.1788)
Working Independence 0.0065 0.0030 (1.0079,1.2023)

Table 4.8: Parameter estimates only subjects living in zipcodes below the median income
level adjusting for relative humidity and temperature of the same averaging time as the
predictor of interest. pm2.5 IQR of 15.

Table 4.8 shows output comparing only the working independence method and the WCR

method. The data set represents areas of lower socio-economic status. The inference obtained

will vary substantially between the methods. The WCR estimate is about 30% below that

of the working independence method, and also is not significant at a 5% level.

As mentioned in the simulation section, the scientific significance of these findings is that

careful consideration needs to be taken prior to conducting the analysis on what the estimand

of interest is, and if it is acceptable to break the matched case-control bonds for subjects
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(matched sets) with numerous matched pairs. Since the applied focus is an air exposure

study, and air exposures tend to have a high degree of seasonality trend (even when the data

is stratified based on season, as each season is defined to a 6 month period), the discrete

method can tend to give inaccurate estimates due to the lack of exchangeability of the

exposure series.

Focusing on the working independence method and the within cluster resampling method

(multiple outputation), the researcher must consider what the goal of the study is, and

whether they should weight each subject equally or weight each observation equally. If the

goal of the study is to obtain inference that addresses each subject equally, as would be the

case of wanting to implement policy to reduce risk of an event for the target population,

then it is reasonable to weight each cluster (subject) equally in the estimation procedure.

This would result in using the WCR method. If the goal of the study is to obtain inference

that addresses each event equally, as would be the case of wanting to implement policy to

reduce cost of treatment of events, then it is reasonable to weight each event equally in the

estimation procedure (clusters are weighted proportional to their size). This would result in

using the working independence method.

4.6 Discussion

Many studies that use the case-crossover design have events of interest that can be experi-

enced numerous times. As a result, the number of events across subjects can vary greatly.

Informative cluster size is when the size of a cluster is associated to the risk for the outcome

of interest. Using a study of the effect of air pollution on the risk of asthma related issues

as an example, it could be that the subjects that experience a high number of events have a

higher coefficient value for the effect of the exposure on the risk of an event or have a higher

baseline risk of event. Three existing methods were considered in this chapter that can be
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used to obtain parameter estimates in a case-crossover designed study with heavily unbal-

anced cluster size, and characteristics of each method were highlighted using simulations and

an applied illustrative dataset.

In Chapter 2 it was shown that the appropriate method to obtain estimates in a case-crossover

design with numerous events per subject when one is willing to break the bond between

matched case-control pairs and also account for the correlation among the observations in the

estimation procedure was the discrete method. The discrete method assumes independence

across the subjects, but not within subject. As a result, this method will combine all matched

pairs within subjects to create a single risk set, and proceeds to compare the exposure values

for the events to the entire risk set. When subjects have numerous events, the risk set will

no longer maintain the bond between each matched pair of case-control. By stratifying the

data by season, and adjusting for temperature and relative humidity, the hope is that the

breaking of the bonds of matched pairs within the seasonally stratified data will not result

in a significant bias. The working independence method assumes independence across all

subjects and within subjects, which essentially treats each matched pair as its own cluster.

As a result, matched case-control bonds are maintained. This method will have parameter

estimates that are attenuated substantially to the parameter of the larger clusters, since

these clusters will represent a greater portion of the data being used to obtain estimates. A

within cluster resampling scheme termed multiple outputation aims to alleviate the issue of

informative cluster size by giving each cluster equal weight in the overall marginal parameter

estimate. The details of this method (and how it maintains the bonds between matched case-

control pairs was discussed in Section 4.3.3).

The inference obtained from the study at hand will differ depending on the method used

for analysis. As shown in the simulation study, both the working independence and discrete

methods resulted in marginal parameter estimate that were heavily attenuated towards the

larger clusters true parameter value, with the discrete method having less attenuation than
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the working independence method due to correlated covariates across matched pairs within

the large clusters. The WCR method results in a parameter estimate that was the subject

weighted average of the small clusters coefficient value and the larger clusters coefficient

value, since in each outputation each subject only contributes a single events information to

the sub sampled data being used to obtain parameter estimates. In the illustration, it was

shown that the magnitude of the parameter estimates can vary across methods, with some

methods showing no significance of the odds ratio differing from 1. Since the discrete method

was not always close to the working independence method’s estimate, the belief is that some

subjects had highly correlated observations or that stratifying on season and adjusting for

humidity and temperature did not completely alleviate the issue of breaking the bonds.

Importantly, it is critical to focus on the overall scientific goal of the analysis, which will

dictate whether to obtain a parameter estimate that weights the clusters equally, or to obtain

a parameter estimate that weights the individual observations equally. In epidemiological

studies, many times the aim of the study is to implement new policies that will improve the

overall health of the target population. If that is the case, and if each subject in the study is

believed to equally represent the target population, then one might want to consider using a

subject weighted estimand. If it is thought that the subjects with more events experienced

have a greater representation of the target population than subjects with only a few events

experienced, then an observation weighted estimand is more appropriate. The researchers

must consider, a priori to conducting the analysis, what estimand is of greatest scientific

importance and why.
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4.7 Appendix

We briefly review the result of Williamson et al. [2003] which presents the WCR method in

a WEE framework. First consider the usual generalized estimating equation given by

Uk(β) =
N∑
i=1

∂µi
∂βk

Σ−1i {Yi − µi(β)}

where µi is the vector of means for cluster i, Y i is the vector of outcomes variable for cluster

i and its specified covariance structure is Σi. Estimates for βk , k = 1, 2, ..., p are obtained by

setting these equations to 0 and solving for βk.

Assume 1:1 matching for each event within a subject. In each round of the multiple outpu-

tation procedure, β(q) solves the following equation:

S(q)(β) =
n∑
i=1

mi∑
j=1

Uij(β) ∗ I[(i, j) ∈ rq] = 0

where rq being the set of indices (i,j) sampled in the q-th resampling. In setting of case-

crossover data with 1:1 matching, and without loss of generality assuming the first exposure

in the matched pair is the event exposure and the second be the control exposure:

U ij(β) = x1ij −

2∑
l=1

xlijexp(βxlij)

2∑
l=1

exp(βxlij)

Since the resampling distribution is a discrete uniform distribution with a probability mass

of 1
mi

on each observation within cluster/subject i (P (I[(i, j) ∈ rq]) = 1/mi), the WEE

126



becomes:

SWEE(β) =
n∑
i=1

1

mi

 mi∑
j=1

x1ij −

2∑
l=1

xlijexp(βxlij)

2∑
l=1

exp(βxlij)



As noted earlier, this is the same as weighting the estimating equations for each subject

by the inverse of the number of events they have. If a subject has 5 events, then each

event contributes information with one-fifth the weight of that of a subject who has one

event. Williamson et al. [2003] show that β∞WCR and the WEE estimator are asymptotically

equivalent, and that

√
n(β̂WEE − β)

D→ N(0, Ĥ−1V̂ Ĥ−1)

where Ĥ = 1
n

n∑
i=1

1
mi

mi∑
j=1

∂U ij(β)

∂β
|β=β̂,

and V̂ = 1
n

n∑
i=1

{ 1
mi

mi∑
j=1

Uij(β̂)}{ 1
mi

mi∑
j=1

Uij(β̂)}′ .
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Chapter 5

A Semi-Parametric Bayesian

Hierarchical Model for Analyzing

Matched Case-Control Studies with

Unbalanced Cluster Sizes

5.1 Introduction

The research presented in this chapter will build on the foundation set forth by Sinha et al.

[2004] and Sinha et al. [2005], and present a conclusion to the discussion from the previous

chapters. The discussion up to this point has focused on matched case-control studies, with

specific focus on the case-crossover design. A recap of the discussion thus far follows. In

Chapter 1, the applied study under focus was presented: An air pollution study aimed at

making inference on the effect of environmental exposures on the risk of experiencing exac-

erbated asthma requiring a hospital encounter. Chapter 1 Section 1.1.1 presented statistical
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issues in addressing the goal of the applied study under focus. In Chapter 2, Section 2.3.2,

the methodology used to obtain parameter estimates in a general matched case-control study

was presented. It was shown the conditional logistic likelihood forms the basis of a proper

method to obtain reliable parameter estimates in a matched case-control study. This method

expands a simple logistic model by conditioning on the number of events known to happen

in each matched set (subjects in a case-crossover design). By doing so, the stratum specific

intercept coefficients are factored out of the likelihood. This method proceeds to obtain es-

timates by maximizing the conditional likelihood. Additionally, in Chapter 2, Section 2.3.3,

it was shown that a case-crossover design is an appropriate study design to investigate the

applied study presented in Chapter 1.

The case-crossover design was discussed at length in Chapter 2, Section 2.3.3, and again

reviewed in Chapters 3 and 4. In a case-crossover study, a case subject is also the con-

trol subject. Control exposures are the exposures experienced by the subject a sufficient

amount of time away from the event time, either in the past or future. Details about the

validity of this method depend on the study under focus. How to appropriately choose the

control times in order to obtain unbiased estimating equations was discussed. Chapter 2,

Section 2.4 showed that maximization of the conditional logistic likelihood is accomplished

by maximizing Cox’s partial likelihood on a transformed dataset.

In matched case-control studies in general, it is likely the matched sets contain several

matched pairs. In a case-crossover design, the event of interest can be experienced numerous

times. Chapter 3, Section 3.2.1 showed that numerous pairs in the matched sets in the condi-

tional logistic likelihood is analogous to tied event times within strata in the Cox proportional

hazards partial likelihood. With the foundation laid for the estimation of parameters in a

matched case-control study using the Cox proportional hazards partial likelihood, Chapter

3 continued to discuss the different methods that can be used to obtain parameter estimates

under the scenario of tied event times in the partial likelihood. Issues were highlighted with
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approximation methods and the Kalbfleisch-Prentice method, which assumes a true ordering

of tied event times. It was determined that the discrete method presented by Cox (1972) is

the appropriate method to obtain unbiased parameter estimates when one wants to account

for the correlation among observations in the parameter estimation procedure (i.e. maintain

the clustering of the data). All methods discussed in Chapter 3 assume the willingness to

break the individual matched case-control bonds within each matched set.

Chapter 4 expanded on the scenario presented in Chapter 3 by allowing for varying sizes

of matched sets, and more importantly allowing for effect modification across the clusters.

Keeping the discrete method presented in Chapter 3 as the appropriate method to obtain

parameter estimates while accounting for the correlation within the data in the estimation

procedure, two additional procedures were introduced, the independent method and within

cluster resampling method (termed as the multiple outputation method). The goal of these

methods is to obtain a (marginal) parameter estimate in the scenario of varying cluster sizes

and effect modification across clusters. The issue of the choice of estimand was highlighted

as well as the issue of breaking the bonds between each matched pair of case-controls when

maintaining the clustering of the data. In the discrete method, each subjects matched pairs

will be combined to form a single risk set. If a matched set has numerous matched pairs,

then the risk set will contain numerous cases and their respectively matched controls, but

it will no longer be apparent which control was matched to which case. It was discussed in

Chapter 3, Section 3.2.2 that the method that will account for the clustering of the data in

the estimation procedure will compare the individual event exposures to all exposures in the

risk set. This could lead to biased results if there are trends in the exposure series, as an

event exposure will be compared all exposure values in the risk set, which potentially can

contain exposures from different seasons that were not matched to the event. In air exposure

studies, the scenario of comparing event exposures to exposures from a different season will

arise.
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When the parameter of interest varies across the matched sets, one must consider what

the most scientifically relevant target of inference is. From a case-crossover viewpoint, the

matched sets represent the individual subjects. Within each subject, there is potential to

have numerous matched pairs if the event of interest can be experienced numerous times. If

the estimand weights the individual matched pairs equally across all subjects, then subjects

with a higher frequency of events (and thus more matched pairs) will attenuate the (marginal)

parameter estimate towards the value of their coefficient. If the estimand weights individual

subjects equally, the estimation procedure will result in a (marginal) parameter estimate

that will not give higher weight to the subjects with more events even though they represent

a larger proportion of the set of observations. There is no absolutely correct estimand, but

one must decide which estimand best addresses the study’s goal and inference aims prior to

conducting the analysis.

In this chapter, a solution is proposed to alleviate the issues posed and highlighted in the

previous chapters. By implementing a semi-parametric hierarchical Bayesian model, one will

be able to compute robust estimates across and within the matched sets. In a single model

fit, it can be determined if effect modification is apparent across the subjects. The model

also extends to estimating subject specific effects on the distribution of the exposure, as well

parameters that define the relationship between exposure of interest and other covariates

in the model. These are parameters and effects that are not estimated in the conditional

logistic regression method.

A Dirichlet process (DP) prior is used on the mean of the prior of the stratum specific

effects, as this allows for a flexible class of distributions to be used as the prior for the

stratum specific parameters. Specifically, the specified prior of the subject specific effects

will be Gaussian, and the mean of the prior distribution will have a Dirichlet process prior.

This is called a DP location mixture of normals. DP mixtures (DPM) are countable mixtures

with an infinite number of components and a specific prior on the weights and the component
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specific parameter (Ferguson [1983], Escobar [1994]).

For an appropriate choice of the kernel for the subject specific effects, the DPM model has

support on a large class of distributions (Lo [1984]). This will avoid misspecification of single

parametric form for the prior of the stratum specific effects. If there is effect modification

across stratums, it is reasonable to think the distribution of the stratum specific effects is

a mixture (with several modes). The Dirichlet process prior will also cluster subjects based

on their similar stratum specific effects. This will allow for borrowing of information across

subjects when sampling a mean value for the prior of that cluster. Gibbs sampling will be

implemented to obtain draws from the full conditional distributions of the subject specific

effects (Escobar and West [1995], MacEachern and Muller [1998]).

5.2 Model and Notation

5.2.1 Preliminaries

In this section, notation and relevant quantities needed to derive the likelihood are presented.

Let i = 1, 2, . . . , n, j = 1, 2, . . . ,mi, and l = 1, 2, . . . ,M + 1 (1:M matching), where n is

the number of subjects (or matched sets), mi is the number events (i.e. matched pairs)

for this subject, and l is the index of the lth observation in this subjects matched pair.

Let Xijl be a single exposure of interest with possibly missing values, Dijl represent the

event outcome (0 or 1), and set Zijl to be a 1 by p vector of covariates not of primary

interest (Zijl = (Zijl1, . . . , Zijlp)). Set Si to be the collection of measured and unmeasured

stratification variables for the stratum i. Additionally let δijl be an indicator equal to 0 if

Xijl is missing and 1 otherwise. Without loss of generality, let l = 1 represent the index

of the event observation in each matched pair and l = 2, . . . ,M + 1 be the indices of the

controls.
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First, consider the exposure distribution among the controls belonging to an exponential

family. Namely, consider a model of the form

p(Xijl|Dijl = 0,Zijl, Si) = exp[ξijl{θijlXijl − b(θijl)}+ c(Xijl, ξijl)] , (5.1)

where θijl = γ0i + γ1Zijl and γ1 = (γ11, . . . , γ1p)
T . (5.1) represents the conditional distribu-

tion of the exposure given Dijl = 0, Zijl, and Si, written in a canonical exponential family

form where θijl represents the natural parameter. The varying intercept, γ0i, will capture

the stratum effect on the natural parameter θij. As a result it will capture the stratum effect

on the exposure distribution.

Next, assume a prospective probability of an event of the form of a logistic link:

P (Dijl = 1|Xijl,Zijl, Si) = H(β0i + β1Zijl + β2iXijl)

=
exp(β0i + β1Zijl + β2iXijl)

1 + exp(β0i + β1Zijl + β2iXijl)
. (5.2)

The stratum varying coefficients are β0i and β2i. With the preceding specifications (5.1) and

(5.2), the quantities required to construct the joint likelihood can be derived. The model

structure will be of the form

p(Dijl, Xijl, δijl|Zijl, Si) = p(Xijl|Dijl, δijl,Zijl, Si)

×p(δijl|Dijl,Zijl, Si)× p(Dijl|Zijl, Si),

where p(δijl|Dijl,Zijl, Si) does not depend on any parameters of interest. Additionally, the

missing exposures are assumed to be missing at random, i.e. p(Xijl|Dijl, δijl,Zijl, Si) =

p(Xijl|Dijl,Zijl, Si).

Now to derive the quantities needed to construct the likelihood. The probability of an event

marginalized over X is given by
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p(Dijl = 1|Zijl, Si) =

∫
P (Dij = 1|Xijl,Zijl, Si)p(Xij |Zij, Si)dXij

=

∫
exp[β0i + β1Zijl + β2iXijl]p(Dijl = 0|Xijl,Zijl, Si)

× p(Xijl|Zijl, Si)dXijl

= exp[β0i + β1Zij ]

∫
exp[β2iXijl]p(Dijl = 0, Xijl|Zijl, Si)dXij

= exp[β0i + β1Zijl]

×
∫

exp[β2iXijl]p(Xijl|Dij = 0,Zijl, Si)p(Dijl = 0|Zij, Si)dXijl.

(5.3)

Using (5.3), it then follows that the marginal prospective odds of an event is given by

p(Dijl = 1|Zijl, Si)
p(Dijl = 0|Zijl, Si)

= exp[β0i + β1Zijl]

∫
exp[β2iXijl]p(Xijl|Dijl = 0,Zijl, Si)dXijl

= exp[β0i + β1Zijl]

×
∫

exp[β2iXij ]exp[ξij{θijXij − b(θij)}+ c(Xij , ξij)]dXij

= exp[β0i + β1Zijl]exp[−ξijlb(θijl)]

×
∫

exp[β2iξijlξ
−1
ijlXijl + ξijlθijlXijl + c(Xijl, ξijl)]dXijl.

(5.4)

Letting θ∗ijl = θijl + ξ−1ijl β2i, (5.4) factors into

p(Dijl = 1|Zijl, Si)
p(Dijl = 0|Zijl, Si)

= exp[β0i + β1Zijl]exp[−ξijlb(θijl)]exp[ξijlb(θ
∗
ijl)]

×
∫

exp[ξijl{Xijlθ
∗
ijl − b(θ∗ijl)}+ c(Xijl, ξijl)]dXijl

= exp[β0i + β1Zijl + ξijl{b(θ∗ijl)− b(θijl)}].

(5.5)

Observe that
∫

exp[ξijl{Xijlθ
∗
ijl−b(θ∗ijl)}+c(Xijl, ξijl)]dXijl = 1, since it is a valid probability

density function.

Now it is necessary to derive another needed quantity for the construction of the likelihood,

134



the exposure distribution among cases, p(Xijl|Dijl = 1,Zijl, Si). This is done as follows:

p(Xijl|Dijl = 1,Zijl, Si) =
p(Xijl, Dijl = 1|Zijl, Si)
p(Dijl = 1|Zijl, Si)

=
p(Dijl = 1|Xijl,Zijl, Si)p(Xijl|Zijl, Si)

p(Dijl = 1|Zijl, Si)

=
exp[β0i + β1Zijl + β2iXijl]p(Dijl = 0|Xijl,Zijl, Si)p(Xijl|Zijl, Si)

exp[β0i + β1Zijl + ξijl{b(θ∗ijl)− b(θijl)}]p(Dijl = 0|Zijl, Si)

=
exp[β2iXijl]p(Dijl = 0, Xijl|Zijl, Si)

exp[ξijl{b(θ∗ijl)− b(θijl)}]p(Dijl = 0|Zijl, Si)

=
exp[β2iXijl]p(Dijl = 0|Zijl, Si)p(Xijl|Dijl = 0, ,Zijl, Si)

exp[ξijl{b(θ∗ijl)− b(θijl)}]p(Dijl = 0|Zijl, Si)

=
exp[β2iXijl]exp[ξijl{θijlXijl − b(θijl)}+ c(Xijl, ξijl)]

exp[ξijl{b(θ∗ijl)− b(θijl)}]

= exp[β2iXijl + ξijlθijlXijl − ξijlb(θ∗ijl) + c(Xijl, ξijl)]

= exp[ξijl{θ∗ijlXijl − b(θ∗ijl)}+ c(Xijl, ξijl)],

(5.6)

where again θ∗ijl = θijl + ξ−1ijl β2i. With the quantities specified in (5.1), (5.2), (5.5) and (5.6),

the likelihood can be constructed.

5.2.2 Likelihood

The likelihood presented follows the form of Satten and Carroll [2000]. A joint likelihood

of event status and exposure, p(D,X, δ|Z, S) is derived. This can lead to the needed es-

timates since p(D,X, δ|Z, S) ∝ p(X|D,Z, S)p(D|Z, S), where the right hand side pieces

were derived in the previous section.
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The full likelihood across all subjects and matched pairs will be constructed as:

Lc =
n∏
i=1

mi∏
j=1

Lcij ,

where Lcij is the ith stratums jth matched pair’s contribution to the likelihood (to be shown

shortly). This can be done because conditional on the matching factors and the stratum

specific effects, one can treat the matched pairs within stratums as independent. Therefore,

need only to derive the likelihood contribution for the ith stratum’s jth matched pair. This

is done as follows:

Lcij = p(Dij.,Xij., δij.|Zij.,Si,
M+1∑
l=1

Dijl = 1)

∝ p({Xijl}M+1
l=1 |Zij.,Sij,Dij., δij.)p(Dij.|Zij.,Si,

M+1∑
l=1

Dijl = 1)

= p(Xij1|Zij., Sij , Dij1 = 1, δij1)
M+1∏
l=2

p(Xijl|Zijl,Sij, Dijl = 0, δijl)

×
p(Dij1 = 1|Si, Zij1)

M+1∏
l=2

p(Dijl = 0|Si, Zijl)

M+1∑
l=1

p(Dijl = 1|Sij, Zijl)
M+1∏
k 6=l

p(Dijk = 0|Sij, Zijk)

= p(Xij1|Zij., Sij , Dij1 = 1, δij1)
M+1∏
l=2

p(Xijl|Zijl,Sij, Dijl = 0, δijl)

× p(Dij1 = 1|Si, Zij1)/p(Dij1 = 0|Si, Zijl)
M+1∑
l=1

p(Dijl = 1|Sij, Zijl)/p(Dijl = 0|Sij, Zijk)

.

Using the quantities derived in Section 5.2.1, the likelihood contribution for strata i,

Lcij(β1, β2i,γ1, γ0i), is:
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exp[δij1ξij1{θ∗ij1Xij1 − b(θ∗ij1)}+ δij1c(Xij1, ξij1)]

×
M+1∏
l=2

exp[δijlξijl{θijlXijl − b(θijl)}+ δijlc(Xijl, ξijl)]

×(1 +
M+1∑
l=2

exp[β1(Zijl − Zij1) + ξijl{b(θ∗ijl)− b(θijl)} − ξij1{b(θ∗ij1)− b(θij1)})−1.

(5.7)

The subject specific intercepts β0i have been factored out of the likelihood contributions in

(5.7), but subject specific coefficients β2i and subject specific nuisance parameters γ0i still

remain.

Two specific scenarios are investigated for the distribution of the exposure. The focus is on

a normal distribution for a continuous exposure and a Bernoulli distribution for a binary

exposure. To incorporate different exposure distributions (from an exponential family of

distributions) into the likelihood, one would need to match the probability density (or mass)

function of the exposure to the exponential family form given in (5.1) for the controls and

(5.6) for the cases. Then one would obtain the needed quantities θ, b(θ), ξ and c(X, ξ).

In the binary exposure case, where X ∼ Bernoulli(log( p
1−p) = θ), the probability mass

function is given by

f(Xijl = xijl|Dijl = 0,Zijl, Si) = p
xijl
ijl (1− pijl)1−xijl .

The individual components for the binary exposure in the exponential family form are:
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θijl = log

(
pijl

1− pijl

)
= γ0i + γ1Zijl

b(θijl) = ln(1 + exp(θijl))

ξijl = 1

c(xijl, ξijl) = 0

θ∗ijl = θijl + β2i.

In the continuous exposure case, where X ∼ N(θ, σ2), the probability density function of the

exposure is:

f(Xijl = xijl|Dijl = 0,Zijl, Si) =
1√

2πσ2
exp[− 1

2σ2
(xijl − θijl)2]

The individual components for the continuous exposure, written in exponential family form,

are

θijl = γ0i + γ1Zijl

b(θijl) =
(γ0i + γ1Zijl)

2

2

ξijl =
1

σ2

c(xijl, ξijl) = log(

√
ξijl
2π

)−
x2ijlξijl

2

θ∗ijl = θijl + σ2β2i.

In this section, the model specifications were presented. Conditional on the subject specific

effects and parameters, the likelihood was derived. The subject specific effects (random

effects) are γ0i and β2i, and the fixed parameters are β1,γ1 and in the case of a continu-

ous exposure there is the additional parameter of σ2. The following section will present a

Bayesian semi-parametric model that will be used to obtain estimates.
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5.3 Bayesian Hierarchical Model

A hierarchical model using a Bayesian paradigm is employed to obtain parameter estimates.

Similar to a random effects model, the frequentist approach to obtain estimates would be

to obtain the marginal likelihood to compute marginal parameter estimates and random

effects distribution parameters (Diggle et al. [1994]). This would require specifying a fully

parametric distribution for the random effects. The marginal likelihood would be obtained

by integrating the full augmented data likelihood with respect to this distribution, in order

to factor out the random effects. Estimates would be obtained by maximization of this

marginal likelihood with respect to the parameters. Misspecification of the random effects

distribution can lead to non robust estimation. This is particularly an issue when the random

effects do not arise from a single distribution, but a mixture. Additionally, the integration

can be intensive within non-standard likelihoods (Heagerty [1999]).

The proposed approach to circumvent these issues is to model the random effects as aris-

ing from a non-parametric distribution. This allows for more flexibility than parametric

assumptions and is accomplished by assuming a parametric prior distribution (Gaussian)

for the subject specific random effects and a Dirichlet process prior on the parameters of

this distribution. In doing so, a flexible class of distributions is assumed for the subject

specific coefficients by the fact that the Dirichlet process mixtures allows for a countable

mixture. This approach uses a Dirichlet process as the random mixing distribution for the

Gaussian parameters with an infinite number of components. This was first introduced by

Antoniak [1974] and formalized by Ferguson [1983], Lo [1984] and Escobar [1994]. The idea

is demonstrated and implemented using a Gibbs sampler in Escobar [1994] and Escobar and

West [1995]. Additionally, this approach will allow for the borrowing of information across

subjects by clustering subjects together. The hierarchical model presented in Chapter 2.4.2

highlights the nature of clusters generated by ties among the draws from the discrete prob-

ability measure G.
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The approach proposed here expands on that set forth by Sinha et al. [2005]. The focus

of this work was to create a semi-parametric Bayesian model for the analysis of matched

case-control studies with missing exposures. By modeling the association of the completely

observed covariate Z to the exposure of X (with possible missing values), matched pairs

with missing values for X can still be included in the analysis. This is not the focus of the

research presented here, but is implemented to handle missing values of the exposure in the

illustrated applied examples presented in a later section.

In previous work by Sinha et al. [2005], a fixed value for β2 is assumed across all matched sets.

Additionally, only a single event per matched set is assumed and only a binary exposure case

is investigated. The prior structures in the approach in this chapter also differ from that of

Sinha et al. [2005] in which the Dirichlet process is placed directly on the γ0i subject specific

effects, which is to say γ0i|G
iid∼ G, G ∼ DP(α,G0). This implies equality of the γ0i’s across

some of the matched sets. In this approach, as mentioned earlier, the Dirichlet process prior

is assumed for the parameters of the γ0i prior distribution’s parameter. This will potentially

allow each matched set to have its own unique exposure distribution, as would be the case

in a case-crossover study where each subject has their own personal exposure monitor (i.e.

no shared exposures across any of the matched sets).

5.3.1 Fixed Effect Parameters

In this section, the prior specifications for the fixed parameters are presented. The full

conditional distributions for the parameters β1, γ1 and in the continuous exposure case σ2

are presented in the appendix. All fixed effect parameters are assumed to be independent of

each other in the prior. The following priors are specified for the fixed effects of the model:
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β1 ∼ N(µβ1 ,Σβ1),

γ1 ∼ N(µγ1 ,Σγ1).

Finally, for the continuous exposure, an inverse gamma prior is specified for σ2: σ2 ∼ IG(a, b).

5.3.2 Random Effect Parameters

The subject specific effects in the model are γ0i and β2i, for i = 1, 2, . . . , n. Independent DPs

for the γ0i’s and the β2i’s are specified. To avoid presenting the approach twice, the model

specification for β2i will be presented, noting that the specifications for γ0i is similar. The

hierarchical set up is as follows:

β2i|µβi, σ2
β ∼ N(µβi, σ

2
β)

µβi|G ∼ G

G ∼ DP(α,G0)

G0 ≡ N(µβ0, σ
2
β0)

σ2
β ∼ IG(aβ0, bβ0)

µβ0 ∼ N(µβ00, σ
2
β00)

σ2
β0 ∼ IG(aβ00, bβ00)

αβ ∼ Gamma(aβα, bβα).

(5.8)

The random probability measure G in (5.8) is be constructed via a stick breaking process

(Sethuraman [1994]). In this paper, Sethuraman proved that the stick breaking procedure

he introduces is equivalent to the Dirichlet process set forth by Ferguson [1973] that satisfies
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the Kolmogorov consistency definitions. These points are discussed in Chapter 2, Section

2.4.2. To repeat, G will be constructed as

G ≈
K∑
l=1

πlδµl(·)

µl
iid∼ G0

πl = vl

l−1∏
j=1

(1− vj) for l = 1, 2, . . . , K − 1 and πK = 1−
K−1∑
l=1

πl

vj
iid∼ Beta(1, α) for j = 1, 2, . . . , K − 1.

The full conditional distributions for the π’s and v’s from the stick breaking process, as

well as the full conditional distributions of the parameters σ2
βi, µ0β, σ

2
0β, and αβ are in the

chapter appendix. The Metropolis-Hastings algorithm used to implement the sampling is

also provided in the chapter appendix.

With respect to the applied study under focus throughout the dissertation, it is reasonable

to believe that not all subjects exhibit the same effect of the exposure on the risk of an event

(or have the same exposure distribution). Additionally, it is reasonable to think that not all

subjects are different than one another. As a result, it is possible the subject specific effects

arise from a mixture of distributions (with several modes) as opposed to a single distribution.

Specifying a single parametric prior distribution for the subject specific effects will be an

inefficient approach, as it would have to be a fairly diffuse prior distribution.

By specifying a Dirchlet process prior for the means of the prior distributions of the subject

specific effects, a flexible class of distributions is implied for the prior of the subject specific

effects. Additionally, this approach will allow for the borrowing of information across subjects

by clustering subjects together. The hierarchical model presented below highlights the nature

of clusters generated by ties among the draws from the discrete probability measure G.
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Subjects will be clustered together based on the similarity of their subject specific effect

values at any given iterate. Subjects that belong to same cluster (i.e. have equal values

for their µβi) will pool their information together (i.e. their β2i’s or γ0i’s)) to update the

mean of the prior for this cluster (µβi or µγi). This can be seen in Appendix 5.7.2 with the

derivations of the full conditional distributions of individual subject labels, ci and the cluster

means, µβi.

Observe the stick breaking procedure described is called the truncated DP. In Sethuraman’s

proof of the equivalence of the stick breaking construction to the definition set forth by

Ferguson K = ∞, but in practice K < ∞. How to determine if the value set for K is

too restrictive is as follows. Conduct an initial analysis and record the number of occupied

clusters (number of unique µβi’s) across the MCMC iterates. If the number of occupied

clusters is K across most iterates, then the value for K is too restrictive and would need to

be increased. Note that at most K can only be as large as n.

As an aside, a bivariate approach was also implemented where the stratum specific effects

were specified a bivariate prior. The mean vector comprising of the prior means of γ0i and

β2i was a given a single DP prior (and G0 was a bivariate kernel). This approach gave similar

output with respect to the simulation study and illustrated examples to be presented in the

following sections. Details of this approach are in the Appendix 5.7.5.

5.4 Simulation Study

5.4.1 Data Simulation

The aim of the data simulation is to generate data in which subjects exhibit effect modifica-

tion with respect to the exposure. Additionally, there will be clusters of subject who exhibit
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similar effects. This is implemented by having the subject specific effects of β2i coming about

from a mixture of three normal distributions. This creates three subpopulations of subjects,

with respect to the effect of an exposure on the risk of an event, within the dataset. The

subject specific effects of γ0i will also be generated from a mixture of 3 normals. This is

done to have 3 subpopulations of subjects with respect to their exposure distributions. The

data generation explained below will induce correlation between a given subject’s γ0i and

β2i values. Specifically, the larger the γ0i (indicating a higher mean level of exposures) the

more likely the β2i value will be large.

For each subject, a label cγ was generated from a uniform{1,2,3}. The label indicated which

normal distribution the value for γ0i was drawn from. Based on the label of cγ for a certain

subject, the probability of what the label cβ would be (1,2, or 3) was generated using a

multinomial regression. The label cβ determined which normal the β2i was from. This was

done in order to induce correlation between the γ0i and β2i values.

Given the label for cγ, the probabilities of cβ being 1,2, or 3 are stated as follows:

πi1 = P (cβ = 1|cγ) =
1

1 +
3∑

k=2

exp(ηik)

,

πi2 = P (cβ = 2|cγ) =
exp(ηi2)

1 +
3∑

k=2

exp(ηik)

,

πi3 = P (cβ = 3|cγ) =
exp(ηi3)

1 +
3∑

k=2

exp(ηik)

,

where for k = 2, 3:

ηik = log

(
P (cβ = k|cγ)
P (cβ = 1|cγ)

)
= θ0k + θ1kI(cγ = 1) + θ2kI(cγ = 2) + θ3kI(cγ0 = 3).
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The following values were used for the coefficients in the data generating model:

θ02 = −1.75, θ12 = 1, θ22 = 3 , θ32 = 1.5

θ03 = −2, θ13 = 1, θ23 = 1.5 , θ32 = 2.75

Based on the formulation just described, the simulation of γ0i and β2i were from their re-

spective mixture of normals as follows:

γ0i ∼
1

3
N(µγ1, 0.4

2) +
1

3
N(µγ2, 0.4

2) +
1

3
N(µγ2, 0.4

2),

β2i ∼ πi1N(µβ1, 0.4
2) + πi2N(µβ2, 0.4

2) + πi3N(µβ3, 0.4
2),

where the π’s were given earlier. For γ0i, the means of the normals used for the mixture were

µγ1 = −2, µγ2 = −1, and µγ3 = 0. For the exposure coefficient, two sets of means were used.

One set was µβ1 = 0, µβ2 = 1, and µβ3 = 2 and the other set was µβ1 = 0 , µβ2 = 0.3, and

µβ3 = 0.7. In the simulation study, a single covariate Z was used, however the process can

be easily extended to thee scenario of a multivariate Z. The fixed parameters were set to be

β1 = 1 and two values were used for γ1, 0.05 and 0.3. In the case of a continuous exposure,

σ2 = 1.

The generation scheme described and the values used for the coefficients in the multinomial

probabilities resulted in an induced correlation between the labels cγ and cβ. Given the label

for cγ, the probability that the label cβ will be the same value was higher than the probability

that it would be some other value. Observe that from Section 5.2.1, γ0i can viewed as the

mean exposure level of a subject given covariate Z = 0. This implied that subjects with

lower values for their mean exposure level were more likely to have a lower value of the effect

coefficient (and similarly for higher values of the mean exposure level with having higher

values for the effect coefficient).

145



The expected values of the subject specific effects are as follows. Since cγ ∼ uniform{1, 2, 3}

and µγ ∈ {−2,−1, 0}, the following is obtained

E[γ0i] =
1

3
µγ1 +

1

3
µγ2 +

1

3
µγ3

= −1

(5.9)
For the mean of µβ, iterated expectations are used to obtain

E[β2i] = Ecγ {E[β2i|cγ]}

= Ecγ [π1µβ1 + π2µβ2 + π3µβ3]

=
3∑

h=1

µβhE[πh]

=
3∑

h=1

[
µβh

3∑
j=1

1

3
{πh|cγ = j}

]
(5.10)

In the case where µβ ∈ {0, 0.3, 0.7}, (5.9) is equal to 0.3153. When µβ ∈ {0, 1, 2}, then (5.10)

is equal to 0.9553. These will be used later to compare methods in the simulation study.

Once a subject’s true parameter values are determined, the simulation of the data for this

subject could begin. For the jth event from subject i, the case event exposures and control

event exposures are simulated as follows. Given Si, the observed and unobserved matching

factors that define strata i, and the strata specific effects γ0i and β2i, the events within a

subject are independent of one another. Let mi denote the number of events for a given

subject. To simulate mi events with controls for a subject, a single matched case-control

pair is simulated and this process is repeated mi times. Thus for a subject with 5 events, an

event and controls is simulated, and this is repeated 5 times. Therefore, the j subscript is

suppressed for the derivation of the simulation procedure.

For 1:1 matching corresponding to each of subject i’s events, first simulate two Z values
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in order, Zi1 and Zi2. It will be determined which of these covariates will be for the case

and which will be for the control. Compute the probability that the first Z value (Zi1) will

generate an event by

= p(Di1 = 1|Di1 +Di2 = 1,Zi1, Zi2, Si)

=
p(Di1 = 1, Di2 = 0|Zi1, Zi2, Si)

p(Di1 +Di2 = 1|Zi1, Zi2, Si)

=
p(Di1 = 1|Zi1, Zi2, Si)p(Di2 = 0|Zi1, Zi2, Si)

p(Di1 = 1|Zi1, Zi2, Si)p(Di2 = 0|Zi1, Zi2, Si) + p(Di1 = 0|Zi1, Zi2, Si)p(Di2 = 1|Zi1, Zi2, Si)

=
p(Di1 = 1|Zi1, Si)p(Di2 = 0|Zi2, Si)

p(Di1 = 1|Zi1, Si)p(Di2 = 0|Zi2, Si) + p(Di1 = 0|Zi1, Si)p(Di2 = 1|Zi2, Si)

= (1 + exp[β1(Zi2 − Zi1) + ξi2{b(θ∗i2)− b(θi2)} − ξi1{b(θ∗i1)− b(θi1)}])−1.

One can then simulate a Bernoulli random variable with the foregoing specified probability.

If the simulated value is a 1, then Di1 = 1 and Zi1 is the Z covariate value for the case and

Di2 = 0 with Zi2 the control covariate value. If Di1 is 0, then Di2 = 1 and Zi2 is the Z

covariate for the case and Zi1 is the covariate value for the control.

Once Di1 and Di2 are simulated, the corresponding exposures will be simulated. In the

scenario of a binary exposure, given the case covariate values, simulate the exposure for

the case from a Bernoulli(p) distribution where p =
exp(γ0i+γ1Zil+β2i)

1+exp(γ0i+γ1Zil+β2i)
and for the control

p =
exp(γ0i+γ1Zil)

1+exp(γ0i+γ1Zil)
. That is to say if Di1 = 1, then Xi1 ∼ Bernoulli(p =

exp(γ0i+γ1Zil+β2i)

1+exp(γ0i+γ1Zil+β2i)
)

and if Di1 = 0, then Xi1 ∼ Bernoulli(p =
exp(γ0i+γ1Zil)

1+exp(γ0i+γ1Zil)
). Likewise for Xi2 with the value

for Di2.

In the scenario of a normally distributed exposure, for the case’s X simulate the exposure

from a N(γ0i + γ1Zil + σ2β2i , σ
2) and for the control from N(γ0i + γ1Zil , σ

2). Details of

the simulation procedure for 1 : M matching, where M > 1, are provided in the chapter

appendix.

Two generation schemes for the number of events per subject were considered depending on

whether the exposure was continuous or binary. For the continuous exposure, the number of
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events per subject was sampled from a uniform{5,6,7}, resulting in a mean of 6 events per

subject. For the binary exposure case, the number of events per subject was sampled from

uniform{7,8,9}, resulting in a mean of 8 events per subject. Two different data generating

scenarios were used for the Z covariate. A continuous scenario where Z ∼ N(0, 1) and a

binary case Z ∼ Bernoulli(p = 0.3). This was done to mimic a standardized continuous

covariate and a categorical yes/no covariate, respectively. Within each of these scenarios,

both a continuous exposure and a binary exposure were investigated.

The specifics of each simulation scenario are listed in the respective tables that follow. Each

scenario had a sample size of n = 500 subjects. 500 data sets were simulated and the

posterior means in the BSP case and the means of the estimates of the CLR across the 500

simulations are listed. The true parameter values are in the footnote of each table in the

following section.

5.4.2 Simulation Results

The following pages contain tables of output summaries for the simulation study. The details

of each simulation study are described in the table captions.
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Estimation Method
BSP CLR

Parameter True Value1 Mean2 MSE3 95% PI2 Mean MSE3 95% CI
β1 1.0000 0.9896 0.0020 (0.9000.1.0850) 0.9832 0.0028 (0.8838,1.0825)

β̃2 0.9553 0.9740 0.0020 — 0.7000 0.0686 (0.6317,0.7682)
γ̃0 0.3153 -1.0010 0.0012 — ** ** **
γ1 0.3000 0.3000 0.0003 (0.2686,0.3240) ** ** **
σ2 1.0000 0.9806 0.0008 (0.9435,1.0200) ** ** **
β1 1.0000 0.9915 0.0007 (0.9091,1.0772) 0.9978 0.0017 (0.9066,1.0889)

β̃2 0.9553 0.9746 0.0025 — 0.7221 0.0559 (0.6554,0.7887)
γ̃0 0.3153 -1.0026 0.0012 — ** ** **
γ1 0.0500 0.0492 0.0001 (0.0222,0.0764) ** ** **
σ2 1.000 0.9785 0.0004 (0.9414,1.0155) ** ** **

Table 5.1: Simulation summaries for continuous exposure. µβ ∈ {0, 1, 2}. Covariate Z
simulated as Z ∼ N(0, 1). — for PSB method means no suitable estimate, as a PI is
computed for each subject’s specific effect. ** for CLR method means this parameter is not
estimated in this method.
The first and second set of values differ in the γ1 parameter (the coefficient of Z in the mean
of X).

1 True values for β̃2 and γ̃0 defined to be E(β2i) and E(γ0i) respectively, as derived in (5.9) and (5.10).

2 Probability intervals for the BSP method taken as the mean of the individual PI’s across the 500 simulations.

BSP estimates for the subject specific effects for a given dataset are taken as the mean of the individual

posterior means across all subjects. The overall estimate is taken as the mean of these values across all

simulations.

3 MSE for subject specific effects computed with respect to the truth being that which is described in footnote

1.
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Estimation Method
BSP CLR

Parameter True Value1 Mean2 MSE3 95% PI2 Mean MSE3 95% CI
β1 1.0000 0.9905 0.0053 (0.8489,1.1323) 0.9913 0.0061 (0.8431,1.1394)

β̃2 0.9553 0.9536 0.0021 – 0.7000 0.0665 (0.6388,0.7599)
γ̃0 -1.0000 -1.0003 0.0011 – ** ** **
γ1 0.3000 0.3017 0.0001 (0.2451,0.3566) ** ** **
σ2 1.0000 0.9892 0.0009 (0.9524,1.0273) ** ** **
β1 1.0000 0.9942 0.0068 (0.8602,1.1311) 1.0020 0.0070 (0.8589,1.1451)

β̃2 0.9553 0.9513 0.0022 – 0.7118 0.0604 (0.6516,0.7717)
γ̃0 -1.0000 -1.0004 0.0012 – ** ** **
γ1 0.0500 0.0542 0.0011 (-0.0007,0.1091) ** ** **
σ2 1.0000 0.9903 0.0008 (0.9528,1.0295) ** ** **

Table 5.2: Simulation summaries for continuous exposures. µβ ∈ {0, 1, 2}. Covariate Z
simulated as Z ∼ Bernoulli(p = 0.3). — for PSB method means no suitable estimate, as a
PI is computed for each subject;s specific effect. ** for CLR method means this parameter
is not estimated in this method.
The first and second set of values differ in the γ1 parameter (the coefficient of Z in the mean
of X).

1 True values for β̃2 and γ̃0 defined to be E(β2i) and E(γ0i) respectively, as derived in (5.9) and (5.10).

2 Probability intervals for the BSP method taken as the mean of the individual PI’s across the 500 simulations.

BSP estimates for the subject specific effects for a given dataset are taken as the mean of the individual

posterior means across all subjects. The overall estimate is taken as the mean of these values across all

simulations.

3 MSE for subject specific effects computed with respect to the truth being that which is described in footnote

1.
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Estimation Method
BSP CLR

Parameter True Value1 Mean2 MSE3 95% PI2 Mean MSE3 95% CI
β1 1.0000 0.9907 0.0023 (0.9080,1.0780) 0.9870 0.0023 (0.90154,1.0724)

β̃2 0.3153 0.3296 0.0009 – 0.3092 0.0013 (0.2533,0.3653)
γ̃0 -1.000 -1.0026 0.0012 – ** ** **
γ1 0.3000 0.2973 0.0003 (0.2691,0.3250) ** ** **
σ2 1.0000 0.9672 0.0015 (0.9319,1.0040) ** ** **
β1 1.0000 0.9944 0.0020 (0.9145,1.0779) 0.9960 0.0020 (0.9150,1.0781)

β̃2 0.3153 0.3280 0.0009 – 0.3003 0.0012 (0.2557,0.3700)
γ̃0 -1.000 -1.0017 0.0011 – ** ** **
γ1 0.0500 0.0498 0.0003 (0.0217,0.0768) ** ** **
σ2 1.0000 0.9667 0.0015 (0.9312,1.0030) ** ** **

Table 5.3: Simulation summaries for continuous exposures. µβ ∈ {0, 0.3, 0.7}. Covariate
Z simulated as Z ∼ N(0, 1). — for PSB method means no suitable estimate, as a PI is
computed for each subject’s specific effect. ** for CLR method means this parameter is not
estimated in this method. The first and second set of values differ in the γ1 parameter (the
coefficient of Z in the mean of X).

1 True values for β̃2 and γ̃0 defined to be E(β2i) and E(γ0i) respectively, as derived in (5.9) and (5.10).

2 Probability intervals for the BSP method taken as the mean of the individual PI’s across the 500 simulations.

BSP estimates for the subject specific effects for a given dataset are taken as the mean of the individual

posterior means across all subjects. The overall estimate is taken as the mean of these values across all

simulations.

3 MSE for subject specific effects computed with respect to the truth being that which is described in footnote

1.
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Estimation Method
BSP CLR

Parameter True Value1 Mean2 MSE3 95% PI2 Mean MSE3 95% CI
β1 1.0000 0.9934 0.0037 (0.8661,1.1213) 0.9354 0.0040 (0.8168,1.0540)

β̃2 0.3153 0.3151 0.0006 – 0.3000 0.0013 (0.2456,0.3510)
γ̃0 -1.000 -0.9999 0.0011 – ** ** **
γ1 0.3000 0.3014 0.0010 (0.2445,0.3571) ** ** **
σ2 1.0000 0.9767 0.0011 (0.9408,1.0135) ** ** **

Table 5.4: Simulation summaries for continuous exposures. µβ ∈ {0, 0.3, 0.7}. Covariate Z
simulated as Z ∼ Bernoulli(p = 0.3). — for PSB method means no suitable estimate, as a
PI is computed for each subject’s specific effect. ** for CLR method means this parameter
is not estimated in this method.

1 True values for β̃2 and γ̃0 defined to be E(β2i) and E(γ0i) respectively, as derived in (5.9) and (5.10).

2 Probability intervals for the BSP method taken as the mean of the individual PI’s across the 500 simulations.

BSP estimates for the subject specific effects for a given dataset are taken as the mean of the individual

posterior means across all subjects. The overall estimate is taken as the mean of these values across all

simulations.

3 MSE for subject specific effects computed with respect to the truth being that which is described in footnote

1.
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Estimation Method
BSP CLR

Parameter True Value1 Mean MSE2 95% PI Mean MSE2 95% CI
β1 1.0000 1.0048 0.0003 (0.9890,1.1073) 1.0944 0.0094 (1.0189,1.1698)

β̃2 0.9553 0.9583 0.0015 – 0.9480 0.0040 (0.819,1.0774)
γ̃0 -1.000 -1.0241 0.0010 – ** ** **
γ1 0.3000 0.3029 0.0006 (0.2552,0.3509) ** ** **
β1 1.0000 1.0047 0.0007 (0.9504,1.0599) 0.9858 0.0017 (0.9168,1.0547)

β̃2 0.9553 0.9741 0.0022 – 0.9613 0.0038 (0.8368,1.0857)
γ̃

0
-1.000 -1.0330 0.0012 – ** ** **

γ1 0.0500 0.0495 0.0006 (0.0040,0.0955) ** ** **

Table 5.5: Simulation summaries for binary exposure. µβ ∈ {0, 1, 2}. Covariate Z simulated
as Z ∼ N(0, 1). — for PSB method means no suitable estimate, as a PI is computed for
each subject’s specific effect. ** for CLR method means this parameter is not estimated in
this method.
The first and second set of values differ in the γ1 parameter (the coefficient of Z in the mean
of X).

1 True values for β̃2 and γ̃0 defined to be E(β2i) and E(γ0i) respectively, as derived in (5.9) and (5.10).

2 Probability intervals for the BSP method taken as the mean of the individual PI’s across the 500 simulations.

BSP estimates for the subject specific effects for a given dataset are taken as the mean of the individual

posterior means across all subjects. The overall estimate is taken as the mean of these values across all

simulations.

3 MSE for subject specific effects computed with respect to the truth being that which is described in footnote

1.
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Estimation Method
BSP CLR

Parameter True Value1 Mean MSE2 95% PI Mean MSE2 95% CI
β1 1.0000 1.0088 0.0005 (0.9990,1.1468) 1.0354 0.0090 (0.9840,1.0900)

β̃2 0.3153 0.2982 0.0025 – 0.3326 0.0030 (0.2370,0.4290)
γ̃0 -1.000 -1.0190 0.0010 – ** ** **
γ1 0.3000 0.3068 0.0006 ** ** **
β1 1.0000 1.0137 0.0007 (0.9596,1.0701) 0.9359 0.0011 (0.8904,0.9874)

β̃2 0.3153 0.3000 0.0030 – 0.3300 0.0050 (0.2260,0.4152)
γ̃

0
-1.000 -1.0180 0.0010 – ** ** **

γ1 0.0500 0.0527 0.0006 (0.0078,0.0980) ** ** **

Table 5.6: Simulation summaries for binary exposure. µβ ∈ {0, 0.3, 0.7}. Covariate Z
simulated as Z ∼ N(0, 1). — for PSB method means no suitable estimate, as a PI is
computed for each subject’s specific effect. ** for CLR method means this parameter is not
estimated in this method.
The first and second set of values differ in the γ1 parameter (the coefficient of Z in the mean
of X).

1 True values for β̃2 and γ̃0 defined to be E(β2i) and E(γ0i) respectively, as derived in (5.9) and (5.10).

2 Probability intervals for the BSP method taken as the mean of the individual PI’s across the 500 simulations.

BSP estimates for the subject specific effects for a given dataset are taken as the mean of the individual

posterior means across all subjects. The overall estimate is taken as the mean of these values across all

simulations.

3 MSE for subject specific effects computed with respect to the truth being that which is described in footnote

1.
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Estimation Method
BSP CLR

Parameter True Value1 Mean MSE2 95% PI Mean MSE2 95% CI
β1 1.0000 1.0397 0.0030 (0.9512,1.1294) 1.1668 0.0310 (1.0872,1.2460)

β̃2 0.9553 0.9877 0.0022 – 0.9403 0.0041 (0.8587,1.0280)
γ̃0 -1.000 -1.0419 0.0011 – ** ** **
γ1 0.3000 0.3132 0.0017 (0.2213,0.4043) ** ** **

Table 5.7: Simulation summaries for binary exposure. µβ ∈ {0, 1, 2}. Covariate Z simulated
as Z ∼ Bernoulli(p = 0.3). — for PSB method means no suitable estimate, as a PI is
computed for each subject’s specific effect. ** for CLR method means this parameter is not
estimated in this method.

1 True values for β̃2 and γ̃0 defined to be E(β2i) and E(γ0i) respectively, as derived in (5.9) and (5.10).

2 Probability intervals for the BSP method taken as the mean of the individual PI’s across the 500 simulations.

BSP estimates for the subject specific effects for a given dataset are taken as the mean of the individual

posterior means across all subjects. The overall estimate is taken as the mean of these values across all

simulations.

3 MSE for subject specific effects computed with respect to the truth being that which is described in footnote

1.
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Estimation Method
BSP CLR

Parameter True Value1 Mean MSE2 95% PI Mean MSE2 95% CI
β1 1.0000 1.0685 0.0059 (0.9830,1.1566) 1.1684 0.0300 (1.0090,1.1246)

β̃2 0.3153 0.3000 0.0020 – 0.3263 0.0033 (0.2423,0.4110)
γ̃0 -1.000 -1.0200 0.0011 – ** ** **
γ1 0.3000 0.3129 0.0019 (0.2220,0.4055) ** ** **

Table 5.8: Simulation summaries for binary exposure. µβ ∈ {0, 0.3, 0.7}. Covariate Z
simulated as Z ∼ Bernoulli(p = 0.3). — for PSB method means no suitable estimate, as a
PI is computed for each subject’s specific effect. ** for CLR method means this parameter
is not estimated in this method.

1 True values for β̃2 and γ̃0 defined to be E(β2i) and E(γ0i) respectively, as derived in (5.9) and (5.10).

2 Probability intervals for the BSP method taken as the mean of the individual PI’s across the 500 simulations.

BSP estimates for the subject specific effects for a given dataset are taken as the mean of the individual

posterior means across all subjects. The overall estimate is taken as the mean of these values across all

simulations.

3 MSE for subject specific effects computed with respect to the truth being that which is described in footnote

1.
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Table 5.1 through Table 5.4 contain simulation summaries for the continuous exposure case

and Table 5.5 through Table 5.8 contain summaries for the binary exposure. The frequen-

tist CLR method implemented in this chapter uses the independent likelihood discussed in

Chapter 4.3.2. Across all scenarios, the BSP method performs better than the CLR method

in terms of mean squared error (MSE) on all parameters when comparable (the CLR method

will not obtain estimates for γ1, σ
2 or the γ0i’s). The parameter β1 is the coefficient on the

covariate Z in the prospective probability model of an event. Using a probability model of

the logistic form, it is interpreted as the log odds ratio of comparing the odds of an event with

covariate value Z + 1 to odds of an event with covariate value Z. β2i is the subject specific

coefficient on the exposure in the prospective probability model of an event. Additionally γ1

and γ0i (and in the continuous exposure case also σ2) are factors that model the exposure

distribution within each subject.

The CLR method will not produce estimates of the individual subject effects (β2i) and will

only estimate a single marginal parameter. In order to compare the BSP method to the

CLR method, the true marginal parameter value, β̃2, is defined as the mean of the mixture

of normals the subject specific effects are generated from. The BSP method’s estimate of this

marginal parameter is taken to be the mean of all the subject specific effect’s posterior means.

With respect to obtaining a single marginal parameter, β̃2, the BSP method outperforms

the CLR method across all scenarios.

Although β1 is not the parameter of interest, the BSP method has a lower MSE for it across

all simulation scenarios. Additionally, the BSP method performs fairly well for estimating

γ1 and the γ0i’s (and σ2 in the continuous exposure scenario). The parameter of interest

is β̃2 and that is what will be discussed. In the continuous exposure simulations, when

µβ ∈ {0, 1, 2} the MSE of the BSP method is about 0.0020 while the CLR method’s MSE is

0.0600 (across both scenarios of a Gaussian and binary covariate Z). When the exposure is

continuous and µβ ∈ {0, 0.3, 0.7}, the MSE of BSP is about 0.0008 and for the CLR method
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it is about 0.0013 (across both scenarios of a Gaussian and binary covariate Z). Results

are similar when the exposure is binary. Across both scenarios of a Gaussian and binary

covariate Z, the BSP method results in an MSE of about 0.0020 and the CLR method results

in an MSE of about 0.0040 when µβ ∈ {0, 1, 2}. When µβ ∈ {0, 0.3, 0.7}, the BSP method

has an MSE of roughly 0.0025 while the CLR method has an MSE of roughly 0.0035.

As can be seen the BSP method has lower MSE across all simulation scenarios of exposure

and covariate type. If the goal of the scientific study is to obtain a consistent and unbi-

ased marginal parameter estimate of the effect of an exposure on the risk of an event, while

weighting each subject equally, then the BSP method is the preferred choice over the CLR

approach. The main advantage of the BSP method is that it generates estimates of the

subject specific effects for each subject. This will allow researchers to investigate the poten-

tial presence of effect modification across subjects while also being able to obtain a single

marginal estimate. The mean squared prediction error (MSPE) of the BSP method with

respect to the subject specific effects β2i is computed as the mean of the squared differences

between the true effect value and the posterior mean of the effect produced by the BSP

method, across all subjects. That is to say MSPE= 1
n

n∑
i=1

(β̂2i − β2i)2, where n is the number

of subjects.

When the mixture of normals that the β2i’s are being generated from do not have considerable

overlap, as is the case when µβ ∈ {0, 1, 2}), the BSP method will have an MSPE of about

0.17 (across the different Z generation and γ1 values) for the continuous exposure scenario.

In the binary exposure case, the MSPE is about 0.30 across the different scenarios of Z and

γ1. In the binary exposure case, there is less information about β2i being contributed to the

likelihood among the individual subjects, as is the case when a model estimates the effect of

a single binary exposure on the risk of an event. Figure 5.1 has a representative graph that

plots the posterior means of the β2i’s against the true β2i value for the continuous exposure

scenario and Figure 5.3 for the binary exposure. The line represents the 45-degree line.
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Plotted points are centered about the 45-degree line, indicating a fair degree of accuracy for

estimating the subject specific parameters. Additionally, the distinct grouping moving along

the x-axis shows clustering. The different symbols (circle, square, or triangle) signify which

of the 3 normals the subject specific effect was generated from. Average number of occupied

clusters across iterates was 6 for both the continuous and binary exposure simulations with

a majority of the subjects belonging to 3 clusters.

Observe that the standard deviations of the Gaussian distributions comprising the mixture

from which the subject specific effects are generated from are 0.4. As a result when µβ ∈

{0, 0.3, 0.7}, there is considerable overlap in the densities. In this scenario, the BSP method

will have a MSPE roughly equal to 0.06 when the exposure is continuous and 0.10 when the

exposure is binary. Figure 5.2 has a representative graph that plots the posterior means of

the β2i’s against the true β2i value for the continuous exposure scenario and Figure 5.4 for

the binary exposure case. The average number of occupied clusters across iterates was 4.5,

with a majority of subjects occupying a single cluster. Clustering is not as evident in these

plots due the fact that the normals used to create the mixture that generates the β2i’s have

considerable overlapping densities. The points are still concentrated about the 45-degree

line. A single parametric prior with hyper-priors for the parameters would probably suffice

in this scenario. But prior to conducting an analysis, one does not know if the true subject

specific effect generating distribution is a separable mixture or not. Additionally, Figure 5.5

and Figure 5.6 present graphs which plot the true value of the γoi’s against the posterior

means. These figures indicate a fair degree of accuracy in estimating the individual subject

specific effects of γ0i across all subjects.

When a single parametric prior for the subject specific effects would have sufficed, the Dirich-

let process mixture prior for the subject specific effects will only be slightly less efficient. All

matched sets will tend to create a single cluster, but the probability that a new cluster will

be created is non-zero, and thus throughout MCMC iterations, new clusters will be formed
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causing its members to deviate from the center of the true data generating distribution.

As the number of expected events per matched set (subject) increases, the MSPE will de-

crease. In the continuous case when µβ ∈ {0, 1, 2}, increasing the number of expected events

from 6 to 10 (number of events for each subject sampled according to a uniform{9,10,11})

decreased MPSE from an about 0.17 to 0.11 and in the binary case, going from an expected

number of events per subject of 8 to 14 (sampled from a uniform{13,14,15}) decreased MPSE

from an about 0.30 to 0.25. When µβ ∈ {0, 0.3, 0.7}, increasing the number events per sub-

ject from 6 to 10 in the continuous case resulted in MSPE decreasing from 0.06 to 0.04, and

in the binary exposure case going from 8 to 16 events per subject decreased MSPE from 0.10

to 0.08.
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Figure 5.1: Continuous exposure simulation. µβ2i = {0, 1, 2}. Plot of true β2i against poste-
rior means. The symbol of the plotted point designates which of the Gaussian distributions
the true value was generated from.
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Figure 5.2: Continuous exposure simulation. µβ2i = {0, 0.3, 0.7}. Plot of true β2i against pos-
terior means. The symbol of the plotted point designates which of the Gaussian distributions
the true value was generated from.
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Figure 5.3: Binary exposure simulation. µβ2i = {0, 1, 2}. Plot of true β2i against posterior
means. The symbol of the plotted point designates which of the Gaussian distributions the
true value was generated from.
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Figure 5.4: Binary exposure simulation. µβ2i = {0, 0.3, 0.7}. Plot of true β2i against posterior
means. The symbol of the plotted point designates which of the Gaussian distributions the
true value was generated from.
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Figure 5.5: Continuous exposure simulation. Plot of true γ0i against posterior means. The
symbol of the plotted point designates which of the Gaussian distributions the true value
was generated from.

-3 -2 -1 0 1

-3
-2

-1
0

1

γ posterior means

Tr
ue

 γ
 v

al
ue

s

µ=-2
µ=-1
µ=0

Figure 5.6: Binary exposure simulation. Plot of true γ0i against posterior means. The
symbol of the plotted point designates which of the Gaussian distributions the true value
was generated from.
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Prior parameter values that were used are shown in for the simulation studies are in Appendix

5.7.4. A sensitivity analysis was conducted, and the conclusion was the model was not

sensitive to the prior specifications when prior parameter values were within reason. For the

fixed effect parameters of β1 and γ1, prior values investigated were between -2 and 2 for the

mean of the specified normal prior, and between 3-10 for the variance of the specified normal

prior. By putting a higher variance on the normal priors, a larger space was being explored

in the Metropolis-Hastings sampling, but this resulted in a lower acceptance rate. For the

fixed hyperprior parameters in the DP, the inverse gamma parameter values investigated

were between 1-15 for a and between 1-15 for b. The parameter values investigated for the

prior of α ranged from 1-20 for a and 1-20 for b.

In the scenario of a continuous exposure, the prior on σ2, which was an IG(a, b) was partially

sensitive to prior values. Choosing values for a and b when the conditional variance of X

given Z and D (X|Z,D) is small (i.e. in a standardized case), such as a = 2 and b = 50

(resulting in a prior mean of 50 and a majority of the density between 18.5 and 52), would

cause the chain to be stagnant for multiple iterations across the MCMC draws. A solution

is to conduct a prior summary of the unconditional variance of X and choose parameters for

the inverse gamma prior accordingly.

Chain convergence was assessed using the method proposed by Gelman and Rubin [1992].

This diagnostic method runs multiple chains (10 in this case) whose starting values are

sampled from an over-dispersed distribution. The within chain and across chain variances

are computed. A statistic is created which is the ratio of a weighted sum of the within chain

and across chain variances to the average within chain variances. If this statistic is close to

1, then it is evident that the chains have converged as they would have if the number of

MCMC draws were infinite. All the statistics obtained from the separate simulations used

above returned values very close to 1. Between 50,000-100,000 MCMC samples were taken

for any given dataset, and an autocorrelation summary was used to determine the amount
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of thinning needed (between 5-15 thinning was employed). A burn-in period of 2000 samples

was used.

5.5 Application to the Asthma-Related Hospital En-

counters Data

The BSP method described in this chapter is applied to the hospital admission data obtained

from the air pollution study that has been the focus of the applied examples throughout

the dissertation. A review of this study is in Chapter 1.1. The dataset used here was

restricted to only those subjects with more than 2 observed events given the focus on subject-

specific parameter estimates (781 subjects). This is done to highlight the advantages of

the random effects model presented, and that requires numerous observations from each

cluster/subject. For scaling purposes, the exposure and covariate used were standardized.

Adjustment covariates of relative humidity and temperature were combined to create a single

heat index covariate. The formula to create the heat index based on relative humidity and

temperature is the one set forth by the National Weather Service.

In all models, the coefficient of β1 is the log odds ratio for a unit increase in the heat index

and β2i is for the exposure. Prior information was used to obtain hyper-parameter values

based on previous research by Chang et al. [2009] and Delfino et al. [2014] on similar air

pollution studies. These values are given in the appendix.
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Method ORβ1
2 ORβ̃2

1 γ̃0
1 γ1 σ2

BSP
Mean 0.9638 1.0714 -0.0329 -0.0400 0.8300
S.D. 1.0510 ** ** 0.0198 0.0250
95% PI (0.8724,1.0597) ** ** (-0.0811,-0.0029) (0.7820,0.8794)

CLR
Est. 0.9768 1.0661 — — —
S.E. 1.0511 1.0432 — — —-
95% CI (0.9185,1.0445) (0.9842,1.1136) — — —

Table 5.9: Applied output using exposure of PM2.5 lag 1. Data stratified to subjects in
zipcodes which have the percent of the population living below the poverty line being above
the median of Orange county. — for PSB method means no suitable estimate, as a PI is
computed for each subject’s parameter. ** for CLR method means this parameter is not
estimated in the model.

Method ORβ1
2 ORβ̃2

1 γ̃0
1 γ1 σ2

BSP
Mean 0.9716 1.1264 -0.0509 -0.0407 0.8500
S.D. 1.0653 ** ** 0.0262 0.0320
95% PI (0.8583,1.1042) ** ** (-0.0407,0.0634) (0.7841,0.9087)

Ind.
Est. 0.9910 1.1275 — — —
S.E. 1.0685 1.0618 — — —
95% CI (0.8703,1.1282) (1.0025,1.2682)

Table 5.10: Predictor of interest PM2.5 lag 0, on stratified white non-Hispanics data. — for
PSB method means no suitable estimate, as a PI is computed for each subject’s parameter.
** for CLR method means this parameter is not estimated in the model.

1 β̃2 and γ̃0 estimates for the BSP method computed as the mean of the posterior means of the subject

specific effects across all subjects.

2 β1 represents the effect of the heat index covariate on the risk of an event.

166



Table 5.9 presents estimates output for a model using data from subjects living in zip codes

that have the percent of residents living below the poverty line to be above the median

for Orange county. The exposure is PM2.5 with a lag of 1 day and the covariate is heat

index with a lag of 1 day. This stratified dataset could be viewed as representing a lower

socio-economic demographic. Observe that the BSP and CLR methods used in this chapter

will maintain the matched case-control pair bonds, and as a result it is no longer needed to

stratify the dataset on season.

It can be seen in Table 5.9 that both the BSP and CLR method result in similar estimates for

β1 and β̃2. Similar inferences of the marginal parameter will be obtained using either method.

Based on the simulation results, it is reasonable to think using the BSP method will obtain

more accurate marginal estimates than the CLR method. A strength of the BSP method is

mentioned in the simulation studies. This method can estimate the subject specific effects

across all subjects. Figure 5.7 plots a random sample of subjects 95% probability intervals for

the estimated odds ratio of an event with respect to the exposure (sorted by magnitude of the

posterior mean of β2i). The probability intervals for this model suggest that not all subjects

exhibit the same effect of the exposure on the risk of an event. Across iterates, a majority of

subjects belonged to a single cluster (roughly 80%), but approximately 15% of subjects were

members of another cluster. The posterior mean of the concentration parameter, αβ, of the

DP prior on the prior mean of the β2i’s was 1.75. This suggests that there could possibly be

2 subpopulations within the sample with regards to the effect of the exposure on the risk of

an event.

Table 5.10 presents another example. The dataset used in this example contains only subjects

who identify themselves as being white non-Hispanics. As with the previous example, both

the BSP method and CLR method will result in similar marginal parameter estimates. Figure

5.8 displays a random sample of subjects 95% probability intervals for the estimated odds

ratio of an event with respect to the exposure (sorted by magnitude of the posterior mean
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of β2i). Similar to the previous example, this plot suggests that the effect of the exposure

on the risk of an event is not constant across subjects. Across iterates, 75% of subjects are

clustered together, while %15 of subjects create another cluster. The posterior mean of the

concentration parameter, αβ, of the DP prior on the mean of the β2i’s was 2.5 across the in

this model.

Dendrograms presented in Appendix 5.7.8 highlight the clustering described for the two il-

lustrated examples presented. A dendrogram is a branching diagram that represents the

relationships of similarity among a group of entities, where the relative drop in the dendro-

gram represents the relative reduction in prediction error conditional upon the clustering at

that branch. Both figures show that a majority of subjects are being grouped into 2 clusters.

Across these 2 illustrations, the posterior means of the individual subject effects estimates

are not equal across all subjects. As discussed, there is evidence of clustering occurring

among the subjects, indicating the possibility of effect modification being induced by the

presence of 2 subpopulations of subjects in the sample. Additionally some subjects have

some credible intervals completely above 0 while others don’t. The scientific significance

of this illustration is that obtaining a single marginal parameter will implicitly assume a

constant effect of the exposure on the risk of an event across all subjects (all subjects are

from the same population with respect to the effect). A single marginal parameter will not

accurately address the effect of the exposure on the risk of an event for all subjects. The BSP

method presented in this chapter is shown to alleviate the issue of using a single marginal

parameter to make inference when effect modification is present across subjects.
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PM 25 lag 1: % below poverty above median, 95% PI
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Figure 5.7: Plot of probability intervals of event odds ratios with respect to a change in
pm2.5 lag 1 for randomly selected subjects. Dataset used was stratified to subjects living
in zipcodes that have the percent of residents living below the poverty line being above the
median for Orange county. The y-axis represents the id of the randomly selected subjects.
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PM25 l0: Whites, 95% PI
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Figure 5.8: Plot of probability intervals of event odds ratios with respect to a change in
pm2.5 lag 0 for randomly selected subjects. Dataset used was stratified to subjects who are
white non-Hispanics. The y-axis represents the id of the randomly selected subjects.
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5.6 Discussion

In matched case-control studies, it is often reasonable to hypothesize effect modification

across matched sets (subjects in the case-crossover design). In such a scenario, a single

marginal parameter estimated in the analysis will not universally address all the matched

sets (subjects). It was shown in Chapter 4 that if the matched set sizes differ and it is no

longer acceptable to break the individual matched case-control pair bonds, then researchers

must decide on the estimand of interest prior to conducting the analysis. Depending on the

estimand chosen, the estimation procedure will assign equal weight to the matched sets or

equal weight to the individual matched pairs. When there is effect modification across the

matched sets, the two weighting schemes will result in substantially different estimates being

obtained.

An inefficient approach would be to conduct an analysis for each subject. This would result

in each subject specific parameter to be estimated with only a few observations. The ideal

approach would obtain estimates of the subject specific coefficients for each subject, and

additionally would group similar subjects with respect to their effect of exposure on risk of

event (i.e. the coefficient value). This would allow for clustering of subjects and borrowing of

information across similar subjects. In a likelihood maximization approach, a fully specified

parametric distribution would need to be specified for the subject specific effects (random

effects). The augmented data likelihood would then have to be marginalized over the random

effects (by numerical integration) to obtain estimates for the fixed effects in the model, as well

as the parameters that specify the distribution of the random effects. Misspecification of the

specified distribution will lead to non-robust estimates, and also the numerical integration

can be intensive when dealing with non-standard likelihood. In this chapter, a Bayesian

semi-parametric hierarchical model (BSP) was proposed to best address these issues. The

BSP method will allow for a flexible class of distribution to be the prior of the subject specific

effects.
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A Dirichlet process mixture prior is specified as the prior of the subject specific effects.

By specifying a prior of the form of a Gaussian distribution on the subject specific effects,

and then specifying a Dirichlet process prior on the parameters of this distribution, a Dichlet

process mixture model is specified as the prior of the subject specific effects. It was discussed

in Section ?? that a Dirichlet process prior would be specified for the the parameters of the

normal prior of γ0i and for the normal prior of β2i. The γ0i’s capture the stratum effects on

the exposure distribution, and the β2i’s are the stratum specific coefficients on the exposure

in the prospective probability of an event.

The simulation results presented in Section 5.4.2 highlight that the BSP method has lower

MSE for the marginal parameter estimates over the CLR method across all simulations

settings of exposure type and covariate type. The marginal values for the subject specific

parameters were described in (5.9) and (5.10). An advantage of the BSP method is it will

result in obtaining estimates of the subject specific effects. This will allow researchers to

investigate the presence of effect modification, while being able to obtain a single marginal

estimate (by taking the mean of the individual subject specific effect estimates).

When the mixture of normals that the subject specific effects arise from do not have consider-

able overlapping densities, then the BSP method is able to cluster the subject specific effects

accurately (Figure 5.1 and Figure 5.3). When the means of the normals in the mixture are

not a substantially distant from one another (or the variances of the individual normals is

large) then there is considerable overlap of the densities. In this scenario, it is not apparent

that the density generated is a mixture. The BSP method still results in fairly accurate es-

timates, as shown in Figure 5.2 and Figure 5.4. The illustrative applied examples in section

showed that across subjects, the posterior means of the subject specific effects varied with

similarities between some subjects. The clustering of the subjects across iterations suggest

that the sample of subjects are arising from two different populations.

In the presence of multicollinearity between covariate and exposure, the BSP method will
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explicitly model this association (through the γ1 parameter). By obtaining estimates for

the stratum specific effects of γ0i, this method will allow for the modeling of the exposure

distribution within each strata. Additionally since the BSP method discussed in this chapter

does not break the bonds, it has the added advantage of not needing to stratify the air

pollution data based on season.

In the case of a single distribution generating the random effects, the BSP method will

only be slightly less efficient than a full parametric Bayesian model. Prior to conducting an

analysis, one cannot be certain if a single parametric distribution can suffice for a prior of

the subject specific effects. The only loss in efficiency with the Dirichlet process prior is that

across the MCMC iterations, there is a small probability that some subjects will be moved

out of the cluster. In general, a majority of the subjects will belong to a single cluster across

iterations. Therefore, the model proposed in this chapter is a viable method to alleviate the

issues presented in Chapters 3 and 4.
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5.7 Chapter Appendix

5.7.1 Full Conditional Posterior Distributions for Fixed Effect Pa-

rameters

Let f(w|.) denote the probability density function for the random variable w conditional on

all other variables in the model. Additionally for ease of notation, set:

gijl = exp[β1(Zijl − Zij1) + ξijl{b(θ∗ijl)− b(θijl)} − ξij1{b(θ∗ij1)− b(θij1)}].

Observe that θijl is a function of γ0i and γ1. Also, θ∗ijl is a function of γ0i, γ1, and β2i (and in

the continuous exposure case also a function of σ2). In the scenario of a continuous exposure,

ξijl is a function of σ2.

A prior distribution for β1, π(β1), is specified to be a normal distribution: i.e. β1 ∼

N(µβ1 ,Σβ1). The posterior for β1 is:

f(β1|.) ∝ Lc × π(β1)

∝
n∏
i=1

mi∏
j=1

(
1 +

M+1∑
l=2

gijl

)−1
exp

[
−1

2
(β1 − µβ1)

′
Σ−1β1 (β1 − µβ1)

]
.

The prior distribution for γ1, π(γ1), is specified to be a normal distribution: i.e. γ1 ∼

N(µγ1 ,Σγ1). The posterior for γ1 is:
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f(γ1q|.) ∝ Lc × π(γ1)

∝ exp

[
n∑
i=1

mi∑
j=1

ξij1{θij1Xij1 − b(θ∗ij1)}

]
exp

[
n∑
i=1

mi∑
j=1

M+1∑
l=1

ξijl{θijlXijl − b(θ∗ijl)}

]

×
n∏
i=1

mi∏
j=1

(
1 +

M+1∑
l=2

gijl

)−1
exp

[
−1

2
(γ1 − µγ1)

′
Σ−1γ1 (γ1 − µγ1)

]
.

For the continuous exposure models only, there is also the parameter σ2. Specify a prior

distribution for σ2, π(σ2), to be an inverse gamma: i.e. σ2 ∼ IG(a, b). The posterior for σ2

is:

f(σ2|.) ∝ Lc × π(σ2)

∝
n∏
i=1

mi∏
j=1

exp

[
1

σ2

{
(θij1 + σ2β2i)Xij1 −

1

2
(θij1 + σ2β2i)

2

}]

×
n∏
i=1

mi∏
j=1

M+1∏
l=2

exp

[
1

σ2

{
θijlXijl −

θ2ijl
2

}]
exp

(
− b

σ2
)(σ2

)( n∑
i=1

mi

)
(−n+nM2 )−a−1

.

5.7.2 Full Conditional Posterior Distributions in the Dirichlet Pro-

cess

Let ci be the cluster indicator for i (ci ∈ {1, 2, . . . , K}) and let nj be the number of ci’s equal

to j (j = 1, 2, . . . , K).

Let n =
∑
j

nj and n# be the number of unique ci’s. Let µ = (µ1, . . . , µK) and cU be the set

of unique ci’s. Again, let f(w|.) define the density of w given all other variables.

The full conditional posterior for the probability that subject i belongs to cluster l (l =
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1, 2, . . . , K) is:

P (ci = l|.) ∝ P (ci = l|π)f(θi|µci , σ2, ci = l)

∝ πl exp

(
−(θi − µl)2

2σ2

)
.

The full conditional posterior for the sticks are (l = 1, 2, . . . , K):

f(vl|.) ∝ f(vl|α)P (c|vl)

∝ v1−1l (1− vl)α−1vnll (1− vl)
K∑

j=l+1
nj

∝ vnl+1−1
l (1− vl)

K∑
j=l+1

nj+α−1
.

since P (c|v) = πn1
1 . . . πnKK . Thus vl|. ∼ Beta(nl + 1,

K∑
j=l+1

nj + α).

f(µl|.) ∝ f(µl|µ0, σ
2
0)f(θ|c, µl, σ2)

∝ exp

[
−(µl − µ0)

2

2σ2
0

] ∏
i:ci=l

exp

[
−(θi − µl)2

2σ2

]
.

Thus µl|. ∼ Normal

(
( nl
σ2 + 1

σ2
0
)−1

[ ∑
i:ci=1

θi

σ2 + µ0
σ2
0

]
, ( nl
σ2 + 1

σ2
0
)−1

)
.

f(σ2
θ |.) ∝ f(σ2

θ |a0, b0)f(θ|µ, σ2
θ)

∝ (σ2
θ)
−(a0+1)exp

(
−b0
σ2
θ

)
(σ2

θ)
−n
2 exp[− 1

σ2
θ

n∑
i=1

(θi − µci)2.

Therefore σ2
θ |. ∼ IG(a0 + n

2
, 1
2

n∑
i=1

(θi − µci)2 + b0).

f(σ2
0|.) ∝ f(σ2

0|a00, b00)f(µ|σ2
0, µ0, c)

∝ (σ2
0)−(a00+1)exp

(
−b00
σ2
0

)
(σ2

0)−
n#
2 exp

[
− 1

2σ2
0

∑
l∈cU

(µl − µ0)
2

]
.
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Thus σ2
0|. ∼ IG(a00 +

n#

2
, 1
2

∑
l∈cU

(µl − µ0)
2 + b00).

f(µ0|.) ∝ f(µ0|σ2
00, µ00)f(µ|σ2

0, µ0, c)

∝ exp

[
−(µ0 − µ00)2

2σ2
00

]
exp

[
− 1

2σ2
0

∑
l∈cU

(µl − µ0)
2

]
.

Thus µ0|. ∼ Normal

(
(
n#

σ2
0

+ 1
σ2
00

)−1

( ∑
l∈cU

µl

σ2
0

+ µ00
σ2
00

)
, (
n#

σ2
0

+ 1
σ2
00

)−1

)
.

f(α|.) ∝ f(α|aα, bα)f(v|α)

∝ αaα−1exp(−αbα)
K∏
l=1

α(1− vl)α−1.

Thus α|. ∼ G(aα +K,−
K∑
l=1

log(1− vl) + bα).

5.7.3 Sampling Method

Once the parameter values for the hierarchical components are drawn according to Section

5.7.2, a Metropolis-Hastings algorithm is implemented within the Gibbs sampling to draw

values for β1, γ1, and in the continuous case σ2. Let θ denote a general parameter.

The proposal density is set to be the same as the prior. That is, g(θ) = π(θ), where g(.)

represents the proposal distribution and π(.) is the prior distribution.

With a full conditional of the form π(θ|.) ∝ π(θ) ∗ Lc(θ|.), where Lc(θ|.) is the likelihood of

the data evaluated at θ. The acceptance probability for jumping from θ to θ∗ is:

p∗ = π(θ∗|.)/g(θ∗)
π(θ|.)/g(θ) = Lc(θ∗)

Lc(θ)

For the subject specific effects γ0i and β2i, it is the same as for the shared parameters but the

likelihood to accept a single subjects effects proposed value will only involve the likelihood
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contribution for that subject. Thus for a subject specific parameter θi, to jump from θi to

the proposed θ∗i , the acceptance probability is p∗i =
Lci (θ

∗)

Lci (θ)
.

To be specific, the Metropolis-Hastings algorithm to sample from the full conditional distri-

bution of θ is as follows.

1. Draw a proposal draw θ∗ from the proposal distribution g(θ∗).

2. Compute the acceptance probability for accepting the proposal as p = min
(

1, π(θ
∗|.)/g(θ∗)

π(θ|.)/g(θ)

)
.

3. Draw a u ∼ uniform(0, 1) random variable. Accept θ∗ if u < p.

4. Repeat steps 1-3 to reach desired number of samples.

5.7.4 Hyper-parameter Values

The values for the fixed hyper-parameters in the simulation study were as follows. For the

fixed parameters: µβ1 = 0, σ2
β1

= 5, µγ1 = 0, σ2
γ1

= 10, a = 5, and b = 4. For the subject

specific effects β2i and γ0i a single set of values were used for each: a0 = 5, b0 = 4, a00 = 5,

b00 = 4, µ00 = 0, σ2
00 = 5, aα = 5, and bα = 4.

Based on previous research, some prior information was used to choose hyper-parameter

values. Such information stated that exposure parameter coefficients from air pollution

studies are rarely large in magnitude, as they represent a change in the log odds ratio of an

event for a daily exposure. As a result, the variance hyper-priors were slightly smaller than

those in the simulation study. For the applied example, the following were used: µβ1 = 0,

σ2
β1

= 3, µγ1 = 0, σ2
γ1

= 5, a = 5, and b = 4. For the subject specific parameters β2i and γ0i

a single set of values were used for each: a0 = 5, b0 = 4, a00 = 5, b00 = 4, µ00 = 0, σ2
00 = 3,

aα = 5, and bα = 4.
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5.7.5 Bivariate DP

The stratum specific effects were modeled jointly, and identical results were obtained. The

bivariate model is as follows: γ0i

β2i

 |µi,Σ ∼ N(µi,Σ).

Σ ∼ Inv-Wishart(Ψ, v).

µi|G ∼ G.

G ∼ DP(α,G0).

G0 ≡ N(µ0,Σ0).

Σ0 ∼ Inv-Wishart(Λ, w).

µ0 ∼ N(µ00,Σ00).

5.7.6 Simulating 1 : M Data

Again, suppress the j subscript. To generate mi many events for subject i, repeat the

following mi many times. For 1:2 matching let Zi = (Zi1, Zi2, . . . , Zi,M+1) where M = 2.

Compute the probability the first covariate Zi1 generates an event, P (Di1 = 1|Di1 + Di2 +

Di3 = 1,Zi., Si):
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=
p(Di1 = 1, Di2 = 0, Di3 = 0|Zi., Si)
p(Di1 +Di2 +Di3 = 1|Zi., Si)

=
p(Di1 = 1|Zi1, Si) ∗ p(Di2 = 0|Zi2, Si) ∗ p(Di3 = 0|Zi3, Si)

3∑
k=1

P (Dik = 0|Zik, Si)
∏
h6=k

P (Dih = 0|Zih, Si)
.

All the pieces needed are derived in the chapter. Divide numerator and denominator by the

numerator quantity to simplify. Once Di1 is drawn and if it is equal to 1, then stop. All

other Dik such that k 6= 1 will be set to 0. Zi1 will be the covariate value for the case, and

all other Zik, k 6= 1 will be for the controls. If Di1 = 0, then the process continues to draw

Di2. The probability that Di2 = 1 given that Di1 = 0 is as follows:

P (Di2 = 1|
3∑

k=1

Dik = 1, Di1 = 0,Zi., Si) =
P (Di1 = 0, Di2 = 1, Di3 = 0|, Di1 = 0,Zi., Si)

P (Di1 +Di2 +Di3 = 1|, Di1 = 0,Zi, Si)

=
P (Di2 = 0|Zi2, Si)P (Di3 = 0|Zi3, Si)

3∑
k=1

P (Dik = 0|Zik, Si)
∏
h6=k
h6=1

P (Dih = 0|Zih, Si)

Draw a value for Di2 based on the probability above. If Di2 = 1, then stop and set Di3 =

Di1 = 0. Zi2 will be the covariate value for the case, and all other Zik, k 6= 2 will be for

the controls.. If Di3 = 0, then P (Di3) = 1 using the same idea as above. Thus Di3 = 1 and

Di1 = Di2 = 0. Zi3 will be the covariate value for the case, and all other Zik, k 6= 3 will be

for the controls.

Once Dil and Zil are simulated, generate the exposures for each l = 1, 2, 3 accordingly. The

process for simulating 1 : M matching with M > 2 is similar.

5.7.7 Trace Plots
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Figure 5.9: Representative trace plot for β1 for the continuous exposure simulation study.
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Figure 5.10: Representative trace plot for γ1 for the continuous exposure simulation study.
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trace plot for sigma2
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Figure 5.11: Representative trace plot for σ2 for the continuous exposure simulation study.
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Figure 5.12: Representative trace plot for β1 for the binary exposure simulation study.
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Figure 5.13: Representative trace plot for γ1 for the binary exposure simulation study.
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Figure 5.14: Trace plot for β1 for the applied illustration using the dataset comprising of
white non-Hispanic subjects.
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Figure 5.15: Trace plot for γ1 for the applied illustration using the dataset comprising of
white non-Hispanic subjects.
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Figure 5.16: Trace plot for σ2 for the applied illustration using the dataset comprising of
white non-Hispanic subjects.
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trace plot for beta2i
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Figure 5.17: Representative trace plot for a randomly selected subject’s β2i for the applied
illustration using the dataset comprising of white non-Hispanic subjects.
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Figure 5.18: Representative trace plot for a randomly selected subject’s γ0i for the applied
illustration using the dataset comprising of white non-Hispanic subjects.
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5.7.8 Dendograms
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Figure 5.19: Dendogram for the applied illustration using the dataset comprising of subjects
living in zipcodes where the percent living below the poverty line is above the median for
Orange county.
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Chapter 6

Future Work

The work from this dissertation can be summarized as follow. Through an extensive simula-

tion study, it was found that the appropriate method to obtain unbiased parameter estimates

while accounting for the correlation within the dataset in a matched case-control study with

numerous case-control pairs within each matched is the discrete method. When the matched

set sizes vary, and effect modification exists among the matched sets, there is no single true

estimand. It was shown and discussed that in the scenario of varying matched set sizes with

effect modification, different methods used to obtain a marginal parameter estimate have

substantially different estimands. The estimands differ in the weights assigned when com-

puting a marginal parameter estimates. Prior to conducting the analysis, researchers need to

determine if the matched sets should be weighted equally, or if the individual matched pairs

within the sets should be weighted equally. The Bayesian semi-parametric (BSP) model

proposed does not need the estimand to be specified prior to conducting the analysis. This

method provides estimates of the stratum specific effects across all strata (matched sets).

Future work will expand on the BSP method proposed in this dissertation. With regards

to the implementation of the method, to improve convergence time of the MCMC chains
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the Metropolis-Hastings algorithm can be replaced with a Hamiltonian Markov chain. With

regards to the methodology, two extensions could be implemented. The first is to construct

a clustered likelihood to make comparisons with the discrete method discussed in Chapter

3 and Chapter 4. That is, we could construct a likelihood of the form

L =
n∏
i=1

Li,

where

Li ∝ p

(
Di..|Si, Zi..,

mi∑
j=1

M+1∑
l=1

Dijl = t

)
p(Xi..|Si, Zi.., Di..)

and where

p

(
Di..|Si, Zi..,

mi∑
j=1

M+1∑
l=1

Dijl = t

)
=

mi∏
j=1

[
p(Dij1 = 1)

M+1∏
l=2

Dijl = 0)

]
∑

D∗i :
∑
j

∑
l
D∗ijl=mi

[∏
j

∏
l

p(Dijl = D∗ijl)

] .

The second extension will be a primary focus of the future work to be implemented. This

extension will construct a likelihood that is not conditional on the number of events known

to happen in each matched pair. That is to say the likelihood will be constructed using

the quantities p(Dij.,X ij., δij.|Zij.,Si) as opposed to p(Dij.,X ij., δij.|Zij.,Si,
M+1∑
l=1

Dijl = 1).

This will result in a likelihood that will not have the subject specific intercepts, β0i, of

the prospective probability of an events being factored out. These random effects can be

modeled, leading one to be able to make inference about the individual subjects baseline

risk of an event, and to also obtain prediction of the risk of an event given a specific level of

the exposure.
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