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Chess, Chance and Conspiracy

Mark R. Segal

August 28, 2006

Department of Epidemiology and Biostatistics,
Center for Bioinformatics and Molecular Biostatistics,

University of California, San Francisco, CA 94143-0560, USA.
(e-mail: mark@biostat.ucsf.edu).

Abstract. Chess and chance are seemingly strange bedfellows. Luck and/or randomness have
no apparent role in move selection when the game is played at the highest levels. However,
when competition is at the ultimate level, that of the World Chess Championship (WCC),
chess and conspiracy are not strange bedfellows, there being a long and colorful history
of accusations levied between participants. One such accusation, frequently repeated, was
that all the games in the 1985 WCC (Karpov vs Kasparov) were fixed and pre-arranged
move-by-move. That this claim was advanced by a former World Champion, Bobby Fischer,
argues that it ought be investigated. That the only published, concrete basis for this claim
consists of an observed run of particular moves, allows this investigation to be performed
using probabilistic and statistical methods. In particular, we employ imbedded finite Markov
chains to evaluate run statistic distributions. Further, we demonstrate how both chess
computers and game databases can be brought to bear on the problem.

Key words and phrases: Chess, Databases; Distribution theory; Markov chains; Run statis-
tics; Streaks

“Chess is a game of luck. If you have a good opponent you have bad luck, and
if you have a bad opponent you have good luck.” Jacob Segal (age 7).

1 Introduction

Chess and chance are seemingly strange bedfellows. Many would contend that chess is the
most logical/rational of all games, although such claims often get a rise from Go players. In
any event, luck and/or randomness have no role in move selection when the game is played
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at the highest levels. However, when competition is at the ultimate level, that of the World
Chess Championship (WCC), chess and conspiracy are not strange bedfellows. There is a
long and colorful history of accusations, levied between participants, instances of which are
showcased below. One such accusation, frequently repeated, was that all the games in the
1985 WCC were fixed and pre-arranged move-by-move. That this claim was advanced by a
former World Champion, Robert (Bobby) Fischer, argues that it be investigated. Now, the
logic that Fischer’s chess playing credentials warrant such an investigation has been ques-
tioned (an Editor, Mark van der Laan, Tom Newman; personal communications) in view
of widespread perceptions concerning his diminished faculties (e.g., Krauthammer, 2005).
However, it is worth noting that there are adherents to his allegations amongst the chess-
playing community, including one former World Champion (Spassky, 1999) and one former
womens World Champion (Z. Polgar in Polgar and Shutzman, 1997). Since the only pub-
lished, concrete basis for Fischer’s claim consists of an observed run of particular moves, we
pursue such an investigation using probabilistic and statistical methods.

The paper is organized as follows. In the next subsection we provide a very brief history of the
World Chess Championship post World War II. This provides context to the 1985 match.
Conspiracy elements surrounding the 1978 match are highlighted in order to indicate the
climate in which these contests are conducted. Section 2 focuses on Fischer’s claim regarding
move runs and several approaches for evaluating the significance thereof. In particular,
we employ imbeddings in finite Markov chains that are especially suited for this purpose.
Section 3 describes further analytic possibilities for run assessment that are afforded by
use of powerful, chess-playing software, while Section 4 does likewise with respect to game
databases. Concluding discussion is presented in Section 5.

For the most part, only a very rudimentary understanding of chess is required for this paper.
Rather than give definitions of pieces, legal moves and other rules, we defer such to the many
expository treatments available both in print and online.

1.1 World Chess Championship: History and Controversy

Prior to 1948, the World Chess Championship was arranged at the behest of the reigning
World Champion. This formulation allowed the Champion to select substandard opponents
and avoid leading adversaries. However, the confluence of the death of the titleholder, World
War II, and the emergence of an international governing body, Fédération Internationale des
Échecs (FIDE), led to the abandonment of such matches-by-invitation. In 1948, FIDE
invited 6 leading players to participate in a round-robin tournament for the title of World
Champion. Subsequently, up until 1990, the WCC was organized to run on a three year
cycle. The cycle started with the world’s best chess players being seeded into one or more
interzonal tournaments. The top finishers in the interzonal tournaments qualified for a series
of elimination (“candidates”) matches. The player emerging victorious from the candidates
matches met the reigning World Champion in a title match.
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This period, which notably coincided with the Cold War, was marked by the dominance of
Soviet players. From 1948 up to 1972 there were 9 WCCs, each featuring a Soviet cham-
pion and challenger. However, in 1972 following a stunning surge through the interzonal
tournament and candidates matches, that included an unprecedented run of 19 consecutive
wins, an American, Robert (Bobby) Fischer, emerged as the challenger to titleholder Boris
Spassky. Fischer won convincingly, but forfeited the title to Anatoly Karpov in 1975.

Karpov’s challenger in the 1978 WCC was Victor Korchnoi. Previously, in 1976, Korchnoi
had defected from the Soviet Union and sought political asylum in the Netherlands. The
USSR Chess Federation put pressure on FIDE to exclude Korchnoi from the candidates
matches. FIDE did not buckle and, as fate would have it, Korchnoi defeated three Soviet
players on his way to the title match with Karpov. Shortly before the final candidates
match, Korchnoi was injured in a serious car accident. Then, during the WCC itself, a
remarkable series of claims and counter-claims were exchanged, that showcases the tensions
and controversies surrounding chess at this level. These included (i) Karpov demanding the
dismantling of Korchnoi’s chair to search for “extraneous objects or prohibited devices”, (ii)
Korchnoi wearing mirrored sunglasses to neutralize Karpov’s habit of staring at his opponent,
(iii) Korchnoi accusing Karpov of receiving move advice encoded by the color of the yogurts
that he was given during the game, (iv) Karpov employing a parapsychologist, Dr. Zukhar,
who sat in the audience, fixedly staring at Korchnoi, purportedly to disturb/hypnotize – this
led to intense bickering with regard Zukhar’s seating position and Korchnoi placing his own
hypnotist and two Ananda Marga sect members in the audience.

Ultimately, Karpov (barely) prevailed. He decisively beat Korchnoi in the subsequent 1981
WCC. Karpov’s next challenger for the 1984 WCC was Gary Kasparov, a mere 21 year old,
who had dominated his three candidates matches en route to qualifying. Rules for the 1984
WCC were that the winner would be the first player to achieve 6 victories, there being no
limit on the total number of games played. Karpov started convincingly, leading 4 - 0 after
9 games and 5 - 0 after 27. However, Kasparov won the 32nd game and, following another
long string of draws, won both the 47th and 48th games. While Karpov still led 5 - 3, he
had lost 10 kg (22 lbs), been hospitalized several times and was on the verge of collapse, his
condition compounded by alleged frequent use of stimulants. Amidst great controversy, the
president of FIDE cancelled the match, citing the failing health of the players due to the
record breaking length and duration (6 months) of the contest. Provisions were made for a
rematch to be held in 6 months time, with a fixed number (24) of games, Karpov retaining
his title in the event of a tie. Kasparov won the 1985 rematch, becoming the youngest ever
World Champion. He successfully, albeit narrowly, defended his title in three subsequent
(1986, 1987, 1990) WCC matches against Karpov. It is this body of Karpov vs Kasparov
games, and accusations surrounding them, that is the subject of our further analysis.
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2 Karpov - Kasparov 1985: Move Runs

Fischer has frequently claimed that all games of the 1985 WCC match between Karpov and
Kasparov were rigged and prearranged move-by-move (Fischer, 1996; Polgar and Shutzman,
1997). Notably, at his first press conference following his recent release to Iceland from immi-
gration detention in Japan, Fischer repeated this allegation (ESPN Sportscenter, March 25,
2005). One element of this accusation, indeed the only concrete piece of evidence proferred,
concerns the fourth game and the position following Black’s 20th move as depicted in Figure
1.

Figure 1: Karpov vs Kasparov key position, prior to white’s 21st move: 21. N × e6.

Fischer (1996) asserts:

“Starting on move 21, White makes no less than 18 consecutive moves on the
light squares. Incredible!”

Kasparov and Karpov played a total of 144 games and 5540 moves over the course of their
5 WCCs – we will investigate this incredibility in terms of runs.

Consider n iid Bernoulli trials with success probability p. Let Nn,k be the number of nonover-
lapping success runs of length k and Ln be the length of the longest success run. Although
our primary interest is in probabilities such as Pr(Ln > k), we will sometimes obtain these
by exploiting the equivalence {Ln < k} ⇔ {Nn,k = 0}. The exact probability distributions
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for these events has been historically difficult to compute. Godbole (1990a) established the
formula

Pr(Nn,k = x) =
∑

b(n−kx)/kc≤y≤n−kx

qypn−y

(
y + x

x

) ∑
0≤j≤b(n−kx−y)/kc

(−1)j

(
y + 1

j

)(
n− kx− jk

y

)
.

(1)
While (1) offers computational advantages when contrasted with previously established com-
binatorially derived alternatives (see, for example, Philippou and Makri, 1986), it is nonethe-
less problematic for evaluating the probability of observing a run of length k = 18 in a series
of length n = 5540. However, Feller (1968), exploiting the theory of recurrent events, pro-
vides an approximation that is highly accurate even for moderate n:

Pr(Ln < k) ≈ 1− pθ

k + 1− kθ
· 1

θn+1
(2)

where θ solves θ = 1 + qpkθk+1 and q = 1 − p. Applying (2) to the Karpov – Kasparov
collection gives

Pr(L5540 ≥ 18) ≈ 0.0105.

Now, this p - value is not incredibly incredible, especially since it does not accommodate
Fischer’s implict search for other (run) patterns – presumably a run of moves to dark squares
would also have registered. On the other hand, it allows runs to straddle different games and
this does not reflect Fischer’s likely ascertainment process. Rather, runs would be detected
within games and, accordingly, individual games should constitute the units of analysis.

So, focussing on the key game, we are interested in Pr(L63 ≥ 18), which can be evaluated
using either (1) or (2). These give (with agreement to 6 decimal places)

Pr(L63 ≥ 18) = 0.0000896. (3)

If this p - value is adjusted for multiplicity (number of games = 144) via Bonferroni correction
we obtain an (adjusted) p - value (0.013) that again does not impress as being overly incred-
ible. However, not only is such Bonferroni correction conservative but it also does not reflect
the length structure of the game collection. At the cost of obtaining p - values for the maximal
run within each game we could seek to redress these concerns using, say, step-down Bonferroni
(Dudoit et al., 2003) or false discovery rates (Storey et al., 2004). But, there is a far more fun-
damental concern, affecting the computation of these individual p - values. The results given
in (1) and (2) require that the underlying sequence of Bernoulli trials is iid. Here the corre-
sponding ith random variable can be designated as Xi ≡ I{White′s movei → light square}
and identically distributed equates to pi = Pr(Xi = 1) = p ∀i. All the above p-value cal-
culations have been based on the seemingly natural specification pi = 0.5. We next further
scrutinize this specification.

The prescription pi = 0.5 derives from the fact that 32 of the 64 squares on the chessboard are
light. Indeed, the symmetries and piece and pawn moves are such that, prior to White’s first
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move, there are equal numbers of moves to light and dark squares. However, that situation
does not necessarily persist. For example, following Fischer’s generally preferred first move,
1. e4, we have p2 ≥ 2/3. In studying hitting streaks in baseball Albright (1993) employed so-
called situational covariates to capture variation in underlying probabalities of getting a hit
for a given at bat. These included such features as home field and day/night game. We could
attempt an analogous approach here. Relevant covariates would include presence of opposite
colored bishops, presence of knights, nature of the pawn structure and even advent of a time
control, the latter often inducing repetitions. However, selecting, characterizing and quanti-
fying such positional covariates seems problematic, especially considering the availability of
a simple proxy.

The proxy is based on the set of legal moves. After all, 18 consecutive light square moves
in checkers would be truly incredible, since checkers is played exclusively on dark squares.
Define

pi =
#{legal movesi → light square}

#{legal movesi}
. (4)

Results that follow are not affected by how possible ambiguities surrounding castling are
handled. Here, we exclude castling throughout. At the onset of the run we have p21 = 33/43.
Using this value in either (1) or (2) gives

Pr(L63 ≥ 18|p = p21) = 0.096.

While again this is not remarkable, even prior to multiplicity adjustment, we have imposed
p21 throughout the game. Inspection of figure 2, which plots pi vs i, reveals this to be
an extreme choice. What is needed is a method for evaluating runs with varying success
probabilities.

Fu and Koutras (1994) provide just such a methodology. They show that the distributions
of a variety of runs statistics can be readily evaluated in the non-identically distributed case
by appropriate imbedding in a finite Markov chain. We briefly recapitulate the relevant defi-
nitions and results. For given n, let Γn = {0, 1, . . . , n} be an index set and Ω = {a1, . . . , am}
be a finite state space. A nonnegative, integer-valued random variable Zn can be imbedded
into a finite Markov chain if
(a) there exists a finite Markov chain {Yi : i ∈ Γn = {0, . . . , n}} defined on Ω
(b) there exists a finite partition {Cx, x = 0, 1, . . . , l} on Ω, and
(c) for every x = 0, 1, . . . , l, we have Pr(Zn = x) = Pr(Yn ∈ Cx).

If Zn can be imbedded into a finite Markov chain then, simply as a consequence of the
definition and Chapman-Kolmogorov equations, we have (Theorem 2.1, Fu and Koutras)

Pr(Zn = x) = π0

(
n∏

i=1

Λi

)
U ′(Cx) (5)

where Λi is the m ×m transition probability matrix of the Markov chain, π0 is the initial
distribution, and U(Cx) =

∑
r:ar∈Cx

er for er a 1×m unit vector having 1 at the rth coordinate
and 0 elsewhere.
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Karpov vs Kasparov: Key Game

Figure 2: Probabilities of White making a legal move to a light square. The 18 move run is
indicated by the dashed vertical lines.

The art in utilizing imbedded Markov chains for evaluating run statistic distributions lies in
eliciting suitable Ω and Λi. For our run statistic of interest, Nn,k (recall equivalence to Ln),
Fu and Koutras establish Pr(Nn,k = 0) = π∗0 (

∏n
i=1 Λ∗

i ) U∗′
where

Λ∗
i

(k+1)×(k+1)

=



qi pi 0 0 . . . 0
qi 0 pi 0 . . . 0
qi 0 0 pi . . . 0
...

...
...

...
. . .

...
qi 0 0 0 . . . pi

0 0 0 0 . . . 1


and π∗0 = (1, 0, . . . , 0) and U∗ = (1, . . . , 1, 0) are 1 × (k + 1) vectors. For the key Karpov-
Kasparov game use of this imbedding, with pi as per (4) and Figure 2 gives

Pr(L63 ≥ 18|pi) = 0.0065. (6)
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The densities (smoothed histograms) for L63 under pi and pi = p = 0.5 are presented in
Figure 3. The shift in mass corresponding to (appropriate) use of legal moves is evident and
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Figure 3: Smoothed histograms of Pr(L63 = k). Tail areas to the right of the dashed line at
k = 18 correspond to the p - values reported in (3) and (6).

underscores the differences between the p - values (3) and (6). We note that computation
via imbedded Markov chains is exceedingly fast and easy.

Since (6) is our final p - value proffered for Karpov and Kasparov’s 18 move run of light
square moves, we provide some context re magnitude by citing Short and Wasserman’s (1989)
appraisal of p - values they computed in assessing the “streak-of-streaks” – Joe DiMaggio’s
56 game hitting streak. They report one p - value of 0.0000486 and comment that “the
paucity of this probability is not overwhelming.” Accordingly, we would not characterize the
p - value in (6) as incredible.
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3 Chess Programs: Fritz

In baseball, the batters objective is to hit, the 1919 Chicago Black Sox excepted. In bas-
ketball, where streak shooting has also been statistically evaluated (Larkey et al., 1989;
Tversky and Gilovich, 1989ab), the objective is to make the bucket, with 1978-79 Boston
College (among others) excepted. In chess, if the objective was to move to light squares,
there would be a lot more sacrifice of dark square bishops. So, in order to infer anything
about “signal” or “suspicion” in the moves constituting the run singled out by Fischer, it
is necessary to judge the quality of these moves. If, conditioning on successive positions
within the streak, the best move happens to be to a light square, then what is the mes-
sage/implication? – is it incredible if the World Champion makes 18 good moves in a row?
– was the quality of moves played during the run notably different than the quality of moves
chosen outside the run? Of course, judging quality is tricky – Fischer, Karpov and Kasparov
are all former World Champions and regarded amongst the greatest players of all time – it
would be presumptuous for mere mortals to second guess their evaluations.

So, in order to make such judgements we turn to chess-playing software. Select programs are
now capable of playing competively against the world’s leading grandmasters. For example,
in October, 2002 World Champion Vladimir Kramnik drew an eight game match against
the Fritz program; in early 2003 Kasparov drew a six game match against the Deep Junior
program; and in November 2003 Kasparov drew a four game match against Fritz. Accord-
ingly, we use Fritz to evaluate move quality. While we contend that these results, along with
wider tournament performances and ratings, establish Fritz’s credentials to determine good
moves, it is important to recognize that we are not claiming infallibility or even superiority
of Fritz’s move assessments. Rather, since comparisons will be relative – {in run (R), / not
in run (R̄)} – all that is required is that strong moves are consistently recognized and that
the assessments are unbiased with respect to the move run.

Fritz returns a quantitative score for each move evaluated. Here, the more positive the score,
the better the move. We can’t just compare R and R̄ scores directly since differing score
distributions reflect the decisiveness of the move and so, for example, are correlated with
stage of the game. Thus, for our first outcome, we standardize according to the best move
possible and define ∆i = scorei− bestscorei, where scorei is Fritz’s score for the ith move as
played and bestscorei is the score for the best possible move. So, ∆i ≤ 0 with less negative
values corresponding to better moves. Comparing the ∆’s obtained during the run (nR = 18)
to those not in the run (nR̄ = 45) via a two-sample t-test shows that better moves tended to
be played during the run, but the difference is non-significant (p = 0.27). The same findings
hold if we limit non-run moves to the 9 preceding and 9 succeeding the run (in order to exert
finer control over stage of game), and/or if we work on a relative scale (∆∗

i = ∆i/bestscorei),
and/or if we work with ranks instead of scores.

A more sophisticated approach is afforded by employing the binary outcome that indicates
whether the move played coincided with Fritz’s best move: Yi = I{∆i = 0} and using logistic
regression to attempt to adjust for putative covariates. This also remedies a concern with t-
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test appropriateness in view of the underlying mixed (discrete with mass at zero, continuous)
distribution of ∆. As previously, covariate specification is challenging – what we propose here
is natural but not exhaustive. Playing the best move when it is obvious is less incredible than
when it is obscure. Accordingly, we adjust for positional complexity which, for each move, we
operationalize as complexity(j, k) = score(jth best)/score(kth best) for differing choices of
j > k = 1, . . . , 5. Similarly, playing the best move when the number of possibilities is limited
is also less compelling, so we use possibles = #{legal moves} as another covariate. We fitted
several models of the form logit(Y ) = β run + f(possibles, complexity(j, k)) corresponding
to different specifications for f, j, k. All gave highly null results with respect to tests for β,
the parameter of interest.

Therefore, when considering the quality of moves played, there is nothing distinctive, let
alone incredible, about the run Fischer isolates. However, in addition to relying on Fritz’s
assessments of move quality, these analyses could be criticized on the basis of being under-
powered to detect distinguishing attributes of the run. So, as a final approach, we turn to
repositories of chess games in order to provide broader context for the run.

4 Searching Chess Game Databases

Efron (1971) re-examines Bode’s Law “governing” mean planetary distances to the Sun as
an exemplar of whether an observed sequence of numbers follows a simple rule. He states
that differing analytic approaches would have been employed had measurements on 50 solar
systems been available. So far, our treatment of the significance of the run has been confined
to the key Karpov - Kasparov game in question. However, unlike the planetary system
situation, there are extensive databases of chess games that we can mine in order to appraise
the distinctiveness of the run identified by Fischer. To this end we conduct three structured
searches.

The first was based on the key position itself (1). If this position had occurred in other high
level games, then the ensuing sequence of moves would be potentially informative with regard
the incredulity of the run. Not surprisingly, search of an online database comprising more
than 2 million games (http://www.chesslab.com/), revealed the position to be unique.

The next search is motivated by an important feature of the key position: the presence of
opposite-colored bishops. This is arguably the most important attribute with respect to
generating move runs on either light or dark squares. We used the commercial Chessbase
(http://www.chessbase.com/) Big 2000 Database which, although not as sizable as Chess-
lab (1,327,059 games), possesses more powerful search tools. The following search parameters
were prescribed – in order for a game to be selected it must satisfy all requirements at some
stage:

1. Opposite-colored bishops,
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2. No knights or major pieces,

3. 3-4 pawns,

4. Average Elo rating of players ≥ 2500,

5. Length of game ≥ 80 moves.

In addition to limiting the number of games chosen, these criteria are motivated by the
following considerations. Item 2 eliminates pieces that can move on either colored square;
item 3 balances complexity; item 4 imposes Grandmaster level play. Item 5, which mandates
relatively long games, is motivated by run statistic asymptotics. In particular, if n, k → ∞
such that nqpk → λ then Pr(Nn,k = x) tends to the Poisson probability e−λλx/x! (Feller,
1968; Godbole, 1990b). So, if p is fixed, k = O(log(n)), thereby bestowing a premium on
examining longer games.

The resulting search of Chessbase Big 2000 yielded 11 games having, in chronological order,
the following maximal run lengths: L85 = 21; L109 = 29; L81 = 46; L90 = 10; L92 =
13; L85 = 18; L81 = 17; L86 = 14; L98 = 20; L113 = 9; L94 = 12. Fischer’s identified
Karpov - Kasparov run, with L63 = 18 does not stand out against this collection. Indeed,
if anything is notable, it is the third game with L81 = 46: not only was this game played
at the candidates level (Timman vs Salov, 1988) but, in addition to the cited 46 move run
(played by Black) that attains an appreciably smaller p−value than the Karpov - Kasparov
run (2.24× 10−13), it featured a separate 34 move run (played by White).

For the third and final search we elected to scrutinize the 827 Chessbase Big 2000 games of
Fischer himself. Search item 1 was retained, the restrictions imposed by items 2, 3 and 4
were eliminated and item 5 was relaxed to game lengths ≥ 50 moves. This yielded a total of 5
games. We focus on one of these, Fischer vs Reshevsky, 1957, United States Championship.
In particular, the position arising prior to White’s 34th move is of interest; see Figure 4.
From this position Fischer (White) played 13 consecutive moves to dark squares; this in the
context of a 57 move game with move-by-move probabilities of moving to a light square as
depicted in Figure 5.

We follow the same approach in using imbedded Markov chains to evaluate the significance
of this run, using pi in accordance with (4) and Figure 5, as was employed in Section 2. This
gives

Pr(L57 ≥ 13|pi) = 0.0023. (7)

The punch line is that the p - value in (7) is more extreme than that achieved by the Karpov
- Kasparov run given in (6). Thus, if the latter is “incredible”, what does this imply about
the former? It is of interest to note how the pi fluctuations in the Fischer - Reshevsky game,
as depicted in Figure 5, are such that the probability density for Pr(L57 = k) under pi

from (4) is barely distinguishable from that under pi = 0.5 as illustrated by the smoothed
histograms in Figure 6.
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Figure 4: Fischer vs Reshevsky key position, prior to white’s 34th move: 34. Nd4.

5 Discussion

In their evaluation of coincidences, Diaconis and Mosteller (1989) showcase the roles played
by misperception, multiplicity and the law of truly large numbers. These factors have ar-
guably contributed to Fischer’s overstating the significance of the Karpov - Kasparov move
run. Indeed, misperceptions surrounding the significance of runs arising from random pro-
cesses are purportedly commonplace; see for example Schaeffer et al., (1996) for pedagogic ex-
ercises illustrating this point. These misperceptions are compounded when (implicit) search
for an extreme run is performed and multiplicity considerations are ignored; see Albert
(2005) for some examples from baseball. In addition to seemingly failing to account for
these concerns when assessing run significance Fischer, in expressing incredulity at the Kar-
pov - Kasparov move run, has also assumed a constant “success” probability for each move:
pi = p = 0.5.

Even aside from variation in pi it is clear from (1) or (2) that Pr(Ln ≥ k) depends heavily
on p. This has again been noted in the baseball context (Casella and Berger, 1994) – a more
successful player (team) is likely to have a longer hitting (winning) streak than a less success-
ful player (team). Indeed, Lou (1996) provides an elegant extension to the imbedded Markov
chain approach of Fu and Koutras (1994) that allows for evaluation of joint and conditional
distributions of the number of successes and Ln. Not only does her framework accommodate
varying pi, but it also facilitates testing of between-move dependency. However, application
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Fischer vs Reshevsky, 1957

Figure 5: Probabilities of White making a legal move to a light square. The 13 move run is
indicated by the dashed vertical lines.

of these methods here is problematic owing to difficulties in estimating, or even prescrib-
ing, the requisite transition probabilities. Furthermore, the power curves displayed by Lou
(1996) suggest that in our n = 63 setting we will be hard-pressed to detect between-move
dependencies. Additionally, as noted by Rubin et al., (1990), there are instances where such
conditional analyses are inappropriate. These include situations when there is no intrinsic
interest in the total number of successes, as is the case here where success corresponds to a
move to a light square.

Alternate approaches to appraising the significance, and/or asserting the existence of runs
and streaks have been advanced. In the sports context, Yang (2004) employs Bayesian binary
segmentation to assess whether transitions in success probability are evident. Applying his
methodology to the key Karpov - Kasparov game yields highly null results.

As highlighted by a referee, evaluation of success runs can be highly dependent on (i) the
sample space employed, and (ii) how the success probabilities, pi, are framed. Here, we
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Figure 6: Smoothed histograms of Pr(L57 = k).

have argued that (i) the appropriate unit of analysis is a game, rather than a match or
series of matches, and (ii) allowing variable pi, that at the least reflect the number of legal
moves available, is essential. The resultant achieved significance levels were sufficiently null
(see (6)) that the abovementioned multiplicity corrections (for the number of games in the
Karpov - Kasparov match(es)) were not pursued.

However, in other settings, including two celebrated examples briefly described next, these
considerations can be less clear-cut. In their evaluations of Joe DiMaggio’s 56 game hitting
streak (baseball), Short and Wasserstein (1989) perform various probability calculations that
are readily reproduced using either (1) or (2). What distinguishes the differing calculations
are the alternate sample spaces considered: season, career, history of baseball. And, indeed,
dramatically different results ensue, with no attempt to arbitrate or reconcile between them.
Throughout, they employ constant p based on lifetime batting average. In this case, given the
rich documentation surrounding baseball, it might be possible to improve on this imposition.
This could make recourse either to day-of-game batting average or, more ambitiously, to
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modeling pi based on game specific covariates, akin to Albright (1993). However, as is made
clear by the discussants of that article, such modeling is problematic. Furthermore, despite
the extensive compilation of historical baseball statistics, extracting the requisite game level
data is, at best, a laborious undertaking.

Tversky and Gilovich (1989a) contend that the “hot hand” phenomenon in basketball is a
“cognitive illusion” deriving from misconceptions of the laws of chance. They base this asser-
tion on analyses of data obtained by coding shot attempts from 48 televised NBA games plus
free throw sessions of college players. In an effort at refutation, Larkey, Smith and Kadane
(1989) take issue with the analyses in large part on the basis of sample space considera-
tions. They argue that the unit of analysis should reflect “cognitively manageable chunks”,
capturing temporal proximity, which they operationalize as 20 consecutive shot attempts.
Tversky and Gilovich (1989b) offer a rebuttal that (in part) further refines sample space
considerations by accommodating individual playing times. Here a definitive characteriza-
tion of sample space seems daunting. More challenging still is capturing variations in pi,
despite the widely acknowledged need to do so. This derives from the need to accommodate
the hard-to-quantify notion of defensive pressure, above and beyond facets such as position
on the floor and phase of the game. Further compounding these obstacles is the absence
of usable databases: the analyses conducted required the individual investigators to watch
and encode film, which in and of itself, led to dramatic disputation (Tversky and Gilovich,
1989b).

In our evaluations of the significance of the Karpov - Kasparov move run, not only have
we benefitted from being able to frame the problem (relatively) precisely, but also from the
existence of sophisticated chess playing software and game databases. The latter tool could
be used to assess a run potentially far more remarkable than the move run. Namely, Fischer’s
own aforementioned run of 19 consecutive wins as part of the 1972 WCC qualifying cycle.
This run included two 6 - 0 shutouts in his two candidates matches. As an indication of the
incredibility of these results, and to ground things in the world of grounders, Time Magazine
equated the shutouts with pitching “two straight no-hitters.” Perhaps Fischer’s ascent to
World Champion was part of some conspiracy.
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