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Diversity and distribution of biosynthetic gene clusters in 
agricultural soil microbiomes
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ABSTRACT Bacterial secondary metabolites serve as an important source of molecules 
for drug discovery. They also play an important function in mediating the interactions of 
microbial producers with their living environment and surrounding organisms. However, 
little is known about the genetic novelty, distribution, and community-level impacts of 
soil bacterial biosynthetic potential on a large geographic scale. Here, we constructed 
the first catalog of 11,149 biosynthetic gene clusters (BGCs) from agricultural soils across 
China and unearthed hidden biosynthetic potential for new natural product discovery 
from the not-yet-cultivated soil bacteria. Notably, we revealed soil pH as the strongest 
environmental driver of BGC biogeography and predicted that soil acidification and 
global climate change could damage the biosynthetic potential of the soil microbiome. 
The co-occurrence network of bacterial genomes revealed two BGC-rich species, i.e., 
Nocardia niigatensis from Actinobacteriota and PSRF01 from Acidobacteriota, as the 
module hub and connector, respectively, indicating their keystone positions in the 
soil microbial communities. We also uncovered a dominant role of BGC-inferred biotic 
interactions over environmental drivers in structuring the soil microbiome. Overall, this 
study achieved novel insights into the BGC landscape in agricultural soils of China, 
substantially expanding our understanding of the diversity and novelty of bacterial 
secondary metabolism and the potential role of secondary metabolites in microbiota 
assembly.

IMPORTANCE Bacterial secondary metabolites not only serve as the foundation for 
numerous therapeutics (e.g., antibiotics and anticancer drugs), but they also play critical 
ecological roles in mediating microbial interactions (e.g., competition and communica
tion). However, our knowledge of bacterial secondary metabolism is limited to only a 
small fraction of cultured strains, thus restricting our comprehensive understanding of 
their diversity, novelty, and potential ecological roles in soil ecosystems. Here, we used 
culture-independent metagenomics to explore biosynthetic potentials in agricultural 
soils of China. Our analyses revealed a high degree of genetic diversity and novelty 
within biosynthetic gene clusters in agricultural soil environments, offering valuable 
insights for biochemists seeking to synthesize novel bioactive products. Furthermore, 
we uncovered the pivotal role of BGC-rich species in microbial communities and the 
significant relationship between BGC richness and microbial phylogenetic turnover. This 
information emphasizes the importance of biosynthetic potential in the assembly of 
microbial communities.

KEYWORDS agricultural soil microbiome, biosynthetic gene clusters, diversity, 
Secondary metabolite, Microbial community assembly

M any microorganisms encode biosynthetic gene clusters (BGCs) to produce diverse 
secondary metabolites (also called specialized metabolites), such as antibiotics, 

quorum-sensing molecules, and siderophores (1, 2). These biomolecules not only have 
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versatile applications in modern medicine and biotechnology (3, 4) but also play an 
important ecological role in mediating the interactions of microbial producers 
with their living environment and sympatric organisms (4–6). However, due to the 
vast majority of environmental microbes remaining uncultivated (7), our knowledge 
of secondary metabolism in soil bacteria is limited to only a small fraction of cul
tured strains, thereby restricting our complete understanding of the biotechnological 
relevance and ecological importance of secondary metabolites in soil microbiomes and 
ecosystems (8).

Metagenomics, with technological advances over the past decade, has offered 
new culture-independent paths to explore the biosynthetic potential of environmen
tal microbiomes comprehensively. Recent culture-independent metagenomic studies 
have revealed the extensive presence of BGC-rich taxa and novel BGCs in various soil 
ecosystems, including soils from grasslands (9, 10), Antarctic (11), forests (10, 12), and 
biological crust (13). Furthermore, they revealed that vegetation type, soil Horizons, 
and nutrient availability could shift the biosynthetic profiles of soil microbiome (10, 
12, 14). These results substantially expand our knowledge of the genetic diversity and 
driving factors of soil BGCs. However, agricultural soils, which are subject to consecutive 
anthropogenic disturbances such as chemical fertilizer, pollution, and tillage, have not 
been explored with regard to the diversity and novelty of their secondary metabolic 
potential. In addition, how global BGC profiles respond to soil physiochemical proper
ties, climatic characteristics, and geographic variables at a continental scale remains 
unknown. Some previous amplicon-based studies have suggested the roles of ecolog
ical and evolutionary pressures in driving the distribution of nonribosomal peptide 
synthetase (NRPS) and polyketide synthase (PKS) (15–18). However, amplicon-based BGC 
profiling is mainly restricted to the NRPS and PKS, which have conserved domains, 
while terpenes and ribosomally synthesized and post-translationally modified peptides 
(RiPPs) are difficult to capture using domain-specific and primer-based PCR approaches. 
In contrast, metagenomics can recover the full genetic context of BGCs belonging to 
different classes in soil microbiomes.

In addition to the environmental forces driving BGC distribution, their impacts 
on shaping environmental microbial communities are still not clear. Previous studies 
of multiple bacterial strains suggested that secondary metabolites synthesized by 
microbial BGCs could drive interspecies interaction networks (19). Moreover, antagonistic 
interactions mediated by secondary metabolites were also observed among a diverse 
range of bacterial lineages (20–23). To date, little is known about the in situ outcomes 
of secondary metabolomes synthesized by BGCs on environmental microbiota, although 
this knowledge is crucial for understanding and predicting microbial behaviors during 
community assembly and succession.

In this study, we aim to uncover potentially diverse unexplored BGCs and undescri
bed BGC-rich taxa in agricultural soils and environmental forces driving the biogeo
graphical distribution of BGCs. We also hypothesize that BGC profiles could manipulate 
the assembly of microbial communities. To achieve these goals, we integrated metage
nomics and 16S metabarcoding to explore the novelty, biogeography, and microbial 
community-level impacts of soil BGCs in agricultural land covering all climate zones of 
mainland China.

RESULTS

Agricultural soil microbiome encoded biosynthetic potential with high 
genetic diversity and novelty

The agricultural soil microbiotas are exposed to a wide range of exogenous chemicals 
and microbes as environmental and biotic drivers of its genetic diversity (24). However, 
the biosynthetic potential of agricultural soil bacteria and their potential as a reservoir 
of new natural products remain largely underexplored. To construct the catalog of 
biosynthetic gene clusters (BGCs) of agricultural soil microbiomes and further depict 
their biogeography and ecology, the antibiotics and secondary metabolite analysis 
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shell (antiSMASH (25) were used to annotate 2.2 million scaffolds assembled from 70 
agricultural soil samples across China (Fig. S1; Data set S1). In total, 11,149 BGCs were 
identified and clustered into 8,303 gene cluster families (GCFs), including NRPS, PKS/
NRPS hybrids, PKSI (type I PKS), PKSother (mainly type II PKS and type III PKS), RiPPs, 
Terpene, Saccharides, and Others (Fig. 1a).

Consistent with the broad range in genetic diversity of biosynthetic potential in 
agricultural soils (2,087 to 3,991 BGCs, Fig. S2), we found that the total abundance of soil 
BGCs (coverage, × /Gb) also varied greatly among sampling sites, ranging from 126 to 
1,368, reflecting enormous differences in biosynthetic potential among soil microbiomes 
(Fig. 1b). On average, the maize soil microbiome showed the highest BGC abundance 
(356.6), which was significantly higher than that of oilseed rape (183.8, Mann‒Whitney 
U test, P = 0.01). Similarly, the BGC abundance of the wheat soil microbiome (293.9) 
was significantly higher than those of oilseed rape (P = 0.0004) and rice (210.2, P = 
0.03) (Fig. 1c). However, the BGC abundance was not significantly different (Wilcoxon 
signed-rank test, P > 0.05) among the top (258.9, 0–15 cm), middle (267.8, 15–30 cm), and 
bottom (298.5, 30–45 cm) soil layers (Fig. 1c). Furthermore, BGC compositions differed 
significantly among different vegetation types (Fig. 1d) and between pairwise vegetation 
types (PERMANOVA test, P < 0.05) (Table S1), indicating that the significant variations in 
biosynthetic potentials are potentially driven by the types of agricultural soil vegetation.

To evaluate the BGC novelty, only 3,947 BGCs (35.4% of all identified BGCs) encoded 
on scaffolds with a length of ≥5 kb were selected in order to reduce BGC fragmentation, 
as done previously (26, 27). Then, these BGCs were clustered into 2,938 GCFs so as 
to mitigate redundancy (i.e., the same BGC can be encoded in several scaffolds). The 
results showed that 38.1% of 2,938 GCFs showed no overlap (d > 900) with BGCs in 

FIG 1 The biosynthetic gene clusters (BGCs) recovered from China agricultural soil metagenomes. (a) The number of BGCs and gene cluster families (GCFs) 

recovered from the soil metagenomes. (b) The relative abundance of BGCs in different sampling sites. Only the BGC abundances of top soils were shown. 

The map was plotted using R. (c) The composition of BGCs of samples with varying vegetation types (maize, wheat, oilseed rape, rice, and others) and soil 

depths (0–15 cm, 15–30 cm and 30–45 cm). Each vegetation type or soil depth had 10 samples. (d) Nonmetric multidimensional scaling plots depict Bray-Curtis 

distances between vegetation types based on the relative abundance of BGCs in soil metagenomes. (e) The novelty of BGCs compared with the computationally 

predicted BiG-FAM database. (F) The novelty of BGCs as compared with the experimentally validated MIBiG database.
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the computationally predicted database BiG-FAM (28) (Fig. 1e), and 59.7% were not 
represented in the experimentally validated database MIBiG (29) (Fig. 1f). Considering 
that the novelty of BGCs located on contig edge will be underestimated (11), the overall 
novelty of BGCs in this study should be much higher because 92.7% of these GCFs were 
located on the contig edge (Data set S2). Therefore, we inspected 211 complete GCFs 
and found that 59.2% of GCFs were novel when compared against the BiG-FAM database, 
comparable to that of Antarctic soil (59.6%) (11). To further explore their potential for 
new drug discovery, we compared the chain length factor (CLF) sequences of 17 type 
II PKS (T2PKS) of this study with those of experimentally validated T2PKS curated by 
a recent study (30). Both sequence similarity and the phylogenetic cladogram showed 
that the CLFs of all the T2PKS retrieved from the agricultural soils had low sequence 
similarity (ranging from 0.37 to 0.79) with the CLFs of known T2PKS (Fig. S3), indicating 
their potential to produce diverse new aromatic polyketides.

Genome-resolved metagenomics revealed uncharted BGC-rich taxa in 
agricultural soils

Having established that agricultural soil microbiomes harbor diverse BGCs with high 
novelty, we further placed the BGC diversity into their host genomic context, which is 
critical for predicting yet uncharacterized microbial lineages that encode new natu
ral products. Previous genome-resolved metagenomic mining has revealed several 
underexplored BGC-rich taxa in grassland (9) and ocean ecosystems (27). To extensively 
resolve the taxonomy of BGC hosts, we constructed metagenome-assembled genomes 
(MAGs) using an optimized strategy that supplemented routine individual-sample with 
cross-sample de novo binning (see Methods), which substantially improved the total 
yields of MAGs by 30.4% (Fig. S1). Finally, a total of 510 eligible nonredundant MAGs 
were recovered as species-level representatives, including 61 archaeal MAGs (Fig. S4) and 
449 bacterial MAGs (Fig. 2). The bacterial MAGs were broadly assigned to 20 phyla (Data 
set S3), such as Actinobacteriota (33.6%), γ-Proteobacteria (13.8%), and Acidobacteriota 
(6.2%). About 53.0% of these bacterial MAGs could be found in more than half of the 70 
soil samples (Fig. S5), indicating their wide distribution in geographically and edaphically 
different soil environments. Among them, 386 bacterial MAGs encode 1,892 BGCs (Data 
set S4), such as NRPS (24.0%), terpene (22.5%), and RiPPs (20.1%).

To inspect the differences in biosynthetic potential between bacterial groups, we 
charted the phylogenetic relationships and BGC profiles of bacterial genomes (Fig. 
2). The stacked histogram of the phylogenetic tree showed that bacterial groups are 
not equally rich in their biosynthetic potential (Fig. 2a). For example, Acidobacteriota 
encoded an average of 8.21 BGCs per genome, which was 2-fold higher than that of 
α-Proteobacteria (3.73) and γ-Proteobacteria (4.27). The composition of BGCs also varied 
greatly among the dominant bacterial phyla. NRPS accounted for 46.1% of the BGCs 
of Acidobacteriota, which was 2.6, 3.0, and 8.6 times higher than that of Bacteroidota, 
Chloroflexota, and α-Proteobacteria, respectively (Fig. S6). The results indicate substantial 
differences in the distribution of BGCs across taxa. This trait was also validated by 
previous findings that the majority of BGCs are unique to each phylum and that lower 
taxonomic ranks, such as species within a genus, are more likely to display uniform 
biosynthetic diversity than higher taxonomic ranks (31). This pattern was also supported 
by the sequence similarity network of BGCs, in which GCFs were mostly shared by 
genomes from the same bacterial genera (Fig. 2f).

However, we also found that six GCFs were shared by different bacterial genera or 
even families (Fig. 3). These GCFs contain three terpenes, one NRPS, one RiPP and one 
betalactone, in which most of the pairwise BGCs have at least one biosynthetic gene 
with >80% sequence identity. For example, in the terpene GCF shared by two different 
families, i.e., Ilumatobacteraceae and Microbacteriaceae, four biosynthetic genes of the 
pairwise BGCs have >70% sequence identity and two biosynthetic genes have >80% 
sequence identity (Fig. 3a). The genera Pseudarthrobacter and Arthrobacter shared one 
GCF, in which one of their biosynthetic genes had >90% sequence identity (Fig. 3d). 
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This observation implies a history of horizontal transfer of BGCs between different soil 
bacterial groups, which is essential for bacteria to rapidly enhance their competitive 
advantage and environmental fitness (4, 32).

Further genome mining revealed 25 bacterial genomes as BGC-rich species (each 
with >10 BGCs) within the phyla Actinobacteriota, Acidobacteriota, Myxococcota, and 

FIG 2 Phylogenetic distribution of 449 species-level representative bacterial MAGs. The phylogenetic tree was constructed based on 120 bacterial marker genes 

using GTDBTk and visualized in iTOL. Each colored ring indicates a taxonomic phyla group. The stacked bar shows the amounts of BGCs in each genome, and 

each color represents a BGC class. The square symbol indicates the amounts of GCFs in each genome. The green and blue circle symbols indicate the amounts 

of novel BGCs compared to the experimentally validated MIBiG database and the computationally predicted BiG-FAM database, respectively. The pentagon 

symbols indicate the number of BGCs transcribed in the nine metatranscriptomes. The arrow indicates the unclassified BGC-rich family. The inner solid lines 

indicate the GCFs shared by different bacterial genomes, and the lines are colored according to BGC types.
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γ-Proteobacteria (Fig. 2a). More than half (13 genomes) of these BGC-rich species were 
annotated as Actinomycetia under phylum Actinobacteriota, including the well-known 
genera Streptomyces, Mycobacterium, and Nocardia (4, 34). Although these species have 
been exploited to produce a wide range of medicinal compounds, such as the antibiot
ics streptomycin and chloramphenicol and the anticancer drug doxorubicin (34), our 
analysis confirmed that nearly 70% of BGCs in Actinobacteriota had no representatives 
in the MiBIG database (Fig. 2c). This suggests that there is still much more room for 
the discovery of new natural products from this biosynthetically versatile phylum, as 
recently exemplified by the discovery of novel T2PKS (30). In addition, we also recov
ered some bacterial genera that were recently noticed for their enormous biosynthetic 
potential, such as the uncultivated genera UBA5704 (26, 35) in phylum Acidobacteriota. 
The BGCs encoded in UBA5704 genomes did not form any GCFs with BGCs in the 
MiBIG (Data set S5), indicating the massive potential of this uncultivated taxon for the 
discovery of new natural products. Notably, most of the BGC-rich genomes (21 genomes) 
failed to be classified at the species level, including a previously unexplored BGC-rich 
bacterial lineage (24 BGCs) belonging to an uncharacterized candidate family under 
order Mycobacteriales (Data set S3). Altogether, the results provide the first access to 
previously uncharted taxonomy information of BGCs in agricultural soils of China.

Biotic and abiotic factors jointly shape the biogeography of biosynthetic 
potentials

The BGC profiles have shown clear distinction among agricultural soils (Fig. 1b; Fig. 
S2). However, little is known about what abiotic (or environmental) and biotic factors 
contribute to the divergence of BGC profiles. To address this important question, a 
series of statistical analyses were performed. Mantel test analysis revealed that microbial 

FIG 3 The GCFs shared by different bacterial genera or families. The BGCs were clustered into each GCF by BIGSCAPE with a default threshold of 0.3. The 

grayscale links between the genes of pairwise BGCs represent sequence identity. A link was shown if the sequence identity was >30%, and the number was 

shown if the sequence identity was >60%. The BGCs were annotated by antiSMASH and visualized by Clinker (33).
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composition, soil pH, mean annual precipitation (MAP), mean annual temperature (MAT), 
and latitude significantly contributed to the variance of BGC composition (P < 0.05, Fig. 
4a). BGC richness was greatly driven by microbial composition and several environmental 
variables, such as pH, MAT, MAP, latitude, and soil moisture content (Fig. 4a). Moreover, 
we found that BGC abundance was rarely influenced by the examined 14 variables, while 
some BGC Classes (e.g., PKSI, Hybrids and Terpene) were significantly influenced by some 
variables, such as soil pH or MAP (Fig. S7). Furthermore, multiple regression modeling 
revealed that the biotic and abiotic factors jointly explained 55.0%, 40.4%, and 8.2% of 
the variations of BGC composition, richness, and abundance, respectively (Fig. 4b).

We further pinpointed the specific relationships between the main environmental 
variables and BGC richness. The results showed that BGC richness significantly increased 
toward latitudes, peaked at mid-latitudes, and then showed a declining trend with 
further elevated latitudes (R2 = 0.30, P = 1.2e-04) (Fig. 5a). The same nonmonotonic 
pattern was also observed for functional gene diversity in global topsoil microbiomes 
(36). Moreover, of the eight edaphic and two climatic variables examined, BGC richness 
significantly increased from acidic to alkaline soils, with the highest fit coefficient with 
soil pH (R2 = 0.37, P = 2.2e-06) (Fig. 5b). A similar result was also identified by an 
amplicon-based survey of bacterial secondary metabolism in soils of the United States 
(17), indicating universal consistency in the positive relationship between BGC richness 
and soil pH across different continental regions.

In contrast to soil pH, soil moisture (R2 = 0.18, P = 0.001, Fig. 5c), MAP (R2 = 0.15, P = 
0.003, Fig. 5d) and MAT (R2 = 0.08, P = 0.03, Fig. 5e) were negatively correlated with BGC 
richness. Previous reports indicated that low-moisture soil environments may lead to 

FIG 4 The biotic and abiotic drivers of BGC profiles in agricultural soil microbiomes. (a) Mantel test analysis showing the correlation of biotic and abiotic 

variables with BGC composition, abundance, and richness. (b) Contributions of variables to dissimilarities of BGC composition, abundance, and richness based 

on correlation and best multiple regression model. Circle size represents the variable importance (proportion of explained variability calculated by multiple 

regression modeling and variance decomposition analysis). The heatmap colors represent Spearman correlations between differences in variables and BGC 

composition. MC, moisture content; MiCo, microbial composition; PD, microbial phylogenetic diversity.
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increased pressures on nutrient acquisition and/or other means of competition, leading 
to an increase in BGC richness (14, 17). In this study, microbial co-occurrence networks 
showed that the proportion of negative edges (indicating microbial competition (37–39) 
increased from 2.4% in high-moisture soils (20.4% to 28.0%) to 4.5% in low-moisture 
soils (3.3% to 12.0%) (Table S3), revealing an increased intensity of competition with 
reduced soil moisture. Therefore, we postulated that microbes with diversified BGCs were 
enriched in low-moisture soils, as they could mediate a high intensity of antagonistic 
or competitive biological interactions to outcompete others. Consistent with the above 
results, structural equation modeling also revealed the strong direct effect of soil pH 
(standardized path coefficient, β = −0.92, P < 0.001) and moisture (β = 0.27, P < 0.01) on 
the microbial community structure, which in turn significantly affected the richness of 
soil BGCs (β = −0.78, P < 0.001) (Fig. 5f).

BGC-inferred biotic interactions are correlated with soil microbiota assembly

Environmental characteristics of soils can shape specific ecological niches to determine 
what species of microbes (the potential hosts of BGCs) can survive there. This largely 
determines the BGC profile differences, as we revealed in the last section. However, the 
mechanism by which microbes in the same ecological niche are organized into microbial 
communities remains unclear. In this context, secondary metabolites produced by 
BGC-carrying microbes may mediate microbiota-specific biotic interaction networks to 
structure the environmental microbiota, considering that BGC-inferred biotic interactions 
(e.g., competition, predation, antagonism, and mutualism) within microbes have been 
widely recognized (40–42). Given the above knowledge, we hypothesized that BGC-rich 
taxa could play key roles in structuring microbial communities, and that the BGC profiles 
of soil microbiomes would mediate community assembly.

FIG 5 The environmental drivers of BGC richness in agricultural soil microbiomes. (a) Latitudinal distribution of BGC richness. (b-e) The Spearman correlation of 

BGC richness with soil pH, soil moisture, mean annual precipitation, and mean annual temperature, respectively. (f) structural equation modeling (SEM) of BGC 

richness and composition. Numbers near the pathway arrow indicate the standard path coefficients (β). The arrow width is proportional to the strength of the 

relationship. R2 represents the proportion of variance explained for every dependent variable. The goodness of fit was acceptable: Model χ2 = 11.5, df = 11, GFI = 

0.986, CFI = 0.998; root mean square error of approximation (RMSEA) = 0.03.
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To test this hypothesis, we constructed a microbial co-occurrence network of the 
recovered 449 bacterial genomes. Topological analysis revealed two BGC-rich species, 
i.e., Nocardia niigatensis from Actinobacteriota and PSRF01 from Acidobacteriota, as 
the module hub and connector, respectively (Fig. 6a), indicating their essential role as 
keystone species in microbial communities. The MAG of N. niigatensis and the MAG 
of PSRF01 contains 48 and 21 BGCs, respectively, which could potentially synthesize 
a wide range of secondary metabolites. These uncharacterized compounds may play 
important functions in mediating microbial interactions, conferring their producers as 
the keystone species in microbial communities. However, only two BGCs (one RiPP from 
PSRF01 and one NRPS from N. niigatensis) were mapped with mRNA reads at the time 
point of sampling. Therefore, future controlled time-series experiments coupled with 
metatranscriptomics and metabonomics should be conducted to identify the active 
ecological functions of secondary metabolites encoded by these BGCs.

In addition to the key roles of BGC-rich taxa in the microbial community, we 
also observed the significant association of biotic-inferred interactions with microbial 
community assembly. Mantel test results showed that BGC richness was the best 
predictor (r = 0.27, P = 1.0e-04) of microbial phylogenetic turnover (quantified by 
β-nearest taxon index, βNTI) when compared with the other 12 measured biotic and 
abiotic variables (r = 0.08 to 0.14, Fig. 6b). The βNTI values were positively correlated with 
differences in BGC richness between samples (R2 = 0.15, P = 2.2e-16, Fig. 6c), indicating 
the strong influence of BGC richness on soil microbiota assembly. Furthermore, with 

FIG 6 The influence of BGC richness on microbial communities. (a) The keystone taxa identified in the co-occurrence network. Each node represents an MAG. 

The node is defined as module hub if its within-module connectivity (Zi) ≥ 2.5 and among-module connectivity (Pi) < 0.62, as connector if its Pi ≥ 0.62 and 

Zi < 2.5, as network hub if its Zi ≥ 2.5 and Pi ≥ 0.62, and all other nodes are identified as peripherals. (b) Mantel tests of abiotic and biotic factors against the 

phylogenetic turnover (β-nearest taxon index) of microbial communities. (c) The relationship between the β-nearest taxon index (βNTI) and differences (Δ) in 

BGC richness. (d) Patterns of βNTI across different groups of BGC richness. The samples were artificially separated into 10 groups (a-j) with an ascending BGC 

richness. Each group contains seven samples, but one sample with abnormally low BGC richness was excluded from the A group. The BGC richness increased 

from 2,087 in the A group to 3,991 in the J group. The relationship was estimated by linear least-squares regression analysis. (e) The normalized stochasticity 

ratio (NST) based on the phylogenetic beta diversity index across the different categories of BGC richness, and the group separation is identical to Fig. 6d. The 

assembly is dominated by the stochastic process if pNST >50%. It is dominated by the deterministic process if pNST <50%. (f) The proportion of biosynthetic 

genes transcribed in different samples.
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an increasing level of BGC richness (from 2,087 to 3,991), the relative importance of 
deterministic assembly greatly strengthened (from 13.3% to 66.7%), whereas that of 
stochastic processes largely weakened (Fig. 6d). This result generally agreed with the 
normalized stochasticity ratio (NST) estimation, in which the relative importance of 
stochastic processes decreased in groups with high BGC richness (Fig. 6e). To check 
whether the BGCs are actively expressed in the in situ soil environment, we investigated 
the transcripts of BGCs in nine representative soil samples. On average, 1.7% of the 
biosynthetic genes were transcribed, which was slightly higher than the transcribed 
proportion of all other microbial genes (1.6%) (Fig. 6f), suggesting the active expressions 
of BGCs in the environment. Collectively, these results are consistent with our hypothesis 
that BGC-inferred biotic interactions play dominant roles in structuring soil microbiota.

DISCUSSION

Understanding how BGCs are distributed in environmental microbiomes and what 
factors drive their biogeographic distribution is of general interest from two-tier 
perspectives, i.e., bioactive compound discovery and microbial ecology. By conducting 
metagenomic analyses of soil microbiomes on a continental scale, this study revealed the 
enormous diversity and high novelty of bacterial BGCs that support the great potential 
for the discovery of previously undescribed chemistry in Chinese agricultural soils, as 
recently implicated in grassland soils of the United States (9) and Antarctic soil (11). The 
most abundant novel BGCs in this study corresponded to the predicted NRPS and PKS, 
which are usually responsible for producing diverse bioactive natural products, including 
antibiotics and anticancer agents (43). Metagenomic mining of BGCs, coupled with 
functional validation based on heterogeneous expression or other advanced functional 
genomics technologies, will make agricultural soils a promising field for metagenomics-
guided discovery of new bioactive compounds from numerous uncultivated microorgan
isms.

Moreover, we found that the geographic distribution of soil bacterial BGCs was 
strongly associated with soil pH, moisture and MAT. Further SEM analysis revealed these 
key environmental factors directly affected the microbial community structure, which 
in turn significantly affected the richness of soil BGCs. For example, soil pH exhibited a 
significant and positive correlation (R2 = 0.13, P = 0.006) with Actinomycetia abundance 
(Fig. S8). Considering the fact that more than half of the BGC-rich clades identified 
in this study (Fig. 2a) were predicted to be hosted by Actinomycetia, which are well-
known as extremely versatile producers of bioactive natural products (4), the pH-induced 
decrease in soil Actinomycetia abundance in acidic soil may prominently contribute to 
the reduction of BGC richness. Furthermore, this novel view of the continental-scale 
patterns of BGC distributions indicates that soil acidification and global climate change 
(e.g., shifts in precipitation and temperature) may substantially affect the biosynthetic 
potential of the soil microbiome. Specifically, the soil acidification resulting from acid rain 
and ammonium-based fertilization may substantially decrease BGC richness by inhibiting 
the proliferation of BGC-rich bacteria (e.g., Actinomycetia), which can, in turn, cause 
negative impacts on the soil ecological balance and discovery of novel medicines.

Understanding the mechanisms controlling community diversity and assemblage 
is a central issue in microbial ecology (44). Many studies have explicitly deciphered 
the impacts of abiotic factors (e.g., spatial scale, pH, MAT, and MAP) on the assembly 
processes of microbial communities (45–47). However, we revealed that compared with 
external abiotic drivers, BGC richness was the best predictor of microbial phylogenetic 
turnover, indicating BGC-inferred biotic interactions are a dominant deterministic factor 
and internal driver in shaping microbial communities. Because a microbial community 
with higher BGC richness is expected to produce more diversified secondary metabolites 
to strongly mediate community-wide biotic interactions (i.e., competition, antagonism, 
and mutualism), the phylogenetic turnover between bacterial communities with high 
BGC richness is, therefore, more deterministically driven. In contrast, biotic interactions 
are likely to be very weak in a microbial community with low BGC richness, allowing 
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for an elevated stochastic influx of new species (e.g., immigration) into the commun
ity (45). Moreover, although the essential roles of secondary metabolites in microbial 
ecology have been widely acknowledged over the last few decades (40, 41, 48), this 
study further identified the keystone role of BGC-rich taxa in microbial communities 
and uncovered and quantified the strong association of BGC profiles with microbial 
phylogenetic turnover. Importantly, considering the critical roles of microorganisms in 
soil ecosystems (49), revealing the intrinsic mechanisms and ecological rules guiding 
assembly processes and species coexistence could greatly benefit the management of 
microbial communities to enhance agricultural production in response to environmen
tal changes (50). Therefore, additional efforts should be put to further validate the 
ecological roles of BGCs and BGC-rich species in microbial communities.

Until now, the specific functions of the enormous secondary metabolites encoded 
by microbial BGCs in nature have rarely been characterized and largely underexploited, 
so there is still an enthusiastic need for tremendous efforts to recover the specific roles 
of diverse secondary metabolisms in the environment, which is critical to enhancing 
our understanding of the ecological roles and biotechnological importance of bacterial 
secondary metabolites.

MATERIALS AND METHODS

Soil sampling, biogeochemical analysis, and data collection

Soil samples were collected from agricultural land across 31 provincial-level administra
tive regions of mainland China from April 13th–25th, 2021, covering all climate zones, 
including temperate, subtropical, tropical, and highland climate zones. Fifty sampling 
sites were chosen with the consideration of geographical representation and vegetation 
types (e.g., maize, rice, wheat, and oilseed rape). For each site, five soil cores obtained at a 
depth of 0–15 cm were combined. Additionally, we collected samples at depths of 15–30 
cm and 30–45 cm from ten of the sampling sites.

Standard test methods were employed to measure soil pH, moisture content (MC), 
dissolved organic carbon (DOC), total nitrogen (TN), nitrate nitrogen (NO3

-), ammonium-
nitrogen (NH4

+), available phosphorus (AP), and available potassium (AK), as previously 
described (46, 51). We obtained climate data, including mean annual temperature and 
mean annual precipitation, from the WorldClim database (www.worldclim.org).

DNA extraction, metagenomic sequencing, and 16S rRNA gene amplicon 
sequencing

For each soil sample, DNA was extracted using the FastDNA Spin Kit for Soil (MP 
Biomedicals, USA). The metagenomic libraries were then prepared and sequenced 
on the Illumina NovaSeq 6,000 platform using a paired-end 150 bp strategy at the 
Novogene Corporation (Beijing, China). In total, the metagenomic sequencing produced 
1.33 Tb nucleic acid bases across all 70 samples, corresponding to 8.84 × 109 reads 
with an average read count of 1.26 × 108 reads per sample. The metagenomic data 
covered 24.5%-53.6% of the soil microbial diversity (Fig. S1). One metagenome was 
excluded from the correlation analysis due to its abnormal coverage (84.8%). The 
V4-V5 hypervariable regions of prokaryotic 16S rRNA genes were amplified using the 
forward primer 515F and reverse primer 926R (primer sequence), and the amplicons 
were then sequenced on the Illumina NovaSeq 6,000 platform (PE250) at the Magigene 
Biotechnology Corporation (Guangzhou, China). The amplicon sequencing data were 
then processed as described in our previous study (52).

Metagenomic assembly and binning

For each metagenomic dataset, raw sequencing reads were processed with Fastp 
(v0.23.1) (53) to remove Illumina adaptors, low-quality reads, and duplicate reads. 
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Deduplication could substantially improve the assembly and binning results of soil 
metagenomes, as evaluated by our previous study (54). Clean reads of each sample 
were then individually de novo assembled using MetaSPAdes (v3.15.4) (55).

The coverage profiles of each assembly were generated by mapping clean reads 
from every sample using BWA (56). The scaffolds of each assembly were subsequently 
clustered into genome bins informed by the coverage profiles using three different 
binning software programs (i.e., MetaBAT2 (57), MaxBin2 (58), and CONCOCT (59) in the 
MetaWRAP pipeline (v1.3.0) (60) with parameter -l 2,000. High-quality draft genomes 
of each sample were then extracted from the above-generated bins using the bin 
refinement module in MetaWRAP. In another strategy, the coverage profile of each 
assembly was also generated by only mapping clean reads from its sample and was 
used to inform binning as described above. The bins with an overall quality of >50% 
(completeness – 5 × contamination) were considered eligible ones. Finally, 701 and 
512 bins were obtained using cross-sample and individual-sample binning strategies, 
respectively (Fig. S1).

Although the binning yields of cross-sample binning were significantly higher than 
those of individual-sample binning, each strategy could recover some unique bins. To 
obtain representative genomes from the soil metagenomes as much as possible, the 
bins from both strategies were combined and dereplicated using dRep (v3.0.0) (61) with 
a 95% ANI threshold, finally resulting in 510 species-level representative metagenome-
assembled genomes (MAGs). MAGs were taxonomically assigned using the classify_wf 
module of gtdbtk (v2.1.1) (62) and were classified into 449 bacterial MAGs and 61 
archaeal MAGs. Phylogenetic analysis of MAGs was conducted with the gtdbtk infer 
module based on a set of 120 bacterial or 53 archaeal-specific marker genes from GTDB 
(62), and the phylogenetic trees were visualized in iTOL (63). The abundance of MAGs in 
each sample was quantified using CoverM (v0.6.1) (https://github.com/wwood/CoverM). 
The co-occurrence network of soil bacterial genomes and global network properties 
were calculated using the Molecular Ecological Network Analysis Pipeline (64).

Biosynthetic gene cluster (BGC) annotation and analysis

Contigs longer than 2 kb were analyzed using antiSMASH (v6.1.1) (25) with default 
parameters to identify BGCs. The BGCs were further clustered into gene cluster families 
(GCFs) based on the pairwise BGC distances (0.3), which were calculated as the weighted 
combination of the Jaccard Index, adjacency index, and domain sequence similarity 
using biosynthesis-related gene similarity clustering and prospecting engine (BiG-SCAPE) 
software with the mode auto (65). The longest BGC within each GCF was chosen 
as the representative. To estimate BGC novelty, BiG-SLiCE (66) was used to calculate 
the distances between the BGCs of this study and the BGCs of the computationally 
predicted BiG-FAM (28) and experimentally validated MIBiG (29) database, which had 
been computed using t = 900 as a threshold. The resulting distance indicates the degree 
to which a given BGC differs from previously computed GCFs, with a higher distance 
indicating higher novelty.

BGC abundance and diversity calculation

To calculate the relative abundance of BGCs, the contigs carrying the representative 
BGCs were merged to build an index file, and the clean reads from each sample were 
mapped to the index file using Bowtie2 (v2.3.4.1) (67). After obtaining the sorted BAM 
file of each sample, the bedcov function in SAMtools (v1.15.1) (68) was used to extract 
mapping information of BGCs informed by the bed file that had the location information 
of BGCs on the contigs. The relative abundance of each BGC was calculated as the 
amount of reads mapping to the BGC normalized by BGC length and the size of the 
metagenome, as shown in the following equation:

 Abundance (coverage,  × /Gb) = Nmapped reads  × Lreads /LBGCS
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where Nmapped reads is the number of reads mapped to one specific biosynthetic 
reference gene; Lreads is the sequence read length; LBGC is the nucleotide length of the 
corresponding BGC; and S is the size of the metagenomic data (Gb). The BGC richness of 
each sample was estimated using the estimateR function of the vegan package in R (69).

Metatranscriptomic analysis

To check whether the BGCs are actively expressed in the in situ soil environment, we 
selected 9 out of the 70 samples for metatranscriptomics analysis with the consideration 
of the geographical representation and vegetation types (i.e., maize, rice, wheat, oilseed 
rape, and others). Total RNA was extracted from each of the nine soil samples using the 
RNA PowerSoil Total RNA Isolation Kit (MoBio, USA). After the removal of ribosomal RNA 
for microbial RNA, Illumina’s TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, USA) 
was used for reverse transcription as well as macrotranscriptome birdshot sequencing 
library construction. Each library was sequenced by the Illumina NovaSeq platform 
(Illumina, USA) with the PE150 strategy at Personal Biotechnology (Shanghai, China). 
Transcripts were quality-controlled using trim_galore (v0.6.7) (Babraham Bioinformatics 
- Trim Galore!). On average, metatranscriptomic sequencing produced 7.4 × 107 clean 
reads per sample. The RNA reads were then mapped to target genes using hisat2 
(v2.2.1) (70). The generated SAM files were transformed into BAM files and then sorted 
using SAMtools (v1.15.1) (68). The reads mapped to each gene were counted using 
HTSeq-count (v2.0.2) (71). Transcripts that have at least five counts were reported and 
included in downstream analyses in order to exclude low levels of read mapping, as in 
the previous study (13).

Microbial community assembly mechanism analysis

The assembly process of microbial communities was identified by using the bNTIn.p 
module in iCAMP (72) with a parallel computing mode. A beta nearest taxon index (βNTI) 
value of less than −2 indicates significantly less phylogenetic turnover than expected 
(i.e., homogeneous selection), while a βNTI value of more than two indicates significantly 
more phylogenetic turnover than expected (i.e., variable selection). A |βNTI| < 2 indicates 
the dominance of stochastic processes. Furthermore, the major biotic and abiotic factors 
that influenced the assembly processes of soil microbial communities were investigated. 
Variation in community assembly processes along the gradients of the major factors 
was assessed using the Mantel test that correlated the βNTI values with the Euclidean 
distance matrices of each factor. Furthermore, the normalized stochasticity ratio (NST) 
was used to quantify the relative importance of deterministic and stochastic processes 
in the microbial community assembly (73). The NST index based on the phylogenetic 
beta diversity index (pNST) was calculated using the null model algorithm PF (fixed 
data richness and proportional taxa occurrence frequency) as described in a previous 
study (74). The NST index of 50% was adopted as the boundary point between more 
deterministic (<50%) and more stochastic (>50%) assembly of microbial communities. 
In addition, microbial co-occurrence network analysis was performed to predict the 
intensity and role of biotic interactions (e.g., competition) in the community assembly 
using the ‘Co-occurrence_network.R’ script of MbioAssy1.0 (39, 75).

Statistical analysis

To visualize the variation in BGC composition across samples, the non-metric multidi
mensional scaling (NMDS) analysis was conducted on the BGC Bray‒Curtis dissimilarity 
matrix using the metaMDS function of the vegan package (69) in R. The significance test 
of pairwise comparison of each vegetation type was conducted using pairwiseAdonis in 
R. OTU richness was estimated using the estimateR function of the vegan package in R, 
and phylogenetic diversity was calculated using the pd function in the picante R package 
(76).
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Structural equation modeling (SEM) was used to explore the direct and indi
rect relationships among environmental variables, microbial communities, and BGC 
compositions. The microbial community composition was represented by PC1 of the 
principal coordinate analysis based on the Bray–Curtis distance. Initially, we construc
ted a hypothesized model that included all reasonable pathways. Then, we sequen
tially pruned the nonsignificant pathways or added new pathways based on residual 
correlations until the model showed sufficient fitting with P values of the χ2 test larger 
than 0.05 (i.e., the predicted model and observed data were not significantly different), 
and the root mean square error of approximation (RMSE) was less than 0.08. The 
SEM-related analysis was performed using the lavaan R package (77).
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