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ABSTRACT 

Structural Behavior of Bent Cap Beams in As-built and Retrofitted Reinforced Concrete Box-
Girder Bridges 

 

By  

Mohamed Aly Abdel-Razik Moustafa 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

University of California, Berkeley 

Professor Khalid M. Mosalam, Chair 

Research on resilient infrastructure systems is expanding. As we experience more infrastructure 
deterioration in the US, numerous efforts are ongoing for building the nation’s new infrastructure 
and maintaining the existing one. Bridges are key components of infrastructure that are 
vulnerable to earthquakes and are undergoing retrofit or complete replacement. Thus, optimized 
seismic design of new bridges and informed retrofit decisions are indispensable. A specific 
design issue that is concerned with the structural response of bent cap beams in as-built and 
retrofitted box-girder bridges under gravity and seismic loads is tackled in this dissertation. The 
lack of proper account of box-girder slabs contribution to the integral bent cap can lead to an 
uneconomical seismic design of new bridges or unfavorable mode of failure in retrofitting 
existing ones. A combined experimental and computational research was undertaken in this 
study to investigate the structural behavior and seismic response of bent cap beams in as-built 
and retrofitted reinforced concrete box-girder bridges under the combined effect of vertical and 
lateral loading. In particular, the contribution of the box-girder slabs to the stiffness and strength 
of the integral bent caps was evaluated for optimized design and enhanced capacity estimation. 
The computational part of the study consisted of two phases: pre-test and post-test analyses. The 
experimental program involved testing two 1/4-scale column-bent cap beam-box girder 
subassembly using quasi-static and Hybrid Simulation (HS) testing methods. The test specimens 
were adopted from a typical California bridge that is modified from the Caltrans Academy 
Bridge, and were designed in light of the most recent AASHTO and Caltrans provisions.  

The pre-test analysis phase of the computational research utilized one-, two-, and three-
dimensional finite element models to carry out different linear and nonlinear static and time 
history analyses for both of the full prototype bridge and the test specimen. The pre-test analysis 
successfully verified the expected subassembly behavior and provided beneficial input for the 
experimental program. The first stage of the experimental program involved quasi-static cyclic 
loading tests of the first specimen in as-built and repaired conditions. Bidirectional cyclic loading 
tests in both transverse and longitudinal directions were conducted under constant gravity load. 
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A rapid repair scheme was adopted for the tested specimen using a Carbon Fiber Reinforced 
Polymer (CFRP) column jacket. A similar quasi-static cyclic test to the as-built specimen was 
carried out for the repaired specimen for comparison purposes and to verify the essentially elastic 
status of the bent cap beam. The second stage of the experimental study embraced the HS testing 
technique for providing the lateral earthquake loading to the test specimens. A new practical 
approach that utilized readily available laboratory data acquisition systems as a middleware for 
feasible HS communication was achieved as part of this study. The proper communication 
among the HS components and the verification of the HS system were first performed using tests 
conducted on standalone hydraulic actuators. A full specimen HS trial test was conducted using 
the previously tested repaired specimen to validate the whole HS system. The last phase in the 
experimental program involved retrofitting the column of the second specimen using CFRP 
jacketing before any testing to increase the demands on the bent cap beam for further 
investigation into its inelastic range of structural response. The retrofitted second specimen was 
then tested using multi-degree of freedom HS under constant gravity load using several scales of 
unidirectional and bidirectional near-fault ground motions.   

The post-test analysis was the final stage of this study. The results from the as-built first 
specimen cyclic tests were used to calibrate the most detailed three-dimensional finite element 
model, which was previously developed as part of the pre-test analysis stage. The calibrated 
model was used to explore the effect of reducing the bent cap reinforcement on the overall 
system behavior and to investigate the box-girder contribution at higher levels of bent cap 
seismic demand. Based on the computational and experimental results obtained in this study, the 
effective slab width for integral bent caps was revisited. The study concluded that the slab 
reinforcement within an effective width, especially in tension, should be included for accurate 
bent cap capacity estimation. The study was finalized with an illustrative design example to 
investigate the design implications of the revised effective slab width and bent cap capacity 
estimation on the optimization of the bent cap design for a full-scale bridge. 
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A central concept that is associated with seismic bridge design is the capacity design 
approach. Many research studies were cultivated to improve the capacity design principles for 
bridges, especially after the Northridge earthquake. One of the world leading authorities that 
sponsored and promoted many of those studies is the California Department of Transportation 
(Caltrans). Their bridge seismic design provisions are published in a special document; Caltrans 
Seismic Design Criteria (SDC) that is being regularly updated. Recently, the Caltrans SDC was 
heavily utilized by the American Association of State Highway and Transportation Officials 
(AASHTO) to produce the national AASHTO Guide Specifications for LRFD Seismic Bridge 
Design whose 1st edition was published in 2009. The essence of the capacity design approach 
adopted by either the latest Caltrans SDC (2013) or AASHTO Guide Specifications for LRFD 
Seismic Bridge Design (2011) is to direct all the damage during extreme events into the bridge 
columns that are designed to be ductile to prevent overall brittle modes of failures and collapse. 
The desired column design and ductility can be defined by a Performance-Based Earthquake 
Engineering (PBEE) framework but still has to satisfy the minimum requirements of Caltrans 
SDC or AASHTO LRFD seismic design. Designated as capacity-protected members, the bridge 
superstructure, joints, or bent cap beams are designed, on the other hand, to remain elastic when 
the column reaches its over-strength capacity. The very specific issue of how the accuracy of the 
capacity estimation of the integral bent cap beams in RC box-girder bridges can be enhanced as a 
critical part of the capacity design approach for bridges is the core of the study presented in this 
report. The main goal of this study is to investigate how the contributions of the box-girder soffit 
and deck slabs to the stiffness and strength of the bent cap beams can be accurately estimated for 
the purpose of cap beam capacity calculations.    

The motivation of this study and the mechanics of the sought framework are inspired by 
extensive similar research studies that were carried out for buildings. Unlike bridges, the 
common practice in capacity seismic design in buildings is the weak beam-strong column 
(WBSC) approach, where yielding and plastic hinging are desired in the beams rather than the 
columns. That is because columns are the main gravity load carrying elements especially at 
elevated axial load levels as in the lower stories of tall buildings. Accordingly, columns in 
buildings are required to stay elastic to avoid excessive deformations and possible progressive 
collapse due to formation of soft story mechanisms. The essence of the WBSC, as suggested by 
ACI-318 (2008) for example, is to ensure that the capacity of the columns at a beam-column 
joint is at least 1.2 times the capacity of the beams connected at the same joint. Therefore, the 
capacity of the beam needs to be accurately estimated if the WBSC to be adopted. Otherwise, 
unexpected failure or undesired mechanism can occur if the column is designed using an 
underestimated beam capacity.   

Since moment frames in buildings are monolithically integrated with the floor systems 
and slabs, the slab contribution can strengthen and stiffen the beams. The contribution of the slab 
is accounted for in design by using a flanged section (T-beams are the most popular) where the 
flange width is the chosen effective width (beff) according to codes and standards. Based on the 
loading and the location of the flanged section along the beam, the flange can be in the 
compression side of the beam (positive or sagging moment location) or it can be in tension 
(negative or hogging moments) at the top of the supports or at a cantilever supported end for 
example. Typically, the provisions of building codes are used to account for the effective width 
in the flanged section only in the compression side. However, in the last decade, new provisions 
were amended in the building codes to consider the slab contribution and slab transverse 
reinforcement in an equivalent effective width in the tension side as well. Again this is to make 
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sure the WBSC condition is satisfied if this is the desired mechanism. More details are provided 
in the background chapter that follows.  

The same concept of the flanged effective width in compression and tension for building 
frames can be utilized in bridges but from a different perspective. As previously mentioned, the 
desired recent bridge seismic capacity design practice is to concentrate all the damage in the 
column while the beams remain elastic, i.e. weak column-strong beam (WCSB) approach. Plastic 
hinges in the cap beams in bridges are undesirable due to limited access to the beam region 
within the box-girder and uneconomical post-earthquake inspection and repair compared to the 
plastic hinging of the column. Also, bridge columns do not experience the elevated axial load 
levels as in the case of tall buildings. Therefore, the Caltrans SDC and AASHTO LRFD seismic 
design, as noted before, promote the WCSB capacity design framework. Accordingly, the 
superstructure, i.e. the bridge deck including the bent cap beam, is capacity protected by 
imposing the 1.2 times capacity check. In cast-in-place RC box-girder with integral bent caps, 
the contribution of the box-girder slabs results in a flanged bent cap beam section. Currently, the 
Caltrans SDC (2013) and AASHTO LRFD seismic design (2011) suggest an effective width of 
12 times the soffit or deck slab thickness in tension or compression sides for the cap beam 
capacity check. However, the slab reinforcement is not considered in the capacity check. 
Evaluating the 12 times the slab thickness effective width along with the validity of considering 
the box girder slab reinforcement in the process of the bent cap beam design and capacity check 
are the main outcome of this study.         

Because of the nature of earthquakes, it is required to assess the structural dynamic 
behavior to account for the seismic effects. Several dynamic analysis techniques are available 
and utilized frequently in quantifying the seismic demands. Nevertheless, predicting the inelastic 
structural dynamic performance during a severe earthquake is a challenging task. On the other 
hand, experimental methods are more reliable to determine the structural performance and to 
validate analytical and computational models. Therefore, this study considered both experimental 
and computational methods to design a comprehensive mixed framework for evaluating the 
structural behavior of bent cap beams in RC box-girder bridges. A formal statement of the 
research problem, more details about the experimental and computational Finite Element (FE) 
analysis frameworks, and the organization of this dissertation are presented in the next sections.. 

1.2 PROBLEM STATEMENT AND OBJECTIVES  

In this section we explicitly state what was informally mentioned in the previous section. In that 
regard, the undertaken study attempted to answer the following question: how should accurate 
estimation of the stiffness and capacity of a bent cap be assessed considering the contributions of 
the deck and soffit slabs framing into the bent cap in RC box-girder bridge systems under the 
combined effect of vertical and lateral loading? Alternatively, the problem statement can be 
stated as: what is the accurate estimate of the effective flange width of the bent cap beam due to 
the box-girder slabs contributions? Three research objectives further clarify the general problem 
statement and these can be listed as follows: 

1. To investigate the behavior of bridge column-superstructure systems in light of the most 
recent AASHTO and Caltrans SDC provisions. 
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2. To investigate the system, particularly the integral cap beam, in different scenarios of as-
built, repaired, and retrofitted bridge columns, i.e. to study whether strengthening bridge 
columns might migrate the mode of failure to the bridge superstructure because of 
possible amplified demands, i.e. lesser influence of the notion of the capacity protected 
members. 

3. To determine what are the possible design implications and code recommendations, if 
any, dictated by accurate estimate of cap beam effective flange width and capacity 
calculation. 

A mix of computational and experimental methods is utilized in this study to investigate 
the previously defined problem in the context of the defined research objectives. More details 
about the research methodology with focus on the pursued computational and experimental 
programs are discussed next.  

Meanwhile, in light of the defined problem statement and objectives, the following four 
main contributions garland the study: 

1. Revisiting the effective width considered for bent cap beam design to account for the 
contributions from the box-girder soffit and deck slabs to its stiffness and strength. 

2. Investigating the effectiveness of Carbon Fiber Reinforced Polymer (CFRP) repair and 
retrofit techniques mainly for altering the column structural behavior and evaluating the 
resulting subassembly performance. 

3. Developing and successfully conducting Multi-Degree Of Freedom (MDOF) Hybrid 
Simulation (HS) as part of the conducted experimental program. 

4. Calibrating a detailed FE model for the tested specimens and conducting a parametric 
study that complements the experimental observations for developing design 
recommendations of bent cap beams. 

1.3 EXPERIMENTAL FRAMEWORK  

The undertaken experimental program is the core of this research study as it was expected to 
provide conclusive observations about the contribution of box-girder slabs to the bent cap beam 
behavior and to serve as the underlying foundation for the computational model calibration and 
extended parametric study. The initially envisioned experimental program comprised two 
identical 1/4-scale subassembly specimens to be tested using two different lateral loading 
schemes. A quasi-static test that uses cyclic lateral loading was the first chosen loading scheme. 
HS method for testing using an online computational model subjected to selected earthquake 
excitation and interacting with the physically tested specimen was the second lateral loading 
scheme. However, the experimental program was modified in light of the results from the first 
specimen quasi-static test to finally conclude with 4 different tests. A similar test setup was used 
for all tests which involved testing the 1/4-scale subassembly in an inverted position, i.e. the box-
girder is closer to the strong floor of the laboratory while the column pointing upward. Such 
setup was chosen for practical reasons and for its feasibility to easily apply the combined gravity 
and the lateral loads at the column tip in its inverted position. A brief discussion of each of the 4 
conducted tests is presented next. 
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The first test in the four-test series, comprising the full experimental program, was a 
quasi-static test for the first specimen tested in as-built configuration under combined constant 
gravity load and bidirectional cyclic lateral loading. Two different levels of gravity load were 
used such that the first level corresponded to only the dead load while the second level 
considered additional loads due to live loads and the vertical component of the earthquake 
excitations. The bidirectional cyclic loading was applied independently in one direction at a time, 
i.e. a group of cycles was applied in the column-bent cap plane (transverse direction) then 
followed by a similar group of cycles in the box-girder longitudinal direction. The observed 
mode of failure was the desired Caltrans SDC WCSB which motivated the expansion of the 
experimental program.  

 Before proceeding with further testing, a repair decision was made to be pursued for the 
first tested specimen along with a retrofit decision for the second untested specimen. The retrofit 
aimed at strengthening the column using CFRP to amplify the moment demand on the cap beam 
for further bent cap capacity evaluation and exploring different modes of failure, if any. While 
the second specimen was planned to be tested using HS testing technique, the first tested 
specimen was repaired to be reused for HS system development and trials before the final test 
proceeds. However, a similar quasi-static test was also conducted first on the repaired specimen 
to compare with the as-built test for an evaluation of a rapid repair technique that uses CFRP. 
Thus, the sequence of the 4 tests evolved as follows: (1) first as-built specimen tested quasi-
statically; (2) first repaired specimen and retested quasi-statically; (3) first repaired specimen 
used in HS development and test trials; and (4) second retrofitted specimen and tested in a HS 
setting. 

  As mentioned, the second test in the four-test sequence was a similar quasi-static test to 
the first test but applied to the first specimen after its CFRP repair. A constant gravity load that 
corresponds only to the second higher level used in the first test along with bidirectional cyclic 
lateral loading were used for the second test. Similar group of cycles as used in the first test were 
reapplied to the repaired specimen in the second test. However, the test was intentionally stopped 
earlier than the corresponding first test to make sure the repaired specimen still has some 
remaining force capacity for the sake of the third test. 

The third test also utilized the first specimen that was repaired. The main objective of this 
test was only providing a real HS test trials to verify the development of the HS system that was 
established particularly for this research study but meant to be generic for future 
experimentation. Several test runs that used the Northridge earthquake ground motions recorded 
at the Sylmar and Rinaldi stations were applied with and without the effect of gravity load. 
Although the gravity load has been part of the original test plan, the trials that did not involve the 
gravity load were only intended to check the stability of the developed HS system.  

The fourth and final test in the experimental program was the HS testing of the second 
specimen that was already retrofitted before any testing. The HS tests involved several runs that 
included uni- and bi-directional loading, different scales for the lateral excitations, and three 
different levels for the gravity load.  Moreover, a new testing scheme was proposed and applied 
in few HS runs to account for the P-delta effect that incorporated not only the gravity load, but 
also the vertical component of the earthquake. This final test had several objectives as follows:  

1. Evaluating the bent cap beam behavior and quantifying the effective slab width at higher 
moment demands than the design level. 
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2. Investigating the effectiveness of the CFRP retrofit technique. 

3. Exploring the consequences of a column retrofit or its over-design on the mode of failure 
of the bridge system under seismic loading. 

4. Developing a generic and robust HS testing technique that utilizes readily available data 
acquisition and control systems and combining them with a generic computational 
framework for a convenient and feasible HS system. 

1.4 COMPUTATIONAL FRAMEWORK 

The computational framework adopted in this study complemented the experimental program for 
arriving at comprehensive design implications and conclusions. This framework comprises two 
broad phases: I) the pre-test analysis phase and II) the post-test analysis phase. All the 
computational work conducted in this study was based on the FE Analysis (FEA) method. 
Several FEA software packages were utilized throughout this study in the pre- and post-test 
analysis phases. These are OpenSees (2000), SAP2000 (2012), and DIANA (2014). In addition, 
several analysis types were conducted, namely linear analysis under service dead and live loads, 
nonlinear pushover analysis, and nonlinear time history analysis. 

The pre-test analysis primarily provided answers and cleared several issues that were 
associated with the experimental work. Thus, several linear and nonlinear one-, two-, and three-
dimensional (1D, 2D, and 3D) models were utilized in this study to conduct the pre-test analysis 
before the experimental test specimens were built or the test setup was assembled. Three 
different types of models were used in the pre-test analysis. The first type used 1D elements for 
modeling either the full prototype bridge or the test subassembly specimen. The Open System for 
Earthquake Engineering Simulation (OpenSees) was used for analyzing the 1D models. The 
second type used 2D plane stress elements mainly for box-girder modeling. The commercial 
analysis package SAP2000 (Structural Analysis Program 2000) was used for analyzing the 2D 
models. The most sophisticated level of modeling is the 3D solid element model. The general 
purpose FEA package DIANA (DIsplacement ANAlyzer) was used for creating and linearly and 
nonlinearly analyzing the 3D models. The pre-test analysis phase had the following four main 
objectives where each of the 1D, 2D, and 3D models and the corresponding FEA fulfilled one or 
more of these objectives:  

1. Verify expected subassembly behavior with respect to the mode of failure, and column 
and bent cap beam structural behavior. 

2. Finalize the loading protocol especially for HS tests by ground motion selection and 
scaling. 

3. Estimate the expected lateral forces during cyclic and HS tests for setup design and 
checks. 

4. Inform the decision making on the proper locations and distribution of the 
instrumentation where maximum and informative straining actions are expected.  

The post-test analysis used some of the pre-test analysis models to calibrate them against 
the experimental results and to carry out further analysis and a parametric study that 
complements the experimental work. The main focus of the post-test analysis is the 3D DIANA 
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solid model for its accuracy and extended capabilities. The main steps involved in the post-test 
analysis framework of this study are the model calibration and a parametric study at the tested 
subassembly level. However, extensions to a full bridge model and parametric study are possible 
for future work. The model calibration intended to reproduce the experimental results from the 
3D DIANA model by focusing on the RC constitutive model parameters. The calibrated model 
was subsequently utilized to investigate different bent cap beam reinforcement designs for its 
optimized and economic design.  

1.5 ORGANIZATION OF THE DISSERTATION 

The dissertation consists of ten chapters and six appendices. Chapter 1 presents a general 
introduction of the problem statement, methodology, and main objectives of the undertaken 
study. Chapter 2 provides the necessary background related to the effective width of flanged 
beams in buildings and bridges. Moreover, the major previous studies that focused on evaluating 
the effective width and others that investigated bridge subassemblies and systems are reviewed 
and summarized in Chapter 2. The development of the experimental program, which is the core 
of the presented study, is the essence of Chapter 3. This chapter covers the prototype bridge 
geometry, subassembly specimen geometry and design, construction of the test specimens, 
material properties, test setup and loading protocol, and instrumentation used during the 
experimental program. Chapter 4 briefly summarizes all the pre-test analyses carried out before 
embarking on the experimental program. The presented pre-test analysis phase includes models 
and analyses for both the full prototype bridge and the subassembly specimens.  

The experimental tests and discussions comprise the major part of this report and 
presented in Chapters 5 through 8. Chapter 5 discusses all the experimental observations and 
results obtained from the quasi-static cyclic testing of the first specimen as it was originally built. 
A large part of the discussion is dedicated to the bent cap beam behavior and its effective slab 
width. The repair carried out for the first specimen and a discussion of the repaired specimen 
quasi-static cyclic loading tests are presented in Chapter 6. All the details about the HS 
background, system components, and verification are then presented in Chapter 7. This chapter 
presents the HS trial tests that were conducted on the repaired first specimen as well. Chapter 8 is 
another major chapter in this report as it discusses the HS tests on the retrofitted second 
specimen with focus on the bent cap beam behavior and effective slab width. 

The second phase of the computational framework, which is the post-test analysis, is 
discussed in Chapter 9. The design implications based on the outcome of this study is 
investigated for a full scale bridge bent cap and discussed in Chapter 9 as well. A brief summary 
and the main conclusions and future work based on this study are presented in Chapter 10. 
Several appendices are included at the end of the report for the completeness of the presented 
work. These appendices provide the additional details of specimen design, structural drawings, 
construction of the specimens, procedure of test setup construction, list of the used 
instrumentations, and the calibration of the strut load cells used in the tests. 
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2 Background 

The study presented in this report is concerned with the structural behavior of box-girder bridge 
subassembly. The main focus is on the effective slab width of the integral cap beam which 
renders the contribution of the box-girder slabs to the cap beam stiffness and strength. This 
chapter provides important and relevant background associated with the flanged beam effective 
width in design codes and literature. Three main sections comprise the chapter. The first section 
presents the concept of the effective width and its importance as dictated by design philosophies. 
The design philosophy can differ from buildings to bridges. Thus, a brief synopsis of building 
and bridge design along with code provisions for flanged beam effective width in both buildings 
and bridges are also presented in the first section. The second and third sections are dedicated to 
literature review. The relevant previous studies that focused on evaluating the effective width of 
flanged RC beams, mainly in buildings, are reviewed in the second section. The third section 
concludes the chapter with a review of major studies that focused on testing bridge systems or 
subassemblies.  

2.1 EFFECTIVE WIDTH 

The concept of the effective width in flanged RC beams is a key notion associated with this 
study. Its importance can vary from preventing collapse in buildings to possible reinforcement 
optimization in bridges. Therefore, different provisions for the effective width exist in building 
codes and bridge design standards. More details are discussed in the following subsections.    

2.1.1 Concept of Effective Flange Width 

Two notions that are tied to flanged sections should be recognized: the behavior of the flange and 
the effective portion of the flange considered in design, which is designated as effective flange 
width and commonly abbreviated as effective width. For RC beams cast monolithically with a 
flange, the flange increases the beam stiffness and strength. This flange can be a floor slab in a 
building or a soffit or deck slab in a box-girder bridge for example. Traditionally, the flange was 
assumed to be effective only in compression, but a flange also can act as a tension element 
(Pantazopoulou et al., 1988). Whether the flange acts in tension or compression depends on the 
loading and location of the cross-section. In a typical floor system comprising continuous beams 
with monolithic floor slab framing between columns, some sections will have negative and 
others will have positive bending moments as Sections A-A and B-B in Figure  2.1, respectively. 
Different loading will result in a different bending moment distribution, which might change the 
flange in a given section from being in compression to be in tension or vice versa. In some cases 
the beam can have flanges from both sides. For example, the integral monolithic bent cap beams 
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2.1.2 Effective Width in Building Codes 

The latest provisions related to the effective width of flanged beams in three different buildings 
codes that are widely used worldwide are presented here. These are the American Concrete 
Institute Standards: ACI-318 (2011), the European Standards: EN-1992 (2009), and the British 
Standards: BS-8110 (2008).  

2.1.2.1 ACI-318 

The ACI-318 is the most popular building design code and is usually used as an underlying 
reference for various other international building codes. The ACI-318 provides extensive 
provisions that specify the effective flange width for T-beam (or L-beam) in the compression 
side. In addition, special provisions that are associated with the capacity seismic design approach 
(discussed in more details in subsection 2.1.4 of this chapter) exist in the ACI-318. The seismic 
provisions focus mainly on how the slab reinforcement within a T-beam tension effective width 
is considered besides special structural flanged-walls design provisions. This subsection provides 
the general compression side provisions first then the special seismic provisions for beams and 
walls.  

The general provisions for the T-beam effective flange width in compression are given in 
ACI-318 Section 8.12. These provisions are often recalled for effective flange width in tension, 
whenever applicable as seen in the seismic provisions, and are summarized as follows:  

 In T-beam construction, the flange and web shall be built integrally or otherwise 
effectively bonded together. 

 For beams with slab on both sides (T-beam flanges), the effective width shall not exceed 
one-quarter of the span length of the beam, and the effective overhanging flange width 
on each side of the web shall not exceed eight times the slab thickness, and one-half the 
clear distance to the next web. 

 For beams with a slab on one side only, the effective overhanging flange width shall not 
exceed: one-twelfth the span length of the beam; six times the slab thickness; and one-
half the clear distance to the next web. 

 Isolated beams, in which the T-shape is used to provide a flange for additional 
compression area, shall have a flange thickness not less than one-half the width of web 
and an effective flange width not more than four times the width of web. 

 Where primary flexural reinforcement in a slab that is considered as a T-beam  flange  
(excluding  joist  construction)  is  parallel  to  the  beam, reinforcement perpendicular to 
the beam shall be provided in the top of the slab in accordance with the following:  

- Transverse reinforcement shall be designed to carry the factored load on the 
overhanging slab width assumed to act as cantilever. For isolated beams, the full 
width of overhanging flange shall be considered. For other T-beams, only the 
effective overhanging slab width needs to be considered. 

- Transverse reinforcement shall be spaced not farther apart than five times the slab 
thickness, or 18 inch. 
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The effective flange width is often recalled for recommended reinforcement distribution 
to control the cracks. The ACI-318 (2011) provides the following provision for reinforcement 
distribution in beams and one-way slabs (Section 10.6.6): — Where flanges of T-beam 
construction are in tension, part of the flexural tension reinforcement shall be distributed over an 
effective flange width as defined in ACI Section 8.12 (shown above), or a width equal to one-
tenth the span, whichever is smaller. If the effective flange width exceeds one-tenth the span, 
some longitudinal reinforcement shall be provided in the outer portions of the flange. 

The special seismic provisions that pertain to the effective flange width for beams and 
walls are presented. The reference to the tension effective flange width in beams was changed 
significantly from the ACI-318 2002 version to the 2012 version. In the older 2002 version, 
Section 21.4.2.2 specifies that the flange effective width for flange under tension should be taken 
as the smaller of: 25 percent of the beam span; center-to-center spacing of the beams; or sixteen 
times the slab thickness plus the beam width. In the ACI-318 2008 version, the reference to the 
tension effective flange width comes in the context of the beam capacity estimation as part of the 
capacity design approach requirement. The major change from the 2002 is the requirement of 
considering the tension slab reinforcement within an effective width equals to the one in the 
compression side only for estimating the overstrength beam capacity.  This change was based on 
research done by Wight and Sozen (1975) and French and Moehle (1991) as mentioned in the 
commentary R21.6.2. These studies showed that using effective tension flange widths, that 
complies with what is now the current ACI Section 8.12 provisions for compressive flange 
width, gave reasonable estimates of girder negative bending strengths of interior connections at 
interstory displacement levels approaching 2 percent of story height.   

In the case of walls, ACI-318 (2011) Section 21.9.5.2 specifies that unless a more 
detailed analysis is conducted the overhanging effective flange width of flanged sections shall 
extend from the face of the web a distance equal to the smaller of one-half the distance to an 
adjacent wall web and 25 percent of the total wall height. The wall provisions are based 
primarily on data pertaining to the tension flange effective width, but the commentary R21.9.5.2 
adds the following:  — Where wall sections intersect to form L-, T-, C-, or other cross-sectional 
shapes, the influence of the flange on the behavior of the wall should be considered by selecting 
appropriate flange widths. Tests 21.481 show that effective flange width increases with 
increasing drift level and the effectiveness of a flange in compression differs from that for a 
flange in tension. The value used for the effective compression flange width has little impact on 
the strength and deformation capacity of the wall; therefore, to simplify design, a single value of 
effective flange width based on an estimate of the effective tension flange width is used in both 
tension and compression. 

2.1.2.2 EN-1992  

EN-1992, also known as Eurocode 2: Design of concrete structures (2009), is the set of European 
Standards, belonging to Eurocodes, which specify technical rules for the design of concrete, RC 
and PC structures. The EN 1992 provides the following provisions for the effective flange width 
for all limit states: 
                                                 
 
1 21.48.  Wallace,  J.  W.,  “Evaluation  of  UBC-94  Provisions  for Seismic Design of RC Structural Walls,” 
Earthquake Spectra, V. 12, No. 2, May 1996, pp. 327-348. 
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2.1.3 Effective Width in Bridge Codes 

The effective width in the bridge design codes and specification often refers to either the 
distribution under concentrated loads, such as truck wheels, or the effective flange width that 
result from slab contributions. Only the provisions related to the effective flange width are 
presented here transverse. Meanwhile, the effective flange width itself can refer to either the slab 
flanges acting with longitudinal girders and box-girder webs or the effective flanges acting with 
integral bent cap beams. Here, longitudinal and transverse are with respect to the bridge axis. 
The integral bent cap effective width is associated usually with lateral, or in particular, seismic 
loading. On the contrary, the longitudinal girders effective width is associated with both vertical 
and lateral loading. The AASHTO LRFD Bridge Design Specifications provides provisions only 
for longitudinal girders. However, special seismic design documents such as the Caltrans SDC or 
the recently published AASHTO Guide Specifications for LRFD Seismic Bridge Design discuss 
the integral bent cap beam effective flange width. The AASHTO provisions for longitudinal 
girders, although is not the focus of this study, are presented for completeness besides the 
integral bent cap beam seismic design provisions in the following subsections.  

2.1.3.1 AASHTO LRFD Bridge Design Specifications 

The effective flange width of longitudinal superstructure girders or box-girder webs is called at 
several sections in the AASHTO LRFD Bridge Design Specification 4th Edition (2007). 
However, Section 4.6.2.6 is the central section where all the main effective flange width 
provisions are given. The provisions given in clauses 4.6.2.6.1 and 4.6.2.6.3 for general effective 
width definition and case of cast-in-place multi-cell superstructures are presented here. The 
reader is referred to clauses 4.6.2.6.2 and 4.6.2.6.4 for additional information regarding effective 
flange width in cases of segmental concrete box beams and orthotropic composite steel decks.  

A relevant part from the AASHTO Section 4.6.2.6 that is worth mentioning is the 
commentary that defines the effective flange width as follows: “Longitudinal stresses in the 
flanges are spread across the flange and the composite deck slab by in-plane shear stresses. 
Therefore, the longitudinal stresses are not uniform. The effective flange width is a reduced 
width over which the longitudinal stresses are assumed to be uniformly distributed and yet result 
in the same force as the non-uniform stress distribution would if integrated over the whole 
width.” In addition to the commentary definition, the key provisions that are related to the 
effective flange width are summarized in Figure  2.6 extracted from AASHTO and the following 
bullets: 

 In the absence of a more refined analysis and/or unless otherwise specified, limits of the 
width of a concrete slab, taken as effective in composite action for determining resistance 
for all limit states, shall comply with Section 4.6.2.6 specifications.  

 The calculation of deflections should be based on the full flange width.  

 The effective span length used in calculating effective flange width may be taken as the 
actual span for simply supported spans and the distance between points of permanent load 
inflection for continuous spans, as appropriate for either positive or negative moments. 

 The effective width for cast-in-place multi-web cellular superstructures may be taken to be 
as specified below in the following two bullets, with each web taken to be a beam. It may be 
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Another important section that briefly touches on the effective flange width is section 
5.7.3.4 that is concerned with the control of cracking by distribution of reinforcement. In this 
section, it is required that where flanges of RC T-girders and box girders are in tension at the 
service limit state, the flexural tension reinforcement shall be distributed over the lesser of the 
effective flange width, specified in section 4.6.2.6, or a width equal to 1/10 of the average of 
adjacent spans between bearings. In addition, if the effective flange width exceeds 1/10 the span, 
additional longitudinal reinforcement, with area not less than 0.4 percent of the excess slab area, 
shall be provided in the outer portions of the flange as a requirement of crack control. 

2.1.3.2 AASHTO Guide Specifications for LRFD Seismic Bridge Design (Caltrans SDC) 

A recent document by AASHTO was first published in 2009 to provide special provisions of 
bridge seismic design. The document is designated as AASHTO Guide Specifications for LRFD 
Seismic Bridge Design (2009) and the 2009 version is the 1st edition. These guide specifications 
differ from the current procedures in the LRFD specifications in the use of displacement-based 
design procedures instead of the traditional force-based “R-factor” method. The AASHTO 
seismic design provisions document appears to be inspired by the Caltrans SDC that has been 
used for more than two decades. It is to be noted that the latest AASHTO seismic guidelines 2nd 
edition (2011) and Caltrans SDC version 1.7 (2013) are very close. However, the provisions 
related to the effective flange of bridge superstructure and integral bent caps under seismic 
loading are identical in both of the AASHTO guide specifications for LRFD seismic design 
(2011) and Caltrans SDC (2013). A summary of these provisions is presented in the following 
bullets: 

 The effective width of superstructure resisting longitudinal seismic moments, Beff  is 
defined by Equations ( 2-2) and ( 2-3). 

2 Box girders &solid superstructures

Open soffit superstructures

eff c s

eff c s

B D D

B D D

  

 
 

( 2-2) 

( 2-3)

where Dc is the column diameter and Ds is the depth of the superstructure as shown in 
Figure  2.7. The effective width for open soffit superstructures (e.g. T-Beams & I-Girders) 
is reduced because they offer less resistance to the torsional rotation of the bent cap. 

 The effective superstructure width can be increased for cross-sections away from the bent 
cap by using a spread from the cap face until the full section becomes effective (see 
Figure  2.7). On skewed bridges, the effective width shall be projected normal to the 
girders with one end of the width intersecting the bent face such that one half of the width 
lies on either side of the column centerline (see Figure  2.7). Additional superstructure 
width can be considered effective if the designer verifies that the torsional capacity of the 
cap can distribute the rotational demands beyond the effective width stated in Equations 
(2-2) and (2-3).  

 If the effective width cannot accommodate enough steel to satisfy the overstrength 
requirements, the following actions may be taken: thicken the soffit and/or deck slabs; 
increase the resisting section by widening the column; haunch the superstructure; or add 
additional columns 



 

 B
re

 T
h

w
sl
fo

Fig

2.1.4 B

It is instr
design p
evaluatio

Bent caps are
espond mono

The integral 
inging in the

(eff capB B 

where t is thic
lab-thicknes
ocus of this s

gure  2.7 Effec
for one case 

Figure  2.8

Building vs. 

ructive to den
philosophy. T
on in buildin

e considered 
olithically w

cap width c
e columns sh

(12 )t  

ckness of th
s used in th
study.  

ctive width o
of unskewed

8 Effective wi

Bridge Seis

note the imp
This note is
ngs has been

integral if th
with the girde

considered e
hall be determ

e top or bott
he bent cap b

f superstruct
d tangent bri

idth of bent 

smic Design 

portance of t
s also helpf
n a more po

18

hey terminat
er system du

effective for 
mined by Eq

tom slab. It i
beam effect

ture girders 
idges (right) 

cap beam as 

Philosophy

the effective 
ful to presen
opular resea

te at the outs
uring dynami

resisting fle
quation ( 2-4)

is to be note
tive width es

(left) and its
as given by C

 given by Ca

y 

flange widt
nt the reaso

arch topic th

side of the ex
ic excitation

exural dema
): (See Figur

ed that revisi
stimation is 

s distribution
Caltrans SDC

altrans SDC (

th in the cont
ons why the
han the case

xterior girde
n. 

ands from p
re  2.8) 

iting the 12-t
one of the 

n in the plan 
C (2013) 

(2013) 

text of the p
e effective w
e of bridges

er and 

plastic 

( 2-4)

times 
main 

 

proper 
width 
. The 



 19

simple answer is that the underestimation of the effective width and its contribution to the beams 
capacity in buildings, and especially moment-resistant frames, can lead to undesired failure 
mechanisms and fatal collapses. That is because the adopted seismic design philosophy in 
buildings is the strong-column weak-beam (SCWB). In bridges, it is the other way around where 
a strong-beam weak-column (SBWC) is desired. Therefore, the underestimation of the slab 
contribution in bridges might then result in an uneconomic over-designed cap beam, but not a 
life-threating issue. This study is a first attempt of optimizing the bent cap design by proper 
accounting of slab contributions. A brief discussion of the SCWB and SBWC capacity design 
approaches are presented here for a better understanding of the applications of the effective 
width.    

What is capacity design approach? Capacity design is used where it is necessary to control the 
failure mechanism. The most common application is in seismic design, where a desirable 
inelastic mechanism under extreme loading is selected, and the structure is then proportioned and 
designed so that it will be unlikely to fail in other modes. In buildings, the desired mechanism is 
plastic hinging in beams while columns remain elastic. This is to avoid excessive interstrory 
drifts which under large axial forces result in soft stories (excessive P-Δ) and eventually a 
progressive collapse can lead to a complete collapse. Therefore, a SCWB is the desired design 
philosophy. On the contrary, a desirable mechanism in bridges is plastic hinging in columns 
while the superstructure remains essentially elastic.  The P-Δ effect is not as critical in bridges as 
in building since most of the bridge systems are equivalent to a one-story frame with low 
superstructure weight. Meanwhile, plastic hinges are highly undesirable in the superstructure or 
bent caps due to limited access regions, and in turn, uneconomical post-earthquake inspection 
and repair. Thus, the SBWC is a more suitable bridge design philosophy.  

Whether a SCWB or a SBWC capacity approach is adopted, similar design steps are 
followed. A summary of a typical capacity design framework that is adopted from Moehle 
(2014), Caltrans SDC (2013), and ACI-318 (2008) is as follows: 

 Select mode of failure that is desired; flexural mode of failure is typically the choice for 
concrete structures to avoid brittle shear or axial failure modes. In buildings, flexural 
hinging in beams is desired versus flexural hinging in columns in case of bridges. 

 Provide strength for the chosen desired mode using LRFD design methods; the design 
strength is sought first just to guarantee that no premature inelastic response will occur. 

 Detail that mode for ductile response; detail the yield region so that it has appropriate 
ductility capacity. More details about ductile response are presented in a following 
paragraph. 

 Determine overstrength (often referred to as probable strength) for that mode of failure; 
overstrength is desired in the capacity design checks as a more realistic actual strength 
rather than estimated nominal strength. The reasons for overstrength and code 
requirements to reflect the overstrength is presented in a following paragraph. 

 Determine overstrength forces required to cause inelastic response only in the target 
failure mode. 

 Design the remainder of the structure so that either reliable or nominal strength exceeds 
the resulting internal actions. 
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As mentioned, ductile response is a characteristic feature of capacity design. The desired 
members’ ductility is typically defined by a performance-based earthquake engineering (PBEE) 
framework but has to satisfy minimum requirements by design codes. In bridge design, the 
column and the substructure piers and piles are the chosen ductile members. For example, both 
of the AASHTO guide specifications for LRFD seismic design (2011) and Caltrans SDC (2013) 
require displacement ductility for columns in multiple-column bents that should be at least 
equals to 6, i.e. µD ≥ 6.  Similarly, in buildings design, the ACI-318 specifies certain ductility 
limits and detailing provisions to achieve ductile beam plastic hinges and ductile joint 
reinforcement as well.  

Another indispensable feature of the capacity design approach is the overstrength 
estimation. The overstrength at the first place happens because (a) cross-sections may be 
constructed larger than required; (b) materials usually have overstrength especially concrete 
where suppliers aims for a higher strength to avoid rejecting their concrete if strength is lower 
than specified, e.g. the concrete used in the experimental program of this study showed actual 
strength at test days of slightly higher than 7 ksi when the nominal required strength was only 5 
ksi; (c) strain hardening and natural strength gain with time exist; and (d) three-dimensional 
nature of real structures loading and constraints results in higher strength due to confinement.   

In bridges, the Caltrans SDC (2013) SBWC approach requires that the nominal capacity 
of the superstructure longitudinally and of the bent cap transversely, designated as capacity 
protected members, must be sufficient to ensure the columns will perform well beyond their 
elastic limit prior to the superstructure or bent cap reaching their expected nominal strength Mne. 
Longitudinally, the superstructure capacity shall be greater than the demand distributed to the 
superstructure on each side of the column by the largest combination of dead load moment, 
secondary prestress moment, and column earthquake moment. The strength of the superstructure 
shall not be considered effective on the side of the column adjacent to a hinge seat. Transversely, 
similar requirements are specified in the bent cap. This approach applies a 20% overstrength 
magnifier to the plastic moment capacity of the column in order to determine the force demands 
on essentially elastic members. The set of equations that define the overstrength and guarantees 
the SBWC in case of superstructure design is given in Equations ( 2-5) through ( 2-9) and shown 
in Figure  2.9.  
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where:  
col
oM  =  The column’s overstrength moment capacity 
col
pM

 =  The idealized column’s plastic moment capacity 
sup ,R L
neM  =  Expected nominal moment capacity of the adjacent left or right superstructure span 

dlM  =  Dead load plus added dead load moment (unfactored) 
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capacity calculation as part of the SCWB design approach (Pantazopoulou and French, 2001). 
Thus, accurate consideration of the slab contribution to the flanged beams becomes 
indispensable to achieve a successful SCWB mode of failure under extreme earthquake events. 
In bridges, while a different mode of failure that sacrifices the column, still the accurate account 
of box-girder slab contribution to the integral bent cap beam capacity can be very beneficial for a 
revisited economical design.   

2.2 EFFECTIVE SLAB WIDTH LITERATURE REVIEW 

The problem of determining the effective flange width of flanged beams has been a classical 
subject of investigation by many researchers in the past. There are numerous publications on the 
topic some of which are more than 80 years old (e.g. Metzer 1929; Miller 1929; Chwalla 1936). 
Earlier attempts of assessing the effective flange width used folded plate theory or its equivalent 
along with analysis that was based either on stress criterion or deflection consideration. Brendel 
(1964) used stress criterion in his analysis to determine the effective width, while the analysis 
done by Fraser and Hall (1973) was based on deflection considerations. A similar strategy was 
also used by Pecknold (1975) to assess the slab effective width for equivalent frame analysis.  

Another classical approach for investigating the effective flange width used the theory of 
elasticity. The effective width of wide beam flanges investigated by Theodore von Karman, for 
instance, is discussed in Timoshenko’s (1970) “Theory of Elasticity” book. That problem was 
analyzed by minimum- energy principle using theory of elasticity. Moreover, the nonlinear 
distribution of flange stresses results from the phenomenon known as shear lag, discussed earlier 
in the previous section, was another application for the use of the theory of elasticity. 
Timoshenko and Goodier (1970) studied the effect of shear lag in simple linear elastic systems 
using the theory of elasticity. Rigorous theory of elasticity investigations of shear lag problems, 
however, are of theoretical value only and are too complex to use for estimating the effective 
width in practical engineering problems. In addition, when nonlinearity in material behavior is 
present, the effective width can no longer be accurately calculated using elastic techniques.  

The relatively newer approaches that are based on calibrating empirical analytical models 
against experimental studies and FE methods were proven to be more successful in developing 
simplified equations to estimate the effective flange width for design purposes. Thus, a total of 8 
different relatively recent studies that focused on the effective flange width are summarized in 
more details and categorized in three subsections based on the application. The first subsection 
presents a comprehensive study that focused on effective width in bridge girders (Cheung and 
Chan, 1978). The second subsection presents 6 studies that used experimental, analytical and 
computational FE methods for effective width evaluation in framing systems of buildings. These 
are Pantazopoulou et al., (1988), French and Boroojrdi (1989), French and Moehle (1991), 
Shahrooz et al. (1992), Pantazopoulou and French (2001), and Küçükarslan (2010). The third 
subsection deals with an application involving the effective width evaluation is flanged buildings 
shear walls where the study by Hassan and El-Tawil (2003) is discussed. It is to be noted that a 
large portion of the available effective width literature focused on the effective load distribution 
width under a concentrated load rather than the effective width resulting from flange 
contribution. Those studies were not reviewed here due to their irrelevance.  
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2.2.1 Effective Width for Bridge Girders 

2.2.1.1 CHEUNG AND CHAN (1978) 

This study investigated the effective width in concrete and steel-concrete composite beam-slab 
type and box-girder bridges using the finite strip method. Only the effective width of the bridge 
longitudinal superstructure girders was considered and nothing related to an integral flanged cap 
beam in the bridge transverse direction was part of this study. The analytical method used was a 
variation of the FE method. The results obtained were used to determine the effective width of 
the compressive flange of the bridge girders. A study of a wide range of bridge models resulted 
in an empirical relationship for the effective width. The empirical relationship was found to be in 
good agreement with the design criteria used in the composite road bridge design code of the 
Federal Republic of Germany back at that time. It was also intended to supplement the effective 
width specifications in the American and Canadian design codes at that time, which in general 
were leading to conservative designs. 

The older studies that preceded that one in determining the effective flange width of T-
beams in the majority of cases investigated specific problems with specific geometric or loading 
configurations, such as a single T-beam with a flange of infinite width loaded by a concentrated 
force at mid-span, or multiple T-beams under uniformly distributed loads (Metzer 1929, Chwalla 
1936). However, such irregularities as arbitrary girder arrangements, boundary conditions, and 
loading configurations were proven to be easily handled, to a certain extent, by using the finite 
strip method (Y. K. Cheung 1969). This was the motivation for Cheung and Chen (1978) to use 
the finite strip method. ln this method, harmonic functions that mimic the boundary conditions 
longitudinally were used in conjunction with polynomials for the transverse direction. The 
stiffness matrix and load vector of the strip were derived in the usual manner of minimization of 
the total potential energy. 

In this study, the finite strip method was applied to the analysis of simply supported 
concrete and steel-concrete composite beam-slab and box-girder bridges. The results obtained 
were used to determine the effective width of the compressive flange of the bridge girders. The 
finite strip selected for this study was derived  by combining a plane  stress strip with  a bending 
strip, thereby  making it suitable for the analysis  of  folded  plate-type  structures which are  
subjected to membrane stresses as well as transverse bending forces. The strip had two nodal 
lines with four degrees of freedom per nodal line (displacements in the x, y, and z directions and 
rotation about the nodal line). In the analysis, the girder and deck were divided into a number of 
strips, thus any combinations of loadings and girder arrangements could be easily 
accommodated. After solving for   the   nodal   displacements   and   rotations,   the in-plane 
stresses and bending moments could be calculated at any point of a strip. 

The effective compression flange width of a girder was determined by isolating the girder 
under consideration and required that the summation of the longitudinal in-plane stresses at any 
cross-section in the isolated girder be zero. The longitudinal bending stresses arising from the 
local longitudinal bending moment were not included in the calculation since they would be 
cancelled out in the summation process. The effective width was defined as that portion of the 
flange over which the maximum compressive stress is assumed to act uniformly to produce a 
resultant equal to the compression force in the section. The effective width was thus calculated 
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by dividing the total compression force by the deck thickness times the maximum compressive 
stress in the flange.  

The effective flange widths of box girders were calculated in a similar manner. The study 
considered the AASHTO HS-25 truck load and extended the results for the AASHTO HS-20 
truck load as well since both had identical axle configurations and axle loads that are linearly 
proportional to each other. The study focused only on the sections experiencing positive bending 
moment because the common design practice considered the negative moment sections 
noncomposite where the flange was ignored, and the calculation of effective flange width was 
therefore not required. The study used the obtained results of all the bridge types studied to 
conclude the following:  

 The variables that had major effects on the effective flange width of bridge girders were 
girder spacing and span. Within the practical range of bridge member proportions, deck 
thickness and girder width and depth played a negligible role; 

 Up to a span to one-half clear spacing ratio (L/B) of approximately 20, the effective 
overhanging flange width beff tended to increase with increasing span and spacing.  For 
L/B ratios greater than 20, beff becomes more or less equal to the one-half of clear spacing 
between girders (B); 

 The effective flange width of girders was independent of the number of traffic lanes of 
the bridge; 

 Both box-girder bridges and beam-slab type bridges showed an identical trend where the 
effective width increases with longer span and larger spacing; 

 For multi-cell box-girder bridges, the effective flange width of the interior webs was 
governed by the distance, center to center of webs, whereas the exterior webs follow a 
trend similar to that of beam-slab type bridges; 

 The empirical results were in good agreement with the 1955 composite road bridge 
design code DIN 1078 of the Federal Republic of Germany. Typical values of the 
calculated effective widths were also compared to the 1973 AASHTO provisions and the 
1974 Canadian Standards Association CSA-S6 values. From the comparisons, it was 
found that the AASHTO and CSA-S6 values were quite conservative especially for 
beam-slab type bridges with small L/B ratios. For example, for a L/B ratio of  12, the 
effective width differences of about 56% for the concrete girder and 100% for the steel 
girder could result in compressive flexural stress  differences  of  approximately 34% and 
48%  for the concrete girder and the steel girder, respectively; 

 Variation of the effective width along the span was relatively uniform. Using this 
particular information, the authors attempted to establish an empirical relationship 
between the effective width, spacing, and span using a least squares curve fitting 
procedure. A non-dimensional relationship between beff/B and L/B was derived by fitting 
the calculated results to a curve described by the polynomial in Equation ( 2-11).  
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where the first four terms were adopted in the polynomial and the constants Ai were 
determined as follows: A1 = 0.21237, A2 = -0.01929, A3 = 0.00078, and A4 = - 0.00001. 

 The resulted best-fit empirical curve was applicable to both concrete and steel-concrete 
composite girders and was in good agreement with the 1955 DIN-1078 values. The best-
fit curve was compared against upper and lower bound values obtained by Metzer (1929) 
and Chwalla (1936) based on the theory of elasticity. It was shown that the fitted curve 
fell between the limiting curves. 

 To apply the empirical design curve to continuous bridges, a number of multi-span 
continuous beam-slab and box-girder bridges were analyzed. In all cases, it was found 
that the design curve is applicable if the distance between the points of zero bending 
moment is adopted as the value L of the span. Therefore, it was recommended that the 
effective widths of continuous bridge girders be determined from the presented curve, 
assuming the distance between the points of contraflexure to be the equivalent simple 
span.   

 The design curve developed from a complete folded plate-type analysis, using actual 
truck loads as was done in this study was claimed to give more realistic values of the 
effective width of girders. Furthermore, the design curve incorporated two major 
variables, girder spacing and span, in the evaluation of the effective width while the 
corresponding  AASHTO  or  CSA  specifications  provided discontinuous, one variable-
dependent (girder spacing, slab thickness,  or  span) functions  that  in  general led to 
conservative designs. 

2.2.2 Effective Width for Building Framing  

Six studies are summarized in this subsection to present how the issue of the slab contribution to 
flanged beams in buildings has been perceived and evolved over the past two decades. There are 
many other relevant studies that tackled the same issue such as: Bertero et al. 1984; Durrani and 
Wight 1982; Ehsani and Wight 1982; and Zerbe and Durrani 1985.  However, the chosen more 
recent studies discussed here built upon those earlier studies and their citation is embedded in the 
discussion below whenever relevant. This subsection is comprehensive for its relevance to the 
core objective of this study. 

2.2.2.1 Pantazopoulou et al. (1988) 

This study was one of the main studies to draw the attention to the importance of considering the 
effective flange width in tension side as well as compression. The study proposed a simple 
analytical model to account for the contribution of slabs to the strength and stiffness of beams 
under negative bending at a beam-column connection in buildings. In the model, the slab was 
assumed to act as a tensile membrane that reinforces the tension region of the beam. The extent 
to which the slab contributes to the beam was determined from the geometry of the connection 
and the mechanical properties of the slab reinforcement. Closed-form expressions were derived 
for the equivalent width of slab that should be taken into account in the flexural analysis of T- or 
L-beams.  

This study was motivated primarily by the fundamental concept underlying the capacity 
design philosophy (Park and Pauley 1975) that failure mechanisms in a structure can be 
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controlled by appropriately combining the member strengths. The study also was beneficial in 
relating the effective width in the tension side to the SCWB form of the capacity design adopted 
for frame structures in seismically active regions. Such relation was the cornerstone for later 
studies that amended ACI 318 to consider the slab reinforcement in the tension side of the 
flanged beam for capacity calculation (e.g. French and Pantazupoulou 2001).  

According to the SCWB method, member strengths are selected so that strength of the 
structure is limited by beam flexural strength. For the capacity design to be successful, the 
designer should be able to assess the member strengths under different combinations of loads. 
Older experiments that preceded Pantazopoulou et al. (1988) study (e.g. Durrani and Wight 
1982; and Zerbe and Durrani 1985 among others) have shown that beam strengths cannot be 
reliably computed if the beams are cast monolithically with slabs. When the beam is flexed such 
that the slab is in tension, the slab reinforcement acts as additional beam flexural reinforcement 
in an amount that was not recognized by the design practices back then. Because the beam 
flexural strength could not be reasonably bounded using available analysis techniques, it was 
possible then that the beams will be stronger than columns, and the SCWB design will not be 
realized.  

A new approach to gage the effect of the slab on the negative moment resistance of 
beams was presented in Pantazopoulou et al. (1988). In the approach, the beam web was 
modeled using conventional flexural theory (Park and Pauley 1975) and the action of the slab 
was modeled using a simple truss connected to the beam in the tension zone. A closed-form 
solution was given for the effective slab width to be used in conventional beam analysis. The 
analytical model was verified by comparison between computed behavior and behavior 
measured during several previous experiments on beam-slab-column connections. In the model, 
the slab is assumed to act as a membrane element attached between the longitudinal beam and 
rigid transverse beams. According to the model, slab strains vary in the transverse direction 
according to Equation ( 2-12): 

2
max sini    ( 2-12)

where εi is the longitudinal strain of slab bar bi at the connection with the transverse beam, and 
εmax is the strain of the beam longitudinal bars at the column face. This formulation defines a 
shape function sin2α by which slab strains diminish in the transverse direction. The angle α is the 
acute angle between a link and the transverse beam. The use of the angle α was based on the 
assumption that the deformation of the slab is distributed along the beam plastic hinge length d in 
the same pattern as the beam deformation. A schematic representation of the so-called semi-rigid 
link connection model along with the key parameters used to describe the strain distribution is 
shown in Figure  2.10. Based on the computed distribution of slab strains, closed form 
expressions for effective slab widths were derived that were suitable for conventional analysis 
assuming plane sections remain plane. Six different expressions for the effective width based on 
several controlling factors that participate in the flexural response of beams: beam depth, steel 
material properties, the maximum available slab width, and the maximum reinforcement strain. 
The expressions are not shown here for brevity but the reader is referred to the Pantazopoulou et 
al. (1988) if more details about the derived effective width formulas are needed.  
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While earthquake loads do not occur in a single direction parallel to the frame line 
(longitudinal direction), the authors considered the effect of initial damage due to loading in the 
transverse direction. If the transverse element is damaged from carrying loads in its own 
direction, it may not be as effective in developing the slab participation in the longitudinal 
direction. To investigate this effect, models EW2 and EW3 were first tested in the longitudinal 
direction. The structures were then rotated 90° and subsequently tested in the orthogonal 
direction. A summary of the conclusions found from this experimental program is as follows: 

 The models exhibited a ductile behavior as the structures were taken to interstory drifts 
exceeding 8%. At the limiting stroke of the actuator, EW3 maintained nearly 90% of its 
maximum load achieved at 4% interstory drift;  

 The effective slab participation was greater for models with increased transverse 
torsional stiffness. This phenomenon was observed in load-deflection, moment-rotation, 
and strain distribution measurements. The difference was larger at the beginning of the 
tests, but became smaller as the deflection amplitude increased. At the maximum 
measured load, the difference in the flexural strengths among the models was less than 
10%. The flexural resistance measured for model EW3 at ultimate was within  18% of 
the calculated value assuming the full width of slab to be effective as a tension flange to 
the beam. 

 EW1 reached its ultimate load at a much larger interstory drift than EW3 (7.2% versus 
4%). This was attributed to the decrease in ultimate curvature associated with increased 
effective slab participation. The concrete compressive strain was found to control in all 
slab-in-tension calculations. Consequently, a reduction in ultimate curvature occurs with 
additional slab reinforcement (increased tensile forces) associated with larger effective 
slab widths. The different drift levels at ultimate were attributed to a reduced ultimate 
concrete compressive strain associated with the higher concrete strength of EW3. 

 At an interstory drift of 2%, which might be considered a reasonable limiting drift level 
(Tentative Provisions), the measured flexural strengths of the structures were within 
10% of the value calculated using ACI-width assumptions including the ultimate 
capacity of the remainder of the slab acting independently.  

 A reduction in the initial stiffness was observed in the second test of model EW3. This 
reduction was attributed to the damage caused by initially loading the structure in the 
transverse direction. This effect became negligible as the structure was displaced beyond 
the maximum deformation level imposed during the first test. 

2.2.2.3 French and Moehle (1991) 

This study did not comprise a dedicated experimental or analytical framework. However, it 
comprehensively reviewed published literature and experimental data and results to draw main 
conclusions regarding the effective slab width in tension. In structures subjected to lateral 
loading, slab reinforcement acting as effective tensile reinforcement of the beams has been found 
to significantly increase the beam flexural strength. The enhanced beam flexural strength has 
several effects on the structural behavior including a shift in the ratio of strengths between the 
beams and other members. This may result in a failure mechanism different from that 
anticipated. The study identified possible variables affecting the slab contribution including the 
connection type (interior or exterior), lateral deformation level, and lateral load history (uniaxial 
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or multiaxial). The study summarized general behavior observed during isolated and multiple 
beam-column- slab connection tests. An approximation was given for estimating the amount of 
slab reinforcement to be considered as effective tensile reinforcement of the beams. When this 
study was published, the available U.S. design codes and recommendations did not provide 
guidance for the effective width of slab to be considered as flexural reinforcement for beams 
subjected to lateral loading. The provisions of those documents were based largely on test results 
of subassemblages comprising columns and beams without floor slabs as only little information 
used to be available on the effect of slab on beam flexural strength. Thus, the comprehensive 
review by French and Moehle (1991) focused on compiling results of several laboratory 
experiments of beam-column-slab subassemblages and complete frames subjected to lateral load 
in addition to reviewing some analytical models of beam-column-slab connections. The 
conclusions drawn by the authors are summarized as follows: 

 The slab action in beam-column-slab systems is a complex phenomenon that depends on 
a wide range of variables. The main action of the slab identified was its participation as 
a tensile element that adds to the flexural resistance of the longitudinal beams when the 
top of the beam is in tension. The slab contribution to the beam resistance depends on 
several variables including connection type (interior or exterior), transverse beam 
stiffness, lateral deformation level, and lateral load history (uniaxial or multiaxial). No 
analytical models that account properly for all pertinent variables were available. 
However, an attempt to account for as many of these variables as possible was pursued 
by Shahrooz et al. (1992) as presented next. 

 For design, a simple means of accounting for the slab contribution to the beam flexural 
strength (top of beam in tension) is to assume that all slab reinforcement within a slab 
effective width acts as beam tension reinforcement. An analysis of the available test data 
indicated that if the slab effective width was taken equal to the ACI effective width, 
calculated flexural strength would approximate measured beam resistance for frame 
lateral drift equal to 2% of height. To account for effects of reinforcement strain 
hardening in the strength calculation, the effective reinforcement yield stress should be 
taken not less than 1.25 times the actual yield stress. The actual yield stress may be 
higher than the nominal value, and this difference should be considered. This particular 
conclusion made its way to the ACI-318 seismic provisions regarding the capacity check 
of beams as previously mentioned in subsection 2.1.3. 

 In acting with the beam as a tension flange, the slab affected other actions within a 
beam-column-slab frame. The enhanced beam flexural strength may result in increased 
beam shear that should be considered in selecting transverse reinforcement. Shifts in 
beam moment distributions are likely; these should be considered in selecting 
longitudinal reinforcement details including bar cutoffs. Demands on beam-column 
connections are also increased. Additional joint shear reinforcement for exterior 
connections and increased joint sizes for all connections can be rationalized given the 
increased demand. Finally, the slab contribution should be considered in determining the 
required column strength to avoid excessive column hinging in frames subject to severe 
lateral loading. 
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2.2.2.4 Shahrooz et al. (1992) 

This study presents an analytical model for the slab contribution and effective slab width taking 
into account more variables to extend the earlier model proposed by Pantazopoulou et al. (1988). 
The qualitative model simulating participation of slabs to the behavior of beams was developed 
by establishing the kinematic relations between beam deformations and the state of strain in the 
slab. The slab was idealized as a membrane element by using a network of rigid links and 
flexible springs connecting the slab bars to the supporting beams. Support displacements of the 
rigid links, such as reinforcement slip, twist, weak axis rotation, and elongation of the transverse 
beams were considered. 

Because of the brittle tensile behavior of concrete, surface elongations (caused by 
hogging moments) become more important after cracking and are more pronounced at higher 
levels of lateral displacement. For this reason, slab membrane actions increase with the extent of 
cracking and, therefore, with increasing lateral story displacement (or lateral drift). Furthermore, 
because slab participation is a kinematically induced phenomenon, it is likely to be affected by 
any additional deformation or displacement occurring at the boundaries of the slab. For example, 
in-plane deflections of the transverse beams reduce the amount of deformation of the slab at a 
given level of lateral drift; bond slip of the main beam or slab reinforcement at the supports of 
the slab may cause redistribution of strains over a large transverse distance from the main beam, 
whereas deformations in the beam-column joint may reduce the deformation demand on the slab-
beam assembly at a given level of lateral drift. 

An earlier qualitative model has been developed to represent the pattern and distribution 
of beam deformations in the supported slab. The model, which was derived by using a simple 
kinematic relation based on a network of rigid links, was proven successful for slabs with 
relatively rigid supports (Pantazopoulou et al. 1988). However, it was found that the model 
overestimated slab strains (and, therefore, the extent of slab contribution) in connections with 
flexible transverse beams and was unable to simulate the strain redistributions under excessive 
bond slip. To remedy these difficulties, the kinematic relations used in the original study were re-
examined in the new model by Shahrooz et al. (1992). In establishing the geometry of 
deformations, displacement components associated with transverse beam deflections and 
reinforcement slip were taken into consideration. Correlation with experimental results indicated 
that the enhanced model had a greater range of applicability, and, as such, it could provide a 
qualitative measure of the effect of the various connection parameters on the slab contribution. A 
drawback of the enhanced model (Sharooz et al. 1992) over the original model (Pantazopoulou et 
al. 1988) was that the proposed formulation could not be simplified into closed-form 
expressions. 

The differences between the enhanced and original model were identified in previous 
paragraph. The mechanics of the enhanced model are presented here. The model aimed at 
simulating slab participation to the negative (hogging) flexural behavior of beams. The approach 
taken was to establish kinematic relations between beam deformations and slab strains. In the 
model, the slab was assumed to act as a membrane element attached between the longitudinal 
and transverse beams. This behavior was simulated by a network of rigid links and flexible 
springs connecting the slab bars to the longitudinal beam. An important improvement over 
earlier rigid-link models lies in the enhanced compatibility conditions, which account for support 
displacements such as reinforcement slip due to bond deterioration, and twist, weak axis rotation, 
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and elongation of the transverse beams (i.e., the assumption of rigid transverse boundaries 
adopted by the earlier model has been relaxed). Numerical implementation of the model required 
iterative calculations because of the nonlinear relationships between (1) Axial, flexural, and 
torsional behavior of the transverse beams and the magnitude and position of the slab forces; (2) 
the transverse beam stiffness and the load history; (3) bar stress, bond slip, and strain. 

Performance of the proposed model was evaluated from correlation studies of previously 
available experimental data. Generally, computed results compared well with test data from 
earlier interior and exterior slab-beam-column subassemblies suggesting that the model 
represented the kinematics of such connections successfully. Whereas the rigid-support 
assumption of the original rigid-link model restricted its applicability to interior connections with 
favorable bond conditions, the proposed model appeared not to be subjected to any such 
limitations. Indeed, by proper modeling of transverse beam flexibility and bond-slip effects, 
results from experiments of both connection types were successfully estimated by the proposed 
method. The computed responses were found to be most sensitive to the assumed length of 
plastic hinge and, to a lesser degree, to the distribution of longitudinal strains within the plastic 
hinge. In the low deformation range, results appeared to be somewhat sensitive to the assumed 
value of initial transverse beam stiffness. A longer length of plastic hinge resulted in larger 
moment capacity and larger strains in slab bars and vice versa. However, available empirical 
expressions for establishing an approximate length of plastic hinge seem sufficient in practical 
applications. 

2.2.2.5 Pantazopolou and French (2001) 

The amendments in the ACI 318-99 that affect the estimation of nominal beam flexural capacity 
in seismic design of frame connections were the motivation for this research. These changes 
concerned the width of slabs considered effective in beam flexure and represented the 
culmination of a 15-year long concerted research effort in the U.S., Canada, New Zealand, and 
Japan aimed at understanding and quantifying slab participation in the lateral load resistance of 
frames through observed experimental findings. By accounting for slab participation, the Code 
recognized the diaphragm action of slabs in the seismic response of frames, particularly when the 
slab is on the tension face of the beam. It is to be noted that until the time of this research 
published in 2001, it was an established design practice to neglect the presence of the slab in 
estimating beam stiffness and strength, except when the slab was located in the compression 
zone of the beam (known as T- beam design). This is exactly the current status for flanged bent 
cap beams in box-girder bridges, and the main study presented in this report is an attempt to 
properly recognize the slab contribution in bent cap design. However, the proper recognition of 
slab contribution in case of bridge beams can lead to an optimized and economical design of bent 
caps rather than avoiding an undesired mode of failure as in the case of buildings due to the 
different design philosophy in building (WBSC) and bridges (WCSB) as previously discussed.   

Experimental evidence from tests on complete frames and slab-beam-column assemblies 
illustrated that this practice of neglecting slab contribution in tension resulted in the gross 
underestimation of beam flexural strength in the assumed plastic hinge regions (at the face of 
beam- column connections). This neglected source of beam flexural over-strength had significant 
consequences in the realization of the objectives of the established capacity design framework 
for RC where beam shear design, joint dimensioning, and column flexure/shear detailing are 
controlled by the requirement of beam flexural yielding. This study reviewed the practical 
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implications of the ACI 318-99 amendments in the seismic design and in assessment of the 
resulting response of RC frame structures. The effects (in terms of demand and capacity) on 
strength and deformation capacity of the various mechanisms of response, and the hierarchy of 
failure modes in slab-beam-column connections were identified and discussed. 

The study utilized a large amount of data highlighting the mechanism by which the slab 
participates in the lateral load resisting system of frame structures (Suzuki et al. 1984; Ehsani 
and Wight 1985; Zerbe and Durrani 1985; Kurose 1987; Durrani and Wight 1987; 
Pantazopoulou et al. 1988; U.S.-Japan Research 1988; Velez and French 1989; French and 
Boroojerdi 1989; Qi and Pantazopoulou 1991; Cheung et al. 1991; French and Moehle 1991; Bas 
1990; Pantazopoulou and Bas 1994; Alcocer 1998). In light of those previous studies and 
amendments of ACI 318-99, implications on structural shear capacity, beam shear, bar cutoffs, 
and joint shear stress input, as well as joint confinement were investigated. The relevant issues 
were highlighted, quantified, and discussed in the context of practical design as follows: (a) 
mobilizing slab in lateral frame sway by an equivalent slab width beff , (b) global effects of slab 
participation on overall frame response, (c) effects of slab on beam behavior, (d) restraint 
provided by transverse beams in exterior connections, (e) joint shear in connections with floor 
slab, and (f) role of continuity reinforcement on slab contribution. 

In summary, the study presented a review of proposed code changes with regard to the 
effect of slab participation and the experimental and analytical evidence that motivated those 
changes. The effect of slab participation was concluded to be greatly influenced by the level of 
structural drift. The changes to the code were correlated with effective slab participation at 
structural drifts on the order of 2%, which is consistent with performance-based design 
objectives. Experimental studies showed that at larger drifts, the entire width of the slab might be 
engaged as additional tension reinforcement to the beams subjected to hogging moments. The 
study recommended that whenever it is anticipated that structures would be taken to higher drift 
levels, designers should consider the effect of increased slab participation on structural stiffness, 
global shear demand and capacity, beam shear demand, bar cutoffs, and joint confinement. 
While the code changes represented the first attempt to quantify the contribution of the slab, the 
study proposed several other issues, such as the dependence of slab participation on pertinent 
indices that account for the relative stiffnesses of the beams and columns framing into the 
connection for future amendments. Currently, those changes which were first proposed to be 
included in the ACI 318-99 version are now well-established provisions in Chapter 21 in the 
latest version of ACI 318-11 as previously discussed in subsection 2.1.2. 

2.2.2.6 Küçükarslan (2010) 

This study used the FEA as an analytical framework for evaluating the slab contribution and 
effective width only in compression in T-beams. The study assumed that the distribution of 
compressive stress on the flange of T-beams depends on the relative dimensions of the cross-
section, span length, support and loading conditions. These factors were incorporated to revisit 
the effective width evaluation and compare it against various codes formulas, which are  
expressed  only  in  terms  of  span  length  or  flange  and  web thicknesses and ignore the other 
important variables as claimed by the author. 

Three-dimensional FEA was carried out using SAP2000 (2012) on continuous T-beams 
under different loading conditions to assess the effective flange width based on displacement 
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criterion. Eight-node brick elements were used to model the T- beams. The formulation was 
based on a combination of the elementary bending theory and the FEA. The beam spacing (S), 
beam span length (L), total depth of the beam (D), the web (bw) and the flange thicknesses (h) 
were considered as independent variables. Depending on the type of loading, the numerical value 
of the moment of inertia of the transformed beam cross- section, and hence the effective flange 
width, were calculated. Next, the input data and the FE displacement results were used in a 
nonlinear regression analysis. Two explicit design formulas for effective flange width (be) were 
derived and proposed for two different cases of loading as follows: 

 For concentrated load at mid-span: 

0.2947 0.2463 0.0913 0.1698

0.322e wb S L b h

S L D D D


                  
       

 ( 2-13)

 For uniform distributed load: 

0.3058 0.2746 0.086 0.1473

0.2858e wb S L b h

S L D D D


                  
       

 ( 2-14)

The two formulas were used to make comparisons with the ACI-318 (2008), Eurocode (1991), 
TS-500 (1984) and BS-8110 (2009) code recommendations. The following conclusions were 
drawn from the results obtained in this study: 

 For the point load case, all codes gave highly overestimated values for the effective flange 
width particularly for short and deep beams when the results were compared with the 
analyses based either on stress criterion or deflection consideration. 

 As the beam became slender, this trend changed and smaller effective flange width values 
were obtained for increasing values of the beam spacing. However, for all cases the 
recommendations given by Eurocode (1991) gave overestimated results. 

 Using the curves developed from the proposed equations, it was observed that as the beam 
spacing S increases, be/S decreases. Moreover, for the same value of the beam spacing S, the 
ratio be/S increases as the span length L increases. 

 The beam spacing S and the beam span length L affect the effective flange width more 
significantly than the other parameters. 

 For beams under a uniformly distributed load, it was found that the proposed formula gave 
underestimated results for deep beams with respect to the code equations. However, as the 
beams became slender all codes yielded very conservative assessments of be for uniformly 
distributed load case except for Eurocode (1991) which gave consistently overestimated 
results for all cases. For most of the beams under a uniform distributed load, Eurocode values 
of be/S were very close to unity. 

 Comparisons were made between the proposed deflection-based formulas and the 
formulation based on stress criterion. It was found that the results of the proposed equation 
for the uniformly distributed load case exhibited very good agreement with the results of 
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stress criterion when the beam spacing was small. However, as the beam spacing increased, 
the proposed equation produced conservative effective flange width values. 

2.2.3 Effective Width for Shear Walls 

While the effective width of flanged moment-frames and floor beams was extensively 
investigated in the past, recent studies switched the focus to flanged RC shear walls and cores. It 
is instructive to expose the notion of the effective flange width from a different structural 
element perspective here. Resembling flange behavior in floor beams, the distribution of strains 
in the shear wall flange, and in turn the corresponding stress distribution, is also nonlinear, which 
considerably complicates analysis and design. To avoid direct consideration of the shape of the 
nonlinear stress distribution, engineers resort to the concept of effective width in shear walls 
again in a similar fashion to flanged floor beams. However, the design philosophy for walls has 
been more dynamic than the well-established moment-frames and floor systems design 
philosophies. Shear walls design has recently changed from prescriptive to deformation-based 
and, as a consequence, the effective width provisions and the philosophy behind them also 
underwent a dramatic change. As recent as the UBC-94 (1994) was used, the tension effective 
width was required to not be greater than 1/10 of the wall height.  

2.2.3.1 Thomsen and Wallace (1996) 

Wallace (1996) and Thomsen and Wallace (1995, 2004) underlined that the effective flange 
width estimation should be based on the maximum expected level of building response. They 
based their conclusions on experimental strain variation along the flange width at different 
imposed drift levels to support the influence of the performance level on the amount of flange 
reinforcement mobilized. On the other hand, Wallace (1996) also suggested a revisited tension 
flange effective width of 1/4 the wall height, which was subsequently adopted in the 1999 ACI 
318 seismic provisions. Several studies followed the ACI 318-99 amendments that continued to 
focus on improving the design code provisions. One comprehensive study amongst those studies 
is by Hassan and El-Tawil (2003) and summarized next.  

2.2.3.2 Hassan and El-Tawil (2003) 

This study was concerned mainly with questioning and revisiting the ACI 318-02 simple 
expression, which is a function of story height, for estimating tension flange effective width in 
flanged RC shear walls. Other influential variables such as drift level, wall width, and the level 
of axial load were not addressed in the ACI expression and thus were the focus of the study. In 
addition, the motivation for their research stemmed from the fact that coupled walls can be 
subjected to axial forces that vary during an earthquake as a result of the coupling action. Under 
seismic conditions, the net axial force acting on a wall can become quite high and can possibly 
reverse direction subjecting the wall to axial tension. Therefore, the purpose of the study was to 
quantify the effect of axial load (including tension) along with other parameters on the tension 
flange effective width for better code provisions evaluation. Hassan and Eltawil (2003) used a 
detailed FE model to investigate the effect of drift level, wall width, and the level of axial load 
on the tension flange effective width. The FE model was developed using DIANA and accounted 
for nonlinear steel and concrete behavior. The model was validated through comparisons to 
available test data from literature. The analytical results showed that the tension flange effective 
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width is dependent on the studied parameters. Implications of the study data regarding existing 
guidelines were discussed and provisions were suggested for implementation in performance-
based design criteria. The main conclusions adopted from the authors’ summary are as follows: 

 Analysis results showed that although the tension flange effective width does not vary 
significantly as a function of wall height, it is strongly dependent on the drift level, axial 
force level, and wall length. 

 Comparisons between the numerical results and ACI 318-02 specifications indicate that 
the ACI provisions did not accurately specify the tension flange effective width, 
especially in the presence of compressive axial load. Another issue with the ACI 
provisions was that the effective width is tied to wall height and not wall length, even 
though wall length is a more influential variable. Although a calibration based on wall 
height is certainly reasonable and acceptable if wall length is proportional to wall height, 
in many cases such a predetermined relationship between height and length cannot be 
assumed. Another drawback of the ACI 318-02 fixed effective width provisions was its 
deficiency for an accurate evaluation of structural behavior at a specific drift level as 
required in performance-based design. 

 Design criteria that are a function of wall length, drift, and axial force level were 
proposed for determining the tension flange effective width. Although more complicated 
than the ACI 318-02 criteria, the proposed specifications were more reasonable in that 
they account for the effect of important variables and more suitable for implementation 
in performance-based design codes. However, the authors suggest that still extensive 
analytical and experimental studies are needed to confirm and/or refine their proposed 
criteria. 

2.3 REVIEW OF LITERATURE 

The experimental program conducted in this study comprises the core of the study as it consists 
of testing two large-scale bridge subassemblies. The first specimen was tested in quasi-static 
cyclic loading. The second one was retrofitted with CFRP and tested using hybrid simulation 
technique. To conduct successful tests, several previous studies that focused on large-scale 
bridge components or subassembly testing were consulted. In addition, early studies that 
promoted bridge performance-based design and capacity design concepts were also reviewed 
during the course of this study. In this section, some of those relevant herein studies are 
summarized briefly for completeness. However, a review of the studies that utilized hybrid 
simulation testing technique for investigating bridge components and systems behavior is 
included in Chapter 7. The relevant studies briefly reviewed here are categorized and presented 
in two subsections: bridge component and subassembly testing and performance-based bridge 
design. 

2.3.1 Bridge Subassembly and Component Testing 

During the last few decades, investigations of bridges and infrastructure structural damage 
following several severe earthquakes have been one of the main priorities of several federal and 
different states departments of transportation such as Caltrans.  That is to develop proper design 
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practices and better detailing of members and joints in bridges. Several research programs 
embarked on using experimental testing to investigate the flexural and shear behavior of columns 
or cap beam-column joint regions, for example, to ultimately develop design guidelines and 
recommendations. Some of those studies that are of most relevance to the study conducted here 
are briefly mentioned in the following subsections. Two studies that tested a large-scale bridge 
subammeblies are first presented (Seible et al. 1993 and 1994, MacRae et al. 1994). An example 
of a large experimental study that involved bidirectional loading is presented next (Mazzoni 
1997). Two studies that extensively studied cap beam-column joint behavior and involved both 
large-scale bridge subassembly testing and bidirectional loading are briefly summarized as well 
(Natio et al. 2002 and Mosalam et al. 2002). The subsection concludes with few examples of 
bridge component tests that focused only on columns.  

2.3.1.1 Seible et al. (1993, 1994) 

The researchers conducted two full-scale tests in 1993 and 1994 at the Structures Laboratory in 
the University of California, San Diego. The second test utilized observations and results from 
the first test in altering the specimen design. The full-scale test specimens comprised a 5-ft 
diameter column along with the cap beam and portion of the box-girder superstructure from a 
prototype PC bridge. The tests focused on the cap beam-column connection with #18 bars and 
under unidirectional seismic-type loading. The research focused on investigating: (1) the 
anchorage behavior of straight #18 bars based on the AASHTO design guidelines, (2) 
determining local distress levels and failure mechanisms in the cap beam-column connection, 
and (3) assessing local distress and failure behavior with respect to global seismic design 
principles of collapse prevention and damage control and reliability. The first test (1993) showed 
that the cap beam-column connection was capable of forcing initial plastic hinging into the 
column with ductility limited by the joint and cap beam deterioration. However, no premature 
bond slip or joint deterioration was noticed. It was observed that nominal maximum principal 

tensile stress levels of 6 to 8 '
cf  contributed to the encountered cap beam-column joint distress. 

This led to horizontal cap dilation measured in the longitudinal bridge direction through the joint 
core and significant joint shear cracking. Although such observed cracking and dilation did not 
cause brittle failure, yet it posed a problem for post-earthquake repair and a compromised 
serviceability design criteria.  

Based on the observations from the first test, the design of the second specimen was 
slightly altered and verified by testing. The second test (1994) addressed the observed issues 
through increasing the cap beam width, using additional vertical and horizontal joint shear 
reinforcement, and adopting soffit flare. When the second test was conducted to verify the 
proposed design changes, it was observed that most of or nearly all the inelastic action was 
migrated to the column through a flexural hinge without joint shear cracking or bond slip. This is 
the favorable weak column-strong beam design approach that allows damage repair without 
significant traffic interruption. Another observation from the second test is that it provided high 
level of integrity to the cap beam-column region which meets serviceability requirements and 
functionality design limit state criteria. The proposed design changes also led to better 
constructability due to less reinforcement congestion as the cap beam was wider.  
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2.3.1.2 MacRae et al. (1994) 

The researchers conducted a ¾ large-scale test of the Santa Monica Viaduct PC cap beam-
column joint. The objective of the experiment was to determine the peak strength of the 
connection, the degradation of strength with lateral displacement, and the failure mode under 
reversed cyclic loading in-plane with the bent. No special shear reinforcement was provided in 
the cap beam-column joint. Thus, the subassemblage specimen failed primarily due to joint shear 
failure. However, the strength degradation was gradual with the cycles of repeated loading. 
Moreover, no punching was observed in the vicinity of the cap beam-column region although the 
column axial load was increased during the test to 1.5 times the expected maximum column axial 
load. It was noted also that even when the full flexural strength at the base of the prototype 
column is achieved, the overall bent behavior is still expected to respond reasonably. Only after a 
large amount of deformation, the top column connection would be effectively pinned.  

2.3.1.3 Mazzoni (1997) 

Up to the late 80s and early 90s, unidirectional quasi-static testing was the most common loading 
technique. Only few bridge component or subassembly tests were conducted under bi-directional 
loading. The comprehensive study by Mazzoni (1997) is one of those studies that considered 
both unidirectional and bidirectional loading and is presented here as an example of bridge 
studies that considered bidirectional loading. The study comprised an experimental program to 
investigate the seismic design and response of the lower-level beam-column connection in a RC 
double-deck bridge structure. Two 1/3-scale beam-column joints with different levels of joint 
shear stress demands were built according to the adopted design criteria back then and tested in 
the laboratory. The difference between the two specimens is related to the difference in capacity 
of the members framing into the joint. The nominal strength of the columns and beams of the 
second specimen were greater than those of the first. This resulted in a higher joint shear stress 
demand imposed on the beam-column joint of the second specimen. 

The study focused on several design issues and parameters besides the effect of 
bidirectional loading. These were the yielding of columns versus beams, joint shear strength, 
detailing of transverse reinforcement in the joint, detailing of member longitudinal reinforcement 
in the joint, the effect of beams perpendicular to the loading direction, and the joint depth to bar 
diameter ratio. However, only the conclusion related to the effect of bidirectional loading is 
presented here as more dedicated studies for the bridge joint behavior is presented next. While 
bidirectional loading was applied first then followed by unidirectional loading, the study showed 
that the design strengths were reached only during the unidirectional response and were not 
reached during bidirectional response. However, the bidirectional cycles dissipated a significant 
amount of hysteretic energy, but were not found to affect the unidirectional response envelope. 
The effects of bidirectional loading were determined to be important in the response of the 
structural system in terms of incorporating better load path and residual stresses, but did not 
affect the design strength of the test specimens. 

To acknowledge the importance of bidirectional loading in certain cases, the FEMA 461 
(2007) included guidelines for conducting tests under bidirectional loading. The FEMA 461 is an 
important document that provides guidelines for the testing and loading protocols for 
determining the seismic performance characteristics of structural and nonstructural components 
and was consulted to develop the loading protocol for the study presented in this report. The 
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general FEMA-461 (2007) statement for bidirectional loading is as stated follows: “Imposed 
deformation or force will typically be applied in a single degree of freedom (unidirectional 
loading). Bidirectional loading (loading in two orthogonal horizontal directions) should be 
carried out whenever it is anticipated that such loading has a significant effect on any of the 
damage states and the associated fragility function. Written justification should be provided if it 
is decided in this case to apply only unidirectional loading.”  

2.3.1.4 Natio et al. (2002) 

This study relied primarily on an extensive experimental program to investigate different designs 
for bridge beam-column joints. The motivation of the study was the fact that the 1989 Loma 
Prieta earthquake and subsequent studies resulted in higher design requirements for transverse 
reinforcement in bridge beam-column joints in California. The resulting reinforcement details 
can be congested and difficult to construct. The undertaken experimental investigation examined 
four large-scale interior joints with details typical of those required in California. The 
experimental program included tied square cross-section columns and spirally reinforced circular 
cross-section columns. Both conventional and headed joint reinforcement configurations were 
investigated. It is to be noted that another complementary study was conducted to further 
investigate the beam-column joint behavior but within a larger bridge subassembly involving a 
representative portion of the box-girder as presented in the next subsection (Mosalam et al., 
2002).  

The experimental results showed that the adopted design requirements back then 
produced joints that remain essentially elastic to relatively large drifts, whereas the columns 
developed inelastic rotations adjacent to the joints. The study showed also that the response of 
the square column subassemblies was not as stable as that of the circular column subassemblies. 
That was attributed to the linear (versus circular) arrangement of the column longitudinal 
reinforcement, which results in simultaneous slip, buckling, and eventual simultaneous fracture 
of several longitudinal bars. The use of headed reinforcement within the joint regions was shown 
to be effective in reducing congestion and thereby improving constructability while maintaining 
comparable structural behavior. In general, headed longitudinal column reinforcement exhibited 
less slip and underwent higher strain than conventional longitudinal reinforcement at similar 
levels of displacement demand. Finally, it was shown that the lateral transverse joint 
reinforcement used in the tested joints was not significantly activated, reaching less than 25% of 
the yield strain. This suggested that less reinforcement could be used in connections with 
demands similar to those of the test specimens. 

2.3.1.5 Mosalam et al. (2002) 

This study was the extension of the previously reviewed study (Natio et al., 2002) that comprised 
an experimental program that aimed at investigating the cap beam-column joint design using 
conventional and head rebars while considering the box-girder contribution. Thus, it is very 
relevant to the study presented in this report in terms of the specimens’ geometry, test setup, and 
data reduction framework. The study presented the methodology and findings from two large-
scale experiments conducted on RC bridge subassemblies. Each subassembly, very similar to the 
subassembly considered in this study, consisted of the middle column/cap-beam joint of a three-
column bridge bent and a large part of the monolithically cast-in-place box-girder of a typical 
California highway bridge. The subassemblies were subjected to constant gravity load and 



 39

gradually increasing bidirectional cyclic lateral loading. One subassembly represented the later 
90s common practice in California and the other considered new design using headed reinforcing 
bars with reduced volume of transverse reinforcement to improve joint construction. Special 
attention was given to proper modeling of the boundary conditions and use of instrumented 
supports. The effect of bidirectional loading on global damage of the box-girder slabs was 
considered in the study and was presented in the form of variation of the effective moment of 
inertia of the cap-beam cross-section with displacement ductility. Both subassemblies 
experienced excessive shear damage in the joint regions with ultimate failure due to pullout of 
column longitudinal reinforcing bars. However, the use of headed bars led to better global and 
local performances due to improved confinement of the joint region with less volume of 
reinforcement. Because of the relevancy of this study, more detailed conclusions, as stated by the 
authors, are presented as follows: 

 Use of headed reinforcement was an efficient way to reduce reinforcement congestion 
within critical regions in RC bridges such as cap-beam/ column joints. The tested new 
design using headed reinforcement with less total amount of transverse steel was shown to 
lead to improved global response compared to the common design practice with 
conventional reinforcement. This was observed mainly from the more gradual strength 
degradation with cyclic loading, from the higher ultimate displacement ductilities in both of 
the longitudinal and transverse loading directions, and from the reduction of the average 
shear strain within the cap beam/column joint region. 

 Caltrans estimate of the effective slab width acting with the integral bent cap in resisting 
flexural demands as 12 times the slab thickness is conservative up to a displacement 
ductility level of five. For lower ductility levels, larger contribution of the soffit and deck 
slabs may be used in estimating the flexural stiffness of the effective cap beam. This may 
have significant design implications where higher cap beam stiffness will change the 
seismic internal forces in the different bent sections. It is to be noted that this particular 
observation from that study is of great relevance to the study presented in this report and 
was a vital motivation for carrying out this study to better quantify the cap beam effective 
slab width. 

 The vertical and longitudinal horizontal headed reinforcements within the joint region were 
effective in confining these regions as supported by the strain measurements. This was 
reflected in delaying the pullout of the column longitudinal bars, i.e. requiring larger 
number of cycles for the column longitudinal bars to pullout compared to the case with 
conventional design. The conventional joint reinforcement in the form of vertical hooks 
and stirrups and horizontal hairpins were not as effective as the corresponding headed bars 
due to possible slippage of these bars in relation to the surrounding concrete. 

 Based on the observed mode of failure, the study recommended to further investigate the 
use of headed bars as longitudinal column reinforcement as a possible way of preventing 
the observed pullout of these rebars. In this way, significant improvement of the seismic 
performance of the designed bridge system (ultimate drift ratios greater than 8.5% and 
ultimate displacement ductility greater than 6) can be obtained. Although more than 8% 
drift was achieved in the experimental study, this large drift was accompanied with 
excessive strength and stiffness degradation. The goal of investigating the use of headed 
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bars as longitudinal reinforcement of the column is to eliminate the brittle mode of failure 
caused by bar pullout. 

A general observation regarding the use of headed rebars based on the conclusions from 
Natio et al. (2002) and Mosalam et al. (2002) is that headed rebars are efficient in reducing joint 
congestion and lead to better constructability without compromising strength requirements. The 
same observation is supported by conclusions from earlier studies such as Ingham et al. (1995) 
and Thewalt and Stojadinovic (1995) that suggested that using headed reinforcement usually 
results in a better performance because of the enhanced anchorage. The same observation was 
the motivation for Hube and Mosalam (2010, 2011) to propose new design for RC box-girder in-
span hinges. The use of headed rebars was shown to be effective in in-span hinges as was the 
case for beam-column joints.  

2.3.1.6 Other Relevant Studies 

The behavior of only bridge columns rather than a bridge subassembly has always been a main 
research area for two reasons. First, plastic hinging in bridge columns is the desired mode of 
failure. Second, testing single columns in a unidirection or bidirection or even on a shaking table 
is more convenient and relatively easier than testing a bridge system or subassembly.  Thus, 
numerous tests were conducted on columns to verify and ensure that desired ductility at failure is 
achieved. In this subsection, few examples of the several column tests in the literature are briefly 
listed. 

The lateral response of well-confined bridge columns with varying longitudinal 
reinforcement ratios and aspect ratios was investigated by Lehman and Moehle (1998). The 
results were used to outline the performance-based seismic design framework for RC bridge 
columns. Moreover, the behavior of RC bridge columns having varying aspect ratios and varying 
lengths for confinement extent was experimentally and analytically examined on four circular 
columns by Calderone et al. (2000). Tests to evaluate the behavior of bridge columns subjected 
to variable axial load and various loading patterns were conducted at the Structural Laboratory of 
the University of Southern California in 2002 by Esmaeily-Gh and Xiao (2002). They found that 
the axial load and loading pattern variation had significant effect on the flexural strength 
capacity, the mode of failure and damage pattern, and the ductility and deformation of the 
columns. 

The effect of bar buckling in RC columns was studied by Brown et al. (2007). Eight 
circular columns, reinforced with longitudinal bars and circumferential spirals, were tested under 
constant axial load and cyclic lateral displacements. The goal was to generate data on bar-
buckling mechanisms for developing a numerical model and for further understanding of the 
phenomenon. New modeling strategies for modern RC bridge columns were developed to 
accurately model column behavior under seismic loading, including global and local forces and 
deformations, as well as progression of damage (Berry and Eberhard, 2007). The models were 
calibrated using the observed cyclic force-deformation responses and damage progression 
observations of a 37-test database of spirally RC columns. 
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2.3.2 Performance-based Design of Bridges 

This brief subsection aims at drawing the attention to how research is associated with the shift 
from conventional strength design methods to the performance-based design of bridges. Drastic 
number of research studies were conducted over the past couple of decades that focused on 
capacity design approach and nonlinear modeling and analysis procedures and techniques in 
response to the need of reliable performance-based design approach. According to ASCE-41 
(2006), performance-based earthquake engineering (PBEE) is based on designing to achieve 
predetermined performance levels or objectives in a specific hazard environment. Performance-
based design is intended to allow structures to meet specific performance objectives with greater 
reliability than the traditional prescriptive code approach. The design of structural components 
for target performance levels requires an assessment of strength, stiffness, and deformation 
characteristics typically into the nonlinear range of elements and subassemblies that make up the 
seismic-force-resisting system as advised by ACI-374.2R (2013). 

Hose and Seible (1999) conducted a study as a part of an early initiative by the Pacific 
Earthquake Engineering Research (PEER) Center to develop and demonstrate the parametric 
basis for performance-based bridge engineering. The study resulted in a bridge performance 
database and catalog to evaluate the capacity of bridge systems and their subcomponents 
allowing an accurate characterization and prediction of the structural behavior. The developed 
database was based on observations and results from various laboratory tests, as well as damage 
from past earthquakes. This database was essential for the performance-based design process to 
advance. 

Mackie and Stojadinovic (2003) defined the performance objectives in terms of annual 
probabilities of socio-economic decision variables being exceeded in a seismic hazard 
environment of the urban region and site under consideration. Further probabilistic seismic 
demand analysis was used to compute values of bridge-specific engineering demand parameters 
given ground motion intensity measures, such as peak ground acceleration. An optimal 
probabilistic seismic demand model (PSDM) was developed and proposed for typical highway 
overpass bridges. It is to be noted that probabilistic frameworks are gaining more popularity 
especially as PEER has been promoting full probabilistic evaluation within its PBEE 
methodology. Meanwhile, intensive efforts were undertaken to improve the performance, 
reliability, and economy of performance-based methods in extreme events. A cos-estimation 
approach of seismic performance was investigated in Ketchum et al. (2004). The project focused 
mainly on providing revised and improved empirical rules for the influence of design ground 
motion level on bridge construction cost.  

As previously mentioned, PBEE and probabilistic approaches require extensive nonlinear 
analyses. Few examples of analytical studies that focused on enhancing bridge modeling and 
analysis practices are presented. Aviram et al. (2008) furnished a good collection of practical 
guidelines for nonlinear analysis and modeling of bridge structures to assist practicing engineers 
in the implementation of nonlinear methods for bridge design subjected to seismic loading. This 
collection of practical and readily implementable recommendations is primarily intended to 
estimate seismic demand on critical bridge components and systems. In addition, the report by 
Aviram et al. (2008) offers a comprehensive literature review of the current engineering practices 
in the US and how they relate to desired analytical methods. Another application that can 
significantly alter an entire bridge system response and is more feasible to tackle analytically is 
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the bridge abutment response along with soil–structure interaction and backfill flexibility. A 
performance-based evaluation of bridges on liquefiable soils with focus on abutment modeling 
using nonlinear inelastic analysis is presented in Kramer et al. (2008). The report provides a 
detailed analytical model consisting of liquefiable and non-liquefiable soils, pile foundations, 
abutments, and the bridge superstructure along with the model validation. The study considered 
the computed response under various loading conditions, and provided conclusions regarding the 
resulting damage and loss estimates. Further studies of RC bridge systems including soil-
foundation-structure interaction are given in Dryden and Fenves (2009) and Mitoulis (2012). 
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3.2 PROTOTYPE 

To determine the  geometry and structural configuration for the test specimens, a typical 
California bridge construction was considered as the prototype. There are several methods for 
choosing a prototype bridge for research studies. One method is based on conducting a survey of 
existing bridges, then averaging the spans and cross-sections dimensions to generate a virtual 
prototype that is then considered a representative typical bridge. This method was adopted by 
Natio et al. (2001) where sixteen RC bridges built in California between 1985 and 1995 were 
evaluated. This study resulted in the selection of a representative prototype that consisted of a 
three-column bridge bent with an integral box girder and pinned column-to-footing connections. 
The prototype bridge considered average spans of 150 ft. between the bents which consisted of 
circular columns and a cap beam depth that is comparable to the column diameter. Another 
method for choosing a prototype bridge is using real existing bridges. This method is useful if a 
particular structural behavior is investigated or damage due to a specific loading case (e.g. 
specific earthquake) is analyzed.  Lee and Mosalam (2014) used two existing bridges to 
investigate the behavior of RC columns in shear due to horizontal and vertical earthquake 
excitations. The two considered bridges are the Amador Creek Bridge and the Plumas-Arboga 
Overhead Bridge.     

A different method for choosing a prototype bridge was utilized in this study which aims 
at investigating the structural behavior of integral bent cap beams and box-girder slab 
contribution in light of the AASHTO and Caltrans Seismic Design Criteria (SDC). A readily 
available typical California bridge that is designed by the Caltrans Bridge Academy is utilized. 
This bridge, which for convenience is referred to directly as Academy Bridge throughout this 
study, is a representative of California most common RC box-girder bridge type with integral 
bent cap beams. The Caltrans Bridge Academy uses the Academy Bridge as a part of the 
complete hands-on design exercise for junior bridge engineers and professional bridge design 
workshops. The Academy Bridge is modified to allow the generation of a symmetric and feasible 
subassembly specimen that can be accommodated at the Structures Laboratory at the University 
of California, Berkeley. The key features of the bridge, such as the main span, bent cap and box-
girder geometry, and column diameter, are not changed or modified. However, the modifications 
are concerned only with the bent layout and elevation (height). A shorter column height, which 
still guarantee a flexural governed behavior as intended for the original Academy bridge design, 
and a symmetrical three-column bent that is unskewed are the main modifications applied to the 
Academy Bridge. The differences between the original Academy Bridge and the modified 
prototype are summarized in Table  3-1. The detailed geometry and dimensions of the modified 
Academy Bridge prototype considered throughout the course of this study are shown in 
Figure  3.3. 

Table  3-1 Differences between the modified prototype and Academy Bridge   

 Academy Bridge Modified Prototype 

Spans 3 spans: 124 ft., 168 ft., 112 ft. 3 spans: 124 ft., 168 ft., 124 ft. 

Skewness Skew at 15º Orthogonal at 0º 

Bent Height 44 ft. (aspect ratio 7.33) 30 ft. (aspect ratio 5) 
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Bent Layout 2 columns hinged at base 3 columns hinged as at base 

 

 

Figure  3.3 Different views of the modified Academy Bridge 
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3.3 SUBASSEMBLY DEVELOPMENT 

3.3.1 Subassembly Geometry 

The experimental investigation focuses on the behavior of integral bent cap beam and strain 
distribution in the box-girder slabs in a bridge system subjected to constant gravity loading and 
varying transverse (lateral) loading. Thus, representative portion of the box-girder in the 
longitudinal direction of the bridge is considered at both sides of the bent cap beam and column 
to form the subassembly was chosen for this study. The prototype bridge comprises multi-
column bents where the transverse bridge frame consists of an integral bent cap supported on 
three columns. Only the middle column and part of the bent cap is considered in the 
subassembly. Figure  3.4 shows the representative portions of the bent cap beam in the transverse 
direction and box-girder in the longitudinal direction. The basis for choosing such representative 
portions is described next. 

A full-scale and a complete assembly of all the bridge components would be the ideal 
case scenario for exact and accurate testing. However, due to practical considerations and 
laboratory limitations, only a reduced-scale and a representative subassembly are considered for 
testing.  The largest possible scale is always favorable to mimic the actual behavior and avoid 
any scale effect bias. However, a compromise between the subassembly scale versus the 
considered representative portions of the bent cap and box-girder is usually part of the test 
subassembly design decision. The most feasible physical boundary conditions for the test 
subassembly is the main criterion adopted in this study for deciding on the representative bridge 
longitudinal and transverse span portions. On the other hand, the laboratory space available for 
testing as dictated by the reaction frame and the actuators capacity are the considered criteria for 
determining the final test subassembly scale.   

The feasible boundary conditions are usually associated with minimal translational and 
rotational constraints i.e. provide least reactions. Meanwhile, laboratory hinged supports that 
allow free rotations especially for massive RC components are challenging and costly. Therefore, 
choosing the points of zero moments in the bridge under both vertical (gravity) and lateral cases 
of loading, in both transverse and longitudinal directions, leads to the most feasible boundary 
conditions. That is because partial fixations at zero moment locations are most likely to introduce 
the minimum secondary bending moments. For accurate estimation of zero moment locations in 
the prototype bridge, a SAP2000 (2009) elastic model for the prototype bridge was utilized. 
More details about the bridge model and boundary conditions verification are presented in 
Chapter 4. 

For the bridge longitudinal direction, the bending moments and deflection inflection 
points are defined by gravity loads only because the lateral loads are resisted primarily by the 
bent cap and columns framing action. The zero moment locations along the bridge box-girder 
longitudinal direction are shown from the SAP2000 bridge model in Figure  3.5. It is shown that 
the zero moment location is at 1/4 of spans continuous from both sides and 1/3 of spans 
continuous only from one side. The prototype spans allow for a symmetric zero moment 
locations at both sides of a transverse bridge frame, which in turn results in a symmetric test 
subassembly dimensions. For the transverse direction, the zero moment location along the bent 
cap beam is controlled mainly by the direction of the lateral load as shown in Figure  3.6. It is 
shown that the beam zero moment location varies from approximately 1/3 to 1/2 of the span to 



 

either sid
zero mom
columns.
simulatio
to be at 1
geometry
used as th
support l
resulting 

Fig

Fig

F

de of the mi
ment locatio
. The test s
on with load 
1/2 of the be
y of test sub
he column f
location, i.e
test subasse

 

gure  3.4 Suba

gure  3.5 Loc

igure  3.6 Loc

ddle column
on varies fro
subassembly

reversals. T
eam span to 
assembly is 

foundation. T
e. the full c
embly. 

assembly con

ations of zer
br

cations of zer
bridge un

n as the late
om approxim
 is consider

Therefore, an
account for 
the bent co

Therefore, th
column heig

nsidered for 

ro moments a
ridge under v

ro moments 
nder combine

48

eral load dire
mately 1/2 t
red for both
n approxima
the load rev
lumn. For a

he zero mom
ght is engag

testing as ide

along the lon
vertical gravi

along the tra
ed vertical an

ection is rev
to 2/3 of th
h earthquake
ate location o
versals. The
a multi-colum
ment location
ged and con

entified with

ngitudinal dir
ity loading 

ansverse dire
nd lateral loa

versed. Mean
e span adja
e cyclic loa
of the zero m
last compon

mn bent, a h
n along a hin
nsequently c

hin the protot

rection of the

ection of the 
ading 

nwhile, the b
cent to the 

ading and h
moment is ch
nent of the g
hinged pile c
nged column
considered in

 

type bridge

e prototype 

prototype 

beam 
outer 

hybrid 
hosen 
global 
cap is 
n is at 
n the 

 

 



 49

As a result of the identified zero moment locations for each of the column, bent cap 
beam, and box-girder along with the available reaction frame height and laboratory space at the 
Structures Laboratory at the University of California, Berkeley, a maximum scale of 1/4 is 
proposed for the test subassembly. The dimensions of the resulting test subassembly at 1/4-scale 
were found to be acceptable in light of the reaction frame dimensions and laboratory space. The 
expected forces required for the 1/4-scale subassembly during either the quasi-static or hybrid 
simulation tests were found from pre-test analyses, presented in details in Chapter 4, to be 
accommodated within the available actuators capacities. In addition, the 1/4-scale allows for the 
use of normal concrete aggregate and standard reinforcement sizes. Therefore, a reduced 1/4-
scale test subassembly was finalized for the two test specimens considered in this study.  

3.3.2 Boundary Conditions 

To simplify the testing and the construction, the test specimen (subassembly) was oriented 
upside-down with the box-girder and the cap beam against the floor and the column in the air. 
The specimen is sought for testing under combined vertical gravity and bidirectional lateral 
loading. Therefore, a stable test setup would require proper boundary conditions for load 
application and resisting forces against the laboratory strong floor and reaction frame in the three 
global axes X, Y, and Z. How the boundary conditions affect the specimen geometry is only 
presented in this subsection while more details are discussed in the Test Setup subsection. The 
inverted position requires the minimal physical boundary conditions relative to the regular 
orientation. These physical boundary conditions are required at five locations; the column end, 
namely (action), the two cap beam ends (reaction), and the two box-girder ends (reaction) as 
follows: 

 The vertical and lateral actuators are connected directly at the inverted column top end at 
the anticipated zero moment location. Thus, no footing or pile cap is needed in this 
orientation and only a column head that facilitates the actuators’ connection to the 
column is considered. A hexagonal shape column head was found to be the best geometry 
for accommodating the connections of the vertical and lateral loading systems.  

 Two vertical struts are considered at the two cap beam ends. The vertical strut provides a 
vertical reaction only while allowing for translation in the two horizontal directions, full 
rotations around the X and Y axes, and partial rotation around the Z axis. This is to 
mimic the reactions at the chosen zero moment location for the symmetric subassembly. 

 Two seat beams are considered at the box-girder ends. The seat beams are monolithically 
casted with the specimen at the box-girder ends. Such monolithic setting is expected to 
fully restrain the three translational degrees of freedom while partially restraining the 
rotations. Ideally, the rotations are required to be unrestrained to allow for the desired 
zero moments at such locations. This partial rotational fixation is only a result of the deck 
slab stiffness which is much smaller relative to the seat beam, leading to a potential 
cracking mechanism at the interface. Such dynamic cracking mechanism, i.e. opening 
and closing cracks, at that slab/seat beam interface can be assumed to accommodate the 
very small rotations at the box-girder ends without creating undesired large bending 
moments. This assumption is verified analytically using a SAP2000 (2012) model for the 
subassembly that utilizes different hinged and fixed end supports. More details are 
presented in the pre-test analysis in Chapter 4. 
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Based on the framework discussed above for the evolution of the test specimen geometry, 
scale and boundary conditions, the final specimen components and dimensions are summarized 
in Table  3-2 and presented in three different views in Figure  3.7.  

Table  3-2 Summary of the reduced 1/4-scale specimen dimensions 

Column diameter  18 in. 

Column height 90 in. 

Cap beam/superstructure height 20-3/8 in. 

Cap beam width 24 in. 

Deck slab thickness 2-5/16 in. 

Soffit slab thickness 2-1/16 in.  

Box girder web thickness 3 in. 

Clear width of box cell 30 in. 

Clear height of box cell 16 in. 

Subassembly overall length  264 in. 

Subassembly overall width  102 in. 

 

 
Figure  3.7 Different views of the 1/4-scale subassembly specimen 
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3.4 SPECIMEN DESIGN  

Two identical specimens are considered for this study with similar design but different loading 
protocol as discussed in details in a following subsection. A brief summary of the specimen 
design and cross-section reinforcement is presented here. The details of the specimen design 
loads and calculations of required reinforcement are presented in Appendix A. 

To calculate the design loads for the reduced-scale specimen, the SAP2000 (2012) full 
prototype bridge model was used to first estimate the loads and straining actions, due to dead and 
live loads, at relevant structural element. Next, the elements straining actions were scaled down 
using the proper similitude relationships and used to design the different specimen sections. In 
addition, the provisions of the Caltrans Seismic Design Criteria (SDC  2010) and the AASHTO 
LRFD Bridge Design Specifications (2007) were considered to estimate seismic design loads. 
The bent cap beam and box-girder superstructure are flexurally designated as capacity protected 
components to remain elastic when the column reaches its overstrength capacity. More details of 
the utilized seismic capacity design approach can be found in Appendix A. 

The design of the specimen includes flexural and shear design for each of the column, 
cap beam, beam-column joint, box girder deck and soffit slabs, box girder webs, and the seat 
beams required for the specimen attachment to the strong floor of the laboratory. One 
assumption for the design of the box-girder is neglecting the effect of prestressing. Although the 
prototype bridge comprises a longitudinally post-tensioned PC box-girder, yet this study focuses 
only on the behavior of the cap beam and box-girder slab contribution in the bridge transverse 
direction. Thus, no prestressing is needed for the specimen as long as the box-girder remains 
elastic in the longitudinal direction. The design was made according to the following Codes and 
Standards: AASHTO LRFD Bridge Design Specifications (2007), Caltrans SDC (2010), and 
ACI-318 (2008). The reinforcement details of the main specimen’s components are summarized 
in Table  3-3 and all of the specimen cross-sections are shown in Figure  3.8. 

Table  3-3 Summary of the specimen cross-sections reinforcement 

Column 
16 #6 longitudinal bars 

#3 spiral at 2-1/2 in.  

Cap beam 

8 #5 negative reinforcement 

8 #5 positive reinforcement 

#3 stirrups with 4 branches at 5 in. spacing 

Box-girder 

#3 with standard hook in transverse direction at 4 in. spacing 

#3 straight bars in longitudinal direction at 2-1/2 in. spacing 

#3 single branch tie at 4 in. spacing 
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Figure  3.8 Dimensions and reinforcement details for each of the specimen components: 
(A) Column, (B) Column Head, (C) Cap Beam, (D) Seat Boundary Beam, (E) Joint 
Reinforcement in Transverse Direction, (F) Joint Reinforcement in Longitudinal 

Direction, (G) Box-girder 
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3.5 TEST SETUP  

To facilitate the experimental program, the two specimens considered for this study were 
constructed and tested upside down. The objective of the tests is to investigate the behavior of 
bent cap and slab contribution under combined vertical and lateral load. Therefore, vertical and 
lateral loading systems were required. All loads were applied at the column end in its inverted 
position, while the specimen was line supported on two concrete beams at the box-girder ends 
and additionally point supported by two vertical struts at the cap beam ends. A schematic 
representation of the test setup, including the loading systems and boundary supports is shown in 
Figure  3.9. The detailed test setup and the relative locations of the loading actuators and supports 
are shown in different views in Figure  3.10 and Figure  3.11. 

The gravity load was applied at the column free end, top end in the inverted position, 
through two vertical hydraulic actuators and a steel spreader I-beam place on top of the column 
head. The actuators are pulling downwards on the spreader beam through pinned connections 
from one end, and reacting against the laboratory strong floor also through pinned connections at 
the other end. All pinned connections were achieved through 3D ball-bearing clevises. Due to 
practical considerations, the spreader beam span had to be limited to avoid excessive flexibility 
and to achieve constant and stable vertical load. Thus, the vertical actuators had to pass through 
both of the soffit and deck slabs of the specimen’s box-girder to reach the strong floor. Two 9-
inch holes were made in both slabs and at the two sides of the column for the actuator rods to 
pass through. Special 3-inch diameter and 2-foot length rods were fabricated to allow for the 
extension of the actuators. In addition, 1-inch elastomeric rubber pad was used between the 
spreader beam and the concrete column top to avoid any stress concentration due to concrete 
surface imperfections and achieve a vertical uniform load application. 

The lateral load was also applied at the column head using two lateral hydraulic actuators 
that were reacting against the laboratory steel reaction frame shown schematically in Figure  3.10. 
The lateral actuators setting allows for applying both cyclic loading during the quasi-static 
testing of first specimen, and the online computed earthquake displacement input during the 
hybrid simulation testing of the second specimen. The actuators were located in one horizontal 
plane but connected to the column head at two inclined directions rather than two orthogonal 
directions to provide stability during both unidirectional and bidirectional loading. Accordingly, 
two special considerations were required. First, geometric transformation was needed to 
transform the desired input displacements in X and Y directions, that correspond to the bridge 
subassembly transverse and longitudinal directions, respectively, to the local actuators directions. 
Second, the column head geometry had to be designed properly to facilitate the two inclined 
lateral actuators connections. Based on the attachment points of the actuators to the reaction 
frame and the distance between the frame and the column head, a hexagonal shape was found to 
be the best choice even though it was not the most ideal from the ease of construction 
perspective.   

Similar to the vertical actuators end connections, the lateral actuators end connections 
were also 3D pins. The pinned nature of the actuator to the column head connection ensured the 
application of only lateral force without any vertical loads or bending moments. Steel plates of 1-
inch thick were installed on the two opposite sides of the hexagonal column head and prestressed 
together. The actuators were then bolted to the front plates. Thus, when the actuators extended, 
the force was transferred to the column as bearing on the front face directly. When the actuators 
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Figure  3.11 Side and plan view of the test setup 
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direction. The observed mode of failure was the desired Caltrans SDC weak-column strong-
beam (WCSB) which motivated the expansion of the experimental program. Based on that 
observed behavior and test results from the first test of the first specimen, it was decided to 
strengthen the second specimen before conducting any tests in an attempt to transfer higher 
moment demands to the bent cap beam. Meanwhile, the first tested specimen was decided to be 
repaired and re-tested twice. Description of each of these tests in the updated experimental 
testing program along with the objective behind the repair or retrofit decision are discussed in the 
following subsections.    

3.6.2 Repaired Specimen One: Quasi-Static Testing 

Before proceeding with further testing, a repair decision using Carbon Fiber Reinforced Polymer 
(CFRP) was made and pursued for the first tested specimen along with a retrofit decision for the 
second untested specimen. That is because it was feasible and convenient to carry out a repair 
job concurrently with the desired retrofit job of the second untested specimen. Moreover, the first 
test left the column completely damaged with several rebars rupture. Thus, a repair was useful to 
achieve a more stable system for the HS system development and trial tests before pursuing the 
second specimen’s HS test. A quasi-static cyclic loading test was also sought for the repaired 
specimen before conducting the HS trial tests for the sake of comparison with the original as-
built test. 

Accordingly, the second test in the four-test sequence was a similar quasi-static test to the 
first test but applied to the repaired specimen. A constant gravity load that corresponded only to 
the second level used in the first test along with bidirectional cyclic lateral loading were adopted 
for the second test. Similar group of cycles as used in the first test were reapplied for the repaired 
specimen in the second test. However, the second test was intentionally stopped without 
applying the last group of cycles that were applied in the first test in both transverse and 
longitudinal directions group. That was to make sure that the repaired specimen would still have 
sufficient remaining force capacity for the HS system development trials, namely the third test. 

3.6.3 Repaired Specimen One: Hybrid Simulation Development Testing 

The third test utilized the first specimen that was repaired. The main objective of this test was 
providing a real HS test trial to verify the development of the HS system that was established 
particularly for this research study, but meant to be generic for future laboratory uses as well. 
Two main aspects of the development were verified through the third set of tests. The first is the 
back and forth communication between the computational and physical components of the 
hybrid system. It was necessary to make sure the computed input displacements passed to the 
actuators, and resulting forces measured at the actuators’ load cells fed back to the computational 
platform through a robust communication loop. The second aspect of verification was concerned 
with the geometric transformation between global degrees-of-freedom (DOFs) used in the 
computational model and the actuators’ local DOFs. Both aspects were successfully verified 
through several test runs that used the Northridge excitations recorded at both of Sylmar and 
Rinaldi stations. The tests were conducted with and without the application of gravity load. It is 
noted that the gravity load application was an essential part of the original test plan and the trials 
that did not involve the gravity load were only intended to check the stability of the developed 
HS system.  
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3.6.4 Retrofitted Specimen Two: Hybrid Simulation Testing 

The fourth and final test in the experimental program was the HS testing of the second specimen 
that was already retrofitted before any testing. The retrofit aimed at strengthening the column 
using CFRP to amplify the moment demand on the cap beam for further bent cap capacity 
evaluation and exploring different modes of failure, if any. Another objective for the retrofitted 
HS test was to investigate whether an over-designed retrofit scheme can migrate the failure to a 
different part of the bridge. Moreover, the effectiveness of CFRP confinement was also explored. 
The HS tests involved several runs that included uni- and bi-directional testing, different scales 
for the lateral excitations, and different levels for the gravity load.  Moreover, a new testing 
scheme was proposed and considered in few HS test runs to account for the P-delta effect that 
incorporated not only the gravity load, but also the effect of the vertical component of the 
earthquake excitations. The HS runs mainly used the Rinaldi record from the Northridge 
earthquake at various scales up to 200% and three levels for the gravity load. Two of the gravity 
load levels were similar to the ones used in the first quasi-static test. The third level was used to 
further increase the moment demands in the bent cap beam and to be compatible with the higher 
excitation levels. More details regarding the loading protocol are presented in the next section. 

3.7 LOAD PROTOCOL   

Two different types of lateral loading techniques were utilized in the experimental program 
conducted in this study. These are a quasi-static cyclic loading with a prescribed load pattern and 
an online computed earthquake response input signal applied through HS test. While the lateral 
loading was applied either during a cyclic loading test or a HS test, a constant gravity load was 
applied as well through force control throughout all the tests. Meanwhile, lateral cyclic and HS 
input signals were applied using slow-rate displacement control. A rate of loading of 0.02 to 0.06 
in./sec was used and varied based on the loading cycle or HS signal level. The higher the loading 
amplitude was, the faster the loading rate became to keep the total testing time reasonable.  

For the cyclic tests, the lateral loading was an offline signal adopted from the FEMA 461 
(2007) guidelines. On the other hand, the input signal for the lateral loading in the HS tests was 
an online signal computed and updated based on a multi-DOF computational model subjected to 
the Rinaldi record from the Northridge earthquake. The gravity load levels for the HS tests were 
similar to those used in the quasi-static cyclic tests except for an additional level that was used 
only in the last few HS tests. More details about the gravity load levels and the FEMA 461 cyclic 
load pattern are presented here, while the HS loading details are included in Chapter 7. 

3.7.1 Gravity Load        

A constant gravity load was applied through two vertical actuators and a spreader beam at the top 
of the inverted column as previously discussed in the test setup. The total gravity load was split 
evenly between the two actuators. The vertical gravity load was applied first through force 
control, before any lateral loading, and remained almost constant during all tests. However, two 
levels of gravity load were used during cyclic tests and a third level was used in the HS tests. The 
lowest gravity load level used was 82-kips (approximately 5% of the column axial capacity), 
which was used in small-level cycles before the first yield. The second level was double the 
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value of the first level, i.e. 164-kips (approximately 10% of the column axial capacity). For the 
few HS tests that experienced a third higher level of gravity load, a total load of almost 240-kips 
(approximately 14.5% of the column axial capacity) was applied, which was the maximum load 
that could be applied by the vertical actuators.  

The criteria for choosing the values and different levels of the gravity load considered the 
pre-test analysis results and practical considerations and axial load values from bridge 
engineering practice. The first level of 82-kips load was chosen to obtain initial bending 
moments in the bent cap beam that resembled the bending moments in the prototype bent cap 
under the distributed dead loads and with proper consideration of similitude relationships. 
However, the 82-kips value was not sufficient to mimic the prototype’s corresponding value for 
the column axial load. Meanwhile, the effects of additional live load and the vertical component 
of earthquake excitations can increase both the column’s axial load and the bending moments in 
the bent cap beam. Therefore, the second level of the gravity load at 164-kips was used for the 
higher levels of lateral cyclic and HS loading when it was more crucial to model accurate column 
axial loads for correct confinement effects. The initial gravity load level was then judged to be 
doubled to account for proper column axial load, consider additional live loads, and 
approximately account for axial force fluctuation due to the earthquake vertical excitations.  

A better way of expressing the gravity load level that is more appealing to bridge 
engineers is to relate the gravity load value to the axial load capacity of the column. The axial 
capacity of the circular column can be approximately calculated as the gross sectional area times 
the concrete compressive strength. The actual compressive strength was available from the 
material tests, as discussed in Section 3.9. However, the Caltrans SDC expected compressive 
strength was used rather than the actual strength for consistency because the different tests were 
conducted at different times where concrete properties varied. In addition, engineers in practice 
relate the axial load to the expected compressive strength rather than the nominal 28-day 
compressive strength due to the lack of actual material data during design. Accordingly, an 
expected compressive strength of 1.30 times the 5 ksi nominal 28-day strength was used. The 
resulting gravity load to column axial capacity ratio, referred to as axial load ratio (ALR) for 
brevity, for the 82-kips and 164-kips was 5% and 10%, respectively. The third level used in last 
set of HS tests corresponded, in turn, to approximately 14.5% axial load ratio. An example of 
how the axial load ratio of 5% is calculated is shown in Equation ( 3-1). 
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3.7.2 Cyclic Load Pattern 

A bidirectional cyclic loading scheme was desired to represent real lateral loading conditions as 
in case of earthquake loading. Several options were investigated for the bidirectional interaction. 
A circular orbit was the first option as suggested by Hachem and Mahin (2000) after several 
dynamic tests.  A similar option is an elliptical orbit for bidirectional loading as suggested by 
Terzic and Stojadinović (2010). The third option, which was the one adopted in this study, is a 
cross-shape orbit for bidirectional loading, i.e. alternating unidirectional cycles where a group of 
cycles is applied in one direction at a time. The third alternative was chosen as it was found to 
best serve the purpose of the test regarding the investigation of the bent cap beam. Loading in the 
plane of the bent cap was indispensable to better understand the box-girder slab contribution and 
evaluate the effective slab width. Moreover, the torsional effects on the cap beam could be still 
considered when loading is pursued in the orthogonal direction to the cap beam plane. Another 
reason for considering applying the load in one direction at a time is it becomes more suitable for 
FE model calibrations and post-test analyses. Finally, some of the HS tests were planned to be 
bidirectional with actual interaction considered through a computational model. Thus, 
bidirectional loading in the simple cross orbit with one direction loading at a time was finalized 
for the quasi-static testing program. 

The second issue in finalizing cyclic loading patterns is the choice of the number and 
amplitude of the cycles in the different groups. Several studies in the past were dedicated only 
for cyclic loading histories and patterns for quasi-static tests such as Leon and Deierlein (1996), 
Krawinkler (1996), Clark et al. (1997) among others. However, Krawinkler (2009) compared 
several loading histories adopted from different standards and studies for seismic acceptance 
testing and performance-based design. Loading histories from ATC-24 Protocol (1992), SAC 
Protocol (Clark et al. 1997), SPD Protocol (Porter, 1987), CUREE (Krawinkler et al., 2000), ISO 
(1998) and FEMA 461 (2007) were compared. Based on this comparison, the author’s opinion 
was that the protocols are similar and are expected to produce similar performance assessments. 
Consequently, the FEMA 461 (2007), loading protocol was adopted in this study because it was 
the latest and similar to others.   

According to FEMA 461, two cycles are applied at each ductility level, and the suggested 
ductility levels (µ) for testing are as follows: 0.25µ, 0.35µ, 0.50µ, 0.70µ, 1.0µ, 1.4µ, 2.0µ, 2.8µ, 
4.0µ, 5.6µ, and 8.0µ. The amplitudes, however, needed to be determined in displacement values 
for control purposes. A preliminary value of 1-inch was assumed for the column yield 
displacement based on hand calculations to conduct the 0.25µ to the 1.0µ level tests. Next, the 
strain values in the column rebars were checked at the 1.0µ level test to verify if yield took place 
or not. The strains were found to be less than the yield strain obtained from material tests. 
Therefore, another value of 1.25-inch yield displacement was used based on pre-test analysis 
results and indeed it corresponded to the first column yield occurred. The high-level cycles of 
1.4µ, 2.0µ, 2.8µ, 4.0µ, 5.6µ, and 8.0µ were then related to the 1.25-inch yield transverse 
displacement and the test was conducted accordingly. A plot that summarizes both of the gravity 
load and all the lateral loading cycles that were applied during the full quasi-static test of the first 
specimen is shown in Figure  3.14. Snap shots of the loaded specimen during the test in the 
transverse and longitudinal directions are shown in Figure  3.15 and Figure  3.16, respectively.  
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The same test setup used for determining the compressive strength is used to obtain a 
compressive stress-strain test under force control to determine the constitutive behavior of 
concrete in the compression hardening region, before the peak load. The only difference from 
regular compressive tests is the use of a compressometer around the cylinder to measure the 
strain (Figure  3.24). A sample of three cylinders from each concrete lift was instrumented with 
the compressometer and tested at the age of 28 days and first specimen test day (128 days) to 
estimate the stress-strain curve up to the failure point. The compressometer comprises two 
displacement transducers (LVDT) connected on the opposite sides of the cylinder to estimate 
average strain based on both transducers readings as seen in Figure  3.24. The summary of the 
test results (stress and strain at peak, and Young’s modulus) is shown in Table  3-6. From the 
stress-strain test, the modulus of elasticity Ec of concrete was computed using the secant stiffness 
at 0.4 '

cf . A typical compressive stress-strain test results using force control from the 28 days test 

of the first concrete lift samples is shown in Figure  3.26. 

Table  3-6 Stress-strain compressive test results using force control 

  Age 

[days] 

Stress at Peak [ksi] Strain at Peak  Young’s modulus [ksi] 

Mean St. Dev. COV Mean St. Dev. COV Mean St. Dev. COV 

lift 1 
28 6.27 0.18 0.028 0.0033 0.0002 0.074 3207.4 81.9 0.026 

128 7.15 1.03 0.144 0.0033 0.0009 0.264 3116.6 81.6 0.026 

lift 2 
28 6.78 0.17 0.025 0.0033 0.0002 0.062 3215.7 66.3 0.020 

128 7.68 0.23 0.030 0.0029 0.0001 0.050 3565.9 84.7 0.024 

lift 3 
28 5.30 0.73 0.138 0.0024 0.0006 0.237 3192.9 48.3 0.015 

128 6.85 0.36 0.053 0.0026 0.0001 0.042 3238.0 142.1 0.044 

 

 

Figure  3.26 Typical concrete stress-strain relationship using a force-controlled test (results 
shown are for samples from first concrete lift tested at 28 days) 
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Table  3-7 Stress-strain compressive test results using displacement control 

  Age 

[days] 

Stress at Peak [ksi] Strain at Peak  Young’s modulus [ksi] 

Mean St. Dev. COV Mean St. Dev. COV Mean St. Dev. COV 

lift 1 

298 

6.84 0.31 0.045 0.0031 0.0002 0.064 3285.3 144.72 0.044

lift 2 7.73 0.65 0.084 0.0027 0.0005 0.188 3823.3 565.40 0.148

lift 3 7.16 0.22 0.030 0.0031 0.0002 0.071 3465.4 278.52 0.080
 

3.9.1.2 Tensile Tests 

The splitting tensile strength represents a lower bound of the tensile strength of concrete. The test 
was conducted using standard 6 in.×12 in. concrete cylinders according to ASTM C496-04 
(ASTM 2004a). A sample of three cylinders from each concrete lift was tested at ages of 128 and 
308 days to capture actual concrete properties at the age of the subassembly specimens at day of 
testing. For a splitting tension test, the concrete cylinder is placed on its side and loaded in 
compression as shown in Figure  3.29. The maximum load P was recorded and the splitting 
tensile strength fct was estimated from Equation ( 3-2). 

2
ct

P
f

l d
  ( 3-2) 

where l and d are the length and diameter of the standard cylinder, respectively. The test results 
are summarized in Table  3-8. A clear view of the concrete texture and aggregate distribution and 
size can be observed from the tested cylinders in splitting tension as shown in Figure  3.30.   

Table  3-8 Splitting and modulus of rupture test results 

 

Age 
[days] 

Splitting tension fct [ksi] Modulus of Rupture fr [ksi] 

Mean St. Dev. COV Mean St. Dev. COV 

lift 1 
128 0.50 0.012 0.025 0.79 0.043 0.054 

308 0.62 0.038 0.060 0.94 0.069 0.073 

lift 2 
128 0.54 0.090 0.165 0.93 0.045 0.048 

308 0.58 0.033 0.057 1.02 0.097 0.095 

lift 3 
128 0.48 0.059 0.125 0.96 0.046 0.048 

308 0.58 0.021 0.036 1.12 0.031 0.028 
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Figure  3.33 Load-deformation relationships for notched-beam tests for all concrete lifts 

3.9.2 Reinforcing Steel 

The reinforcing steel used in the experimental program was Grade 60, meeting the requirements 
of ASTM A706-04 (ASTM 2004b). Three different bar sizes were used in the specimen 
construction: #3, #5 and #6. However, the #3 bars were obtained from two different stocks such 
that all #3 longitudinal bars were from one stock, while all the #3 transverse steel used in column 
ties, beam stirrups, and box-girder ties were from the second stock. For each type of steel, three 
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Figure  3.35 Stress-strain relationships for the different reinforcing bars coupons for: (a) 
#3 stirrups (b) #3 longitudinal bars (c) #5 bars (d) #6 bars  

3.9.3 Repair and Retrofit Materials 

The experimental program involved the repair of the first tested specimen and the retrofit of the 
second specimen before it was tested. Thus, it is useful to have an idea about the mechanical 
properties of the different materials used in both the repair and retrofit processes. Unlike 
concrete and reinforcing steel, testing representative material samples was not possible during 
the course of the study. However, nominal and characteristic properties as provided by the 
materials supplier are briefly listed here for completeness.  

3.9.3.1 Unidirectional Carbon Fiber Fabric 

Unidirectional carbon fiber fabric along with a two component epoxy system comprised the 
Fiber Reinforced Polymer (FRP) system used for both of the repair and the retrofit processes. 
Three layers of FC061 unidirectional carbon fiber fabric were used for each of the repaired and 
retrofitted specimen. It is to be noted that FC061 Structural Fabric is a standard modulus 
continuous-fiber unidirectional carbon fiber fabric with superior tensile strength. FC061 
Structural Fabric can be impregnated with RN075 Fiber Impregnation Resin to achieve a super 
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strong FRP composite laminate for structural strengthening applications. The fiber fabric itself 
before resin application pertains very high mechanical properties with average tensile strength of 
700 ksi, average tensile modulus of 34,000 ksi, and rupture strain of 1.4%.   

3.9.3.2 Two Component Epoxy System 

Epoxy or any suitable resin is the second necessary component of FRP laminates used for 
structural purposes. A RN075 LPL Two Component Epoxy System was used along with the 
carbon fabrics to compose the FRP layers. The RN075 Fiber Impregnation Resin is a 100% 
solids, solvent-free, and two-component moisture tolerant epoxy. It is a low viscosity epoxy for 
wetting and use with carbon and glass fiber fabrics for structural strengthening. The mechanical 
properties reported for the resin itself are: 10.5 ksi compressive strength after 7 days curing, 6 ksi 
tensile strength after 14 days curing, and rupture strain that varies between 2-4%. The reported 
properties comply with the ASTM standards for epoxy and composites.  

From a structural engineering perspective, it is always more useful to report mechanical 
properties of a readily fabricated ply or layer of the final FRP product. The manufacturers 
reported an average laminate tensile strength for the FRP composite of 149 ksi with an average 
tensile modulus of 10,100 ksi and corresponding rupture strain of 1.2%. It is to be noted that a 
single ply thickness is 0.04 inch, and in turn, the final thickness of the 3-layers CFRP jacket was 
0.12 inch. 

3.9.3.3 Patching Material & Structural Mortar 

While only a composite jacket of carbon fabrics and epoxy resin was used to retrofit the second 
specimen, several other materials were used for the repair of the damaged plastic hinge region in 
the first specimen. More details about the undertaken repair procedure are discussed in Chapter 
6. However, an overview of the mechanical properties of the patching material and structural 
mortar used during the repair is presented here.  

A Structural Motor SM020 was used to fill the concrete cracks wider than 0.75 inch and 
patch the damaged surface for proper application of the CFRP composite layer. Based on the 
data provided by the manufacturer, the structural mortar had an average compressive and split 
tensile strength of 6.3 ksi and 595 psi, respectively, after 28 days. The modulus of elasticity 
based on the data from the elastic regime of the stress-strain plot was 2,260 ksi. Bond and 
flexural strength of 0.5 ksi and 1.15 ksi, respectively, were measured after 28 days with failure 
noticed in the substrate.  

Concrete cracks with width less than 0.75 inch were cap-sealed using GS100 gel/paste 
epoxy system. Compressive and tensile strength of epoxy system was 10.5 ksi and 7.2 ksi, 
respectively. Rupture strain of the epoxy system was about 0.85%. The average flexural strength 
measured after 14 days was 5.6 ksi. 

3.10 INSTRUMENTATION 

Several measurements techniques were adopted during each test: force, displacement, and strain. 
In addition, curvatures were deduced from either strains or displacements. Cameras were also 
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Figure  3.47 Layout of strain ages used for the box-girder soffit slab (top) and deck slab 
(bottom) transverse reinforcement  
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Figure  3.48 Layout of strain ages used for the box-girder soffit slab (top) and deck slab 
(bottom) longitudinal reinforcement 
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3.10.4 Curvature Measurement 

As previously mentioned, LVDTs were used for direct cap beam and box-girder displacement 
measurements under the specimen and a different set was dedicated for column curvature 
estimation. The curvatures were not measured directly but estimated from the LVDTs relative 
displacement measurements as discussed here. LVDTs are robust and reliable in calculating very 
small curvatures and rotation with high accuracy.  

The subassembly column was instrumented with four levels of LVDTs in the North-
South (longitudinal loading) direction and five levels in the East-West (transverse loading) 
direction. Each two opposite LVDTs at a certain level measured displacements that can be 
relatively associated to other levels. The relative displacements between each two measuring 
levels can be transformed to linear strains if the distance between the two levels is known. The 
linear strains at two opposite sides of the column can be then used to estimate the cross-section 
curvature at a given level using the horizontal distance between the two planes where the linear 
strains are calculated. This described process for estimating curvatures using LVDTs is 
illustrated in Equations ( 3-5) and ( 3-6) and Figure  3.50. The actual layout and setup of the 
column’s LVDTs dedicated for curvature measurements are shown in Figure  3.51. 

1 2

1 2

1 2
1 2

1 2

,

L D Offset Offset

h h

h h

  

 


 

 

 
 

 
( 3-5)

 
( 3-6) 

where 

Δh1,2: change in displacement at a given LVDT between two fixed points (direct reading of 
LVDT) 

h1,2: distance between two fixed points set by the threaded rods projected out of the column 

Offset1,2: initial horizontal distance between the column face and a given LVDT center line 

D: column diameter [inch] 

 

Figure  3.50 Schematic representation of paramters required to estimate the column 
curvatures using linear LVDTs 
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4 Pre-Test Finite Element Analysis 

A computational framework was pursued to complement the undertaken experimental 
framework. The Finite Element Method (FEM), also referred to as Finite Element Analysis 
(FEA) as well, is considered for the conducted computational work throughout this study. Two 
main stages of FEA comprise the computational framework. These are pre-test and post-test 
analysis. The pre-test analysis aimed primarily at providing answers and clearing several issues 
that are associated with experimental work. Thus, several linear and nonlinear one-, two-, and 
three-dimensional models were utilized in this study to conduct the pre-test analysis before the 
experimental tests specimens were built or the test setup pieces were assembled. On the other 
hand, the post-test analysis uses some of the pre-test analysis models to calibrate them against 
the experimental results and carry out further analysis and a parametric study that complements 
the experimental work.  

This chapter presents all the different FE models developed and used in the pre-test 
analysis. The pilot studies conducted using these models are also discussed. Three different types 
of models were used and categorized for the sake of this discussion according to the utilized 
finite elements dimensions. The first type of models utilized one-dimensional (1D) elements for 
modeling either the full prototype bridge or the test subassembly specimen. The Open System for 
Earthquake Engineering Simulation (OpenSees) was used for 1D models. The second type of 
models used two-dimensional (2D) elements mainly for box-girder modeling. The commercial 
analysis package SAP2000 (2012) was used for the 2D models. The most sophisticated level of 
modeling is the three-dimensional (3D) solid element modeling, which was also utilized in this 
study. The general purpose FEA package DIANA (DIsplacement ANAlyzer 2011) was used for 
creating the 3D models and performing linear and nonlinear analyses.  The pre-test analysis 
presented in this chapter is divided into four sections. The first section is dedicated to the 1D 
OpenSees models. The second section focuses on the SAP2000 models. The third section 
provides a very brief discussion of 3D modeling of RC. The last section presents the 3D DIANA 
models. 

The pre-test analysis had several objectives. Each of the 1D, 2D, and 3D models and FEA 
fulfilled one or more of the main objectives. These objectives are: (1) verify expected 
subassembly behavior with respect to the mode of failure, column and bent cap beam behavior; 
(2) finalize the loading protocol especially for the hybrid simulation test through ground motion 
selection and scaling; (3) estimate the expected lateral forces during cyclic and hybrid simulation 
loading for test setup design and checks; (4) decide on the proper locations and distribution of 
the instrumentation where maximum straining actions are expected. The details of how these 
objectives were achieved are discussed in the following sections. 
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4.1 1D OPENSEES MODELING 

Two simple 1D OpenSees models were used as the first part of the pre-test analysis. The first 
model was developed for the test specimen subassembly using the geometry and reinforcement 
design discussed in Chapter 3. Nonlinear pushover analysis was conducted for the test specimen 
model at different gravity load levels. The main objectives of the test specimen pushover 
analysis was verifying whether the cap beam failure is expected or not and how would the 
gravity load level affect both of the column and cap beam behavior. The second OpenSees model 
was developed for the prototype bridge adopted from the Caltrans Academy Bridge as discussed 
in Chapter 3. The prototype bridge analysis was intended investigate any possible effects of the 
vertical component of the earthquake excitations on the behavior of the bent cap beam, which is 
the centerpiece of this study. Nonlinear time history analysis was conducted under several 
ground motions that considered both bidirectional horizontal components only, and combined 
vertical and bidirectional horizontal components. Details of the subassembly and prototype 
bridge analyses are discussed in the following two subsections. 

4.1.1 Subassembly Specimen Analysis 

The test subassembly is a simple OpenSees model that used 3 1D beam-column elements with 
distributed plasticity. Each of the 3 elements represents one of the subassembly components 
which are: column, cap beam, and box-girder. The boundary conditions used for the model and 
the dimensions of the idealized 1D elements of the subassembly, which coincide with the 
elements centerlines, are shown in Figure  4.1. The boundary conditions are roller supports at 
each of the cap beam ends, and a fixed-translation supports at each of the box-girder ends. In 
addition, one rotational degree-of-freedom (DOF) is restrained to provide the torsional stiffness 
of the box-girder section. Fiber sections were used for each of the 3 beam-column elements used 
in the model. All the material properties used in this model are nominal material properties based 
on a concrete characteristic strength of 5 ksi and reinforcement steel yield of 68 ksi. The 68 ksi 
yield stress was used for the steel rather than the typical 60 ksi yield stress because of the 
sensitivity of the lateral force and column capacity to the steel yield stress. Thus, the 68 ksi was 
used as a better estimate than the lower bound 60 ksi. Two of the available material constitutive 
models in OpenSees were adopted for the model: Cocnrete02 and Steel02 for the concrete and 
reinforcement, respectively.  The Cocnrete02 models the nonlinear concrete behavior in both 
tension and compression. The Steel02 was calibrated to reflect elastic-perfectly plastic behavior 
since the model analysis is used only for preliminary behavior investigation. 

Only nonlinear pushover analysis was conducted at different levels of axial load in both 
transverse and longitudinal directions. It is to be noted that the transverse direction is always 
aligned with the cap beam, while the longitudinal direction is aligned with the box-girder and 
this definition is fixed throughout the entire study. All loads were applied at the top of the 
column in the inverted position as shown in Figure  4.1. The gravity vertical load was applied 
under load-control, i.e. using force increments, while the lateral pushover was applied under 
displacement control, i.e. using displacement increments.  The modified Newton-Raphson 
algorithm was the algorithm used most frequently for solving the nonlinear equilibrium equation, 
but the linear stiffness method was also used when convergence was not obtained using the 
Newton-Raphsoin methods. More information about the incremental-iterative nonlinear solution 
strategy is presented in the 3D modeling of RC section. Moreover, it is to be noted that a lumped 
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mass was also added at the column top since this same model was also used as part of the hybrid 
simulation computational model development and idealization. The discussion related to the use 
of this model as part of the hybrid simulation test is included with the hybrid simulation system 
components and development in Chapter 7. The three axial load levels considered were 5, 10 and 
15%. An axial load level is the ratio between the applied gravity load to the expected axial 
capacity of the column based on the gross 18-inch column diameter and concrete nominal 
compressive strength of 5 ksi.  

Figure  4.1 Schematic representation of features of the OpenSees model for the test 
subassembly specimen (boundary conditions and geometry) 

Figure  4.2 shows the force-displacement relationship obtained from the lateral pushover 
analysis in the transverse direction under different gravity load levels. The figure shows a 
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noticeable increase in the lateral force capacity as the axial load level is increased. The same 
observation is confirmed from the column moment-curvature relationship in Figure  4.3, where 
the moment capacity of the column increases with the axial load level as expected. The cap beam 
moment-curvature relationship shown in Figure  4.4 suggests that for the 5% and 10% cases, the 
cap beam does not yield. However, at 15% axial load, the cap beam failed as seen from the 
curvature values in Figure  4.4. There is a direct relation between the gravity load level and the 
cap beam moments because of the nature of the setup as understood from Figure  4.5 that shows 
the bending moment distribution in the column-cap beam elements due to different load cases. 
Another way of presenting the cap beam yield at the 15% axial load is using the stress-strain 
relationship obtained for one of the rebars in the tension side of the cap beam (Figure  4.6). The 
figure also confirms that no yielding in the cap beam took place at 5% or 10% axial load. On the 
other hand, the column rebars yielded at all gravity load levels as seen in Figure  4.7. The results 
suggest the conclusion that varying the gravity load is a possible way of delaying the column 
plastic hinge formation while pushing the cap beam further to higher moment demands. 

 

 

Figure  4.2 Force-displacement relationship for the OpenSees test subassembly under 
constant gravity load (3 levels) and lateral pushover loading in the transverse direction 
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Figure  4.3 Moment-curvature relationship for the subassembly’s column section under 
constant gravity load (3 levels) and lateral pushover loading in the transverse direction 

 

Figure  4.4 Moment-curvature relationship for the subassembly’s cap beam section under 
constant gravity load (3 levels) and lateral pushover loading in the transverse direction 

 

Figure  4.5 Schematic bending moment distribution along the column and bent cap beam 
in three load cases: (a) gravity load (b) lateral load (c) combined gravity and lateral loads  
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Figure  4.6 Stress-strain relationship for one of the cap beam tension side rebars under 
constant gravity load (3 levels) and lateral pushover loading in the transverse direction 

 

Figure  4.7 Stress-strain relationship for the outermost West rebar of the column (refer to 
Figure  3.11for definition of the North side) under constant gravity load (3 levels) and 

pushover loading towards east 

4.1.2 Prototype Bridge Analysis 

The OpenSees was further used to perform a full prototype bridge nonlinear time history 
analysis. The full-scale prototype bridge, previously discussed in Chapter 3 and identified in 
Figure  3.3, was modeled using 1D beam-column elements. A preliminary design was performed 
according to AASHTO (2007) and Caltran SDC (2010) to estimate the reinforcement in the bents 
columns and cap beams. Approximate reinforcement for the box-girder was estimated as well 
and taken as percentage of the box-girder area based on practical recommendations from 
Caltrans engineers. Similar element types and model characteristics as the subassembly 
OpenSees model were utilized in the full bridge model. In summary, fiber sections were used for 
the columns, cap beams and box-girder beam-column elements used in the model. In addition, 
the 5 ksi nominal concrete characteristic strength was used in the Concret02 model, and 68 ksi 
yield stress was used for Steel02 model that was calibrated to resemble an elastic-perfectly 
plastic behavior. The total bridge mass was distributed along the full lengths of the box-girder 
and bent cap beams. This distribution was checked to make sure it led to accurate distribution of 
the actual bending moments due to bridge own weight (gravity loading). Moreover, the periods 
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The PEER Next Generation Attenuation (NGA) strong ground motions database (2005) 
was used to select the ground motions for this study. The main criterion to select a pool of 
ground motions was the relative significance of the recorded vertical component.  Several 
previous studies focused on the vertical-to-horizontal component scaling of ground motions and 
attenuation relationships for the vertical component response spectra, e.g. Campbell and 
Bozorgnia (2003); Bozorgnia and Campbell (2004). These studies suggest that only near-fault 
records for relatively large magnitude earthquakes would feature relatively large vertical 
accelerations. Accordingly, earthquakes of magnitude 6.50 or larger and stations that were within 
10 km from the fault were selected to prepare the list of ground motions considered in this study. 
The 6.5 magnitude and 10 km distance to fault are not fixed value set by the literature, but rather 
a choice of the author to develop a reasonable list of ground motions that still includes all the 
large recorded vertical excitations. Therefore, a total of 88 records, each comprise two horizontal 
and one vertical components, were selected from the PEER NGA database to be used in this 
study as summarized in Table  4-1. It is to be noted that Table  4-1 shows 6 highlighted ground 
motions in which comprise the short list of ground motions where the vertical component was 
found to significantly increase the moment demands on the cap beam of this particular bridge 
model.  

As previously mentioned, the list of the 88 ground motions was used to run two sets of 
nonlinear time history analysis; one set did not include the vertical component while the other 
included both horizontal and vertical components. That is to compare the results obtained from a 
given ground motion record with (w/) and without (w/o) the vertical component. A total of 6 
ground motions (highlighted in Table  4-1, and summarized in Table  4-2) were found to have the 
most significant effect on the bent cap beam due to the consideration of the vertical component 
of the ground motion. The considered significant effect means the occurrence of large curvatures 
at several sections in both of the bent column and cap beam. A large curvature in the bent cap 
beam was accompanied by the beam reaching its moment capacity, i.e. causingreflects a cap 
beam plastic hinge formulation. Selected sample results from two of the most severe 6 ground 
motions are shown here.  Results from the Kobe ground motion runs (ID #5 in Table  4-2) are 
presented to show the effect of the vertical component on the cap beam moment and curvature 
demands. In addition, the results from Northridge Sylmar ground motion runs (ID #4 in 
Table  4-2) show the axial force fluctuation with and without vertical component inclusion. The 
cap beam and column critical sections used to plot the selected sample results are shown in 
Figure  4.9. 

Firstly, to investigate the effect of the vertical excitation on the cap beam demands, the 
results from 30% Kobe ground motion runs are presented. Figure  4.10 shows the comparison 
between the moment-curvature for the bent column section 1 (Figure  4.9) with and without the 
vertical excitation. It is shown that the column failed in both cases whether the vertical excitation 
is considered or not. It is also noticed that the column moment capacity in the case of the vertical 
component included is higher than that without vertical excitations. This can be attributed to the 
effect of the additional compression axial load which, as shown before in the test subassembly 
study (Figure  4.2 and Figure  4.3), can lead to a higher moment capacity. The detailed effects of 
vertical excitations, however, are not the focus of this analytical study, but the reader is referred 
to studies, e.g. Lee and Mosalam (2014), for a comprehensive investigation of the effect of 
vertical excitation on bridge columns axial and shear capacities. The relevant part of this study is 
what shown in Figure  4.11 and Figure  4.12 for the moment-curvature of the bent cap beam at 
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sections 2 and 3, respectively. These figures show that the vertical excitation led to the failure of 
the cap beam by causing significantly larger curvature demands. 

Table  4-1 List of ground motions (GMs) used in OpenSees bridge time history analysis 

ID 
NGA 

Sequence 

Earthquake Station 

Name Magnitude Year 
Fault 
Type 

Name 
Distance 

(km) 

1 77 San Fernando 6.61 1971 RV Pacoima Dam (left abut) 1.81 
2 126 Gazli, USSR 6.8 1976 Karakyr 5.46 
3 143 Tabas, Iran 7.35 1978 RV Tabas 2.05 
4 158 Imperial Valley-06 6.53 1979 SS Aeropuerto Mexicali 0.34 
5 159 Imperial Valley-06 6.53 1979 SS Agrarias 0.65 
6 160 Imperial Valley-06 6.53 1979 SS Bonds Corner 2.68 
7 165 Imperial Valley-06 6.53 1979 SS Chihuahua 7.29 
8 170 Imperial Valley-06 6.53 1979 SS EC County Center FF 7.31 
9 171 Imperial Valley-06 6.53 1979 SS EC Meloland Overpass 0.07 

10 173 Imperial Valley-06 6.53 1979 SS El Centro Array #10 6.17 
11 179 Imperial Valley-06 6.53 1979 SS El Centro Array #4 7.05 
12 180 Imperial Valley-06 6.53 1979 SS El Centro Array #5 3.95 
13 181 Imperial Valley-06 6.53 1979 SS El Centro Array #6 1.35 
14 182 Imperial Valley-06 6.53 1979 SS El Centro Array #7 0.56 
15 183 Imperial Valley-06 6.53 1979 SS El Centro Array #8 3.86 
16 184 Imperial Valley-06 6.53 1979 SS El Centro Differential 5.09 
17 185 Imperial Valley-06 6.53 1979 SS Holtville Post Office 7.65 
18 189 Imperial Valley-06 6.53 1979 SS SAHOP Casa Flores 9.64 
19 284 Irpinia, Italy-01 6.9 1980 N Auletta 9.55 
20 285 Irpinia, Italy-01 6.9 1980 N Bagnoli Irpinio 8.18 
21 495 Nahanni, Canada 6.76 1985 RV Site 1 9.6 
22 497 Nahanni, Canada 6.76 1985 RV Site 3 5.32 
23 753 Loma Prieta 6.93 1989 RV-OBL Corralitos 3.85 
24 763 Loma Prieta 6.93 1989 RV-OBL Gilroy - Gavilan Coll. 9.96 
25 765 Loma Prieta 6.93 1989 RV-OBL Gilroy Array #1 9.64 
26 779 Loma Prieta 6.93 1989 RV-OBL LGPC 3.88 
27 802 Loma Prieta 6.93 1989 RV-OBL Saratoga - Aloha Ave 8.5 
28 821 Erzican, Turkey 6.69 1992 SS Erzincan 4.38 
29 825 Cape Mendocino 7.01 1992 RV Cape Mendocino 6.96 
30 828 Cape Mendocino 7.01 1992 RV Petrolia 8.18 
31 879 Landers 7.28 1992 SS Lucerne 2.19 
32 949 Northridge-01 6.69 1994 RV Arleta - Nordhoff Fire 8.66 
33 983 Northridge-01 6.69 1994 RV Jensen Filter Plant 5.43 
34 1004 Northridge-01 6.69 1994 RV LA - Sepulveda VA 8.44 
35 1013 Northridge-01 6.69 1994 RV LA Dam 5.92 
36 1044 Northridge-01 6.69 1994 RV Newhall - Fire Sta 5.92 
37 1045 Northridge-01 6.69 1994 RV Newhall - W Pico Can 5.48 
38 1050 Northridge-01 6.69 1994 RV Pacoima Dam (downstr) 7.01 
39 1051 Northridge-01 6.69 1994 RV Pacoima Dam (upper) 7.01 
40 1052 Northridge-01 6.69 1994 RV Pacoima Kagel Canyon 7.26 
41 1063 Northridge-01 6.69 1994 RV Rinaldi Receiving Sta 6.5 
42 1084 Northridge-01 6.69 1994 RV Sylmar - Converter Sta 5.35 
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Table  4-1 (continued) List of ground motions (GMs) used in OpenSees bridge time history analysis 

ID 
NGA 

Sequence 

Earthquake Station 

Name Magnitude Year 
Fault 
Type 

Name 
Distance 

(km) 

43 1085 Northridge-01 6.69 1994 RV Sylmar - Converter East 5.19 
44 1086 Northridge-01 6.69 1994 RV Sylmar - Olive View 5.3 
45 1106 Kobe, Japan 6.9 1995 SS KJMA 0.96 
46 1111 Kobe, Japan 6.9 1995 SS Nishi-Akashi 7.08 
47 1119 Kobe, Japan 6.9 1995 SS Takarazuka 0.27 
48 1120 Kobe, Japan 6.9 1995 SS Takatori 1.47 
49 1165 Kocaeli, Turkey 7.51 1999 SS Izmit 7.21 
50 1176 Kocaeli, Turkey 7.51 1999 SS Yarimca 4.83 
51 1182 Chi-Chi, Taiwan 7.62 1999 RV-OBL CHY006 9.77 
52 1193 Chi-Chi, Taiwan 7.62 1999 RV-OBL CHY024 9.64 
53 1197 Chi-Chi, Taiwan 7.62 1999 RV-OBL CHY028 3.14 
54 1231 Chi-Chi, Taiwan 7.62 1999 RV-OBL CHY080 2.69 
55 1244 Chi-Chi, Taiwan 7.62 1999 RV-OBL CHY101 9.96 
56 1489 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU049 3.78 
57 1490 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU050 9.51 
58 1491 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU051 7.66 
59 1492 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU052 0.66 
60 1493 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU053 5.97 
61 1494 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU054 5.3 
62 1495 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU055 6.36 
63 1499 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU060 8.53 
64 1501 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU063 9.8 
65 1503 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU065 0.59 
66 1504 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU067 0.64 
67 1505 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU068 0.32 
68 1507 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU071 5.31 
69 1508 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU072 7.03 
70 1510 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU075 0.91 
71 1511 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU076 2.76 
72 1512 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU078 8.2 
73 1515 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU082 5.18 
74 1519 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU087 7 
75 1521 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU089 8.88 
76 1528 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU101 2.13 
77 1529 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU102 1.51 
78 1530 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU103 6.1 
79 1545 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU120 7.41 
80 1546 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU122 9.35 
81 1550 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU136 8.29 
82 1551 Chi-Chi, Taiwan 7.62 1999 RV-OBL TCU138 9.79 
83 1605 Duzce, Turkey 7.14 1999 SS Duzce 6.58 
84 1611 Duzce, Turkey 7.14 1999 SS Lamont 1058 0.21 
85 1612 Duzce, Turkey 7.14 1999 SS Lamont 1059 4.17 
86 1615 Duzce, Turkey 7.14 1999 SS Lamont 1062 9.15 
87 1617 Duzce, Turkey 7.14 1999 SS Lamont 375 3.93 
88 1618 Duzce, Turkey 7.14 1999 SS Lamont 531 8.03 

  



102 

Table  4-2 Short list of GMs with most significant effect of vertical excitation on the 
considered bridge cap beam response 

ID 
NGA 
Seq. # 

Earthquake Station 

Name Magn. Year Fault Type Name 
Distance-to-
fault (km) 

1 495 Nahanni, Canada 6.76 1985 Reverse Site 1 9.60 
2 779 Loma Prieta 6.93 1989 Reverse-Oblique LGPC 3.88 
3 1063 Northridge-01 6.69 1994 Reverse Rinaldi  6.50 
4 1084 Northridge-01 6.69 1994 Reverse Sylmar  5.35 
5 1119 Kobe, Japan 6.90 1995 Strike-Slip Takarazuka 0.27 
6 1505 Chi-Chi, Taiwan 7.62 1999 Reverse-Oblique TCU068 0.32 

 

 

Figure  4.9 Bridge bent with critical cross-sections identified 

 

Figure  4.10 Moment-curvature relationships for bridge column (Section 1 in Figure  4.9) 
subjected to 30%-scale Kobe GM with and without vertical excitation component 
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Figure  4.11 Moment-curvature relationships for bridge cap beam (Section 2 in Figure  4.9) 
subjected to 30%-scale Kobe GM with and without vertical excitation component 

 

Figure  4.12 Moment-curvature relationships for bridge cap beam (Section 3 in Figure  4.9) 
subjected to 30%-scale Kobe GM with and without vertical excitation component 

The presented preliminary observation of the effect of vertical excitations was useful on 
deciding which ground motion would have a more significant effect on the modified Academy 
Bridge prototype considered in this study. Clearly, a future study that would consider different 
bridge configurations for investigating the effects of vertical excitation on the cap beams is 
useful. Another interesting aspect of the vertical excitation response is the resulting fluctuation in 
the columns axial load. As mentioned before, this study does not aim at identifying the effects of 
vertical excitation on the axial or shear capacity of the columns. Only the fluctuation in axial 
load from a seismic demand perspective is considered in this study to inform the experimental 
program load protocol decisions. Figure  4.13 and Figure  4.14 show the axial load due to 100% 
Sylmar record of the Northridge ground motion in the bent interior column A and exterior 
column B, as identified in Figure  4.9, respectively. It is to be noted that the axial load in the 
interior column is fluctuating around an approximate value of 3200 kips versus a 1500 kips for 
the exterior column. This reflects directly the level of gravity load due to the bridge own-weight 
and other superposed dead loads. When vertical excitation is included the axial load was 
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increased at some instances by almost 60% in case of interior column and 100% in case of 
exterior column. This was observed for most of the ground motions and not only the presented 
sample. Therefore, an increase of 50% to 100% in the gravity load during the course of the 
conducted experimental program was adopted to address the effect of vertical excitation not only 
on the column axial force, but the cap beam demands as well. This is because the additional 
gravity load due to the vertical excitation in the used test setup also translates into additional 
moments in the cap beam and axial force in the column (refer to Figure  4.5). 

 

 

Figure  4.13 Axial load fluctuation in bridge interior column A (Figure  4.9) subjected to 
100%-scale Northridge Sylmar GM with and without vertical excitation component 

 

Figure  4.14 Axial load fluctuation in bridge exterior column B (Figure  4.9) subjected to 
100%-scale Northridge Sylmar GM with and without vertical excitation component 

 

4.2 2D SAP2000 MODELING 

Nonlinear modeling and analysis of bridges is useful and could be required at times during 
seismic checks. However, elastic linear models and simplified analysis under vertical and lateral 
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4.3 3D MODELING OF REINFORCED CONCRETE 

Accurate modeling of the stress states and damage of a highly non-homogeneous material such 
as RC has always been challenging. It becomes more challenging when macro structural system 
models that feature different cases of static and dynamic loading are sought as a part of structural 
analysis and design procedures. Many computational methods exist for 3D modeling of the 
structural systems; how well these models reflect the actual behavior of RC bridges, particularly 
systems subjected to combined gravity and lateral loading, is not clear. Therefore, the third type 
of models developed in this study using 3D solid elements in DIANA (2014) was first utilized in 
the pre-test analysis phase, but calibrated later as part of the post-test analysis phase against the 
experimental results to gain confidence on how the actual behavior is reflected through the 
computational modeling.  

Advanced constitutive modeling of RC is the essence of the detailed 3D DIANA FE 
models. A discussion of the basics of 3D modeling of RC using FE formulation and using 
DIANA is presented in this section. The discussion is divided into three subsections that cover 
concrete modeling, reinforcing steel, and the nonlinear solution strategies utilized throughout this 
computational research. A short note on the FE formulation is presented first for completeness. A 
standard FE displacement formulation was adopted in this project. Displacement vector, {u}, 
within each element is interpolated from the vector of nodal degrees of freedom, {d}, using 
specific shape functions that depend on element type, [N], as given in Equation ( 4-1).  

{u} = [N]{d} ( 4-1)

The strain vector within the element, {}, is obtained from the displacement by differentiation as 
in Equation ( 4-2).  

{} = {u} ( 4-2)

where  is the usual differential operator used in the case of small deformation. Combining 
Equations ( 4-1) and ( 4-2), the strain can be evaluated directly from the nodal displacements as 
given in Equation ( 4-3) using the strain shape function, [B].  

{} = [N]{d} = [B]{d}. ( 4-3)

Using the principle of virtual work, the element stiffness matrix can be computed from Equation 
( 4-4) such that: 

External Work = Internal Work  
V

TT dVru   }{}{}{}{ 
 

( 4-4)

where {r} is the vector of element external loads,  indicates a virtual quantity, {} is the stress 
vector within the element, and V represents the element volume. From Equations ( 4-3) and ( 4-4), 
the element stiffness matrix, [k], can be derived as given by Equation ( 4-5). 

 
V

T dVEk   ]][[][][  ( 4-5)
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where [E] is the constitutive matrix. In this study, only the nonlinear behavior due to material 
damage is reflected in the matrix [E] whereas the nonlinear geometry due to large displacements 
is not considered. Finally, using standard FEM assembly procedure, the global stiffness matrix of 
the structure, [K], is assembled. Similarly, the global nodal loads vector, {R}, is assembled 
leaving the global nodal displacements {D} the only unknown in Equation ( 4-6). 

[K]{D}={R} ( 4-6)

More details on the considered element types, the concrete and reinforcing steel material 
models, and the solution method of the above nonlinear system of equations are presented next. 

4.3.1 Modeling of Concrete  

4.3.1.1 Element Types  

Two different types were used in the developed 3D DIANA models according to the meshing 
algorithm used. Auto-meshing algorithms in DIANA generate only tetrahadron (pyramid) 
elements. However, extruding quadrilateral faces or surface elements produces the brick 
elements. Auto-meshing was first used for preliminary analysis and then a revised version of the 
model that utilized brick elements was developed. Only the brick element based-models are 
considered for model calibration and post-analysis phases. The first type of elements used is the 
12 DOFs pyramid TE12L element, Figure  4.22(a), which comprises four nodes with 3 DOFs per 
node and three sides and uses the isoparametric formulation. It is based on linear interpolation in 
terms of the natural coordinates ξ, η, and ζ given by Equation ( 4-7), and uses numerical Gauss 
integration. The linear polynomials yield a constant strain and stress distribution over the 
element volume. For numerical integration, DIANA by default applies a 1-point integration 
scheme over the volume. However, 4- and 5-point integration schemes are available too for 
TE12L elements.  

 3210),,( iu  ( 4-7)

where i = 1 to 12 and α0 to α3 are constants determined by standard FEM. 

The second type of elements used in this study is the eight-node isoparametric 24 DOFs  
solid brick HX24L element shown in Figure  4.22(b). Similar to the TE12L, the brick element is 
based on linear interpolation and Gauss integration. The polynomials for the translation 
displacement field use tri-linear interpolation as expressed by Equation ( 4-8).  

 76543210),,( iu  ( 4-8)

where i = 1 to 24 and α0 to α7 are constants determined by standard FEM. 

Typically, a rectangular brick element approximates the strain and stress distribution over 
the element volume as follows. The strain εxx and stress σxx are constant in x direction and vary 
linearly in y and z direction. The strain εyy and stress σyy are constant in y direction and vary 
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directions of the strain vector. The basic concept of the total strain-based crack models is that the 
stress is evaluated in the directions given by the crack directions. The strain vector {ε}xyz in the 
element coordinate system xyz at iteration i+1 at time (or pseudo-time for nonlinear static 
loading) t+Δt is updated with the strain increment {Δε}xyz according to Equation ( 4-9). 

xyz
tt

ixyz
t

xyz
tt

i }{}{}{ 11   



  ( 4-9)

This strain vector is subsequently transformed to the crack coordinate system nst  (refer to the 
insert in Figure  4.23) with the continuously-varying strain transformation matrix 

  xyz
tt

i
tt

i TT }{][ 11  



  according to Equation ( 4-10). 
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   ( 4-10)

The strain transformation matrix is determined by calculating the eigen vectors of the 
strain tensor. During loading, the concrete is subjected to both tensile and compressive stresses, 
which may result in cracking and crushing of the material. The deterioration of the material due 
to cracking and crushing in 3D structures is monitored with six internal damage variables 

6,,1,  kk  (Figure  4.23). The loading-unloading-reloading conditions are monitored with 

unloading constraints 6,,1, krk  (Figure  4.23), which model the stiffness degradation in 

tension and compression separately. These constraints for tension and compression are expressed 
as given in Equations ( 4-11) and ( 4-12), respectively. 
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With the assumption of no damage recovery, the stress in direction j is given by Equation ( 4-13). 

   nstjnstjj gf }{},{}{},{    ( 4-13)

where jf  is the uniaxial stress-strain relationship and jg  is the loading-unloading function. If 

unloading and reloading is modeled with a secant approach, jg  is given by Equation ( 4-14). 
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addition to interface elements between the steel and the concrete to represent the slip and dowel 
actions. This latter modeling technique requires solving for 90 DOF. Another drawback for 
discrete reinforcement is that the concrete mesh is restricted by the reinforcement locations. This 
restriction makes the concrete mesh difficult to generate, particularly in situations such as the 
sough test specimen which has high reinforcement ratios and tight box-girder dimensions. 
Therefore, only embedded reinforcement was considered for the pre-test analysis. It is worth 
noting that no bond-slip was observed from the experiments, so embedded reinforcement was 
used in post-test analysis as well. More details about embedded reinforcement formulation and 
constitutive modeling are presented next. 

 

 
a) Embedded reinforcement b) Discrete reinforcement 

Figure  4.25 Reinforcement elements in FEA 

4.3.2.1 Embedded Reinforcement 

Embedded reinforcement is introduced within the concrete element through which it passes, 
referred to as the parent element. The stiffness of this “parent element” is then modified based on 
the path of the reinforcement through the element. As a result, the assumption is made that there 
exists perfect bond between the concrete and the reinforcement. For the simple case where a 
uniform quantity of reinforcement is distributed across the element at a certain angle from the 
element natural coordinate system, the additional stiffness terms are easily computed. Given that 
the element displacements are computed from the nodal displacements, the reinforcement 
displacements, {u}r, can be found using the same shape functions matrix, [N] as those for the 
concrete elements as given by Equation ( 4-18). 

{u}r = [N]{d}  ( 4-18)

However, the reinforcement displacements are evaluated at the isoparametric coordinates of the 
reinforcement integration points, e.g. using 2-point Gauss integration scheme. The strain vector 
of the reinforcement can accordingly be evaluated by Equation ( 4-19). 

{}r = [B]r {d}  ( 4-19)

where [B]r is the strain–displacement matrix evaluated at the reinforcement integration points. 
Standard transformation techniques are used to obtain the reinforcement strain vector in the same 
orientation as the parent element strain vector. Making use of transformation, reinforcement 
constitutive equations, and usual FE procedure, one can obtain the contribution of reinforcement 
to the stiffness of the parent element and the corresponding internal force vector of the 
reinforcement. Accordingly, the stiffness and internal force contributions of the reinforcement 
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4.3.3 Nonlinear Solution Strategy 

In nonlinear FEA, the relation between the force vector and displacement vector, in the weak-
form of equilibrium or FE formulation, is no longer linear. Similar to the linear FEA, it is desired 
to calculate a displacement vector that equilibrates the internal and external forces in nonlinear 
FEA. To determine the state of equilibrium in nonlinear cases, the problems are not discretized 
only in space (with finite elements), but also in time (with increments). The time increments used 
can be real time increments, for creep or dynamic analysis, or pseudo-time increments to 
describe sequence of events, i.e. provide a counter function. To achieve equilibrium at the end of 
a given event (increment), iterative solution algorithm is used. When all the events (increments) 
are considered, the combination is called an incremental-iterative solution procedure. A brief 
discussion of the iterative and incremental procedures considered in this study is presented. 

4.3.3.1 Iterative Procedures 

Several iterative methods are available in DIANA. Three pure iterative procedures are available, 
which are the Newton-Raphson method, the Quasi-Newton method, and the Linear Stiffness 
method. Moreover, DIANA offers two variations that can be used in combination with any of the 
pure iterative procedures, which are the Continuation method and the Line Search method. 
Finally, several criteria to stop the iteration loop are discussed. Another variation of the iteration 
algorithm is the Arc-length method. The idea behind all the iterative methods is to generate a 
sequence of approximations ui for the solution, i.e. the displacement vector {u} is determined 
through the recovered formula given by Equation ( 4-21). 

        ifiii uKPuu  1   ( 4-21)

where Pf is the assembled load vector and γi is an integration constant that defines the iterative 
solver such that eventually the residual, which is written as (Pf െ [K]{ui}), converges to zero. 
The three iterative procedures, mentioned above, were all used in this study and they are 
discussed in more details in the following: 

Newton-Raphson (regular and modified) 

The regular and modified Newton-Raphson methods are illustrated schematically in Figure  4.27 
(a) and (b), respectively. For the regular Newton-Raphson strategy, the tangent stiffness is 
calculated for every iteration within a given increment. This strategy yields a quadratic 
convergence, which means that the iteration process converges with a few iterations. The 
modified Newton-Raphson strategy computes the tangent stiffness at the start of the load 
increment and uses this same stiffness for all the iterations within this load increment. This 
method usually requires more iterations than the regular Newton-Raphson, but the computations 
are faster for each iterations, since the tangent stiffness matrix is formulated, assembled, and 
decomposed only once at the beginning of each load increment. Generally, in FEA, regular 
Newton iteration can be used when minimal nonlinear behavior and damage (cracking or 
plasticity) in each increment is expected. For moderate levels of damage, the modified Newton 
iteration is better for convergence as it avoids calculating the stiffness of the moderately 
damaged elements at each iteration. 
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4.4 DIANA PRE-TEST ANALYSIS 

The 3D modeling and analysis of the test specimen using DIANA (2014) was the most accurate 
and detailed model that satisfied most of the pre-test analysis objectives. The DIANA pre-test 
analysis aimed at: (a) estimating the subassembly column and bent cap behavior and mode of 
failure under different gravity and lateral load combinations, (b) estimating the expected lateral 
forces for accurate test setup design, and (c) determining the location and distribution of the 
instrumentation. Two main types of nonlinear analyses were conducted, namely pushover and 
time history analysis. More details about the developed DIANA 3D FE models and meshes, and 
selected analyses results are discussed in this section.  

4.4.1 Mesh Development 

Two versions of the test specimen model that used different element type were developed in 
DIANA (2014). The first model used the auto-meshing readily available algorithms in DIANA to 
create the mesh for the test specimen model. The resulting mesh composed of tetrahedron 
pyramid elements (TH12L). The auto-meshing resulted in a total of 7050 nodes that composed 
17526 TH12L elements only for the concrete mesh elements. Additional 392 bar elements were 
used for the embedded reinforcement. A better mesh was developed using manual 3D meshing 
that started with quadrilateral 2D surface mesh at different levels that was then carefully 
extruded at different levels to form the final 3D mesh. This meshing process resulted in a mesh 
that comprised only of brick elements (HX24L). Accordingly, a total of 14347 nodes 
encompassing 8326 HX24L elements for the concrete mesh elements were obtained. In addition, 
the embedded reinforcement mesh created 348 bar elements. More details about the embedded 
reinforcement and the two element types used in concrete meshing were included in the previous 
section. A view of the two test specimen meshes that used tetrahedron and brick elements is 
shown in Figure  4.31 and Figure  4.32, respectively. The embedded reinforcement mesh used for 
both models is shown in Figure  4.33. 

The tetrahedron mesh was meant to develop a quick preliminary model. Thus, the 
boundary conditions used in that model were mainly a full fixation at the bottom nodes of the 
two seat beams and two vertical roller supports at the two middle nodes in the ends of the bent 
cap beam portions of the model. Lateral displacement loading was applied in that model directly 
at the very top of the column in its inverted position. On the other hand, the brick element model 
was more accurate and was planned for the post-test analysis calibration and parametric study. 
Accordingly, the bent cap beam side plates and clevises assemblages were modeled to better 
account for the physical boundary conditions. The seat beams where fixed in the three 
translational DOFs to reflect the lateral friction at the hydrostone interface between the seat 
beams and the strong laboratory floor. Moreover, loading in the brick elements model was 
applied at the correct locations at the column head to resemble the actual testing. It is worth 
noting that a rectangular column head was used to replace the actual hexagonal head for 
simplicity of modeling and load application. Both models used the total strain crack model and 
an idealized elastic-perfectly plastic constitutive model, previously discussed, for modeling the 
concrete and the reinforcement, respectively. Nominal material properties that used the Caltrans 
SDC (2011) expected material properties definitions were used in defining the concrete and 
reinforcement material models parameters. For the case of time history analysis, a lumped mass 
was defined at the column head portion of the model that was calibrated to maintain similar 
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(a) 

 
(b) 

 
(c) 

Figure  4.43 Analysis results for the case of 25% Loma Prieta GM (transverse and vertical 
components) and 11% constant gravity load of column axial capacity: (a) Lateral 

displacement history (b) Lateral force history (c) Lateral force-displacement relationship 
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(a) 

 
(b) 

 
(c) 

Figure  4.44 Analysis results for the case of 25% Loma Prieta GM (transverse and vertical 
components) and 11% constant gravity load of column axial capacity: (a) Vertical 

displacement history (b) Vertical force history (c) Vertical force-displacement relationship 
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(a) 

 
(b) 

 
(c) 

Figure  4.45 Analysis results for the case of 50% Northridge GM (Sylmar record) with only 
horizontal excitation and 23% constant gravity load of column axial capacity: (a) lateral 
displacement history, (b) lateral force history, (c) lateral force- displacement relationship 
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(a) 

 
(b) 

 
(c) 

Figure  4.46 Analysis results for the case of 50% Northridge GM (Sylmar record) with only 
horizontal excitation and 23% constant gravity load of column axial capacity: (a) vertical 

displacement history, (b) vertical force history, (c) vertical force-displacement relationship 
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(a) 

 
(b) 

 
(c) 

Figure  4.47 Analysis results for the case of 50% Northridge GM (Sylmar record) with 
both vertical and horizontal excitations and 23% constant gravity load of column axial 

capacity: (a) lateral displacement history, (b) lateral force history, (c) lateral force- 
displacement relationship 
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(a) 

 
(b) 

 
(c) 

Figure  4.48 Analysis results for the case of 50% Northridge GM (Sylmar record) with 
both vertical and horizontal excitations and 23% constant gravity load of column axial 

capacity(a) vertical displacement history (b) vertical force history (c) vertical force-
displacement relationship 
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The lateral behavior in the transverse direction, i.e. in the cap beam plane, and the 
vertical system behavior were shown for all the selected three cases of time history analyses. The 
force values were capped when either the column or cap beam capacity was reached. The lateral 
force capacity from the different time history analysis runs agreed with the pushover analysis. 
However, a higher vertical force capacity was observed from the time history than the case of the 
vertical pushover because of the effect of the lateral dynamic loading that produced moments 
opposite in sign to those resulting from the vertical loading moments. Moreover, it is implied 
from the vertical force fluctuation shown in Figure  4.44 and Figure  4.48 for cases that involved 
vertical excitation, that the vertical excitation can increase the vertical load demand by almost 
100% of the gravity load. This justifies to some extent the selected gravity load levels to account 
for the effect of vertical excitations. On the other hand, the obtained displacement values from 
the dynamic analysis helped in identifying the mode of failure and overall system ductility, 
which was beneficial input for the second specimen HS testing. In summary, it was observed that 
the higher the initial gravity load was, the less was the lateral ductility in case of vertical 
excitation inclusion. That is because the vertical excitation along with higher gravity load caused 
the failure of the bent cap beam directly without obtaining significant damage in the column. 
Thus, it was concluded that 10% gravity is the most appropriate starting point for the case of HS 
tests to obtain higher ductility levels. Meanwhile, the HS tests could accommodate an increase in 
the gravity load level up to 15% to account for higher vertical excitation effects compatible with 
higher ground motion scale to obtain the expected failure in both column and bent cap 
simultaneously. It is to be noted that the 15% was a conservative estimate mainly because the 
conducted tests were all static tests where the gravity load was maintained for prolonged times. 
However, the actual increase in the gravity load due to vertical excitation as obtained from the 
analysis demonstrated a dynamic effect that took place only for a short period of time, i.e. the 
effect of the instantaneous increase in dynamic gravity loads should not be as excessive as the 
static load. Thus, the 15% axial load considered for the tests was conservative because it 
represented a more severe case.  

4.4.4 Input for Test Setup and Instrumentation 

The detailed DIANA FE pre-test analysis was utilized to develop informed decisions for the test 
setup design forces and the instrumentation of the transverse slab reinforcement necessary to 
measure the strain distribution for effective width determination.  First, the largest expected 
lateral force from the pushover analyses and maximum observed reaction in the cap beam end 
struts were noted for test setup design. The maximum lateral force in the transverse direction was 
found to be almost 45 kips as noted from the vertical-lateral force interaction diagram shown in 
Figure  4.41. It is to be noted that a closer value was obtained for the capacity in the longitudinal 
direction form the preliminary analysis. This is mainly because the capacity was dictated by the 
column capacity which is almost the same in both transverse and longitudinal directions. The 45 
kips limit was verified to be much less than the combined horizontal actuators capacity and the 
lateral shear capacity of the prestressing rods used to hold down the specimen to the laboratory 
strong floor. Meanwhile, the maximum observed reaction in the cap beam end roller supports 
was found to be in the vicinity of 140 kips under combined lateral and gravity loads. The two 
vertical struts were then designed to remain elastic up to 200 kips each to provide accurate and 
meaningful strain readings for reaction calibration. 
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5 Quasi-Static Testing: As-Build Specimen One  

The first specimen SP1 tests encompassed a major part of the experimental program as it was 
utilized in three different test sets. It was first tested in the as-built condition under a quasi-static 
cyclic loading.  After the cyclic test was completed, the column was heavily damaged as it lost 
its force capacity and stiffness. Thus, it was decided to repair the column of the tested specimen 
SP1 to restore partial capacity and stiffness for use the specimen in HS verification. However, 
the repaired specimen was tested under same cyclic loading history as the original as-built 
specimen test for response comparison, which comprised the second set of tests. The HS trial 
tests were carried out afterwards in the third set of tests that used SP1. The discussion of the first 
set of tests is the focus discussed in this chapter. The second set of tests is discussed in the next 
chapter, and the HS trials are presented in Chapter 7 as part of the HS system verification. 

The first as-build test is extremely important for several reasons. First, the test original 
objective was to investigate the structural response of the bent cap beam and the bridge 
subassembly, and determine the contribution of the box-girder slabs under lateral loading. Next, 
the results from the as-built test provide a datum for comparing the behavior of both of the 
repaired system that was retested and the retrofitted second specimen SP2 that was tested using 
HS. Therefore, special attention is given to the post-processing of the first specimen as-built test 
results for its importance. A comprehensive framework for presenting and discussing all key 
observations and results of first test are presented in this chapter.   

As previously mentioned in Chapter 3, the first test conducted in the experimental 
program was a quasi-static cyclic loading test of the first as-built specimen. The test was 
conducted under constant gravity load and 12 bidirectional lateral loading groups. The complete 
set of all loading groups was achieved in 2 full days of testing. All the runs in both of the 
transverse and the longitudinal directions were compiled together. Thus, the time history used 
throughout this chapter presents the net time of actual testing, i.e. active loading. It is to be noted 
that that the data acquisition was split between two DAQ systems; the Pacific Instruments2 (PI) 
which can record all channels readings continuously while the loading is active or paused, and 
the NEFF3 which records the data only during active loading. Therefore, two time scales can be 
observed from the different response histories presented in the following sections. These are 
approximately a total time of 465 minutes for all data recorded at the PI, and 260 minutes for 
data recorded on the NEFF. The 200 minutes difference reflects the total accumulated time of 
pauses during the tests when crack and damage propagation were documented.   

                                                 
 
2 Pacific Instruments (www.pacificinstruments.com) 
3 NEFF Instruments, founded by Glyn Neff (www.neff.com) 
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5.2 GLOBAL BEHAVIOR 

The global behavior of the tested specimen refers to the forces, displacements, and lateral 
stiffness acquired from the test results. Each of these quantities is discussed in details in the 
following subsections.   

5.2.1 Force History 

The full loading cyclic history was applied in 2 days of testing. The reasons for splitting the test 
over two days are the slow nature of the load application and the need for experimentally 
revising the cyclic groups when the first rebar yield is observed. That is because the progressive 
cyclic loading groups are multiples of the yield displacement as recommended by FEMA 461 
(2007). It was decided to apply two different levels of the gravity load as previously discussed in 
Chapter 3. The first level corresponds to approximately 5% of the column axial capacity for a 
total of 82 kips. This was maintained until the first yield was observed for the low-level lateral 
cycles: 0.25, 0.35, 0.5, 0.7, 1.0 and 1.25 inch top displacement in both transverse and 
longitudinal directions. The gravity load was then increased to 10% (164 kips) to account for 
additional live load and possible effect of vertical excitations as discussed in Chapter 4. That was 
the case for the larger loading groups of 1.75, 2.45, 3.5, 4.8, 6.8, and 9.5 inch in transverse 
direction, and 1.75, 2.45, 3.5, 4.8, 6.8 (repeated twice) inch in the longitudinal direction. Before 
concluding the first test program, the gravity load was increased further to 12% (190 kips) and 
one small displacement cycle was applied to see if the damaged column can still transfer 
moments to the bent cap beam. The actual full history of the gravity load and its three different 
levels applied during all the cyclic test runs is shown in Figure  5.7. 

 

 

Figure  5.7 History of the gravity load applied during the first specimen (SP1) cyclic test 
runs  
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The lateral force that develops in the actuator as a prescribed displacement is applied is 
one of the key response quantities that are monitored in a RC bridge subassembly test. The 
observed force is often recognized as the column base shear, and is utilized to estimate the 
column bending moment. Therefore, as a cyclic test progresses, the forces are recorded to 
capture the base shear and bending moment capacities. In a flexural-controlled bridge column, 
the moment capacity is reached first, and the observed base shear is dictated by such moment 
capacity. The resultant forces observed in transverse (fx) and longitudinal (fy) directions are 
shown in Figure  5.8. These are computed from the actual recorded actuators load cells forces. 
The exact geometry and configurations of the lateral actuators were used to compute the resultant 
fx force during transverse loading cycles, and to compute the resultant fy force during 
longitudinal loading cycles. The history of the two lateral actuators measured forces, designated 
as North and South actuators according to their location relative to the test setup, and the 
resultant force in each of the transverse and longitudinal directions is shown in Figure  5.9. It can 
be observed from the figure that the actuators forces have approximately similar values and 
direction during a transverse loading cycle. On the other hand, during longitudinal loading 
cycles, the actuators forces have opposite directions and different values. A close-up look at all 
the forces for only one transverse and one longitudinal loading groups is shown in Figure  5.10.     

 

Figure  5.8 History of the force in both transverse and longitudinal directions (estimated 
from lateral actuators load cells) for all first specimen test runs 
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 Figure  5.9 History of both of the North and South lateral actuators load cells 
measurements and the corresponding resultant forces in the transverse (fx) and the 

longitudinal (fy) directions for all cyclic loading groups 
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Figure  5.10 Zoomed-in view of the history of both of the North and South lateral actuators 
load cells measurements and the corresponding resultant forces in the transverse (fx) and 

the longitudinal (fy) directions for one transverse and one longitudinal loading groups 
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5.2.2 Displacement History 

For a cyclic loading test under displacement control, prescribed displacements are the primary 
input to the actuators. These desired prescribed displacements are usually required in meaningful 
directions such as the bridge subassembly transverse and longitudinal directions. For practical 
reasons, the actuators configuration is not aligned with the transverse and the longitudinal 
directions of the specimen (bridge subassembly). Accordingly, the actuators displacement input 
is transformed such that the resulting column head motion agrees with the desired transverse (ux) 
or longitudinal (uy) displacements. The actual obtained displacements during the test were 
tracked in the actuators local direction through temposonic transducers, and in the global 
transverse and longitudinal directions through wire potentiometers (wirepots). The geometry and 
actuators configuration were used to transform the actuators local motion to the corresponding 
global transverse and longitudinal directions. The transformed actuators temposonic 
measurements were compared to the wirepots displacements to check the quality of 
measurements and transformations. It was found that the displacements computed from the exact 
actuators geometry and temposonic measurements are the most accurate. Thus, only the most 
accurate displacement histories obtained from transformed temposonic measurements are 
presented here.  

The final obtained displacements in both transverse (ux) and longitudinal (uy) directions 
for all loading groups are shown in Figure  5.11. The flat parts of the plot at given displacement 
peaks represent the pausing time as the research team investigated the specimen’s crack and 
damage propagation. The column head displacement orbit during all the test runs is presented in 
Figure  5.12. This figure emphasizes that the displacement loading was obtained at only one 
direction at a time as desired, i.e. either transverse direction only or longitudinal direction only. 
The independent bidirectional loading tests are generally more useful in uncoupling and 
understanding the bridge system behavior in each direction separately. This is favorable for the 
case of investigating the bent cap beam effective width and box-girder slab contribution.  
However, since a realistic concurrent bidirectional loading has its own benefits of being more 
representative to earthquake loading, the second specimen (SP2) was tested using both 
independent and concurrent bidirectional hybrid simulation loading schemes. It is to be noted 
that a larger displacement cycle at 9.5 inch column top displacement was only possible in the 
transverse direction because of the setup limitations of the vertical loading system. Thus, the last 
displacement group at 6.8 inch was repeated again rather than applying the 9.5 inch cycles. It is 
also useful throughout this discussion to relate the applied displacements to the corresponding 
column drift ratio and/or displacement ductility level.  The drift ratio is calculated by the ratio of 
the displacement at the column head (either ux or uy) to the 90-inch column height. The ductility 
level is calculated by the ratio of the column head displacement, either ux or uy, to the 
displacement at the first experimentally-determined yield (Δyield), which was found to be 1.25 
inch. The input displacements and corresponding drift ratio and ductility are shown in Table  5-1.  

The history of the actual recorded temposonic displacements for each of the North and 
South actuators along with the resulting displacements in both transverse and longitudinal 
directions is shown in Figure  5.13. The two actuators move together with similar direction and 
values when only ux is desired and the directions are reversed when only uy is applied. The 
zoomed-in view in Figure  5.14 shows clearly how the actuators actual displacements relate to the 
desired (and observed) displacements. It is also observed that displacements are, unlike forces, 
well-controlled. When only ux is applied, the corresponding uy value is almost zero, and vice-
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Figure  5.13 History of both of the North and South lateral actuators temposonics 
measurements and the corresponding resultant displacement in the transverse (ux) and the 

longitudinal (uy) directions for all cyclic loading groups 
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Figure  5.14 Zoomed-in view of the history of both of the North and South lateral actuators 
temposonics measurements and the corresponding resultant displacement in the 
transverse (ux) and the longitudinal (uy) directions for all cyclic loading groups 
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5.2.3 Force-Displacement  

The final obtained forces and displacements in the specimen’s transverse and longitudinal 
directions, designated as X and Y, respectively. Relationships are utilized in this subsection to 
obtain the force-displacement relationships for the tested bridge subassembly. The force-
displacement response is considered a whole system response rather than a single column 
response. That is because of the nature of the column-to-superstructure (bent cap and box-girder) 
connection. It is also to be noted that a given cyclic loading group was applied first in the 
transverse direction then the longitudinal. It is expected accordingly to observe different 
behavior in the two directions. 

The force-displacement relationships for all the cyclic loading groups in both transverse 
(fx versus ux) and longitudinal direction (fy versus uy) are shown in Figure  5.15 and Figure  5.16, 
respectively. For a convenient way of capturing the obtained force capacity and corresponding 
displacement, the envelops of each of the force-displacement relationships in the transverse and 
the longitudinal directions are shown in Figure  5.17 and Figure  5.18, respectively. The response 
obtained in both directions is also compared in Figure  5.19. From these figures, it is observed 
that the force capacity in the longitudinal direction is slightly less than the corresponding value 
in the transverse direction. These values are 44.70 kips versus 47.00 kips for positive loading 
(i.e. actuators pushing the column head), and -45.55 kips versus -47.50 kips for negative loading 
(i.e. actuators pulling the column head) in the longitudinal and transverse directions, 
respectively. All the capacity or maximum recorded force values were obtained at the first peak 
of the 11th loading cycle (6.8 inch applied displacement) which corresponds to a drift ratio of 
7.52% and a displacement ductility level of 5.42. The notation of the first peak of a given cyclic 
loading groups can be shown in the inserts of Figure  5.17 or Figure  5.18. This reflects the fact 
that each cyclic loading group consisted of two full cycles which were individually recognized in 
two different envelop curves. The maximum obtained forces in each loading cycle in each of the 
transverse and longitudinal directions and the corresponding displacements are respectively  
summarized in Table  5-2 and Table  5-3 in the next subsection. 

The force-displacement curves show the ductile behavior of the column as desired in a 
strong beam-weak column design philosophy adopted for bridge designs. The column 
maintained almost full capacity up to a drift ratio of almost 10% and ductility level of 7. The 
capacity degradation occurred in the last loading cycle in each direction due to rebars rupture. 
Each sudden drop in the force-displacement relationship indicates a rebar rupture which typically 
occurred for the buckled rebars as the load is being reversed.  A total of 6 rebars ruptured; 4 at 
the east side of the column and 2 at the west side. The East direction is the positive loading in the 
transverse direction, while is the West is the negative loading direction. The rupture of the first 
and second rebars occurred during the second cycle of the 9.5 inch group in the transverse 
direction. Accordingly, the capacity dropped significantly when loading was resumed in the 
longitudinal direction as seen from the force-displacement relationships at the second set of 6.8 
inch group. In addition, 2 rebars were then ruptured during the final longitudinal loading group. 
It was decided to proceed with another single-cycle 9.5 inch transverse loading cycle to see how 
the capacity degradation proceeds further. The last 2 rebars rupture occurred during that final 
transverse loading cycle as observed from the force-displacement curve in the transverse 
direction. 
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Figure  5.17 Force-displacement envelop for all cycles groups in transverse direction 

 

Figure  5.18 Force-displacement envelop for all cycles groups in longitudinal direction 
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Figure  5.19 Comparison of force-displacement envelops (cycles 1st peak) in both 
transverse and longitudinal directions 

5.2.4 Stiffness Determination 

Using the recorded force and displacement values during each of the loading cycles in both 
transverse and longitudinal directions, the lateral stiffness of the bridge subassembly was 
estimated. Several ways were used to estimate the stiffness after each loading cycle. A linear 
regression was best fit to the force-displacement loop obtained from each cyclic loading group. 
The secant stiffness at the maximum recorded force and its corresponding displacement was 
estimated twice from positive and negative loading for each loading group. An example for 
computing the secant stiffness for one of the 9.5 inch transverse cycling loading groups is shown 
in Figure  5.20. A summary of the estimated best fit, positive and negative stiffness values along 
with the observed maximum force and displacements is listed in Table  5-2 and Table  5-3 for the 
transverse and longitudinal directions, respectively. The tables also list the corresponding drift 
ratio and ductility level for each loading group. The degradation of the secant stiffness, 
calculated from both positive and negative loading cases, is plotted against the drift ratio and 
ductility level in Figure  5.21 and Figure  5.22 for the transverse and longitudinal directions, 
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loading progresses. A comparison between the stiffness degradation in both transverse and 
longitudinal directions using the previously mentioned secant stiffness and the stiffness values 
obtained from the small cycles is presented in Figure  5.23 and Figure  5.24, respectively. It is 
observed that the stiffness in the longitudinal direction is consistently less than that in the 
transverse direction at a given drift ratio or ductility level. This can be attributed to two main 
reasons. First, the loading always started in the transverse direction first before it resumes in the 
longitudinal direction for a given group of loading cycles. Accordingly, the cracking and 
nonlinearity happening during the transverse loading results in a relative reduction in the 
stiffness when the longitudinal loading takes place. The second reason for the observed less 
stiffness in the longitudinal direction can be a result of the relative flexibility of the column/box-
girder statical system in the longitudinal direction relative to the column/cap beam statical 
system in the transverse direction. 

 

Figure  5.20 Example of secant stiffness calculation in positive and negative loading 
directions for the 9.5 inch transverse displacement cyclic loading group  
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Table  5-2 Summary of displacement, force, stiffness, ductility, and drift ratio values for all 
runs in transverse direction (X)    

Run # 

Disp. ux  

[inch] 
Force fx 
[kips] 

Stiffness  

[kips/inch] Drift 
Ratio 
[%] 

Ductility 
[µ] 

+ve -ve +ve -ve Best Fit 
Secant 

+ve 
Secant 

-ve 

1 0.25 -0.25 9.35 -9.76 37.70 37.40 39.04 0.28 0.20 

2 0.34 -0.35 12.30 -12.76 35.40 36.18 36.99 0.38 0.27 

3 0.49 -0.49 16.12 -16.96 33.00 33.24 34.61 0.54 0.39 

4 0.70 -0.70 20.86 -22.13 29.81 29.80 31.61 0.78 0.56 

5 1.00 -1.00 27.60 -28.40 26.98 27.60 28.40 1.11 0.80 

6 1.25 -1.24 32.00 -32.95 25.13 25.60 26.57 1.39 1.00 

7 1.75 -1.74 41.50 -42.72 23.25 23.71 24.55 1.94 1.40 

8a 2.45 -2.45 45.20 -45.80 17.71 18.45 18.69 2.72 1.96 

8b 2.45 -2.45 43.60 -44.50 17.71 17.80 18.16 2.72 1.96 

9a 3.45 -3.45 46.00 -46.18 12.48 13.33 13.39 3.83 2.76 

9b 3.40 -3.42 44.30 -44.80 12.48 13.03 13.10 3.78 2.72 

10a 4.80 -4.76 46.50 -47.10 8.80 9.69 9.89 5.33 3.84 

10b 4.76 -4.76 44.70 -45.60 8.80 9.39 9.59 5.29 3.81 

11a 6.77 -6.76 47.00 -47.50 6.12 6.94 7.03 7.52 5.42 

11b 6.75 -6.74 45.00 -46.00 6.12 6.67 6.82 7.50 5.40 

12a 9.46 -9.44 46.00 -47.10 3.86 4.86 4.99 10.51 7.57 

12b 9.45 -9.42 41.60 -35.93 3.86 4.40 3.81 10.50 7.56 

13 9.45 -9.40 33.72 -21.25 2.22 3.57 2.26 10.49 7.56 

14 0.97 -0.97 6.30 -0.62 6.28 6.53 0.65 1.07 0.77 
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Table  5-3 Summary of displacement, force, stiffness, ductility, and drift ratio values for all 
runs in in longitudinal direction (Y)    

Run # 

Disp. ux  

[inch] 
Force fx 
[kips] 

Stiffness  

[kips/inch] Drift 
Ratio 
[%} 

Ductility 
[µ] 

+ve -ve +ve -ve Best Fit 
Secant 

+ve 
Secant 

-ve 

1 0.25 -0.24 8.59 -7.46 30.50 34.36 31.08 0.28 0.20 

2 0.34 -0.34 11.33 -10.18 29.80 33.32 29.94 0.38 0.27 

3 0.50 -0.49 14.90 -14.15 28.20 29.80 28.88 0.56 0.40 

4 0.69 -0.70 20.00 -19.05 26.00 28.99 27.21 0.77 0.55 

5 0.98 -0.99 26.20 -23.60 23.50 26.73 23.84 1.09 0.78 

6 1.23 -1.24 28.70 -29.60 22.30 23.33 23.87 1.37 0.98 

7a 1.71 -1.71 37.20 -36.70 19.70 21.75 21.46 1.90 1.37 

7b 1.72 -1.71 36.40 -36.60 19.70 21.16 21.40 1.91 1.38 

8a 2.42 -2.42 40.30 -40.60 15.60 16.65 16.78 2.69 1.94 

8b 2.42 -2.42 40.30 -40.60 15.60 16.65 16.78 2.69 1.94 

9a 3.40 -3.40 43.00 -44.20 11.60 12.65 13.00 3.78 2.72 

9b 3.39 -3.40 42.20 -43.70 11.60 12.45 12.85 3.77 2.71 

10a 4.75 -4.75 44.25 -44.77 8.23 9.32 8.97 5.28 3.80 

10b 4.74 -4.75 42.50 -43.50 8.23 8.97 9.16 5.27 3.79 

11a 6.74 -6.76 44.70 -45.55 5.62 6.63 6.33 7.49 5.39 

11b 6.73 -6.75 42.60 -44.30 5.62 6.33 6.56 7.48 5.38 

12a 6.72 -6.73 29.25 -31.70 3.30 4.35 4.71 7.47 5.38 

12b 6.71 -6.73 25.00 -26.00 3.30 3.73 3.86 7.46 5.37 
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Figure  5.21 Lateral secant stiffness degradation in transverse direction  

 

 Figure  5.22 Lateral secant stiffness degradation in longitudinal direction 
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Figure  5.23 Comparison of stiffness degradation in both transverse and longitudinal 
directions using the secant stiffness values  

 

Figure  5.24 Comparison of stiffness degradation in both transverse and longitudinal 
directions using the stiffness values estimated from the small cycles that followed the main 

test loading groups 
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5.3 COLUMN LOCAL BEHAVIOR 

The main objective of the experimental program pursued in this study is to evaluate the bent cap 
beam behavior and effective width. However, the local column behavior was extensively studied 
for better understanding of the overall bridge system response and to evaluate the column repair 
and strengthening schemes undertaken after the first specimen test was completed. The 
discussion of the local column behavior presented in the following three subsections focuses on 
the strain and curvatures recorded at different levels in the column plastic hinge zone, and the 
column section’s moment-curvature relationship in both transverse and longitudinal directions. 
The column data and observed response are also useful for populating the existing database of 
column tests and possible future studies that focus on analytical and FE modeling. 

5.3.1 Strain Behavior 

Strain ages were installed at various levels along the four rebars that experienced the largest 
strains according to the adopted loading directions. The outermost north and south ones 
experienced the largest strains during longitudinal (N-S) loading, while the outermost east and 
west ones experienced the largest values during transverse (E-W) loading. The notation of 
loading direction is presented along with the four instrumented column rebars in Figure  5.25.  
The history of the strain measured in each of those four rebars is shown in Figure  5.26. The used 
strain gages were capable of recording the strain measurements almost throughout the test until a 
rebar rupture as seen from the east rebar strain history for instance. A maximum strain of almost 
8% (0.08) was recorded in the north rebar which unlike the east and west rebars, did not rupture 
during the test. A close-up view of the different rebars strain history is shown in Figure  5.27. The 
figure shows how the strain develops only in east and west rebars during transverse loading, and 
north and south rebars during longitudinal loading. The shown strain histories were recorded at 
the strain gages at the maximum column moment location in the plastic hinge zone, i.e. slightly 
above the beam face. However, the strain profile in each of the four instrumented rebars along 
the column height is also presented here. Figure  5.28 through Figure  5.35 show the strain profile 
for each of the four instrumented rebars captured at three different loading levels, 2.7%, 5.3% 
and 7.5% drift ratio, at both of the positive and negative amplitudes of the loading cycles. The 
strain profile agrees with the expected bending moment distribution along the column height. 
However, a nonlinear distribution is shown in the plastic hinge zone due to excessive yielding 
and damage.   

 

Figure  5.25 Notation of loading direction and layout of instrumented column rebars  
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Figure  5.26 History of the column rebars strains at lowest section in the plastic hinge 
where maximum strain is expected for all loading cycles  
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Figure  5.27 Zoomed-in view of the history of the column rebars strains at lowest section in 
the plastic hinge where maximum strain is expected for one group of transverse and one 

group of longitudinal loading cycles  
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Figure  5.28 Strain distribution along EAST side rebar when loading is towards EAST  

 

Figure  5.29 Strain distribution along EAST side rebar when loading is towards WEST 
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Figure  5.30 Strain distribution along WEST side rebar when loading is towards EAST 

 

Figure  5.31 Strain distribution along WEST side rebar when loading is towards WEST 
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Figure  5.32 Strain distribution along NORTH side rebar when loading is towards NORTH 

 

Figure  5.33 Strain distribution along NORTH side rebar when loading is towards SOUTH  
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Figure  5.34 Strain distribution along SOUTH side rebar when loading is towards NORTH 

 

Figure  5.35 Strain distribution along SOUTH side rebar when loading is towards SOUTH 
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5.3.2 Curvature Behavior 

Curvatures are important behavior metric especially for desired flexural-control ductile behavior. 
The plastic hinge rotations, and curvatures in turn, increase significantly relative to the other 
locations outside the desired column plastic hinge region. The subassembly column’s curvatures 
were captured during the test using dedicated LVDTs as previously discussed in the 
instrumentation section in Chapter 3. The history of the measured curvature at the lowest level in 
the column’s plastic hinge zone, i.e. close to the beam face, is shown in Figure  5.36 for both of 
the transverse (E-W) and longitudinal (N-S) directions. A close-up view of the curvature history 
is shown in Figure  5.37 to emphasize that most of the column rotations are planer with the load. 
This means that when loading is in the transverse direction, the column rotation and curvature is 
only in the E-W direction and vice versa in the longitudinal direction.  

 

 

Figure  5.36 History of column curvature at the lowest section in the plastic hinge zone in 
both east-west (transverse) and north-south (longitudinal) directions for all loading cycles  
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Figure  5.37 Zoomed-in view of the history of the column curvature at the lowest section in 
the plastic hinge zone in both east-west (transverse) and north-south (longitudinal) 
directions for one group of transverse and one group of longitudinal loading cycles  

The distribution of curvatures along the column height is also of interest to investigate the 
column behavior. As previously mentioned, it is desired to concentrate the damage in the plastic 
hinge zone that is designed to be ductile enough to accommodate large rotations and avoid any 
collapse at elevated lateral loading demands. Such desired behavior was observed during the test. 
The curvature profile along the column height is shown in Figure  5.38 and Figure  5.39 for four 
levels of loading in the transverse direction when loading is in east and west directions, 
respectively, i.e. the curvature recorded at the loading cycle positive and negative amplitudes. 
Similarly, the curvature distribution in the column’s longitudinal direction for loading in north 
and south directions is shown in Figure  5.40 and Figure  5.41, respectively. The four levels of 
loading included in these figures are the 1.0%, 2.7%, 5.3%, and 7.5% drift ratios, which 
correspond to ductility levels of 1.0, 1.9, 3.8, and 5.4, respectively. A maximum curvature value 
of almost 0.01 in.-1 was recorded before the LVDT instrumentation slipped because of the 
extensive concrete spalling. Considering a yield curvature of 0.00034 in.-1 as estimated from 
sectional analysis, the observed maximum curvature denotes a curvature ductility of 29.4. 
Meanwhile, the maximum curvature value corresponds to plastic rotation of approximately 0.15 
radians (8.6 degrees) using a 15-inch plastic hinge length as calculated by Caltrans SDC 
provisions. The plastic rotation and curvature ductility values show that the column designed 
according to the latest Caltrans SDC and AASHTO provisions is more ductile than the minimum 
code requirements.  
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Figure  5.38 Curvature distribution along column height when loading is towards East  

 

Figure  5.39 Curvature distribution along column height when loading is towards West  

-0.01 -0.005 0 0.005 0.01
0

10

20

30

40

50

60

70

80

90

Curvature [1/inch]

H
ei

g
h

t 
[i

n
ch

]

 

 
Drift = 1.4% ( = 1.0)

Drift = 2.7% ( = 1.9)

Drift = 5.3% ( = 3.8)

Drift = 7.5% ( = 5.4)

E-W 
Curvature

Transverse 
Direction (E-W)

East

-0.01 -0.005 0 0.005 0.01
0

10

20

30

40

50

60

70

80

90

Curvature [1/inch]

H
ei

g
h

t 
[i

n
ch

]

 

 
Drift = 1.4% (  = 1.0)

Drift = 2.7% (  = 1.9)

Drift = 5.3% (  = 3.8)

Drift = 7.5% (  = 5.4)

E-W 
Curvature

West

Transverse 
Direction (E-W)



 171

 

Figure  5.40 Curvature distribution along column height when loading is towards North  

 

Figure  5.41 Curvature distribution along column height when loading is towards South 
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Figure  5.52 Schematic bending moment distribution along the bent cap beam center line 
in three cases of loading: (a) gravity load only (b) lateral load only (c) combined gravity 

and lateral loads, and (d) a more accurate distribution considering the column and beam 
actual cross-section width rather than center lines 

5.4.1 Strain Behavior 

The first response quantity discussed in this subsection is the cap beam rebars strain where only 
positive strains at the tension side of the bent cap beam are presented. A useful convention to 
keep in mind is that the tension side of the bent cap consistently occurred at the bent cap beam 
bottom in the inverted position. The subassembly specimen SP1 cap beam had 8 longitudinal 
rebars for both positive and negative reinforcement. According to the inverted specimen 
orientation and moment distribution previously shown, the negative reinforcement (i.e. tension 
side) is at the bottom, while the top reinforcement is the positive reinforcement (i.e. compression 
side). Four of the top and six of the bottom rebars were instrumented with strain gages at sections 
B and D identified in Figure  5.52. However, strain gages were installed along 5 sections, A 
through E, for top and the bottom rebars as shown in Figure  3.46. The recorded maximum 
positive strain at each of those 5 sections in one of the beam bottom bars (tension side) at the 
positive (loading east) and negative (loading west) peaks of the 0.8µ transverse loading cycle are 
shown in Figure  5.53 and Figure  5.54, respectively. The figures also schematically show the 
expected bending moment distribution according to the loading direction. The strain profile 
agrees with the moment distribution, which gives more confidence in the strain gages readings. 

As the strain profile along the cap beam length is verified, it is useful to check the history 
of the measured strains. Representative strain history plots in one of the cap beam bottom rebars 
(tension side) for all loading cycles at sections B and D, where maximum strains along the beam 
length were recorded, are shown in Figure  5.55 and Figure  5.56, respectively. An important 
observation from these figures is the almost invariable strain readings while loading in the 
longitudinal direction. However, excessive progression in strain values was observed at the start 
of each transverse loading group of cycles. This is attributed to the fact that transverse loading 
directly alter the cap beam bending moment, while the longitudinal loading causes only torsion 
in the cap beam which minimally alter the cap beam longitudinal strain values. It is to be noted 
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also that while up to 8% strain was observed in the column rebars as the plastic hinge 
accumulated damage, only strains up to 1.3% were recorded and observed in the bent cap beam. 
This is expected because the bridge design philosophy calls for an essentially elastic 
superstructure and bent cap beams.  

 

Figure  5.53 Strain profile along one of the cap beam tension side rebars due to combined 
gravity and one of the lateral transverse loading cycles in East direction 

 

Figure  5.54 Strain profile along one of the cap beam tension side rebars due to combined 
gravity and one of the lateral transverse loading cycles in West direction 
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against the progressing lateral load. The maximum strains measured at sections B and D are 
plotted against the lateral transverse force in Figure  5.57 and Figure  5.58, respectively. The strain 
increase at zero lateral force (marked with arrows) corresponded to the increase of strains 
resulting from gravity load application. The gravity load was applied at two levels as previously 
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discussed. The first gravity load level was followed by all the small-level lateral loading cycles, 
which resulted in almost linear elastic strain in the cap beam rebars as suggested by Figure  5.57 
and Figure  5.58. The cap beam rebars started yielding after the second level of gravity load was 
applied followed by the first high-level (1.4µ which corresponded to 1.94% drift ratio) cycle. 
Once the rebars yielded, they became very sensitive to loading and every new transverse loading 
cycle excessively increased the cap beam rebars strains especially as loading was increasing 
towards the first peak in a given cycle. The longitudinal loading did not cause any significant 
increase in the rebars strain. The observed strain during longitudinal loading is shown in the 
figures in the form of small loops around the zero transverse force value at the end of each of the 
main loops after each transverse loading group of cycles. 

 

Figure  5.55 History of strain at bent cap beam maximum strain location at section B for 
all loading cycles 

 

Figure  5.56 History of strain at bent cap beam maximum strain location at section D for 
all loading cycles 
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Irrespective of the high post-yield recorded strain values, the bent cap beam can be still 
considered essentially elastic. This argument is supported by several evidences. Firstly, while all 
rebars yielding occurred only in the tension side, no concrete spalling was observed or associated 
with the increased cap beam strain values. Only minor cracks at the bottom of the cap beam were 
observed. In addition, no concrete crushing or extensive cracking was observed in the 
compression side of the cap beam. It is to be noted that a plastic behavior in a concrete element is 
associated with extensive concrete cracking and spalling because of either rebars buckling or 
concrete reaching crushing strain value reached.  In conclusion, the concrete in the cap beam was 
found to be almost elastic throughout the test where no major cracking in the tension side and no 
even minor cracking in the compression side took place. This conclusion is the main reason why 
the decision to strengthen the second specimen (SP2) was taken. That is to increase the column 
moment capacity and accordingly, pass higher moment demands to the cap beam in an attempt to 
understand the plastic behavior of the cap beam. While column strengthening of the second 
specimen was pursued, it was convenient and feasible to partially repair the first specimen to be 
retested again. The repaired specimen test led to the second evidence that the cap beam remained 
essentially elastic even though the rebars extensively yielded before. When the specimen was 
unloaded and the repaired specimen test was conducted, linear elastic and much less strains were 
observed in the cap beam. More details are presented in Chapter 6.  

On the other hand, the onset of a plastic cap beam response was reported from the HS 
retrofitted SP2 test. While the second specimen column was strengthen and well-confined, a 
conventional plastic hinge in the column was avoided and concrete crushing in the cap beam 
compression side was observed before the test ended. The reader is referred to Chapter 8 for the 
full discussion of the second specimen strengthening and HS tests. A reminder is that the cap 
beam plastic behavior is not a design objective in the recent performance-based or capacity 
bridge design philosophies. However, observing at least the onset of the cap beam plastic 
behavior is useful in fully quantifying the effective slab width and for accurate capacity 
estimation. A more economic design of the cap beam can be consequently achieved when the 
contributions of the box-girder slabs and slab transverse reinforcement are fully utilized.     

5.4.2 Curvature Behavior 

As previously mentioned in the column local behavior discussion, curvatures can be either 
estimated from a set of LVDTs properly aligned together or from the rebars strains at two 
opposite sides. In the case of the bent cap beam, using LVDTs was not practical. Thus, each two 
opposite strain gages at a top and corresponding bottom cap beam rebar were used to estimate 
the cap beam curvature at both sections B and D. The history of the estimated curvatures from 
using one set of rebars at sections B or D are shown in Figure  5.59 and Figure  5.60, respectively. 
Based on the sectional analysis results of the test specimen bent cap beam (shown in Figure  5.65 
in a later subsection), the yield curvature value was found to be 0.00017 in.-1. Thus, it can be 
noticed from the experimentally-determined curvatures shown in the figures that the bent cap 
beam yielded during SP1 cyclic loading tests, which was previously observed from the strain 
values at the bent cap tension side. However, based on the visual evidence of no damage, the 
yielded bent cap beam remained essentially elastic even when the strain in the tension side and 
the cross-section curvatures reached almost six times their yield values. 
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Figure  5.59 History of the curvature at cap beam section B due to all lateral loading cycles 

 

Figure  5.60 History of the curvature at cap beam section D due to all lateral loading cycles 
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objective of this study as it is tied to the box-girder slab contribution. To determine the bending 
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two instrumented vertical struts were utilized. The moment history at both sections due to lateral 
loading only and due to combined lateral and gravity loading is shown in Figure  5.61. It is to be 
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gravity and lateral loading. However, to isolate the beam moments due to the lateral load only, 
the reaction recorded at the end of the gravity load application was subtracted from the total 
reaction recorded during the lateral load cycles that followed.  

 

 

Figure  5.61 History of cap beam bending moment at sections B and D due to lateral 
loading only and combined lateral and gravity loading for all loading cycles 
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loading case only. In this case, the bent cap beam moments at sections B and D, the box-girder 
twist moment, and the column moment should sum up to zero. If the box-girder twist is relatively 
small and negligible, the total cap beam moment from sections B and D due to lateral load only 
should approximately neutralize the column moment, designated as Mcol, which was verified in 
Figure  5.62. The figure shows that the sum of the moments at sections B and D, designated as 
Mbeam, is comparable to the column moment with difference that did not exceed 250 kip-inch, i.e. 
less than 5% of the column moment value.  

  

Figure  5.62 Comparison of column moment and sum of cap beam moments at sections B 
and D (M beam = M section B + M section D) due to lateral loading only 

0 50 100 150 200 250 300 350 400 450
-5000

0

5000

Time [minute]

M
om

en
t 

[k
ip

-i
n]

 

M
Col

0 50 100 150 200 250 300 350 400 450
-5000

0

5000

Time [minute]

M
om

en
t 

[k
ip

-i
n]

 

M
beam

 (Lateral Only)

0 50 100 150 200 250 300 350 400 450
-5000

0

5000

Time [minute]

M
om

en
t 

[k
ip

-i
n]

 

M
col

 - M
beam



 

It
are corre
implied f
almost ne
Similar 
subassem
loading a
instrumen
subassem
conclude
vertical r
girder re
beam mo

5.4.4 M

The cap 
beneficia
against th
Figure  5.
all the cy
curvature
comparis
moment,

F

t was crucial
ct for the im
from Figure 
egligible, an
observation 

mbly specim
as well but 
nted and ca

mbly compo
ed that the b
reactions. M
esulting from
oment value 

Moment-Cur

beam bend
al use of the
he section c
.63 and Figu
yclic loading
e relationshi
son purpose

the ultimate

Figure  5.63 M
lo

l to verify w
mportance of 

 5.62 that the
nd the vertic

was also 
men, similar 

all the bou
alibrated. A
onents using
bent cap bea

Moreover, the
m the box-g
calculated d

rvature Rel

ding momen
e bending m
curvatures, w
ure  5.64 show
g cases at se
ip obtained 
es. The resu
e moment…

Moment-curv
oading cycles

whether the b
f this issue in
e box-girder 
al struts pro
reported in 
to the one 

undary cond
Accordingly, 
g the estim
am moment 
ey found tha
irder torsion

directly from

lationships

nts were dis
moment to in
which were a
w the mome
ections B an
from classi

ults from th
etc., are also

vature relati
s in both tran

186

bending mom
n affecting th

twist mome
vided correc
a previous

tested in th
itions at bo
it was pos

mated reactio
can be direc
at the effect
nal stiffness 

m the cap bea

scussed and 
nvestigate th
also estimat
ent-curvature
nd D, respec
ical sectiona
he moment
o reported in

onship for th
nsverse and l

ments calcu
he main con
ent due to lo
ct moment v
s study by 

his study, wa
oth box-girde
ssible to qu
ons at all 
ctly calculat
t of the reac
 have negli

am end struts

verified in 
he overall be
ted as discus
e relationshi
ctively. The 
al analysis i
t-curvature a
n Figure  5.65

he bent cap a
longitudinal 

ulated from t
clusions from
ading in the 

values for th
Mosalam e

as tested un
er and cap 

uantify the l
boundary c

ted from the
ctions at the
gible effect 
s.  

the previou
ent cap resp
ssed in an e
ips for the b
analytical n

is shown in
analysis, su

5. 

at section B f
directions 

the vertical 
m this study
bent cap pla

he bent cap b
et al. (2002
nder bidirect
beam ends 
load path in
conditions. 
e beam end 
e end of the 

on the ben

us subsectio
ponse is to p
arlier subsec

bent cap beam
nominal mom
n Figure  5.6
uch as the 

 

for all the 

struts 
y. It is 
ane is 
beam. 
2). A 
tional 
were 

n the 
They 
struts 
box-

nt cap 

on. A 
plot it 
ction. 
m for 
ment-

65 for 
yield 



 

F

F
an

Figure  5.64 M
lo

Figure  5.65 M
nalysis (XTR

Moment-curv
oading cycles

Moment-curv
RACT, 2002)

vature relatio
s in both tran

vature relati
 using the Ca

187

onship for th
nsverse and l

onship for ca
altrans SDC 
section 

he bent cap a
longitudinal 

ap beam esti
integral ben

at section D f
directions 

imated from 
nt cap effectiv

for all the 

sectional 
ve flanged 

 

 



 188

It is observed from the experimentally determined moment-curvature relationships that 
the moment is capped in both sections B and D at a value slightly higher than 4500 kip-inch. 
When tied with the observed column behavior and damage, it is understood that the bent cap 
moment was capped because of the reached column capacity that capped the demand at the bent 
cap beam. However, the extensive curvature increase at this capped moment causes the yielding 
of the cap beam, which has been confirmed already from the strain values. It is noted that the 
experimental value for the yield moment when curvature values started increasing significantly is 
about 4500 kip-inch. The analytical value determined from sectional analysis as shown in 
Figure  5.65 is 3719 kip-inch. The sectional analysis considered the Caltrans SDC effective 
flange width, but included the tension steel in the slab as well although it is not part of the code 
requirement. The underestimated analytical value is indicative that the tension steel within the 
effective slab width should be included and larger effective width value might be needed for 
accurate cap beam moment capacity estimation. A more extensive discussion of the bent cap 
beam moment capacity is included in the HS test results and post-test analysis discussion in 
Chapters 8 and 9. 

Another useful use of the moment-curvature relationship is to determine the effective EI 
for the bent cap cross-section at different loading levels. The change in the effective EI reflects 
the change of the overall bent cap beam stiffness. Figure  5.66 and Figure  5.67 show how the 
effective EI at the respective sections B and D deteriorates with the loading level, expressed in 
terms of drift ratio and ductility level. The moment-curvature from two different sets of top and 
bottom rebars were used for each section and shown in the figures. A normalized value for the 
effective EI was used where all the values are related to the effective EI determined from the 
slope of the moment-curvature relationship at first small-cycle. The absolute values for the 
effective EI were found much less than the recommended Caltrans value that is based on a 0.5-
0.75 of the gross flanged section inertia. However, the relative change in the normalized 
effective EI still serves the purpose of investigating how the bent cap beam stiffness deteriorates 
at higher drift ratios and ductility levels.  

 

Figure  5.66 Degradation in the cap beam stiffness expressed in terms of normalized 
effective EI at different drift ratios and ductility levels calculated using curvatures from 

two different top and bottom rebar sets at Section B 
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Figure  5.67 Degradation in cap beam stiffness expressed in terms of normalized effective 
EI at different drift ratios and ductility levels calculated using curvatures from two 

different top and bottom rebar sets at Section D 

5.5 EFFECTIVE SLAB WIDTH (TENSION SIDE) 

Caltrans SDC and AASHTO LRFD guidelines for seismic design require considering a flanged 
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obtained and spatially extended at the two tails to determine the intercept at zero strain. The area 
under the strain distribution was computed and transformed to an equivalent strain block with an 
effective width where two strain values were used, namely the minimum and the mean strain 
among the used six gages at a given cross-section in the cap beam reinforcement. The maximum 
strain was not used to avoid effects of the concentrated gravity load and scaling that caused 
highly localized strain values in the cap beam reinforcement.  

 

Figure  5.68 Summary of the four main steps of the procedure used to estimate the bent 
cap effective slab width 

5.5.1 Section B: Distribution 
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and negative peaks of the transverse loading cycles, which were related to the drift ratio and 
ductility level (µ). 
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The strain distribution at section B is presented in this subsection. Figure  5.69 and 
Figure  5.70 show the distribution at different loading levels when the transverse load was 
pushing towards the East side, which is designated as the positive loading direction. Figure  5.69 
presents the distribution at the small-level cycles, i.e. before any of the reinforcing bars in the 
cap beam or even the column, yielded, i.e. drift ratios 0.4%, 0.8%, 1.1%, and 1.4%, which 
corresponded to µ of 0.27, 0.56, 0.80, and 1.0, respectively. Figure  5.70 presents three high-level 
cycles along with the last small-level cycle to show how the distribution changed as yielding 
took place. The four drift levels considered in Figure  5.70 are 1.4%, 2.7%, 5.3%, and 10.5% 
which corresponded to µ of 1.0, 1.96, 3.84, and 7.57, respectively. On the other hand, 
Figure  5.71 and Figure  5.72 show the strain distribution at section B for similar levels but for 
cases when loading was pushing towards the West side, i.e. reversed load in the negative 
direction.  

 

Figure  5.69 Strain distribution along cap beam and box-girder transverse deck slab 
reinforcement at Section B for different small-level loading cycles before yielding (loading 

is in positive EAST direction) 
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Figure  5.70 Strain distribution along cap beam and box-girder transverse deck slab 
reinforcement at Section B for different high-level loading cycles after yielding        

(loading is in positive EAST direction) 

 

Figure  5.71 Strain distribution along cap beam and box-girder transverse deck slab 
reinforcement at Section B for different small-level loading cycles before yielding (loading 

is in negative WEST direction) 
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Figure  5.72 Strain distribution along cap beam and box-girder transverse deck slab 
reinforcement at Section B for different high-level loading cycles after yielding        

(loading is in negative WEST direction) 
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presented in the following subsections.  
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Figure  5.73 Strain distribution along cap beam and box-girder transverse deck slab 
reinforcement at Section D for different small-level loading cycles before yielding (loading 

is in positive EAST direction) 

 

Figure  5.74 Strain distribution along cap beam and box-girder transverse deck slab 
reinforcement at Section D for different high-level loading cycles after yielding  

(loading is in positive EAST direction) 
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Figure  5.75 Strain distribution along cap beam and box-girder transverse deck slab 
reinforcement at Section D for different small-level loading cycles before yielding (loading 

is in negative WEST direction) 

 

Figure  5.76 Strain distribution along cap beam and box-girder transverse deck slab 
reinforcement at Section D for different high-level loading cycles after yielding  

(loading is in negative WEST direction) 
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5.5.3 Section B: Effective Slab Width 

As previously mentioned, the effective slab width is determined using the equivalent strain block 
concept and the simple procedure shown in Figure  5.68. The strain distributions shown in a 
previous subsection are utilized to estimate the effective slab width at section B at different 
loading levels and directions. Two values for the bent cap beam strain value were used to define 
the equivalent strain block (Beff) throughout this study. These are the minimum and the mean of 
the six instrumented rebar strain gage readings at a given cross-section in the cap beam. In a 
prototype bridge, the full scale bent cap beam reinforcement under distributed vertical loads 
experience uniform strain. In this reduced-scale inverted specimen, the bent cap reinforcement 
did not have a uniform strain because of the concentrated gravity load and the scaling effect 
which made the loading zone of almost comparable size to the beam cap beam. Therefore, the 
minimum and mean values were both considered to harmonize the cap beam strain. The 
maximum value was avoided because it represented a localized unrealistic high strain values. An 
example of how the strain block was determined using the strain distribution at section B and 
using the minimum and mean cap beam strain values is shown in Figure  5.77  

The total flange effective slab width, i.e. equivalent strain block width Beff, was calculated 
for all loading cycles applied in the transverse direction at the peak of each loading cycle as 
mentioned before. This calculation process was repeated 4 times at the 4 peaks of each loading 
cycle group; 1st positive, 1st negative, 2nd positive, and 2nd negative peaks, and referred to as 
group I, II, II, and IV, respectively. A summary of the calculated Beff at section B using both cap 
beam minimum (εmin) and mean (εmean) strain values is shown in Figure  5.78 and Figure  5.79 for 
loading in the positive direction (groups I and III), respectively. Moreover, the calculated Beff 
summary for loading in the negative direction (groups II and IV) is shown in Figure  5.80 and 
Figure  5.81, respectively. All figures show also the Beff that is estimated in light of the Caltrans 
SDC provisions for the integral bent cap beam flanged section, which is directly referred to as 
Caltrans value for brevity.  

Another way of summarizing the same data presented in Figure  5.78 through Figure  5.81 
is given in Table  5-4 and Table  5-5 to conveniently read the calculated Beff values directly. 
Moreover, the tables relate the calculated Beff  values to the slab thickness (ts) and bent cap beam 
width (bbeam) through a slab contribution constant (C) which quantifies the slab contribution as 
multiples of ts given by Equation ( 5-1).  

 eff beam sB b C t    ( 5-1)

Table  5-4 summarizes the Beff and the slab contribution C for different loading levels and 
direction when the minimum cap beam strain value is used, while Table  5-5 presents the case of 
using the mean cap beam strain value. The mean values for Beff and slab contribution C for all 
loading cycles are listed in the same tables. 
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Figure  5.77 Generating effective width strain block using the strain distribution at Section 
B for a small- (top) and high-level (bottom) loading cycles using the observed cap beam 

minimum (εmin) and mean (εmean) strain values 
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Figure  5.78 Summary of the estimated cap beam effective width at Section B at different 
drift ratios (group I: 1st positive peak of each transverse cyclic loading group)  

 

Figure  5.79 Summary of the estimated cap beam effective width at Section B at different 
drift ratios (group III: 2nd positive peak of each transverse cyclic loading group) 
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Figure  5.80 Summary of the estimated cap beam effective width at Section B at different 
drift ratios (group II: 1st negative peak of each transverse cyclic loading group) 

 

Figure  5.81 Summary of the estimated cap beam effective width at Section B at different 
drift ratios (group IV: 2nd negative peak of each transverse cyclic loading group) 
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Table  5-4 Section B effective slab width at different load levels calculated using cap beam εmin 

Run 
# 

Drift 
Ratio 
[%] 

Ductility 
[µ] 

Positive loading direction  
(groups I and III) 

Negative loading direction 
(groups II and IV) 

Strain block width, 
Beff [inch] Slab 

contribution 
(C) 

Strain block width, 
Beff [inch] Slab 

Contribution 
(C) 1st 

cycle 
2nd 

cycle 
mean 

1st 
cycle 

2nd 
cycle 

mean 

1 0.28 0.20 54.5 53.9 54.2 13.4 59.9 58.3 59.1 15.6 

2 0.38 0.27 52.0 52.2 52.1 12.5 57.1 57.0 57.1 14.7 

3 0.54 0.39 50.3 50.0 50.1 11.6 60.6 55.4 58.0 15.1 

4 0.78 0.56 47.9 47.4 47.6 10.5 57.9 57.9 57.9 15.1 

5 1.11 0.80 48.8 48.5 48.7 11.0 66.7 64.5 65.6 18.5 

6 1.39 1.00 53.3 54.3 53.8 13.3 81.3 82.8 82.0 25.8 

7 1.94 1.40 54.6 59.2 56.9 14.6 69.5 78.9 74.2 22.3 

8 2.72 1.96 51.3 50.5 50.9 12.0 63.3 63.1 63.2 17.4 

9 3.83 2.76 49.8 48.4 49.1 11.2 103.6 170.1 136.8 50.1 

10 5.33 3.84 53.1 52.4 52.8 12.8 82.4 96.5 89.4 29.1 

11 7.50 5.40 53.4 52.9 53.2 13.0 82.7 188.9 135.8 49.7 

12 10.50 7.56 51.3 51.0 51.2 12.1 74.1 71.2 72.7 21.6 

13 10.49 7.56 51.0 51.0 51.0 12.0 59.0 59.0 59.0 15.6 

14 1.07 0.77 53.9 53.9 53.9 13.3 53.5 53.5 53.5 13.1 

Mean for all loading cycles: 51.8 12.4 76.0 23.1 

Table  5-5 Section B effective slab width at different load levels calculated using cap beam εmean 

Run 
# 

Drift 
Ratio 
[%] 

Ductility 
[µ] 

Positive loading direction  
(groups I and III) 

Negative loading direction 
(groups II and IV) 

Strain block width, 
Beff [inch] Slab 

contribution 
(C) 

Strain block width, 
Beff [inch] Slab 

Contribution 
(C) 1st 

cycle 
2nd 

cycle 
mean 

1st 
cycle 

2nd 
cycle 

mean 

1 0.28 0.20 44.6 45.1 44.9 9.3 46.6 46.2 46.4 10.0 

2 0.38 0.27 44.2 45.0 44.6 9.1 46.0 46.0 46.0 9.8 

3 0.54 0.39 44.0 44.2 44.1 8.9 47.2 46.5 46.9 10.2 

4 0.78 0.56 43.1 43.2 43.1 8.5 47.7 47.6 47.7 10.5 

5 1.11 0.80 43.0 42.4 42.7 8.3 50.0 50.2 50.1 11.6 

6 1.39 1.00 45.6 46.1 45.8 9.7 59.7 59.2 59.5 15.8 

7 1.94 1.40 46.3 50.1 48.2 10.7 58.6 64.4 61.5 16.7 

8 2.72 1.96 48.3 47.7 48.0 10.7 56.5 56.8 56.6 14.5 

9 3.83 2.76 45.8 44.3 45.1 9.4 77.9 127.1 102.5 34.9 

10 5.33 3.84 46.6 46.4 46.5 10.0 62.3 72.8 67.5 19.3 

11 7.50 5.40 44.7 44.9 44.8 9.2 62.8 144.3 103.5 35.3 

12 10.50 7.56 43.2 43.3 43.3 8.6 56.8 54.7 55.7 14.1 

13 10.49 7.56 43.2 43.2 43.2 8.5 46.1 46.1 46.1 9.8 

14 1.07 0.77 44.9 44.9 44.9 9.3 44.0 44.0 44.0 8.9 

Mean for all loading cycles: 44.9 9.3 59.6 15.8 
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5.5.4 Section D: Effective Slab Width 

A similar framework as before is used to present the effective slab width results at section D. 
One example of how the strain block was determined using the strain distribution at section D 
using the minimum and mean cap beam strain values is shown in Figure  5.82. A summary of the 
calculated Beff at section D using both cap beam minimum and mean strain values is shown in 
Figure  5.83 and Figure  5.84 for loading in the positive direction (groups I and III), respectively. 
Moreover, the calculated Beff summary for loading in the negative direction (groups II and IV) is 
shown in Figure  5.85 and Figure  5.86, respectively. The Caltrans value for Beff is shown in all 
figures as well. The same data are presented differently in Table  5-7 and Table  5-8 to summarize 
Beff and the slab contribution C for the different loading levels and direction when the minimum 
and mean cap beam strain values are used, respectively. 

 

Figure  5.82 Generating effective width strain block using the strain distribution at Section 
D for a small- (top) and high-level (bottom) loading cycle using the observed cap beam 

minimum (εmin) and mean (εmean) strain values 
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Figure  5.83 Summary of the estimated cap beam effective width at Section D at different 
drift ratios (group I: 1st positive peak of each transverse cyclic loading group) 

  

Figure  5.84 Summary of the estimated cap beam effective width at Section D at different 
drift ratios (group III: 2nd positive peak of each transverse cyclic loading group) 
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Figure  5.85 Summary of the estimated cap beam effective width at Section D at different 
drift ratios (group II: 1st negative peak of each transverse cyclic loading group) 

 

Figure  5.86 Summary of the estimated cap beam effective width at Section D at different 
drift ratios (group IV: 2nd negative peak of each transverse cyclic loading group) 
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Table  5-6 Section D effective slab width at different load levels calculated using cap beam εmin 

Run 
# 

Drift 
Ratio 
[%] 

Ductility 
[µ] 

Positive loading direction  
(groups I and III) 

Negative loading direction 
(groups II and IV) 

Strain block width, 
Beff [inch] Slab 

contribution 
(C) 

Strain block width, 
Beff [inch] Slab 

Contribution 
(C) 1st 

cycle 
2nd 

cycle 
mean 

1st 
cycle 

2nd 
cycle 

mean 

1 0.28 0.20 123.0 139.3 131.2 47.6 72.5 99.7 86.1 27.6 

2 0.38 0.27 125.3 108.8 117.0 41.3 125.1 123.1 124.1 44.5 

3 0.54 0.39 123.8 82.5 103.1 35.2 67.3 62.0 64.7 18.1 

4 0.78 0.56 83.0 83.1 83.0 26.2 59.6 58.6 59.1 15.6 

5 1.11 0.80 95.1 94.4 94.8 31.5 59.0 59.2 59.1 15.6 

6 1.39 1.00 88.7 81.7 85.2 27.2 56.0 55.1 55.5 14.0 

7 1.94 1.40 80.7 82.4 81.5 25.6 137.9 69.7 103.8 35.5 

8 2.72 1.96 74.7 72.0 73.3 21.9 63.9 64.7 64.3 17.9 

9 3.83 2.76 70.7 71.7 71.2 21.0 66.6 66.4 66.5 18.9 

10 5.33 3.84 72.9 79.2 76.1 23.1 74.4 73.8 74.1 22.3 

11 7.50 5.40 82.2 72.6 77.4 23.7 69.4 68.2 68.8 19.9 

12 10.50 7.56 74.8 70.7 72.8 21.7 66.2 64.8 65.5 18.4 

13 10.49 7.56 69.1 69.1 69.1 20.0 63.5 63.5 63.5 17.6 

14 1.07 0.77 66.4 66.4 66.4 18.9 65.4 65.4 65.4 18.4 

Mean for all loading cycles: 85.9 27.5 72.9 21.7 

Table  5-7 Section D effective slab width at different load levels calculated using cap beam εmean 

Run 
# 

Drift 
Ratio 
[%] 

Ductility 
[µ] 

Positive loading direction  
(groups I and III) 

Negative loading direction 
(groups II and IV) 

Strain block width, 
Beff [inch] Slab 

contribution 
(C) 

Strain block width, 
Beff [inch] Slab 

Contribution 
(C) 1st 

cycle 
2nd 

cycle 
mean 

1st 
cycle 

2nd 
cycle 

mean 

1 0.28 0.20 78.9 106.5 92.7 30.5 57.9 80.0 69.0 20.0 

2 0.38 0.27 96.7 84.6 90.6 29.6 99.3 98.0 98.7 33.2 

3 0.54 0.39 89.2 59.4 74.3 22.4 52.4 50.9 51.6 12.3 

4 0.78 0.56 59.5 58.5 59.0 15.5 48.6 48.4 48.5 10.9 

5 1.11 0.80 65.5 63.6 64.5 18.0 49.8 49.9 49.8 11.5 

6 1.39 1.00 62.8 60.6 61.7 16.8 48.5 48.3 48.4 10.8 

7 1.94 1.40 65.5 66.8 66.2 18.7 117.8 58.4 88.1 28.5 

8 2.72 1.96 61.0 52.4 56.7 14.5 48.8 47.4 48.1 10.7 

9 3.83 2.76 52.3 48.5 50.4 11.7 45.9 44.8 45.3 9.5 

10 5.33 3.84 47.9 50.3 49.1 11.1 47.6 47.1 47.3 10.4 

11 7.50 5.40 49.4 46.4 47.9 10.6 44.6 44.3 44.5 9.1 

12 10.50 7.56 45.2 43.9 44.6 9.1 42.8 42.8 42.8 8.3 

13 10.49 7.56 43.0 43.0 43.0 8.4 42.0 42.0 42.0 8.0 

14 1.07 0.77 42.3 42.3 42.3 8.1 42.4 42.4 42.4 8.2 

Mean for all loading cycles: 60.2 16.1 54.7 13.7 
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5.5.5 Overall Effective Width in Tension Side 

For more comprehensive conclusions, the calculated effective slab width is additionally averaged 
out from cases of loading in positive and negative directions together at both sections. 
Furthermore, the overall average for both sections together was calculated such that the mean 
value for all the loading cases renders a single number that summarizes all the experimentally 
determined effective slab width values. The average Beff values for each group of loading and 
overall average for all groups combined is shown first for each of sections B and D separately in 
Figure  5.87 and Figure  5.88, respectively. The averages for all the groups calculated using both 
the minimum (εmin) and mean (εmean) cap beam strain values are also plotted against the Caltrans 
value for both sections in Figure  5.87 and Figure  5.88. It is noted from the figures that the 
Caltrans value is conservative relative to what has been observed from the experiments. 

The average values from all groups are tabulated as well in Table  5-8 and Table  5-9 for 
cases of using the minimum and mean cap beam strain values, respectively. Table  5-8 shows 
respectively for all loading groups of sections B and D an average effective flange width, Beff, of 
63.9 inch and 79.4 inch versus an estimated value from the Caltrans SDC flanged section of 
51inch. These values correspond to slab contributions 17.7ts and 24.6ts versus the well-known 
12ts Caltrans value. However, when the mean cap beam strain value is used instead, Table  5-9 
suggests that the former numbers drop to 12.6ts and 14.9ts. In addition, the overall average of 
both sections B and D together is calculated and denoted in the tables. When all the loading cases 
and sections B and D were considered, a mean value for the slab contribution was determined to 
be 21.2ts and 13.7ts based on a minimum and mean cap beam strain values, respectively. It is 
concluded that the 12ts is conservative and a larger value is recommended to be considered for 
bent cap beam capacity estimation as discussed in more details in Chapter 9.   

 

Figure  5.87 Mean effective width from all loading cycles in each group (bar chart) and 
overall average effective width from all loading cycles and groups (dashed lines) at Section 

B as compared to Caltrans SDC effective width value 
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Figure  5.88 Mean effective width from all loading cycles in each group (bar chart) and 
overall average effective width from all loading cycles and groups (dashed lines) at Section 

D as compared to Caltrans SDC effective width value 

Table  5-8 Summary of overall effective slab width mean calculated using cap beam εmin 

Run # 
Drift 

% 
Ductility 

All groups I, II, III, IV 
mean (section B) 

All groups I, II, III, IV 
mean (section D) 

Overall mean for both 
sections 

Beff 
[inch] 

Slab 
contribution 

(C) 

Beff 
[inch] 

Slab 
contribution 

(C) 

Beff 
[inch] 

Slab 
contribution 

(C) 

1 0.28 0.2 56.6 14.5 108.6 37.6 82.6 26.1 

2 0.38 0.27 54.6 13.6 120.6 42.9 87.6 28.3 

3 0.54 0.39 54.1 13.4 83.9 26.6 69 20 

4 0.78 0.56 52.8 12.8 71.1 20.9 61.9 16.9 

5 1.11 0.8 57.1 14.7 76.9 23.5 67 19.1 

6 1.39 1 67.9 19.5 70.4 20.6 69.2 20.1 

7 1.94 1.4 65.5 18.5 92.7 30.5 79.1 24.5 

8 2.72 1.96 57.1 14.7 68.8 19.9 62.9 17.3 

9 3.83 2.76 93 30.7 68.8 19.9 80.9 25.3 

10 5.33 3.84 71.1 20.9 75.1 22.7 73.1 21.8 

11 7.5 5.4 94.5 31.3 73.1 21.8 83.8 26.6 

12 10.5 7.56 61.9 16.9 69.1 20.1 65.5 18.5 

13 10.49 7.56 55 13.8 66.3 18.8 60.6 16.3 

14 1.07 0.77 53.7 13.2 65.9 18.6 59.8 15.9 

Mean for all loading cycles 63.9 17.7 79.4 24.6 71.7 21.2 
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Table  5-9 Summary of overall effective slab width mean calculated using cap beam εmean 

Run # 
Drift 

% 
Ductility 

All groups I, II, III, IV 
mean (section B) 

All groups I, II, III, IV 
mean (section D) 

Overall mean for both 
sections 

Beff 
[inch] 

Slab 
contribution 

(C) 

Beff 
[inch] 

Slab 
contribution 

(C) 

Beff 
[inch] 

Slab 
contribution 

(C) 

1 0.28 0.2 45.6 9.6 80.8 25.3 63.2 17.4 

2 0.38 0.27 45.3 9.5 94.7 31.4 70 20.4 

3 0.54 0.39 45.5 9.6 63 17.3 54.2 13.4 

4 0.78 0.56 45.4 9.5 53.8 13.2 49.6 11.4 

5 1.11 0.8 46.4 10 57.2 14.7 51.8 12.4 

6 1.39 1 52.7 12.7 55 13.8 53.9 13.3 

7 1.94 1.4 54.8 13.7 77.1 23.6 66 18.7 

8 2.72 1.96 52.3 12.6 52.4 12.6 52.4 12.6 

9 3.83 2.76 73.8 22.1 47.9 10.6 60.8 16.4 

10 5.33 3.84 57 14.7 48.2 10.8 52.6 12.7 

11 7.5 5.4 74.2 22.3 46.2 9.9 60.2 16.1 

12 10.5 7.56 49.5 11.3 43.7 8.7 46.6 10 

13 10.49 7.56 44.7 9.2 42.5 8.2 43.6 8.7 

14 1.07 0.77 44.5 9.1 42.4 8.2 43.4 8.6 

Mean for all loading cycles 52.3 12.6 57.5 14.9 54.9 13.7 

5.6 EFFECTIVE SLAB WIDTH (COMPRESSION SIDE) 

The behavior of the reinforcing steel bars in the tension side in RC flanged sections under flexure 
is more representative of the effective slab width and slab contribution than that in the 
compression side. That is because all concrete in tension is cracked at both service and limit 
states and only steel is assumed effective in carrying the loads. However, in the compression 
side, the concrete contributes significantly to the flexural capacity. Thus, it is useful to acquire 
strain, or stress if possible, distribution in the compression zone especially if the contribution of 
the slabs is required. Unfortunately, using embedded concrete gages to measure concrete strain 
directly is not very reliable. Therefore, the compression steel was instrumented such that the 
strain of the surrounding concrete can be assumed the same as the steel as long as perfect bond 
between the steel and concrete is maintained. The sections that have been used for exploring 
strain distributions, namely sections B and D, are far away from the beam end and it is a safe 
assumption to consider that no bond slip took place at those sections.   

As implied from above, embedded concrete strain gages and compression steel strain 
gages were both used to acquire the strain distribution at the compression side. However, the 
data recorded at the compression side was noisy and extremely sensitive to the applied 
concentrated gravity load. Accordingly, the compression side strain data, from both concrete and 
steel gage types, were not conclusive but briefly shown here for completeness. Moreover, for 
investigating the bent cap beam capacity in the post-test analysis, a similar effective width to that 
obtained from the tension side was considered for the compression side. 
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5.6.1 Reinforcement Strain Distribution 

Several reinforcing bars in the bent cap beam compression side and adjacent transverse soffit 
slab bars were instrumented to obtain a similar strain distribution to what was presented in 
previous section for the tension side. The strain distribution from the different strain gage 
readings was recorded continuously throughout all the loading cycles in both transverse and 
longitudinal directions. Only results obtained from 2nd positive and 2nd negative peaks of each 
group of transverse loading cycles are shown for brevity. The results were selected for small-
level cycles of drift ratios 0.4%, 0.8%, 1.1%, and 1.4%, which corresponded to µ of 0.27, 0.56, 
0.80, and 1.0, respectively. Meanwhile, the 1.0 ductility level (1.5% drift ratio) results along with 
1.96, 3.84, and 7.57 ductility levels (2.7%, 5.3%, and 10.5% drift ratio) comprised the selected 
high-level cycles. Figure  5.89 and Figure  5.90 show the distribution in the compression side at 
section B at the small-levels and high-levels of loading, respectively, when the transverse load 
was pushing towards the East, i.e. positive loading direction side. Figure  5.91 and Figure  5.92 
show the strain distribution at section B for similar levels when loading was pushing towards the 
West side, i.e. reversed load in the negative direction. On the other hand, Figure  5.93 through 
Figure  5.96 show the distribution in the compression side for different levels and loading 
direction but for section D. It is observed from all the figures that the strain values in the soffit 
slab transverse reinforcement did not almost change with the increased lateral loading levels. 
Only the cap beam reinforcement strain was varying with lateral loading and in certain loading 
directions; negative loading direction for section B, and positive loading for section D. 
Accordingly, the area under the distribution could not be accurately calculated because some 
strain values are negative, due to compression, and others are positive due to overriding tension.  

 

Figure  5.89 Strain distribution along cap beam and box-girder transverse soffit slab 
reinforcement (compression side) at Section B for different small-level loading cycles 

(strain values recorded at loading cycle peak when loading is in EAST direction) 
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Figure  5.90 Strain distribution along cap beam and box-girder transverse soffit slab 
reinforcement (compression side) at Section B for different high-level loading cycles 

(strain values recorded at loading cycle peak when loading is in EAST direction) 

 

Figure  5.91 Strain distribution along cap beam and box-girder transverse soffit slab 
reinforcement (compression side) at Section B for different high-level loading cycles 

(strain values recorded at loading cycle peak when loading is in WEST direction) 

-40 -30 -20 -10 0 10 20 30 40
-1

-0.5

0

0.5

1

1.5

2
x 10

-3

Effective Width Disribution [inch]

S
tr

a
in

 

 
Drift = 1.4 % (  = 1.00)

Drift = 2.7 % (  = 1.96)

Drift = 5.3 % (  = 3.84)

Drift = 10.5 % (  = 7.57)
Steel f

y

Cap Beam limits

-40 -30 -20 -10 0 10 20 30 40
-2

-1

0

1

2

3

4

5

6

7

8
x 10

-4

Effective Width Disribution [inch]

S
tr

ai
n

 

 
Drift = 0.4 % (  = 0.27)

Drift = 0.8 % (  = 0.56)

Drift = 1.1 % (  = 0.80)

Drift = 1.4 % (  = 1.00)
Cap Beam limits



 210

 

Figure  5.92 Strain distribution along cap beam and box-girder transverse soffit slab 
reinforcement (compression side) at Section B for different high-level loading cycles 

(strain values recorded at loading cycle peak when loading is in WEST direction) 

 

Figure  5.93 Strain distribution along cap beam and box-girder transverse soffit slab 
reinforcement (compression side) at Section D for different small-level loading cycles 

(strain values recorded at loading cycle peak when loading is in EAST direction) 
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Figure  5.94 Strain distribution along cap beam and box-girder transverse soffit slab 
reinforcement (compression side) at Section D for different high-level loading cycles 

(strain values recorded at loading cycle peak when loading is in EAST direction) 

 

Figure  5.95 Strain distribution along cap beam and box-girder transverse soffit slab 
reinforcement (compression side) at Section D for different small-level loading cycles 

(strain values recorded at loading cycle peak when loading is in WEST direction) 
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Figure  5.96 Strain distribution along cap beam and box-girder transverse soffit slab 
reinforcement (compression side) at Section D for different high-level loading cycles 

(strain values recorded at loading cycle peak when loading is in WEST direction) 

5.6.2 Concrete Gage Strain Distribution 

The strain distribution in the compression side based on the instrumented compression steel 
rebars was not conclusive. It did not allow estimating an effective slab width at the compression 
side as in the case of the tension side because the measurements were sensitive to the 
concentrated gravity load. The concrete gages measurements were even noisier and more 
sensitive to the concentrated load. A reasonable strain distribution was not possible to obtain 
from the embedded concrete gages. Figure  5.97 shows a sample of four embedded concrete 
gages stain history at section B during all the loading cycles. It is obvious from the figure that the 
concrete gage reading are noisy and could not accurately capture the different loading cycles and 
reversals.  As a result of the unreliable data obtained from the embedded concrete gages, a 
different type of gages was used for the second phase of testing that involved HS testing of the 
retrofitted specimen SP2. This included the use of surface concrete gages that did not need to be 
installed during the construction as the embedded concrete gages. Instead, surface concrete gages 
were attached directly to the surface of the concrete from the soffit slab side where compression 
is expected. A discussion of the surface concrete gages sample measurements is presented in 
Chapter 8 together with the HS full test discussion.  
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5.7 OTHER RESPONSE QUANTITIES 

The main focus of the experimental program was the bent cap beam behavior, the box-girder 
contribution, and overall system response to combined gravity and bidirectional lateral loading. 
Complimentary response quantities from the box-girder longitudinal rebars and various 
transverse shear reinforcement that support the experimental test observations are presented here. 

5.7.1 Longitudinal Slab Strain 

The as-built SP1 cyclic loading tests involved bidirectional lateral loading in both of the 
transverse and longitudinal directions. Loading in the longitudinal direction caused flexural 
bending in the box-girder. The strain values in the longitudinal box-girder reinforcing steel were 
monitored and observed to make sure that the box-girder remained essentially elastic as required 
for all superstructure components by the Caltrans SDC. Figure  5.98 shows the strain history at 
two sections in the box-girder deck slab in a longitudinal rebar, which was almost aligned with 
the box-girder center line, just at the two sides of the bent cap beam where maximum moments 
were expected. Moreover, Figure  5.99 shows the strain history at similar sections but in a 
different rebar that was aligned with one of the box-girder webs. Both figures show that the 
yielding strain of 0.0026 observed from material tests, Chapter 3, was not reached in the 
longitudinal box-girder rebars. Accordingly, it is safe to conclude that the box-girder remained 
elastic during the testing as no yielding was observed. It is worth noting that these strain values 
were recorded at the NEFF data acquisition system, which did not record the application of 
gravity load or the pausing times. Thus, a shorter total testing time is recorded versus the PI data 
acquisition responses.   

 

Figure  5.98 History of box-girder deck longitudinal reinforcement strain measured in the 
rebar at the middle of the box-girder at north and south sides of the column for all cycles  
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Figure  5.99 History of box-girder deck longitudinal reinforcement strain measured in a 
rebar aligned with a box-girder web at north and south sides of the column for all cycles 

5.7.2 Box-Girder Web Tie Strain 

In addition to monitoring the longitudinal rebars strain in the box-girder, the web tie (transverse) 
reinforcement strain was monitored as well. The strain at the most critical sections was observed 
to make sure that no shear yielding took place in any of the box-girder webs. The strains in the 
ties where the maximum shear forces were expected right at the two sides of the column, i.e. 
North and South sides of the column, are plotted in Figure  5.100 and Figure  5.101 for an inner 
and outer box-girder webs, respectively. None of the monitored box-girder webs shear strain 
exceeded the 0.0026 yield limit of the reinforcement as expected from the design. It is worth 
noting that the capacity design is extended to cover the shear checks for all superstructure 
components (Caltrans SDC 2013) in addition to the strength check against the column 
overstrength moments. 

5.7.3 Joint Reinforcement Strain 

The joint region is one of the most critical regions in the bridge superstructure that has to remain 
essentially elastic in case of extreme events from earthquakes. A brittle shear failure is not 
allowed by the Caltrans SDC seismic capacity design approach. It was visually observed that 
only minor cracks were developed in the specimen joint region during as-built SP1 cyclic tests as 
previously discussed. However, the strains in critical horizontal and vertical joint tie 
reinforcement were observed to make sure no yielding took place as shown in Figure  5.102. 
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Figure  5.100 History of box-girder web tie reinforcement strain measured at the first tie in 
an inner web from both the north and south sides of the column for all cycles 

 

Figure  5.101 History of box-girder web tie reinforcement strain measured at the first tie in 
an outer web from both the north and south sides of the column for all cycles 
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Figure  5.102 Strain history of selected critical joint vertical and horizontal cross-ties  

5.7.4 Cap Beam Stirrups Strain 

Shear failure is not allowed in the bent cap beam. For the test specimen’s relatively wide cap 
beam, four-branch stirrups were used for transverse shear reinforcement. The strain monitored in 
the inner branches and the outer branches of one of the stirrups at maximum expected shear force 
location did not reach yield as shown in Figure  5.103. Thus, it is concluded that all the shear 
reinforcement in the tested SP1 did not yield and no brittle shear failure took place as observed.     

 

Figure  5.103 Strain history of selected bent cap outer and inner transverse stirrups
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6 Quasi-Static Testing: Repaired Specimen One  

The first specimen (SP1) was tested as-built in a quasi-static cyclic loading test as extensively 
discussed in Chapter 5. Next, SP1 was repaired and tested twice. The first set of tests on the 
repaired SP1 is a quasi-static cyclic loading test similar to the as-built set of tests. The objective 
of such repaired specimen cyclic loading tests was to check the repaired column capacity and 
verify whether the cap beam remained essentially elastic as required by the Caltrans SDC (2013). 
That is because the main goal of the repair was conducting HS trials to validate the developed 
new HS communication system rather than pursuing a full repair or retrofit to restore the full 
capacity of the system. Thus, the HS trials comprised the second set of tests that utilized the 
repaired SP1. Only the first set of tests is presented here while the HS trial tests are discussed in 
Chapter 7 next. In this chapter, brief discussions of the undertaken rapid repair procedure and 
key results from the cyclic loading tests of the repaired SP1 are presented. The results are 
compared against the original as-built test for insight regarding the effectiveness of the repair. 

6.1 REPAIR PROCEDURE 

The repair of the already tested SP1 focused only on the damaged column, and particularly, the 
plastic hinge region that experienced extensive concrete spalling, reinforcing steel buckling, and 
several bar ruptures.  The repair involved replacing the damaged concrete regions with high-
strength mortar, injecting all cracks with high-strength epoxy, adding few polymer reinforcing 
bars next to the ruptured original reinforcing steel bars, and wrapping the column with three 
layers of unidirectional Carbon Fiber Reinforced Polymer (CFRP) layers. All the material 
properties for the different materials used in the repair that were provided by the repair company 
were discussed in Chapter 3. More details of the step-by-step repair procedure are presented 
along with several illustrative photographs.  

The first step required cleaning and removing all loose concrete chunks using hammering 
as shown in Figure  6.1. The prepared clean plastic hinge region is shown also in the same figure. 
A drilling machine was used to drill holes along the cracks lines at adequate spacing carefully in 
the cracked regions to be used for epoxy injection. The drilling procedure and final holes pattern 
viewed from the east side of the column are shown in Figure  6.2. Figure  6.3(a) shows all the 
drilled holes occupied with plastic injection ports and the application of a sealant layer of epoxy 
that covered the cracked zones and around the injection ports to avoid any epoxy leakage during 
injection. The exposed parts of the reinforcing bars were cleaned from any dust from the drilling 
process or concrete small portions using a wire brush. A special type of epoxy for bonding and 
corrosion protection (BC-020) was used to cover the rebars to enhance the bond with other repair 
materials. The final prepared reinforcing bars are shown in Figure  6.3(b). Subsequently, high-
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The repaired SP1 cyclic tests were carried out under a single constant gravity load level 
of 164 kips, which corresponded to 10% of the axial column capacity. It is to be noted that the 
as-built SP1 tests were conducted under two levels of gravity load but for the repaired specimen 
testing, only the second level of gravity load was used (10%). The force applied through each of 
the two vertical actuators along with the total resulting gravity load throughout the full course of 
the repaired SP1 cyclic tests is shown in Figure  6.15. The total vertical reactions at the two struts 
at the ends of the bent cap beam as compared to the total gravity load are shown in Figure  6.16. 
The total reactions at the struts are almost 70% of the total gravity load (115 kips to 164 kips 
ratio), i.e. the box-girder ends where the specimen was supported on the two cast-in-place beams 
attracted the remaining 30% of the gravity load.  Meanwhile, it is observed that the total reaction 
at the two struts is almost constant throughout the transverse and longitudinal lateral loading. 
This confirms that two equal but opposite reactions always existed at the two struts during the 
lateral transverse loading. Also, no additional reactions were generated during lateral 
longitudinal loading because the resulting moment is out of the bent cap beam plane and did not 
generate any vertical reactions at the struts. 

To further verify that the intended load pattern was applied correctly, the displacement 
orbit of all the loading cycles in both transverse and longitudinal directions is shown in 
Figure  6.17. The cross displacements orbit illustrates that both transverse and longitudinal 
loadings were applied independently, i.e. one direction at a time. However, at extreme 
longitudinal displacements, a small transverse displacement was obtained, which can be 
observed from Figure  6.17, due to the triangular actuator setup flexibility in the longitudinal 
direction. The displacement history that reflects the FEMA 461 load pattern for all repaired SP1 
cyclic tests in transverse and longitudinal directions is shown in Figure  6.18. Only one cycle of 
loading was applied in the last group of cycles in both transverse and longitudinal directions. The 
testing was then stopped to avoid extensive damage to the repaired SP1 and maintain a 
reasonable residual force capacity for the HS trials. The history of the measured forces is shown 
in Figure  6.19. It is obvious that the force capacity was decreasing significantly as testing 
proceeded, which could be tied to the popping reinforcing steel rupture noise heard during the 
test. The test stopped when the residual force capacity was about 10 kips in one side and 20 kips 
in the other side. This was a reasonable force capacity to preserve for pursuing the HS trials.  

 

Figure  6.15 Gravity load history at both vertical actuators and total applied gravity load 
throughout the repaired SP1 transverse and longitudinal cyclic loading tests 
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Figure  6.18 Displacement history of the lateral cyclic loading pattern applied during the 
repaired SP1 tests in transverse and longitudinal directions 

 

Figure  6.19 Lateral force history measured during testing the repaired SP1 under lateral 
cyclic loading in transverse and longitudinal directions 
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tests in both transverse and longitudinal directions. That is to explore how the repair scheme 
enhanced the global behavior from the final state reached after the as-built SP1 tests were 
concluded. A summary of the as-built and repaired SP1 force and stiffness comparison is shown 
in Table  6-1. The ratio of the increase in the force capacity and secant stiffness from the final as-
built state due to the repair is computed and shown in the table as well. The overall force-
displacement relationship for all as-built and repaired SP1 cyclic loading test runs in both 
transverse and longitudinal directions are compared in Figure  6.20. Meanwhile, the stiffness 
degradation as loading proceeded in both as-built and repaired SP1 tests is compared as 
represented by the secant stiffness value against the loading cycle ductility level in both 
transverse and longitudinal directions in Figure  6.21. 

From Table  6-1 and Figure  6.20, it is observed that the repair led to a 22% and 25% 
increase of the force capacity from the last residual force obtained from the as-built tests when 
loading progressed in the North longitudinal and West transverse directions, respectively. 
Meanwhile, the repair did not enhance the force at all or just slightly increased it when the 
specimen was loaded in the East transverse and South longitudinal directions. This is attributed 
to the fact that the CFRP reinforcing bars that replaced the ruptured steel reinforcing bars were 
added mainly in the East and South sides of the column. It is to be noted that when reinforcement 
is added in one side, e.g. East side, of the column, it enhances the moment capacity when the 
column is pushed in the opposite side, i.e. West side. The force increase can be attributed also to 
the confinement effect that helped engage the buckled rebars before they ruptured.  

While only a maximum of 25% increase in column capacity was obtained in one side, a 
significant increase of the stiffness was observed due to the repair. It is expected that the moment 
of inertia, and in turn, the stiffness of the column should increase because the column full cross-
section was restored and well-confined. A huge improvement in the stiffness well above 300% of 
the final soft state that was reached at the end of the as-built tests is observed from Table  6-1. It 
is observed from Figure  6.21 that the initial stiffness obtained from the first loading cycle is 
slightly higher in the transverse direction than the longitudinal direction. This observation is 
consistent in both as-built and repaired specimen tests. It is noticed also that the final stiffness 
estimated for the last loading cycle of the repaired specimen tests is lower than what was 
estimated for the as-built specimen test. This can be tied to the observed crack at the column-
bent cap interface, Figure  6.14, that led to this softer behavior at the end of loading. 

  Table  6-1 Repaired SP1 improved force and stiffness relative to the as-built residuals   

Direction of Loading 

Force [kips] Stiffness [kip/inch] 

As-built 
Residual 

Repair 
Increase 

Ratio [%] 
As-built 
Residual 

Repair 
Increase 

Ratio [%] 

Transverse 
West -20.68 -25.91 25.3 

5 22.3 346.0 
East 33.63 33.58 -0.1 

Longitudinal 
South -25.06 -26.09 4.1 

4.8 20 316.7 
North 24.79 30.35 22.4 
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Figure  6.21 Comparison of secant stiffness degradation relative to the ductility levels for 
the as-built and repaired SP1 cyclic tests in both transverse and longitudinal directions 
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6.4 COLUMN LOCAL BEHAVIOR 

Similar observations can be drawn from the column local behavior as global behavior. That is 
because the overall column-cap beam-box girder behavior was mainly governed by the column 
behavior which agrees with the Caltrans SDC seismic capacity design objective. The moment-
curvature behavior of the column for the as-built and repaired specimen tests was compared and 
shown in Figure  6.22. The figure shows that comparable curvature capacity was obtained from 
the repaired specimen as the as-built test. It is to be noted that the residual moment capacity from 
the as-built tests were not shown in the figure as only up to the runs that corresponded to correct 
curvature values were plotted. That is because the last run in both transverse and longitudinal 
direction of the as-built tests, which were excluded from the plots, experienced extensive 
spalling and bar ruptures that displaced the LVDTs and led to incorrect curvature estimates. 
Nevertheless, the increase in the moment capacity is proportional to the increase in the force 
capacity as previously discussed.    

Another aspect of comparing the column behavior is how the moment-curvature 
distribution varied at different height levels inside or outside the plastic hinge zone. The 
moment-curvature relationships obtained at 4 different levels are shown in Figure  6.23 and 
Figure  6.24 for the transverse and longitudinal directions, respectively. The reader is referred to 
Chapter 3 (particularly Figure  3.51) for more information about the location of curvature 
measurement levels. It can be noticed from both figures that unlike the as-built case, all the 
curvatures were concentrated in the repaired specimen tests in level 1, which is the closest to the 
column-bent cap interface. This implies that in the regular column plastic hinge mode of failure, 
the damage extends throughout the plastic hinge zone. However, in case of the well-confined 
repaired specimen column, all the damage was tied to an opening gap and separation that took 
place at the column-bent cap interface. Thus, the whole repaired column was experiencing a rigid 
body rotation as illustrated in Figure  6.25. A quick check to verify the rigid column rotation is to 
compute the rotation at the column’s base from the estimated curvature and tie it to the column’s 
top displacement. The rotation of the column in the last transverse loading cycle was found to be 
4.2°. The corresponding displacement at the column’s point of loading is roughly estimated 
using the column’s height as shown in Figure  6.25. A lateral displacement of 6.59 inch is 
associated to a 4.2°-rigid column rotation, which is compared against the 6.8 inch actual applied 
displacement for this loading cycle. The only 3% difference between the actual displacement and 
that corresponding to a rigid column rotation supports the experimental observation that the well-
confined column limits the damage to its interface with the cap beam. 

The rigid column rotation observation can be tied to rocking column behavior in other 
bridge configurations. In this study, the column and bridge superstructure were tested in an 
inverted position, i.e. all the column damage that was observed would be located at the column 
top in the correct orientation. Moreover, the specimen’s prototype bridge is a three-column bent 
with pinned pile caps at the supports. Thus, although the column in this study is not a rocking 
column for the acknowledged reasons, yet useful observations can be extended to rocking 
columns. In bridge configurations where the pile caps provide full fixation, a CFRP jacket that 
well-confines the plastic hinge zone of the column at the bottom could promote a rocking 
column behavior. It is to be noted that most of the recent studies that focused on resilient bridge 
columns tied the resiliency to the rocking behavior that is achieved using different techniques, 
e.g. self-centering prestressing, or hybrid fiber RC, or dual shell (Torono et al., 2014 among 
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Figure  6.25 Calculation of the column head displacement for rocking as a rigid body 
around the base 

6.5 CAP BEAM LOCAL BEHAVIOR 

One of the main reasons to carry out a set of cyclic loading tests on the repaired SP1 similar to 
that of the as-built was to verify the essentially elastic cap beam behavior. It has been mentioned 
several times that a bridge seismic capacity design approach limits all damage to the column and 
the bent cap beam has to stay essentially elastic. All the test results and discussion in Chapter 5 
shows that the as-built specimen behavior complied with the Caltrans SDC requirements. 
However, it was desired to further involve the bent cap beam in a second set of cyclic loading to 
verify whether it is still elastic after all the extensive yielding observed from the as-built tests. 
The reactions observed at the beam end struts were used to calculate the cap beam moments, 
while the strains measured in the cap beam top and bottom reinforcement were used to estimate 
the curvature. To verify that the moment values are correct, moment equilibrium at the column-
bent cap joint due to lateral loading only was sought. The total cap beam moment from both 
sides of the joint along with box-girder torsion due to lateral transverse loading should sum up to 
the column moment. From pre-test analysis, the component from the box-girder torsion, 
especially for the case of extensively cracked section, is negligible. Thus, the total cap moment 
should be approximately the same as the column moment, which is verified in Figure  6.26 for the 
repaired SP1 and similar to Figure  5.62 for the as-built SP1. The two individual components that 
contributed to the total bent cap beam moment, namely the moment at sections B and D, are 
shown in Figure  6.27. 

The obtained cap beam moments from the repaired specimen tests were also compared 
with the as-built to verify the essentially-elastic state of the bent cap beam. The moment history 
for the cap beam at section B is shown in Figure  6.28 for both as-built and repaired SP1 cases. 
Furthermore, the criterion used to judge whether the cap beam is elastic or not is the moment-
curvature relationship at different loading levels and reversals. The moment-curvature 
relationships for the as-built and repaired SP1 tests are compared at both sections B and D in 
Figure  6.29 and Figure  6.30, respectively. The residual strains from the as-built test were not 
picked up again at the start of the repaired specimen tests due to possible load relaxation and 
instrumentation and data acquisition reset. Thus, the curvature values that were estimated from 
the strains were set to zero as starting point of the repaired specimen tests’ plots in Figure  6.29 
and Figure  6.30. However, this should not change the way those plots are interpreted because the 
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main objective was to see how the moment-curvature approximately relate as loading progressed 
and its direction reversed. From the figures, it is shown that the cap beam in the repaired 
specimen tests showed linear elastic behavior at all loading cycles and reversals in both 
transverse and longitudinal loading directions. Also it is noted that the cap beam experienced less 
moment demands during the repaired specimen tests and did not reach the yielding moment 
value. Sample plots of the instrumented bent cap beam reinforcing steel bars strain history at 
sections B and D are presented in Figure  6.31 and Figure  6.32, respectively. Given a yielding 
strain value of 0.0026 (=2600 µstrain), it is noted from the Figure  6.31 and Figure  6.32 that the 
cap beam rebars either slightly yielded or did not yield at all. Although the cap beam extensively 
yielded during the as-built specimen tests, it did not yield at all in the repaired specimen tests due 
to the reduced demand. Therefore, the behavior of the bent cap beam that was observed in the as-
built specimen testing is experimentally verified to be essentially elastic because the cap beam 
did not yield or show any plastic or residual strain when it was retested through the repaired 
specimen tests. 

 

Figure  6.26 Column and total bent cap beam moment history for all repaired SP1 cyclic 
loading tests in both transverse and longitudinal directions 
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Figure  6.27 Bent cap beam moment history at both sections B and D for all repaired SP1 
cyclic loading tests in both transverse and longitudinal directions 

 

Figure  6.28 Comparison of bent cap beam moment at section B for all as-built and 
repaired SP1 cyclic loading tests in both transverse and longitudinal directions  

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

Time [minute]

M
om

en
t 

[k
ip

s-
in

ch
]

 

 

Section B

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

Time [minute]

M
om

en
t 

[k
ip

s-
in

ch
]

 

 

Section D

0 100 200 300 400
0

1000

2000

3000

4000

5000

Time [min]

M
om

en
t 

[k
ip

-i
nc

h
]

 

 

0 50 100 150 200
0

1000

2000

3000

4000

5000

Time [min]

M
om

en
t 

[k
ip

-i
nc

h
]

 

 

As-Built Repaired



Fig

Fig

ure  6.29 Cap

ure  6.30 Cap

p beam mom

p beam mom

ment–curvatu
and repaire

ment–curvatu
and repaire

239 

re relationsh
ed tests at Se

 

re relationsh
ed tests at Se

hip comparis
ection B 

hip comparis
ection D 

son between 

son between 

SP1 as-built 

SP1 as-built 

 

 



240 

 

Figure  6.31 Sample of two of the six instrumented cap beam reinforcing bars strain 
history at Section B for all repaired SP1 cyclic tests 

 

Figure  6.32 Sample of two of the six instrumented cap beam reinforcing bars strain 
history at Section D for all repaired SP1 cyclic tests 
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6.6 FRP JACKET STRAIN 

One last metric to judge the effectiveness of the CFRP jacket confinement and the repair scheme 
is the jacket circumferential strain. A progressing circumferential jacket strain typically reflects a 
dilating column that is resisted by a counter confining action. The dilation is more localized in 
the compression zone, especially at elevated loading levels where the reinforcing bars could be 
buckling and displacing the concrete cover but stopped by the confining jacket. To monitor this 
phenomenon during the repaired specimen cyclic loading tests, several strain gages were 
installed around the circumference of the CFRP jacket at 8 locations. The circumferential strain 
history at the transverse loading’s two principal sides, namely East and West sides of the 
column, are shown in Figure  6.33. The figure shows that the strain gage is actively engaged only 
when loading is aligned with the strain gages plane, i.e. transverse loading (E-W) in this case. 
Meanwhile, the circumferential strain is sensitive to the loading and unloading as load is 
reversed. When loading is towards the West, only the strain gage in the West side, where 
compression occurred, is picking up higher strains, while the East side gage maintains an almost 
constant strain, and vice versa. This confirms that dilation is localized in the compression zone, 
and more importantly, the CFRP jacket is effectively confining the column regardless of all the 
extensive damage that the column experienced before the repair.  

 

Figure  6.33 Circumferential CFRP jacket strain history in the column East and West sides 
for all repaired SP1 cyclic loading tests in transverse and longitudinal directions  
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Furthermore, the recordings of two strain gages at 45-degrees from transverse loading 
plane are shown in Figure  6.34. The strain values in this case are much less and not very 
sensitive to the loading direction as they are away from the main dilated regions.    

 

Figure  6.34 Circumferential CFRP jacket strain history in the column North-East (top) 
and South-West (bottom) sides for all repaired SP1 cyclic loading tests in transverse and 

longitudinal directions 
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7 Hybrid Simulation: Development and Verification  

Hybrid Simulation (HS) is a mixed computational/physical testing technique that can replace 
shaking table tests. The essence of HS is to use an online computational substructure to update 
the earthquake input signal at each time step based on the force feedback from the physical 
substructure. A complementary objective of this study was to develop a practical HS system that 
utilizes readily available laboratory data acquisition systems along with inexpensive TCP/IP-
Ethernet connections to establish the communication between the physical and computational 
substructures. The main development in this study is the PI interface to communicate with 
OpenFresco (2008) from the computational side, through an inexpensive Ethernet connection to 
replace expensive shared memory communication cards such as SCRAMNet, and the DSP card 
from the experimental side to control the laboratory hardware and receive the physical 
substructure feedback. Another development is implementing a new test setup component in 
OpenFresco that is capable of performing geometric transformations between the global degrees-
of-freedom (DOFs) in the computational model and the actuators local DOFs for the command 
displacements and force feedbacks. A set of verification tests were conducted that used single 
and double actuators that were not attached to any specimens. A complete HS test was conducted 
using the repaired SP1 to validate the whole system. A brief background of HS, the main 
components and developments of the HS system, and verification tests are presented in this 
Chapter. The successfully validated HS system was utilized for conducting the retrofitted SP2 
HS tests as discussed in the next chapter. 

7.1 BACKGROUND 

HS was first mentioned by Takanashi et al. (1975), who referred to the testing method as “online 
test”. In the next decade, there were significant development efforts in the US that included the 
works of Mahin and Williams (1980), Mahin and Shing (1985), Mahin et al. (1989) at UC 
Berkeley, and Takahashi and Nakashima (1987) and Nakashima et al. (1988) in Japan. Previous 
research on HS investigated different areas that included, but not limited to, development of 
suitable integration methods, study of the effect of experimental errors, and real-time HS. The 
following sub-sections briefly discuss basic procedures in HS including numerical integration 
methods, errors in HS, real-time HS, and brief survey of previous relevant HS bridge tests. It is 
to be noted that targeted HS tests were slow tests but a very brief discussion of the real-time HS 
is provided for completeness. 
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7.1.1 Integration Methods 

A wide spectrum of numerical integration methods, such as Newmark methods, generalized-
alpha methods, predictor-corrector methods, and Runge-Kutta methods, exists for solving the 
governing equations of motion, which are discretized in time domain for different structural 
dynamics problems. Not all of the numerical integration methods can be used directly for solving 
the equations of motion in HS testing. Thus, one of the main areas of HS-related research 
concerns with adopting and/or modifying the existing integration methods, or developing new 
specialized integration methods, for HS purposes. A brief survey of the work conducted in this 
field is presented with broad classification of the numerical integration methods. The most 
common classification of numerical integration methods and algorithms is explicit versus 
implicit methods. It is to be noted that an explicit integration scheme was utilized for all the tests 
conducted in this study, but a full discussion is given for completeness. Generally, explicit 
formulations use already available information at a given time-step to predict the new 
displacement value for the next step (to be imposed on the physical test specimen in HS tests). 
On the other hand, implicit formulations require information from both previous and current 
times, and hence an iterative approach is needed. More details about explicit and implicit 
integration methods are presented in the following paragraphs. 

7.1.1.1 Explicit Integration Methods 

For an explicit algorithm, the new solution at time step (i+1) can be expressed entirely by known 
terms such as the current solution state at time step (i) or even previous step (i-1) as in Central 
Difference Method (CDM) for example, i.e.  1 1 1 1, , , , ,i i i i i i iu f u u u u u u        . Explicit integration 

methods are usually conditionally stable, meaning that the integration time step (Δt) should be 
smaller than the shortest natural period of a structure (Tn) divided by a factor (α) to yield a stable 
and accurate solution (Δt ≤ Tn/α). Also the new solution for the next time step can often be 
determined in a single calculation step without the knowledge of the tangent stiffness matrix.  

Two well-known examples of explicit integration methods are CDM and explicit 
Newmark method. Although the equations involved in each method are not specifically 
mentioned herein, it can be shown that the CDM can be reproduced from Explicit Newmark 
when the integration parameter (γ = 0.5). Generally, the explicit Newmark method is used more 
often in HS than CDM for the following reasons: it does not require any quantities before the 
start time (i.e. at t = 0), the velocities and accelerations are directly obtained as the solution 
advances (there is no need to be calculated separately as in the CDM), and it has more favorable 
error-propagation characteristics as shown by Shing and Mahin (1983).  

The advantages of explicit methods are that they are computationally very efficient, easy 
to implement, and fast in their execution. On the other hand, a limiting factor for the application 
of the explicit methods is their stability criteria. Hence, they are not suitable for stiff problems 
(short periods) and cannot even be used at all for infinitely stiff problems. Although this 
limitation can be overcome by choosing smaller integration time steps, the integration time step 
might need to be reduced to an extent that the application of explicit methods to HS becomes 
impractical. The implicit methods are sought in these cases. It is worth noting that some attempts 
have been conducted to develop unconditionally stable explicit methods such as the one 
proposed by Chang (2002). 



245 

7.1.1.2 Implicit Integration Methods 

For an implicit algorithm, the solution at time step (i+1) not only depends on known quantities 
from the current and previous time steps, but also on the solution itself, i.e. 

 iiiiiii uuuuuufu  ,,,,, 1111   . Because of this, implicit algorithms contain algebraic formulas 

that need to be solved iteratively in order to determine the solution at the end of a time step. 
Many implicit integration methods are generally unconditionally stable, thus ideal for stiff and 
infinitely stiff problems. This also means that only the accuracy of the algorithm needs to be 
considered when determining the time step size, since the method is stable for any step size. 
Usually this permits the selection of larger analysis time steps as compared to the explicit 
methods. 

Implicit methods are well suited for large problems with many DOFs or for infinitely stiff 
problems, which arise when structural DOFs with no mass are present. However, they are 
computationally more demanding because they require iterative solution schemes, and they can 
introduce spurious loading and unloading cycles on the physical parts of the HS. A comparison 
of the features of explicit and implicit integration methods is shown in Table  7-1.  

 Table  7-1 Comparison between explicit and implicit integration methods 

Item Explicit Methods Implicit Methods 

Required input  1111 ,,,,,   iiiiiii uuuuuufu    iiiiiii uuuuuufu  ,,,,, 1111    

Iterations not required Required 

Tangential 
stiffness 

not required required at each time step 

Stability conditionally stable: Δt ≤ Tn/α generally unconditionally stable 

Computational 
cost 

easy to implement, and 
computationally efficient 

harder to implement, and computationally 
expensive due to iterative schemes 

Execution time generally faster generally slower because of iterations 

When to use 

- When only physical specimen is 
tested, and analytical part consists of 
mass and damping only; 
- For MDOF systems with non-
singular mass matrix (all DOFs have 
nonzero masses). 

- Stiff or infinitely stiff problems with 
short periods; 
- For MDOF systems with singular mass 
matrix (some DOFs have zero masses 
such as rotational DOFs, without 
considering the associated mass moment 
of inertia, in moment resisting frames) 

 

A short survey of how the integration methods were adopted and developed in previous 
studies is presented. Most of the first-generation HS testing and research focused on the use of 
explicit methods to avoid iterative implicit methods in HS testing involving nonlinear seismic 
behavior of structures. In the first documented application of HS by Takanashi et al. (1975), the 
CDM (explicit method) was used, while Mahin and Williams (1980) were the first to use explicit 
Newmark scheme. Other examples where explicit methods were employed are the works of 
Nakashima and Masaoka (1999) and Magonette (2001).  
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To overcome the limitations of stability in explicit methods, Dermitzakis and Mahin 
(1985) proposed another approach where explicit and implicit methods were employed for the 
experimental and analytical substructures, respectively. Nakashima et al. (1990) proposed a 
specialized Operator-Splitting (OS) method for HS based on the non-iterative implicit-explicit 
predictor-corrector scheme of Hughes et al. (1979). This integration method was later employed 
by Mosalam et al. (1998) for the HS of steel frames infilled with unreinforced concrete block 
masonry. 

Thewalt and Mahin (1987) developed the first implicit integration method for HS based 
on the alpha-method by Hilber et al. (1977). Another application of a specialized implicit 
integration method is an integration scheme that was based on the implicit Newmark method 
wimh sub-stepping in an inner loop (Dorka and Heiland 1991, Dorka 2002, Bayer et al. 2005). 
The implicit integration method developed by Shing et al. (1991) based on the alpha-method 
(Hiber et al. 1977) was used in HS of concentrically braced frames (Shing et al. 1994). Recently, 
Schellenberg et al. (2009) developed several specialized integration algorithms for HS, including 
a specialized implicit Newmark method with constant number of iterations and uniform 
displacement increments for the iterations of an integration time step.  

An approach that is associated with numerical integration methods is related to adopting 
numerical damping to provide numerical energy dissipation for higher modes since the effect of 
experimental errors is more dominant for the higher modes. Hence, some of the previous 
research developed integration methods that damp out the spurious higher mode participations. 
Two of these methods are the modified Newmark explicit methods proposed by Shing and 
Mahin (1983) and by Chang (1997). An example of an implicit method providing numerical 
energy dissipation is developed by Bonelli and Bursi (2004) based on the generalized alpha-
methods by Chung and Hulbert (1993). 

7.1.2 Errors in HS Testing 

Due to the nature of the multi-component of HS system (HSS), there are numerous possibilities 
for error sources either in the computational part or the experimental part especially in the 
controller and boundary conditions. Elimination or at least minimizing these errors is necessary 
for a valid and reliable HSS. Errors in HS can be categorized into three groups. The first group is 
the errors due to structural modeling such as the structural idealization that consists of replacing 
a continuous system by a discrete number of DOFs. The second group consists of the errors due 
to the numerical methods. Experimental errors constitute the third group, which can be further 
classified as random and systematic errors. The numerical and random errors were found 
insignificant in contaminating the results, and thus typically ignored. However, due to the 
propagation and accumulation of systematic experimental errors, attention was directed to better 
understand the nature of these errors in order to either eliminate or minimize them or correct the 
results by compensating for such errors to achieve a more reliable system.  

A brief survey of HS errors-related previous research is presented. Mosqueda (2003) 
provided a comprehensive summary of the nature and sources of HS errors and available error 
compensation techniques. The effect of experimental errors has always been an important area of 
HS research especially before the advent of modern digital controllers and closed loop control of 
hydraulic actuators. In two of the earliest works, the propagation of random and systematic errors 
was evaluated by Mahin and Williams (1980) and Shing and Mahin (1983). The cumulative 
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nature of experimental errors introduced by the control and data acquisition systems in HS tests 
using explicit numerical integration algorithm was studied by Shing and Mahin (1987). 
Reliability of the HS method was investigated by Yamazaki et al. (1989) where experimental 
error behavior was examined based on an elastic test of a six-story steel structure. Thewalt and 
Roman (1994) presented several parameters for identifying errors and quantifying their 
magnitude and effect. Mosqueda (2003) simulated the experimental errors, such as the random 
noise in the load cells and displacement lag errors, using Simulink models and derived linear 
transfer functions for time delay errors and for the dynamic behavior of experimental setups 
including the specimen, the transfer system, and the reaction wall. 

Research aimed at reducing the effect of errors on HS. As an example of such work, 
Chang et al. (1998) proposed solving the momentum equation of motion which is obtained by 
integrating the force equation of motion. In this approach, the measured forces are filtered by the 
integration algorithm before being used in the numerical solution. Horiuchi et al. (1999) 
measured the time lag of the actuator response, i.e. the difference between command and 
feedback displacements, and predicted the command of the actuator by advancing the current 
time with the delay time using a polynomial extrapolation procedure. Alternatively, Elkhoraibi 
and Mosalam (2007) overcame this time lag by developing a feed-forward error compensation 
scheme based on the modification of the displacement command with an error term which is a 
function of the actuator velocity. Stoten and Magonette (2001) have investigated the effect of 
improvement of the hardware components, such as the use of digital controllers and digital 
transducers in order to achieve better experimental results. Development of integration methods 
aimed at damping out the spurious higher mode participations can also be classified in this 
category of research related to reducing the effect of errors on HS. 

7.1.3 Real-time Hybrid Simulation 

A HS test is said to be conducted in real-time when the experimental substructure (physical 
specimen) is loaded with the actual calculated velocities and accelerations. Therefore, highly 
variable loading rates are expected in real-time tests. Conventional HS with slow rates of 
loading, which is similar to the tests conducted in this study, is sufficient in most of the cases 
where rate effects are not important such as reinforced concrete components. However, for rate-
dependent specimens, such as triple friction pendulum bearings, real-time HS becomes essential. 
Another relevant application is the use of real-time HS for testing rate-dependent composite 
(polymer) insulator posts (Mosalam et al. 2012).  

The first progress in real-time HS was achieved by Nakashima et al. (1992) when 
dynamic actuators and a digital servo-mechanism were used. After the development of actuator-
delay compensation methods by Horiuchi et al. (1999), research on real-time HS gained 
momentum. Darby et al. (1999, 2001) developed various real-time partitioned HS utilizing 
control system approaches. Nakashima and Masaoka (1999) employed a digital signal processor 
(DSP) for the first time to separate the actuator signal generation from the target displacement 
computation. Nowadays, the rapid development of computing technologies and control methods 
increases the number of real-time HS research activities for different applications. For example, 
a large amount of work was conducted on electrical switches using real-time HS (Günay and 
Mosalam 2014). 
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7.1.4 Previous HS Bridge Tests 

Large portion of the studies that involved HS focused more on the development side and 
robustness of the testing method as briefly presented in the previous subsections. However, 
several studies utilized HS directly in different applications. A short discussion of the most 
recent studies that focused on HS application rather than development, mainly relevant studies of 
HS bridge tests, is presented. Some of the research projects involved whole bridge systems, 
especially for the computational substructure, and other focused only on bridge components as 
discussed next.  

Large-scale hybrid simulations of full bridge structures were tied to geographically 
distributed HS testing in the past years. In the US, several institutions and laboratories are 
already connected with high performance networks to explore the benefits of integrating their 
resources. Collaboration between the Kyoto University and the University of California, 
Berkeley (Takahashi et al., 2008) aimed at examining the seismic response of a two span 
continuous bridge with C-bent column. The study showed confidence in using a HS system 
where OpenFresco (2008) and OpenSees (2000) can simulate a complicated structural system 
with the most appropriate model. This framework was very stable even in strong nonlinear cases. 
The distributed HS was found to be a powerful tool for the evaluation of structural systems. 

Seismic design and research have been mainly concentrating on horizontal earthquake 
excitation whereas the vertical component has generally been neglected. However, the awareness 
of the significance of vertical ground motion has gradually been increasing due to results from 
studies and field observations, which confirm the possible destructive effect. This study 
discussed the preliminary effects of vertical excitations as part of the pre-test analysis earlier in 
Chapter 4. The effects of vertical ground motions on RC structures and bridge columns have 
been studied in Kim and Elnashai (2008) using a combined analytical-experimental research 
approach. For the experimental investigation, sub-structured pseudo-dynamic and cyclic static 
tests were employed using the NEES (Network for Earthquake Engineering Simulation) multi-
axial full-scale sub-structured testing and simulation (MUST-SIM) facility at the University of 
Illinois at Urbana-Champaign (UIUC). 

Further research projects focused on initiatives to build up a standardized platform for the 
efficient setup of network-based multi-site hybrid experiments, and standardized protocol 
procedures for efficient data exchange. Chang (2008) established a robust standardized 
procedure for laboratories at multiple sites to network their testing facilities in order to perform 
collaborative experiments. A collaborative research project was established between Canada and 
Taiwan to develop modules for control and instrumentation based on the use of standardized 
software interfaces. The Internet-based Simulation for Earthquake Engineering (ISEE) platform 
(Yang et al. 2007, Wang et al. 2007) was employed for the communication between the 
laboratories. A large-scale application to use the platform involved a hybrid model for a four-pier 
bridge system with prototype columns, which were tested at three remote sites over long 
distance. The tests progression and 3D visualization of the test results, such as deformed 
prototype bridge, were broadcast through the Internet in real-time. This experiment was 
considered the first cross-continent collaborative-networked hybrid test on large-scale specimens 
and has successfully demonstrated the potentials and future direction of experimental research of 
large-size structures and civil infrastructure systems. The experiment investigated the behavior of 
double–skin concrete filled tubular (DSCFT) columns. Three DSCFT columns, which is an 
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innovative design for resilient bridge piers in high seismicity areas, were numerically and 
experimentally tested at three remote sites. Local buckling of the external steel tube was 
observed with one test specimen and occurred due to de-bonding between the steel tube and the 
filled concrete. No cracks were observed on the confined concrete core at the cut section, 1 inch 
above the bulge due to local buckling, which rendered the double-skinned steel tubes efficient 
for confinement and prospect resilient bridge designs. 

In China an internet-based platform NetSLab has been developed for data transmission 
and collaborative control among distributed laboratories during the tests. Xin-jiang and Shi-zhu 
(2009) conducted a seismic HS test of a multi-span bridge, in which two FRP retrofitted RC 
columns were tested physically, and three columns were simulated numerically. Both tested 
columns had different lengths and were retrofitted to prevent either shear or flexural damage to 
the column. The results showed that the failure modes were all ductile flexural failure besides an 
observed pinching phenomenon and significant stiffness degradation after yielding, which 
demonstrated the confining effects of the FRP retrofit in increasing the column ductility.  

One of the most relevant recent studies that used a similar HS test setup to the present 
study, and was conducted also at UC Berkeley, is the investigation of post-earthquake traffic 
capacity of modern bridges in California using HS by Terzic and Stojadinovic (2010). In 
California, the modern highway bridges designed using the Caltrans SDC are expected to 
maintain at minimum a gravity load carrying capacity during both frequent and extreme seismic 
events. However, no validated, quantitative guidelines for estimating the remaining load carrying 
capacity of such bridges after an earthquake event exist. This was the motivation for the study in 
(Terzic and Stojadinovic 2010) to combine experimental and analytical methods to evaluate the 
post-earthquake traffic load carrying capacity of a modern California highway overpass bridge. 
An experimental study on models of circular RC bridge columns was performed to investigate 
the relationship between earthquake-induced damage in bridge columns and the capacity of the 
columns to carry axial load in a damaged condition. The test results were then used to calibrate a 
FE model of a bridge column. This bridge column model was incorporated into a hybrid model 
of a typical California overpass bridge and tested using the HS technique. A multi-DOF HS tests 
were conducted that used 2 translational and 2 rotational experimental DOF for the test, which 
required a new experimental setup element in OpenFresco; similar to what is developed in the 
present study. The FE model of the typical California overpass bridge was validated using the 
data from the HS tests.  

The validated model of the typical bridge was used to evaluate its post-earthquake truck 
load capacity in an extensive parametric study that examined the effects of different ground 
motions and bridge modeling parameters such as the boundary conditions imposed by the bridge 
abutments, the location of the truck on the bridge, and the amount of bridge column residual 
drift. Terzic and Stojadinovic (2010) concluded that a typical modern California highway bridge 
is safe for traffic use after an earthquake if no columns failed and the abutments are still capable 
of restraining torsion of the bridge deck about the longitudinal axis. If any of the columns failed, 
i.e. if fractured column reinforcing bars are discovered in an inspection, the bridge should be 
closed for regular traffic. Emergency traffic with weight, lane, and speed restrictions may be 
allowed on a bridge whose columns failed if the abutments can restrain torsion of the bridge 
deck. These findings pertain to the bridge configuration investigated in the study.  

A novel complex hybrid experimental test of a curved four-span bridge was performed at 
the NEES MUST-SIM facility at UIUC in 2013 (Frankie et al. 2013). The bridge was partitioned 
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7.2.1 HSS Components and Connectivity 

Four main components comprise a typical HSS. The first component is a discrete model of the 
structure to be analyzed on a computer, including the static and the dynamic loading. The FE 
method is used to discretize the problem spatially and a time-stepping integration algorithm is 
then used for the solution of the equations of motion with time discretization. The resulting 
dynamic equations of motion for the finite number of discrete DOF are a system of second-order 
ordinary differential equations in time that are initialized and expressed as shown in Equations 
( 7-1). 
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where 
..

U , 
.

U , and U are the acceleration vector, the velocity vector, and the displacement vector 
at the structural DOFs, respectively. M is the mass matrix assembled from the nodal and element 
mass matrices, C is the viscous damping matrix, Pr are the assembled element resisting forces 
(which depend on the displacements), P are the externally applied nodal loads, and Po are the 
assembled “equivalent” element loads. 

The second required component is a transfer system consisting of a controller and static 
or dynamic actuators, so that the incremental response (generally the displacements) determined 
by the time-stepping integration algorithm can be applied to the physical portions of the 
structure. For slow tests such as the ones conducted in this study, quasi-static testing equipment 
can be used. Thus, the same controllers and static actuators that were used in the cyclic loading 
tests of SP1 were utilized again in SP2 HS tests. The third major component of the HSS is the 
physical specimen that is being tested in the laboratory and a support system (e.g. reaction wall 
or frame) against which the actuators of the transfer system can react. The fourth and last 
component is a data acquisition system including displacement transducers and load cells. The 
data acquisition system is responsible for measuring the response of the test specimen and 
returning the resisting forces to the time-stepping integration algorithm to advance the solution to 
the next analysis step. 

A vital feature of HS is to connect the above mentioned four components together to 
achieve vigorous two-way communication for sending the displacement input and receiving the 
force feedback. The major components and connectivity pieces of the utilized HSS at the 
Structures Laboratory at UC Berkeley are shown in Figure  7.2. The main pieces identified in this 
figure are: (a) A computational platform where the numerical integration of the governing 
equations of motion is performed (OpenSees was used in this case), (b) OpenFresco (2008) 
generic middleware that communicates with the computational platform, (c) New interface 
software developed within the Pacific Instruments (PI) data acquisition system (DAQ) that 
communicates, in turn, with OpenFresco through TCP/IP connection, (d) Digital Signal 
Processing (DSP) card that further complements the communication loop with the laboratory 
hardware, and (e) digital controllers that command the hydraulic actuators in displacement 
control. The main development in this study is the PI interface to communicate with OpenFresco 
from the computational side, and the DSP card from the experimental side. Another development 
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full bridge behavior. Accordingly, the computational model was a multi-DOF column with 
lumped mass at the top. The Open System for Earthquake Engineering Simulation, OpenSees 
(2000), previously used in the pre-test analysis, was used again in the HS tests as the FE software 
to analyze the computational substructure of the test specimen and solve the dynamic equation of 
motion to solve for the displacement at each time step. Meanwhile, OpenSees was used along 
with the middleware Open-source Framework for Experimental Setup and Control, OpenFresco 
(Schellenberg 2008), to connect the FE model with the control and data acquisition software. 
OpenFresco was designed in an object-oriented structure that is similar to that of OpenSees, and 
shares common classes and subroutines for element types and numerical integration methods for 
instance. Therefore, OpenFresco is most conveniently used with OpenSees as the FE platform 
even though OpenFresco has the capabilities to communicate with a variety of other FE software 
programs. Accordingly, a single OpenSees/OpenFresco input file that is prepared using the Tool 
Command Language (TCL) is used to define the computational model and the communication 
settings. The specimen is represented in OpenSees using the Generic Element type. 

The HS tests were conducted using a transverse-only or bidirectional horizontal 
components of the ground motion. Again, the vertical component of the ground motion was used 
only in the tests that incorporated the P-delta correction where the total fluctuating axial load, 
due to both of the gravity load and vertical excitation, was used to correct for the lateral force 
feedback. As previously discussed in Chapter 3, a short list of six ground motions were found to 
cause the largest demands in the bent cap. Only the Northridge earthquake record at the Rinaldi 
station, out of the short list of six records previously identified in Chapter 4, was used in the 
actual SP2 HS tests as it was representative of a California earthquake where the used prototype 
is considered. Figure  7.3 shows the three components of the 100% Rinaldi record.  

The above discussion is concerned mainly with the computational model considered for 
the intended HS tests of SP2. However, for the HSS verification tests that used the actuators only 
without any attached specimen, a more generic and much larger DOF model was used with a 
variety of ground motion records. That is to validate the HSS for larger computational models 
and different cases. The HSS verification tests used different ground motions with more cycles 
and harmonic nature, such as the El Centro record, and pulse-like nature, such as the Rinaldi 
record. Moreover, a multi-story multi-bay frame was used as the computational model where one 
of the first story columns was replaced by the experimental element. A simulation experimental 
element, available in OpenFresco and based on input material and geometric properties, was 
used rather than an actual experimental physical substructure. This was very beneficial where a 
multiplier (assumed stiffness) of the displacement of the free actuators in the HS verification 
tests was fedback as a virtual force feedback to the system to check the communication loop 
against the pure simulation results. More details are presented in the single actuator verification 
tests.    
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Figure  7.3 Three components of the Northridge earthquake recorded at Rinaldi Station 

7.2.3 Physical Substructure 

The hybrid nature of the tested model is attributed to the fact that part of the model is a 
computational analytical model, whereas the rest of the model is a physical experimental 
substructure. In the considered HS tests in this study, the physical specimen was the column-bent 
cap-box girder subassemblage, which was similar to the test specimen considered for the quasi-
static cyclic loading tests. The computational model, as previously discussed, was a column 
model with lumped mass and damping. The input for the equation of motion was supplemented 
by the resisting force feedback, which reflects the lateral overall system behavior of the full 
column-bent cap-box girder subassemblage after the proper geometric transformations were 
applied. Figure  7.4 shows a view of the retrofitted SP2, before setting up the instrumentation and 
the test loading setup, which comprised the physical substructure of the HS tests. 
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accordingly, correct the lateral force feedback. Figure  7.5 shows schematically how the corrected 
force is achieved when the P-delta effect is incorporated. The simple arithmetic operation to 
correct the force feedback was performed using a Digital Signal Processor (DSP) subroutine. 
This split computations provided additional flexibility for future development where the 
conventional DAQ system can be used to accommodate a hybrid computational model, i.e. part 
of the computations are performed using the FE platform while another part is performed using a 
DSP subroutine, for instance. 

The P-delta correction involved the applied gravity load during a HS test as well as the 
corresponding axial force resulting from the vertical excitation calculated using the model 
featured in Figure  7.6. Thus, a different P-delta correction force was calculated at each time step 
to accommodate the fluctuating total axial load from the gravity and the vertical excitation. The 
solution in the vertical direction assumed a bi-linear force-deformation of the interacting column-
bent cap-box girder system as shown in Figure  7.6. This approximation aimed at capping the 
resulting vertical force at a certain limit that was dictated by the results of the vertical pushover 
and triaxial time history DIANA pre-test analysis. The capping value used for the vertical 
capacity of the system, Pcapping, was ~350 kips as found from the DIANA results previously 
discussed in Chapter 3.  

The P-delta correction was applied only in the HS tests up to 100% scale. Thus, the larger 
scale tests at 125%, 150%, 175%, and 200% ground motion scales, which were conducted only 
in the transverse direction due to the test setup limitations, did not include the P-delta correction. 
That is to avoid the resulting tension from the axial force fluctuation at larger scales of the 
vertical excitation during some time steps, i.e. P-delta correction was not applied for the runs 
when Pg + min (Pve) < 0, i.e. tension. The developed tension axial force would reverse the 
correction component and cause a stiffening effect in the feedback. A future study that focuses 
more on identifying all the possible consequences of incorporating the P-delta effect might be 
useful. However, in this study, the main objective of the HS tests was the bent cap beam 
response and the box-girder contributions. Thus, the P-delta effect was not incorporated at the 
larger scale runs to avoid the influence of any factors that are not fully understood such as the 
effect of the column subjected to tension due to this effect. 

 

Figure  7.5 Schematic representation of the P-delta (P-Δ) correction 
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7.3.1 Development I: OpenFresco New Experimental Setup 

The ExperimentalSetup is one of four main classes that compromise OpenFresco. The 
transformation of the prescribed boundary conditions from the local or basic element DOF of the 
experimental elements into the actuator DOF of the transfer system is the first core task of the 
ExperimentalSetup class. Similarly, the transformation of the work conjugates measured by 
transducers and load cells back to the experimental element DOF is the second core task of the 
ExperimentalSetup class (Schellenberg 2009). For the sake of the HS tests considered in this 
study, the two horizontal actuators used for applying the lateral load were arranged in a planer 
triangular configuration. A new ExperimentalSetup object was required in OpenFresco to 
perform the geometric transformation between the two model (global) DOFs, designated as x and 
y, and the two actuators (local) DOFs, designated as 1 and 2, as shown in Figure  7.8. The sough 
transformation is applied to the computed displacements such that displacement command 
readily in each actuator DOF is delivered to the corresponding controller. Similarly, the received 
force feedback in each actuator DOF is transformed to the x and y DOFs before passing it to the 
FE software to proceed with the next step calculations. The “TriangularActautors” object was 
successfully developed and implemented in an updated version of OpenFresco. The TCL syntax 
input for the new experimental setup is as follows: 

expSetup TriangularActuators $tag -control $ExpControltag $A1 $A2 $B1 $B2 $C1 $C2 

where $ExpControltag is the defined tag for the used experimental control object, which is the 
GenericTCP in this case, and $A1, $A2, $B1, $B2, $C1, and $C2 are geometric input parameters 
that describe the relative locations of the two actuators as identified in Figure  7.8. The developed 
setup element was debugged and implemented in OpenFresco, which was compiled into an 
updated version that encompass the new setup. Further verification of the geometric 
transformation achieved through the newly implemented experimental setup element was 
conducted as discussed in the next section. 

 

Figure  7.8 Input displacement and measured force feedback geometric transformation 
between the model global DOF and the actuators local DOF 
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7.3.2 Development II: New PI Interface 

The central development achieved through this part of the study is a practical middleware 
between OpenFresco and the controllers. This interface is built into the PI DAQ system. The 
development was achieved through various collaborations with the staff at the Structures 
Laboratory at UC Berkeley. The final product consists of two related parts: (1) Microsoft 
Windows application customized from the PI DAQ software, and (2) PI test file containing 
specific PI6042 DSP routines. A more detailed description along with the main purpose of each 
of the two implemented interface pieces is presented here. 

7.3.2.1 Microsoft Windows Custom Application 

The Microsoft Windows application, namely PI660C UCB HybridSim interface, is a heavily 
modified version of the original PI660C DAQ program. The modifications include the addition 
of a TCP communications interface, an OpenFresco command interpreter, and a raw data format 
handler and translator. The main purpose of the developed new PI interface is to exchange 
displacement and force vectors, from 1 to 5 DOF, with OpenFresco over an Ethernet TCP/IP 
connection. Thus, this application is responsible of receiving the displacement vector from 
OpenFresco and passing it through the DSP routines to the controllers. In addition, it receives the 
force feedbacks from allocated memory locations and send them back to OpenFresco. All the 
operations performed through this part of the interface utilize data in the actuators DOF. The 
geometric transformation to the global DOF for solving the equations of motion under the 
responsibility of OpenFresco through the new ExperimentalSetup class, as previously discussed. 

A screen shot of the PI660C UCB HybridSim Microsoft Windows application is shown 
in Figure  7.9. The figure shows the implemented module that handles the HS mode and sets its 
parameters. A set of the parameters that can be assigned beforehand are shown in Figure  7.10. 
All the parameters are considered input for the DSP routines that are called through the PI 
application. Because the interface can exchange data from up to 5 DOFs, a span definition is 
required for each of these 5 DOFs for control purposes. The rate of loading, defined in terms of 
the maximum velocity, is one of the parameters input shown in Figure  7.10. A maximum 
velocity is defined rather than a constant velocity because based on the number of controlled 
DOFs, one actuator might have to slow its velocity to match other actuators motion, which is 
discussed in more details in the section of the verification tests. Finally, two additional options 
that are still under development, but were not needed for the tests conducted in this study, are the 
super pipeline mode and the pipeline predict. These modes aim at minimizing the 
communication delays for the prospect of real-time HS application. However, this part of the 
ongoing development is out of the scope of this study and is not discussed further here.    

7.3.2.2 PI6042 DSP routines 

The DSP routines are responsible for the low-level, high-priority, and time-sensitive tasks. The 
main purpose of these routines is the motion interpolation and data generation tasks. 
Additionally, the DSP routines are responsible for data acquisition hardware handling, such as 
sending analog outputs or receiving analog inputs for reporting via the USB data link interface to 
the computer where the new PI interface is running. The DSP program code is uploaded via a 
USB link from the control computer to the PI6042 DSP cards residing in the PI6000 chassis, 
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7.4 HSS VERIFICATIONS 

The main components and developments used for conducting the HS tests in this study were 
identified and discussed in the previous sections. To confirm the performance of the 
implemented developments and validate the HSS for testing the retrofitted SP2, several trials and 
verification tests were conducted. The verification tests started with network protocol analysis, 
then utilized single and double free actuators, i.e. not attached to any physical specimens, as 
discussed in this section. Full HS tests that utilized the repaired SP1 to validate the whole HSS 
were finally conducted as discussed in the next section.     

7.4.1 TCP/IP Network Stack 

Numerous performance and characterization tests were performed on the TCP/IP performance 
between the OpenFresco/OpenSees platform and the new PI660C UCB HybridSim interface. 
These characterization tests were performed directly by using the Wireshark network protocol 
analyzer program. Wireshark attaches directly to the network software stack and records all the 
Ethernet packets traversing the Ethernet interface, which is commonly referred to as “sniffing”. 
By looking at the timestamps and decoding the packet payloads, the traffic flow and timing were 
understood. A screenshot of the Wireshark sniffing of an established Ethernet TCP/IP connection 
in the developed HSS is shown in Figure  7.13.  

The Ethernet TCP/IP network transactions flowing through a preliminary established 
connection between the OpenFresco platform and the new PI interface was analyzed. The timing 
data from the Ethernet transactions first indicated a latency of approximately 216 milliseconds. 
In order to reduce latency, the transmit buffer of OpenFresco was resized to be an integer 
multiple of the payload size of the Ethernet frame, i.e. the OpenFresco variable  
OF_Network_dataSize was modified from 256 to 365 such that on every network transaction, 
two totally filled Ethernet frames were utilized. Adjusting the OpenFresco packet size reduced 
the latency to 70 milliseconds. Due to the slow nature of the loading rate of the test in this study, 
the 70 milliseconds latency were found insignificant in altering the desired HS communication. 
For extension to real-time HS, this latency needs to be revisited. 
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command data, i.e. actuator motion, and its multiplier when received at the DSP card. In 
addition, the force-displacement relationships are plotted for all cases as shown in Figure  7.18 to 
demonstrate the constant stiffness used for the model and the case with the hypothetical 
feedback. The comparison shows the perfect match between the simulation and the HS tests.  

 

Figure  7.16 Comparison of the displacement history obtained from the pure simulation, 
the computed OpenSees command for HS, and the actual actuators motion obtained from 

HS tests using single free actuator 
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Figure  7.17 Comparison of the force history obtained from the pure simulation, the 

received feedback at OpenSees, and multiple of the actual actuator displacement feedback 
as force as obtained from HS tests using single free actuator 

Despite the perfect match in the displacement amplitudes, the progression with time was 
different from the actual actuator motion and the OpenSees command, or pure simulation case. 
This is expected and attributed to the constant velocity or rate of loading used for commanding 
the actuator. The DSP routines were used to interpolate the received displacement command and 
apply it smoothly to the controller to pass it to the actuator. Thus, an obtained constant velocity 
would verify the communication loop and the DSP interpolation routines. Figure  7.19 shows the 
velocity history as calculated from the actual recorded interpolated commands. The constant 

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

Time [sec]

F
or

ce
 [

ki
p

s]

 

 

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

Time [sec]

F
or

ce
 [

ki
p

s]

 

 

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

Time [sec]

F
or

ce
 [

ki
p

s]

 

 

Pure Simualtion

HS Data - OpenSees Recorder

HS Data - PI DAQ



267 

velocity at 0.05 inch/sec, which was the input rate through the PI660C UCB HybridSim 
parameters definition as shown previously in Figure  7.10, was successfully achieved as 
calculated from the actual recorded data. Therefore, the good comparison between the HS tests 
that used a hypothetical feedback of a constant multiplier applied to the actual command, and the 
pure simulation provided confidence on the accuracy of the communication loop among the 
different HSS components. 

 
Figure  7.18 Force-displacement relationships from pure simulation and HS test data 

recorded at OpenSees (OS) and using the PI DAQ from HS tests using single free actuator  

 
Figure  7.19 Velocity history of the actual actuator motion from single actuator HS tests   
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7.4.3 Double Actuators Tests 

Similar trial tests were conducted using two free actuators setup with the actual computational 
model for the bridge subassemblage test specimen, i.e. utilizing the newly implemented 
geometric transformation setup (the TriangularActuators ExperimentalSetup class) in the 
OpenFresco/OpenSees input file. In addition, the Rinaldi ground motion considered in the actual 
HS tests in this study was used in these trials. The same concept of feeding back a hypothetical 
force that is 2 times the actual displacement command was used in these trials as well. These 
tests aimed at verifying the correctness of the newly implemented geometric transformation and 
the DSP routines in interpolating the displacement command for two actuators simultaneously. 
To verify the geometric transformation, the input of the OpenFresco “TriangularActuator” 
command was set up in a way that rendered each of the actuators inclined with a 45 degrees 
angle, e.g. A1 and B1 identified in Figure  7.8 were set to similar values. In this geometry, if a 
global transverse-only motion (ux in Figure  7.8) is required, the two actuators should have 
identical input along the local DOFs. On the other hand, if a longitudinal-only motion (uy in 
Figure  7.8) is required, the two actuators should have same magnitude but opposite direction 
local DOFs input. This anticipated geometric transformation was accurately verified as shown in 
Figure  7.20 through Figure  7.27. In subsection 7.4.3.1, the figures from the transverse-only case 
are shown. Figure  7.20 and Figure  7.21 compares the OpenSees displacement command and 
received force feedback for the two actuators with the actual PI DAQ recorded data, respectively. 
The force-displacement relationships are also compared in Figure  7.22 to demonstrate the 
communication effectiveness reflected into the shown linear relationship. To emphasis that the 
two actuators had identical motion as intended, the velocities for both actuators were calculated 
and plotted in Figure  7.23. Both actuators moved with the input constant velocity of 0.05 
inch/sec, which verifies the capability of the DSP routines to interpolate the command for two 
actuators simultaneously.  

Subsection 7.4.3.2 displays the plots for the longitudinal-only trial tests. The well-
matching amplitudes from the OpenSees generated displacement command and the actual 
actuators motion is shown in Figure  7.24. Similarly, the hypothetical force feedbacks that were 
twice the actual displacements are similar to what OpenSees eventually received at each time 
step for solving for the new time step as illustrated in Figure  7.25. The force-displacement 
relationships are compared in Figure  7.26, and the calculated velocities for the two actuators are 
shown in Figure  7.27. The figures show that the two actuators had similar input along the local 
DOFs but with opposite direction (sign). This implies that the two components of the actuators 
motion in the transverse direction cancelled the effect of each other and hypothetically forced the 
actuators along a longitudinal path. Meanwhile, the velocities presented in Figure  7.27 show 
different signs but almost constant velocity for the two actuators as a similar magnitude of 
motion is commanded to each of them. While this preliminary tests verified the geometric 
transformation and DSP interpolation routines, a formal verification was obtained when a full HS 
test was conducted using the repaired SP1 specimen as discussed in the next section.   

One final trial test that used the two free actuators was a generic bidirectional test. This 
generic case was useful in the final verification of the DSP interpolation routines rather than the 
geometric transformation as shown from the figures in subsection 7.4.3.3.  Figure  7.28 and 
Figure  7.29 show the displacement command and force feedback comparison, respectively. 
Figure  7.30 shows the force-displacement relationship and Figure  7.31 shows the velocities of 
the actuators. The key observation from this test is how the actuators change their velocities 
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when one actuator has a longer displacement command to execute than the other. In this case, 
only the actuator with larger interpolated command moves at the maximum set velocity, while 
the other actuator slows its velocity to stay on the same spatial path of the anticipated column 
head where the actuators would be eventually connected. Figure  7.31 denotes when the two 
actuators had different command magnitude, actuator 2 moved at a slower velocity when 
actuator 1 was moving with the maximum 0.05 inch/sec and vice versa. This ultimately verified 
the DSP interpolation routines and the DSP/PI DAQ communication loop.  

7.4.3.1 Transverse-only Ground Motion Input 

 

Figure  7.20 Actuators displacement history from the HS computed OpenSees signal (top) 
and actuators feedback from the DAQ (bottom) for transverse-only ground motion test   

 

Figure  7.21 Actuators force history from load cell DAQ data for transverse-only ground 
motion test   
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Figure  7.22 Actual force-displacement relationships obtained from the DAQ data for 
transverse-only ground motion test   

 

Figure  7.23 Actuators velocity as calculated from the obtained feedbacks from the DAQ 
data for transverse-only ground motion test   
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7.4.3.2 Longitudinal-only Ground Motion Input 

 

Figure  7.24 Actuators displacement history from the HS computed OpenSees signal (top) 
and actuators feedback from the DAQ (bottom) for longitudinal-only ground motion test   

 

Figure  7.25 Actuators force history from load cell DAQ data for longitudinal-only ground 
motion test   
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Figure  7.26 Actual force-displacement relationships obtained from the DAQ data for 
longitudinal-only ground motion test   

 

Figure  7.27 Actuators velocity as calculated from the obtained feedbacks from the DAQ 
data for longitudinal-only ground motion test   
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7.4.3.3 Bidirectional Ground Motion Input 

 

Figure  7.28 Actuators displacement history from the HS computed OpenSees signal (top) 
and actuators feedback from the DAQ (bottom) for bidirectional ground motion test   

 

Figure  7.29 Actuators force history from load cell DAQ data for bidirectional ground 
motion test   
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Figure  7.30 Actual force-displacement relationship obtained from the DAQ data for 
bidirectional ground motion test   

 

Figure  7.31 Actuators velocity as calculated from the obtained feedbacks from the DAQ 
data for bidirectional ground motion test   
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7.5.1 50% Scale Bidirectional HS Tests 

The first objective from the HS full specimen tests was to check the robustness of the developed 
HSS in different stability and loading conditions. For this purpose, a 50% Rinaldi bidirectional 
HS tests were conducted before (Test ID 4) and after (Test ID 5) applying the gravity load. The 
repaired SP1 was heavily tested under quasi-static cyclic loading in as-built and repaired 
conditions. Thus, the developed plastic hinge might provide instability if lateral loading is 
applied, which was checked from the HS tests comparison. Only the recorded data from 
OpenSees are presented in this comparison for brevity, whereas the next subsection presents the 
actual DAQ data for the 80% bidirectional tests.  

The displacement and force responses from the 50% scale bidirectional HS tests with and 
without the applied gravity load are compared. Figure  7.33 shows the comparison of the 
computed displacement in both of the transverse (ux) and longitudinal (uy) directions with and 
without gravity load application. Additionally, the transverse (fx) and longitudinal (fy) force 
feedbacks received at the OpenSees side, after they went through the PI interface and the 
OpenFesco geometric transformation, are shown in Figure  7.34. The displacements history 
suggests that when the gravity load was not applied, the system oscillated around a shifted 
displacement due to the almost zero force feedback received. The HS computational model 
solution and load application from a full test gave confidence about the robustness of the HSS 
system even with almost zero feedback. Such zero force feedback can be seen in Figure  7.34, 
where the damaged column did not provide any resistance before the gravity load was applied.  

 

Figure  7.33 Comparison of the OpenSees computed displacements for SP1 HS subjected 
50% Rinaldi bidirectional loading with and without the gravity load applied 
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Figure  7.34 Comparison of the force feedbacks received at OpenSees for SP1 HS subjected 
to 50% Rinaldi bidirectional loading with and without the gravity load applied 

As also illustrated in Figure  7.34, when the gravity load was applied, the increased 
compressive stresses in the column led to engaging partial lateral resistance from the column 
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7.5.2 80% Scale Bidirectional HS Tests 

When a 10% gravity load was applied to the repaired SP1, the 50% scale HS tests demonstrated  
that the test specimen subassemblage preserved a reasonable force capacity. Thus, a larger 80% 
scale bidirectional test (Test ID 8) was conducted, and the data from the OpenSees side were 
compared to the actual recorded data at the PI DAQ. The directly measured responses in the 
global x and y directions were compared to the intended OpenSees commands to perform a final 
check of the geometric transformation. Moreover, the actuators performance was checked again 
to verify the DSP interpolation routines.  

The actuators commands adopted from the OpenSees computations, but after applying 
the OpenFresco geometric transformation, were compared to the temposonic measurements of 
the actual actuators motion as previously conducted in the free actuators tests. Figure  7.35 and 
Figure  7.36 show such comparison for both the North and South actuators, respectively. These 
figures represent the transformed OpenSees commands, which were basically the commands sent 
to the DSP card to interpolate and send to the controllers versus the actual achieved commands, 
which progressed in time based on the set velocity and loading rate. Thus, only the amplitudes 

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

f
x

Time [sec]

F
or

ce
 [

ki
p

s]

 

 

Without gravity
With gravity

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

f
y

Time [sec]

F
or

ce
 [

ki
p

s]

 

 

Without gravity
With gravity



278 

are useful to compare in these plots as a final check of the HSS, which were found closely 
matching as labelled in the figures. The temposonic displacements also feature the constant 
slopes representing the velocities, which were computed and shown in Figure  7.37 for the two 
actuators. The velocity history demonstrates how each of the two connected actuators at the 
specimen’s column head adjusted their speed to keep up with one another during bidirectional 
loading. The maximum velocity set as one of the PI660C UCB HybridSim interface parameters 
at 0.05 inch/sec was maintained during the HS tests, i.e. the actuator that received a smaller 
displacement command slowed its rate of loading according to the developed DSP routines. This 
observation is similar to what the two free actuators trial tests showed earlier. However, the full 
specimen actual HS test is more confirmative because the correct displacement orbit of the 
physical column head was verified, which in turn successfully verified the DSP interpolation 
routines.  

A final check that concludes the discussion of the HSS verification is comparing the 
intended computed displacement commands and received force feedbacks in the global DOFs 
versus what was actually obtained from the tests, i.e. verifying the newly implemented 
OpenFresco geometric transformation. For this purpose, wirepots were set up to measure the 
global x and y displacements using proper triangulation relationships. Figure  7.38 and 
Figure  7.39 show the comparison of the command history in global DOFs, as directly calculated 
in OpenSees before any geometric transformation, and from the wirepots measurements. The 
amplitude closely matched with only less than 2.5% difference, which verified the geometric 
transformation in the displacement command. Furthermore, the backward transformation of the 
actuator load cell forces was also verified from comparing the overall force-displacement 
relationship (Figure  7.40) from OpenSees versus that where the global force calculated from the 
local load cell measurements along with the actual displacements from the wirepots.  

 

Figure  7.35 North actuator (u1) generated command and actual motion history for the 
repaired SP1 80% Rinaldi bidirectional HS test  
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Figure  7.36 South actuator (u2) generated command and actual motion history for the 
repaired SP1 80% Rinaldi bidirectional HS test   

 

Figure  7.37 Actuators velocity as calculated from the obtained displacement 
measurements from the DAQ data for the repaired SP1 80% Rinaldi bidirectional HS test 
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Figure  7.38 Global transverse displacement history (ux) obtained from the OpenSees 
solution and that actually measured from wirepots for the repaired SP1 80% Rinaldi 

bidirectional HS test 

 

Figure  7.39 Global longitudinal displacement history (uy) obtained from the OpenSees 
solution and that actually measured from wirepots for the repaired SP1 80% Rinaldi 

bidirectional HS test 
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Figure  7.40 Comparison of force-displacement relationship in transverse (left) and 
longitudinal (right) directions from the recorded OpenSees data and actual load cells and 

wirepots DAQ data for the repaired SP1 80% Rinaldi bidirectional HS test 
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8 Hybrid Simulation: Retrofitted Specimen Two 
Tests 

The experimental program conducted in this study comprised mainly of two specimens that were 
tested using different loading protocols and in different conditions. The first specimen was tested 
as-built under cyclic loading as discussed in Chapter 5. The same specimen was repaired and 
retested under cyclic loading as discussed in Chapter 6. The repaired specimen one (SP1) was 
also utilized in HS test trials for HS system verification as presented in Chapter 7. The second 
specimen (SP2) was retrofitted before any testing and was only tested using HS. Discussions of 
specimen SP2 test results are the focus of this chapter. The chapter presents the retrofit 
procedure, the tests and damage progression, the global behavior, the column and bent cap beam 
local behavior, and effective width discussion. The chapter concludes with a brief discussion of 
the effectiveness of the retrofit through comparison of various behavior metrics against the 
corresponding quantities from the identical as-built SP1 Tests. 

8.1 RETROFIT PROCEDURE 

The objective of the retrofit considered in this part of the study was to increase the moment 
capacity of the column such that the bent cap beam could experience higher moment demands. 
For this purpose, three layers of CFRP were used to wrap the column to improve the 
confinement behavior and, in turn, increase its flexural capacity. Each of the three layers was 
0.04 in. thick and the total thickness of the jacket was 0.12 in. A brief discussion of the material 
properties of the carbon sheets and the structural epoxy used for creating the jacket layers is 
included in Chapter 3. A similar procedure of wrapping the repaired column of SP1 with CFRP 
layers was followed for the untested column of SP2. A summary of the followed procedure is 
shown in Figure  8.1 through Figure  8.5. 

The second specimen retrofit was carried out at a later stage after the construction of the 
specimen. A view of the as-built SP2 before the column retrofit is shown in Figure  8.1. The first 
step in preparation for the retrofit was cleaning and smoothing the concrete surface, Figure  8.1, 
for efficient wrapping. The surface was then wet with a layer of the primer epoxy and the carbon 
sheets were cut to the required length as shown in Figure  8.2. Each layer of the carbon sheets 
was generously coated from both sides with the primer epoxy as illustrated in Figure  8.3. All the 
wet carbon sheets were rolled and left for a short time to make sure the epoxy is well-immersed. 
The following stage was to apply the wet carbon sheets to the column in a circumferential 
manner to create the three-layer jacket one layer at a time. It is to be noted that the sought CFRP 
jacket extended to the mid height of the column. That is to guarantee that the moment demand in 
the unwrapped portion of the column did not exceed its capacity and not to migrate the plastic 
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displacement histories in the 50%-scale tests in bidirectional, transverse-only, and longitudinal-
only tests are shown in Figure  8.12, Figure  8.13, and Figure  8.14, respectively. 

Figure  8.12 shows that for the case of simultaneous bidirectional loading, one of the 
actuators consistently experienced much lower displacements which is attributed to the fact that 
the resultant of the nearly similar transverse and longitudinal components was almost aligned 
with the South inclined actuator direction. On the other hand, Figure  8.13 shows that both 
actuators had almost symmetric (same magnitude and direction) displacements when only 
transverse loading was applied. Figure  8.14 shows that both actuators had almost anti-symmetric 
(same magnitude but opposite directions) displacements when only a longitudinal loading was in 
progress. Moreover, Figure  8.12 to Figure  8.14 show constant slope lines (especially for large 
displacements) for all the global and local displacements. This is attributed to the conducted 
constant velocity slow rate HS tests. Obtaining this constant velocity for the displacement input 
was a fundamental criterion to verify the performance of the HSS and the communication 
between its components. More details were presented in Chapter 7 about the validation of the 
developed HSS. Another important observation from the displacement history figures, especially 
the full history demonstrated in Figure  8.10 and Figure  8.11, is the residual displacements at the 
end of each of the HS tests. For the small-scale tests, a small residual displacement was observed 
due to the minimal damage. However, much higher residual displacements were observed in the 
transverse-only large-scale tests that reached a final residual displacement of about 2 inch (drift 
ratio of 2.2%) after all the tests were concluded. 

 

Figure  8.10 History of the online computed (and applied) displacements in the global 
transverse and longitudinal directions throughout all 15 HS test runs of the retrofitted 

specimen (SP2) 
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Figure  8.11 History of North and South lateral actuators temposonics measurements and 
the corresponding resultant displacements in transverse (ux) and longitudinal (uy) 

directions for all 15 HS test runs of SP2 
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Figure  8.12 Zoomed-in view of the history of North and South lateral actuators 
temposonics measurements and the corresponding resultant displacements in transverse 

(ux) and longitudinal (uy) directions for the 50% scale bidirectional HS test 
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Figure  8.13 Zoomed-in view of the history of North and South lateral actuators 
temposonics measurements and the corresponding resultant displacements in transverse 

(ux) and longitudinal (uy) directions for the 50% scale transverse-only HS test 
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Figure  8.14 Zoomed-in view of the history of North and South lateral actuators 
temposonics measurements and the corresponding resultant displacements in transverse 

(ux) and longitudinal (uy) directions for the 50% scale longitudinal-only HS test 
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8.3.2 Force History 

Displacements are crucial to monitor during displacement-controlled HS tests because that is the 
only way to know what deformations the specimen has gone through during HS testing. 
However, lateral forces are even more important to monitor because it is the force feedback that 
influences the next solution of the governing equations of motion, Equation ( 7-1) in Chapter 7, 
and in turn, the new displacement input. Meanwhile, a constant vertical gravity load was applied 
and maintained throughout the tests under force-control, which also needed to be monitored to 
make sure it remained constant during the test as intended. The gravity load history is shown in 
Figure  8.15 for all the 15 HS test runs. The total vertical reaction as the sum of the two strut 
forces is shown as well in Figure  8.15 to compare the total portion of the gravity load transmitted 
directly to the bent cap beam at its two supported ends by the two struts. The ratio between the 
total strut reactions and the gravity load was observed to be consistently around 70%, which 
agrees with the observation from SP1 cyclic tests as well. It is to be noted that the sudden drop 
and consequent increase at the beginning of the second gravity load level, which was 15% 
corresponding to ~240 kips, reflects the unloading and reloading again since testing was 
conducted during two separate days. The total gravity load values that was measured 
continuously was utilized along with the lateral displacement values and the prescribed 
numerical component of the vertical earthquake excitation by the computational model to 
estimate the equivalent lateral force considering the P-delta effect. Accordingly, the lateral force 
feedback was corrected before sending it to the computational model for the computation of the 
next displacement input, as discussed in Chapter 7. Only the bidirectional runs had the correction 
involving the P-delta effect considering both the time-varying vertical earthquake excitation and 
the applied constant gravity load. However, no such correction was applied during the large-
scale transverse-only HS runs. That is because the corresponding axial load variation considering 
the large-scale runs with vertical excitation would experience tension at some time steps 
increasing the corrected lateral force value and affecting the computed displacement input in a 
somewhat unpredictable way because of possible column tension. Although this scheme might 
be realistic in some cases, it was decided to proceed with the transverse-only runs of scales 100% 
and higher 200% without accounting for the P-delta correction to limit the scope of the study to 
no-tension gravity load in combination with the applied lateral earthquake excitations.    

The entire history of the measured force feedback in both transverse and longitudinal 
directions is shown in Figure  8.16. The force that was sent to the computational model for 
solving the equations of motion is slightly different as it incorporated the P-delta corrections for 
those runs that had that correction scheme applied. A more detailed discussion is presented in a 
following subsection. Similar to the displacements discussion, the local force measured at the 
actuators load cells was compared to the resulting force in the two intended transverse and 
longitudinal global directions. Figure  8.17 shows the full history of North and South actuator 
forces along with transverse and longitudinal force resultant for all the 15 HS test runs. 
Moreover, a zoomed-in view for the 50%-scale bidirectional, transverse-only, and longitudinal-
only tests are shown in Figure  8.18, Figure  8.19, and Figure  8.20, respectively. The force 
residual at the end of each test was adjusted and reduced to zero before the start of a subsequent 
test to avoid any unrealistic force feedback at the start of the subsequent HS test. Zeroing the 
forces also allowed the determination of the corresponding residual displacements. However, due 
to the effect of the residual displacements, a minor force feedback was generated in the 
longitudinal direction when testing took place in the transverse direction only as seen from the 
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noise around the zero force value in the longitudinal force history in Figure  8.16. Another remark 
from the figure is that the constant slope mentioned above for the displacement histories could be 
observed only in the small runs where the behavior was still in the linear elastic range. However, 
for the large-scale tests, the constant slope in the force history plots was no longer observed 
because of the inelastic and hysteresis damage behavior.  

 

Figure  8.15 Gravity load history and corresponding two vertical strut reactions for all 15 
HS test runs of SP2 

 

Figure  8.16 History of the force feedback in the transverse (fx) and the longitudinal (fy) 
directions for all 15 HS test runs of SP2 
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Figure  8.17 History of North and South lateral actuators load cells measurements and the 
corresponding resultant forces in the transverse (fx) and the longitudinal (fy) directions for 

all 15 HS test runs of SP2 
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Figure  8.18 Zoomed-in view of the history of North and South lateral actuators load cells 
measurements and the corresponding resultant forces in the transverse (fx) and the 

longitudinal (fy) directions for the 50%-scale bidirectional HS test 
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Figure  8.19 Zoomed-in view of the history of North and South lateral actuators load cells 
measurements and the corresponding resultant forces in the transverse (fx) and the 

longitudinal (fy) directions for the 50%-scale transverse-only HS test 
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Figure  8.20 Zoomed-in view of the history of North and South lateral actuators load cells 
measurements and the corresponding resultant forces in the transverse (fx) and the 

longitudinal (fy) directions for the 50%-scale longitudinal-only HS test 
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East and West sides is plotted at two levels in addition to the level of maximum strain shown in 
Figure  8.31. One level is 18 in. from the face of the bent cap beam, which corresponds to the end 
of the anticipated plastic hinge zone in a conventional column without CFRP jacket, is shown in 
Figure  8.32. The second level is at the column mid-height, Figure  8.33. Extensive yielding was 
observed throughout the anticipated plastic hinge region, while the column mid-height remained 
elastic as expected.   

 

Figure  8.29 layout of the instrumented column rebars in SP2 as related to the loading 
directions 

 

Figure  8.30 Strain history in North and South side column bars due to all HS tests at 
maximum strain location (close to the cap beam face 
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Figure  8.31 Strain history in the East and West side column bars due to all HS tests at 
maximum strain location (close to the cap beam face) 

 

Figure  8.32 Strain history in the East and West side column bars due to all HS tests at 
height of 18 in. from the cap beam face 
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Figure  8.33 Strain history in the East and West side column bars due to all HS tests at the 
column mid-height (51 in. from the bent cap beam face)  

8.4.2 Moment and Curvature History 

The bending moment at the column-bent cap interface, where the maximum moment was 
expected, was estimated from the applied lateral force. Figure  8.34 shows the full history of the 
calculated column moment in both the transverse and longitudinal directions. A zoomed-in view 
of the column moment due to the large-scale transverse-only HS tests is shown in Figure  8.35. 
The maximum observed moment is compared to that of the as-built column in a later section. 
However, while that maximum moment can be considered larger than the yield moment, it 
cannot be claimed that this higher moment represented the retrofitted column moment capacity 
because the observed visual damage suggested that the system capacity was capped due to the 
bent cap beam concrete crushing manifested in the form of concrete cover spalling in the vicinity 
of the column.  

The curvatures at various column sections were estimated during the HS test runs. A 
detailed discussion of the curvature distribution along the column height and a comparison 
between the strain-based versus the LVDT-based curvatures was previously presented in Chapter 
5 for the as-built SP1 specimen. Thus, only the LVDT-based curvature history at the location of 
maximum expected curvature is shown in Figure  8.36 for all the 15 SP2 HS test runs in the 
transverse and longitudinal directions. Moreover, a zoomed-in view of the curvature history for 
the transverse-only large-scale runs is shown in Figure  8.37. It can be observed from Figure  8.37 
that the column section was somewhat responding in the longitudinal direction although loading 
was only applied in the transverse direction. That is attributed to the residual displacements 
(discussed earlier) that led a portion of the transverse loading to actually be accompanied with 
some loading in the longitudinal direction. The obtained curvatures at other column-height levels 
are also presented through the moment-curvature relationships in the next subsection. 
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Figure  8.34 Column moment history at maximum location for all HS test runs  

 

Figure  8.35 Zoomed-in view of the column moment history at maximum location for the 
large-scale transverse-only HS test runs  
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Figure  8.36 Column curvature history at maximum location for all HS test runs 

 

Figure  8.37 Zoomed-in view of the column curvature history at maximum location for the 
large-scale transverse-only HS test runs 
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8.4.3 Moment-Curvature Relationship 

The moment and curvature histories were shown at few levels in both the transverse and 
longitudinal directions in the previous subsection. However, the moment-curvature relationship 
is shown here at all levels for completeness. As previously mentioned, all the presented curvature 
measurements for the HS tests are based on the LVDTs measurements rather than the strain 
measurements. That is because it was shown in Chapter 5 that the strain-based curvature 
calculations are not very reliable especially at higher deformation levels. The moment-curvature 
relationships from bidirectional HS tests are presented separately from the large-scale transverse-
only runs to keep the plots simpler and more informative. 

8.4.3.1 Bidirectional Tests 

Bidirectional HS tests applied loading in both the transverse and longitudinal directions 
simultaneously as a result of solving the MDOF computational model under two-component 
horizontal excitation. The moment-curvature relationship is compared for all the bidirectional 
runs in the transverse and longitudinal directions at different levels along the column anticipated 
plastic hinge zone. Figure  8.38 shows the moment-curvature relationship at the section of 
expected largest moment and curvature, i.e. 4 in. from the cap beam face. Figure  8.39, 
Figure  8.40, and Figure  8.41 show the moment-curvature relationships at sections which were 
10, 16, and 22 in. away from the bent cap beam face, respectively. It can be noticed that although 
the largest bidirectional HS test was conducted at 100%-scale, the column hysteresis was only 
pronounced within 10 inch from the cap beam face, i.e. no column damage extended through the 
whole conventional plastic hinge region up to the 100%-scale runs. It is shown in the following 
subsection that as larger ground motion scales were applied, the hysteretic damage extended to 
larger height of the column.  

 

Figure  8.38 Column moment-curvature relationship in transverse and longitudinal 
directions at 4 inch from the cap beam face for all bidirectional HS test runs 
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Figure  8.39 Column moment-curvature relationship in transverse and longitudinal 
directions at 10 inch from the cap beam face for all bidirectional HS test runs 

 

Figure  8.40 Column moment-curvature relationship in transverse and longitudinal 
directions at 16 inch from the cap beam face for all bidirectional HS test runs 

It is also observed that the curvature values were slightly higher in the longitudinal 
direction than in the transverse direction for comparable moment demands. This led to wider 
hysteresis moment-curvature loops in the longitudinal direction and more energy dissipation than 
the transverse direction as obvious in Figure  8.38 where the largest moments and curvatures 
were measured.  
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Figure  8.41 Column moment-curvature relationship in transverse and longitudinal 
directions at 22 inch from the cap beam face for all bidirectional HS test runs 

8.4.3.2 Transverse-Only Tests 

The moment-curvature relationships for the large-scale eight HS runs that applied the transverse-
only Rinaldi ground motion scaled at 125% through 200% in positive and negative directions are 
shown here.  Since the ground motion was applied only in the transverse direction, the moment-
curvature in the transverse direction only is discussed. Similar to the above discussion, the 
moment-curvature relationship is plotted at various sections along the column height to explore 
the extent of the hysteresis damage in the column; especially that visual evidence was not 
possible because of the confining CFRP jacket. Five levels at 4, 10, 16, 22, and 51 inch away 
from the cap beam face were used to generate the moment-curvature relationship in the 
transverse direction as presented in Figure  8.42 to Figure  8.46, respectively. 

It can be observed that the hysteresis damage was extensive at the largest measured 
moment and curvature location, i.e. 4 in. from the cap beam face. Figure  8.42 shows also that 
higher moments were reached in one side of the column than the other. That was attributed to the 
nature of the HS loading along with the accumulated residual displacement in a certain direction 
which generated displacement input loading of less value in one direction than the opposite one. 
It cannot be claimed from the observed moment values that the column reached its capacity as 
the visual evidence during the test suggested that the system force capacity was capped due to 
the onset of the concrete crushing in the compression zone of the bent cap beam, as previously 
stated. More details about the observed damage were presented earlier in Section 8.2. Moreover, 
when the CFRP jacket was removed, only a uniform pattern of flexural cracks were observed 
that extended to a region of almost 20 in., which roughly corresponded to the conventional 
plastic hinge length in columns without CFRP jackets. The moment-curvature relationships 
confirm that the hysteresis damage extended throughout the plastic hinge length as shown in 
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Figure  8.42 through Figure  8.45. On the other hand, Figure  8.46 shows that the column remained 
elastic at the mid-height as previously observed from the strain values.  

 

Figure  8.42 Column moment-curvature relationship in the transverse direction at 4 inch 
from the cap beam face for the large-scale transverse-only HS test runs 

 

Figure  8.43 Column moment-curvature relationship in the transverse direction at 10 inch 
from the cap beam face for the large-scale transverse-only HS test runs 

-9 -6 -3 0 3 6 9

x 10
-3

-6000

-4000

-2000

0

2000

4000

6000

Curvature [1/inch]

M
om

en
t 

[k
ip

-i
nc

h
]

-9 -6 -3 0 3 6 9

x 10
-3

-6000

-4000

-2000

0

2000

4000

6000

Curvature [1/inch]

M
om

en
t 

[k
ip

-i
nc

h
]



315 

 

Figure  8.44 Column moment-curvature relationship in the transverse direction at 16 inch 
from the cap beam face for the large-scale transverse-only HS test runs 

 

Figure  8.45 Column moment-curvature relationship in the transverse direction at 22 inch 
from the cap beam face for the large-scale transverse-only HS test runs 
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Figure  8.46 Column moment-curvature relationship in the transverse direction at the 
column mid-height for the large-scale transverse-only HS test runs 

8.4.4 CFRP Jacket Strain 

The second specimen differed from the originally identical first specimen because of the CFRP 
retrofit of the column. One central response quantity for column retrofitted using CFRP jacket is 
the confinement effectiveness due to the jacket. For this reason, several strain gages were 
installed around the circumference of the jacket at two levels 18 inch apart within the typical 
plastic hinge length. The first level was at 2 in. from the cap beam face. Each level was 
instrumented with 12 strain gages as shown in Figure  8.47.  

 

Figure  8.47 Layout of the CFRP jacket strain gages as related to the loading directions   

The confining strain history at the outermost East and West sides of the first 
instrumentation level of the CFRP jacket, designated as E-1 and W-1 in Figure  8.47, is shown for 
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all the 15 HS test runs in Figure  8.48. Similarly, the strain history at the North and South strain 
gages N-1 and S-1 is shown in Figure  8.49 for all the HS test runs. The peaks observed in the 
confining strain history suggested that the jacket was effectively responding to the loading where 
a larger confining strain was developed at the compression side of the column relative to a 
certain loading direction. This is because as the increase in the compressive stress in one column 
side under combined axial and bending action might cause bar buckling, which was restrained by 
the concrete cover that in turn was well-confined by the CFRP jacket. Thus, any desired 
expansion in the concrete cover is outweighed by the confining CFRP jacket as long as the jacket 
remained intact and effective. A similar observation can be better demonstrated if the strain 
profile at a certain time instant at a given section in the CFRP jacket is graphically presented. 
Kumar et al. (2014) provided a novel approach to plot the recorded strain values at a given time 
instant for all strain gages in a given instrumentation level. The same approach is used to 
produce polar profiles of the confining strain around the entire jacket circumference as shown in 
Figure  8.50 to Figure  8.52.  Figure  8.50 shows the confining strain profiles from each of the 12 
installed strain gages at the two instrumentation levels when the displacement amplitude was 
reached during the negative 100% bidirectional test (ID 7). On the other hand, Figure  8.51 and 
Figure  8.52 show the strain profiles at the displacement amplitude of the positive 175% (ID 12) 
and 200% (ID 14) transverse-only HS tests, respectively. It can be observed that the confining 
strain was much less at the second instrumentation level, i.e. the confining strain decreased with 
the decrease pf the moment and stress demands, as expected. The profiles also point in a certain 
direction where the maximum compressive stress developed. In the bidirectional tests, it is 
implied that concrete expansion took place at both of the transverse and longitudinal directions, 
whereas the maximum strain at concrete expansion was aligned with the unidirectional 
transverse loading tests. 

 

Figure  8.48 Confining strain history in the CFRP jacket East and West sides for all HS 
test runs 
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Figure  8.49 Confining strain history in the CFRP jacket North and South sides for HS test 
runs 

 

Figure  8.50 CFRP jacket confining strain profile [%] at the instant of displacement 
amplitude due to the 100%-scale bidirectional HS test (ID 7) for the two 

instrumented levels  
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Figure  8.51 CFRP jacket confining strain profile [%] at the instant of displacement 
amplitude due to 175%-scale transverse-only HS test (ID 12) for the two 

instrumented levels 

 

Figure  8.52 CFRP jacket confining strain profile [%] at the instant of displacement 
amplitude due to 200%-scale transverse-only HS test (ID 14) for the two 

instrumented levels 
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8.5 BENT CAP LOCAL BEHAVIOR 

The structural behavior of the bent cap beam under combined gravity and lateral seismic loading 
is central to the undertaken experimental study. The main objective of this study is to evaluate 
the contribution of the box-girder slabs to the cap beam behavior and the capacity of the cap 
beam and its mode of failure. Thus, the strain, moment, and curvature histories at both sections B 
and D, which have been already used throughout the study to observe the bent cap beam 
behavior, are discussed in this section. In addition, the moment-curvature relationship is 
presented where the cap beam moment capacity is estimated. 

8.5.1 Strain History 

Extensive yielding was observed in the bent cap beam during the HS test runs. A sample of the 
strain history in one of the instrumented cap beam bottom rebars at sections B and D, where 
maximum strains along the beam length were recorded, is shown in Figure  8.53 and Figure  8.54, 
respectively, for all the 15 HS test runs. Figure  8.53 relates the strain evolution to the main 
phases of the bidirectional testing, increasing the gravity load to the 15% level, and the large-
scale transverse-only HS testing. It is shown that the bidirectional tests led to the onset of the 
bent cap beam yielding, i.e. the observed strain values exceeded the 0.0026 yielding strain of the 
used reinforcing bars. An immediate significant increase in the strains at section B were 
observed as the 15% gravity load level was applied, whereas a more gradual increase was 
observed at section D. It is to be noted that testing was conducted in two days where the 
specimen was unloaded after the set of the bidirectional HS test runs was concluded in the first 
day of testing. For the second day of testing, the application of the 15% gravity load started from 
zero and was then followed by the eight large-scale transverse-only HS test runs. These runs 
increased the strain values more significantly at section D than section B as noticed from 
comparing Figure  8.54 to Figure  8.53. It is to be noted that up to 2% strain was observed in the 
bent cap reinforcement in the tension side during the retrofitted SP2 HS test runs, whereas only 
up to 1.3% strain was observed during the as-built SP1 cyclic tests. This reflected the higher 
moment demands in the case of the HS tests of SP2 compared to the cyclic tests of SP1, which 
was one of the objectives of the retrofit conducted for SP2 in this experimental program.     

Another way of looking at the measured strains in the cap beam is plotting it against the 
progressing lateral load. The maximum strain measured at sections B and D is plotted against the 
lateral transverse force in Figure  8.55 and Figure  8.56, respectively. The strain evolving at zero 
lateral force corresponded to the strains resulting from the gravity load application as illustrated 
in Figure  8.55 and Figure  8.56. The figures present how the application of the 15% gravity load 
level on the already yielded cap beam increased the strains significantly. The reader is referred to 
the schematic representation of the moment distribution in the bent cap beam, shown in Chapter 
5, for the complete picture of the moment due to the concentrated gravity load in the adopted 
inverted specimen and test setup. Figure  8.53 and Figure  8.54 also show that a jump in the strain 
took place at the start of each new HS test run. This was mainly attributed to the pulse-nature of 
the used Rinaldi ground motion where a large pulse was applied, causing the strain value to 
increase significantly, then followed by small cycles which followed an almost bilinear path 
according to Figure  8.55 and Figure  8.56 as the loading progressed and reversed.  
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Figure  8.53 Bent cap beam strain history at section B due to all HS runs 

 

Figure  8.54 Bent cap beam strain history at section D due to all HS runs 
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Figure  8.55 Global lateral force-strain relationship at section B of the bent cap beam due 
to all HS runs 

Figure  8.56 Global lateral force-strain relationship at section D of the bent cap beam due 
to all HS runs 
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capacity and, in turn, the bent cap demands. The observed capped value of the bent cap moment 
of approximately 6500 kip-in., along with the compression zone concrete crushing, suggested 
that this moment value can be reasonably considered the overall bent cap beam capacity. The 
exact value of 6535 kip-in. was considered the experimentally-determined bent cap beam 
flexural capacity.  

The total bent cap beam moment combined from sections B and D was compared to the 
column bending moment in Figure  8.58 as a typical practice throughout this study. This is to 
practically verify the bent cap beam bending moments based on the observation that the box-
girder torsional stiffness in the cracked status after loading attracted small part of the moments 
applied to the superstructure through the column. In other words, almost the whole lateral 
transverse column moment was transferred as flexural moment to the bent cap beam only. 

 

Figure  8.57 Bent cap beam moment history at sections B and D for all HS runs 
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Figure  8.58 Comparison of the total bent cap beam moment at both sections B and D 
combined versus the column moment history 

For a complete description of the bent cap section behavior, the curvature values were 
deduced from the observed strain in the bent cap top and bottom instrumented rebars. The 
procedure for estimating strain-based curvatures was previously discussed in Chapter 5. It is to 
be noted that the more accurate method of estimating a given section’s curvature using LVDTs 
was not practical in the case of the bent cap. The history of the estimated curvatures from using 
one set of rebars at sections B and D is shown in Figure  8.59 and Figure  8.60, respectively. The 
estimated moments and curvatures were used to generate the moment-curvature relationships at 
both sections B and D as discussed next. 

0 100 200 300 400 500 600 700
-6000

-4000

-2000

0

2000

4000

6000

Time [minute]

M
om

en
t 

[k
ip

-i
nc

h
]

 

 

MColumn

0 100 200 300 400 500 600 700
-6000

-4000

-2000

0

2000

4000

6000

Time [minute]

M
om

en
t 

[k
ip

-i
nc

h
]

 

 

MBeam Net



325 

 

Figure  8.59 Bent cap beam curvature history at section B due to all HS runs 

 

Figure  8.60 Bent cap beam curvature history at section D due to all HS runs 
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chosen levels were the ascending sequence of the peak displacements in the positive and 
negative transverse loading directions as identified in Figure  8.63 in terms of the corresponding 
ductility levels. Moreover, Table  8-2 summaries those nine positive and negative loading levels, 
where all the effective slab width results were produced, along with the corresponding drift ratios 
and ductility levels.  

 

Figure  8.63 The main nine positive and negative displacement amplitudes (top) and the 
corresponding ductility levels (bottom) used for investigating the effective slab width for 

retrofitted SP2 tested using HS 

Table  8-2 Summary of the peak displacements of the HS test runs in the transverse direction and 
their corresponding drift ratios and ductility levels 

Positive Transverse Loading Negative Transverse Loading 

Group 
ID 

Displacement 
[inch] 

Drift 
Ratio [%] 

Ductility 
Level [µ] 

Group 
ID 

Displacement 
[inch] 

Drift 
Ratio [%] 

Ductility 
Level [µ] 

I 1.83 2.0 1.47 I -2.12 -2.4 -1.70 
II 1.92 2.1 1.54 II -1.92 -2.1 -1.54 
III 1.99 2.2 1.59 III -2.01 -2.2 -1.61 
IV 1.22 1.4 0.98 IV -3.53 -3.9 -2.82 
V 4.49 5.0 3.59 V -5.40 -6.0 -4.32 
VI 5.01 5.6 4.00 VI -7.28 -8.1 -5.82 
VII 6.72 7.5 5.38 VII -7.94 -8.8 -6.35 
VIII 8.16 9.1 6.53 VIII -8.98 -10.0 -7.19 
IX 10.43 11.6 8.35 IX -8.02 -8.9 -6.41 
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8.6.1 Strain Distribution 

The strain distributions at different sections across the bent cap and transverse slab reinforcement 
based on different strain gages readings were recorded continuously throughout all the HS test 
runs. However, only strain values acquired at the loading peaks, previously identified in 
Figure  8.63 and summarized in Table  8-2, were considered. Similar to the discussion in Chapter 
5, the strain distribution was compiled at sections B and D and was related to the drift ratio and 
ductility level (µ) in the figures presented in this subsection. It is worth noting that the 
distributions and the effective width were mainly considered under transverse loading in the 
cyclic tests. However, several cases of the strain distribution and effective width estimated from 
the HS test runs were determined from the more realistic concurrent bidirectional loading. Thus, 
the results are presented for the bidirectional tests separately from the large-scale HS transverse-
only test runs.   

Firstly, the strain distribution plots at section B from the bidirectional tests and the 
transverse-only tests are presented under subsections 8.6.1.1 and 8.6.1.2, respectively. Next, the 
results for section D are shown for bidirectional and transverse-only tests under subsections 
8.6.1.3 and 8.6.1.4. Only the figures are categorized in those subsections but the discussion is 
presented here. Figure  8.64 and Figure  8.65 show the strain distribution in the tension side at 
section B for the five different loading levels that corresponded to the bidirectional tests at the 
positive and negative peaks, respectively. It is to be noted that the bidirectional tests at 50%-
scale was repeated twice with and without the P-delta correction. In addition, a small transverse-
only and longitudinal-only tests were conducted at 50%-scale and still included under the 
bidirectional tests discussion for simplicity. The results from the longitudinal-only test were 
shortened, however, due to some impractical strain distributions obtained during such test. Thus, 
the five loading levels in this case corresponded to drift ratios of 2.0%, 2.1%, 2.2%, 1.4%, and 
50% at the positive peaks and 2.4%, 2.1%, 2.2%, 3.9%, and 6.0% at the negative peaks. The 
equivalent ductility levels can be read from Table  8-2.   

As previously noted in the strain and curvature history of the bent cap beam discussion, a 
significant jump in the strain values at section B was observed when the 15% gravity load was 
applied to the already yielded cap beam. Figure  8.66 and Figure  8.68 capture the jump in the 
strain distribution at section B at the first big transverse-only run positive and negative peaks, 
respectively, when the 15% gravity load was applied. The immediate adjacent transverse bars in 
the North side of the bent cap beam experienced a similar behavior as the cap beam 
reinforcement. The distribution for the four large-scale transverse-only runs at the positive and 
negative amplitudes are shown in Figure  8.67 and Figure  8.69, respectively.  

Similar to the strain distribution shown at section B, different loading levels and loading 
direction were considered to plot the strain distribution at section D. Figure  8.70 and Figure  8.71 
show the distribution for the five bidirectional tests at the positive and negative peak, 
respectively. Moreover, Figure  8.72 and Figure  8.74, respectively, capture the change in the 
distribution as the first large-scale positive and negative transverse-only tests were conducted 
after the 15% gravity load was applied. The overall strain distribution for all of the four positive 
and negative large-scale transverse-only tests is shown in Figure  8.73 and Figure  8.75, 
respectively. It is to be noted that all plots in this subsection captured all the spatially extended 
distribution tails where the intercept at zero strain was determined as part of the effective slab 
width evaluation.  
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8.6.1.1 Section B – Bidirectional Runs 

 

Figure  8.64 Strain distribution in the tension side at section B for all bidirectional HS test 
runs at the positive loading peak (expressed in terms of drift ratio and µ) 

 

Figure  8.65 Strain distribution in the tension side at section B for all bidirectional HS test 
runs at the negative loading peak (expressed in terms of drift ratio and µ) 
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8.6.1.2 Section B – Transverse-Only Runs 

 

Figure  8.66 Strain distribution change at section B due to the increased gravity load and at 
the first large-scale transverse-only HS test run at positive loading peak  

 

Figure  8.67 Strain distribution in the tension side at section B for the four large-scale 
transverse-only HS test runs at the positive loading peak (expressed in terms of drift ratio 

and µ) 
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Figure  8.68 Strain distribution change at section B due to the increased gravity load and at 
the first large-scale transverse-only HS test run at negative loading peak 

 

Figure  8.69 Strain distribution in the tension side at section B for the four large-scale 
transverse-only HS test runs at the negative loading peak (expressed in terms of drift ratio 

and µ) 
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8.6.1.3 Section D – Bidirectional Runs 

 

Figure  8.70 Strain distribution in the tension side at section D for all bidirectional HS test 
runs at the positive loading peak (expressed in terms of drift ratio and µ)  

 

Figure  8.71 Strain distribution in the tension side at section D for all bidirectional HS test 
runs at the negative loading peak (expressed in terms of drift ratio and µ) 
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8.6.1.4 Section D – Transverse-Only Runs 

 

Figure  8.72 Strain distribution change at section D due to the increased gravity load and 
at the first large-scale transverse-only HS test run at positive loading peak 

 

Figure  8.73 Strain distribution in the tension side at section D for the four large-scale 
transverse-only HS test runs at the positive loading peak (expressed in terms of drift ratio 

and µ) 
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Figure  8.74 Strain distribution change at section D due to the increased gravity load and 
at the first large-scale transverse-only HS test run at negative loading peak 

 

Figure  8.75 Strain distribution in the tension side at section B for the four large-scale 
transverse-only HS test runs at the negative loading peak (expressed in terms of drift ratio 

and µ) 
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8.6.2 Effective Slab Width Estimation 

As previously mentioned, the effective slab width was determined using the equivalent strain 
block concept and the simple procedure devised in Chapter 5. The strain distributions presented 
in the previous subsection were utilized here to estimate the effective slab width at sections B 
and D at different loading levels and directions. Similar to the framework adopted in Chapter 5, 
two values for the bent cap beam strain value were used to define the equivalent strain block 
(Beff). These are the minimum and the mean of the six instrumented rebars strain gage readings at 
a given cross-section in the cap beam.  

8.6.2.1 Section B 

An example of how the strain block was determined using the strain distribution at section B and 
using the minimum and mean cap beam strain values is shown in Figure  8.76. The total flange 
effective slab width, i.e. equivalent strain block width Beff, was calculated for the different nine 
loading levels at the positive and negative amplitudes (Figure  8.63 and Table  8-2).  

 

Figure  8.76 An example of the equivalent strain block at section B from a bidirectional 
(top) and a transverse-only (bottom) HS test runs 

A summary of the calculated Beff , as related to the drift ratios, at section B using both cap 
beam minimum (εmin) and mean (εmean) strain values is shown in Figure  8.77 and Figure  8.78 for 
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the positive and negative amplitudes, respectively. The figures also show the Beff that was 
estimated in light of the Caltrans SDC provisions for the integral bent cap beam flanged section, 
which is referred to as Caltrans value. The overall average of the nine positive and negative 
loading cases is summarized in Figure  8.79.  

 

Figure  8.77 Summary of the estimated bent cap effective flange width at section B from all 
HS test runs at nine positive loading peaks  

  

Figure  8.78 Summary of the estimated bent cap effective flange width at section B from all 
HS test runs at nine negative loading peaks  
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Figure  8.79 Mean effective width from HS test runs from positive and negative loading 
(bar chart) and overall average effective width from all HS test runs (dashed lines) at 

section B as compared to Caltrans SDC effective width value 

Figure  8.79 shows that the effective width estimated at the negative loading amplitudes 
was less than that calculated at the positive loading amplitudes. It is noted that the overall 
average from all cases, shown as dashed lines in Figure  8.79, is higher than the Caltrans estimate. 
Moreover, the determined effective width could be related to the slab thickness (ts) and bent cap 
beam width (bbeam) as previously conducted in Chapter 5 through a slab contribution constant (C) 
which quantifies the slab contribution as multiples of ts. However, this step was skipped here for 
brevity and only the final overall mean value from all HS tests is related to ts in the next section. 

8.6.2.2 Section D 

A similar framework as before is used to present the effective slab width results at section D. 
One example of how the strain block was determined using the strain distribution at section D 
using the minimum and mean cap beam strain values is shown in Figure  8.80 for a typical 
bidirectional and large-scale transverse-only HS test runs. A summary of the calculated Beff at 
section D using both cap beam minimum and mean strain values is shown in Figure  8.81 and 
Figure  8.82 at  all nine positive and negative amplitudes, respectively. Both figures express the 
loading level in terms of the drift ratios and the reader is referred to Table  8-2 for the 
corresponding displacement values or ductility levels. The Caltrans value for Beff is also shown in 
Figure  8.81 and Figure  8.82 for comparison. Figure  8.83 summarizes the average value of each 
of the positive and negative loading sets and the overall average for all cases combined. A 
similar observation as discussed for section B is that the estimated effective flange width using 
the mean strain for section D was higher than the Caltrans value. It is also worth noting that on 
the contrary to the results at section B, the average effective width from the positive loading 
cases was less than that from the negative loading at section D. 
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Figure  8.80 An example of the equivalent strain block at section D from a bidirectional 
(top) and a transverse-only (bottom) HS test runs 

 

Figure  8.81 Summary of the estimated bent cap effective flange width at section D from all 
HS test runs at nine positive loading peaks 
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Figure  8.82 Summary of the estimated bent cap effective flange width at section D from all 
HS test runs at nine negative loading peaks 

 

Figure  8.83 Mean effective width from HS test runs from positive and negative loading 
(bar chart) and overall average effective width from all HS test runs (dashed lines) at 

section D as compared to Caltrans SDC effective width value 
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8.6.3 Concrete Surface Strain Distribution 

The strain distribution from the instrumented reinforcing steel bars in the bent cap beam tension 
side and its adjacent deck slab transverse reinforcement was found to be more accurate than the 
measurements in the compression side and those from the embedded and surface concrete gages. 
A sample of the embedded concrete gages in the compression soffit slab side was previously 
shown in Chapter 5. Here, a sample of the surface concrete strain gages is shown for 
completeness. Figure  8.84 shows the strain history obtained from six different surface concrete 
gages, which were located close to section B that has been used throughout this study, and 
distributed at the East and West sides of the column. The figure shows that surface concrete 
gages captured the overall trend of the effective width despite the noisy measurement. This is 
implied from the values at level W-1 (closest to column and bent cap) versus W-2 and W-3 
levels (farther from the column and cap beam) in Figure  8.84, for instance.  

Figure  8.84 Strain history of six concrete surface gages at Section B for all HS test runs 
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9 Post-Test Analysis  

FE post-test analyses and conventional sectional analyses were conducted to further investigate 
the bent cap capacity with focus on design optimization. The FE model was first calibrated 
against SP1 cyclic test results. Next, the FE analysis was used to determine the cap beam 
capacity from two hypothetical designs having less reinforcement than what the original design 
required. On the other hand, the sectional analysis determined the nominal cap beam capacity 
using two values for the slab effective width with or without including the slab tensile 
reinforcement within that effective width. Moreover, for a comprehensive conclusion, the 
sectional analysis tool was used to investigate the design implications at the full prototype bridge 
level. The Caltrans Academy Bridge was utilized to check the design of the integral bent cap 
beam that corresponds to three different column designs to study the design implications of the 
revisited effective slab width value and the significance of including the slab transverse 
reinforcement. Four concise sections comprise this chapter and present (1) the DIANA test 
specimen model calibration, (2) hypothetical cap beam design FEA investigation, (3) test 
specimen cap beam sectional analysis, and (4) the design implications at the full-scale prototype 
bridge level. 

9.1 DIANA MODEL CALIBRATION 

The detailed 3D DIANA brick-element model of the test specimen previously used in the pre-test 
analysis was calibrated against the as-built SP1 cyclic tests. Various parameters were varied to 
understand the effect of each of these parameters on the specimen model response, and 
consequently, determine the best set of parameters for the most accurate match with the 
experimental test results. First, the effect of the components of the analysis input cyclic load 
pattern; the transverse-only versus the bidirectional loading schemes used in the experiments, 
was explored. Next, the effect of the gravity load was investigated. The effect of each of the 
concrete total strain-based crack model input parameters was briefly investigated as well. A 
different set of material model parameters for the column and the box-girder were used 
afterwards to recognize the actual difference in the concrete lifts used in the construction for 
better calibration.  Each of the above-mentioned four stages of the model calibration are 
presented in this section. The section concludes with a brief discussion of the final calibrated 
model results and comparisons with the experiments. 

All the analyses conducted throughout this stage of the model calibration were nonlinear 
quasi-static analysis under prescribed cyclic loading patterns that mimic the experiments of the 
as-built SP1. Two cases for the prescribed displacement input were used in the analysis and 
adopted from SP1 cyclic loading patterns. The first is a bidirectional loading pattern that applied 
the prescribed displacement input at the column head in the transverse and the longitudinal 
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directions separately, i.e. in a cross orbit where loading is applied in one direction at a time. A 
shorter input signal was used as well which applied only the transverse component of the cyclic 
loading pattern. The bidirectional and transverse-only cyclic loading pattern used for the 
different DIANA post-test analyses are shown in Figure  9.1 and Figure  9.2, respectively. 

 

Figure  9.1 Bidirectional cyclic loading pattern adopted from SP1 experiments and used 
for part of the DIANA post-test analysis 

 

Figure  9.2 Transverse-only cyclic loading pattern adopted from SP1 experiments and used 
for part of the DIANA post-test analysis 

The analysis results from two different cases conducted under the bidirectional and 
transverse-only cyclic load input are compared and presented in the next subsection. However, it 
is to be noted that the transverse-only input was the one used to study the effect of the material 
model parameters. That is because at least 16 analysis cases to be discussed in a later subsection 
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were performed for that task and using the more complex bidirectional input would have been 
computationally expensive with limited benefit to this particular parametric study. 

9.1.1 Transverse vs. Bidirectional Input 

A shorter input signal was adopted only in the transverse direction for computational efficiency 
in order to conduct larger number of parametric studies. Thus, it was desired to check first how 
much the overall response may differ if the loading and consequent damage in the longitudinal 
direction is not considered. The bidirectional and transverse-only input displacement patterns 
were applied to a preliminary model, which used one set of material model parameters for the FE 
model. This set was adopted from the mean material properties determined from the material 
tests. A constant gravity load that is equivalent to 10% of the column axial capacity was applied 
first in both cases. The obtained force-displacement relationships from the two cases are 
compared as shown in Figure  9.3. 

It is observed from the figure that the hysteresis behavior is different. In addition, larger 
force values were observed when the transverse-only input was used. This is attributed to the 
effect of the inelastic behavior of the box-girder that introduced some damage when loading 
included application of cycles in the longitudinal direction in addition to the transverse direction. 
When only a transverse input was used, all the damage occurred in the column in the vertical 
plane that includes the longitudinal axis of the bent cap beam leading to higher transverse force 
capacity. It can be concluded that incorporating the longitudinal component of loading is 
necessary for accurate model calibration. However, using the transverse-only signal can be used 
only as a simplified approach to explore the sensitivity of the overall response to the material 
input parameters as discussed in a following subsection. 

 

Figure  9.3 Force-displacement relationship in the transverse direction when a 
bidirectional (left) or transverse-only (right) cyclic loading pattern was used 
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9.1.2 Effect of Gravity 

The total vertical reaction at the two roller supports at the ends of the bent cap beam in the 
DIANA model was compared to applied total gravity load. That is because the vertical reactions 
were central in estimating the cap beam moment capacity in further analyses. The ratio of the 
total reaction from the vertical roller supports to the applied gravity load was found to be about 
80% from the DIANA analysis. However, the experimentally measured value for the total 
reaction from the calibrated struts to the applied gravity load was in the vicinity of 70% for both 
SP1 cyclic tests and SP2 HS tests. This implied that the FE solution distributed the gravity load 
based on a stiffer bent cap beam which is attributed to the full vertical restraints at its ends. A 
better method for modeling the end conditions of the bent cap beam is using vertical springs. For 
simplicity, instead of using springs, the gravity load was adjusted in the FE analysis such that the 
bending moments that were developed in the bent cap beam matched the values observed from 
the experiments. 

A value of 8% gravity load produced comparable bending moments in the bent cap beam 
to those obtained under the 10% gravity load from the experiments. It is to be noted that applying 
the gravity before any lateral loading did not incorporate any inelastic behavior in the model and 
thus, the nonlinear material model parameters did not need to be calibrated for this part of the 
analysis. However, it was beneficial to check whether the slightly relieved axial load in the 
analysis would affect the column behavior. Accordingly, a nonlinear analysis using the 
bidirectional cyclic load input was conducted with the 10% gravity and without any gravity load. 
That is to explore the system behavior in the extreme case without any gravity load. Figure  9.4 
and Figure  9.5 show the force-displacement relationship comparisons with and without including 
the gravity load in both the transverse and longitudinal directions, respectively. The figures show 
that the overall response and force capacity were comparable from both cases. The main 
difference, however, was only the response in the last group of cycles where a drop in the 
capacity is noticed because of the more damage in the bent cap as a result of the additional 
moment from the gravity load. Applying the 8% gravity load showed a similar response under 
the last group of cycles to the case of the 10% gravity as seen in the final calibrated model results 
later in this section. Thus, it was concluded that reducing the gravity load to 8% for the post-test 
analysis, to better match the bent cap beam moment demands, should not affect the overall 
behavior and is a reasonable approximation. 
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Figure  9.4 Force-displacement relationship in the transverse direction with and without 
the constant gravity load 

 

Figure  9.5 Force-displacement relationship in the longitudinal direction with and without 
the constant gravity load 
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9.1.3 Effect of Model Parameters 

To facilitate deciding on the best set of material parameters, each of the concrete total crack 
strain model parameters: young’s modulus (E), compressive strength (fc), tensile strength (ft), 
fracture energy (Gf), stress increase due to confinement, and reduction due to lateral cracking 
was varied one at a time using input from the material tests. The mean values from the material 
tests for all three concrete lifts were used for the total strain crack model parameters. 
Additionally, each parameter was varied one a time using the mean value, 50% less than the 
mean value, and 50% higher than the mean value. This variation used this range of the 50% 
difference only for investigating the relative effect of changing such material parameters on the 
overall response of the specimen model rather than for calibration purposes. Moreover, the 
transverse-only cyclic loading pattern was used for a computationally inexpensive study. 

The force-displacement relationship due to the transverse-only cyclic loading was 
compared when each of the previously-mentioned parameters was varied. Figure  9.6 shows the 
effect on the global response due to varying the concrete Young’s modulus (Ec) within 50% less 
or higher than the mean value. Similarly, the overall force-displacement response due to the 
compressive strength (fc), tensile strength (ft), and fracture energy (Gf) variation is shown in 
Figure  9.7 to Figure  9.9, respectively. Additionally, the total crack strain model in DIANA offers 
some other modifications to the constitutive model to account for phenomena such as 
compressive strength increase due to confinement and the Vecchio and Collins (1993) 
relationship for lateral crack reduction. The effect of these two modifications was investigated as 
well. Figure  9.10 and Figure  9.11, respectively, show the force-displacement relationships when 
the confinement and crack reduction modifications were either incorporated or not; one 
parameter at a time.  

 

Figure  9.6 Force-displacement relationships for different Young’s modulus (Ec) values 

-10 -5 0 5 10
-70

-60

-50
-40

-30
-20

-10
0

10

20
30

40
50

60
70

Displacement [inch]

F
or

ce
 [k

ip
]

 

 

-10 -5 0 5 10
-70

-60

-50
-40

-30
-20

-10
0

10

20
30

40
50

60
70

Displacement [inch]

F
or

ce
 [k

ip
]

 

 

-10 -5 0 5 10
-70

-60

-50
-40

-30
-20

-10
0

10

20
30

40
50

60
70

Displacement [inch]

F
or

ce
 [k

ip
]

 

 
50% higher E

cmean E
c

50% less E
c



351 

 

Figure  9.7 Force-displacement relationships for different compressive strength (fc) values 

 

Figure  9.8 Force-displacement relationships for different tensile strength (ft) values 

 

Figure  9.9 Force-displacement relationships for different fracture energy (Gf) values 
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Figure  9.10 Force-displacement relationships when the stress increase due to the 
confinement option is either incorporated or not in the model 

 

Figure  9.11 Force-displacement relationships when the reduction due to lateral cracking 
as defined by Vecchio and Collins (1993) is either incorporated or not in the model 

In general, it can be observed from Figure  9.6 through Figure  9.11 that none of the 
material model parameters significantly change the response, the force capacity, or the mode of 
failure. The parameter that showed a relatively sizable change in the force capacity when it was 
not incorporated is the Vecchio and Collins (1993) crack reduction and to a lesser extent the 
confinement option. Thus, it was concluded that the crack reduction modification need to be 
always incorporated for a better capacity capping behavior that best match the experimental 
results. Moreover, it was shown that using only one set of material properties for the entire 
model, i.e. for the column, cap beam, and box-girder, did not reflect the natural difference in the 
concrete properties from the different lifts as varying the compressive strength, for instance, did 
not affect the response significantly, contradicting what was expected. Therefore, using two 
different sets of material parameters; one for the column and the other for the box-girder and cap 
beam were decided for the next phase of exploring the different ways of calibrating the model. 
The discussion from three different models that used different combinations of sets of material 
parameters is presented next. 
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9.1.4 Elastic Column vs. Elastic Superstructure 

As mentioned in the previous subsection, it was recommended to investigate whether varying the 
set of material input parameters for the column from the superstructure would affect the 
response. This is mainly to recognize the natural difference in the concrete lifts used due to the 
different stages of construction. The first lift included only the specimen seat beams and the deck 
slab, while the second lift included the rest of the box-girder and bent cap beam. Thus, a set of 
material properties from the second lift was a better candidate for the superstructure concrete 
model. Finally, the third lift was only for the column, and accordingly, the material input for the 
column constitutive model should be based on the third lift material test results. 

To study the effect of the variation in the column material model from the superstructure 
one, three different DIANA models were utilized. The first model used the mean values from the 
second concrete lift material tests for defining the superstructure model parameters, whereas the 
third lift tests were used for the column material input. The second and third models represented 
the two extreme cases if either the column or the superstructure is entirely linear elastic and 
damage and inelasticity are limited to the counterpart of the elastic one. Thus, the second model 
used an elastic concrete model for the superstructure, and the column concrete model properties 
were based on the third concrete lift material tests. On the other hand, the third model used the 
second concrete lift material tests to define the superstructure material input while an elastic 
model was used for the column. The described three different models in this subsection are 
designated as models A, B, and C, respectively. The force-displacement relationships in both the 
transverse and longitudinal directions for the three models are compared in Figure  9.12 and 
Figure  9.13, respectively. The elastic superstructure case, model B, is shown in the left side of 
the figures whereas the case of the elastic column, model C, is shown in the right side of the 
figures. The full inelastic model with different material properties for column and superstructure, 
model A, is shown in the middle part of the figures. Clearly, model A represents a transition 
between the other two extreme cases in terms of the mode of failure and overall system response. 

A much wider hysteresis and energy dissipation occurred when all the damage was 
concentrated in the inelastic column of model B. On the contrary, a narrower hysteresis, less 
energy dissipation mechanism, and severe pinching around the zero force value during the 
unloading were observed when the damage was only concentrated in the superstructure of model 
C. The response of the full inelastic model with two different sets of material properties was 
somewhere in-between the two extreme cases of models B and C. This observation was valid for 
the behavior in both the transverse and longitudinal directions. Two main conclusions can be 
drawn accordingly. The column mode of failure is much more ductile than the superstructure 
mode of failure, which indeed, agrees with the seismic capacity design approach where the 
superstructure is capacity protected to remain essentially elastic. Moreover, the observed 
experimental response showed a ductile behavior that is, in a generic sense, more closer to model 
B behavior than model C. Therefore, an informed calibration procedure would to push the 
column properties to the lower bound of the material test values whereas, the superstructure 
material model is better to adopt the upper bound that approaches the elastic behavior. The two 
sets of material parameters were adjusted accordingly, and the results were found reasonably 
comparable to the experimental results as presented in the next subsection for the final calibrated 
model. 
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Figure  9.12 Force-displacement relationships in the transverse direction for the fully 
inelastic model A (middle), the elastic superstructure model B (left), and the elastic 

column model C (right) 

 

Figure  9.13 Force-displacement relationships in the longitudinal direction for the fully 
inelastic model A (middle), the elastic superstructure model B (left), and the elastic 

column model C (right) 

9.1.5 Final Calibrated Model 

The final calibrated model that was found to reasonably match the experimental results was 
based on using two different sets of parameters as previously mentioned; one for the column and 
the other for the bent cap beam and box-girder. This was intended to reflect the different 
concrete properties of the lifts used to construct the column and superstructure. Accordingly, and 
based on the observations from the previous subsection, the input for the column concrete was 
based on the lower bound values of the third concrete lift material tests. On the other hand, the 
superstructure, i.e. the bent cap beam and the box-girder, material input was based on the upper 
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Figure  9.18 Strain history at one of the bent cap reinforcing bars at sections B and D 
obtained from the calibrated FE model for all the loading cycles 

 

Figure  9.19 Comparison of the strain history at one of the bent cap reinforcing bars in the 
tension side at sections B from SP1 cyclic tests and the calibrated FE 
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Figure  9.20 Strain distribution at section B for four different small loading levels as 
obtained from the calibrated FE model 

 

Figure  9.21 Strain distribution at section D for four different small loading levels as 
obtained from the calibrated FE model 
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Figure  9.22 Strain distribution at section B for four different large loading levels as 
obtained from the calibrated FE model 

 

Figure  9.23 Strain distribution at section D for four different large loading levels as 
obtained from the calibrated FE model 
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9.2 FE ANALYSIS FOR DIFFERENT BENT CAP DESIGNS 

The calibrated sets of material input parameters in the DIANA FE 3D model for the test 
specimen were used to investigate the bent cap capacity in case of the original specimen design 
and two other hypothetical designs. The main objective of this part of the study is to complement 
the experimental program through determining the bent cap beam capacity and the contribution 
of the box-girder to the overall system capacity in these three different cases of the bent cap 
designs. The goal was not to optimize the bent cap design, which is the considered in the design 
implication section of this chapter. However, less reinforcement in the bent cap was used to form 
two hypothetical cases of under reinforced bent cap beam to investigate whether the contribution 
from the box-girder to the system capacity is affected by the bent cap contribution or design. For 
this reason, the test specimen bent cap original 8 #5 top and bottom reinforcement were replaced 
with 8 #4 top and bottom reinforcement for the first hypothetical design, and 8 #3 top and bottom 
reinforcement for the second hypothetical design. For simplicity, the three designs are designated 
as original design (8 #5), design 1 (8 #4), and design 2 (8 #3). 

The objective of this analysis, as mentioned above, is to determine the bent cap beam 
capacity rather than actual system response. Moreover, the exact system response has been 
already identified from the experimental part of the study, and was reasonably reproduced using 
the calibrated FE analysis as discussed in the previous section. Thus, it is desired to limit the 
mode of failure and concentrate the damage only in the bent cap beam. Accordingly, the 
calibrated set of material parameters for the superstructure, i.e. the bent cap and the box-girder, 
was used along with an elastic concrete model for the column. That is to amplify the demand on 
the bent cap beam until the capacity is reached. Three different types of analysis were used to 
determine the bent cap beam capacity. These are nonlinear quasi-static analysis using the 
bidirectional cyclic loading pattern, vertical pushover analysis, and lateral pushover analysis. 
Additionally, the full inelastic calibrated model was used to compare the system response from 
the three designs regardless of whether the cap beam reaches its capacity or not. Four subsections 
are presented next to discuss the response comparison of the three bent cap designs in case of the 
inelastic model subjected to cyclic loading, and the elastic column model under cyclic loading, 
vertical, and lateral pushover analyses. A final subsection is provided to summarize the bent cap 
capacity or response observed from all the analyses.  

9.2.1 Inelastic Model: Cyclic Loading 

The final calibrated inelastic DIANA FE model for the test specimen that used two sets of 
material parameters for the column and the superstructure was further utilized to investigate the 
overall response when the bent cap beam reinforcement is changed. The three different bent cap 
designs previously-mentioned were adopted in the inelastic FE model, which was analyzed in the 
three cases under constant gravity load and bidirectional cyclic loading. The obtained force-
displacement relationships in the transverse and longitudinal directions from the three designs 
are compared in Figure  9.24 and Figure  9.25, respectively. The bent cap beam moment history at 
section B is compared for the different cases as well in Figure  9.26. 

The overall response illustrated in the force-displacement relationships denotes that the 
system capacity did not almost change irrespective of the bent cap reinforcement. This is 
obviously attributed to the fact that the mode of failure and the system capacity is governed by 
the column rather than the bent cap or box-girder. This was already observed in SP1 cyclic tests 
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and confirms the observation that the bent cap beam remained essentially elastic as required by 
the adopted Caltrans and AASHTO capacity design provisions. The moment history shown in 
Figure  9.26 indicates that similar demand, dictated by the moment capacity, was transferred to 
the bent cap beam in the three reinforcement designs. These results show that in a successful 
capacity design approach, only the minimum amount of reinforcing steel is needed in the bent 
cap beam as long as it is guaranteed that only the column attracts all the damage in case of 
extreme events. In other words, if the bent cap capacity is accurately estimated, to perform the 
capacity check, unnecessary additional bent cap reinforcement can be avoided and the bent cap 
design can be optimized accordingly. More details are discussed in the design implications 
section.  

 

Figure  9.24 Force-displacement relationships in the transverse direction from the 
calibrated inelastic FE model for three bent cap cases: 8 #5 top and bottom of original 
design (left), 8 #4 top and bottom design 1 (middle), and 8 #3 top and bottom design 2 

(right) 

 

Figure  9.25 Force-displacement relationships in the longitudinal direction from the 
calibrated inelastic FE model for three bent cap cases: 8 #5 top and bottom original design 

(left), 8 #4 top and bottom design 1 (middle), and 8 #3 top and bottom design 2 (right) 
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Figure  9.26 Bent cap beam moment history at section B from the calibrated inelastic FE 
model for three cases: 8 #5 top and bottom original design (top), 8 #4 top and bottom 

design 1 (middle), and 8 #3 top and bottom design 2 (bottom) 
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the damage to the bent cap beam. Thus, providing an accurate way of estimating the bent cap 
beam capacity is very beneficial for the seismic capacity design check and for informed retrofit 
decisions as well.  

In this subsection, the final calibrated FE model was modified such that the column used 
an elastic concrete material model but the reinforcing bars were still modeled using Von Mises 
plasticity along with the Voce hardening previously discussed in Chapter 4. A bidirectional 
cyclic loading under constant gravity was applied for the three cases of bent cap reinforcement. 
Figure  9.27 and Figure  9.28 compare the force-displacement relationships for those bent cap 
designs from the elastic column model in the transverse and longitudinal directions, respectively. 
Moreover, Figure  9.29 shows the bent cap moment history at section B for the different cases. 

 

Figure  9.27 Force-displacement relationships in the transverse direction from the elastic 
column FE model for three bent cap cases: 8 #5 (left), 8 #4 (middle), and 8 #3 (right) 

 

Figure  9.28 Force-displacement relationships in the longitudinal direction from the elastic 
column FE model for three bent cap cases: 8 #5 (left), 8 #4 (middle), and 8 #3 (right) 

-10 0 10
-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Displacement [inch]

F
or

ce
 [k

ip
]

-10 0 10
-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Displacement [inch]

F
or

ce
 [k

ip
]

-10 0 10
-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Displacement [inch]

F
or

ce
 [k

ip
]

-10 0 10
-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Displacement [inch]

F
or

ce
 [k

ip
]

-10 0 10
-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Displacement [inch]

F
or

ce
 [k

ip
]

-10 0 10
-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Displacement [inch]

F
or

ce
 [k

ip
]



365 

 

Figure  9.29 Bent cap beam moment history at section B from the elastic column FE model 
for three cases: 8 #5 top and bottom original design (top), 8 #4 top and bottom design 1 

(middle), and 8 #3 top and bottom design 2 (bottom) 
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moment capacity, identified in Figure  9.29, was found to be 5158 kip-in., 4953 kip-in., and 4710 
kip-in. for the case of 8 #5, 8 #4, and 8 #3 top and bottom bent cap reinforcement, respectively. 
These numbers indicate a maximum drop of 8.7% in the capacity versus an expected drop of 
almost 63% in the capacity if the standard Caltrans provisions are adopted for capacity 
estimation while excluding slab reinforcement. The details behind these numbers are discussed 
in the sectional analysis part in the next section. However, the main conclusion that can be drawn 
from this part of the FE analysis is that there is significant redundancy and force redistribution in 
the box-girder as the damage and failure of the bent cap progresses. Vertical and lateral pushover 
analyses were conducted as well to verify if the same conclusion still hold irrespective of the 
loading type. 

9.2.3 Vertical Pushover Elastic Column 

The model that used elastic concrete model for the column and the calibrated set of material 
properties for the superstructure inelastic constitutive total strain crack model was utilized with 
the three different bent cap designs to carry out a vertical pushover analysis. That is to determine 
the capacity of the bent cap beam and the whole bridge subassemblage. The vertical pushover in 
the given test specimen configuration acted upon both of the bent cap beam and the longitudinal 
box-girder. The vertical pushover curve for the three bent cap designs in addition to the 
developed bending moment at the bent cap at section B are shown in Figure  9.30 and 
Figure  9.31, respectively. The vertical force capacity of the whole system was determined in the 
three bent cap design cases. Only a slight difference in the capacity, which was reached as soon 
as the inelastic damage started, was observed at the beginning. However, as the pushover 
continued, the damage spread more and the less reinforcement in the bent cap, the more loss of 
capacity was observed. The moments in the cap beam in the three cases reached comparable 
peak value, which was again within 10% difference, before severe damage started. 

 

Figure  9.30 Vertical pushover force-displacement curve from the elastic column FE model 
for three bent cap cases: 8 #5, 8 #4, and 8 #3 top and bottom (T&B) reinforcement 
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Figure  9.31 Bent cap beam moment history at section B due to vertical pushover  for three 
bent cap cases: 8 #5, 8 #4, and 8 #3 top and bottom (T&B) reinforcement 
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dictated by the bent cap beam, yet close values for the moment capacity were obtained for the 
different bent cap designs. This implies again that there is a large force redistribution and 
redundancy because of the box-girder contribution.  

 

Figure  9.32 Lateral pushover force-displacement curve from the elastic column FE model 
for three bent cap cases: 8 #5, 8 #4, and 8 #3 top and bottom (T&B) reinforcement 

 

Figure  9.33 Bent cap beam moment history at section B due to lateral pushover for three 
bent cap cases: 8 #5, 8 #4, and 8 #3 top and bottom (T&B) reinforcement 
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9.2.5 Summary of Bent Cap Capacity 

The previous subsections aimed at providing the overall system force-displacement relationships 
along with the developed moment in the bent cap beam.  In this subsection, the cap beam 
moment capacity from the three designs for the different cases that involved elastic column along 
with the maximum observed moment from the fully nonlinear calibrated model are summarized 
and presented in Table  9-1. A better comparison of these numbers, i.e. the different values for the 
bent cap capacities, from different cases of loading can be achieved in light of the analytical 
estimation of the bent cap capacity using conventional sectional analysis. The next section 
focuses on such sectional analysis of the bent cap beam different designs. 

Similar observations and conclusions as discussed in the previous subsections can be 
restated based on the values provided in Table  9-1. The maximum observed bent cap moments 
from both the as-built SP1 cyclic tests and the retrofitted SP2 HS tests are included in the table 
for comparison. It is to be noted that the moment values from the as-built SP1 were capped due 
to the reached column capacity, whereas the capped bent cap beam moments in the retrofitted 
SP2 were claimed to be the true bent cap capacity based on the observed damage. The capacity 
obtained from the FE analyses shows that the vertical pushover closely matched the experimental 
upper bound, which relates to the higher gravity load level (15%) used in the HS tests. It is noted 
from the table also that reducing the reinforcement from 8 #5 to 8 #4, i.e. 35% less 
reinforcement, was found to reduce the observed capacity by about 5% only for all cases of 
loading. Meanwhile, the reinforcement reduction from 8 #5 to 8 #3, i.e. 65% reduction, was 
accompanied by a reduction of only 10% in the observed capacity from the different loading 
cases. This indicates again that the box-girder contributes significantly to the overall system 
capacity and implies that large portion of the force and moment demand is redistributed to the 
box-girder even after cap beam extensive yielding or damage. 

Table  9-1 Bent cap moment [kip-in] obtained from all cases of FE post-test analysis 

Cap Beam 
Rft. (Top & 

Bottom) 

Post-test FE Analysis Experiments 
Elastic Column 

Calibrated 
Model 

SP1 Cyclic 
Tests 

SP2 HS 
Tests vertical 

pushover 
lateral 

pushover 
lateral 
cyclic 

8 #5 6794 5248 5158 4721 4770 6535 
8 #4 6452 5031 4953 4720 - - 
8 #3 6120 4793 4710 4645 - - 

9.3 SECTIONAL ANALYSIS 

Sectional analysis is instrumental for earthquake engineering, and particularly for capacity 
design or check of flexural members. A conventional sectional analysis for a beam in flexure 
aims at obtaining the moment-curvature relationship for the beam section to help identify key 
response metrics such as the yielding and the ultimate moment capacity. In bridge design, a 
moment-curvature analysis, or sectional analysis, is required for bent columns and cap beams for 
performing various design checks. The current Caltrans SDC (2013) and AASHTO guide 
specifications for LRFD seismic bridge design (2011) provisions require to calculate the integral 
bent cap beam capacity as part of the capacity check. This should be performed using the code-
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Figure  9.36 Moment-curvature relationships for postulated three different test specimen 
bent cap beam cross-sections as obtained from XTRACT sectional analysis results 

Table  9-2 Summary of the bent cap moment capacity [kip-in] obtained from the sectional 
analysis  

Cap 
beam  
top  
rft. 

Cap 
beam 

bottom 
rft. 

12ts 18ts Experiments 

w/o slab 
rft. 

w/ slab 
rft. 

w/o slab 
rft. 

w/ slab 
rft. 

SP1 Cyclic 
Tests 

SP2 HS 
Tests 

8 #5 8 #5 4504 5977 4566 6855 4770 6535 
8 #4 8 #4 2945 4508 2965 5332 - - 
8 #3 8 #3 1667 3305 1676 4132 - - 

 

On one hand, it is noted that the observed reduction in the moment capacity from the FE 
analyses, as implied from Table  9-1, where the beam reinforcement was reduced is much less 
than that for the nominal flanged-section capacities from the section analyses (Table  9-2). For 
example, reducing the bent cap reinforcement from 8#5 to 8#3 led to approximately 9% 
reduction in the capacity from the FE analysis, whereas a 63% and 45% reduction was observed 
from the sectional analysis when a 12ts slab contribution was used with and without slab 
reinforcement, respectively, compared to the case of 18ts slab contribution with slab 
reinforcement. This better illustrates the previously drawn conclusion from the FE analyses that 
the box-girder contributes considerably to the system capacity and significant redundancy and 
force and moment demand redistributions take place as the cap beam yielding or damage 
progresses.   

On the other hand, it is concluded from the sectional analysis results that neglecting the 
slab reinforcement underestimates the capacity. Meanwhile, considering 18ts for the effective 
width led to the best match with the experimentally determined upper bound for the cap beam 
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moment from the HS tests. It is noted that the capacity reduction when using cap beam of 8 #3 
instead of 8 #5 in this case becomes 40% compared to the 63% and 45% mentioned in the 
previous paragraph. A practical design problem is tackled next to investigate the design 
implications of considering the recommended 18ts effective slab width along with including the 
slab reinforcement at a full-scale bridge level. 

9.4 DESIGN IMPLICATIONS 

The main objective of this study was to accurately quantify the box-girder slab contribution to 
the behavior of the integral bent cap beams in reinforced concrete box-girder bridges. That is to 
better estimate the cap beam strength and stiffness for seismic design and capacity checks 
purposes. The stiffness calculations of the bent cap rely primarily on what effective slab width to 
consider for the flanged I-section of the integral bent cap. However, the effective moment of 
inertia of the integral cap beam, and the corresponding initial stiffness estimate for the uncracked 
section, should not vary significantly if a 12ts or 18ts effective slab width is used. On the 
contrary, the strength calculations and capacity estimates were found to vary significantly based 
on two parameters: (1) the effective slab width and (2) the tension slab reinforcement inclusion 
within that effective slab width. Such conclusions were based on experimental and analytical 
evidences but only at the reduced-scale level of the tested column-supper structure subassembly 
as discussed throughout this entire study. Thus, it would be beneficial to extrapolate those 
conclusions to the full bridge scale to identify the design implications and potential design 
optimization of the integral bent cap beams.  

The bent cap design of the original Caltrans Academy Bridge was revisited based on 
three different scenarios of the bent column design. For each scenario, the cap beam design, or 
more precisely the capacity check, was based on three cases. The first case is using the 
provisions of the current Caltrans SDC (2013) and AASHTO guide specifications for LRFD 
seismic design of bridges (2011), i.e. using an effective slab width of 12ts without including the 
tension slab reinforcement. The second and third cases for the full scale bent cap design and 
capacity check are to include the tension slab reinforcement with 12ts and 18ts effective slab 
width, respectively. For all cases, the Caltrans SDC expected material properties for a 5000 psi 
characteristic concrete strength and Grade 60 reinforcing steel are used to resemble actual design 
conditions. The relevant design criteria and the different bent column design scenarios are 
presented in the first subsection. The bent cap beam capacity estimates in the three 
configurations described above is discussed in the second subsection. To conclude, the capacity 
check is performed and discussed in the third subsection,  

9.4.1 Design Criteria  

A typical bridge design would start with laying out the bridge spans to determine the bridge type 
and preliminary dimensions of different cross-sections. The next step is estimating the different 
loading actions primarily based on vertical gravity loads, i.e. dead loads and live traffic loads. 
Linear elastic analyses are then carried out to determine the different demands and finally 
perform LRFD design for the sections. Based on the bridge type, location, boundary and soil 
conditions, among other parameters, different design approaches might be undertaken to perform 
lateral design and checks. For the typical case considered in this study, which is a RC box-girder 
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bridge in California, performance-based approaches are typically used for seismic design and 
checks. In particular, for the case of the integral bent cap beam that is readily dimensioned and 
designed using LFRD, a capacity design check is required to guarantee that the bent cap beam 
remains essentially elastic during extreme seismic events. A weak column strong beam approach 
is used, which ties the cap beam capacity check directly to the bent column. The reader is 
referred to Chapter 3 for more details about the bridge seismic design philosophy. Moreover, the 
Academy Bridge design document (2006) provides supplementary details that are specific to the 
prototype used through this study.  

Three scenarios for the Academy Bridge column design are considered and the bent cap 
beam design is checked accordingly. All the necessary data has been adopted from the Academy 
Bridge design document (2008) and the relevant design information is briefly presented here for 
completeness. The typical practical method for designing the bent columns is to assume a 
longitudinal reinforcement ratio within the 1% to the 4% code limits, then perform all necessary 
design checks. The original Academy Bridge design involved a 6-ft diameter column with 1.44% 
reinforcement ratio, which satisfied all the design requirements and checks (design document 
2006). To recognize possible scenarios that would require higher column reinforcement ratios, 
two additional designs that approximately used 2.6% and 3.5% column reinforcement ratios were 
used in this study. Sectional analyses were performed for all three column design scenarios and 
the column capacity was estimated based on the expected Caltrans material properties. A 
summary of the original column design and the two additional scenarios and relevant sectional 
analysis results are presented in Table  9-3. 

Once the column design is completed and sectional analyses are used to compute the 
section capacity, the column overstrength is then estimated to use for the bent cap beam capacity 
check. The column overstrength is given as 1.2 times the ultimate plastic moment obtained from 
the sectional analysis. To calculate the moment demands in the bent cap beam based on the 
column overstrength moment, a nonlinear planer transverse pushover analysis is typically 
performed. The results from the 2D nonlinear model used for the bent frame as given by the 
Academy Bridge design document (2006) were used to estimate the bent cap beam moment 
demands. A schematic illustration of the model used for the transverse pushover analysis is 
shown in Figure  9.37. The estimated positive and negative bent cap beam moment demands are 
summarized in Table  9-3.  

To perform the bent cap beam capacity check, the current Caltrans and AASHTO 
provisions, as mentioned before, require calculating the bent cap beam capacity based on a 
flanged section that includes a 12ts effective slab width. The readily available design for the bent 
cap from the vertical load LRFD design is 24 #11 bottom reinforcement and 22 #11 top 
reinforcement, as given by the design document (2006). Additionally, the transverse slab 
reinforcement was required to calculate the bent cap capacity in the other two configurations, 
discussed before. The design document (2006) did not include any information on the transverse 
slab reinforcement since it is not involved in any seismic design checks. Therefore, the standard 
Caltrans design procedure for choosing the transverse slab reinforcement was adopted to 
determine the slab reinforcement. The current practice for deciding on RC box-girder soffit and 
deck slabs dimensions and reinforcement is using the design charts and tables provided by the 
Caltrans Memo to Designers 10-20 (2008). An excerpt for the relevant table required for 
determining the deck slab transverse reinforcement is shown in Figure  9.39 with the applicable 
data for the Academy Bridge identified. A similar procedure was followed to determine the soffit 
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slab width, respectively. It should be noted that the double-column bent configuration of the 
Academy Bridge dictates positive and negative moment demands in the cap beam due to lateral 
loading. However, neither the top (22 #11) and bottom (24 #11) bent cap beam reinforcement 
nor the soffit (#5 @ 15 in.) and deck (#6 @ 11 in.) slab reinforcement are symmetric. Therefore, 
different capacities for positive and negative moments exist.    

The conventional sectional analysis procedure using XTRAXT was adopted to determine 
the positive and negative bent cap beam capacities in the three different configurations 
previously mentioned. Figure  9.40 and Figure  9.41 show the moment-curvature relationships for 
different bent cap beam cross-sections (configurations) due to positive and negative moments, 
respectively. The positive and negative moment notion is defined here to avoid confusion. The 
negative moment is the moment that causes sagging in the cap beam and requires top 
reinforcement where tension is developed. On the contrary, the positive moment causes hogging 
in the cap beam and requires bottom reinforcement. Accordingly, the deck (top) slab 
reinforcement is the tension slab reinforcement for negative moment capacity, whereas the soffit 
(bottom) slab reinforcement is the tension reinforcement in case of positive moment capacity. 
Therefore, the positive moment capacity is slightly higher than the negative moment capacity 
when only the bent cap reinforcement is used in the capacity estimation (22 #11 for top versus 24 
#11 for bottom), which can be observed from Figure  9.40 and Figure  9.41. However, the 
negative capacity exceeds the positive capacity when the slab reinforcement is included as 
observed from the same figures. The moment capacities determined from the section analyses 
were compared to the demands obtained from the transverse pushover analysis for the three 
column design scenarios to perform a capacity check as discussed next. 

 

Figure  9.40 Moment-curvature relationships for positive moment demands for the full-
scale Academy Bridge three different bent cap beam cross-sections as obtained from 

XTRACT sectional analysis results 
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Figure  9.41 Moment-curvature relationships for negative moment demands for the full-
scale Academy Bridge three different bent cap beam cross-sections as obtained from 

XTRACT sectional analysis results 

9.4.3 Caltrans SDC Capacity Check  

The seismic capacity check is required to avoid unfavorable mode of failure and guarantee that 
the superstructure, bent cap beam in this case, remains essentially elastic during extreme seismic 
events when the ductile bent columns reach their flexural capacities. The check is performed by 
comparing the demand, which is estimated from the pushover analysis based on columns 
overstrength moments rather than ultimate plastic moments, versus the capacity estimated for the 
given bent cap beam design. In this study, three different scenarios for the column design were 
pursued, whereas three different configurations for the capacity estimation were utilized. This 
resulted in a total of 18 combinations for the capacity check; nine for cases of positive demands 
and nine for cases of negative demands. The summary of the positive and negative demands in 
the three scenarios (column design cases) and the estimated capacities for the three different 
configurations along with the capacity check is shown in Table  9-4 and Table  9-5, respectively. 

It is observed from the tables that there are cases where the seismic capacity check was 
not satisfied and a revised bent cap beam design was required. Accordingly, the bent cap beam 
reinforcement was increased until the obtained beam capacity satisfied the capacity check. The 
final revised design for the cases that required additional reinforcement along with the ratio of 
the needed increase in the reinforcement are summarized in Table  9-6 and Table  9-7 for cases of 
positive and negative demands, respectively. Additionally, Table  9-8 summarizes the overall 
increase in the reinforcement relative to the original design when positive and negative moment 
designs are combined. An assessment of the information in these tables reveals that neglecting 
the slab reinforcement did not require revised design only for the 1.5% column design scenario, 
but also required much higher reinforcement to satisfy the capacity checks for higher demands 
from 2.5% and 3.5% column design scenarios. Moreover, including the slab reinforcement, 
especially within the recommended 18ts effective slab width from this study required the least 
design alteration and led to the most optimized bent cap beam design.  
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Table  9-4 Bent cap seismic capacity check for positive moment demands due to three 
design cases 

Case 
Column 
Design 

Moment 
Demand 
[kip-ft] 

12ts no slab rft. 12ts with slab rft. 18ts with slab rft. 

Capacity
Satisfy 

Capacity 
Check? 

Capacity
Satisfy 

Capacity 
Check? 

Capacity 
Satisfy 

Capacity 
Check? 

1 1.44% 14,970 21,990 YES 25,260 YES 26,590 YES 
2 2.58% 21,820 21,990 YES 25,260 YES 26,590 YES 
3 3.50% 27,040 21,990 NO 25,260 NO 26,590 NO 

Table  9-5 Bent cap seismic capacity check for negative moment demands due to three 
design cases 

Case 
Column 
Design 

Moment 
Demand 
[kip-ft] 

12ts no slab rft. 12ts with slab rft. 18ts with slab rft. 

Capacity
Satisfy 

Capacity 
Check? 

Capacity
Satisfy 

Capacity 
Check? 

Capacity 
Satisfy 

Capacity 
Check? 

1 1.44% 15,670 20,270 YES 26,170 YES 28,460 YES 
2 2.58% 22,830 20,270 NO 26,170 YES 28,460 YES 
3 3.50% 28,300 20,270 NO 26,170 NO 28,460 YES 

Table  9-6 Revised bent cap design and capacity check for positive moment demands 
resulting from the three different column design cases 

Case 1 2 3 
Column Design 1.44% 2.58% 3.50% 

Moment Demand [kip-ft] 14,970 21,820 27,040 

12ts no slab 
rft. 

Original Design 24 #11 24 #11 24 #11 
Original Capacity 21,990 21,990 21,990 

New Design no change no change 32#11 
New Capacity no change no change 28,790 

Increase in Rft. 
[%] 

0 0 33.3 

12ts with 
slab rft. 

Original Design 24 #11 24 #11 24 #11 
Original Capacity 25,260 25,260 25,260 

New Design no change no change 26 #11 
New Capacity no change no change 27,100 

Increase in Rft. 
[%] 

0 0 8.3 

18ts with 
slab rft. 

Original Design 24 #11 24 #11 24 #11 
Original Capacity 26,590 26,590 26,590 

New Design no change no change 26 #11 
New Capacity no change no change 28,680 

Increase in Rft. 
[%] 

0 0 8.3 
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Table  9-7 Revised bent cap design and capacity check for negative moment demands resulting from 
the three different column design cases 

Case 1 2 3 
Column Design 1.44% 2.58% 3.50% 

Moment Demand [kip-ft] 15,670 22,830 28,300 

12ts no slab 
rft. 

Original Design 22 #11 22 #11 22 #11 
Original Capacity 20,270 20,270 20,270 

New Design no change 24 #11 32 #11 
New Capacity no change 22,050 28,790 

Increase in Rft. 
[%] 

0 9.1 45.5 

12ts with 
slab rft. 

Original Design 22 #11 22 #11 22 #11 
Original Capacity 26,170 26,170 26,170 

New Design no change no change 26 #11 
New Capacity no change no change 29,740 

Increase in Rft. 
[%] 

0 0 8.3 

18ts with 
slab rft. 

Original Design 22 #11 22 #11 22 #11 
Original Capacity 28,460 28,460 28,460 

New Design no change no change no change 
New Capacity no change no change no change 

Increase in Rft. 
[%] 

0 0 0 
 

Table  9-8 Summary of additional bent cap reinforcement required to satisfy the seismic 
capacity check for three different column design cases  

Case 1 2 3 

Column Design (long. rft. ratio) [%] 1.44 2.58 3.50 

12ts no 
slab rft. 

Increase in Bottom rft. [%] 0.00 9.10 33.30 

Increase in Top rft. [%]  0.00 0.00 45.50 

Total Increase in rft. [%] 0.00 4.55 39.40 

12ts with 
slab rft. 

Increase in Bottom rft. [%] 0.00 0.00 8.30 

Increase in Top rft. [%] 0.00 0.00 8.30 

Total Increase in rft. [%] 0.00 0.00 8.30 

18ts with 
slab rft. 

Increase in Bottom rft. [%] 0.00 0.00 8.30 

Increase in Top rft. [%] 0.00 0.00 0.00 

Total Increase in rft. [%] 0.00 0.00 4.15 
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10 Conclusions and Future Extensions 

10.1 SUMMARY  

The study completed in this dissertation comprised computational and experimental frameworks 
to investigate the structural behavior and seismic response of bent cap beams in as-built and 
retrofitted RC box-girder bridges under the combined effect of vertical and lateral loading. In 
particular, the contribution of the box-girder slabs to the stiffness and strength of the integral 
bent caps was evaluated for optimized design and enhanced capacity estimation. Four main 
contributions are highlighted from this study: (a) Revisiting the effective slab width for integral 
bent caps in RC box-girder bridges; (b) Investigating the effectiveness of CFRP column retrofit 
in enhancing column capacity in light of the consequent amplified demands on bent cap and the 
resulting subassembly performance; (c) Developing and successfully conducting multi-DOF 
Hybrid Simulation (HS) test using a new practical approach for HS communication; and (d) 
Calibrating a detailed FE model and utilizing it for investigating the influence of box-girder 
contribution for several hypothetical cases of higher levels of bent cap damage when the bent cap 
beam reinforcement is reduced.  

The computational part of the study consisted of two phases: pre-test and post-test 
analysis. On the other hand, the experimental program involved testing two 1/4 scale column-
bent cap beam-box girder subassembly using quasi-static and HS testing methods. The test 
specimens were adopted from a prototype that was slightly modified from the Caltrans Academy 
Bridge, and were designed in light of the most recent AASHTO and Caltrans SDC provisions. 
An overview of the different parts of the study is summarized in the following paragraphs. 

The problem of the effective slab width was tackled in many studies, mainly in buildings 
framing systems where flanged floor beams are very common. A survey of the available 
literature was pursued to better understand the research problem before embarking on the 
computational and experimental programs. The first phase of the computational framework, i.e. 
the pre-test analysis phase, utilized 1D, 2D, and 3D FE models, which were developed and used 
to carry out different types of analyses that varied from linear elastic static analysis to nonlinear 
time history analysis. Different models were developed for both of the full prototype bridge and 
the test specimen using OpenSees, SAP2000, and DIANA FE packages. The pre-test analysis 
successfully verified the expected subassembly behavior, provided the input for the final gravity 
load levels and lateral loading protocol, delivered the expected loads and straining actions for 
test setup design, and provided necessary information for instrumentation distribution. 

The pre-test analysis was then followed by the experimental program that comprised the 
core of the study. The first stage of the experimental program involved quasi-static cyclic 
loading tests of the first specimen (SP1) in as-built and repaired conditions. Bidirectional cyclic 
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loading tests in both transverse and longitudinal directions were conducted under constant 
gravity load. A rapid repair scheme was adopted for the tested specimen using a three-layer 
CFRP column jacket. The partial repair aimed at providing at least minimal capacity for the 
specimen to be reused for the HS development and trial runs. However, a quasi-static cyclic test 
similar to the one applied to the as-built specimen was carried out for the repaired specimen for 
comparison purposes and to verify the essentially elastic status of the bent cap beam.  

The second stage of the experimental program embraced the HS testing technique for 
providing realistic dynamic response input to the test specimens as the lateral loading. A new 
practical approach that utilized readily available laboratory data acquisition systems as a 
middleware for feasible HS communication was achieved. The proper communication among the 
HS components and the verification of the HS system were first performed using test runs 
conducted on standalone hydraulic actuators, i.e. they were not attached to any physical 
specimens. Next, the same first specimen SP1 that was tested as-built, then was repaired and 
retested in quasi-static cyclic tests, was utilized one last time to carry out actual HS trial tests. All 
the HS trials were successful, which verified the robustness of the developed HS system. The 
column of the second specimen SP2 was retrofitted using CFRP jacketing before any testing to 
increase the demands on the bent cap beam. The retrofitted SP2 was then tested using multi-
degree of freedom HS under constant gravity load and using unidirectional and bidirectional 
near-fault ground motions in several intensity levels and polarity.   

The post-test analysis was the final stage of the study. The results from the as-built first 
specimen cyclic tests were used to calibrate the most detailed 3D FE model, which was 
previously developed as part of the pre-test analysis stage. The calibrated model was used to 
explore the effect of reducing the bent cap reinforcement on the overall system behavior and to 
investigate how the box-girder contributes at higher levels of bent cap damage. The design 
implications of the main outcome from all of the different analyses and experiments concluded 
this study. A short illustrative design example was carried out to investigate the implications of 
the revisited effective slab width and bent cap capacity estimation on the optimization of the bent 
cap design for a full-scale bridge.   

10.2 CONCLUSIONS 

Several conclusions were drawn from this study as follows:  

 The preliminary prototype bridge triaxial time history analysis showed that the inclusion of 
the vertical excitation component can lead to unfavorable damage or failure in the bent cap 
beams. A large number of near fault ground motions was used to run time history analysis on 
the modified Academy Bridge prototype with and without the vertical excitation component. 
Six out of 88 considered ground motions led to excessive curvature values, i.e. plastic hinge 
damage, at different locations of the bent cap beam only when the vertical excitation was 
included. These six ground motions were concluded to cause highest demands in the bent cap 
independently from the column capacity due to the vertical excitations. This observation 
violates the fundamental design principle of strong beam-weak column capacity design 
concept required by the Caltrans SDC and AASHTO seismic design guidelines and calls for 
further investigation.     
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 The most detailed and accurate 3D DIANA model for the test specimen successfully 
predicted the subassembly behavior and mode of failure. A lateral force capacity was 
determined from the DIANA nonlinear pushover analysis to be almost 45 kips, which is only 
within 5% difference from the 47.5 kips experimentally determined capacity. Different 
modes of failures were observed from the 3D DIANA model under different gravity load 
levels combined with the lateral pushover. At the 10% gravity load level, which was used in 
the large level cyclic loading tests, the predicted mode of failure from the analysis matched 
the experimentally observed failure mode of column plastic hinging. The detailed DIANA 
model was further calibrated and used in post-test analysis.      

 The observed as-built SP1 behavior satisfied all the Caltrans SDC design objectives. The 
mode of failure was a fully developed plastic hinge in the subassembly column whereas the 
bent cap beam and superstructure remained essentially elastic. The bridge system performed 
well up to high performance levels that exceeded the minimum required performance levels 
set by Caltrans SDC. The bridge subassembly, and particularly its ductile column, 
successfully achieved a 7.6 ductility level, which corresponds to a 10.5% drift ratio, in the 
transverse direction. However, a 5.4 ductility level that corresponds to 7.5% drift ratio was 
achieved in the longitudinal direction. The buckled column rebars started to rupture at the 5.4 
ductility level loading in the longitudinal direction leading to capacity loss. The 5.4 ductility 
level was still superior to the minimum displacement ductility of 4.0 required by Caltrans 
SDC. 

 The bridge subassembly tests showed slightly different stiffness in the transverse and the 
longitudinal directions. This is attributed to the slightly more flexible column-box girder 
connection relative to the column-bent cap connection. The slightly higher transverse 
stiffness observation was more pronounced in the as-built SP1 tests in comparison with the 
retrofitted SP2 tests. The reason is that the stiffness in the longitudinal direction is sensitive 
to the soffit and deck slab thicknesses, which govern the box-girder overall stiffness. 
Therefore, due to construction imperfections, the stiffness can vary as observed from the two 
specimens. In addition, SP1 stiffness degradation in both transverse and longitudinal 
directions was monitored and related to the different ductility levels and drift ratios. Only 
SP1 was considered in that regard as it experienced the desired column mode of failure as 
required by code provisions. At 7.56 ductility level, the transverse stiffness was about 13% of 
its initial value, while a longitudinal stiffness of almost 10% of the initial value was observed 
at 5.40 ductility level, i.e. the specimen lost close to 90% of its initial stiffness at the final 
damaged state.  

 The rapid CFRP repair technique successfully achieved its objective of partially restoring 
SP1 test subassembly capacity and significantly increased the stiffness in both transverse and 
longitudinal directions. To quantify the repair effectiveness, a maximum increase of 25% in 
the capacity was obtained due to the repair relative to the residual capacity after all column 
rebars buckled and six of them ruptured. Moreover, an increase of more than 300% was 
achieved in the stiffness from the final damaged state because of the repair. It is to be noted 
that regardless of the significant increase in the stiffness, yet the original initial stiffness and 
strength were not fully achieved. It is also noted that the injection of the cracks prior to the 
application of the CFRP was the main contributor to this increase of the stiffness, not the 
CFRP jacket itself. 
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 The retrofit CFRP technique was effective in increasing SP2 column capacity due to the 
enhanced confinement. It was observed that the force capacity of the whole subassembly and 
the moment capacity of the column increased significantly in SP2 compared to SP1 by 
almost 25%. The jacket confinement prevented any concrete spalling or bar buckling or 
rupture, which is important for post-earthquake bridge resiliency as it minimizes the down 
time for any column repairs. From a research perspective, the retrofit scheme also achieved 
its intended objective of increasing the demands on the bent cap beam and delaying, or 
preventing, the column failure to investigate bent cap beam mechanism in order to better 
estimate the bent cap capacity. Consequently, the amplified moment demands from the 
higher gravity level and retrofitted column led SP2 bent cap moment to cap at about 6500 
kip-inch versus a maximum value of approximately 4500 kip-inch in SP1 cyclic tests.   

 The bent cap beam experienced yielding through the as-built SP1 tests but remained 
essentially elastic. The essentially elastic state was confirmed by visual evidences that no 
extensive cracking took place at the tension side nor concrete crushing occurred in the 
compression side. In addition, the bent cap beam behaved linearly elastic when the 
subassembly was repaired and retested. A more accurate value for the yield moment of the 
bent cap beam was determined accordingly. The yield moment rendered the recommended 
Caltrans SDC and AASHTO bent cap beam flanged section conservative in terms of the 
effective slab width contribution. 

 The onset of the bent cap beam damage and its moment capacity were captured through the 
retrofitted SP2 HS tests. The overall system force capacity and the bent cap beam moment 
were both capped and reached a steady state regardless of the amplified HS test scales. The 
visual evidence from SP2 observed damage, i.e. concrete crushing in the bent cap 
compression side and only uniform flexural crack pattern in the column underneath the 
CFRP jacket, suggested that the capacity reached was dictated by the bent cap capacity. The 
moment cap value of almost 6500 kip-inch was justified to be a reasonable experimental 
estimate of the bent cap beam capacity. On the other hand, it was shown from the sectional 
analysis that was based on the Caltrans SDC provisions and actual material properties that 
the bent cap beam capacity is only around 5000 kip-inch. Consequently, the Caltrans, and 
similarly the AASHTO, provisions were found to underestimate the bent cap capacity as was 
shown for the yield moment from SP1 as well. 

 A simple procedure was devised to experimentally determine the bent cap beam effective 
slab width using the equivalent strain block concept from SP1 cyclic tests and SP2 HS tests. 
Two strain values from the different reinforcing steel bars in the bent cap were used for the 
equivalent strain block. These were the minimum and the mean of six instrumented bars at a 
given cross-section. Consequently, the effective slab width was evaluated for all SP1 and 
SP2 test runs and for different sections, mainly in the tension side. The results from the 
compression side were not conclusive because the strain measurements were sensitive to the 
concentrated gravity load. The results for the effective slab width, obtained from the tension 
side, rendered the 12ts Caltrans SDC and AASHTO code value for effective slab width 
unnecessarily conservative. The overall mean value for the effective width as determined 
from all the as-built SP1 cyclic lading tests was 13.7ts and 21.2ts when the cap beam mean 
and minimum strain values were used, respectively. Smaller estimates for the effective slab 
width were obtained from SP2 HS tests. These were 11.5ts and 15.8ts when the cap beam 
mean and minimum strain values were used, respectively. Thus, the original 12ts code value 
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was supplemented by a proposed revised value of 18ts for investigating the bent cap beam 
capacity estimation and design implications. The basis for choosing the 18ts value for the 
effective slab width is that it reasonably resembled the mean of the 21.2ts and 15.8ts upper 
bounds from the experiments, whereas the original 12ts resembled the mean of the 13.7ts and 
11.5ts lower bounds. 

 A practical HS system that utilizes readily available laboratory data acquisition systems 
along with inexpensive TCP/IP-Ethernet connections to establish the communication 
between the physical and computational substructures was successfully developed, verified, 
and utilized in SP2 HS tests. The main development included augmenting the Pacific 
Instruments data acquisition with a new interface to communicate with OpenFresco from the 
computational side and the Digital Signal Processing (DSP) card from the experimental side. 
The new interface utilized an inexpensive Ethernet connection to replace expensive shared 
memory communication cards, such as SCRAMNet, for communicating with the 
computational side. Moreover, a DSP algorithm complemented the new interface to control 
the laboratory hardware and receive the physical substructure feedback. A new test setup 
component in OpenFresco was successfully developed as well to perform geometric 
transformations between the global DOF in the computational model and the actuators local 
DOF for command displacements and force feedback measurements. The HS test trials using 
the hydraulic actuators solely and the full repaired SP1 successfully validated the new 
communication interface and the OpenFresco geometric transformation new experimental 
setup object. Accordingly, the validation tests provided confidence on the robustness of the 
HS system to be used for SP2 tests.  

 The most detailed DIANA 3D FE model for the test specimen was calibrated against the as-
built SP1 cyclic test results. The calibrated model successfully captures the global behavior 
of the subassemblage and the bending moments that were developed in the bent cap beam 
within 5% difference. The sensitivity of the global behavior observed from the FE analysis 
was investigated under different model and constitutive material input parameters as part of 
the FE model calibration. It was concluded that using two different sets of material model 
parameters for the column and the superstructure, that reflect the natural material properties 
in the different concrete lifts used in construction, led to the best match with the experimental 
results. Thus, it is recommended for better analysis practices to use different material 
properties for the bridge bent component, if needed, to reflect actual conditions, especially 
for capacity checks and nonlinear analysis.  

 FE analysis using the calibrated set of material parameters determined the cap beam capacity 
from the original test specimen design in addition to two hypothetical designs with less 
reinforcement than what the original design required. The capacity obtained from the vertical 
pushover closely matched the experimental upper bound, which is related in part to the 
higher gravity load level (15%) used in the HS tests where the cap beam reached its capacity. 
Moreover, the results from the hypothetically reduced-reinforcement bent cap designs 
revealed that only a slight reduction, which is not proportional to the reinforcement 
reduction, was observed in the system and the cap beam capacity. This indicates that the box-
girder contributes significantly to the overall system capacity and implies that large portion 
of the force and moment demand is redistributed to the box-girder after the cap beam 
extensive yielding or damage. 
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 The underestimated yield moment and ultimate moment capacity from the code-based 
sectional analysis relative to the experimentally observed value was claimed to be a 
consequence of excluding the tension-side slab reinforcement, and conservatively using only 
a 12ts effective slab width as well. Therefore, different configurations for the integral bent 
cap required for capacity estimation, that involved including or excluding the tension-side 
slab reinforcement within 12ts or 18ts, were studied for different bent cap designs through 
sectional analysis. It was concluded that excluding the slab reinforcement underestimates the 
bent cap beam capacity significantly. Moreover, the best match with the experimentally 
observed value for the cap beam capacity from SP2 HS tests was achieved from the sectional 
analysis that considered flanged section with slab reinforcement and 18ts effective slab 
contribution. Consequently, it is recommended to include the transverse deck and soffit slab 
tension reinforcement within a revised 18ts effective slab width in the bent cap yield and 
capacity moment estimation. 

 The design implications of the above recommendation of including the slab reinforcement 
within 18ts effective slab width for capacity estimation of bent caps were explored at full 
bridge level. The design of the full-scale bent cap of the Caltrans Academy Bridge was 
checked in three different column design scenarios that corresponded to approximately 1.5%, 
2.5%, and 3.5% longitudinal column reinforcement. A seismic capacity check was performed 
in light of Caltrans SDC provisions using different moment demands from the three scenarios 
and considering different bent cap beam configurations of a 12ts and 18ts effective slab width 
with and without slab reinforcement. It was concluded that neglecting the slab reinforcement 
did not require revised design only for the 1.5% column design scenario, but also required 
much higher reinforcement to satisfy the capacity checks for higher demands from 2.5% and 
3.5% column design scenarios. Meanwhile, including the slab reinforcement within the 
revised 18ts effective slab width proposed by this study, required the least design alteration 
and led to the most optimized bent cap beam design. 

 The design implications previously shown are valid in all the cases where higher column 
demands require revising the bent cap design to satisfy the seismic capacity check. An 
important application of the recommended bent cap capacity estimation procedure is 
pronounced in undertaking older bridges retrofitting for resiliency. A typical retrofit scheme 
which aims at strengthening the column, as pursued in this study, amplifies the moment 
demands on the cap beam, i.e. the consequences of the 3.5% column design showed in the 
design implications can be reproduced from a less reinforced column that is efficiently 
retrofitted. Ignoring a check of the bent cap capacity against the new retrofitted column 
capacity could lead to an undesirable mode of failure that is migrated to the bent cap because 
of the amplified demands, especially in cases of overdesigned retrofit. Accurate estimation of 
bent cap capacity is necessary in this case to guarantee that it remains essentially elastic in 
case of extreme events. A different retrofit design might be needed as well if the accurately-
estimated bent cap capacity falls short behind the retrofitted column overstrength moment. 
Therefore, it can be stated that the accuracy of the bent cap capacity estimation can lead to 
optimized reinforcement in case of new bridge designs, and informed retrofit decisions in 
case of older existing bridges.  

 The main conclusions and design implications based on this study can be restated again in a 
form of design guidelines and possible code amendments as follows:  
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- The 12ts code value for effective slab width is unnecessarily conservative. A revised 
value of 18ts is recommended for accurate account of box-girder soffit and deck slab 
contributions to the integral bent cap stiffness and strength; 

- Transverse deck and soffit slab tension reinforcement within an effective slab width, that 
is similar to the revised 18ts, should be included in the bent cap capacity estimation; 

- The box-girder slab contribution should be carefully and accurately considered in the 
seismic design capacity check to avoid unnecessary use of bent cap reinforcement beyond 
what is required to satisfy the LRFD design for gravity loads;   

- Accurate bent cap capacity estimate should be an integral part of the repair and retrofit 
designs for resilient infrastructure to avoid undesirable failure modes, leading to 
prolonged downtime, and uneconomical post-event repair in case of extreme events. This 
is particularly critical for older bridges that were not designed using the strong-beam 
weak-column capacity approach, i.e. the cap beam capacity is not necessarily higher than 
the column capacity. In such cases, an overdesigned column repair or retrofit might 
migrate the damage to the superstructure and a retrofit of the bent cap or superstructure 
might be required. Thus, the capacity design check is recommended for repair and retrofit 
decisions of older bridges as well as an existing condition assessment. 

10.3 FUTURE WORK 

Several research topics that are appropriate for future investigations can be extended from this 
the study. The following are relevant possible topics: 

 Analytical investigation of the different parameters that could affect the bent cap beam 
behavior and the box-girder slab contribution at the full bridge level. The set of the calibrated 
nonlinear material model parameters can be further used in a full bridge model. Global 
bridge geometrical parameters, such as the bridge spans, superstructure depth, thicknesses of 
the soffit and deck slab, …etc., can be varied to investigate how these parameters affect the 
bent cap effective width and design. The current standards typically relate the effective slab 
width of the bent cap to the soffit and deck slab thicknesses. However, if other bridge 
geometric parameters are found to influence the effective slab width, then relating the 
effective width to such parameters via simple expressions should be beneficial. 

 Comprehensive study can be pursued of the effect of the vertical excitation, especially in 
near fault regions, on the superstructure, bent caps, and outriggers of bridges. One part of the 
preliminary pre-test analysis conducted in this study rendered the bent cap beam vulnerable 
to excessive plastic damage due to vertical excitations.  This was observed from the full 
prototype bridge OpenSees nonlinear dynamic analysis that used triaxial earthquake 
excitations, i.e. included the vertical excitation component, as discussed before. A 3D full 
bridge model should be considered for investigating any possible unfavorable modes of 
failure or damage due to the lack of proper account for the vertical excitations in bridge 
design. The 3D modeling is recommended because the vertical forces resulting from vertical 
excitations are sensitive to the mass distribution of the superstructure. Thus, approximate 
lumped mass at selected nodes of the bridge superstructure and bent cap model is not the 
most accurate method for tackling the issue of the vertical excitations.  
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 Investigate the behavior of bent caps in different bridge types beyond the RC box-girder 
bridges should be considered. Composite steel and RC bridge superstructure that still 
connects to a RC bent cap beam is another popular type of bridges where there is room for 
proper investigation of the bent cap behavior. The contribution from the RC box-girder slabs 
is natural in integral bent caps because of the monolithic connections. However, composite 
girders have stiffening and strengthening effect as well that might be required to be revisit for 
proper bent cap capacity estimation for seismic capacity design checks.  

 Investigating the behavior of bent caps in different bridge geometries and configurations are 
needed. In particular, skew bridges with various skew angles might affect the overall box-
girder soffit and deck slab contributions and, more critically, the bent cap beam capacity. 
Thus, a comprehensive study that relates the bent cap beam behavior, effective slab width, 
and capacity estimation to the skewness of the bridge should be useful. Currently, the 
Caltrans SDC and AASHTO recommend a similar 12ts value for the effective width in a 
direction orthogonal to the bent cap axis. A revisited value might be strongly dependent on 
the skew angle and requires further investigations.  

 Investigating the slab contribution to bridge girders in the longitudinal direction should be 
revised. Several studies have already studied the effective slab width and the slab 
contribution in composite bridge girders. The RC and PC box-girders need to be further 
investigated for a more accurate estimate of the slab contribution and the box-girder capacity, 
which is required for the bridge seismic capacity check in the longitudinal direction. 
Moreover, exploring the effect of post-tensioning on the effective slab width and including 
the prestressing and non-prestressing steel in the capacity estimation of the overall box-girder 
and the individual girders should be also useful.  
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Appendix A: Specimen Design 

A.1 DESIGN LOADS 

For the design of the subassembly reduced-scale specimen, a full scale model for the modified 
prototype was used first to compute the loads and straining actions, basically due to dead and 
live loads, at each relevant structural element. The computed straining actions were then scaled 
down using the proper similitude relationships and used to design the different specimen 
sections. Moreover, the seismic design loads and criteria were considered according to the 
Caltrans Seismic Design Criteria (SDC) and AASHTO LRFD Bridge Design Specifications. 
Three-dimensional elastic models were developed for the modified prototype using SAP2000 to 
compute the straining actions under different vertical loads. 

Box-Girder Straining Actions: 

For the full scale box-girder having entire bridge width, the bending moments and shear forces 
are: 

Dead Load (self-weight): MDL(-ve) =  -54,016 kip-ft. ; MDL(+ve) =  31,738  kip-ft.  

Additional Dead Load (wearing surface): MADL (-ve) = -8,822 kip-ft. ; MADL (+ve) = 5,183 kip-ft.  

Live Load (design vehicle – truck load): MLDT (-ve) = -2,290 kip-ft; MLDT (+ve) = 1,327 kip-ft. 

Live Load (design vehicle – lane load): MLDL (-ve) = -1,673 kip-ft. MLDL (+ve) = 983 kip-ft. 

The ultimate (factored) moments for the full-scale box-girder can be computed according to the 
AASHTO load combinations as follows: 

 
( )

( )

( 3.3.1 1)

1.0 [1.25 1.75 (1 )]

1.0 [1.25 (54016 8822) (1.75 1.33 (2290 1673))] 87,771 kip-ft.
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51,528 kip-ft.

   

Similarly, the factored shear force for the full-scale box-girder can be computed as follows: 

( 3.3.1 1)
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Next, the shear and moment for the specimen design can be calculated using the proper 
similitude and scale factors from “Structural Modeling and Experimental Techniques, Harris and 
Sabnis, 1999”. Since the specimen will have the same materials as the prototype but with 
reduced geometric scale (S = 4), the bending moments are reduced by 1/S3 = 1/64 and the Forces 
are reduced by 1/S2 = 1/16. Also the subassembly specimen consists of only 4 webs and 3 cells, 
while the full prototype box-girder consists of 8 webs and 7 cells. So the straining actions are 
reduced accordingly. Therefore, the specimen straining actions are calculated as follows:  

( )

( )

/

87771 (3 / 7) (1 / 64) 587.76 kip-ft

51528 (3 / 7) (1 / 64) 345.10 kip-ft

3059 (1 / 8) (1 / 16) 23.90 kips
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ult web

M

M

V





     

   

   

 

Bent Cap Beam and Column Straining Actions: 

A planer two-dimensional elastic SAP2000 model was developed for the three-column and 
integral cap beam bent. The loads applied to the bent model were adopted from the full bridge 
model and the components self-weights were also applied. Only factored design straining actions 
from vertical loads are shown here and the seismic forces considerations are presented in the 
next section. 

- The factored moment for the full-scale cap beam is calculated as follows: 

( )

( )

1.0 [1.25 1.75 (1 )]

1.0 [1.25 (5174 751.5) (1.75 1.33 1631.4)] 11, 204 .
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- The factored shear for the full-scale cap beam is calculated as follows: 

1.0 [1.25 1.75 (1 )]

1.0 [1.25 (907 131) (1.75 1.33 156.3)] 1661.3

ult DL LL design

ult

V V V IM

V kips

     

       
 

- The factored axial force for the full-scale middle column is calculated as follows:  

1.0 [1.25 1.75 (1 )]

1.0 [1.25 (1814.1 261.6) (1.75 1.33 171.7)] 2994

ult DL LL design

ult

P P P IM

P kips

     

       
 

- Thus, the specimen column and beam straining actions are calculated as follows: 

( )

( )

11204 (1/ 64) 175

9412 (1/ 64) 147.1

1661.3 (1/16) 103.8

2994 (1/16) 187.2
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Specimen Lateral (Seismic) Design Loads: 

The seismic loads are designed to be carried by the bent columns and beams framing action. 
According to the SDC (Section 3.4), the bent cap beam and box-girder superstructure are 
capacity protected components that shall be designed flexurally to remain elastic when the 
column reaches its overstrength capacity. Consequently, the cap bam and box-girder will be 
designed under vertical loads only, then the designed cross-sections’ capacity will be computed 
and checked to make sure the beam and box-girder remain elastic when column reaches its 
capacity. The specimen column design is presented first and then followed by the cap beam and 
box-girder designs and checks. 

A.2 DESIGN OF SPECIMEN CROSS-SEECTIONS 

The design of the specimen includes flexural and shear design for the following components: 

- Column 

- Cap beam 

- Column and cap beam joint 

- Box girder deck and soffit slabs 

- Box girder webs 

- Concrete beams (seats) for specimen attachment to lab rigid floor 

The design is made according to the following Codes and Standards: 

- AASHTO LRFD Bridge Design Specifications, 2007. 

- Caltrans Seismic Design Criteria (SDC), 2010.  

- ACI Building Committee 318, 2008. 
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A.2.1 Column Design 

 2 2 2

Geometry :
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Column Axial Load:

Due to the nature of the test setup that the specimen is inverted upside down, the gravity load will 

be applied at the column top during the test. The value o

uerength of steel f ksi

f the test's gravity load is chosen such that

the moments in the specimen column and cap beam joint region are the same as produced by 

distributed gravity loads in the scaled prototype bridge.

Thus, from an elastic SAP2000 model for the specimen where the moment in the cap beam is:

 (5085 738.4) (1/ 64) 91 - . 1092 .

The column axial load was found to be:  72 .
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Longitudinal Steel Reinforcement Requirement:

According to SDC, the minimum and maximum column reinforcement ratios are:

1.0% and 4.0%, respectively

For the sake of the test aiming at achieving failure i

2
,

2
#6 #6

n both the cap beam and column,

a longitudinal reinforcment  ratio 2.5%is chosen tostart with.
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'

2

Transverse Steel Reinforcement Requirement:

- Determine minimum transverse steel according to AASHTO:
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Then, for the scaled specimen, 
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r spacing

The above column design is used to run a moment-curvature analysis using the software 
XTRACT to calculate the section capacity. The column section capacity will be used 
consequently to design the specimen cap beam and box-girder cross sections. The confined 
concrete model parameters can be calculated automatically in XTRACT for the moment-
curvature analysis. However, those parameters are calculated manually here to check if different 
from program values. 
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Column - Analysis and Results Based on Caltrans SDC :
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e e

f
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f
Effectiveconfinement stress f k psi
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'
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c
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'
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6. , 0.004 0.25 0.004 0.25 0.0222

5

7. , 57,000 ' 57,000 5000 4030
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e
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c

c c

c
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c

k stress in unconfined concrete

f
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f

Using Mander Model E f ksi

E
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f
E





    

    

  




1.086

4030 0.0222
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' '

Results of Analysis:

Moment at first yield (XTRACT): 2246 - and curvature: 0.00022 / .

Effective yield moment (XTRACT): 3244 - and curvature: 0.00031 / .

Ultimate yield moment 

y y

y y

M

M kips in rad in

M kips in rad in









 

 

'

,

(XTRACT): 3667 - and curvature: 0.0045 /

3244 3667
Idealized Caltrans SDC Plastic Moment , 3456 -

2 2

3456 0.00022
0.000338 /

2246

0.004
Curvature ductility,

u u

y u
p

p y
Y

y

u
c

Y

M kips in rad in

M M
M kips in

M
rad in

M











 

 
  


  

 

2 2

Y

5
13.29

0.000338

Calculate and check the displacement ductility capacity:

90
0.000338 0.912

3 3
0.0045 0.000338 0.00416 /

0.00416 15.3 0.0637

15.3
0.0637 90

2 2

Y

p u Y

p p p

p
p p

L
in

rad in

L rad

L
L



  

 





    

    

   

 
     

 

,

5.244

0.912 5.244 6.16

6.16
Displacement ductilituy, 6.75 4.0

0.91

The SDC also defines overstrength moment  to be used at different design aspects.

According to SDC Equatio

u Y p

u
c

Y

o

in

in

OK

M



   
 

       


   


n (4.4), 1.2 1.2 3456 4147o pM M kips in     

Column Shear Design (SDC Section 3.6):

As per the SDC requirements, the shear capacity for ductile concrete members is given by:

( ) ( )

It shall also be conservatively based on the nom
v n oCapacity V Demand V 

 

inal material strengths.

1.2 1.2 3456
, 46.08

90
,

p
o

n v c s

M
Overstrength shear V kips

L
Nominal shear capacity V V V
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A.2.2 Cap Beam Design 

According to the SDC, the cap beam is considered a capacity protected member. Thus, it is 
required that the cap beam remains elastic when the column reaches its plastic moment capacity 
taking into consideration the overstrength factor (=1.2). The specimen cap beam will be designed 
first using the factored moments and shear, then a moment-curvature analysis will be carried out 
for the designed section using XTRACT to check that beam remains elastic as the column 
reaches its overstrength moment. 

Beam factored design straining actions:   

( )

( )

175 2100

147.1 1765.2

103.8

Bult ve

Bult ve

Bult

M kip ft kip in

M kip ft kip in

V kips





     

   



 

2
#5 ,#5

#3

Geometry and Material Properties:

, 24 , 20.375

0.75

s

beam width b in and beam height h in

clear cover in

use #5bars for longitudenal reinforcement ( = 0.625in , A = 0.31 in )

use#3bars for transverse reinforcement ( = 0





 


2
,#5

1
- ( . )

2
1

20.375 (0.75 0.375 0.625) 18.94
2

s.375in , A = 0.11 in )

define distancebetweenupper most compression fiber and tension reinforcement c.g. as"d",

d  h clear cover stirrup bar diameter long bar diameter

d i

   

      n

Same materials properties used in column design are also used in beam and other elements design.
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Flexural Design: 

Start the first beam design trial by neglecting compression steel and assuming a moment arm of "0.90 d"

between the tension steel reinforcement c.g. and the compression stress b

f n uM M 



,

,
,

lock c.g.

 

:

2100

0.9( , 5.5.4.2)

0.90

,

2100

0.9 0.9 60

u ve

f

n s sy

u ve
s required

f sy

M kip in

accordingto AASHTO Section

M Tension forceinsteel moment arm A f d

then required reinforcement :

M
A

f d









 



     

 
    

Fornegative moment

2

,

,#5

' '
1 1

2.28
0.90 18.94

2.28
#5 7.36 8#5

0.31

8 0.31 60 148.8

0.05
, 0.85 ( 4000) 0.80 ( , 5.7.2.2)

1000

s required

s

s sy

c c

in

A
numberof barsrequired use bars for negativemoment

A

C T A f kips

C c b f f AASHTO Section

then

 




   

      

       

'
1

148.8
, 1.55

24 0.80 5

2100
( ) 148.8 (18.94 0.775) 2702.9 2333.3

2 0.9

:

According to AASHTO, Section 5.7.3.3.3, a minimum r

c

u
n

f

C
c in

b f

Ma
M T d kip in kip in OK

check minimumreinforcement accordingto AASHTO





  
   

           

'

einforcement to develop at least 1.2 times

the cracking moment of the cross-section is needed. 

Thecrackingmomentcan be given as

0.24 0.24 5 0.537

r g
cr

t

r c

g t

f I
M

y

f f ksi

I and y arecalculated fromsection prope




    
4

2
, min

, 10.42 & 18101.9

0.537 18102
, 932.9

10.42
:

1.2 1.2 932.9
1.22

0.9 0.9 60 0.9 18.94

t g

cr

cr
s

sy

rties y in I in

then M kip in

Therequired steel todevelopsuchmoment canbeapproximatelycalculated as follows

M
A in

f d

 


  

 
   

     
28 0.31 2.48in OK  
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,

,
,

:

1765.2

0.9( , 5.5.4.2)

0.9

,

1765.2

0.9 0.9 60 0.9 18.

u ve

f

n s sy

u ve
s required

f sy

M kip in

according to AASHTO Section

M Tension forcein steel moment arm A f d

then required reinforcement :

M
A

f d









 



     

 
     

For positivemoment

2

,

,#5

#3

1.92
94

1.92
#5 6.2

0.31

' :

2 (

s required

s

b

in

A
number of bars required

A

However, use8#5bars for symmetric sectioncapacity under cyclic and earthquakeload reversals.

check bars center to center spacing

b cover 
s





  

 

   


#5 0.625
) 24 2 (0.75 0.375 ) 82 2 3

1.51 8 1

Shear Design:

According to AASHTO (Section 5.8.2.1), V

0.90( , 5.5.4.2.1)

103.8

( ) (0.25

u s n

s

u

n c s c

 in OK
in

in OKnumber of bars

V

AASHTO Section

V kips

V lesser of V V and f




    
    

 



   '

'

)

0.0316 ( ,5.8.3.3 3), 2.0( 5.8.3.4.1)

0.0316 2 5 24 18.94 64.24

103.8
, 64.24 51.1

0.90

,

4

c c

c

u
s c

s

v sy
s

h

v s

b d

V f b d AASHTO Section

V kips

V
then required V V kips

A f d
V

s

if using #3 stirrups with4branches A A

 



 

      

     

    

 


   2
,#3

,

4 0.11 0.44

0.44 60 18.94
9.78

51.1
v sy

h required
s

in

A f d
then required spacing s in

V
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' 2 2

Checkminimumshear reinforcement:

24
( 5.8.2.7) 0.8 0.8 18.94 15.1 6

4
use4branch#3stirrupsat 5 inchspacing

24 5
0.0316 0.0316 5 0.141 0.44

60

Check Ca

v c
y

max stirrups spacing AASHTOSection d in in

b s
A f in in OK

f

      

 
       

p Beam DesignAccording toSDC:

The SDC requires that the cap beam remains elastic when column reaches its overstrength

moment. For the considered specimen, a middle bent column is connected to the cap beam 

forming a T-shape connection. Accordingly, the column overstrength moment is likely splitted

equally between the two beam sections at the column right and left sides.

Thus, the cap beam is expected to
1.2 3456

 remain elastic up to  = 2073.6
2 2

Fromthemoment-curvatureanalysisusingXTRACT,

Moment at first yield  3002 -  2073.6 -

CheckBeamTorsionDesign:

One way to check if additional to

oM
kip in

kip in kip in OK


 

 

rsion reinforcement is needed isusing theACI-318,

"The design criteria for combined torsion and shear"

Thespeciemncapbeamwillbeexposedtotorsionif thecolumnispushedin the longitudinal direction,

thus, the ma

'

ximum expected torsion ( )oncapbeamwhenelasticcolumnmoment isequivalent

toitscapacity wasfoundapproximately from SAP2000 model to be 105.4 -
u

p c

T

kips in

A
Permitted factoredTorquetoneglect torsioneffectsT f  

2

2

2

(ACI-318, Section11.5.1)

24 20.375 489 ,

2 (24 20.375) 88.75

489
0.75 5000 142888 142.9

88.75
,

cp

cp

cp

co

p

u p

P

A areaenclosed bybeam perimeter in neglect slabcontribution

P beam perimeter in

T lb in kip in

SinceT T the

   

    

      

 torsioneffectscanbeneglected onbeam  
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A.2.3 Column-Cap Beam Joint Design 

The specimen column-beam joint is considered a T-joint and designed according to Section 7.4 
in Caltrans SDC.  The joint dimensions and proportionality are checked first, then the required 
reinforcement is calculated. 

 

    2

2

Check Joint Propotioning:

Theprincipalstressesin the joint should not eexceedcertain limits.

18 20.375 24 921

72
0.0782 78.2

921

18 24 432

4147.2

0.75 18

jh c s cap

c
v

jh

jv ac cap

col
o

c

A D D B in

P
f ksi psi

A

A l B in

M
T

h

     

   

    

  


2 2
2 2

'

307.2

307.2
0.711 711

432

0 0

78.2 0 78.2 0
, 720 39.1 721.1 681.96

2 2 2 2

12 12 5000 848.5 , 848

c
jv

jv

f
h f

f f

v v
t jv

t c t

kips

T
v ksi psi

A

P
f asbeamaxial force P is

B D

f f f f
then p v psi

Check p f psi So p psi

   

 


                 
  

   

 

2 2
2 2

'

78.2 0 78.2 0
720 39.1 721.1 760.2

2 2 2 2

0.25 0.25 5000 1250 , 1250

   

v v
c jv

c c c

OK

f f f f
p v psi

Check p f psi Also p psi OK

So joint proportioning is OK
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'

Joint ShearReinforcement:

Check the principle tensile stress for minimum reinforcement

3.5

681.96 3.5 5000 247.5

,

t c

t

If p f minimum joint shear reinforcement isneeded

but p psi psi

then Shear reinforcement is neede

 

  

20.2 0.2 16 0.44 1.41

1.41
6.4

2 0.11
use#3stirrupsat 4 spacinganddistrbuited

jv
s st

d!

percentage of  column reinforcement, A A in

if using#3stirrups with 2 legs, number of  stirrups needed =

inch

     




Vertical Stirrups:

2

inadistance 2 36

0.1 0.1 16 0.44 0.704

0.704
6.4

0.11

c

jh
s st

D in

percentage of  column reinforcement, A A in

if using#3cross ties, number of  ties needed =

and maximumvertical spacinginthescal

  

     



HorizontalStirrups:

2

1
18 4.5 ,

4
9#3 3

0.1 0.1 0.1 8 0.31 0.248

0.248
2.25

0.11

sf top bot
s cap cap

ed speciemnis in

thenusetotal of crosstiesat layers

A greaterof A and A in

if using#3sidebars,numberof barsneeded

but

 

      

 

HorizontalSideReinforcement :

2 2

1
12 3 , 4#3

4

18 0.44
0.4 0.4 0.0098 (0.014)

18
st

s s
ac

maximumspacinginthescaled speciemnis in thenuse equally spaced at eachside

A
fromdesign

l

then,thecolumnhoops#3at 2.0in.spacingc

 

 


     

MinimumContinuingColumnhoops:

ontinueintothe joint
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A.2.4 Box-girder Slabs Design 

The scaled design bending moments of the prototype box-girder slabs can be used to design the 
specimen slabs, but typically, the gravity loads and bridges spans are large enough to be resisted 
by ordinary reinforced concrete sections. Consequently, box-girder bridges are pre-stressed 
(post-tensioned) to reduce cross-sections dimensions and required ordinary reinforcement, which 
is the case in the used Academy bridge prototype.  

However, due to the nature of the test and specimen orientation, the specimen box-girder 
slabs will not be carrying any direct gravity loads during the test. Thus, for practical reasons, no 
pre-stressing is needed to be applied to the specimen. Instead, enough ordinary reinforcement 
can be used to satisfy the SDC and AASHTO requirements. That is to keep the box-girder 
section elastic when the column reaches its overstrength moment since the bridge superstructure, 
similar to the cap beam, is a capacity protected member. 

 

 

Longitudinal Steel :

According to AASHTO, Section 5.7.3.3.3,, a minimum reinforcement to develop at least 1.2 times

the cracking moment of the cross-section is needed. Only the longitudinal bars in the soffit and deck

slabs are assumed to provide all the required tensile reinforcement and no contribution is considered 

from the box-girder web longitudenal reinforcement. 

Thecracking moment for thespecimen

'

4

box-girder is:

0.24 0.24 5 0.537

, 10.47 & 41104.2

0.537 41104
, 2106.9

10.47

r g
cr

t

r c

g t t g

cr

f I
M

y

f f ksi

I and y arecalculated from section properties y in I in

then M kip in

The required steel to develop such moment canbe appro




    

 


  

2
, ,min

:

1.2 1.2 2107
2.75

0.9 0.9 60 0.9 18.94
cr

s long
sy

ximately calculated as follows

M
A in

f d

Becauseof the slab thickness limitations in the scaled speciemn,useonly a single#3layer,

and to guarantee thecapacity of box


 

  
     

 ,

#3 2.5

girder is higher thanoverstrengthof moment of column

try bars at inch spacing and check the section capacity
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2 2
, , ,min

, ,
min

102 2
1 41

2.5

41 0.11 4.51 2.72

4.51 4.51
1.97% , 2.08% 0.4%

102 2.25 102 2.125

s long s long

s long s long
deck soffit

deck slab soffit slab

number of bars bars

A in A in OK

A A
OK

A A

also maximum spacing between

  


  

    

       
 

1
18 4.5 2

4

The SDC also requires that box-girder remains elastic when column reaches its overstrength capacity.

Thus, moment-curvature analysis was carried out for the speci

bars for scaled specimen in in OK   

men box-girder section using XTTRACT.

4156
The moment at first yield,  5554 2078

2 2

col
box o
y

M
M kip in kip in OK     

 

 

Transverse Steel :

Similar to longitudinal direction, the minimum reinforcement to develop at least 1.2 times the cracking 

moment of the cross-section is calculated first. Thecracking moment for a 1-foot

'

,

 slice of thespecimen

box-girder in the transverse direction can be caluculated from

0.24 0.24 5 0.537

, 10.645 & 4348.5

r g
cr

t

r c

g t t g 1- ft slice

f I
M

y

f f ksi

I and y arecalculated fromslice section properties y in I i




    

  4

0.537 4348.5
, 219.4 /

10.645
Thecalculated per foot length wasfound larger than thescaleddesign transversebending momentsfrom

prototype SAP2000model,and thus theminimumreinforcement from govern

cr

cr

cr

n

then M kip in ft

M

M


  

2
,

s thedesign.

:

1.2 1.2 219.4
0.286 /

0.9 0.9 60 0.9 18.94
cr

s long
sy

Therequired steel todevelop suchmoment canbeapproximately calculated as follows

M
A in ft

f d

Becauseof the slabthickness limitations inthe scaled speci


 

  
     

0.286
2.59 . .3#3 / 1#3 4

0.11
, 1#3 4

emn,useonly a single#3layer,

required number of  bars = i e ft or at inch spacing

then use at inch spacing ineachof the soffit and deck slabs
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A.2.5 Box-girder Webs Shear Design 

The scaled design shear force of the prototype box-girder slabs can be used to design the 
specimen webs. The factored shear force for the entire prototype box-girder section and each 
web share was found from SAP2000 model as: 

 

, ,

.
, , 2 2

Accordingly, the factored shear/web fo

3059 437

1 1
437 27.31

4

According to AASHTO (Section 5.8.2.1), V ( )

0.9

r specimen design:

 

u box girder u web

spec proto
u web u web

l

u s c s

s

V kips and V kips

V V kips
S

V V


  

    

  


'

0 ( , 5.5.4.2.1)

0.0316 ( ,5.8.3.3 3), 2.0 ( 5.8.3.4.1)

0.0316 2 5 3 18.94 8.03

27.31
, 8.03 22.3

0.90

,

c c

c

u
s c

s

v sy
s

h

AASHTO Section

V f b d AASHTO Section

V kips

V
then required V V kips

A f d
V

s

Dueto the limited webthic

 



      

     

    

 


2
,#3

,

1 0.11

0.11 60 18.94
5.6

22.3

use #3tieat 5inch spacing

Check minimumshear reinforcement :

(

v s

v sy
h required

s

kness,try#3tie with singleleg A A in

A f d
then required spacing s in

V

max stirrups spacing AASHTO Sectio

   

   
  



' 2 2

24
5.8.2.7) 0.8 0.8 18.94 15.1 6 5

4
use 4 branch #3stirrups at 5 inch spacing

3 5
0.0316 0.0316 5 0.018 0.11

60v c
y

n d in in in OK

b s
A f in in OK

f
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A.2.6 Specimen RC Seat Beam Design 

 

Geometery:

Start withaseat beamwith width, 12 , 19

Thematerialsare thesameas thespeciemnsincetheseat beamswillbecastedinplacewith thespecimen

Flexural Design: 

Fromthepreliminary analysis of

f n u

b in and height h in

M M

 



 the speciemn in addition to considereing the three prestressing forces

per seat to attach the specimen to the laboratory rigid floor, 640

Start the first beam design trial by neglecting compre
uM kip in 

.

ssion steel and assuming a moment arm of "0.9 d"

between the tension steel reinforcement c.g. and the compression stress block c.g.

0.625
19 0.75 0.375 17.56

2 2
0.9

long bar
stirrup

f

n

d h cover in

M Ten








        





2
,

,

,#5

0.9

,

640
0.75

0.9 0.9 60 0.9 17.56

0.75
#5 2.4 4#5

0.31

s sy

u
s required

f sy

s required

s

sion forceinsteel moment arm A f d

then required reinforcement :

M
A in

f d

A
number of bars required use bars for bottomreinforc

A



    

  
     

   

' '
1 1

'
1

4 0.31 60 74.4

0.05
., 0.85 ( 4000) 0.80 ( , 5.7.2.2)

1000
74.4

, 1.55
12 0.80 5

640
( ) 74.4 (17.56 0.775) 1248.2 711.1

2 0.9

s sy

c c

c

u
n

f
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C T A f kips

C c b f f AASHTO Section

C
then c in

b f

Ma
M T d kip in

 





      

       

  
   

          

#5
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1

' :

0.625
2 ( ) 12 2 (0.75 0.375 ) 82 2 3

1.51 4 1b
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check bars center to center spacing

b cover  in OK
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in OKnumber of bars
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'

Shear Design:

V ( )

, 84 , 0.90,

0.0316 ( ,5.8.3.3 3), 2.0 ( 5.8.3.4.1)

0.0316 2 5 12 17.56 29.78

84
, 29.8 63.5

0.90

u s c s

u s

c c

c

u
s c

s

v
s

V V

From analysis V kips

V f b d AASHTO Section

V kips

V
then required V V kips

A f
V




 



  
 

      

     

    




2
,#3

,

2
,#3

,

2 2 0.11 0.22

0.22 60 17.56
3.65

63.5

2 4 4 0.11 0.44

sy

h

v s

v sy
h required

s

v s

d

s

if using #3 stirrups with 2 legs  A A in

A f d
then required spacing s in

V

if using #3 stirrups with 2 legs each  A A in

then required



     

   
  

     

,

' 2 2

0.44 60 17.56
7.30

63.5

Check minimumshear reinforcement:

12 5
0.0316 0.0316 5 0.07 0.22

60

2 #3 5.0

v sy
h required

s

v c
y

A f d
spacing s in

V

b s
A f in in OK

f

use stirrups with 2 legs each at inch center to center spacing
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Appendix B: Structural and Shop Drawings 

The final bidding document (Figure B.1 through Figure B.9, and Table B-1 through Table B-3) 
that was provided for the steel fabricators and the construction contractor for building the test 
specimens is attached in this appendix. 
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Appendix E: Instrumentations List 

More than 250 instruments were used during the course of the experimental program conducted 
in this study. The instruments were split between two data acquisition systems: Pacific 
instruments (PI) and NEFF. The list of channels acquired from the PI and NEFF data acquisition 
systems is shown in Table E-1 and Table E2, respectively. 

Table E-1 List of instrumentation channels connected to the PI data acquisition 

Channel # Name Type of Instrument Unit 

1 Time n/a microsecond 
2 Run n/a n/a 
3 Pacific - 129 (0:2:0) N lat tem Tempasonic inch 
4 Pacific - 130 (0:2:1) s lat tem Tempasonic inch 
5 Pacific - 135 (0:2:6) n grav te Tempasonic inch 
6 Pacific - 136 (0:2:7) s grav te Tempasonic inch 
7 Pacific - 131 (0:2:2) n gravity Load cell kips 
8 Pacific - 132 (0:2:3) s grav lo Load cell kips 
9 Pacific - 133 (0:2:4) n lat loa Load cell kips 

10 Pacific - 134 (0:2:5) s lat loa Load cell kips 
11 Pacific - 137 (0:3:0) bs-out-e1 Strain gage microstrain 
12 Pacific - 139 (0:3:2) bs-out-e3 Strain gage microstrain 
13 Pacific - 141 (0:3:4) bs-out-w2 Strain gage microstrain 
14 Pacific - 142 (0:3:5) bs-out-w3 Strain gage microstrain 
15 Pacific - 143 (0:3:6) bs-in-e1 Strain gage microstrain 
16 Pacific - 144 (0:3:7) bs-in-e2 Strain gage microstrain 
17 Pacific - 145 (0:4:0) bs-in-e3 Strain gage microstrain 
18 Pacific - 146 (0:4:1) bs-in-w1 Strain gage microstrain 
19 Pacific - 147 (0:4:2) bs-in-w2 Strain gage microstrain 
20 Pacific - 148 (0:4:3) bs-in-w3 Strain gage microstrain 
21 Pacific - 149 (0:4:4) js-out-w1 Strain gage microstrain 
22 Pacific - 151 (0:4:6) jv-e1 Strain gage microstrain 
23 Pacific - 152 (0:4:7) jv-e2 Strain gage microstrain 
24 Pacific - 153 (0:5:0) jv-w2 Strain gage microstrain 
25 Pacific - 155 (0:5:2) jh-e2 Strain gage microstrain 
26 Pacific - 156 (0:5:3) jh-w1 Strain gage microstrain 
27 Pacific - 157 (0:5:4) jh-w2 Strain gage microstrain 
28 Pacific - 158 (0:5:5) cbt-n1-a Strain gage microstrain 
29 Pacific - 159 (0:5:6) cbt-n1-b Strain gage microstrain 
30 Pacific - 160 (0:5:7) cbt-n1-d Strain gage microstrain 
31 Pacific - 161 (0:6:0) cbt-n1-a Strain gage microstrain 
32 Pacific - 162 (0:6:1) cbt-n2-b Strain gage microstrain 
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Table E-1(continued) List of instrumentation channels connected to the PI data acquisition 

Channel # Name Type of Instrument Unit 

33 Pacific - 163 (0:6:2) cbt-n2-c Strain gage microstrain 
34 Pacific - 164 (0:6:3) cbt-n2-d Strain gage microstrain 
35 Pacific - 165 (0:6:4) cbt-n2-e Strain gage microstrain 
36 Pacific - 166 (0:6:5) cbt-s1-b Strain gage microstrain 
37 Pacific - 167 (0:6:6) cbt-s1-d Strain gage microstrain 
38 Pacific - 168 (0:6:7) cbt-s1-e Strain gage microstrain 
39 Pacific - 169 (0:7:0) cbt-s2-a Strain gage microstrain 
40 Pacific - 170 (0:7:1) cbt-s2-b Strain gage microstrain 
41 Pacific - 171 (0:7:2) cbt-s2-c Strain gage microstrain 
42 Pacific - 172 (0:7:3) cbt-s2-d Strain gage microstrain 
43 Pacific - 173 (0:7:4) cbt-s2-e Strain gage microstrain 
44 Pacific - 174 (0:7:5) cbb-n1-a Strain gage microstrain 
45 Pacific - 175 (0:7:6) cbb-n1-b Strain gage microstrain 
46 Pacific - 176 (0:7:7) cbb-n1-c Strain gage microstrain 
47 Pacific - 177 (0:8:0) cbb-n1-d Strain gage microstrain 
48 Pacific - 178 (0:8:1) cbb-n2-a Strain gage microstrain 
49 Pacific - 179 (0:8:2) cbb-n2-b Strain gage microstrain 
50 Pacific - 181 (0:8:4) cbb-n2-d Strain gage microstrain 
51 Pacific - 182 (0:8:5) cbb-n2-e Strain gage microstrain 
52 Pacific - 183 (0:8:6) cbb-s1-b Strain gage microstrain 
53 Pacific - 184 (0:8:7) cbb-s1-c Strain gage microstrain 
54 Pacific - 130 (0:9:1) cbb-s1-e Strain gage microstrain 
55 Pacific - 131 (0:9:2) cbb-s2-a Strain gage microstrain 
56 Pacific - 132 (0:9:3) cbb-s2-b Strain gage microstrain 
57 Pacific - 133 (0:9:4) cbb-s2-c Strain gage microstrain 
58 Pacific - 134 (0:9:5) cbb-s2-d Strain gage microstrain 
59 Pacific - 135 (0:9:6) cbb-s2-e Strain gage microstrain 
60 Pacific - 136 (0:9:7) cbb-s0-b Strain gage microstrain 
61 Pacific - 137 (0:10:0) cbb-n0-b Strain gage microstrain 
62 Pacific - 138 (0:10:1) cbb-s0-d Strain gage microstrain 
63 Pacific - 139 (0:10:2) cbb-n0-d Strain gage microstrain 
64 Pacific - 140 (0:10:3) cg-n1-b Strain gage microstrain 
65 Pacific - 141 (0:10:4) cg-n2-b Strain gage microstrain 
66 Pacific - 142 (0:10:5) cg-n3-b Strain gage microstrain 
67 Pacific - 143 (0:10:6) cg-s1-b Strain gage microstrain 
68 Pacific - 144 (0:10:7) cg-s2-b Strain gage microstrain 
69 Pacific - 145 (0:11:0) cg-s3-b Strain gage microstrain 
70 Pacific - 146 (0:11:1) cg-n1s1- Strain gage microstrain 
71 Pacific - 147 (0:11:2) col-n1-a Strain gage microstrain 
72 Pacific - 148 (0:11:3) col-s1-a Strain gage microstrain 
73 Pacific - 149 (0:11:4) col-s1-b Strain gage microstrain 
74 Pacific - 150 (0:11:5) col-e1-a Strain gage microstrain 
75 Pacific - 151 (0:11:6) col-e1-b Strain gage microstrain 
76 Pacific - 152 (0:11:7) col-w1-a Strain gage microstrain 
77 Pacific - 153 (0:12:0) col-w1-b Strain gage microstrain 
78 Pacific - 154 (0:12:1) hoop-3-a Strain gage microstrain 
79 Pacific - 155 (0:12:2) LCl East Strain gage microstrain 
80 Pacific - 156 (0:12:3) Loadcell Strain gage microstrain 
81 Pacific - 157 (0:12:4) Loadcell Strain gage microstrain 
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Table E-1(continued) List of instrumentation channels connected to the PI data acquisition 

Channel # Name Type of Instrument Unit 

82 Pacific - 158 (0:12:5) LC West Strain gage microstrain 
83 Pacific - 159 (0:12:6) Loadcell Strain gage microstrain 
84 Pacific - 160 (0:12:7) Loacell2 Strain gage microstrain 
85 Pacific - 161 (0:13:0) Col-N-1 LVDT inch 
86 Pacific - 162 (0:13:1) Col-N-2 LVDT inch 
87 Pacific - 163 (0:13:2) Col-N-3 LVDT inch 
88 Pacific - 164 (0:13:3) Col-N-4 LVDT inch 
89 Pacific - 165 (0:13:4) Col-S-1 LVDT inch 
90 Pacific - 166 (0:13:5) Col-S-2 LVDT inch 
91 Pacific - 167 (0:13:6) Col-S-3 LVDT inch 
92 Pacific - 168 (0:13:7) Col-S-4 LVDT inch 
93 Pacific - 169 (0:14:0) Col-E-1 LVDT inch 
94 Pacific - 170 (0:14:1) Col-E-2 LVDT inch 
95 Pacific - 171 (0:14:2) Col-E-3 LVDT inch 
96 Pacific - 172 (0:14:3) Col-E-4 LVDT inch 
97 Pacific - 173 (0:14:4) Col-E-5 LVDT inch 
98 Pacific - 174 (0:14:5) Col-W-1 LVDT inch 
99 Pacific - 175 (0:14:6) Col-W-2 LVDT inch 
100 Pacific - 176 (0:14:7) Col-W-3 LVDT inch 
101 Pacific - 65 (0:15:0) Col-W-4 LVDT inch 
102 Pacific - 66 (0:15:1) Col-W-5 LVDT inch 
103 Pacific - 67 (0:1:2) WP-FH-H-E Wire pot inch 
104 Pacific - 68 (0:1:3) WP-FH-A-E Wire pot inch 
105 Pacific - 69 (0:1:4) WP-FH-H-S Wire pot inch 
106 Pacific - 70 (0:1:5) WP-FH-A-S Wire pot inch 
107 Pacific - 71 (0:1:6) WP-MH-A-E Wire pot inch 
108 Pacific - 72 (0:1:7) WP-MH-H-E Wire pot inch 
109 Pacific - 177 (0:16:0)WP-MH-S Wire pot inch 
110 Pacific - 178 (0:16:1)WP-MH-S Wire pot inch 
111 Pacific - 179 (0:16:2)WP-BH Wire pot inch 
112 Pacific - 180 (0:16:3)WP-BA Wire pot inch 
113 Pacific - 181 (0:16:4)WP-fh-AL Wire pot inch 
114 Pacific - 182 (0:16:5)WP-fh-AS Wire pot inch 
115 Pacific - 184 (0:16:7) Pulse electric pulse volt 
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Table E-2 List of instrumentation channels connected to the NEFF data acquisition 

Channel # Name Type of Instrument Unit 

1 DATE 
2 TIME 
3 CLOCK millisecond 
4 LOG 
5 Top North actuator load laod cell kip 
6 Top South actuator load laod cell kip 
7 Gravity North actuator load laod cell kip 
8 Gravity South actuator load laod cell kip 
9 Top North actuator tempo disp temposonic inch 

10 Top South actuator tempo disp temposonic inch 
11 Gravity North actuator disp temposonic inch 
12 Gravity South actuator disp temposonic inch 
13 disp slab a-5 LVDT inch 
14 disp slab c-3 LVDT inch 
15 disp slab c-2 LVDT inch 
16 disp slab b-5 LVDT inch 
17 disp slab b-4 LVDT inch 
18 disp slab c-4 LVDT inch 
19 disp slab d-4 LVDT inch 
20 disp slab c-5 LVDT inch 
21 disp slab e-5 LVDT inch 
22 disp slab d-5 LVDT inch 
23 disp slab c-7 LVDT inch 
24 disp slab c-8 LVDT inch 
25 disp slab d-6 LVDT inch 
26 disp slab c-6 LVDT inch 
27 disp slab b-6 LVDT inch 
28 disp wp-twist wire pot inch 
29 disp wp-mh-h-e wire pot inch 
30 disp wp-fh-ael wire pot inch 
31 disp wp-mh-a-e wire pot inch 
32 disp wp-fh-aer wire pot inch 
33 disp wp-fh-h-e wire pot inch 
34 disp wp-fh-a-e wire pot inch 
35 disp wp-mh-a-s wire pot inch 
36 disp wp-mh-h-s wire pot inch 
37 disp wp-fh-a-s wire pot inch 
38 disp wp-fh-h-s wire pot inch 
39 disp wp-beamh wire pot inch 
40 disp wp-beama wire pot inch 
41  tds-s1-b strain gage microstrain 
42  tds-s3-c strain gage microstrain 
43  tds-s1-a strain gage microstrain 
44  lds-s1-a strain gage microstrain 
45  lds-s2-b strain gage microstrain 
46  tds-s2-a strain gage microstrain 
47  tds-s3-b strain gage microstrain 
48  tds-s4-b strain gage microstrain 
49  tds-s4-c strain gage microstrain 
50  cg-s3-a strain gage microstrain 
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Table E-2(continued) List of instrumentation channels connected to the NEFF data acquisition 

Channel # Name Type of Instrument Unit 

51  cg-s2-a strain gage microstrain 
52  cg-s1-a strain gage microstrain 
53  col-w1-h strain gage microstrain 
54  col-n1-g strain gage microstrain 
55  col-n1-e strain gage microstrain 
56  col-n1-d strain gage microstrain 
57  col-w1-g strain gage microstrain 
58  col-n1-c strain gage microstrain 
59  hoop-2-c strain gage microstrain 
60  hoop-1-c strain gage microstrain 
61  col-w1-f strain gage microstrain 
62  col-w1-e strain gage microstrain 
63  hoop-1-b strain gage microstrain 
64  hoop-2-a strain gage microstrain 
65  col-w1-d strain gage microstrain 
66  col-w1-c strain gage microstrain 
67  ws-e1-north strain gage microstrain 
68  tds-n3-d strain gage microstrain 
69  tds-n1-e strain gage microstrain 
70  tds-n2-a strain gage microstrain 
71  lds-n2-b strain gage microstrain 
72  lds-n4-b strain gage microstrain 
73  ws-w1-north strain gage microstrain 
74  tds-n1-d strain gage microstrain 
75  tds-n2-e strain gage microstrain 
76  lds-n1s1-b strain gage microstrain 
77  tds-n2-c strain gage microstrain 
78  tds-n3-b strain gage microstrain 
79  lds-n1-c strain gage microstrain 
80  tds-n1-a strain gage microstrain 
81  col-s1-g strain gage microstrain 
82  hoop-3-c strain gage microstrain 
83  col-e1-g strain gage microstrain 
84  col-e1-h strain gage microstrain 
85  col-s1-e strain gage microstrain 
86  hoop-3-b strain gage microstrain 
87  col-s1-c strain gage microstrain 
88  col-e1-f strain gage microstrain 
89  col-e1-d strain gage microstrain 
90  col-s1-d strain gage microstrain 
91  col-e1-e strain gage microstrain 
92  hoop-1-a strain gage microstrain 
93  hoop-2-b strain gage microstrain 
94  col-e1-c strain gage microstrain 
95  tds-n2-d strain gage microstrain 
96  tds-n2-b strain gage microstrain 
97  tds-n4-c strain gage microstrain 
98  tds-n4-d strain gage microstrain 
99  tds-n1-c strain gage microstrain 
100  tds-n3-c strain gage microstrain 
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Table E-2(continued) List of instrumentation channels connected to the NEFF data acquisition 

Channel # Name Type of Instrument Unit 

101  lds-n1-b strain gage microstrain 
102  tds-n1-b strain gage microstrain 
103  lds-n1-a strain gage microstrain 
104  cg-n1s1-a strain gage microstrain 
105  cg-n3-a strain gage microstrain 
106  cg-n2-a strain gage microstrain 
107  cg-n1-a strain gage microstrain 
108  tss-n3-d strain gage microstrain 
109  tss-n1-b strain gage microstrain 
110  lss-n1-a strain gage microstrain 
111  tss-n2-c strain gage microstrain 
112  lss-n1-b strain gage microstrain 
113  lss-n2-b strain gage microstrain 
114  lss-n1-c strain gage microstrain 
115  tss-n1-a strain gage microstrain 
116  tss-n3-c strain gage microstrain 
117  tss-n2-b strain gage microstrain 
118  tss-n2-d strain gage microstrain 
119  tss-n1-c strain gage microstrain 
120  tss-n1-e strain gage microstrain 
121  tss-n3-b strain gage microstrain 
122  tss-n1-d strain gage microstrain 
123  tss-s1-c strain gage microstrain 
124  lss-s2-b strain gage microstrain 
125  tss-s1-a strain gage microstrain 
126  tss-s1-d strain gage microstrain 
127  tss-s3-b strain gage microstrain 
128  tss-s3-d strain gage microstrain 
129  tss-s3-c strain gage microstrain 
130  lss-s1-a strain gage microstrain 
131  lss-s1-c strain gage microstrain 
132  tss-s1-b strain gage microstrain 
133  lss-s1-b strain gage microstrain 
134  tss-s2-d strain gage microstrain 
135  tss-s1-e strain gage microstrain 
136  tss-s2-c strain gage microstrain 
137  tss-s2-b strain gage microstrain 
138  lds-n1s1-c strain gage microstrain 
139  tds-s1-e strain gage microstrain 
140  ws-w1-south strain gage microstrain 
141  tds-s2-e strain gage microstrain 
142  tds-s1-d strain gage microstrain 
143  tds-s2-d strain gage microstrain 
144  lds-s1-c strain gage microstrain 
145  ws-e1-south strain gage microstrain 
146  tds-s2-c strain gage microstrain 
147  lds-s1-b strain gage microstrain 
148  tds-s1-c strain gage microstrain 
149  tds-s4-a strain gage microstrain 
150  lds-n1s1-a strain gage microstrain 
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Appendix F:   Struts Fabrication and Calibration 

This appendix describes the characteristics of the two vertical struts fabricated and instrumented 
specifically for this study. These struts were fabricated with a target capacity of 250 kip each and 
were made of AISI 4140 steel. More details about the fabrication, instrumentation and 
calibration of the two instrumented strut load cells are presented. 

F.1 FABRICATION AND INSTRUMENTAION 

The two struts were meant to provide vertical roller supports at the two ends of the bent cap 
beam in the test specimen. Two special rods were fabricated with female threaded ends such that 
two clevises can be attached from the two sides of each of the two rods. Longitudinal and cross-
sections showing the geometry and dimensions of the typical strut rod is shown in Figure E.1. 
The rods were fabricated from a hollow AISI 4140 steel cylinder as shown in Figure E.2. One of 
the two final fabricated rods and typical strain gage instrumentation is shown in Figure E.3. For 
the importance of determining the bent cap beam moments in this study, the two vertical struts 
were instrumented and calibrated to relate the strain readings to the axial force in the strut. Each 
of the two struts was instrumented with two rosettes and two linear strain ages. Each rosette 
comprised two strain gages that were attached to the strut that that one gage is aligned with the 
centerline of the strut, while the other is aligned with the circumference. Meanwhile, the linear 
strain gages were aligned with the rod centerline. All the strain gages had 120 Ω resistance and a 
gage length of 0.062 in. The gages were glued to the struts and were covered with three 
protective coating layers. For each strut, the 4 gages in the 2 rosettes were connected using a full 
Wheatstone bridge circuit, while the two linear gages were connected separately each through a 
quarter bridge circuit. The layout of the linear and rosettes strain gages and the Wheatstone 
bridge connections are schematically shown in Figure E.4. The final instrumented strut attached 
to the two clevises from the two ends is shown in Figure E.5.  

Figure E.1 Longitudinal and cross sections of the fabricated vertical struts 
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Figure E.7 Force-strain relationship for the first load cell using manually acquired data  

 
Figure E.8 Force-strain relationship for both load cells using the PI acquired data for the 
rosettes full bridge strain (the best fit slope resembles the calibration factor and identified 

on the plots) 

The calibration factor is considered the slope of the best fitted linear function. It is noted 
that for the same load cell, the slope obtained from the manually collected data is little lower 
than the more accurate value obtained from the continuously recorded PI data. Meanwhile, the 
calibration factor for the two load cells is little different, 0.0069 for the first strut load cell versus 
0.0061 for the second strut load cell. This could be attributed to possible slight differences in 
fabrication, but mainly because of the variation of the strain gages location and orientation from 
the two struts.  

0 0.0005 0.0010 0.0015 0.0020
0

20

40

60

80

100

120

Strain [inch/inch]

F
or

ce
 [

ki
p

s]

 

 

 
y = 6.70e+04*x - 0.44

Strut Load Cell #1 Strut Load Cell #2

0 0.0005 0.0010 0.0015 0.0020
0

20

40

60

80

100

120

Strain [inch/inch]

F
or

ce
 [

ki
p

s]

 

 

 
y = 6.92e+04*x + 0.147

0 0.0005 0.0010 0.0015 0.0020
0

20

40

60

80

100

120

Strain [inch/inch]

F
or

ce
 [

ki
p

s]

 

 

 
y = 6.12e+04*x - 0.657




