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1 Introduction

Queries in spatial databases, such as Geographical Information Systems (GIS), image data
bases, or CAD/CAM systems, are often based on the relationships among spatial objects.
For example, in geographical applications typical spatial queries are “Retrieve all cities
within 5 miles of the interstate highway I-95” or “Find all highways in the states adjacent
to Maine.” Current commercial database query languages do not sufficiently support such
queries, because these languages provide only tools to compare equality or order of simple
data types, such as integers or strings. The incorporation of spatial relationships over spa-
tial domains into the syntax of a spatial query language is an essential extension beyond the
power of traditional query languages, such as SQL [Roussopoulos 1988] [Egenhofer 1988].
Some experimental spatial query languages support queries with spatial relationships; how-
ever, the diversity, semantics, completeness, and terminology of these relationships vary
dramatically.

Besides the formulation of queries with spatial conditions, their processing is also of
importance. Spatial queries can be easily solved if all spatial relationships between the
objects of interest are explicitly stored; however, such a scenario is unrealistic, even for
relatively small data collections [Davis 1986]. Impediments are the vast amount of storage
space to keep the large variety of spatial relationships between any two objects and the
complexity of maintaining such a setting with every update of the geometry of an object.
Instead, it is necessary to derive the spatial relationships from their geometry or spatial
location. Such a concept needs, of course, a thorough understanding of what possible spatial
relationships are and how they can be determined.

To help clarify the users’ diverse understandings about the semantics of spatial rela-
tions and enable the processing of spatial queries it is proposed to formally describe the
relationships. Users can then examine whether a specific implementation concurs with their
expectations and system designers and engineers have formal guidelines for their implemen-
tations.

Helpful for such an approach are the linguists’ observations about natural language
terms for the description of spatial relationships. The use of spatial relationships (in the
English language) is independent of the size and material of the reference objects, yet
context in which a specific relationship occurs is essential for the selection of the correct
terms [Talmy 1983].

Various formal approaches have been proposed. One such formalism uses the prim-
itives distance and direction in combination with the logical connectors AND, OR, and
NOT [Peuquet 1986]. This derivation of topology from metric is conceptually doubtful
and leads to implementation problems in computers due to the finiteness of the underly-
ing number system [Franklin 1984] [Egenhofer 1989]. A definition of topological relation-



ships in terms of set operations upon point-sets attempts to describe topological relation-
ships [Giiting 1988]; however, it does not distinguish between the topologically distinct parts
of point-sets. The point-set approach has been augmented by the distinction of boundary
and intertor for some relationships [Pullar 1988a). In a more systematical approach, the
comparison of boundaries with boundaries and interiors with interiors allows for the dis-
tinction of four topological relationships, still missing the distinction of some significantly
different situations [Wagner 1988].

This paper presents a comprehensive theory for binary topological relationships be-
tween n-dimensional spatial objects embedded in an n-dimensional space. The classifica-
tion of topological relationships is based upon the comparison of all possible combinations
of boundaries and interiors of two objects. This approach uses purely topological means
to distinguish different topological relationships and provides complete coverage, i.e., any
possible constellation between two spatial objects is described by exactly one of the sixteen
relationships identified. The previous presentation of relationships between 1-dimensional
intervals [Pullar 1988b] is a special case within this framework.

The remainder of this paper is organized as follows: in the next section, different types
of spatial relationships are discussed, focussing on topological relationships. Then point-
sets are introduced as the underlying model for spatial objects to investigate topological
relationships between them. Section 3 presents our theory of binary topological relation-
ships between point-sets in terms of the intersections of their boundaries and interiors. The
subsequent investigations provide an answer to the question “Which relationships can be
realized in a two-dimensional space?” and show geometric interpretations. Finally, the

conclusions in section 4.

2 Spatial Relationships

2.1 A Classification of Spatial Relationships

The entire domain of spatial relationships is too complex and diverse to be treated by
a single method in a single attempt. It appears rather favorable to define a framework
within which the existence of relationships can be investigated. The identification of similar
relationships and the discrimination of dissimilar ones will be supported from the foundation
upon mathematical principles of such an approach.

A helpful approach is the categorization of spatial relationships according to different
spatial concepts on which they rely. The following classification distinguishes three funda-
mental types of relationships, the properties of which correspond to the three fundamental
mathematical concepts topology, order, and algebra. This classification is not complete since

it does not consider fuzzy relationships, such as close and nezt_to [Robinson 1987], or rela-



tionships which are expressions about the motion of one or several objects, such as through
and into [Talmy 1983]. These types of relationships are not fundamental and rather com-
bine several independent concepts. Motion, for example, can be seen as the combination of
spatial and temporal aspects. It appears natural for each category to develop independent
formalisms describing the relationships [Pullar 1988b] [Kainz 1989].

e Topological relationships are invariant under topological transformations, such as

translation, scaling, and rotation. Examples are concepts like neighbor and disjoint.

e Spatial order relationships rely upon the definition of order or strict order. In general,
each order relation has a converse relationship. For example, behind is a spatial
order relation based upon the order of preference [Freeman 1975] with the converse

relationship n_front.

e Metric relationships exploit the existence of measurements, such as distances and
directions. For instance, “within 5 miles from the interstate highway 1-95” describes

a corridor based upon a specific distance.

2.2 Point-Set Topology

Topological notions include the concepts of continuity, closure, interior, and boundary,
which are defined in terms of neighborhood relations. In this context, topological equiv-
alence 1s considered a crucial criterion for the comparison of relationships among objects.
Topological properties often conflict with metric ones. It is important to keep in mind that
topological equivalence does not preserve distances; therefore, the subsequent investigations
are based upon continuity which is described in terms of coincidence and neighborhood.

The data model for spatial regions is based on the classical point-set model and the
point-set topological notions of interior and boundary [Spanier 1966]. The interior of a
point-set Y, denoted by Y°, is defined to be the union of all open sets that are contained
in Y. The closure of Y, denoted by Y, is defined to be the intersection of all closed sets
that contain Y. The boundary of Y, denoted by 3Y, is then the intersection of the closure
of Y and the closure of the complement of Y,ie., Y =Y NX — Y.

The concepts of separation and connectedness are crucial for establishing the forthcom-
ing topological spatial relationships between point-sets. Let Y C X. A separation of Y is
a pair A, B of subsets of X satisfying the three conditions A #  and B#0; AUB =Y,
and ANB =0 and ANB = . If there exists a separation of Y then Y is said to be
disconnected, otherwise Y is said to be connected. A region is then a non-empty connected
set X in IRZ.

The dimenstion of the space be defined as the number of independent vectors which are

the base elements of the corresponding vector space. Examples of 1-dimensional spaces are



a line, the border of a circle, and its topological images; common 2-dimensional spaces are
the open and the closed disks, and their topological images. An important property of an
n-dimensional space is that it may embed elements of dimension at most n. This property
gives rise to the definition of the dimension of an object. An object has the same dimension
n as its embedding space if the object exists in this space, but there is no homeomorphic
mapping for the object into a space of dimension n-1. A region, for instance, exists in a two-
dimensional space and there is no homeomorphic mapping which may transform a region
into a one-dimensional space. Hence, a region is of dimension 2. The standard definitions
are: a node is of dimension 0, an edge of dimension 1, a region of dimension 2, etc.

The codimension defines the difference between the dimension of the embedding space
and the dimension of an object. For example, codimension 1 for a region describes that it
is located in a 3-dimensional space. The above definitions imply that the codimension can
be never less than zero, and is zero if and only if the object and the space are of the same

dimension.

3 A Theory of Topological Relationships

First, a framework for the definition of binary topological relationships will be introduced,
consisting of the intersections of boundary and interior of the two objects to be compared.
The intersections are analyzed according to their content (i.e., empty or non-empty) which
leads to sixteen different specifications for topological relationships. The investigations of
the existence of the sixteen relationships demonstrate that only nine occur between two
n-dimensional objects with codimension 0. A subset of eight relationships can be identified

if the boundary of each object is connected.

3.1 Hypothesis

Definition 1 The topological relationship R between two spatial objects o1, 02 is based upon
the comparison of the intersections of the boundary and interior of ol with the object parts

of 02.

Boundary and interior can be combined to form the four fundamental criteria of spatial
relationships. These are: (1) common boundary parts as the intersection of boundary,
denoted by 89, (2) common interior parts (°°), (3) boundary as part of the interior (0°),
and (4) interior as part of the boundary (°d). Subsequently, 3 and °° will be referred to
as the two corresponding intersections, and 8° and °0 as the two opposite intersections.

Different topological relationships may be identified by comparing topological invari-
ants of the intersections. Topological invariants are properties which are preserved under

topological transformations.



Definition 2 Topological invariants of the intersections of the object parts characterize the

topological relationship between the objects.

In this context, the following topological invariants are considered:
e the content (i.e., emptiness or non-emptiness) of the intersection;
e the number of separate boundary intersections; and
e the dimension of the intersection.

The content of the intersections is selected as the fundamental criterion for topological

relationships because
e it describes a closed set of relationships with complete coverage; and
e more detailed relationship can be considered a subset of it.

With the binary values empty (8) and non-empty (—@) a total of sixteen different spec-
ifications is given which provide the basis for the formal definition of the spatial relation-
ships (table 1).

3.2 Existence of Relationships

The targets in this paper are those 2-dimensional objects that are homeomorphic images
to connected point-sets with non-empty interiors and connected boundaries. They will be
referred to as regions.

Not all sixteen specifications exist between two regions with codimension zero. The
proof has two parts both eliminating a set of relationships due to a condition among the

Intersections.

Lemma 1 The relationships r4, 15, 13, 19, 112, and r3 do not exist belween two regions

with codimension 0.

Proof: Any point in the interior of a region must have a 2-cell surrounding it which is
also contained within the object. Any two 2-cells surrounding a point must contain a 2-cell
containing the point in their intersection and any point on the boundary of an object must
be arbitrarily close to some point in the interior. Thus if X is a point in 8ANB°, then there
is another point Y, close to X, in A° N B°. This proves that if the boundary of a region A4
intersects the interior of another region B, then there is a point interior to both. In terms
of the four intersections, if at least one of the opposite intersections is non-empty, then

the intersection of both interiors must be non-empty as well. This theorem eliminates the
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Table 1: The sixteen specifications of binary topological relationships based upon the cri-

teria of empty and non-empty intersections of boundaries and interiors.

relationships rq, 15, 18, r9, r12, and r;3 which have empty interior-interior intersections and

at least one of the boundary-interior and interior-boundary intersections is empty as well. O

Lemma 2 The relationships ry and ri4 do not exist between two regions with codimension

0.

Proof: This proof is based upon the Jordan-Brower separation theorem [Spanier 1966):

A 1-sphere, embedded in Euclidean 2-space, separates that space into two regions.

The sphere is then the common boundary of the two separated regions.

For any regton it holds true that if the boundaries of two regions in 2-dimensional space are
disjoint, then the interiors are either disjoint or one point-set is completely contained within
the interior of the other. In terms of the four intersections, if the boundary intersection
is empty, then either all other intersections are empty as well; or the interior intersection

and one of the two boundary-interior intersections are non-empty as well. This restriction



eliminates five of the eight specifications with an empty boundary intersection, namely r5,

rq, Ig, ry2, and riy4. O

As a result, only the eight relationships rg, 11, r3, r¢, r7, r1g, r11, and ;5 exist be-
tween two spatial regions with codimension zero. If the boundary of a region need not
be connected, i.e., the object may have holes, then r;4 would be a possible topological
relationships [Egenhofer 1990].

3.3 A Geometric Interpretation

A geometric interpretation of the abstract definition will be given below. The interpreta-
tions refers to prototype relationships presented for regions with codimension 0. It is not a
matter of the definition of terms for the relationships—a systematic terminology ro ...ry5
would provide the same service. Nevertheless, it is felt that meaningful names improve the

understanding of the abstract definitions of the relationships.

Definition 3 If all four intersections among all object parts are empty, then the two objects

are disjoint (figure 1a).

Disjoint is linear, such that two objects are either disjoint or they are not. The specifi-

cation for not_disjoint follows immediately from the definition above.

Definition 4 If the intersection between the boundaries is not empty, whereas all other 3

intersections are empty, then the two objects meet (figure 1b).

The nature of meet is such that it only matters that the two objects share at least a

common part of the boundary.

Definition 5 Two objects overlap if they have common boundaries and interiors, and the

boundartes have common parts with the opposite interiors (figure lc).

Definition 6 An object A covers another object B if both objects share common boundaries
and interiors; B’s interior inlersects with the boundary of A; and none of A’s interior is

part of B’s boundary.

Covers has a converse relationship covered_by which has the reverse definition of the

boundary-interior intersections (figure 1d).

Definition 7 An object A is inside of another object B if (1) A and B share common
intertors, but not boundaries, (2) A’s boundary intersects with the interior of B, and (3)

none of B’s boundary coincides with A’s interior.



Like covers, inside has a converse relationship, called contains, with corresponding

specifications which are the same except for the reverse opposite intersections (figure le).

Definition 8 Two objects are equal if both intersections of boundary and interior are not

empty while the two boundary-interior intersections are empty (figure 1f).
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Figure 1: Examples of the relationships between two regions in a 2-dimensional space.
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3.4 Dimensions of the Intersections

More details about topological relationships may be expressed by considering other topo-
logical invariants in addition to the emptiness/non-emptiness of object part intersections.
Here, it will be investigated how the dimension of the boundary intersections allows for the
definition of more detailed topological relationships.

The dimension of the boundary is defined as the largest dimension of all faces. The
dimension of the intersection of two boundaries is then the largest dimension of the faces
being part of the intersection. This gives rise to the differentiation of various detailed defi-
nitions for meet, overlap, and covers/covered_by based upon the dimension of the common
boundaries. The other relationships are excluded from this consideration because they have
empty boundary intersections (disjoint, inside/contains).

Two n-dimensional objects can meet, overlap, and cover/be covered_by in n different
ways. These detailed relationships can be distinguished according to the dimension p of
the common boundary, and are called p-meet, p-overlap, and p-cover/p-covered_by. For
example, the common boundary of two regions can be of dimension 1 if they share one or

several 1-faces. Then the relationship is called I-meet. The second meet relationship in



2-D, 0-meet, requires that the dimension of the common boundary is 0 (i.e., the common
bounding parts are only nodes). Figure 2 shows examples of the differences between the 0-

and 1-relationships for meet, overlap, and cover.

i
1/ 3\
&=
S ()
(a) O-meet (b) 1-meet S O-overlap

4

A—X
,/l A 4
< A— 4]
T
T
(d) 1-overlap (e) O-cover (f) 1-cover

Figure 2: Examples of the detailed relationships between regions in 2-D considering different

dimensions in the boundary intersections.

4 Conclusion

A formalism for the definition of topological relationships has been presented. It is based
upon purely topological properties and thus independent of the existence of a distance
function. The topological relationships are described by the commonality of boundary and
interior with the binary values empty and non-empty for these intersections, which gives
rise to sixteen mutually excluding specifications.

The investigation of the relationships was restricted to those which yield between two
spatial regions in a two-dimensional space. Eight of the sixteen relationships do not exist
under this restriction. The remaining eight relationships serve as the framework for more
detailed topological relationships (table 2). It can be extended by considering further
topological invariants, such as the dimension of the boundary intersections or the number
of separate boundary intersections.

Compared to the results of previous investigations of the relationships between one-
dimensional, connected objects in 1-D [Pullar 1988b], almost the same set of relationships
exists. The only difference is that in 1-D the relationship ry4, overlap with disjoint bound-

aries, exists and ris does not, while in 2-D this is reverse [Egenhofer 1990]. Ongoing work
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Table 2: The eight specifications of topological relationships between two spatial regions in
2-D.

investigates the application of this theory for codimensions greater than zero and to de-

scribing the relationships between spatial objects of different dimensions.
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An Algebraic Approach to Spatial Reasoning
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Abstract. A simple, exemplary system is described that performs reasoning about the
spatial relationships between members of a set of spatial objects. The main problem of
interest is to make sound and complete inferences about the set of all spatial relationships that
hold between the objects, given prior information about a subset of the relationships. The
spatial inferences are formalized within the framework of relation algebra and procedurally
implemented in terms of constraint satisfaction procedures. Although the approach is very
general, the particular example employs a new “complete” set of topological relationships
that have been recently described in the literature. In particular, a relation algebra for these
topological relations is developed, and a computational implementation of this algebra is
described. Systems with such reasoning capabilities appear to have many applications in
geographical analysis, and could be usefully incorporated into GIS and related systems.



1 Introduction

The primary intent of this paper is to show how a recently described, “complete” set of
topological relationships (Egenhofer and Franzosa 1991) may be used to serve as the basis
for a procedure that performs spatial reasoning. A secondary intent is to encourage further
research along similar lines, in terms of the development of more expressive sets of spatial
relationships and in terms of more robust procedures for reasoning.

It is increasingly recognized that database and knowledge-base systems may be viewed
as systems that contain models of some set of phenomena in the real world (Smith, Ramakr-
ishnan and Voisard, 1991). It is therefore reasonable to develop procedures that access such
systems by deriving inferences concerning the phenomena represented in the models. In the
particular case of GIS, such inferential capabilities typically relate to entities that occupy
space and change over time, and involve both the spatial and non-spatial attributes and
relationships of the entities.

Important issues associated with such computational modeling activities are the formal-
ism in terms of which the domain knowledge is represented and the inferential procedures
for reasoning about the entities in the domain. Typical approaches to modeling include the
development of:

1. conceptualizations of some set of phenomena of interest in the world in terms of a set of
objects, properties of the objects and relationships between the properties of objects;

2. representations of this conceptualization using a formal language with a well-defined
syntax and declarative semantics. The objects and the relations conceptualized in the
preceding step serve as the domain of terms for the expressions of this formal language;

3. sets of inference procedures which perform “reasoning”, and which are axiomatized for
the domain of objects and relationships.

If we are to employ this approach in developing GIS with deductive reasoning capabilities
which are logically sound and complete, we need to develop models of spatio-temporal objects
and their interrelationships, and formal languages in which these may be represented. We
also need to define axiomatic theories of the language to give a procedural semantics of our
intended model. In this paper, we describe one example of such a model and an associated
inference system.

1.1 The Problem

We assume that we are given an database in which a set of spatial objects and their interre-
lationships are explicitly represented. We are frequently faced with a situation in which such
a database contains implicit information about many of the objects and spatial relationships
that are referred to in the database (i.e., information not in the explicit form that we may
require). Hence we may ask whether:



1. we may correctly infer all the facts about the objects and their relationships that are
implicitly represented in the database;

2. the current database of objects and relations is consistent, and whether it will remain
consistent if we add new objects or relationships.

These two questions are closely related and clearly require a reasoning process of some form
which is based upon an appropriate model of the objects and their relationships and which
can automated in a sound and complete manner. The soundness of a reasoning procedure
guarantees that the procedure leads only to correct inferences. Hence, for example, any
inferred spatial relationships are always logically implied by the initial set of relationships.
The completeness of a reasoning procedure guarantees that the procedure leads to all of the
correct inferences. Hence, for example, it will eventually produce all of the correct inferences
about relationships that are logically implied by the initial set of relationships. The initial
set of relations that is provided to the procedure must, of course, be consistent to make the
discussion of soundness and completeness non-trivial (Genesereth and Nilsson 1987).

We examine answers to these questions in terms of an exemplary system that is able
to make sound and complete inferences about the spatial relationships that hold between
sets of spatial objects. In the remainder of the paper, we discuss some of the research
background that is relevant to these questions. We then describe a simple conceptualization
of spatial objects and their interrelationships, and an abstraction by means of which we may
represent the objects and their relationships and which we may employ in making inferences
concerning the spatial relationships of the objects. We follow this with a description of
general approaches to implementing such reasoning schemes and provide a description of a
particularly efficient representation. We also provide simple examples to clarify our general
approach. It is to be emphasized that a major goal of the paper is to stimulate further
research towards systems that are capable of making inferences about complex spatial objects
represented in large spatial databases.

1.2 Research Background

The fundamental basis for our approach to problems of spatial reasoning was provided by
Allen in his research concerning reasoning about relationships among elements of a set of
intervals of time (Allen 1983). Allen introduced the notion of temporal interval as a primitive
(analogous to a spatial pointset) and developed a formalism for expressing relationships
between temporal intervals. Allen considered thirteen relationships, including overlap, meet,
before, equal, during, start, finish and their converses. Allen expressed knowledge about
a given set of intervals in terms of a special graph called a binary constraint network, in
which nodes represent intervals and labeled edges between nodes represent any subset of the
thirteen relationships that may hold between intervals. This network may be viewed as a
database system that allows one to draw logical inferences concerning implicit relationships
between different time intervals. The database is maintained in such a way that whenever



a new relation is entered into the network, a constraint satisfaction procedure is executed
to preserve the consistency of the network. The constraint satisfaction procedure essentially
computes the transitive closure of temporal relations. The novel feature of Allen’s approach
is that by giving relations the status of first class entities, the domain of temporal intervals
with infinite real metrics is provided with a computational reasoning scheme.

There have been many attempts to define the nature and classes of spatial relationships
that frequently arise in many applications and there have also been attempts to define the
nature of reasoning about such relationships. We refer the reader to material referenced,
for example, by Frank (1991), Kuipers (1978) and Gopal and Smith (1990) for general
treatments of relationships and reasoning. Few of these studies have, however, attempted
to structure the concepts in terms of formal systems, and of those studies of which we are
aware, a significant proportion have been based on Allen’s research, although there has been
some research (such that of Chang, Jungert and Li, 1990) that employs a diffent approach.
In the research that has adopted an approach analogous to that of Allen, spatial pointsets
replace the temporal intervals of Allen’s work and specific classes of spatial relationships
replace the 13 relationships defined by Allen. Guesgen (1989), for example, extended Allen’s
approach to one-dimensional spatial domains, and attempted to extend the one-dimensional
version to two spatial dimensions, but with limited success because of ambiguities in the
representations. Maddux defined a class of compass algebras on points in Euclidean space,
and showed that constraint satisfaction in any compass algebra is NP-hard (Maddux 1989).
Malik specified spatial relationships in terms of linear inequalities between boundary surfaces
of objects and based spatial reasoning on an application of linear programming that employed
the simplex algorithm (Malik and Binford 1983).

We have chosen to adopt an approach that is analogous to that of Allen, since it is
remarkably simple and appears to have great potential for generalization. We believe that
the formal basis that we propose has not yet been applied with respect to the particular
concept of spatial objects and the particular set of spatial relationships that are described
in the following sections.

1.3 Spatial Relations based on Pointset Topology

For describing and reasoning about the most general classes of spatial phenomena, we require
a relatively sophisticated conceptualization of the world and a powerful formal language in
which we may define and manipulate arbitrarily complex spatial objects and their interre-
lationships. While such languages are currently under development (Smith, Ramakrishnan
and Voisard, 1991), it suffices for present purposes to consider a very simple conceptualiza-
tion of a set of spatial phenomena and a very simple formal language for representing such
objects and their relationships.

We assume that a spatial object is defined as some entity possessing an essential projec-
tion onto some geometrical space, and that this projection may be represented as a pointset
with a well defined interior and a connected boundary. We also assume that any spatial rela-



tionship of interest between objects may be defined in terms of the eight, binary topological
relationship discussed in Egenhofer and Franzosa (1991). We consider only binary spatial
relationships since n-ary relations may be equivalently represented in terms of a conjunction
of binary relationships.

The set of relationships discussed by Egenhofer and Franzosa is simple but “complete” set
of relationships that is based on ideas developed in elementary pointset topology (Munkres
1975). If A is a pointset, then:

o the interior of A, denoted by A‘, is defined to be the union of all open sets that are
contained in A

o the closure of A, denoted by A°, is defined to be the intersection of all closed sets that
contain A

e the boundary of A, denoted by A®, is defined to be the intersection of the closure of A
and the complement of A

One may then enumerate a total of 16 binary topological relationships (including their con-
verses) for any two pointsets A and B according to the pattern of intersections between
the boundaries and the interiors of A and B, i.e., all possible truth values for the 4-tuple
[A N B, AN B, AN B, AN BY. It is clear that these relations are mutually exclu-
sive, and form a partition of the set of all relations. It is these two properties of this set
of topological relations that allow us to develop an algebra on these relations and to carry
out algebraic manipulation based on this algebra (Appendix contains a brief description of
relation algebra.)

Egenhofer and Franzosa (1991) provided formal proofs that only 8 of the 16 topological
relations can actually occur among pointsets of 2- or higher dimensions with co-dimension 0
between the object and the embedding space. This is the case of interest for most GIS, and
in this case, the 8 relations form a partition of the set of all possible relations. We may view
each of the 8 relations as being atomic, i.e., each may be viewed as a singleton set containing
the smallest non-zero element in the appropriate relation algebra. These atomic relations
and their defining conditions are listed in Table 1 together with their denotational symbols.
Figure 1 provides a geometric interpretation of the relations.

Lo (O DO O O

A(m)B A(0)B A(c)B A(T)B A(1)B
B(d)A B(m)A B(o)A B(T)A B(i)A B(1))A

Figure 1: Geometric Interpretations of Atomic Spatial Relations
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¢ ¢ ) ) A and B are disjoint d self-converse
—¢ ¢ ¢ ¢ A meets B m self-converse
—¢ —¢ ¢ —¢ A and B overlaps o self-converse
~é ¢ ¢ @ A equals B (identity) 1 self-converse
s —¢ ¢ -¢ A covers B c T

¢ —¢ —¢ ¢ | Alis inside of B i T
—¢ ¢ ¢ ) B covers A T c

¢ ¢ é ~¢ B is inside of A 1 i

Table 1: Eight Atomic Spatial Relations and Their Symbols

2 Relation Algebra and the Composition of Spatial
Relations

2.1 Abstraction of Spatial Knowledge in Constraint Network

We now provide an application of the set of topological relationships described above as
a basis for a particular form of spatial reasoning. Consider a pair of spatial objects, and
assume that we have reason to believe that the relations holding between these objects lie in
some subset of this set of atomic relations. We may interpret such a subset as a disjunction
of relations, in the sense that any of the relations occurring in the subset may hold between
the pair of objects and, since the relationships are disjoint, no more than one relationship in
the disjunction will hold. We employ the infix notation o;( R)o; to represent the fact that the
topological relationship R holds between the spatial projections (or pointsets) of objects o;
and o; . The converse of R is represented by R, thus o;(R)o; = 0;(R)o;. The disjunction, or
sum, of two relations R and S over the domain of spatial objects is denoted (R + S), where
0;(R + S)o; = 0;Ro; V 0;So; and V denotes disjunction (“or”). For example, if “c” denotes
the relation covers and “o”, the relation overlaps, respectively, then o;(c + 0)o, represents
“either 0, covers 0, or o; overlaps 0;”. In general, there are 2% different disjunctions of 8
atomic relations that may be used to characterize the feasible relationships between a given
pair of spatial objects.

We may represent our knowledge about a given set of objects in terms of a graph, which
we term a binary spatial constraint network (BSCN). Figure 2 provides an example of such
a representation for the case of three spatial objects o;, 0;, 0x, and their relationships.
Each spatial object is mapped into a distinct node in the network, and the binary relation-
ships among them are represented by the direction and the label of the edges. An edge is
directed to distinguish between a binary relation and its converse. The solid edges represent
relations that are ezplicitly specified in some database representing objects and their rela-
tionships. Since the converses of our relations are well defined from Table 1, the relationships
between any pair of objects is represented by labeling a single directed edge. The edge R']’-,-



(a) (b)
Figure 2: Spatial Knowledge Abstracted in BSCN

in Figure 2-b, for example, is the converse of R?; in Figure 2-a, and both representations
conveys the same information. Dotted edges, such as R%, represent relations that are not
explicitly specified in the database. We thus initialize the label for such an edge with the
universal relation “1”, which is simply the disjunction of all possible relations, namely (' +
d+m+o0+4c+T+i+ T). The derivation of the label (T + ¢+ o) of R?, in the Figure
is described below.

The fact that the relations that are expressed as a disjunction indicates that our explicit
knowledge of the relationships is incomplete. Hence we may view a disjunction of relations
as a constraint on our knowledge of possible relationships. Within this framework, reasoning
may be viewed in terms of “pruning” the set of feasible relations, or tightening the constraints
on the labels of the underspecified edges. We may perform such reasoning if the combined
information of the labels of the edges R;; and R;i (the composition of them), implies some
information about the edge Ry that is not explicitly encoded in the label. Qur focus in this
paper is on a formal basis for reasoning in this manner about the implied relationships.

We may formalize the concept of such reasoning by providing a formal representation
for the BSCN and the associated reasoning. As in the case of relational databases, (see, for
example, Ullman 1989), our formal representation may take the form of a calculus or an
algebra. We have chosen to take the algebraic point of view because it appears to offer, in
the present case, a greater degree of simplicity. In relation to the calculus approach, we note
that a BSCN may be represented formally as a logical conjunction of terms, each of which is
a disjunction of binary predicates representing the relationships (Ladkin 1990). The BSCN
in Figure 2-b, for instance, may be represented as

0; (i)o; A 0 (0)o; A [0;(0)ox V 0;(c)or V o; (T Jox |

where A and V represent logical conjunction (“and”) and disjunction(“or”), respectively.
Hence we may translate the BSCN that represents a set of objects and their relationship
into a set of formulae of first order logic, and reasoning may be viewed in terms of the
predicate calculus with a well defined declarative semantics, from the model-theoretic point
of view or with a well-defined procedural semantics from the proof-theoretic point of view
(see Enderton, 1972). Hence if a BSCN were formulated as a logic program, it would require



formal theorem-proving techniques in order to make inferences. On the other hand, the
algebraic approach that we describe in detail below, employing relation algebra, allows us
to manipulate directly the symbolic expressions involving relations as terms. In this case, a
BSCN may be represented as a set of algebraic equations where the domain of the constants
and variables are relations. Formal reasoning with respect to the BSCN is then based on
generating solutions to this set of equations using the algebraic equality defined over the
terms of algebra.

2.2 Composition of Relations as the Basis of Reasoning

We first provide a few basic definitions that permit us to deal with spatial relations as terms
that may be manipulated algebraically. We shall view a binary spatial relationship R, in its
explicit form, as a set of pairs of spatial objects whose pointset projections are in a given
relationship to each other (e.g., one of the 8 relations defined above). Given binary relations
R and S, the composition of them denoted by RoS is

RoS ={<o0;,0, > |30, s.t. <0;,0;> € Rand <o0,,0,> € S} (1)
or, equivalently using infix notation,
0, (R OS)Ok <~ 3 0, [0,’ (R)OJ' No; (S)Ok ]

Consider the case where o; and o; are related by R;; and o; and oy are related by Rj;. Our
focus is on finding the true relation R;; between o; and oy, given an initial assertion R}, and
the composition R;jo Rjy. R;-’; may be viewed as disjunctions that include R;; with another
(possibly empty) set of spurious relations R’, i.e., 0; (R + R*)or . The essential axiom on
which we base our system of reasoning is then: Given <o;, 0; > € R;; and <o, 0, > € Ry,

<0;,0, > € Ry == <o;,0, > € (RLN(Rijo R;1)) (2)

In order to obtain insight into this axiom, let us suppose that o; and o, are connected
by a relation Ry, i.e., <0;, 0, > € Ry. It is clear that o;, o;, o, form a triangle, and it
immediately follows by the definition of (1) that <o;, 0o, > € R;; oRjx. Further, <o, 0, >
is in R}, since <o;, 0op >€ R;; by assumption and Ry C R}. Now since <o;, 0> is in
both R} and (R;; o Rjx), it is clearly also in their intersection. We may also rephrase the
above axiom in terms of its contraposition: if <o;, o > is not in the intersection of Rj}c and
(R;j oRji) for some j, then it cannot be in R;; either. This contraposition is the rationale
behind the process of eliminating infeasible pairs of objects from R;; (or, from the dual point
of view, R;; cannot be in the true relations between the pair of objects), and the elimination
1s safe since a relation will not be pruned unless proven infeasible. In other words, R 1s
further constrained indirectly by the composition of R;; o R, and the intersection operation
guarantees a monotonic decrease of R viewed as a set of relations. Our goal of reasoning
is to find the least upper bound of the sets of relations in the whole BSCN network, i.e., to



make the strongest possible assertions on the labels of edges using all the indirect constraints
from the composed edges. The so called path-consistency algorithms iteratively impose the
above contraposition in order to achieve this goal algebraically.

To manipulate algebraic equations involving the composed terms, the allowed interpreta-
tions for the algebraic composition operator need to be defined. We will derive, step by step,
the algebraic equalities of composition applied to atomic relations as building blocks. The
particular definitions should reflect the inherent properties of the set of spatial topological
relations and their composition. We will reuse the original symbolism of Tarski (1952) by
adopting “;” as the algebraic operator for the computation of the composition, “o”.

Consider, for example, the composition of R?; and R, which derives RY, of Figure 2, i.e.,

(T;0 ¥ T4+c+o

To show algebraic equality of the above composition, we must show that both the following
conditions hold:

(i)o(o) € (1T + c+o) (3)
T 2 (T +c+o) (4)

Condition (3) will be satisfied if
Y o;, 0;, Ok [0,‘ (T )Oj A o; (O)Ok = 0; (T)Ok V o (C)Ok V o; (O)Ok ]

The derivation of it is shown graphically in Figure 3, where the bottom row exhausts all
possibilities between o; and o, modulo topological homomorphism. Condition (4) will be
satisfied if

Voi, 0 [0;(T)ox Vo;(c)or V o;(0)or == Jo; [0;(T)o; A o;(0)or ]]
Clearly, for any pair of pointsets, <o;, o) >, which are related by one of the relationships in
the bottom row of Figure 3, we can always place some o; such that it satisfies both relations
in the top row. (Technically, this is because the topological space of spatial pointsets is
of dense order, such as Q) x @, where @ is the set of rational numbers which is countably
infinite.)

Similarly, it is relatively straightforward to define the remaining compositions of the 8
atomic relations (AC'). We present the results of making all pairwise compositions in Table 2.
The element AC;; is the composition of the ¢* row as the first argument and the j** column
as the second argument for ¢,7 = 1,...,8. The set of terms of composition in our algebra,
however, are computed from the collection of 28 distinct topological relations, and we must,
in principle, also define all of the 2% x 28 binary compositions, a seemingly prohibitive task.
The semantics of the compositions, fortunately, can be defined aziomatically employing the
standard theory of relation algebra. We have already defined the compositions among the 8



O,’(I)O]‘ 0; (O) Ok

O

0; (T) O O, (C) Or 0; (0) O

Figure 3: Composition of (1) and (o)

atomic relations. Then their closure, A, under composition is defined using the distributive
law of composition over sum:

vr:mryarz e A [(ra: + ry); T = (T',,;, 7‘2) + (Ty; Tz)] (5)

With this, the composition of any two sums (i.e., disjunctions) of relations is computable via
the sum of pairwise compositions involving only the pairwise composition of atomic relations
as defined in Table 2.

Note that in the above axiom of the algebraic approach, the spatial relations are directly
manipulated as terms (i.e., variables). An axiomatization of the composition of relations in
the predicate calculus, in contrast, would be complicated, since the relations are represented
as predicate symbols and the terms in the calculus are spatial objects (with pointset projec-
tions) rather than relations between objects. As such, a direct translation of the above axiom
into predicate calculus results in high-order formulae in which the predicate symbols them-
selves (i.e., relations) become terms and variables. To avoid the undesirable complications
associated with high-order logic, the complete first-order axiomatic system must inevitably
enumerate axioms for each composition in which the total number of axioms for composition
is exponential in the number of underlying atomic relations. Hence our main reason for
adopting a algebraic approach rather than a logical one in this paper is based on an appeal
to simplicity, in which the closure of compositions may be parsimoniously defined, and in
which the inferential procedures may also be specified with great simplicity.
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Table 2: Atomic Compositions in Algebra of Spatial Topological Relations

3 Implementation of Spatial Inference

3.1 Constraint Inference via Path Consistency Procedures

We have represented a BSCN in terms of relation algebra, with an associated inference
procedure that involves finding the least upper bound of the set of the relations R;; foralls, ;.
That is, the partially or unspecified (universal relation) edges in the BSCN is monotonically
reduced to its least upper bound by eliminating those relations which are not implied by the
axiom of relation composition. This axiom for reduction is algebraically

R¥Y «— Ry - (Ri; Rij)



Path-consistency computations, applied to each of the triangles of the BSCN edges, will
effectively produce the inferences that we desire.

We now describe the data structures for a procedural implementation of spatial inferences
on a database consisting of n spatial objects and their topological relations. To simplify the
illustration of the idea behind the procedure, we first extend the BSCN abstraction of our
database of objects to a strongly-connected directed graph, such that there exists an edge for
every pair for each direction (for example, if there is no edge, we add an edge labeled with
the universal relation “1”). Second, we map this extended BSCN into a square matrix data
structure, M of dimension n on which we carry out the path consistency procedure. We will
call this matrix M a relation matriz, and the entry M;; contains the relation R;; between the
object o; and o;. The invariant properties and conventions of this representational scheme
include:

e R;; asserted in the database initializes M;;.
e M;; is the identity relation, 1’.
e M;; is the converse of M,;, and vice versa.

J

e If there is no relation asserted between o; and o,; where 7 # j, then M;; is initialized
by the universal relation, 1.

We now present an algorithm schema for a path-consistent reduction of BSCN.

Procedure mostGeneralPathConsistency
Input M, ., initial relation matriz
Output M inferred relation matriz

nxn

begin
(1) MY <« M
(2) repeat
(3) M < Mnev
(4) fori=1tondo
(5) for j=1ton do
(6) for k=1tondo
(7) M7 — My - (Mix; Mi;)
(8) if MJ*¥ =0 then
(9) report inconsistency among (7,7, k)
(10) endif
(11) until M < Mrev

end

The operator <= in line (1) and (3) denotes the element-by-element copy of matrices; lines
(4) through (6) represents iteration of the path consistent reduction on every combination



of triangles in the given BSCN; line (7) is the key step in the procedure and implements the
essential axiom of inference described earlier. An entry of M becomes the empty relation
“0”, which may occur during the intersection operation, if the given BSCN contains incon-
sistencies for the triangle ¢, j, k. For instance, an assertion, “o; covers oy, and o; is inside of
ok, and o; either meets or overlaps with o, ”, is topologically inconsistent and thus results
in the empty set at step (7). The procedure may then be forced to terminate at this point
in (9), since an inconsistent BSCN does not have any model.

The symbol, <, appearing in the termination condition at (11) represents the partial
order defined by the subset relation on relations. This condition will be met when there are
no more reductions in M, i.e., at the least upper bound. Taking matrices as arguments,

M < Mmev = V M,J Q Mnew = V,"j (M,‘J' . Mir}ew = M,'j)

We illustrate this procedure in detail with a simple example of a 4 node BSCN of spatial
objects, o, through o4, in Figure 4. The relation matrices for the associated strongly
connected BSCN are shown in Table 3.

c+T c+T

(a) (b)
Figure 4: Algebraic Reduction of Spatial Constraints for 4-Node BSCN

M in Table 3 shows the result of the minimal reduction of M at the termination of the
procedure, containing inferences for the three initially unknown relations. A detailed trace
of computation on the edge M;; and M,, is given below where the iterations of “” are
concatenated into a single expression:

Mu;Mls) (M12;M23) (MsyMas) (M14;M43)
;1) - ((d+m)(c+T))- (1;17)- )

+((d; ) + (ds 1) + (mjc) + (m; T

((d) +(d) + (d +m) + (d)) - 1

( m)-1-1

new __
MY =

I
e S T e S S S

(1
) -1
-1

M;fw = (M2 ; My ) : (Mzz s Moy ) : (M23;M34 ) : (M24 s My )
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Table 3: Relation Matrices of Figure 4

+m); (1)) (51)-((c+ 1 );1)-(1;17)
i 1 -1

= d

To this point, we have merely presented a schema for pruning constraints in order to
provide intuition into the class of procedures for enforcing path-consistency, solving a simul-
taneous set of algebraic equations of constraints. The schema does not involve optimization
in terms of its space and time complexity, since the “blind” iterations over every triangle
results in a worst case time complexity of O(n®). Algorithms employing heuristic backtrack-
ing and a queue of triangles and having a worst case time complexity of O(n?) are, however,
known (Mackworth and Freuder 1985). In terms of storage, the scheme with slight modifi-
cations will generate the same reduction using a triangular matrix of size of M/2, although
the space complexity is still O(n?). A discussion of these computationally efficient variants
of path-consistency procedure are beyond the scope of the present paper, and readers are
referred to the literature for the well established algorithms.

Our primary concern in relation to the path consistency procedures is with the logical
notions of soundness and completeness of procedural reasoning scheme. The example of Fig-
ure 4 involves a relatively trivial case of inference, in the sense that the same inferences may
be made by hand in a few minutes. With BSCNs containing a dozen or more nodes, such
an approach becomes infeasible and the automated approach that we suggest becomes indis-
pensable, since it is both logically sound and complete. The termination of the procedure is
guaranteeded because of the monotonic reduction in line (7), and any inconsistencies in the
initial BSCN are detected in (8). With the proof of its correctness (Montanari 1974), the
procedure satisfies the soundness requirement. This follows from the fact that the composi-
tion of two connected edges in a triangle forms a path of length 2 and from the theorem of
Montanari (1974) that if every path of length 2 of a complete underlying graph of a network



is path-consistent, then the network is path-consistent. In other words, the correct solutions
with respect to only triangles are also the logical consequences (i.e., sound inferences) with
respect to the entire set of assertions in BSCN.

The ezact reductions, namely a BSCN connected by edges labeled with single atomic
relations, are theorems of the algebraic model. Once the reduction of the BSCN is com-
plete, backtracking search through alternative atomic relations among disjunctive labels will
achieve an exact reduction. In essence, the procedure checks for path-consistency in each
combination of atomic relations chosen from the (reduced) disjunction on each edge of the
BSCN (we refer the reader to Malik and Binford, 1983, for details of the algorithm) The
exact reduction of the path-consistent network is an NP-hard problem in general (Maddux
1989), but NP-hardness is a computational issue of tractability and not a logical issue. In
other words, the path consistency procedure will never prune correct relations and it will
eventually find all the correct ones, and as such, is a logically complete reasoning procedure

for BSCN.

3.2 An Efficient Implementation of Algebras of Relations

In the preceding section, we were concerned with the implementation of the inference pro-
cedure. We now focus on an efficient implementation of the relation algebra itself, and in
particular, for cases in which the number of atomic spatial relationships is relatively small.
A computationally efficient implementation of relation algebra and its operators is critical
since they appear in the innermost loop of inference procedures.

We first describe a bit-field encoding scheme for the terms of our algebra, namely the
spatial relations. Our algebra is finite since it involves the finite closure (28 relations) of the
set of 8 atomic relations under composition and converse, including the empty and universal
relation. It is, therefore, possible that a single 8-bit byte will uniquely “code” any one of
the 2® distinct terms of our algebra. That is, each atomic relation may be associated with
a distinct bit field within a byte, and the non-atomic (i.e., disjunctive) relations may then
be encoded in a single byte, with appropriate bits set to 1, and the remaining bits to 0.
This encoding scheme provides a compact and uniform representation of relations, as well as
an efficient implementation of the set-theoretic operators, “+”, “.” and the converse “~” of
relation algebra. The 8-bit code is clearly the most compact data structure, and the entries
of the composition table (and relation matrices) will now be uniformly stored in single bytes.
The union operation of relations may now be implemented as bit-wise OR operations which
we denote by V,. Similarly, the intersection of the algebra is replaced by bit-wise AND
operations, Ay. We have effectively replaced the set-theoretic operators of our algebra by the
single machine instructions available in programming languages such as C. The converse “~”
is simply a bit-masking operation using V, and A, where the necessary bits (in our case, i,
c and their converses) are toggled.

We now describe the implementation of the composition operator,“;”. Recall that the
computation of compositions of non-atomic relations is based on the 8 x 8 atomic composi-



tion table (AC), since composition distributes over the sum in relation algebra. If we build
a complete table of compositions (C'C') among the entire set of relations, we may avoid the
necessity of distributing compositions over sums, looking up each pairwise atomic composi-
tion in AC and summing the result. That is, a composition of any term of our algebra may
be computed by a single lookup of the complete table C'C of 256 x 256. This table, using the
bit-field encoding system, involves a relatively small amount (64K) of main memory. Note
also that the size of C'C is independent of the size of the BSCNs.

This coding scheme may be generalized in a straightforward manner for algebras involving
larger (but finite) numbers of atomic relations. A typical 4-byte integer, for example, permits
the encoding of an algebra with 32 atomic relations, and the concatenation of machine words
permits even larger codes. It is clear, however, that the space complexity is of exponential
order in the number of atomic relations, and the practicality of constructing a full-sized CC
diminishes rapidly as this number grows.

The following algorithm “systematically” computes the CC for the general case where
the set of atomic relations has cardinality of N, which in our algebra is 8.

Procedure constructComplete CompositionTable
Input ACnxn atomic composition table
Output CCynyon complete composition table

begin
(1) fori=1t02" do
(2) for j =1to 2V do
(3) re0
(4) for k=1to N do
(5) if ((2¥ Ay 1) = 2F) then
(6) forl=1to N do
(7) if ((2' Apj) =2") then
(8) r—rVy ACy
(9) endif
(10) endif
(11) CCiyj

end

Lines (3) through (10) construct the code “r”, for the composition of CC; and CCj;
lines (5) and (7) perform pairwise computation, where 2* and 2' is the predetermined bit
position for each of the N atomic relations. The occurrences of the atomic pairs between
the disjunctive relations CC; and CC; are checked by the bit-masking operations, and the
composition for the pair is looked up using AC, and then summed by V, in line (8).

One advantage of the encoding scheme for relations with a CC constructed as above is
that the code of the relations may be used directly in indexing the CC table, since our coding
scheme is also an integer system (independent of its byte order) enumerated from 0 to 255.



We now reconsider the essential step in computing any type of algebraic inference with a
BSCN abstraction, namely
M — M - (Miy 5 My;)

With the bit-field encoding system and the complete composition table CC, we may rewrite
this step as:
Mir}ew — M;; Ay CCMikMkj

Hence relation algebraic operators (- and ;) are literally translated by V, and a single table
lookup, since the relation algebra and its operators are subsumed by Boolean bit operations.
This is not surprising since relation algebra is an extension of Boolean algebra. The single
atom “1” in the Boolean algebra is extended to a number of atoms (i.e., the atomic relations
N). The disjunction “+” and conjunction “.” of relation algebra is nothing but the Boolean
algebra performing “+” and “-” in parallel for each bit position, where the total number of
bit positions is the same as the number of atomic relations under consideration.

4 Conclusion

Our discussion of the soundness and completeness of a spatial reasoning procedure is based
on the assumption that our abstraction of the world and the task of reasoning are expressible
in terms of a formal language, in which the domain specific theories are axiomatizable and in
which procedural semantics may be given to each expression. As an example of our approach,
we have described an algebra in which we may represent topological relations among spatial
objects and the composition of such relationships. The particular set of spatial relations
that may be represented in this simple algebra is based upon a set of 8 atomic topological
relations that Egenhofer and Franzosa (1991) defined on spatial pointsets. A non-trivial set
of spatial reasoning problems are solvable within this algebraic framework, which takes the
set of topological relations as the terms of an algebraic equation system and applies path
consistency procedures.

We employed a binary spatial constraint network (BSCN) as an abstraction for the
database of spatial knowledge. The BSCN has both a declarative and procedural semantics.
Reasoning via the algebra of spatial relations within the context of constraint satisfaction
procedures permits us to provide a sound and complete procedural semantics for a given
spatial database represented in terms of a BSCN. We provided an implementation of both
the theory and the operators of the algebra in terms of a table lookup scheme and bit-field
encodings.

While the spatial reasoning system that we have described is intended to be purely
exemplary in nature, it nevertheless provides an indication of the general class of systems
that one might develop with a more expressive set of spatial relations. We believe that
the reasoning systems similar to ours, in which qualitative spatial relations are a primitive
data type, may well play an important role that is complementary to the role of systems
that are based on numerical computations which preserve the metric properties of the object



space involving, for example, distance and direction. We believe that there is a fruitful area
of research in which the prime objectives of investigation involve finding alternative sets
of spatial relationships and more general inference procedures. We suggest that it may be
of great value to incorporate such reasoning functionality into a variety of computational
systems that support spatial analysis and modeling, such as GIS and spatial database and
modeling systems in general.
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Appendix: Relation Algebra

Material in this appendix has appeared in Ladkin (1990) and elsewhere. Relation algebra is
an extension of Boolean algebra, which may be viewed as a 6-tuple < B, +,-,—,0,1 >, where
B is a set (equations in algebraic theory) and +,-,—,0, and 1 have the standard meanings.
A standard collection of axioms for Boolean algebra includes equations such as:

rTt+zr==zx

T-r=<x
z-(y+z)=(z-y)+ (-2
A standard partial ordering for z,y € B may be defined by:

r{y&r-y==z

An atomin a Boolean algebra is a smallest non-zero element in the algebra with respect to this
ordering <. The additional binary operators and a constant which make a Boolean algebra
into a Relation algebra are described below using the notation of Josson and Tarski(1952) :

; binary operator for composition of relations
unary operator for forming the converse of a given relation
Iy constant denoting the identity relation

These operators in relation algebra operate on relations, thus the topological relations are
the objects of the algebra in our case. Note that every object in this algebra is the union
of the singleton sets, i.e., 8 atomic relations in our case. “0” represents the empty relation
and “1”7 represent the universal relation, i.e., the union of all relations. A relation algebra
R, then, is a structure < R,+,-,—,0,;,1’, ~ > that satisfies following additional axioms,
where z,y,2z € R:

(z;9); 2 = z;(y; 2)

z;1'=zx

.(%)-zl'
(z+y)=7+7
(z;9) =%;T
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