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Effective field theory for dilute Fermi systems at fourth order
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We discuss high-order calculations in perturbative effective field theory for fermions at low energy scales. The
Fermi-momentum or kFas expansion for the ground-state energy of the dilute Fermi gas is calculated to fourth 
order, both in cutoff regularization and in dimensional regularization. For the case of spin one-half fermions we
find from a Bayesian analysis that the expansion is well converged at this order for |kFas| � 0.5. Furthermore, we 
show that Padé-Borel resummations can improve the convergence for |kFas| � 1. Our results provide important 
constraints for nonperturbative calculations of ultracold atoms and dilute neutron matter.

I. INTRODUCTION

Over the last two decades, striking progress in quantum
many-body physics has been achieved, especially through
well-controlled experiments with ultracold atoms and the de-
velopment of efficient computational methods. Parallel to this,
the conception of effective field theory (EFT) has equipped
advanced many-body calculations with a firm theoretical ba-
sis. Here, we make a new contribution to these advances by
providing analytic EFT results at high orders for a central
problem of many-body theory and experiment: the ground-
state energy of the dilute Fermi gas.

Effective field theory is deeply connected with the no-
tion of universality [1], for which the dilute Fermi gas is a
classic example. This universal many-body system describes
both the physics of cold atomic gases as well as that of the
dilute nuclear matter present in the crust of neutron stars.
In ultracold-atom experiments, Feshbach resonances allow
one to tune the interaction strength via the application of
external fields. This makes it possible to probe low-density
Fermi systems over a wide range of many-body dynamics, in
particular at the unitary limit of infinite scattering length and
through the BCS-BEC crossover [2–6]. Moreover, continuous
progress with quantum Monte Carlo (QMC) methods [5,7,8]
has enabled computations of strongly interacting dilute Fermi
gases with a high precision comparable to that of experimental
measurements. High-order analytic calculations that provide
precision benchmarks for QMC and experiment represent an
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important tool for making further progress in this field. This
is the focus of the present work.

Effective field theory provides the basis for such analytic
benchmark calculations. In this context, the problem of renor-
malization, which historically has presented a notable barrier
for many-body calculations at high orders in perturbation
theory, has been cleared up completely (in the perturba-
tive case) [9–11]. While perturbative EFT calculations are
generally restricted to low densities and weak interactions,
respectively, they are still useful in many ways. Regarding
the nuclear many-body problem [12–16], they provide vi-
able input for constraining nuclear matter computations and
neutron-star modeling. Via resummation methods, they also
give access to approximate analytic results of large-scattering-
length physics.

Here, we present in detail the calculation and results to
fourth order in the perturbative EFT for zero-temperature
many-fermion systems at very low energies, i.e., the renowned
Fermi-momentum or kFas expansion for the ground-state en-
ergy of the dilute Fermi gas [17–27]. In that, we follow up on
our recent Letter [28] where the first fourth-order results have
been presented.1 In the present paper, we expand substantially
on the results and presentation of Ref. [28]. First, in Sec. II we
discuss in more detail the contact EFT formalism for fermions
at very low energy scales. In Sec. III we then present the
details of the calculation of the Fermi-momentum expansion
to fourth order for the case of spin one-half fermions. The
case of spins greater than one-half is examined in detail in
Sec. IV using two different regularization schemes: cutoff

1We note the following typos in Ref. [28]: in Eqs. (21) and (25) a
factor M3 is missing, and below Eq. (24) it should read II6(ii) instead
of III6(ii).
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regularization and dimensional regularization. Our fourth-
order results for the ground-state energy of the general dilute
Fermi gas are then summarized in Sec. V. Using Bayesian
methods, in Sec. VI we investigate the convergence of the
Fermi-momentum expansion. There, we also study various
Padé and Borel approximants constructed from the expansion.
Finally, Sec. VII provides a short summary.

II. EFFECTIVE FIELD THEORY FOR NONRELATIVISTIC
FERMIONS

The effective field theory (EFT) Lagrangian LEFT for di-
lute Fermi systems is composed of the most general two-
and many-body contact interactions consistent with Galilean
invariance, parity, and time-reversal invariance. Up to field
redefinitions, its leading terms are given by (see, e.g.,
Refs. [11,29–33])

LEFT = ψ†

[
i∂t +

−→∇ 2

2M

]
ψ − C0

2
(ψ†ψ )2

+ C2

16
[(ψψ )†(ψ

←→∇ 2ψ ) + H.c.]

+ C′
2

8
(ψ

←→∇ ψ )† · (ψ
←→∇ ψ ) − D0

6
(ψ†ψ )3 + · · · ,

(1)

where ψ are nonrelativistic fermion fields,
←→∇ = ←−∇ − −→∇ is

the Galilean invariant derivative, H.c. is the Hermitian conju-
gate, and M is the fermion mass. The couplings of the contact
interactions C0, C2, C′

2, D0, . . . , called low-energy constants
(LECs), have to be fit to experimental data or (if possible)
matched to an underlying theory. (For recent work aimed at
rooting contact EFT for nucleons in lattice QCD calculations,
see Refs. [34,35].)

A truncation scheme, known as power counting, is re-
quired to organize the (infinite number of) EFT operators in
a systematic way. In particular, the power counting needs to
renormalize the ultraviolet (UV) divergences at each order.
For perturbative calculations within the contact EFT given by
Eq. (1), the power counting corresponds to ordering contri-
butions in perturbation theory according to the (naive) mass
dimension σ of the LECs, i.e.,

σ (C(′)
2n ) = 2n + 1, (2)

σ (D(′)
2n ) = 2n + 4, (3)

σ (E (′)
2n ) = 2n + 7, (4)

etc., where the LECs E (′)
2n correspond to four-body interac-

tions.
In the following, we first discuss in Sec. II A the relation

between N-body scattering diagrams and the MBPT series
for dilute Fermi systems. This is followed by the analysis of
UV power divergences and two-body scattering diagrams in
Sec. II B. In Sec. II C we then examine the ladder diagrams
of MBPT. Next, in Sec. II D we study the renormalization of
logarithmic UV divergences and the associated nonanalytic
terms in the perturbative EFT expansion. Finally, Sec. II E

briefly discusses different partial resummations for systems
with a large S-wave scattering length.

A. Renormalization from few-body to many-body systems

The nonrelativistic field theory specified by the Lagrangian
LEFT is equivalent to a Hamiltonian approach with N-body
potentials. The regularized two- and three-body potentials are
given by

〈p′|V (2)
EFT|p〉 = [C0(�) + C2(�)(p′2 + p2)/2

+C′
2(�) p′ · p + · · · ] f (p/�) f (p′/�),

(5)

〈p′q′|V (3)
EFT|pq〉 = [D0(�) + · · · ] f (p/�) f (q/�)

× f (p′/�) f (q′/�). (6)

Here, p(′) and q(′) are relative and Jacobi momenta, respec-
tively, and f (p/�) is a regulator function that suppresses
high-momentum modes. Later we will also consider dimen-
sional regularization (DR), but for now we use a (Galilean
invariant) momentum regulator.

The superficial degree of divergence d of an N-body scat-
tering diagram is given by

d = 5L − 2I +
V∑

j=1

[σ (g j ) − 1], (7)

where L is the loop number, I the number of internal lines,
V the number of vertices, and gj ∈ {C2n, D2n, . . . }; see, e.g.,
Refs. [36,37] for details. (If there are subdivergences the ac-
tual degree of divergence can be larger than d .) The MBPT
diagrams are obtained from scattering diagrams by closing
the external lines (and excluding occupied states in loop in-
tegrals) of a single scattering diagram, or by closing and
connecting the external lines of several diagrams. Since the
hole propagators associated with closed external lines are
bounded (or exponentially decaying at finite temperature), the
renormalization of MBPT follows from the renormalization
of scattering diagrams. For nonrelativistic contact interac-
tions, N-body scattering diagrams can have only up to N
intermediate lines between adjacent vertices, so only N ′-body
interactions with N ′ � N appear in a given the N-body sector.
This implies that the renormalization of the EFT interactions
can be set up hierarchically, starting from the renormalization
of two-body interactions in the two-body sector, then three-
body, and so on, up to a given truncation order in the power
counting.

B. Two-body scattering

In the nonrelativistic EFT, the only two-body scattering
diagrams are ladder diagrams (corresponding to iterations of
the Lippmann-Schwinger equation), see Fig. 1. This makes
the two-body sector very simple: all loop integrals factorize,
with factors Jn(k,�) given by

Jn(k,�) =
∫ ∞

0
dq

q2n

k2 − q2 + iε
f 2(q/�). (8)



+ + + + . . .

FIG. 1. The two-body scattering diagrams. By closing the exter-
nal lines one obtains the particle-particle ladder diagrams of MBPT.
The momentum integration associated with the closed lines has the
effect that the (MBPT) ladder series has zero radius of convergence
(renormalon divergence), in contrast to the series of two-body scat-
tering diagrams (a geometric series). See the text for details.

To extract the power divergence we rescale the loop momen-
tum as q → q/�, leading to

Jn(k,�) = IUV
n (k,�) + JR

n (k), (9)

where

JR
n (k) = iπ

2
k2n+1 (10)

and IUV
n (k,�) = IUV,∞

n (k,�) + IUV,0
n (k,�), with

IUV,∞
n (k,�) = −

n∑
m=0

α2m�2m+1k2(n−m), (11)

IUV,0
n (k,�)

�→∞−−−→ 0, (12)

where α2m are regulator-dependent constants. The effective-
range expansion (ERE) for the on-shell T matrix reads [11,38]

T (k, cos ϑ ) = 4π

M

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
n=0

τ (s)
n kn

︸ ︷︷ ︸
T (s) (k)

+
∞∑

n=2

τ (p)
n [k cos ϑ )]n

︸ ︷︷ ︸
T (p) (k,cos ϑ )

+ · · ·

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(13)

where k and ϑ are the scattering momentum and angle, and

τ (s)
n = {

as,−ia2
s ,−a3

s + a2
s rs, i

(
a4

s − 2a3
s rs
)
,

a5
s − 3a4

s rs + a3
s r2

s + a2
s vs, . . .

}
, (14)

τ (p)
n = {

a3
p, . . .

}
, (15)

with as and ap being the S- and P-wave scattering length,
respectively, rs the S-wave effective range, and vs the S-wave
shape parameter. Matching the regularized EFT perturbation
series to Eq. (13) leads (in the infinite-cutoff limit � → ∞)
to

C0(�) = C0 + C0

3∑
ν=1

(
α0C0

M

2π2
�

)ν

+α2C2C0
M

3π2
�3 + · · · , (16)

C2(�) = C2 + α2C2C0
M

π2
� + · · · , (17)

C′
2(�) = C′

2 + · · · , (18)

where the cutoff-dependent parts are counterterms that cancel
UV divergences and the omitted terms correspond to coun-
terterms beyond fourth order. Note that all the counterterms
required to renormalize C0-only contributions to the T matrix

are included in C0(�); i.e., the C0 term corresponds to a per-
turbatively renormalizable interaction. For spin multiplicities
g > 2, this feature is, however, restricted to the two-body
sector (see Sec. II D).

The (renormalized) LECs are given by

C0 = 4πas

M
, C2 = C0

asrs

2
, C′

2 = 4πa3
p

M
, (19)

etc. The perturbative EFT expansion is viable throughout the
energy range appropriate to the EFT only if the size of the
LECs conforms to the power counting; i.e.,

C0 ∼ 1

M�b
, C2 ∼ C′

2 ∼ 1

M�3
b

, (20)

etc., corresponding to as ∼ rs ∼ ap ∼ 1/�b. Here, �b is the
“hard scale” beyond which the EFT description breaks down.
The scaling given by Eq. (20) is commonly referred to as
the “natural” case [38]. The EFT perturbation series then
corresponds to an expansion in powers of Q/�b.

C. Many-body ladder diagrams and renormalons

Closing the external lines of two-body scattering diagrams,
one obtains the particle-particle (pp) ladder diagrams of
MBPT. For these diagrams, the factors corresponding to the
pp bubbles are given by

Jn(P, k,�) =
∫

d3q

4π

q2n

k2 − q2
n̄|P−q|/2n̄|P+q|/2 f 2(q/�),

(21)

where n̄k = θ (k − kF), kF is the Fermi momentum, and q is
the relative momentum of the two particle lines in a given pp
bubble. The hole lines correspond to integrating over P and k.
The pp bubble can be separated as

Jn(P, k) = IUV
n (k,�) + I R

n (P, k), (22)

where the cutoff-independent part is given by

J R
n (P, k) =

∫
d3q

4π

q2n

k2 − q2
[n̄|P−q|/2n̄|P+q|/2 − 1]

= kF

2
+ P

2
+ k

2
ln

∣∣∣∣kF + P − k

kF + P + k

∣∣∣∣
+ k2

F − P2 − k2

4P
ln

∣∣∣∣ (kF + P)2 − k2

k2
F − P2 − k2

∣∣∣∣. (23)

Notably, the series of pp ladder diagrams is a diver-
gent asymptotic series with zero radius of convergence
[25,39,40]. The physical context of this so-called “renor-
malon divergence” is the Cooper pairing phenomenon [39].
Mathematically, the divergence is due to the singularities of
J R

n (P, k) at the boundaries of the hole-line integrals (i.e., the
Lebesgue dominated convergence theorem is not satisfied).2

2Note that (in contrast with, e.g., relativistic φ4 theory [41]) the
renormalon divergence occurs for both the renormalized and the
regularized perturbation series. The MBPT series has still zero radius



Γ1 Γ2 Γ ct
2 D0

FIG. 2. The first three-body scattering diagrams with logarithmic divergences �1 and �2. Also shown is the counterterm diagram �ct
2 for

the pp bubble of �2 (the counterterm is depicted as a shaded blob). The fourth diagram is the leading three-body contact contribution in
three-fermion scattering, which includes the counterterm for the logarithmic UV divergences of �1 and �2. Closing the external lines one
obtains from �1 and �2 the MBPT diagrams with logarithmic divergences II5, II6, IIA1, and III1 shown in Fig. 3 below. See Sec. IV for details
on the evaluation of these diagrams.

D. Multifermion scattering and logarithms

While the two-body scattering diagrams involve only UV
power divergences (see Sec. II B), multifermion scattering
involves also logarithmic divergences ∼ ln(�/Q), where Q
is an invariant kinematical variable. For scattering diagrams,
Q is an external momentum, and in MBPT at zero temperature
Q is the Fermi momentum kF. That is, logarithmic UV diver-
gences appear with a ratio of scales, which implies that their
coefficients must be regulator independent (in contrast with
the coefficients of UV power divergences), see also Ref. [11].
Renormalization removes the dependence on the UV cutoff
� such that the logarithms become ln(�0/Q), where �0 is
an arbitrary auxiliary scale [see Sec. IV for details]. The
dependence on �0 is canceled by the “running” with �0 of the
many-body coupling g j associated with the respective coun-
terterm. Note that this cancellation requires that the involved
terms are kept together, i.e., independent partial resummations
are inhibited by the requirement of �0 independence.

For g > 2, the first logarithms in perturbative N-body scat-
tering (for N � 3) appear from the C0 interaction at order
3N − 5, i.e., at fourth order in the three-body sector. (The
first momentum-dependent logarithmic divergence appears at
order 3N − 3 and is renormalized by D2, etc., conforming
to the perturbative EFT power counting.) The fourth-order
three-body scattering diagrams with logarithmic divergences
�1 and �2 are shown in Fig. 2; the associated many-body
diagrams are listed in Fig. 3. They are renormalized by the
contributions from the leading three-body contact interaction
with coupling D0 (corresponding to the last diagram in Fig. 2).
This requires that the cutoff dependence of the D0 coupling is
then given by

D0(�) = D0(�0) + ηM3C4
0 ln (�/�0). (24)

The regulator-independent coefficient η is obtained from the
evaluation of the diagrams �1 and �2 (plus the bubble-
counterterm diagram �ct

2 ) of Fig. 2, or, equivalently, from
the evaluation of the corresponding many-body diagrams; see
Sec. IV for details. The dependence of the first term D0(�0) is
such that D0(�) is independent of the auxiliary scale �0. The
value of D0(�0) has to be fixed (for a given choice of �0) by
matching to few- or many-body data.

convergence if the ladders are resummed [39,42]; the large-order
behavior is, however (expected to be), dominated by renormalons
[39].

For g = 2, all logarithmic divergences from S-wave inter-
actions cancel, as required by the Pauli principle (the leading
three-body contact interactions are Pauli blocked for g = 2).
That is, for g = 2 the S-wave part of the MBPT series is
completely determined by two-body scattering (i.e., by the
ERE). For P-wave interactions or S-wave interactions in g > 2
systems on the other hand, an increasing number of N-body
couplings is needed for perturbative renormalization beyond
the two-body sector.

Finally, we note that the contact interactions between
fermions can be rewritten such that they involve the propa-
gation of (so-called) dimer fields, and carrying out the partial
diagrammatic resummations that renormalize the dimer prop-
agator makes the C0 part of the perturbation series for
three-body scattering UV finite also for g > 2 [43]. Neverthe-
less, to achieve cutoff independence of the integral equation
that corresponds to resumming the remaining diagrams re-
quires to include the leading three-body coupling D0 (but no
higher-order three-body interactions) [43,44]. (Perturbatively
expanding the nonperturbative three-body scattering ampli-
tude then allows one to determine the perturbative D0 from
nonperturbative three-body data [45].) Beyond the two-body
sector, the relation of the nonperturbative renormalization of
the C0 interaction (with a single three-body coupling D0) to
the perturbative case, which requires in addition to C0 and D0

also many-body contact interactions at higher orders, is thus
nontrivial, and a general understanding of this issue is still
missing [46].

E. Resummations for large scattering length

If there is a two-body bound-state at threshold, the S-wave
scattering length as is unnaturally large, and in this case the
perturbative EFT expansion is of limited use. In the two-body
sector, this case can be straightforwardly dealt with by resum-
ming the C0 contributions and adding C2, . . . perturbatively,
which leads to [29,38]

T (s)(k) = 1
1
as

+ ik
+ rsk2(

1
as

+ ik
)2 + · · · . (25)

Such a simple analytic resummation of the C0 contributions is,
however, not possible for the much more complicated MBPT
series. A notable benchmark for nonperturbative many-body
treatments of the C0 term is given by the as → ∞ limit,
corresponding to the unitary Fermi gas. From dimensional
analysis it follows that the ground-state energy density of
the unitary Fermi gas of spin one-half fermions is given by



I1 I2 I3 I4 I5 I6

IA1 IA2 IA3

II1 II2 II3 II4 II5 II6

II7 II8 II9 II10 II11 II12

IIA1 IIA2 IIA3 IIA4 IIA5 IIA6

III1 III2 III7 III8 III9 III10

FIG. 3. The 33 fourth-order Hugenholtz diagrams I(1-6), IA(1-3), II(1-12), IIA(1-6), and III(1,2,7-10. Diagrams II5 and IIA1 (correspond-
ing to �1) as well as II6 and III1 (corresponding to �2) have logarithmic UV divergences.

E (kF) = ξE0(kF), where E0(kF) = k5
F/(10π2M ) is the non-

interacting ground-state energy density and ξ is the Bertsch
parameter. From experiments with ultracold atoms [2], the
value ξ ≈ 0.376(4) has been inferred.

The most straightforward nonperturbative many-body ap-
proximation consists of resumming a subclass of MBPT dia-
grams. The analytic resummation of the particle-particle (pp)
ladders gives ξpp ≈ 0.237 [33,47], and resumming also hole-
hole (hh) and mixed pp-hh ladders gives ξladders ≈ 0.5076
[47].3 In addition, a value for ξε ≈ 0.475 was deduced in
Ref. [49] by expanding in terms of ε = 4 − d , where d
is the number of space dimensions, and subsequently in-
terpolating between the ε = 2 and ε = 0 results for E (kF).
Even more close comes the value ξLW ≈ 0.36 obtained
from a self-consistent Luttinger-Ward type approach with re-
summed ladders [50] (see also Ref. [51]). (See also Ref. [42]

3The resummation of particle-hole ladders (“ring diagrams”) be-
comes relevant for large values of g, in particular regarding the
expansion about the large-g limit [48].

for finite-temperature calculations based on Borel-resummed
diagrammatic Monte Carlo calculations.) The most accu-
rate value has been obtained from QMC computations,
ξQMC = 0.372(5) [7].

Predictions for ξ may also be obtained by applying resum-
mation methods such as Padé approximants to the as part of
the Fermi-momentum expansion [52,53]. We present results
from this approach in Sec. VI B.

III. FOURTH-ORDER TERM FOR SPIN
ONE-HALF FERMIONS

We now start with the discussion of the perturbative EFT
expansion for dilute many-fermion systems at fourth order.
Logarithms and many-body interactions arise only for spin
multiplicities g > 2; the intricacies of this case are postponed
until Sec. IV. Here, we discuss the spin one-half case, g = 2,
but we leave the notation general such that the results not
affected by logarithmic terms can be carried over to g > 2.
There are two different types of contributions at fourth order:
(i) the second-order MBPT diagram with one C0 and one C2



vertex, and (ii) fourth-order MBPT diagrams with four C0

vertices (for g > 2 there is also the first-order diagram with
the D0 vertex). In each case (in cutoff regularization), one has
also two-body counter contributions from lower-order MBPT
diagrams.

For the calculation of the contribution (i), see Refs. [28,54].
The calculation of the contribution (ii) is much more in-
volved. Among the possible MBPT diagrams with four
C0 vertices, only those without single-vertex loops have
to be considered at zero temperature. This is because all
diagrams with single-vertex loops are removed by first-
order mean-field (i.e., Hartree-Fock) insertions [55], and for
a momentum-independent interaction, first-order mean-field
renormalization at zero temperature has no effect for a uni-
form system. Therefore, as can easily be verified explicitly,
these diagrams cancel each other at each order. The 39 remain-
ing fourth-order many-body diagrams can be divided into four
topological species:

(i) I(1-6): ladder diagrams,
(ii) IA(1-3): ring diagrams,

(iii) II(1-12), IIA(1-6): other two-particle irreducible dia-
grams,

(iv) III(1-12): two-particle reducible diagrams,

where we have labeled diagrams according to groups that
are closed under permutations of the vertices: I(1-6), IA(1-
3), II(1-12), IIA(1-6), III(1-12). Diagrams III(3,6,11,12) are
anomalous and thus give no contribution in zero-temperature
MBPT [55,56]. The 33 remaining diagrams are shown in
Fig. 3.

Diagrams I1, I6, and IA1 are the fourth-order versions of
the third-order pp, hh, and ph diagrams; see, e.g., Ref. [57].
Diagrams I(2-5) are mixed pp-hh ladder diagrams. The di-
agrams in the pairs I(3,4), III(7,8), and III(9,10) can be
combined to get simplified energy denominators; I(2,5),
II(1,2), II(3,4), II(7,8), II(11,12) and IIA(2,4) give identical
results for a spin-independent potential; and for a momentum-
independent potential the contribution from I(3 + 4) is half of
that from I(2 + 5).

The ladder diagrams I(1-6) are most conveniently com-
puted by expanding the semianalytic formula for the ladder
resummation derived by Kaiser [47]. The expressions ob-
tained in this way can be derived from the usual many-body
expressions by introducing relative momentum coordinates
and applying various partial-fraction decompositions as well
as the Poincaré-Bertrand transformation formula [58]. For the
numerical evaluation of the IA diagrams, it is more convenient
to use single-particle momenta instead of relative momenta,
because then the phase space is less complicated. The II, IIA,
and III diagrams without divergences can be evaluated in the
same way as the IA diagrams. The following diagrams involve
divergences:

(i) I(1,2,4,5), II(1,2,6), III(1,8): UV power divergences,
(ii) II(5,6), IIA1, III1: logarithmic UV divergences,

(iii) III(1,2,8,10): energy-denominator divergences.

The UV power divergences, corresponding to pp bubbles,
are renormalized in terms of (low-order) diagrams with two-

body counterterm vertices. For g = 2, the logarithmic UV
divergences cancel in the sums II5 + IIA1 and II6 + III1.
Finally, the energy-denominator divergences correspond to
higher-order poles at the integration boundary; they cancel in
the sums III(1 + 8) and III(2 + 10).

The counterterms for power divergences can be im-
plemented by performing subtractions in the bubble parts
of the integrands. For example, using a sharp cutoff,
f (p/�) = θ (� − p), and scaling all momenta by a factor kF,
the regularized expression for II(1 + 2) is given by

E4,II(1+2)(�) = −ζ (g − 3)
∑
i, j, k

d

θcdθkcθjeθde
ni jk n̄cde

Dcd,i jDde,ik

×
∑

a

θab
n̄ab

Dab,i j

∣∣∣∣∣b=i+j−a
c=i+j−d
e=i+k−d

. (26)

Here,
∑

i ≡ ∫
d3i/(2π )3, the distribution functions are

ni j... ≡ nin j · · · and n̄ab... ≡ n̄an̄b · · ·, with ni ≡ θ (1 − i)
and n̄a ≡ θ (a − 1), and the energy denominators are
given by Dab,i j ≡ (a2 + b2 − i2 − j2)/(2M ). Moreover,
ζ = k9

Fg(g − 1)C4
0 , and θab ≡ θ (�/kF − |a − b|/2). The

dependence of a given MBPT diagram on g is obtained
by inserting a factor δσ1,σ

′
1
δσ2,σ

′
2
− δσ1,σ

′
2
δσ2,σ

′
1

for each

vertex and summing over the spins σ
(′)
1 , σ

(′)
2 of the in-

and outgoing lines. (For P-wave interactions the factor is
δσ1,σ

′
1
δσ2,σ

′
2
+ δσ1,σ

′
2
δσ2,σ

′
1
.) For details on the diagrammatic

rules, see, e.g., Refs. [11,59]. The renormalized expression is
given by4

ER
4,II(1+2) = −ζ (g − 3)

∑
i, j, k
a, d

ni jk n̄cde

Dcd,i jDde,ik

×
[

n̄ab

Dab,i j
− 1

Daa,00

]∣∣∣∣c=i+j−d
e=i+k−d
b=i+j−a

, (27)

where the part ∼1/Daa,00 corresponds to the counterterm con-
tribution. This expression can be further simplified such that
only one unbounded integral appears, i.e., using∑

a

[
n̄ab

Dab,i j
− 1

Daa,00

]
= −

∑
a

na + nb − nab

Dab,i j
, (28)

we find

ER
4,II(1+2) =2ζ (g − 3)

∑
i, j, k, a

d

ni jkan̄cde

Dcd,i jDde,ik

P
Dab,i j

∣∣∣∣∣∣∣∣
c = i + j − d
e = i + k − d
b = i + j − a

,

(29)

where P denotes the Cauchy principal value. The direct ap-
plication of Eq. (28) is prohibited for II6 and III1, because in

4Throughout the paper, we label the cutoff-independent renormal-
ized expressions corresponding to UV divergent diagrams with a
subscript “R.”



that case the pertinent energy denominators involve additional
particle momenta. The regularized expression for II6 is given
by

E4,II6(�) = −ζ (g − 3)
∑
i, j, k
a, c

θabθkaθcdθjeθbe

× ni jk n̄abcde

Dab,i jDbe,ikDbcd,i jk

∣∣∣∣ b=i+j−a
d=k+a−c
e=k + a−j

. (30)

Substituting K = (i + j)/2, p = (i − j)/2, z = k, A = (a −
b)/2, and Y = (c − d)/2, and omitting redundant regulator
functions, we have

E4,II6(�) = −8M3 ζ (g − 3)
∑

K, p, z
A, Y

ni jk n̄abcde θAθY
1

A2 − p2

× 1

(A + p) · (A − K + z)

1

Y 2 + R , (31)

where R = (3A + K − z) · (A − K + z)/4 − p2. The UV
power subdivergence can now be separated via

1

Y 2 − p2 + R = 1

Y 2︸︷︷︸
�E4,II6(i)

− R
(Y 2 + R)Y 2︸ ︷︷ ︸
�E4,II6(ii)

. (32)

For the UV power divergence of II6(i), the counterterm can be
implemented analogous to Eq. (28). The second part II6(ii) is
only logarithmically UV divergent. For g = 2, the logarith-
mic divergence is canceled if we add the III1 term, which
requires (due to the energy-denominator divergence) to add
also III(7 + 8). The regularized expression for III(1 + 7 + 8)
is given by

E4,III(1+7+8)(�) = −ζ (g − 1)
∑
i, j, k
a, c

θabθab
ni jk n̄abc

D2
ab,i j

×
(

θkaθcd
n̄d

Dbcd,i jk

−θcd′
n̄d ′

Dcd ′,ik

)∣∣∣∣ b=i+j−a
d=k+a−c
d′=i+k−c

. (33)

The energy-denominator divergence corresponds to
Dab,i j = 0, and in that case the two terms in the large
parentheses cancel each other. For III(1 + 8) also the linear
UV divergences are removed.5 For g = 2, the contribution
from the sum II6(ii) + III(1 + 7 + 8) is then given by

ER
4,II6(ii)+II(1+7+8)|g=2 = − 8M3ζ

∑
K, p, z
A, Y

ni jk n̄abc

A2 − p2
× G, (34)

5The counterterms for the power divergences of III1 and III8 would
come from diagrams with single-vertex loops.

with

G = 1

(A + p) · (A − K + z)

R
(Y 2 + R)Y 2

+ 1

A2 − p2

[
1

Y 2 + R − 1

Y 2 + R′

]
, (35)

where R′ = −(K + p − Z)2/4. Finally, the regularized ex-
pressions for II5 and IIA1 are given by

E4,II5(�) = −ζ (g − 3)
∑
i, j, k
a, c

θabθkbθcdθadθkeθce

× ni jk n̄abcde

Dab,i jDce,i jDacd,i jk

∣∣∣∣ b=i+j−a
d=i + j+k−a−c

e=i+j−c

, (36)

E4,IIA1(�) = −ζ (3g − 5)
∑
i, j, k
a, c

θabθkbθcdθadθjeθce

× ni jk n̄abcde

Dab,i jDce,ikDacd,i jk

∣∣∣∣ b=i+j−a
d=i+j+k−a−c

e=i+k−c

. (37)

For g = 2, the sum of these contribution is UV finite and is
given by

ER
4,II5+IIA1|g=2 = ζ

∑
i, j, k
a, c

ni jk n̄abcd

Dab,i jDacd,i jk

∣∣∣∣∣∣∣∣∣ b=i+j−a
d=i + j+k−a − c

×
(

n̄e

Dce,i j

∣∣∣∣
e=i+j−c

− n̄e′

Dce′,ik

∣∣∣∣
e′=i+k−c

)
. (38)

The contributions from II5 + IIA1 as well as II6(ii) + II(1 +
7 + 8) can of course also be evaluated by subtracting the indi-
vidual logarithmic divergences, i.e., by adding the respective
(counterterm) parts of D0(�) (only the sum of these parts
vanishes for g = 2), see Sec. IV. We have, however, found
that evaluating the sums II5 + IIA1 and II6(ii) + II(1 + 7 + 8)
provides better numerical precision (see Table I).

IV. FOURTH-ORDER TERM FOR HIGHER SPINS

For g > 2, the logarithmic divergences of II6, IIA1, II5,
and III(1 + 7 + 8) are canceled by the contribution from the
first-order MBPT diagram with the D0 vertex. In cutoff regu-
larization, this cancellation is tantamount to

�
∂

∂�
D0(�) = ηM3C4

0 , (39)

where the coefficient η is determined by the logarithmic UV
divergence. This can be integrated as

D0(�) = D0(�0) + ηM3C4
0 ln (�/�0), (40)



TABLE I. Results for the contributions to the regular (i.e.,
nonlogarithmic) a4

s part of C4(kF ). Diagrams with ∗ (∗∗) have
UV power (logarithmic) divergences, which are subtracted by
the respective counterterm contributions. Diagrams with ∗∗∗ have
energy-denominator singularities. For the diagrams with logarithmic
divergences, “(R)” denotes the result obtained using a regulator
function and subtracting only divergent terms, and “(MS)” denotes
the result corresponding to DR with minimal subtraction. The uncer-
tainty estimates take into account both the statistical Monte Carlo
uncertainties and variations of the cutoff. The g factors are listed
without the generic factor g(g − 1). See Fig. 3 for the diagrams.

Diagram g factor Value

I1∗ 1 +0.0383115(0)
I2∗ + I3 + I4∗ + I5∗ 1 +0.0148549(0)
I6 1 −0.0006851(0)
IA1 g(g − 3) + 4 −0.003623(1)
IA2 g(g − 3) + 4 −0.001672(1)
IA3 g(g − 3) + 4 −0.003343(1)
II1∗ + II2∗ g − 3 +0.058359(1)
II3 + II4 g − 3 −0.003358(1)
II5∗∗(R) g − 3 +0.0645(1)
II5∗∗(MS) g − 3 −0.0500(1)
II6∗∗,∗(R) g − 3 −0.0265(2)
II6∗∗,∗(MS) g − 3 +0.0664(2)
II7 + II12 g − 3 +0.003923(1)
II8 + II11 g − 3 +0.007667(1)
II9 g − 3 −0.000981(1)
II10 g − 3 −0.000347(1)
IIA1∗∗(R) 3g − 5 +0.0647(1)
IIA1∗∗(MS) 3g − 5 −0.0498(1)
IIA2 + IIA4 3g − 5 +0.004122(1)
IIA3 3g − 5 −0.000461(1)
IIA5 3g − 5 +0.003542(1)
IIA6 3g − 5 +0.003331(1)
III1∗∗∗,∗∗,∗(R) + III7 + III8∗∗∗,∗ g − 1 −0.0513(2)
III1∗∗∗,∗∗,∗(MS) + III7 + III8∗∗∗,∗ g − 1 +0.0416(2)
III2∗∗∗ + III9 + III10∗∗∗ g − 1 +0.001650(1)
(II5 + IIA1)g=2 1 +0.00018(1)
(II6 + III1 + III7 + III8)∗g=2 1 −0.0248(1)∑

diagrams,g=2 1 −0.0425(1)

where �0 is an arbitrary auxiliary scale, and D0(�) is inde-
pendent of �0, as evident from the running with �0 according
to Eq. (39) of the integration constant D0(�0): D0(�′

0) =
D0(�0) + ηM3C4

0 ln(�′
0/�0). The value of D0(�0) has to

be fixed (for a given choice of �0) by matching to few- or
many-body data (see, e.g., Ref. [45]). For further details we
refer to the general discussion of logarithmic divergences in
EFT provided in Sec. II D.

Below, we first show how the fourth-order term for g > 2
is calculated in cutoff regularization and then discuss the
calculation in dimensional regularization (DR). The pendant
of Eq. (39) in DR is given by Eq. (85) below.

A. Cutoff regularization

The coefficient η = η1 + η2 is determined by the logarith-
mic divergence of II6 + IIA1 + II5 + III(1 + 7 + 8), or,

equivalently, by the logarithmic divergence of the three-body
scattering diagrams �1 and �2 (see Fig. 2). Using a sharp
cutoff f (p/�) = θ (� − p), the regularized expression for di-
agram �1 is given by

�1(�) = −3324

3!
C4

0J1(�), (41)

with

J1(�) =
∑

x1,x2,x3,l1,l2

θx1l1θx1k1θx2l1θx2l2θx3l2θx3k′
3

× 1

D∗
x1l1,k2k3

D∗
x2l1l2,k1k2k3

D∗
x3l2,k′

1k′
2

× δx1l1,k2k3δx2l1l2,k1k2k3δx3l2,k′
1k′

2
, (42)

where k1,2,3 and k′
1,2,3 are the three-momenta of

the in- and outgoing particles, respectively, with
k1 + k2 + k3 = k′

1 + k′
2 + k′

3, and x1,2,3 and l1,2 are the
loop momenta, and D∗ = D − iε. The factor 33 comes from
cyclic permutations of the initial and final lines, the factor 24

is due to the number of equivalent contractions for a given
choice of final and initial lines, and the factor 1/3! is due
to final-state antisymmetrization. Similarly, the regularized
expression for the sum of diagrams �2 and �ct

2 of Fig. 2 is
given by

[
�2 + �ct

2

]
(�) = −3223

3!
C4

0J2(�), (43)

with

J2(�) =
∑

x1,x2,x3,l1,l2

θx1l1θx1k1θx2l2θx3l2θx3k′
1

× 1

D∗
x1l1,k1k2

D∗
x3l1,k′

1k′
2

[
1

D∗
x2l1l2,k1k2k3

− 1

D∗
l2l2

]

× δx1l1,k2k3δx2l1l2,k1k2k3δx3l1,k′
1k′

2
, (44)

where the term in squared brackets involves the counterterm
for the two-particle bubble. Overall, the logarithmic diver-
gence is given by

�1(�)
�→∞−−−→ −η1M3C4

0 ln (�), (45)[
�2 + �ct

2

]
(�)

�→∞−−−→ −η2M3C4
0 ln (�). (46)

To determine η1 and η2 we can set all external momenta to
zero, i.e.,

J1,2(�)
k(′)

1,2,3→0−−−−→ M3I1,2(�). (47)

Introducing relative momenta q1 and q2 such that
{l1,2, x1,2,3} = {q1, (q1 + 2q2)/2, q1, (q1 − 2q2)/2, −q1},
the integral I2(�) is given by

I2(�) =
∫ �

ℵ

d3q1

(2π )3

∫ �

ℵ

d3q2

(2π )3

1

q4
1

[
1

3q2
1/4 + q2

2

− 1

q2
2

]
,

(48)

where the integral boundaries are with respect to the radial
coordinates. To have an infrared finite expression we have,
as a formal intermediate step, introduced an arbitrary infrared



cutoff ℵ. This integral can be expressed in terms of the inverse
tangent integral Ti2(x) = [Li2(ix) − Li2(ix)]/(2i), with Li2(z)
the complex dilogarithm, i.e.,

−3324

3!
I2(�) = −

√
3

23π4
Ti2

(
2q2√
3q1

)∣∣∣∣�,�

ℵ,ℵ
. (49)

Using Ti2(x) = Ti2(1/x) + (π/2)sgn(x) ln x as well as
Ti2(0) = 0 we find (for ℵ → 0)

η2 = −3
√

3

4π3
. (50)

For �1, this method to extract logarithms is prohibited by the
θx3l2 factor and a nontrivial angular integral. This problem
can be avoided in DR where loop integrals remain invariant
under translations of the integration variables. As shown in
Sec. IV B, one obtains

η1 = 1

π2
. (51)

From this, the renormalized fourth-order contribution to the
ground-state energy is

E4(kF) = χ
[
D0(�0) + ηM3C4

0 ln (kF/�0)
]

+
∑

i

ER
4,i + · · · , (52)

where i ∈ {II5, IIA1, II6, III(1+7+8)}, and the ellipses refer to
contributions from other fourth-order diagrams. The factor χ

corresponding to the first-order three-body diagram is

χ = g(g − 1)(g − 2)

6

∑
i jk

ni jk = α(g − 2)
M

108π4a4
s

, (53)

with α = nεF(kFas)4(g − 1), where n = gk3
F/(6π2) is the

fermion number density and εF = k2
F/(2M ) the noninteracting

Fermi energy. Finally, the terms ER
4,i are given by6

ER
4,II5 = lim

�→∞
[E4,II5(�) + (g − 3)L1(�)], (54)

ER
4,IIA1 = lim

�→∞
[E4,IIA1(�) + (3g − 5)L1(�)], (55)

ER
4,II6 = lim

�→∞
[
ER

4,II6(i) + E4,II6(ii)(�) + (g − 3)L2(�)
]
,

(56)

ER
4,III(1+7+8) = lim

�→∞
[E4,III(1+7+8)(�) + (g − 1)L2(�)]. (57)

Here, the terms L1(�) and L2(�) cancel the logarithmic
parts of the respective many-body diagrams, ∼ ln(�/kF),
with 4(g − 2)L1(�) + 2(g − 2)L2(�) = χηM3C4

0 ln(�/kF)
matching the form of the logarithm in Eq. (52). They are
given by

L1(�) = α
16

27π2
ln (�/kF), (58)

L2(�) = −α
8
√

3

9π3
ln (�/kF), (59)

6See Eq. (32) for the splitting of II6 into a power-divergent part
II6(i) and a logarithmically divergent part II6(ii).

which matches (with different phase-space prefactors) the log-
arithmic parts of the three-body scattering integrals J1(�) and
J2(�), respectively. One finds that

ER
4,II5 = α(g − 3) × 0.0645(1), (60)

ER
4,IIA1 = α(3g − 5) × 0.0647(1), (61)

ER
4,II6 = −α(g − 3) × 0.0265(2), (62)

ER
4,III(1+7+8) = −α(g − 1) × 0.0513(2). (63)

The sum of the first and second two contributions is given by
ER

4,II5+IIA1 = α[0.00018(1) + (g − 2) × 0.2586(4)], (64)

ER
4,II6+III(1+7+8) = α[−0.0248(1) − (g − 2) × 0.0778(3)], (65)

where in each case the leading term corresponds to the result
obtained in the g = 2 calculation of Sec. III.

B. Dimensional regularization

The DR calculation of the logarithmic terms is similar to
the calculation of the corresponding terms for bosonic systems
carried out by Braaten and Nieto [60]. In DR, the coefficient
of the logarithm arising from diagram �1 is determined by the
integral

ID
1 = μ2(3−D)

∫
dDl1

(2π )D

∫
dDl2

(2π )D

1(
l2
1 + ℵ2

)
× 1(

l2
1 + l2

2 + l1 · l2 + ℵ2
) 1(

l2
2 + ℵ2

) . (66)

Here, μ is a momentum scale introduced to maintain the cor-
rect mass dimension, and the scale ℵ serves to admit the use
of Eq. (72) below. (Note that this is a different scale from the
ℵ used in Sec. IV A within cutoff regularization.) Introducing
Feynman parameters we obtain

ID
1 = μ2(3−D)

∫
dDl1

(2π )D

∫
dDl2

(2π )D

∫ 1

0
dx
∫ 1−x

0
dy

× 2[
l2
1 (x + y) + l2

2 (1 − x) + l1 · l2y + ℵ2
]3 . (67)

Shifting l1 → l1 − l2y/(2x + 2y) and rescaling the integration
variables leads to

ID
1 = μ2(3−D)FD

1

∫
dDl1

(2π )D

∫
dDl2

(2π )D

2(
l2
1 + l2

2 + ℵ2
)3 , (68)

with

FD
1 =

∫ 1

0
dx
∫ 1−x

0
dy

[
(x + y)(1 − x) − y2

4

]−D/2

. (69)

We can expand this in ε = D − 3, FD=3+ε
1 = F1 + εF ′

1 +
O(ε2), with

F1 =
∫ 1

0
dx
∫ 1−x

0
dy

[
(x + y)(1 − x) − y2

4

]−3/2

= 4π

3
,

(70)

F ′
1 = −

∫ 1

0
dx
∫ 1−x

0
dy

ln(x + y)
(
(1 − x) − y2

4

)
2
[
(x + y)(1 − x) − y2

4

]3/2

≈ 4.71849. (71)



Applying the relation [36]∫
dDq

1

(q2 + ℵ2)n = πD/2 1

ℵ2n−D

�(n − D/2)

�(n)
, (72)

and analytically continuing to D = 3 + ε, we then find

ID=3+ε
1 = 1

48π2

[
−1

ε
− 2 ln (ℵ/μ) + ζ1 + O(ε)

]
, (73)

where ζ1 = ln(4π ) − γE − 3F ′
1/(4π ) ≈ 0.827352, with

γE ≈ 0.577216 being the Euler-Mascheroni constant. This
agrees with the corresponding result for bosonic systems
derived by Braaten and Nieto [60]. Note that, for D = 3, the
left side of Eq. (72) is UV divergent for n � −3/2, but the
right side is singular only for n = 3/2. This is the well-known
feature that power divergences are automatically set to zero
in DR.

Efimov [20] and Bishop [26] extracted the leading loga-
rithms by introducing a cutoff � on one of the loop momenta
l1 or l2 only. DR makes it clear why this method gives the
correct result: the analytic continuation D → 3 + ε can be
performed for individual subintegrals individually. For dia-
grams with subdivergences this procedure would in fact be
required to obtain finite results. This is the case for diagram
�2, where the divergent integral is

ID
2,a = μ3−D

∫
dDl1

(2π )D

1(
l2
1 + ℵ2

) 1(
l2
1 + ℵ2

)
× μ3−D

∫
dDl2

(2π )D

1(
l2
1 + l2

2 + l1 · l2 + ℵ2
) . (74)

Shifting l2 → l2 − l1/2, performing the l2 integration, and
analytic continuation to D = 3 + ε leads to

ID
2,a = −μ3−D

4π

∫
dDl1

(2π )D

1(
l2
1 + ℵ2

) 1(
l2
1 + ℵ2

)√3

4
l2
1 + ℵ2,

(75)

which, for D = 3, indeed diverges only logarithmically in the
UV.7 Note also that the IR divergence (for ℵ = 0, D = 3)
of the l2 integrals has been eliminated. However, to get to a
form where we can apply Eq. (72) we would proceed instead
as

ID
2,a = μ2(3−D)

∫
dDl1

(2π )D

∫
dDl2

(2π )D

∫ 1

0
dx(1 − x)

× 2[
l2
1 + l2

2 x + l1 · l2x + ℵ2
]3 . (76)

Shifting l1 → l1 − l2x/2 and rescaling the integration vari-
ables leads to

ID
2,a = μ2(3−D)FD

2,a

∫
dDl1

(2π )D

∫
dDl2

(2π )D

2(
l2
1 + l2

2 + ℵ2
)3 ,

(77)

7In particular, setting D = 3 and ℵ = 0 and introducing an UV
cutoff on l1 is equivalent to the calculations by Efimov [20] and
Bishop [26].

with

FD
2,a =

∫ 1

0
dx(1 − x)

[
x − x2

4

]−D/2

, (78)

which is singular for D � 2, obviously a manifestation of the
subdivergence. This singularity can be removed by adding the
term

ID
2,b = −μ2(3−D)

∫
dDl1

(2π )D

1(
l2
1 + ℵ2

) 1(
l2
1 + ℵ2

)
×
∫

dDl2
(2π )D

1(
l2
2 + ℵ2

) , (79)

i.e.,

ID
2,b = μ2(3−D)FD

2,b

∫
dDl1

(2π )D

∫
dDl2

(2π )D

2(
l2
1 + l2

2 + ℵ2
)3 ,

(80)

where

FD
2,b = −

∫ 1

0
dx(1 − x)[x − x2]−D/2 (81)

is also singular for D � 2, but FD
2 = FD

2,a + FD
2,b is finite.

Expanding FD=3+ε
2 = F2 + εF ′

2 + O(ε)2, where

F2 = −2
√

3, (82)

F ′
2 = −8π

3
−

√
3[ln (4/3) − 2] ≈ −5.41176, (83)

we find for ID
2 = ID

2,a + ID
2,b

ID
2 = −

√
3

32π3

[
−1

ε
− 2 ln (ℵ/μ) + ζ2 + O(ε)

]
, (84)

with ζ2 = ln(4π ) − γE + F ′
2/(2

√
3) ≈ 0.39157. This again

matches the corresponding result for bosons derived by
Braaten and Nieto [60]. As required, the coefficient of ln μ

matches the one of ln � in the cutoff calculation, see Eq. (50).
Subtracting in Eqs. (73) and (84) only the divergent parts

∼1/ε corresponds to minimal subtraction (MS). The coupling
D0 is then fixed as D0 = D�

0(μ) + ηM3C4
0 /(2ε), where the

scaling of D�
0(μ) with μ is identical to the scaling of D0(�0)

with �, i.e., instead of Eq. (39) we have

μ
∂

∂μ
D�

0(μ) = ηM3C4
0 . (85)

The couplings D�
0(μ) and D0(�0) are not identical for

μ = �0, i.e., they differ in terms of a subtraction constant
specific to the respective regularization and subtraction pro-
cedure. Instead of Eq. (52) we have

E4(kF) = χ
[
D�

0(μ0) + ηM3C4
0 ln (kF/μ0)

]+
∑

i

EMS
4,i + · · · ,

(86)



with8

EMS
4,II5 = E4,II5(ℵ) + (g − 3)L�

1(ℵ), (87)

EMS
4,IIA1 = E4,IIA1(ℵ) + (3g − 5)L�

1(ℵ), (88)

EMS
4,II6 = ER

4,II6(i) + E4,II6(ii)(ℵ) + (g − 3)L�
2(ℵ), (89)

EMS
4,III(1+7+8) = E4,III(1+7+8)(ℵ) + (g − 1)L�

1(ℵ), (90)

where 4L�
1(ℵ) + 2L�

2(ℵ) = χηM3C4
0 ln(ℵ/kF), with

L�
1(ℵ) = α

16

27π2

[
ζ1

2
+ ln (ℵ/kF)

]
, (91)

L�
2(ℵ) = −α

8
√

3

9π3

[
ζ2

2
+ ln (ℵ/kF)

]
, (92)

and the terms E4,i(ℵ) are given by subtracting from the respec-
tive integrands their values with the denominators replaced by
those corresponding to ID

1,2. For example, the term E4,II5(ℵ) is
given by

E4,II5(ℵ) = −ζ (g − 3)
∑
i, j, k
a, c

ni jk

×
[

n̄abcde

Dab,i jDce,i jDacd,i jk

∣∣∣∣ b=i+j−a
d=i+j+k−a−c

e=i+j−c

− 1

Dℵ
abDℵ

ceDℵ
acd

∣∣∣∣ b= − a
d= − a − c

e= − c

]
, (93)

with Dℵ
ab = Dab + ℵ2/(k2

FM ). One finds

EMS
4,II5 = −α(g − 3) × 0.0500(1), (94)

EMS
4,IIA1 = −α(3g − 5) × 0.0498(1), (95)

EMS
4,II6 = α(g − 3) × 0.0664(2), (96)

EMS
4,III(1+7+8) = α(g − 1) × 0.0416(2). (97)

The sums of the first two and the last two contributions are
given by

EMS
4,II5+IIA1 = α[0.00018(1) − (g − 2) × 0.1995(4)], (98)

EMS
4,II6+III(1+7+8) = α[−0.0248(1) + (g − 2) × 0.1079(2)]. (99)

From Eqs. (64) and (65), the relation between the “MS” values
and the “R” ones is given by

EMS
4,II5+IIA1 = ER

4,II5+IIA1 − α(g − 2) × 0.4581(8), (100)

EMS
4,II6+III(1+7+8) = ER

4,II6+III(1+7+8) + α(g − 2) × 0.1857(8).

(101)

As required, the difference between the “MS” values and the
“R” values vanishes for g = 2, see Sec. III.

8For II6 we separate again the power-divergent part II6(i), see
Eq. (32).

V. GROUND-STATE ENERGY AT FOURTH ORDER

Here, we summarize the results for the low-density expan-
sion for the ground-state energy density E (kF) of the dilute
Fermi gas. The expansion reads

E (kF) = n εF

[
3

5
+ (g − 1)

∞∑
ν=1

Cν (kF)

]
, (102)

with n = gk3
F/(6π2) being the fermion number density,

εF = k2
F/(2M ) the noninteracting Fermi energy, and g the spin

multiplicity. The expansion coefficients up to fourth order are
given by

C1(kF) = 2

3π
kFas, (103)

C2(kF) = 4

35π2
(11 − 2 ln 2)(kFas)2, (104)

C3(kF) = [0.0755732(0) + 0.0573879(0) (g − 3)](kFas)3

+ 1

10π
(kFas)2kFrs + 1

5π

g + 1

g − 1
(kFap)3, (105)

C4(kF) = −0.0425(1) (kFas)4

+0.0644872(0) (kFas)3kFrs

+γ4(kF) (g − 2) (kFas)4. (106)

The first two terms are the only ones for which closed-form
expressions are known; these where first derived by Lenz [17]
in 1929 and Lee and Yang [18] as well as de Dominicis and
Martin [19] in 1957, respectively. The third-order term was
first computed by de Dominicis and Martin [19] in 1957 for
hard spheres with two isospin states, by Amusia and Efimov
[21] in 1965 for a single species of hard spheres, and then
by Efimov [23] in 1966 for the general dilute Fermi gas. It
was also computed subsequently by various authors [11,24–
26,47,54,57]. Initial studies of the fourth-order term for g = 2
were performed by Baker in Refs. [22,25,52,53], see also
Ref. [28] for a discussion of these.

Up to third order, only two-body (i.e., ERE) parame-
ters appear and the expansion is a polynomial in the Fermi
momentum kF. At higher orders N � 4, logarithmic terms
∼kn

F ln(kF/�0) enter, starting at N = 4 for g > 2; for g = 2,
no logarithms emerge from S-wave interactions (as a conse-
quence of the Pauli exclusion principle). The logarithms are
accompanied by many-body couplings [at fourth order, the
coupling D0(�0)] whose dependence on the auxiliary scale
�0 is such that the Fermi-momentum expansion is indepen-
dent of �0. The many-body couplings are renormalization
scheme dependent and have to be matched to few-body (or
many-body) observables calculated in the same scheme. Us-
ing a Galilean invariant regulator function and subtracting
only divergent terms (“R” scheme), the g > 2 part γ4(kF) of



the fourth-order term takes the form9

γ R
4 (kF) = MD0(�0)

108π4a4
s

+ 0.2707(4) − 0.00864(2) (g − 2)

+ 16

27π3
(4π − 3

√
3) ln (kF/�0). (107)

On the other hand, using DR with minimal subtraction (“MS”
scheme) one obtains

γ MS
4 (kF) = MD�

0(�0)

108π4a4
s

− 0.0017(4) − 0.00864(2) (g − 2)

+ 16

27π3
(4π − 3

√
3) ln (kF/�0). (108)

The scaling of D0(�0) and D�
0(�0) with �0 is identical and

determined by the �0 independence of γ4(kF). The values of
D0(�0) and D�

0(�0) differ by a subtraction constant, i.e.,

D�
0(�0) = D0(�0) − 108π4a4

s

M
× 0.2724(8). (109)

Although the subtraction constant is arbitrary, it is never-
theless pertinent to specify its value (i.e., to specify the
renormalization scheme) in order to predict many-body results
from few-body data, or vice versa.

The individual diagrammatic contributions to the C4
0 part

of the fourth-order term are listed in Table I. The computa-
tions have been carried out using the Monte Carlo framework
introduced in Ref. [61] to evaluate high-order many-body
diagrams, see also Ref. [28]. The results for the contribu-
tions that involve logarithmic divergences, II5, II6, IIA1, and
III(1 + 7 + 8), have the largest numerical uncertainties. For
g = 2, slightly more precise results can be given for II5 +
IIA1 and II6 + III(1 + 7 + 8), because then no logarithmic
divergences occur (see Sec. III).

VI. CONVERGENCE ANALYSIS AND RESUMMATIONS

As discussed above, for spin one-half fermions (g = 2) the
logarithmic terms from S-wave interactions cancel (by virtue
of the Pauli principle). Logarithms still arise from P-wave
interactions at higher orders, i.e., at a certain order Nlog. The
Fermi-momentum expansion for E = E/E0, truncated at an
order N < Nlog, is thus a polynomial in δ = kFas:

EN (δ) = 1 +
N∑

ν=1

ενδ
ν, (110)

where E0 = 3nk2
F/(10M ) is the energy density of

the free Fermi gas, and the expansion coefficients
εν ≡ εν (as, rs, ap, . . . ) are completely determined by the
ERE. In the following, we analyze the convergence behavior
of Eq. (110) for two different cases. First, we examine the
case where all ERE parameters beyond as are zero, which we

9The logarithmic part of Eq. (107) was first derived by Efimov
[20,23] and subsequently in Refs. [10,24,26,60]. Note that, in the
literature [10,11,20,23,24,26,45,60], the arbitrary scale �0 is usually
set to �0 = 1/as.

denote by LO. Here, the coefficients in the kFas expansion are
given by

{εν} =
{

10

9π
,

44 − 8 ln 2

21π2
, 0.0303089(0),

− 0.07076(39), . . .

}
. (111)

Second, we consider the hard-sphere gas (HS) where as =
3rs/2 = ap, leading to

{εν} =
{

10

9π
,

44 − 8 ln 2

21π2
, 0.383987(0), 0.00089(39), . . .

}
.

(112)

In Sec. VI A we examine the convergence behavior of the
LO and HS expansions and analyze the uncertainties of the
predictions for E/E0. We find that, in both cases, the Fermi-
momentum expansion is well converged at fourth order for
|δ| � 0.5. In Sec. VI B we then show that Padé and Borel
resummations allow us to extend the domain of convergence
to |δ| � 1. Finally, in Sec. VI C we discuss the challenges
regarding the calculation of the Fermi-momentum expansion
beyond fourth order.

A. Perturbative convergence and uncertainty estimates

In Ref. [28] we assessed the convergence pattern of
the kFas expansion at a given order N � 4 by setting the
next-higher coefficient εN+1 = ± max[εν�N ]. This spans an
uncertainty band of width �EN = 2|εN+1|δN+1. Here, we use
the pointwise Bayesian model with conjugate distributions
developed in Refs. [62,63] to estimate εN+1 given the com-
puted coefficients. This model allows one to evaluate posterior
distributions analytically (given the conjugate prior) rather
than through Monte Carlo sampling. Specifically, we treat the
coefficients εν as random numbers drawn from a single normal
distribution,10

pr(εν | c̄2)
i.i.d.∼ 1√

2π c̄2
exp

[
− ε2

ν

2c̄2

]
, (113)

with mean zero and variance c̄2. The computed coefficients
εν�4 are assumed to be known draws from this a priori un-
known distribution function, while εν>4 are unknown. We also
assume a scaled inverse-χ2 prior on c̄2,

pr(c̄2) ∼
(
τ 2

0
η0

2

) η0
2

�
(

η0

2

) exp
[− η0τ

2
0

2c̄2

]
c̄2(1+ η0

2 )
, (114)

with η0 degrees of freedom and scale parameter τ0. By adjust-
ing the hyperparameters we can incorporate our prior estimate
of the (not computed) higher-order coefficients. We fix η0 = 3
and determine τ 2

0 by the requirement that the mean value
η0τ

2
0 /(η0 − 2) equals | max[εν�N ]|. This prior choice disfa-

vors high values for c̄2 and thus εν>N . Using Bayes’ theorem

10z ∼ · · · is a common notation in statistics that reads “the variable
z is distributed as . . . .” The “i.i.d.” above the ∼ indicates a set of
independent and identically distributed (i.i.d.) random variables.



FIG. 4. Convergence behavior of the Fermi-momentum expansion for the ground-state energy E/E0 of a dilute Fermi gas of spin one-half
fermions with ap = rs = 0 (LO, left panel) and as = 3rs/2 = ap (HS, right panel) at negative and positive kFas, respectively. The respective
uncertainty bands correspond to the 68% credibility intervals from our Bayesian estimation of the next-higher coefficient in the kFas expansion.
In the LO case we also show results obtained from two different Padé approximants, Padé[1,1] (gray line) and Padé[2,2] (black line). Finally,
the thick red dots in each panel correspond to results from nonperturbative QMC computations [8,64,65]. Note that the x axes in the two panels
are different, and based on the available QMC data we show the attractive regime with as < 0 in the left panel and the repulsive regime with
as > 0 in right panel. See the text for more details.

and marginalizing over c̄2, one then finds that the posterior
for a coefficient at order n > N is given by the Student’s t
distribution [62], i.e.,

pr
(
εν>N | {εν}N

ν=1, τ
2
) ∼ tη(εν ; 0, τ 2), (115)

with

tη(x; μ, τ 2) = 1√
πητ 2

�
(

η+1
2

)
�
(

η

2

) (
1 + (x − μ)2

ητ 2

)− η+1
2

. (116)

Here, the scale parameter τ 2 satisfies

ητ 2 = η0τ
2
0 +

N∑
ν=1

ε2
ν . (117)

Furthermore, η = η0 + nc, where nc is the number of co-
efficients in the set {εν}nc

ν=1 used to inform the probability
distribution. We consider all available coefficients, i.e., nc =
4, so that all four known coefficients are used for each N ∈
{1, 2, 3, 4} in Eq. (115). Finally, from Bayes’ theorem one
then finds that the posterior distribution representing the un-
certainty of EN (δ) is given by [62]

pr
(EN (δ) | {εν}N

ν=1, τ
2
) ∼ tη(E (δ); EN (δ), δ2(N+1)τ 2), (118)

where the variable E (δ) corresponds to the presumed exact
results.

The convergence behavior of the Fermi-momentum ex-
pansion for the LO and the HS case is examined in Fig. 4.
There, we show the perturbative results for E = E/E0 ob-
tained for truncation orders N = 2, 3, 4 together with the
respective 68% credibility intervals of our Bayesian analysis.
Also shown are data points obtained from nonperturbative
QMC computations [8,64,65]. One sees that the perturbative

results are very close to the QMC data for |δ| � 0.5 but start to
deviate strongly for |δ| � 1. In the LO case the relative error
with respect to the QMC point at δ = −0.5 (EQMC ≈ 0.862)
is 4.5% (E1 ≈ 0.823) at first, 0.8% (E2 ≈ 0.870) at sec-
ond, 0.4% (E3 ≈ 0.866) at third, and 0.1% (E4 ≈ 0.861)
at fourth order, while in the HS case the relative error at
δ = +0.5 (EQMC ≈ 1.254) is 6.2% (E1 ≈ 1.177) at first, 2.5%
(E2 ≈ 1.223) at second, 1.3% (E3 ≈ 1.271) at third, and 1.3%
(E4 ≈ 1.271) at fourth order. The convergence of the ex-
pansion is slower in the HS case, which is signified by
the relatively large size of the third-order coefficient there,
ε3 ≈ 0.38 (in the LO case it is ε3 ≈ 0.03). The fourth-order
HS coefficient ε4 ≈ 0.0009 on the other hand is very small
(due to a large cancellation between S- and P-wave contribu-
tions), so the third- and fourth-order HS curves in Fig. 4 are
almost indistinguishable.

The Bayesian uncertainty bands in Fig. 4 are similar to
those from the simple εN+1 = ± max[εν�N ] analysis, see
Fig. 2 of Ref. [28]. In both schemes, going to higher orders
in the expansion reduces the width of the uncertainty bands
for |δ| � 1, and for |δ| � 0.5 the bands are very small for
N = 4. This supports the conclusion that the expansion is
well converged at fourth order for |δ| � 0.5 and diverges for
|δ| � 1.11 Note that these results do not depend on as being of
natural size; only kFas has to be small.

11More precisely, the Fermi-momentum expansion is an asymptotic
series that diverges for N → ∞ for all |δ| > 0, see Sec. II C. “Well
converged” means here that the result seems to be insensitive to
lowering the truncation order.



B. Padé and Borel resummations

Resummation methods provide a means to extrapolate a
(truncated) series beyond the region where well-converged
results are obtained, |δ| � 0.5 in the present case. The two
most common methods are Padé approximants [66,67] and
Borel resummation [68–71]. Below, we apply these two meth-
ods to the Fermi-momentum expansion for the LO case
(with negative δ). We do not consider the HS case be-
cause higher-order ERE parameters become relevant there at
stronger coupling. Regarding Padé approximants, we restrict
the discussion to those that give predictions for the Bertsch
parameter ξ = E (−∞).12 In the Borel case we focus on the
region of weak-to-intermediate coupling since only there (i.e.,
for |δ| � 1) are the extrapolations well converged.

1. Padé approximants

For a given formal power series

E (δ) = 1 +
∞∑

ν=1

ενδ
ν, (119)

the Padé[n, m] approximant is the rational function

Padé[n, m](δ) = 1 +
∑n

k=1 akδ
k

1 +∑m
l=1 blδl

, (120)

whose Maclaurin expansion matches the series up to or-
der N = n + m. Only “diagonal” Padés with n = m have
a nontrivial unitary limit, i.e., Padé[n, n] −→ 1 + an/bn for
δ → −∞. To have meaningful results in the strong-coupling
regime thus mandates the restriction to even N = 2n, i.e.,
(N, n) = (2, 1) and (N, n) = (4, 2).

The results obtained from the Padé[1,1] and [2,2] approxi-
mants (which were already studied in Ref. [28]) are shown in
the left panel of Fig. 4.13 One sees that the Padé[2,2] approx-
imant is very close to the QMC results for δ � −1.2, while
Padé[1,1] is in better agreement close to the unitary limit
δ → −∞. Note however that pairing correlations become
relevant for larger values of −δ, and it is questionable that
Padés can capture pairing effects (which are expected to be
encoded in the high-order behavior of the kFas expansion [39])
at low truncation orders. The range for the Bertsch parameter
obtained from Padé[1,1] and [2,2], ξPadé ∈ [0.326, 0.541], is
consistent with the value ξ ≈ 0.376 extracted from experi-
ments with cold atomic gases, and also with the extrapolated
value for the normal (i.e., nonsuperfluid) Bertsch parameter
ξn ≈ 0.45 [2]. Altogether, these results seem to indicate that
Padé approximants converge in a larger region, compared with
the Fermi-momentum expansion.

12Padé predictions for the Bertsch parameter were previously stud-
ied by Baker [52,53], see also Ref. [28].

13For a more extensive study of the Padé[1,1] approximant, see
Ref. [72].

2. Borel resummation

Borel resummation is based on the Borel (-Leroy) trans-
formed perturbation series, i.e.,

B(t ) � 1 +
∞∑

ν=1

εν

�(ν + 1 + β0)
tν, (121)

where the standard Borel transform corresponds to β0 = 0. In
contrast with the perturbative series [Eq. (119)], the Borel-
transformed series has a finite convergence radius: from the
large-order behavior

εν

ν→∞∼ aν�(ν + 1 + β ), (122)

one finds that the leading singularity of B(t ) is at t = 1/a
[69,73,74]. Formally, in the so-called Borel-summable case
where all singularities of B(t ) are off the positive real axis (in
particular, a < 0), the exact E (δ) is then obtained by first an-
alytically continuing B(t ) beyond t = 1/|a| and then carrying
out the inverse Borel transform:

E (δ) =
∫ ∞

0
dte−t t β0B(tδ). (123)

Regarding practical applications where the perturbative series
is only known up to a finite order N , this procedure allows
one to construct approximants BN (δ) for E (δ) in terms of
approximants BN (t ) for B(t ):

E (δ) ≈ BN (δ) =
∫ ∞

0
dte−t t β0BN (tδ). (124)

A straightforward approach to construct BN (t ) is the Padé-
Borel method, which uses Padé approximants matched to the
Borel series [Eq. (121)]. [We note that, while the conjectured
large-order behavior a = −1/π (and β = 0) [39] would im-
ply a non-Borel summable series for δ < 0, we find that the
Padé-Borel BN (tδ) approximants for N � 4 have no poles on
the positive t axis for δ < 0.]

In Fig. 5, we show the results for E (δ) from the second-,
third-, and fourth-order Padé-Borel approximants obtained
using the standard choice β0 = 0 for the Borel transform. Also
shown are the corresponding perturbative results as well as the
results from QMC computations from the left panel of Fig. 4.
One sees that, compared with the perturbative results, the
Borel approximants for E (δ) have a much better convergence
behavior for δ > 0.5. Moreover, for |δ| � 1 the fourth-order
Borel results are very close to the QMC data.

Overall, the results depicted in Figs. 4 and 5 show that
Padé and Borel resummation methods allow us to improve the
convergence behavior of the C0 part of the Fermi-momentum
expansion. To investigate this further would require future
computations of higher-order series coefficients beyond fourth
order. As discussed below, this, however, faces serious chal-
lenges.

C. Beyond fourth order

The first complication regarding the calculation of coeffi-
cients beyond fourth order is the rapid increase of the number
of Hugenholtz diagrams with N . Graph theory methods al-
low one to automatically generate diagrams [75–77], from
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FIG. 5. Results for the ground-state energy E/E0 of a dilute
Fermi gas of spin one-half fermions with ap = rs = 0 obtained from
the Padé-Borel resummation method, see the text for details. The
numbers in parentheses denote the underlying truncation order N .
Also shown are results from QMC computations (filled red circles)
as well as the perturbative results at second (dotted blue line), third
(solid yellow line), and fourth order (dashed red line), see also Fig. 4.

which one finds that the number of diagrams without single-
vertex loops increases as (1, 1, 3, 39, 840, 27300, . . .) for
N = (1, 2, 3, 4, 5, 6, . . .), where the number of the relevant
normal diagrams increases as (1, 1, 3, 33, 668, 21572, . . .).

For a given set of higher-order diagrams, the evaluation of
those without UV divergences and those that have only simple
ladder-type divergences (which are renormalized by two-body
counterterms) would be relatively straightforward. That is,
for a given diagram the only complication compared with
a fourth-order diagram of similar type would be additional
three-momentum integrals.

The main challenge concerning higher-order calculations
lies (as in the fourth-order case) with UV divergences that
are not renormalized by two-body counterterms. For instance,
at fifth order one encounters several three-body scattering
diagrams of the form of diagrams of Fig. 2 but with two
additional intermediate states. These diagrams have logarith-
mic subdivergences that cancel if the diagrams are summed.
The remaining linear UV divergence cancels for g = 2 and is
otherwise renormalized by a momentum-independent three-
body counterterm. For the next diagonal Padé approximant
(Padé[3,3]) one would have to go to sixth order, where a
much larger number of diagrams with complementary subdi-
vergences and also the first momentum-dependent logarithmic
divergence ∼Q2 ln(�/Q) appears in three-body scattering
(see Sec. II D).

VII. SUMMARY

In this paper we have discussed high-order perturbative
EFT calculations for fermions at very low energy scales. In
particular the issue of renormalization has been investigated
in detail. We have then elaborated and expanded on our
recent calculation [28] of the fourth-order term in the Fermi-

momentum or kFas expansion for the ground-state energy of
the general dilute Fermi gas. The result for the complete (i.e.,
including both analytic and logarithmic terms) fourth-order
coefficient has been given for two different regularization
and renormalization schemes: cutoff regularization (with di-
vergence subtraction) and dimensional regularization (with
minimal subtraction).

The central results for the Fermi-momentum expansion are
summarized in Sec. V, where in Table I the various contri-
butions to the regular (i.e., nonlogarithmic) (kFas)4 part of
the fourth-order term are listed. In Sec. VI we have then
investigated the convergence behavior of the expansion for the
case of spin one-half fermions. Using Bayesian methods and
comparing against results from nonperturbative QMC com-
putations, we found that the expansion is well converged at
fourth order for |kFas| � 0.5 and exhibits divergent behavior
for |kFas| � 1, see Fig. 4. (To be precise, the kFas expansion
is a divergent asymptotic series; by “divergent behavior” we
mean that the accuracy of the result at low truncation orders is
deficient.)

Furthermore, we have shown that Padé-Borel resumma-
tions (of the as-only part of the expansion) improve the
convergence and give well-converged results at fourth order
in the region |kFas| � 1, see Fig. 5. Accurate results through-
out the entire BCS regime with negative kFas (and into the
BEC region) can however be obtained via resummations that
incorporate constraints on the behavior for kFas → −∞ from
QMC computations [78,79]. Given the technical challenges
that arise beyond fourth order, it is unlikely that the kFas

expansion will be evaluated to even higher precision in the
near future.

Our results for the Fermi-momentum expansion at fourth
order provide important constraints for ultracold atoms and
dilute neutron matter. Specifically, our results serve as use-
ful benchmarks for future QMC simulations of dilute Fermi
systems and may be used to construct improved models of
neutron-star crusts. Future work may be targeted at high-order
calculations of the dilute Fermi gas expansion at finite temper-
ature.
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