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ABSTRACT: The use of Δ-self-consistent field (SCF) approaches
for studying excited electronic states has received a renewed
interest in recent years. In this work, the use of this scheme for
calculating excited-state vibrational frequencies is examined.
Results from Δ-SCF calculations for a set of representative
molecules are compared with those obtained using configuration
interaction with single substitutions (CIS) and time-dependent
density functional theory (TD-DFT) methods. The use of an
approximate spin purification model is also considered for cases
where the excited-state SCF solution is spin-contaminated. The
results of this work demonstrate that an SCF-based description of
an excited-state potential energy surface can be an accurate and
cost-effective alternative to CIS and TD-DFT methods.

1. INTRODUCTION
Electronic excited states play a critical role across science,
including photochemistry, analytical chemistry, materials
science, and biology.1−11 Computational chemistry serves a
vital role in advancing such science by providing corroborating
experimental interpretations through spectral simulations,
predicting and interpreting excited-state properties, and
providing insight into excited-state structure and dynamics
through theoretical descriptions of excited-state potential
energy surfaces (PESs).12−20 Despite numerous successful
computational studies exploring photophysics and photo-
chemistry in the literature, the development of new excited-
state models and methods remains an active area of research in
theoretical chemistry.21−29

Perhaps, the most conceptually straightforward and accurate
quantum chemistry approaches for calculating excited
electronic state wave functions are configuration interaction
(CI)-based methods.30−35 More sophisticated multiconfigura-
tional-SCF and multireference CI theories are also well-
recognized models for calculating excited states.36−38 Unfortu-
nately, in many cases, the computational expense of such
models for moderate to large systems is prohibitively
expensive.

Time-dependent density functional theory (TD-DFT) is an
alternative single-reference excited-state model based on
Kohn−Sham DFT.39−42 In TD-DFT, the many-body time-
dependent Schrödinger equation is reformulated by a set of
time-dependent single-particle equations with orbitals yielding
the same time-dependent density. Due to its efficiency, black
box nature, and inclusion of dynamic electron correlation, TD-

DFT is the method of choice for most excited-state studies in
molecular quantum chemistry.43−58

Among the methods based on Slater determinants,
configuration interaction singles (CIS) and TD-DFT are the
most popular candidates for investigations of excited states of
large systems. In many cases, these models provide enough
information for the characterization of excited-state systems,
yet both models have notable limitations. CIS neglects
important contributions to electron correlation.59 Since only
single replacements are included in the determinantal basis,
neither CIS nor TD-DFT can properly describe the electronic
configuration of excited states at conical intersection
processes.60,61 Most TD-DFT approximations give substantial
errors for molecular excited states with extended π-
systems.62,63

In recent years, the idea of self-consistent field (SCF)
calculations for approximating excited electronic states using
the maximum overlap method (MOM) has been reintroduced,
including the initial maximum overlap method (IMOM).22,23

This approach has been used to explore various electronic and
structural properties in molecules.21−23,27,64−70 In such
methodologies, standard ground-state SCF algorithms are
used to find a stationary point in the SCF space that maximizes
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the overlap with an initial guess set of occupied molecular
orbitals (MOs). However, these low-cost approaches often
suffer from a number of challenges, including convergence
difficulties and variational collapse. Recently, the projected
initial maximum overlap method (PIMOM), which uses a
projection operator framework to determine a non-Aufbau
metric for determining which molecular orbitals to occupy at
each SCF cycle, was shown to overcome some of the
challenges observed with alternative maximum overlap
metrics.26 In fact, the projection-based framework provides a
convenient connection to population analysis.26

In this work, we benchmark excited electronic state
vibrational frequencies evaluated using SCF solutions that
model excited-state electronic structures. To reliably locate
excited-state wave functions as SCF solutions, we use the
PIMOM.26 Although such Δ-SCF calculations are computa-
tionally feasible, the excited-state solution often exhibits (spin)
symmetry breaking. Specifically, most singly excited states will
result in open-shell results that exhibit spin contamination.
While single-reference excited-state models can employ spin
adaptation to overcome this challenge, the issue remains for
the Δ-SCF approach. As we have shown in related contexts
and as Herbert and co-workers recently reported for Δ-SCF
treatments of excited-state energies, the broken-symmetry
results can often be improved using an approximate projection
(AP) measure.27,71−73 Some time ago, Hratchian and co-
workers’ group derived and implemented analytical first and
second energy derivatives of approximate projection (AP)-
corrected energies.74,75 Using that theory, we further assess the
impact of AP on excited-state geometries and vibrational
frequencies.

2. METHODS
In this section, the PIMOM and AP methods are briefly
described. PIMOM is used to guide the SCF optimizer toward
the desired solutions. The AP method is used to correct effects
due to spin contamination in broken-symmetry SCF solutions.

2.1. Projected Initial Maximum Overlap Method.
Using the Δ-SCF approach for studying electronic excitations
requires the optimization of single-determinant SCF solutions
that often are not minima in SCF space.23 For such
calculations, unaltered SCF optimizers often experience
variational collapse, thus failing to locate the desired state.23

PIMOM has recently been shown to be a reliable and robust
scheme for optimizing SCF solutions resembling user-defined
target single determinants.26

In the atomic orbital basis, the SCF equations are given by

=FC SC (1)

where F is the Fock matrix, C is the matrix of MO coefficients,
S is the atomic orbital overlap matrix, and ε is the orbital
energy vector. Equation 1 is nonlinear and is solved iteratively.
At each iteration, the Fock matrix is formed using the current
density matrix, which is based on the choice of occupied MOs.
Conventionally, this choice is made by the Aufbau principle.

Optimization to an SCF solution modeling an excited
electronic state may be facilitated by imposing additional
control over the spin−orbitals through symmetry restrictions,
overlap matching, inclusion of additional constraints on the
Lagrangian functions, or other means.32,76−83 Maximum
overlap methods (MOMs) alter the standard SCF procedure
by employing a modified-Aufbau rule whereby some metric of
overlap, or agreement, between current-cycle Fock eigenstates

and the occupied MOs of the user-defined target electronic
structure is used to select occupied MOs. MOMs are
particularly attractive members of this set of approaches as
they often require only a minor modification of the existing
SCF code infrastructure and can immediately be used with
existing derivative and property theories in place for SCF wave
functions/determinants. The choice for the non-Aufbau metric
can result in very different performance by MOM calculations.
Additionally, earlier MOMs tied the non-Aufbau metric
evaluation at each SCF cycle to the previous iteration. More
recently, Gill and co-workers have shown that a better
approach is to tie the non-Aufbau metric to the initial, often
user-defined, target electronic structure. Such an approach is
termed the initial maximum overlap method (IMOM).

In an effort to understand and establish a physical
interpretation for the performance of different non-Aufbau
metrics, it was recently suggested that the non-Aufbau metric
that arises naturally from a projection-based framework (vide
inf ra) is both robust and effective at achieving SCF
convergence and optimizing to the desired electronic structure.
Using this particular non-Aufbau metric choice within an
IMOM scheme gives rise to the specific model that we refer to
as PIMOM. The PIMOM non-Aufbau metric is derived by
beginning with the target system’s density projector

= | |i i
i

N
target target target

(2)

In the MO basis of the current SCF cycle, eq 2 is given by

= | | = | |P p q p i i qpq
i

target target target target

(3)

which may be rewritten as

= | |P C C C Cpq
i

p i i q
target target target

(4)

where ⟨μ|ν⟩ = Sμν are the AO overlap matrix elements, and
Ctarget is the target set of MO coefficients. In eq 4, the target
density matrix in the AO basis may be expressed as Pμν

target =
∑iCμi

targetCνi
target. Thus, eq 4 may be written in the matrix form as

=P C SP SCT
(MO)
target target

(5)

where the subscript “MO” has been included to clearly indicate
that the resulting density matrix is given in the current MO
basis. The PIMOM scheme uses eq 5 to define the non-Aufbau
metric as

=s P
q

pqp
target

(6)

sp values will be used to dictate the order of the orbitals at each
SCF cycle, where the orbitals with the largest sp value will be
occupied first. As with all MOMs, different SCF excited-state
solutions are accessed by generating sp values using a user-
determined target solution.23

2.2. Approximate Projection Method. Spin contami-
nation can affect the quality of excited-state energies and
properties in Δ-SCF calculations due to the open-shell nature
of most one-electron excitations.27,77,84 To address this
potential impact, we have used the Yamaguchi approximate
projection (AP) model with open-shell calculations described
below.85 Our group has expanded the AP model to include
analytical first and second derivatives.74,75 Several recent
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papers have demonstrated the effectiveness of this model and
the conditions for which the AP model is suitable.71,72,86,87 In
this subsection, we briefly outline the AP model.

To carry out AP calculations, two converged determinants
are required: (1) an open-shell broken-symmetry state, i.e., the
contaminated state, and (2) a spin-pure high-spin state that is
taken to be degenerate with the state contaminating the
broken-symmetry solution. Using the results of those two SCF
solutions, the AP energy expression is given by

= +E E E(1 )AP LS HS (7)

where

=
+S S S

S S

( 1)z zHS
2

,LS ,LS

HS
2

LS
2 (8)

In eqs 7 and 8, the “LS” subscript refers to the (broken-
symmetry) low-spin solution and the “HS” subscript refers to
the (spin-pure) high-spin state.

As discussed below, we have used a “contamination
percentage” measure to identify excited states suffering from
heavy spin contamination. The contamination percentage, α*,
is given by

* = ×
S S

S1
100pure

2
SCF

2

SCF
2 (9)

The closer the value of α* to zero, the less impact spin
contamination has on a given result. Thus, for systems with α*
close to zero, AP will have mild or no effect on the calculated
energies.

2.3. Computational Details. Δ-SCF results are reported
below and compared with results obtained using CIS, TD-
DFT, and experimental data. All Δ-SCF ground- and excited-
state calculations were carried out using Becke’s three-
parameter hybrid functional with Lee−Yang−Parr correlation
(B3LYP)88 and the Hartree−Fock method.89 Four different
basis sets have been used: 6-311G, 6-311++G(d,p),90−94 aug-
cc-pVDZ, and aug-cc-pVTZ.95−102 Δ-SCF results were
obtained using the PIMOM method. All electronic structure
calculations were carried out using a local development version
of the GAUSSIAN suite of electronic structure programs.103

Molecular geometries for ground-state structures were
optimized using standard methods,104 and the reported
potential energy minima were verified using analytical
second-derivative calculations. The ground-state minimum
structures were used as a starting geometry for excited-state
geometry optimizations using Δ-SCF, CIS, and TD-DFT
methods. Excited-state optimized geometries were also verified
using analytical second-derivative calculations. Initial electronic
structure guesses for Δ-SCF calculations were generated by
permuting MOs of the converged ground-state solution
resembling the desired character of the target excited state.
AP-Δ-SCF calculations and optimizations were carried out on
the spin-contaminated systems and verified using analytical
second-derivative calculations.74

3. RESULTS AND DISCUSSION
Excited-state computation tools are expensive and somewhat
limited compared to the ground-state toolbox, especially for
polyatomic molecules.

The focus of the present study is the investigation of Δ-SCF
for calculating excited-state vibrational frequencies. This work

also demonstrates the use of PIMOM as an SCF driver.
Additionally, we consider the AP model as a means for
improving energies, geometries, and vibrational frequencies
that may be affected by spin contamination. To assess the
quality of the calculated results, we have compiled a data set
chosen from available experimental gas-phase spectroscopy
studies that can also be evaluated using the well-known CIS
and TD-DFT methods for comparison.105−114 The data set
contains various types of excited states and spin multi-
plicities.115

3.1. Adiabatic Excitation Energies. Δ-SCF meth-
ods116,117 have been successful in calculating vertical excitation
energies, especially when the SCF optimizations have been
guided by MOM algorithms.22−25,84,118Table 1 shows the

adiabatic excitation energies (AEEs) calculated using TD-DFT
and Δ-B3LYP with the two basis sets considered. TD-DFT
performed better than Δ-B3LYP with mean absolute errors
between 0.33 and 0.17 eV compared to 0.76 and 0.68 for Δ-
B3LYP relative to experiment.

Upon increasing the basis set from 6-311G to 6-311+
+G(d,p), the mean absolute error (MAE) of TD-DFT and Δ-
B3LYP calculated AEEs decreased by 0.15 and 0.08 eV,
respectively (Figure 1). This improvement can be explained by
the addition of polarization and diffuse functions, which
provides a better qualitative description of electronic excited
states.119 A similar behavior is observed using correlation-
consistent basis sets, for which the MAE for both TD- and Δ-
B3LYP-based calculations decreased by 0.07 and 0.04 eV,
respectively, upon increasing the basis set from aug-cc-pVDZ

Table 1. Calculated Adiabatic Excitation Energies (eV)
Using TD-DFT and Δ-DFT in Comparison with
Experimental Values

6-311G 6-311++G(d,p)

sys exp. TD-DFT Δ-DFT TD-DFT Δ-DFT

BH 2.87 2.75 1.67 2.74 1.69
BF 6.34 6.13 4.24 6.09 4.31
SiO 5.31 4.83 4.12 5.20 4.44
CO 8.07 7.51 6.21 7.95 6.60
N2 8.59 7.92 6.97 8.50 7.53
ScO 2.04 1.35 1.77 2.00 1.72
BeH 2.48 2.58 2.37 2.56 2.35
AsF 3.19 2.95 2.96 2.87 2.87
NH 3.70 3.98 3.64 3.90 3.61
CrF 1.01 1.47 1.44 1.25 1.23
CuH 2.91 3.35 2.46 2.98 2.70
Li2 1.74 1.93 1.09 1.93 1.07
Mg2 3.23 3.45 2.32 3.26 2.26
PH2 2.27 2.19 2.13 2.34 2.24
CH2S 2.03 2.04 1.64 2.06 1.67
C2H2 5.23 4.92 4.64 4.70 4.38
C2H2O2 2.72 2.21 1.93 2.42 2.12
HCP 4.31 3.91 3.74 3.86 3.60
HCN 6.48 6.02 5.70 5.95 5.59
C3H4O 3.21 2.98 2.64 3.15 2.78
CH2O 3.49 3.36 2.79 3.59 3.01
CCl2 2.14 -a 1.36 1.99 1.29
SiF2 5.34 4.85 3.79 5.31 3.96
MAE 0.33 0.76 0.17 0.68
RMSE 0.38 0.96 0.23 0.86

aTD-DFT failed to optimize the excited state.
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and aug-cc-pVTZ. This improvement shows milder basis set
dependence than that observed with the Pople basis sets,
which is not unexpected since both correlation-consistent basis
sets use a larger number of polarization and diffuse functions.

In the case of CIS, the MAEs range between 0.41 and 0.55
eV, which is smaller than the MAE obtained using Δ-HF
(1.00−1.14 eV), as reported in Table 2. Upon adding diffuse
and polarization functions, unlike TD-DFT, the excitation
energy accuracy decreased, where the MAE obtained using 6-
311G is smaller than that of 6-311++G(d,p) by 0.14 eV
(Figure 2). On the other hand, for correlation-consistent basis
sets, a smaller difference is observed, 0.05 eV, favoring the
larger basis set. Δ-HF showed an improved accuracy as the
basis set size is increased, where MAE decreased by 0.14 eV
from the smaller to the larger Pople basis set and decreased by
0.12 eV from the smaller to the larger correlation-consistent
basis set.

Absolute errors in TD-DFT and Δ-B3LYP AEEs are
noticeably smaller than those found with CIS and Δ-HF,
which is expected due to the correlation effects included in
DFT. The AEEs obtained using Δ-SCF of the investigated
systems here showed an underestimation, which can be
attributed to several factors such as incomplete treatment of
relaxation and correlation effects, as well as spin contami-
nation. In general, the correct description of excited states
requires a balanced treatment of orbital relaxation and
correlation effects.

3.2. Excited-State Vibrational Analysis. Before explor-
ing excited-state properties, it is important to evaluate the
quality of the excited-state geometries and how well SCF-based

geometries are compared to those determined using conven-
tional excited-state models. First, in Table 3, we compare the
bond lengths of the diatomic molecules. The bond lengths
obtained using PIMOM-SCF are in very good agreement with
those obtained with either TD-DFT and CIS. The absolute
average difference of DFT methods is 0.057 Å without AP and
0.025 Å with AP. The average difference for Hartree−Fock
(HF) and CIS is slightly higher than those with DFT but still
very close with 0.083 Å without AP and 0.046 Å with AP. A
similar behavior is observed for triatomic molecules (Table 4)
where the differences in bond lengths and angles were small
between all methods considered. For polyatomic molecules,
the root-mean-square deviation (RMSD) is also computed to
compare the geometries obtained with and without PIMOM-
SCF (Table 5). The average deviations using both DFT and
HF methods are low and range between 0.016 and 0.042 Å.
Given the geometries obtained with PIMOM-SCF do not
differ much from those with conventional excited-state
methods, we then examined the quality of SCF-based
excited-state vibrational frequencies.

The computed excited-state frequencies from all methods
gave smaller relative percent errors than the relative percent
errors of the adiabatic excitation energies (Tables 6 and 7).
Unlike the computed excitation energies, the mean absolute
errors for the excited-state frequencies obtained using Δ-SCF
are less than those obtained using the TD-DFT or CIS
methodologies by 11−28 cm−1, while the RMSEs are similar
and range between 4 and 9 cm−1.

Δ-HF displayed an MAE that ranges between 112 and 139
cm−1, significantly higher than the MAE obtained using DFT,

Figure 1. Mean absolute errors in (a) adiabatic excitation energies and (b) vibrational frequencies obtained using TD-DFT, Δ-DFT, and AP-Δ-
DFT. root mean square errors (RMSE) in (c) adiabatic excitation energies and (d) vibrational frequencies obtained using TD-DFT, Δ-DFT, and
AP-Δ-DFT are also shown.
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which attained an uppermost MAE of 79 cm−1. Nevertheless,
Δ-HF performed similarly or better than CIS in all cases
considered in this data set. For example, for the ν3(a′) mode of
the CH2S, 11A2 excited-state CIS resulted in a 30% error, much
higher than the error resulting from Δ-HF (9%). Also, CIS
gave large errors in describing the excited states of carbonyl
compounds, such as C3H8O, CH2O, and (CHO)2. On the
other hand, Δ-HF calculations gave much lower errors for
most of the studied vibrational modes.

Unsurprisingly, TD-DFT and Δ-DFT performed better than
CIS and Δ-HF for calculating excited-state vibrational
frequencies. In general, the quality of calculated excited-state
vibrational frequencies was better with Δ-B3LYP than with
TD-B3LYP with all of the basis sets considered here. The
lowest MAE was reported using 6-311++G(d,p). As such, we
focus the remainder of our discussion on specific results using
this basis set. In cases such as the 1 1Σu

+ state of Mg2, the ν2(a1)
mode of the 11B1 of CCl2, and the ν4(a1) mode of the 11A″
state of CH2O, Δ-B3LYP yielded remarkably more accurate
vibrational frequencies than TD by 22, 36, and 14%,
respectively. These results may be due to the incomplete
TD-DFT treatment of the correlation effects in the excited
states arising from nonvalence and degenerate orbitals.120 On
the other hand, Δ-B3LYP errors for the 11Σu

+ of Li2 and 11Π of
CO were greater than TD-B3LYP by 16 and 10%, respectively.
These results may be connected to orbital relaxation in the Δ-
B3LYP calculation.

The MAE of TD ranges between 73 and 107 cm−1 lower
than that of CIS, which ranges between 139 and 142 cm−1.
These results may be attributed to the exchange−correlation

Table 2. Calculated Adiabatic Excitation Energies (eV)
Using CIS and Δ-HF in Comparison with Experimental
Values

6-311G 6-311++G(d,p)

sys exp. CIS Δ-HF CIS Δ-HF

BH 2.87 3.03 1.64 2.89 1.50
BF 6.34 6.49 4.39 6.54 4.51
SiO 5.31 5.23 2.90 6.09 3.74
CO 8.07 8.01 6.36 8.74 7.00
N2 8.59 8.65 7.25 9.45 8.06
ScO 2.04 2.30 1.60 2.07 2.05
BeH 2.48 2.78 2.64 2.76 2.64
AsF 3.19 3.83 3.57 3.76 3.44
NH 3.70 4.05 3.79 4.18 3.84
CrF 1.01 1.15 0.98 0.99 0.60
CuH 2.91 3.97 1.70 3.93 1.42
Li2 1.74 2.11 0.96 2.10 0.92
Mg2 3.23 3.59 2.69 3.34 2.46
PH2 2.27 2.33 2.20 2.68 2.38
CH2S 2.03 1.99 0.58 2.71 0.90
C2H2 5.23 4.68 4.07 4.49 3.71
C2H2O2 2.72 3.24 3.12 3.56 3.30
HCP 4.31 3.46 3.03 3.59 2.95
HCN 6.48 5.54 4.88 5.95 4.78
C3H4O 3.21 4.36 1.29 4.58 1.67
CH2O 3.49 3.99 1.51 4.10 1.66
CCl2 2.14 2.08 0.69 2.40 1.07
SiF2 5.34 5.69 3.97 5.96 4.09
MAE 0.41 1.07 0.55 0.97
RMSE 0.52 1.27 0.63 1.13

Figure 2. Mean absolute errors in (a) adiabatic excitation energies and (b) vibrational frequencies obtained using CIS, ΔHF, and AP-ΔHF. RMSE
(a) adiabatic excitation energies and (b) vibrational frequencies are also reported for the same models.
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effects in DFT. This gives DFT a clear advantage over the CIS
and HF methods.

Basis set effects are also less significant in the accuracy of the
calculated vibrational frequencies than in adiabatic excitation
energy calculations. In the case of Pople-style basis sets, the
addition of diffuse and polarization functions lowered the
excited-state fundamental vibrational frequency MAE by 34
and 17 cm−1 for TD- and Δ-B3LYP, respectively. Correlation-
consistent basis sets showed similar behavior, with an
improvement in accuracy of 8 cm−1 for both TD- and Δ-
B3LYP, respectively. The lowest MAEs of 62 cm−1 with Δ-
B3LYP and 73 cm−1 with TD were given by calculations
employing the 6-311++G(d,p) basis set.

3.3. Spin Contamination. In many cases, excited states
obtained using the Δ-SCF approach are spin-contaminated,
motivating the examination of spin purification meth-
ods.27,85,121−123 As mentioned above, we have used the AP
model of Yamaguchi and co-workers,85 for which analytic first
and second derivatives have been reported.71,72,74,75,86,87 Using
eq 9 and a threshold of 5% spin contamination, 17 cases out of
25 were identified as being spin-contaminated with Δ-DFT

and explored further using the AP model (Table 6). It is
important to note that the AP model is expected to behave well
only for situations where the spin-contaminated state has only
one higher spin contaminant to be projected out. With this in
mind, we identified C2H2 and CO as systems inappropriate for
this AP approach. Using HF with all of the basis sets
considered, the triplet state of C2H2 exhibited geometric
symmetry breaking, C2h to Cs, and the different symmetries of
the low- and high-spin states caused difficulties in AP
convergence. Using HF/6-311G, CO was also excluded since
the triplet solution showed significant spin contamination. For
all other cases, AP showed a similar performance with all basis
sets considered. Thus, we limit our discussion of spin
purification results to the 6-311++G(d,p) basis set. Full details
obtained using all model chemistries considered in this work
are provided in the Supporting Information (Tables S1−S16).

In agreement with recent work from Herbert and co-
workers,27 our results show that the AP model yields
significant corrections to energies for all model chemistries
considered. As shown in Table 6 and Figures 1 and 2, the MAE
for Δ-SCF methods incorporating AP corrections decreased by

Table 3. Absolute Difference in Bond Lengths (Å) for Diatomic Molecules Using (AP)Δ-B3LYP and TD-DFT and (AP)Δ-HF
and CIS

sys. Δ-B3LYP/TD-DFT AP-Δ-B3LYP/TD-DFT Δ-HF/CIS AP-Δ-HF/CIS

BF 0.010 0.007 0.003 0.008
BH 0.023 0.014 0.011 0.004
CO 0.020 0.011 0.022 0.028
CuH 0.019 0.036 0.141 0.075
Li2 0.194 0.038 0.143 0.091
Mg2 0.041 0.075 0.225 0.086
N2 0.007 0.003 0.014 0.005
SiO 0.142 0.017 0.105 0.072
average difference 0.057 0.025 0.083 0.046

Table 4. Absolute Difference in Bond Lengths (Å) and Angles (°) for Triatomic Molecules Using (AP)Δ-B3LYP and TD-DFT
and (AP)Δ-HF and CIS

sys. Δ-B3LYP/TD-DFT AP-Δ-B3LYP/TD-DFT Δ-HF/CIS AP-Δ-HF/CIS

CCl2 BL1 0.029 0.024 0.026 0.015
BL2 0.029 0.024 0.026 0.015
angle 8.603 7.601 3.611 0.879

HCN BL1 0.007 0.003 0.004 0.014
BL2 0.003 0.001 0.011 0.014
angle 1.314 0.566 0.458 4.361

HCP BL1 0.006 0.005 0.004 0.004
BL2 0.002 0.002 0.003 0.002
angle 2.021 2.141 3.611 0.981

SiF2 BL1 0.019 0.012 0.001 0.003
BL2 0.019 0.012 0.001 0.003
angle 1.140 0.904 1.466 2.260

average difference BL1 0.015 0.011 0.009 0.009
BL2 0.013 0.010 0.010 0.009
angle 3.269 2.803 2.287 2.120

Table 5. Computed RMSD (Å) for Polyatomic Molecules Using (AP)Δ-B3LYP and TD-DFT and (AP)Δ-HF and CIS

sys. Δ-B3LYP/TD-DFT AP-Δ-B3LYP/TD-DFT Δ-HF/CIS AP-Δ-HF/CIS

C2H2O2 0.0048 0.0021 0.0056 0.006
C3H4O 0.0274 0.0246 0.0336 0.0348
CH2O 0.0238 0.0113 0.0671 0.0426
CH2S 0.0065 0.038 0.0618 0.0729
average deviation 0.016 0.019 0.042 0.039
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∼0.4 eV for Δ-DFT and ∼0.5 eV for Δ-HF model chemistries.
For the specific cases of BF and SiF2, AP-Δ-DFT reduced the
error by 0.95 and 0.76 eV, respectively (using the 6-311+
+G(d,p) basis set). Similar behavior has been observed for the
AP-Δ-HF method, where the error of BF and SiF2 dropped by
1.63 and 0.67 eV, respectively. On the other hand, it is well
known that Δ-SCF excitation energies for open-shell singlets,
despite the spin contamination, are often unexpectedly
accurate.22−24 This was observed in the cases of CuH where
the error with AP dropped from 0.21 to 0.09 eV, and for CH2S
where the error decreased from 0.36 to 0.28 eV. We note that
while these last examples demonstrate smaller energy
corrections with AP than the more significant cases listed
earlier, they are nevertheless meaningful energy corrections
(Table 7).

The noted improvement in Δ-SCF excited-state energies
with AP spin purification was not as apparent with excited-state
fundamental frequencies (Figures 1 and 2). AP provided
modest improvements for calculated vibrational frequencies
when diffuse and/or polarization functions are included in the
basis sets. In such cases, the MAE decreased by ∼4 cm−1 and
the RMSE decreased by ∼11 cm−1. However, AP calculations
using the 6-311G basis set resulted in MAE and RMSE
increases by ∼12 cm−1 relative to the corresponding spin-
contaminated results. Interestingly, the MAE of excited-state
frequencies obtained by AP-Δ-HF increased relative to Δ-HF
by ∼4 cm−1, while the RMSE decreased by ∼10 cm−1 when
using AP. This suggests that, while the mean error slightly
increased with spin purification, the spread of errors noticeably
decreased using AP.

Overall, it appears that spin purification is a useful tool for
improving the general performance of Δ-SCF calculations
when studying excited states. Importantly, we note that both
Δ-DFT and AP-Δ-DFT perform better than TD-DFT in
predicting vibrational frequencies relative to the experiment
(see Figure 1). AP-Δ-SCF is expected to perform comparably
to Δ-SCF methods, but some caution is warranted based on
the system under investigation. The spin correction results

shown here are expected and agree with a previous study
suggesting that spin projection often does not result in large
structural changes but can give meaningful changes in
energy.87

3.4. Initial Guess Generation. The choice of the SCF
initial guess determinant is crucial to the success of MOM
calculations. An orbital permutation from the reference ground
state to match the excited state in nature and symmetry often
suffices as an initial guess for the PIMOM framework. Indeed,
that approach led to successful outcomes for nearly all of the
calculations included in this work.

However, that straightforward and intuitive approach is not
always successful. One such case was the first 1Π excited state
of SiO. TD-DFT shows three configurations involved in
representing this excitation, with an amplitude of 0.17162 for
the HOMO → LUMO+1 determinant, 0.67339 for the
HOMO → LUMO determinant, and −0.12437 for the
HOMO−3 → LUMO determinant. Generating a PIMOM
initial guess by permuting the highest occupied molecular
orbital (HOMO) with the lowest unoccupied molecular orbital
(LUMO) or the HOMO with LUMO+1 led to an SCF
excited-state representation giving an excitation energy of 4.44
eV. However, permuting the HOMO-3 with the LUMO led to
an approximate excited state located 8.20 eV above the ground
state. Clearly, the last altered determinant did not lead to the
desired result. However, both of the first two permutations led
to the correct state.

An alternative also explored for this work involved carrying
out a single-point TD-DFT energy calculation followed by a
natural transition orbital (NTO) transformation corresponding
to the state of interest.124 Using the resulting NTOs to define
the initial guess orbitals led us to the correct state in all cases,
including the challenging case of SiO. We suggest the NTO
model as an approach for generating initial states, particularly
in instances where there is no clear one-electron transition in
the canonical molecular orbital basis. Further examination of
possible approaches for selecting initial target determinants
remains an area of study for us (and others).

Table 6. Adiabatic Excitation Energies before and after Approximate Projection on Systems with Spin Contamination above
5%a

sys. exp. TD Δ-B3LYP AP−Δ-B3LYP CIS Δ-HF AP−Δ-HF

BH 2.87 2.74 1.69 2.30 2.89 1.50 2.68
BF 6.34 6.09 4.31 5.26 6.54 4.51 6.54
SiO 5.31 5.20 4.44 4.83 6.09 3.74 3.97
CO 8.07 7.95 6.60 7.37 8.74 7.00 8.63
N2 8.59 8.50 7.53 8.03 9.45 8.06 8.83
CuH 2.91 2.98 2.70 3.00 3.93 1.42 1.93
Li2 1.74 1.93 1.07 1.21 2.10 0.92 1.47
CCl2 2.14 1.99 1.29 1.81 2.40 1.07 2.18
CH2S 2.03 2.06 1.67 1.75 2.71 0.90 0.92
Mg2 3.23 3.26 2.26 2.70 3.34 2.46 3.79
C2H2O 2.72 2.42 2.12 2.31 3.56 3.30 3.31
HCP 4.31 3.86 3.65 3.83 3.59 2.95 3.26
CH2O 3.49 3.59 3.01 3.17 4.10 1.66 1.76
C3H4O 3.21 3.15 2.78 2.87 4.58 1.67 1.73
SiF2 5.34 5.31 3.96 4.72 5.96 4.09 5.92
HCN 6.48 5.95 5.59 5.85 5.95 4.78 5.23
C2H2 5.23 4.70 4.38 4.61 4.49 3.71
MAE 0.17 0.86 0.47 0.63 1.22 0.76
RMSE 0.22 0.97 0.52 0.70 1.29 0.91

a6-311++G(d,p) basis set was used.
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4. CONCLUSIONS
In this paper, we presented a Δ-SCF approach using the
PIMOM framework to calculate AEEs and vibrational
frequencies. Although TD-DFT and CIS provided slightly
better energetics than PIMOM, the excited-state vibrational
frequencies obtained with Δ-SCF were in better agreement
with experimental results than either CIS or TD-DFT. The AP
model improved the AEEs for both HF and DFT and it did not
have a significant effect on the vibrational frequencies.

Since SCF calculations are more affordable than available
excited-state methods, especially for large systems, PIMOM
presents a viable computational approach for modeling excited-
state molecular properties with ground-state computational
cost. While AP-corrected second derivatives have a minimal
effect on calculated frequencies, this work demonstrates the
significance of using the AP model to correct AEEs. Given the
results shown in this work, the AP-Δ-SCF approach offers
comparable performance to single-reference excited-state
models such as CIS and TD-DFT with a lower computational
cost.

We note that most of the test cases included in this work are
relatively small. However, we believe that this initial bench-
mark set provides for a reasonable examination of using Δ-SCF
methods for evaluating excited-state energies and vibrational
frequencies. Furthermore, this work demonstrates the useful-
ness of SCF driver methods such as PIMOM for facilitating
such calculations. Future work will further explore the use of
PIMOM-based Δ-SCF calculations for studying electronic
excited-state chemistry.
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