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Abstract

Background:Nanosecondpulsedelectric fields (nsPEF)-basedelectroporation is a new

therapy modality potentially synergized with radiation therapy to improve treatment

outcomes. To verify its treatment accuracy intraoperatively, electroacoustic tomog-

raphy (EAT) has been developed to monitor in-vivo electric energy deposition by

detecting ultrasound signals generated by nsPEFs in real-time. However, utility of EAT

is limited by image distortions due to the limited-angle view of ultrasound transducers.

Methods: This study proposed a supervised learning-based workflow to address the

ill-conditioning in EAT reconstruction. Electroacoustic signals were detected by a lin-

ear array and initially reconstructed into EAT images, which were then fed into a deep

learning model for distortion correction. In this study, 56 distinct electroacoustic data

sets from nsPEFs of different intensities and geometries were collected experimen-

tally, avoiding simulation-to-real-world variations. Forty-six data were used for model

training and 10 for testing. The model was trained using supervised learning, enabled

by a customrotating platform to acquire paired full-viewand single-viewsignals for the

same electric field.

Results: The proposed method considerably improved the image quality of linear

array-based EAT, generating pressure maps with accurate and clear structures. Quan-

titatively, the enhanced single-view images achieved a low-intensity error (RMSE:

0.018), high signal-to-noise ratio (PSNR: 35.15), and high structural similarity (SSIM:

0.942) compared to the reference full-view images.

Conclusions: This study represented a pioneering stride in achieving high-quality EAT

using a single linear array in an experimental environment,which improves EAT’s utility

in real-timemonitoring for nsPEF-based electroporation therapy.
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1 INTRODUCTION

The use of electricity for human therapy has a long history, dat-

ing back to the 18th century and continuing to develop over the

centuries.1,2 Currently, electric fields are being utilized in a wide

range of biomedical and clinical applications. Low-intensity electric

fields have shown promise in wound healing,3 tumor treatment,4 and

tissue engineering.5 Meanwhile, high-intensity pulsed electric fields

can induce cell membrane perforation, allowing for electroporation,6,7

a technique utilized in DNA transfection,7,8 drug delivery,7 electro-

chemical therapy,9 and tissue ablation.10 Recently, research has been

conducted on electroporation using nanosecond pulsed electric fields

(nsPEF). This body of work has demonstrated nsPEF’s effects on cell

membranes and intracellular protein structures,11 suggesting their

potential to be synergized with radiation therapy to improve treat-

ment outcomes. Serša et al.12 found that using electroporation to

deliver cisplatin into tumor cells enhances the radiosensitizing effect

of the drug. In addition, a study by Yadollahpour et al.13 demon-

strated that pre-radiotherapy electroporation significantly increases

sensitivity in human intestinal colon cancer HT-29 cells. However, in

these nsPEF-based treatments, preoperative planning is typically done

through numerical simulation,14 and postoperative evaluation is con-

ducted usingMRI, ultrasound, or othermethods.15 It is highly desirable

to have an intraoperative imaging method that can monitor the elec-

tric field energy deposition in real time to verify the precision of the

treatment.

Tomeet this clinical need, we have proposed electroacoustic tomog-

raphy (EAT), an acoustic-based imaging method that can reconstruct

real-time energy distribution of an electric field in deep tissues.16 EAT

was a label-free, radiation-free, and non-invasive imaging method. It

utilized clinically common linear ultrasound probes and can be com-

bined with off-the-shelf ultrasound imaging equipment for dual-mode

hybrid imaging.17,18 This technique revealed the electrical field in tis-

sues by detecting the ultrasound signals arising from the nsPEF energy

absorption in tissues.18 As a result, it required a full-view acquisition

of electroacoustic signals to reconstruct images without distortions.

However, clinically widely used ultrasound detectors, such as linear or

convex arrays, have limited acquisition angles, which resulted in severe

image distortions and limited EAT’s clinical utilities. Methods to alle-

viate the distortions, such as adjusting the projection angle through

rotation and displacement or utilizing multiple probes for concurrent

imaging, often necessitate supplementary equipment and elevate the

costs, making clinical translation problematic. Thus, there is an urgent

clinical need to develop algorithms to reconstruct high-quality EAT

images from the limited-angle measurement

Essentially, limited-angle image reconstruction is an ill-conditioned

inverse problem. Compressed sensing (CS)-based methods have been

developed to reconstruct under-sampled images by exploiting their

sparsity in certain domains. But they have limited effectiveness in

correcting the significant geometric distortions19–21 seen in linear

array-based EAT. In recent years, deep learning has revolutionized

various image-related tasks.22–28 In particular, it has shown superior

performance in reconstructing images using limited-angle measure-

ments. Huang et al.29 proposed a deep learning model for CT image

reconstruction from limited-angle measurements, and achieved con-

siderably improved root-mean-squared-errors (RMSE). Shen et al.30

demonstrated the feasibility of deep learning to reconstruct computed

tomography (CT) images from a single projection using a patient-

specific strategy.Our previous studies20,31,32 showed the effectiveness

of deep learning in generating high-quality images for limited-angle

cone-beam CT (CBCT), matrix array-based protoacoustic imaging, and

single Compton camera-based prompt gamma imaging.

Considering the advantages of deep learning in restoring volumetric

information from limited-angle acquisitions, we aim to explore its fea-

sibility in enhancing the image quality of linear array-based EAT. In this

study, we developed a modified U-Net33 to correct the distortions in

the single-view EAT images.

For model training, the supervised learning strategy was adopted

due to its clear objective measurement and superior accuracy for pre-

dictive tasks. However, this strategy requires well-labeled data, posing

challenges in many medical image-related applications. Data simula-

tion has been a widely used solution, but it can cause performance

degradation in deep learning models, depending on the simulation-to-

real-world variations. To bridge this gap, in this study, we designed a

custom rotating platform to acquire paired full-view and single-view

signals for the same electric field. The proposed method was trained

and tested using experimental data, further confirming its utility in

real-world applications.

To our knowledge, this is the first time accurate pressure maps are

generated from electroacoustic signals measured by a linear array in

an experimental environment, which considerably improves the EAT’s

clinical utility in the real-timemonitoring of electroporation therapy.

2 METHODS

2.1 Problem formulation

Let x ∈ RI×J be the real-valued limited-angle reconstructed elec-

troacoustic images with dimensions I × J voxels, and y ∈ RI×J be the

corresponding full-view reconstructed images. The task can be formu-

lated as finding an image-enhancing pattern f between the single-view

image x and the corresponding full-view image y so that

f = argmin
f

(‖f(x) − y‖2
2
).

2.2 Deep learning-based EAT image enhancement

Figure 1 shows the overall workflow of the proposed deep learning-

based EAT image enhancement. Single-view images were recon-

structed from the electroacoustic signals measured by a linear array

using the back-projecting algorithm, and were then fed into the deep

learning model to correct the distortions. During training, model’s

weights were optimized by minimizing the dissimilarity between the
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112 JIANG ET AL.

F IGURE 1 Overall workflow for deep learning-enhanced electroacoustic tomography (EAT) using a linear array. (A) is themodel training
process. (B) is model testing process. During training, the single-view imagewas fed into themodel, which was trained to enhance imagematching
with the ground truth full-view image. Loss between the enhanced and the ground truth images was calculated to update themodel weights.
During testing, themodel’s predictionwas compared to the ground truth for evaluation. Themodel was trained and tested using different datasets.

enhanced and the ground truth images. During testing, single-view

images were enhanced by the trained model, and then were compared

to the ground truth images for evaluation. Note that the model was

trained and tested using different datasets.

In this study, the full-view images were reconstructed using elec-

troacoustic signals measured by the linear array at all angles and were

used as the ground truth.

Figure 2 shows the detailed structure of the deep learning model

developed. Specifically, a multi-scale U-Net structure was used for the

image enhancement due to its effectiveness in addressing image fea-

tures. In this study, we modified the original U-Net in several aspects.

First, batch normalization layers were used to normalize the features

extracted by the preceding convolutional layers. This normalization

technique has been well-established in stabilizing and accelerating the

training processwith higher learning rates. Second, dropout layerswith

a 0.5 dropout rate were used in the U-bottom to improve the model’s

generalizing abilities and to avoid overfitting. Third, structural similar-

ity was used in the training process to supervise a more accurate and

realistic output.

3 EXPERIMENTAL DESIGN

3.1 Data acquisition

3.1.1 Experimental setup

In this study, a custom nanosecond electrical pulse generator (Vil-

niusTECH, Vilnius, Lithuania) was used to produce electrical pulses

with durations of up to 100 nanoseconds, adjustable amplitudes rang-

ing from 0 to 2 kV, and variable repetition frequencies from 1 Hz to 1

MHz. The electrical pulses were delivered to objects via tungsten elec-

trodes (57400, A&MSystem, USA), whichwere fixed to a rotating plat-

form (FCR100, Newport Corporation, USA) using a 3D-printed holder.

 23987324, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro6.1242 by U

niversity O
f C

alifornia Irvine L
ib, W

iley O
nline L

ibrary on [05/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



JIANG ET AL. 113

F IGURE 2 Structure of the deep learningmodel (modified U-Net) implemented in this study. Themodel takes the single-view image as input,
and generates enhanced image. Numbers in the figure indicate the feature/input/output dimensions

High-voltage pulses were detected by a high-voltage probe (P4250,

Keysight Technologies, USA), and they were subsequently attenu-

ated and fed into a delay generator (DG535, STANFORD RESEARCH,

USA) to output a standard TTL trigger signal for data acquisition. The

ultrasound signals induced by nsPEF were detected by a clinical 128-

channel linear-array ultrasound probe (L12-5L60N, Telemed Medical

Systems, Italy), and were digitized in parallel by a 128-channel data

acquisition (DAQ) system (Photosound, USA). The system has a sam-

pling rate of 40 MHz and a depth of 12 bits to ensure the accuracy

of the acquired electroacoustic signals. The ultrasound transducer was

placed outside the tank to minimize the influence of the high-voltage

pulsed electric field on the piezoelectric ultrasound probe. A hole was

cut in the side of the water tank and covered by a polyethylene film to

enable the coupling of the transducer through the ultrasound gel. The

entire systemwas controlled by aMATLABprogram that automatically

released the electrical pulses, rotated the electrodes, and stored the

ultrasound signals. An illustration of the experimental setup is shown

in Figure 3.

3.1.2 Dataset generation

In this study, 56 data sets were acquired using various arrangements

of electrodes (2 electrodes, various distances and angles relative to

the linear array) with different voltages (1200 – 2400 Volts/cm). Data

sets were acquired with electrodes placed at different distances and

angles relative to the linear array, resulting in substantially different

responses in the detector.

For each data set, we measured signals from 60 equally distributed

views over 360◦ using a linear array. As shown in Figure 3(C), each

single-view image was reconstructed from the signals measured in the

corresponding view using the back-projection algorithm, and the full-

view imagewas reconstructed by rotating and averaging all single-view

images together.

3.2 Model training

The deep learning model was trained on 40 data sets. Another 6 data

sets were used for model validation to monitor the training process

and to determine the best checkpoint. Each data set contained 60

single-view acquisitions from different angles, generating 2400 and

360 samples for the model training and validation, respectively. Note

that a sample refers to an imagepair consistingof the single-view image

and the corresponding full-view image. These data sets were acquired

with an electric field intensity ranging from 1200 to 2000 Volts/cm.

In the training process, single-view images were fed into the deep

learning model, whose weights were optimized by minimizing the loss

between the predicted and the ground truth full-view images. The loss

function was structural dissimilarity.24 The optimizer was “Adam”34

with a learning rate of 0.0007. The batch size was 1.

3.3 Model evaluation

3.3.1 Evaluation of the enhancement performance

Ten data sets (containing 600 samples, acquired with an electric field

intensity of 2400 Volts/cm), excluded from the training and validation

datasets, were used for the model testing. The electroacoustic data

acquisition and reconstruction followed the process described in sec-

tion 3.1. The single-view image was fed into the trained model for

enhancement, and was then compared to the corresponding ground

truth image reconstructed using full-viewmeasurements.

3.3.2 Evaluation metrics

Testing results were evaluated both qualitatively and qualitatively

using RMSE, peak-signal-to-noise-ratio (PSNR), structural similarity

indexmatrix (SSIM), and the iso-pressure line DICE coefficients.
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114 JIANG ET AL.

F IGURE 3 Experiment setup. (A) is an illustration. (B) is a photo of the experiment setup in this study. (C) indicates the full-view image
acquisition and reconstruction. More details can be found in section 3.1.

4 RESULTS

4.1 Pressure map distortion correction

Figure 4 shows a representative case in the testing dataset. The images

are the pressure maps reconstructed in the linear array scanning

plane shown in Figure 3. They reflect the electricity energy deposition

around two electrodes (shown in the center of the dark red regions).

The intensity changes (from red to blue) demonstrate the deposited

energy falloff, which is caused by the electric field falloff. Artifacts

indicated by black arrows are caused by echoes between electrodes.

Due to the single-view measurement of the linear array, pressure
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JIANG ET AL. 115

F IGURE 4 Pressuremap of a representative case in the testing dataset. (A) is the pressuremap reconstructed from a single-view linear array’s
measurement using the back-projected algorithm. (B) is the pressuremap enhanced by the deep learningmodel. (C) is the ground truth pressure
map. Black arrows in (C) indicate the echo artifacts between electrodes. The ‘jet’ color map is used as shown by the color bar in the right.

TABLE 1 Quantitative analysis. Metrics were calculated using all
the testing samples.

Metric

Value

Single View Enhanced

RMSE 0.0821± 0.0038 0.0180± 0.0044

PSNR 21.721± 0.4024 35.155± 2.2468

SSIM 0.3835± 0.2892 0.9420± 0.0551

DICE (10%) 0.3146± 0.0751 0.8022± 0.0949

DICE (20%) 0.2899± 0.0453 0.8565± 0.0399

DICE (30%) 0.3343± 0.0404 0.8497± 0.0524

DICE (40%) 0.3682± 0.0483 0.8111± 0.0705

DICE (50%) 0.4011± 0.0476 0.7625± 0.0876

DICE (60%) 0.4219± 0.0386 0.6962± 0.1109

DICE (70%) 0.4022± 0.0464 0.5886± 0.1321

Intensities of pressure and dose maps are normalized to [0, 1] to calculate

themetrics.

*Numbers in the table are expressed asmean± standard deviation.

map reconstructed by the back-projected algorithm showed severe

distortions, in which the electric field distribution can hardly be distin-

guished from artifacts. The proposed method considerably improved

the imagequality byeffectively correcting thedistortions and restoring

the electricity field distribution. The pressure shape exhibited sub-

stantial concordance with the full-view ground truth. Figure 5 shows

the distribution of the electricity field with isolines, further confirming

the efficacy of the proposed method in restoring structures from the

single-viewmeasurements.

Table 1 shows the quantitative metrics of the pressures enhanced

by the proposed method. Results were calculated using all 600 testing

samples. Compared to the conventional back-projected algorithm, the

model-enhanced images showed substantially lower intensity errors

(indicated by lower RMSE), higher SNR (indicated by higher PSNR),

higher structural similarity (indicated by higher SSIM), and higher

structural shape accuracy (indicated by higher DICEs). Results showed

high agreement between the enhanced and the full-view reconstruc-

tions. These quantitative results further confirmed the effectiveness

of the deep learning model in restoring image information from the

single-viewmeasurements.

4.2 Runtime

The proposed deep learning model was developed using the Keras

framework with the Tensorflow backend. The model training, vali-

dation, and testing were performed on a NVIDIA Titan RTX (24GB

memory) GPU. The enhancement takes 0.016 seconds for an image of

dimensions 256×256.

5 DISCUSSION

In this study, we proposed a deep learning-based method, which is

effective in correcting the distortions in the linear array-based EAT

images. In addition, the entire workflow is fully automatic and highly

efficient.

Similar studies31,35–37 have been conducted to employ deep learn-

ing models to correct the single-view distortions using simulated

acoustic data. Despite the encouraging results, their performance can

be compromised in an experimental environment. To bridge the gap

between simulation and experiments, in this study, we fully trained the

deep learningmodel using experimental data in a supervisedmethod. A

major challenge for this training strategy is to acquire the paired single-

view and full-view reconstruction of the same electric field, for which

we designed a rotating platform to enable full-view acquisition using

a linear array. Data acquisition can be time-consuming during model

training. However, once the model is trained, it can be used to enhance

EAT images measured by a linear array from a single view in nearly

real-time.

Due to the limitation of devices in our lab, the applied electric

field intensity is lower than typical electroporation treatment. Results

indicated that the model trained using lower voltages (1200 - 2000

Volts/cm) was able to accurately enhance single-view EAT at higher

voltages (2400 Volts/cm), demonstrating the method’s generalizability

across voltages.
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116 JIANG ET AL.

F IGURE 5 (1-10) are the images within corresponding value ranges for (A) back-projected linear-array reconstruction, (B) deep
learning-enhanced linear-array reconstruction, and (C) ground truth full-view reconstruction, respectively. The ‘jet’ color map is used for (A-C)
where red indicates high intensities and blue low.

For the first time, we acquired high-quality EAT imaging from a sin-

gle linear array’s measurement in an experimental environment, which

can considerably improve EAT’s clinical utility in real-time treatment

monitoring. However, there are some limitations in this study. First,

electric energy was deposited in a homogeneous medium (water tank

filled with the dilute sodium chloride solution), which did not con-

sider the heterogeneity of human tissues. Besides, relatively simple

electrode arrangements were adopted in this study. Nonetheless, this

is the first pilot study demonstrating the efficacy of deep learning

to predict high-quality, accurate EAT images using only a single-view

image acquired with a linear array in an experimental environment. In

future studies, more complicated experimental setups are warranted

to further evaluate this novel technique.

6 CONCLUSION

This preliminary study demonstrated that the proposed deep learning-

based method is effective and efficient in acquiring high-quality EAT

using a single linear array in an experimental environment. This inno-

vation bridges the gap between simulation and real-world application,

showing great promise to improve EAT’s clinical utility in real-time

monitoring for electroporation treatment.
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