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Abstract

There has been little cross-fertilization between research on ac-
tive learning and teaching, despite extensive conceptual simi-
larities. The current study aims to bridge the gap by show-
ing that engaging in active learning can influence subsequent
teaching performance. In a one-dimensional boundary teach-
ing task, participants who first took the role of an active learner
went on to become better teachers than participants who did
not. In order to disentangle the effect of active selection of
samples from their information content, the performance of
active learners was compared to that of yoked passive learn-
ers. While prior passive learning also significantly boosted
teaching performance, it did so to a lesser extent. However, in
paired comparisons, teachers with active learning experience
did not differ significantly from their yoked-passive learning
counterparts. Based on the current results we cannot argue
for a teaching benefit specific to active learning as opposed to
a more general improvement caused by experiencing the task
from the learner’s perspective. However, we suggest that this
is a promising line of inquiry using more complex learning and
teaching tasks.

Keywords: teaching; active learning; evidence selection

Introduction

Perhaps the most enduring debate in the education litera-

ture, as well as around kindergartens and classrooms, con-

cerns the virtues of exploratory play in contrast to the canon-

ical, largely passive mode of teacher-led instruction (Bruner,

1961; Mayer, 2004). The discussion has been naturally

phrased in terms of the relative benefits and disadvantages

that the learner incurs when learning from self-guided discov-

ery compared to direct instruction. However, the complemen-

tary, and equally important, link between efficient self-guided

learning and good teaching has remained largely unexplored.

The common thread running between teaching and active

learning is easy to identify when comparing their formal de-

scriptions. Recent rational-agent models have conceptual-

ized teaching as a recursive process in which the teacher and

the learner reason about each other. Specifically, the teacher

selects training samples for the learner such that, given the

learner’s prior knowledge and inference making mechanisms,

these samples would lead the learner to the desired conclu-

sion efficiently, i.e. by requiring the smallest number of sam-

ples (Shafto, Goodman, & Griffiths, 2014). Conversely, the

learner interprets the observed samples assuming they were

generated by this pedagogical process (as opposed to ran-

domly). Similarly, an ideal active learner will also sample the

environment strategically. However, they will do so by di-

recting their information gathering (e.g. by moving their eyes

to explore a visual scene or choosing interventions on the en-

vironment) in order to maximize their expected information

gain (Yang, Wolpert, & Lengyel, 2018). There are two ways

in which active learning can be advantageous. First, obser-

vations collected in a strategic way will be more informative

for any learner (not just the one sampling information); for in-

stance, by avoiding irrelevant or redundant evidence. Second,

and more importantly, there is an added advantage specific to

the active learner stemming from the fact that they sample in-

formation in light of their prior knowledge and the hypotheses

that they wish to test. This effect was demonstrated in exper-

iments in which the data selected by an active learner was

also presented to a yoked ”passive” learner, and, despite the

observations being matched, active learners performed better

than their yoked passive counterparts (Markant & Gureckis,

2014).

Thus, both being a good teacher and a good active learner

rest on the same general ability to evaluate the potential value

of a new piece of evidence relative to a current state of knowl-

edge and a task. Nonetheless, there are important differences.

First, teaching brings the added complexity of selecting data

for the use of another agent, who might differ widely from

the teacher in their state of knowledge and inference mak-

ing. In line with this, Bass, Shafto, and Gopnik (2017) have

linked Theory of Mind (ToM) development to children’s ped-

agogical sampling ability. Second, the active learner does not

have access to the target hypothesis, and thus can only select

data that minimize uncertainty. However, Yang, Vong, Yu,

and Shafto (2019) recently proposed a reconceptualization of

active learning as self-teaching by envisioning a learner who

simulates an uninformed teacher whose task is limited to pro-

viding queries. In this framework, the self-teacher does not

optimize for expected information gain, although this will of-

ten be the collateral result. Thus, despite differences, it is still

feasible to think about teaching and active learning as two

highly related cognitive processes.

Given the computational similarity of teaching and active

learning, is it possible that they are also integrated through

linked processes in human behavior? In other words, would

it be possible to hone teaching skills through active learning?
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Figure 1: Example image array from the teaching task. In this trial, food items were sorted from left to right in ascending

order of their vitamin B content. The black vertical bar represents the daily recommended dose of vitamin B, which is the

boundary the participant had to teach. In this case, the participant clicked on the two images closest to the boundary, which

were automatically labelled.

Intuitively, taking the perspective of the learner prior to

teaching should be a useful experience. It could allow the

teacher to better understand, even if implicitly, how a learner

would make inferences to solve the task at hand based on the

data provided, which in turn would help refine the data selec-

tion process.

Taking this reasoning one step further, having the experi-

ence of being an active learner prior to teaching should gen-

erate robust insights about how to select good examples for

teaching in similar tasks. Additionally, if both tasks rely on

a core ability to sample environmental data efficiently, the

transfer could occur automatically during learning, without

the knowledge or expectation that the acquired information

will need to be used for teaching in the future. Furthermore,

active learning should improve teaching performance beyond

passive learning (even when the same information content is

acquired) if the active selection of data was the crucial driver

of the learning effect, rather than the benefit of familiarity

with the teaching task or taking the perspective of a learner.

Experiment

In order to test the hypothesis that active learning improves

teaching performance, we designed a simple task in which

participants were required to both learn a one-dimensional

categorization boundary, and teach it, in counterbalanced or-

der. Thus, there were two independent groups of participants

in our design, those who learned actively first and then taught,

and those who first taught and then performed active learning.

In addition, to probe whether the effect learning on teaching

performance was specific to active learning, a yoked control

group performed the same teaching task after learning pas-

sively from watching the active learners labeled queries.

Method

Participants Eighty-eight participants (54 female, Mage =

24 years, range = 18 - 42 years old) were recruited from the

local population through the university online research par-

ticipation system and the student union. Ethical approval was

obtained from the United Ethical Review Committee for Re-

search in Psychology (EPKEB) in Hungary.

Tasks All tasks (active learning, passive learning, and

teaching) consisted of three trials. In each trial, participants

were shown eight images in a horizontal array such as the

one displayed in Figure 1. Participants were told that the

images were sorted left-to-right according to a given ”key”

feature. For instance, animals were sorted according to their

speed relative to body size or the average amount of time they

sleep, or foods were sorted by their carbon footprint or their

vitamin content. Images belonged to one of two categories

(which were clearly marked at the extremes of the image

array) according to whether their key feature was below or

above a “boundary” (threshold value) which lied between two

adjacent images (i.e. at one of seven possible locations). Un-

known to the participants, the true boundary locations which

dictated the category membership of the images were uni-

formly sampled in each trial from all the possible locations.
1

The categories used for the learning and teaching tasks

were randomly selected for each participant. Images and cat-

egory cover stories were only presented once throughout the

entire experiment.

In active learning trials, participants first saw the im-

age array alongside the description of the categories and the

boundary, following which they were told that their task was

to find the boundary by querying two images. An image could

be queried by clicking on it, which immediately revealed its

category membership through the color of the frame drawn

around it. After the second query, participants were asked to

pinpoint where they thought the boundary was located, again

by clicking on one of the seven possible boundaries. Partic-

ipants received feedback on whether they were correct, un-

1Participants were provided with a description of a seemingly
objective classification boundary (e.g. that slow and fast animals
were separated by the speed of the average human scaled by size).
These descriptions were intentionally chosen such that the partici-
pants were unlikely to have any strong priors about the location of
the boundary. Knowing the participants’ prior was essential because
it determined the optimal query choice in active learning. The six
categories and boundary descriptions used in the experiment were
chosen based on a pilot in which participants were asked to select
the boundary location by relying merely on their prior knowledge.
The distribution of chosen boundaries (across participants) for the
items included in the current experiment was not significantly dif-
ferent from the uniform distribution.
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lucky (they selected a boundary compatible with the labelled

images that was not the true boundary) or incorrect (selected

an incompatible boundary).

The passive learning trials had the same structure, except

that the labels of two images were sequentially revealed to the

participants before they had to make their decision about the

location of the boundary. Crucially, for each passive learning

participant, the images labelled corresponded to the queries

of a previous active learning participant.

In teaching trials, participants were shown the boundary

separating the two categories and were asked to teach it to

another participant who they were told would take part in the

experiment at a later time. It was made explicit that the other

participant would be presented with the same set of sorted

images. The participant only needed to click on an image

to mark it as an example, and it was automatically labelled.

Mirroring the learning tasks, participants were only allowed

to provide two examples, which is the number of examples

sufficient to fully specify the correct boundary. Intuitively,

selecting two adjacent images with different labels is suffi-

cient to identify the boundary in this task.

Materials All the images were selected from the MultiPic

databank of standardized color drawings of concrete concepts

(Duabeitia et al., 2018).

Procedure Participants were pseudo-randomly assigned to

one of three groups: active learning followed by teaching (N

= 29), passive learning followed by teaching (N = 29), and

teaching followed by active learning (N = 30). The experi-

ment was presented on a 27inch screen in a quiet room and

lasted for an average of 20 minutes (unspeeded). Following

the experiment, participants completed an open-ended ques-

tionnaire about the strategies that they used to solve the tasks.

Quantifying performance Teaching performance was

measured by the information gain, IGteach, which is the

amount of entropy by which the teacher reduced the imag-

ined learner’s prior entropy H(b) by labelling two images:

IGteach =H(b)−H(b|s1,s2, l1, l2)

where s, l, and b respectively denote image stimuli, category

labels, and potential boundary locations. H is the Shannon

entropy over the possible hypotheses, the prior entropy is

H(b) =−∑b∈B P(b) log2
1

P(b) , where P(b), the learner’s prior

over the boundary locations, is assumed to be uniform. The

optimal teaching strategy is to label the examples immedi-

ately preceding and following the boundary as this will elim-

inate any uncertainty about the location of the boundary, thus

reducing all of the original entropy. On the other hand, se-

lecting an example set that will leave the learner uncertain

about the true hypothesis because many potential boundaries

compatible with the example set will translate into a lower

information gain.

Using the observed information gain to evaluate active

learning performance would introduce arbitrariness since it

cannot distinguish a learner’s well-planned query from a

lucky one. An ideal learner should choose a query in light of

their uncertainty about the labels that will be observed. First,

learners should compute the expected information gain of the

queries by weighing the posterior entropy by the probability

of observing the given labels for the query made and then

choose the query that maximizes the expected gain. There-

fore, EIGlearn, the sum of the expected information gain of

the first and second queries, was used instead of observed in-

formation gain. The expected information gain of the first

query is:

EIGlearn(s1) =H(b)− ∑
l1∈L

H(b|s1, l1) · ∑
b∈B

P(l1|s1,b)P(b)

After observing the first label, the prior over the boundary lo-

cations is updated, and the expected information gain is com-

puted again relative to the entropy remaining after the first

labelled sample:

EIGlearn(s2|s1) =

=H(b|s1, l1)− ∑
l2∈L

H(b|s2, l2,s1, l1) · ∑
b∈B

P(l2|s2,s1, l1,b)P(b)

Unless otherwise specified, statistical analyses of partici-

pants’ responses were performed based on the average mea-

sures of IGteach and EIGlearn in the three trials of each task.

Decisions about the boundary location In learning trials,

after observing two labelled stimuli, participants marked the

location of the categorization boundary. Their choice could

be assessed based on whether or not the selected bound-

ary was compatible with the labelled images they had seen.

However, simply using the proportion of compatible answers

(across the three trials) to assess their performance ignores the

fact that trials differed in the number of remaining compatible

boundaries. To control for this and characterize performance

appropriately, we fitted a model that captured the intuition

that participants behaved optimally and selected (randomly)

from among the remaining compatible boundary locations in

some r fraction of trials, while in the rest of the trials they

“lapsed” and selected a boundary randomly among all loca-

tions:

P(choice = bi|s1,s2, l1, l2) =

= r ·1{bi ∈ B
(i)
compatible} ·

1
∣

∣

∣
B

(i)
compatible

∣

∣

∣

+(1− r) ·
1

|B|

Thus, r = 1 indicates optimal behavior, while r = 0 indicates

chance performance. We estimated r for each participant by

maximum likelihood (under the assumption that trials were

i.i.d).

Data analysis Predictions were tested using planned inde-

pendent t-tests to compare the teaching information gain in

the teaching first and learning first conditions. Paired com-

parisons were used for the two groups who experienced being

learners first, the active learners and passive learners.
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Post-hoc analyses were conducted to ensure that variables

extraneous to the predictions did not have a meaningful im-

pact on performance or modulate the reported effects. The de-

sign of the experiment lends itself naturally to mixed model

analysis, since it allows fitting trial level data (without ag-

gregation) and can describe variation arising from the exper-

imental design. Starting from a baseline fixed effects only

model with the experimental condition as a predictor of teach-

ing performance, we sequentially fitted and compared mod-

els using two additional fixed factors, learning performance

and trial number (and their interactions with the condition),

as well as random intercepts for participant and trial identity

(i.e. dimension used for classification of the objects). Fixed

effects were tested using log-likelihood ratio tests for nested

models with the same random effects structure. Non-nested

models were compared using the Bayesian Information Cri-

terion (BIC) and Aikaike Information Criterion (AIC). Sim-

ilarly, random effects (fitted via maximum likelihood) were

tested using log-likelihood ratio tests while keeping the fixed

effects model identical. Given that the mixed-effects analysis

confirmed the results of the planned comparisons on the ag-

gregated trial data, we will focus on these comparisons in the

Results section for brevity and clarity.

Results

Descriptives Despite the surface level simplicity of the

teaching task, a large proportion of participants (≈ 60 %) did

not perform it optimally (i.e. did not choose the two images

on either side of the boundary as the teaching samples). How-

ever, prior active learning made it easier to gain insight into

the optimal solution for teaching. More than half of active

learners, 17 out of 29 participants, performed at ceiling level

by consistently providing example sets compatible with only

one categorization boundary. In contrast, only 11 of 29 par-

ticipants in the yoked passive learning group, and 7 out of

30 of the participants who did not complete a learning task

before teaching managed to select the optimal example sets.

Teaching performance across conditions As predicted,

participants who were active learners before being teachers

outperformed those who started directly with teaching, on av-

erage providing .63 bits, 95% CI [.22, 1.05], of additional

information to their (fictitious) learners (see Figure 2). The

group difference was highly significant in an independent t-

test, t(57) = 3.04, p = .01, Bayes Factor (BF) 2 = 10.81 in

favor of the alternative hypothesis.

Learning passively before teaching conferred a smaller, but

still significant, benefit relative to foregoing learning. Passive

learning increased teaching information gain by an average of

.45 bits, 95% CI [.05, .85], t(57) = 2.26, p = .03, BF = 2.16 in

favor of the alternative.

While we found strong evidence in support of the differ-

2Bayes Factors were calculated for a null model that assumes a
zero standardized difference between groups, and a Cauchy alter-
native with a prior scaled to an effect size of .7, following Rouder,
Speckman, Sun, Morey, and Iverson (2009).

Figure 2: Teaching and learning performance across the three

conditions. Each dot represents the information gain for

one participant, averaged across the three trials of each task.

Crosses represent the 95% confidence intervals for the group

means. Dotted lines represent the expected mean informa-

tion gain from teaching as a function of expected information

gain. The maximum information gain for the task is 2.81 bits.

The asterisks mark significance levels in independent t-tests

(* p <.05, ** p <.01).

ences between the groups completing the learning and teach-

ing tasks in different orders, a possible concern was that these

differences were not induced by the experimental manipula-

tion per se. Specifically, if there are prior differences in learn-

ing performance favoring the group that completed the ac-

tive learning task first, and learning performance is correlated

with teaching performance, then the condition effect could be

just an artifact. In order to eliminate this possibility, a re-

gression was performed on teaching performance with both

the group (active learning before / after teaching3), learning

performance, and their interaction as predictors. The group

difference remained significant, β = .62, p = .01, when con-

trolling for expected information gain in learning, which was

not a significant predictor of teaching ability, β = .08, p = .81,

nor did it interact with the group effect, β = .68, p =.3. Figure

2 shows, for each condition, the estimated (non-significant)

slopes for information gain from teaching as predicted by ex-

3The same pattern of results was found for the difference be-
tween the group learning passively and then teaching, and the one
teaching before active learning.
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Figure 3: Teaching performance for the active-passive learn-

ing dyads. Each dot represents the information gain from

teaching for one dyad. In dyads situated under the diago-

nal identity line, the active learner was the better teacher. A

small Gaussian scatter was applied to make overlapping dots

visible.

pected information gain for learning. Coupled with the fact

that the difference in active learning performance between

the two groups was not significant, t(57) = 1.77, p = .08, BF

= 1.28 in favor of the null hypothesis, this suggests that the

effect of the manipulation was not mediated by prior differ-

ences in active learning performance. To investigate this issue

further, the two groups were repeatedly resampled with re-

placement such that the learning performance between groups

could be matched and fixed at different levels. Comparing

the teaching performance across these resampled groups con-

firmed the advantage of those who completed the learning

tasks prior to the teaching task (the 95% CI of the mean of

the resampled groups’ differences did not include a null ef-

fect).

The second prediction of the study was that active learners

would gain a larger benefit from learning before teaching than

the yoked passive controls. Active learners fared on aver-

age only slightly better in the teaching task than their passive

learning counterparts who were shown the same labelled data,

with an average difference of .18 bits, 95% CI [-.11,.47]. The

dyads’ performance is illustrated in Figure 3. The difference

was not significant in a paired t-test, t(28) = 1.29 , p = .21, BF

= 2.39 in favor of the null. It should be noted though that the

paired comparison was underpowered (post-hoc power = .24)

given the magnitude of the effect size observed.

While there was no significant difference in teaching per-

formance in the planned, marginal comparison between the

dyads, Figure 2 suggests that differences may potentially be

present conditional on learning performance. There was no

interaction between the three-level condition and learning

performance, however, this analysis does not account for the

dependence in the active learning and passive learning dyad

data. As pairs of active and yoked passive learners had, by

design, the same expected learning information gain, we re-

gressed the within dyad difference in teaching performance

against learning expected information gain. Learning per-

formance was not a significant regressor of the difference in

teaching, β = -.86, p = .07. On the one hand, the predicted

within-dyad difference, conditioned on low values of learn-

ing performance, was significant (see Figure 4). For instance,

the predicted within-dyad teaching difference was .60 bits,

p=.03, at a one bit expected learning entropy. On the other

hand, there was no discernible difference for dyads with high

expected information gain. While this is not a strong result,

given the low number of dyads and the small effect, it might

suggest a potential modulation of the relative benefit of active

learning.

Mixed effects analysis The best-fitting model contained

the condition, F(2,85) = 4.30, p = .02, and trial number,

F(2,174) = 6.93, p = .01, as fixed effects, alongside a partic-

ipant level random intercept (SD = .70). The addition of the

random intercept was judged meaningful based on the mag-

nitude of the variance at the participant level (SD =.70). It

also led to a reduction in BIC, from 796.6 for the fixed effects

only model to 749.7.

The previous results regarding the condition effect hold,

with a significant estimated difference of .63 bits, se = .22,

t(85) = 2.94, p = .01, between the active learning first and

teaching first conditions. Similarly, no significant difference

was found between active and passive learners, estimated dif-

ference of .32 bits, se = .22, t(85) = 2.94, p = .01. Addition-

ally, teaching performance improved from the first to the third

trial by an estimated .38 bits, se = .11, t(174) = 3.30, p = .01.

However, performance improvement from the first to the sec-

ond trial was not significant, .02 bits, se = .11, t(174) = .17,

p= .87.

Decisions about the boundary location In the active

learning first condition, the mean of the best-fit individual

r values was .79 (SD = .35), whereas for those complet-

ing the active learning following teaching it was lower, .58

(SD = .42). Yoked controls has the smallest average r, .51

(SD = .38). Active learners made better inferences about the

boundary location than their matched controls as the aver-

age within-dyad difference in estimated probability r was .28,

t(28) = 2.99 , p = .01, BF = 7.29. The order of the active

learning task led to marginally significant differences in an

independent t-test, t(57) = 2, p = .05, BF = 1.37 in favour of

the alternative.

The difference in r within active-passive learning pairs did

not correlate significantly with differences in teaching perfor-

mance, r(26) = -.28, p = .13.
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Figure 4: The difference in teaching information gain within

dyads of active and passive learners as a function of the ex-

pected information gain for (active) learning. The fitted OLS

regression line is shown alongside its 95% confidence bound.

Discussion

It has been proposed that humans have a likely innate sensitiv-

ity to pedagogical guidance (Csibra & Gergely, 2009) and a

propensity for teaching others. From a normative standpoint,

the prevalence of teaching in social groups is to be expected

given that learning from others who are knowledgeable, well-

intentioned and attuned to the learner is more efficient than

self-guided learning. Experimental evidence is also accumu-

lating to suggest that, at least in constrained laboratory set-

tings, the behavior of human teachers matches the predictions

of normative models (Shafto et al., 2014). However, while we

know that humans are effective and keen teachers, we don’t

know much about the underlying abilities enabling teaching

and how it relates to performance in other tasks, specifically

active learning.

In the current study we observed an improvement in teach-

ing performance for participants who engaged in active learn-

ing prior to teaching. Three active learning trials, using differ-

ent stimulus sets than those used for teaching, were sufficient

for the majority of participants to gain insight into the optimal

solution of the teaching problem on the first attempt. Further-

more, they were able to draw on their experience as learners

even though at the time of learning they had not been aware

that the teaching task would follow.

The poor performance of participants with no learning ex-

perience resonates with previous findings of Khan, Zhu, and

Mutlu(2017), who used a boundary teaching task as well, but

did not constrain the example set size by their design. It

seems that simply asking teachers to generate the minimally

sufficient number of examples for optimal teaching was not

enough to solicit the optimal solution.

The fact that the active learning benefit, relative to teach-

ing first, was not modulated by the initial active learning per-

formance suggests that active learning can improve teach-

ing across the board, for poor and good active learners alike.

However, prior active learning performance may play a role

in differentiating teachers in a more complex teaching sce-

narios. Indeed, the surprising lack of a significant correlation

between active learning performance and subsequent teach-

ing performance can be explained by ceiling effects.

The impact of passive learning on teaching, relative to the

baseline teaching first group, was smaller than that observed

for active learning. However, we did not find a significant

effect in the matched comparison between active and yoked

passive learners. It is important to note here that the current

task can be thought of as an insight problem, which means

that there was less scope for observing gradual differences

in performance. Further, once insight was achieved in the

learning task, the solution was easy to verbalize, allowing the

optimal strategy to be explicitly transferred to the teaching

task.

On the other hand, for poor performing learning dyads, we

observed a difference in the predicted direction. This sug-

gests that in a more complex and ecological task in which the

learning is more gradual, and the optimal solution is explicitly

unknown to participants, active and yoked passive learners

are likely to diverge more in terms of teaching performance.

This would provide evidence for a more automatic, implicit

link between active learning and teaching. In such a future

teaching task it would also be interesting to examine whether

the differences between active and passive learners, matched

for information content, are moderated by the quality of the

queries they both observe. Specifically, it should be tested

whether the negative linear trend we observed generalizes to

non-insight tasks.

Lastly, it is surprising that those who performed the teach-

ing task prior to the active learning task did not differ in their

expected information gain in the learning task, and, if any-

thing, performed poorer than their counterparts who started

by active learning. This resonates with previous experimen-

tal evidence from the developmental literature that has also

highlighted more subtle ways in which being taught can hin-

der learning, for instance by limiting subsequent exploration

(Bonawitz et al., 2011). It is an intriguing idea that, perhaps,

not just the experience of being taught, but also teaching it-

self, can have an effect on exploration. Alternatively, if we

assume that the teaching task is more cognitively demanding

as it has a meta-cognitive component engaged in reasoning

about the learner’s knowledge and inference making, results

can be explained by the known effect that an easier-to-harder

progression of tasks is beneficial for learning, while the op-

posite order does not provide an appropriate stepping stone

for active learning. On the other hand, Yang et al. argue that

active learning can be re-formalized to also include a meta-

cognitive aspect, reasoning that is applied reflexively to one’s

own reasoning.

To conclude, active learning proved to be a reliable inter-

vention to improve teaching performance. It is important to

investigate if the effect of active learning generalizes to more
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complex and more ecologically valid tasks, or even between

different learning and teaching tasks. If it does, it will open

the way for quantitative inquires about whether successful

teaching benefits from the ability of taking the perspective of

an active learner and as such can be improved by prior active

learning.
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