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A calibration method for
smartphone camera
photophlethysmography
Yinan Xuan1,2*†, Colin Barry1,2*†, Nick Antipa1 and Edward Jay Wang1,2

1Electrical and Computer Engineering, UC San Diego, La Jolla, CA, United States , 2The Design Lab, UC San
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Smartphone camera photoplethysmography (cPPG) enables non-invasive pulse
oximetry and hemoglobin concentration measurements. However, the
aesthetic-driven non-linearity in default image capture and preprocessing
pipelines poses challenges for consistency and transferability of cPPG across
devices. This work identifies two key parameters—tone mapping and sensor
threshold—that significantly impact cPPG measurements. We propose a novel
calibration method to linearize camera measurements, thus enhancing
consistency and transferability of cPPG across devices. A benchtop calibration
system is also presented, leveraging a microcontroller and LED setup to
characterize these parameters for each phone model. Our validation studies
demonstrate that, with appropriate calibration and camera settings, cPPG
applications can achieve 74% higher accuracy than with default settings.
Moreover, our calibration method proves effective across different smartphone
models (N = 4), and calibrations performed on one phone can be applied to
other smartphones of the same model (N = 6), enhancing consistency and
scalability of cPPG applications.

KEYWORDS
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1. Introduction

Photoplethysmography (PPG) is a widely used measurement technique in the medical

field that involves illuminating a vascularized tissue and tracking the reflected light over

time. This pivotal measurement is adept at capturing an array of physiologically

meaningful information, such as heart rate (1–5), heart rate variability (6, 7), blood

oxygenation (5, 8, 9), hemoglobin concentration (10, 11), vascular aging (12), blood

pressure (5, 13–15), diabetes (16), and respiratory rate (17). A PPG measurement is

realized with a light source and a photo sensor pair. This combination is ubiquitous in

today’s smartphone devices, which employ software-accessible cameras, flash LEDs, and

screens. By placing a person’s finger over the light source and sensor, the variation in

blood volume in the finger during a cardiac cycle leads to maximal absorption of light at

the peak cardiac output (systole) and minimal absorption at the trough (diastole).

This paper refers to the use of smartphone cameras to measure PPG as Camera PPG

(cPPG). Despite a robust body of research surrounding cPPG, no systematic investigation

has been undertaken to ascertain the reliability of the cPPG technique in creating

accurate measurements under different camera parameter settings and across smartphone

devices. The effects of camera parameters and differing components of various

smartphone devices may interfere with the consistency of PPG measurements across

devices. This paper proposes a methodology for setting smartphone camera parameters
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and calibration methods that reliably record PPG amplitudes

critical for measurements such as hemoglobin concentration and

blood oxygenation calculations.

Understanding the results presented in this paper requires

insight into how smartphone cameras rely on modern

computational camera systems. These systems incorporate a

multitude of image quality-enhancing techniques designed to

replicate the human vision system. However, human vision is

non-linear (18). Specifically, humans do not perceive brightness

linearly. There is an innate adjustment of visual dynamic range,

which enhances dark areas and suppresses bright areas, thereby

making an entire scene appear visible. This effect is implemented

in computational cameras through a process called tone mapping

(19), commonly in the form of a logarithmic function for typical

color spaces such as sRGB.

In the context of PPG, the most crucial measurement is the

comparison between the baseline amplitude, commonly referred

to as DC, and the pulse amplitude, often referred to as AC. It’s

the ratio of AC against DC across different color channels that

offers insights into the blood’s absorption properties, a

measurement known as the Ratio-of-Ratios (RoR). Errors in

absorption measurements are detrimental to blood oxygenation

and hemoglobin concentration measurements. However, tone

mapping distorts the DC and AC amplitudes, grossly

overestimating the DC component by amplifying low-amplitude

signals and underestimating the AC component by attenuating

high-amplitude signals. Additionally, the function used in tone

mapping is dynamically adjusted depending on the scene, leading

to amplitude inconsistencies across scenes depending on the

underlying tone map. This major issue remains unaddressed in

previous cPPG research, likely leading to inaccurate cPPG

measurements across a broad range of applications.

Our background investigation revealed that only a few

approaches have considered controlling the multitude of camera

parameters that exist in modern smartphones. Most prior works

largely depended on post-processing after allowing the complex

camera system to automatically capture a video, with auto-

exposure, auto-white balancing, and video compression

algorithms altering the raw signal in non-linear ways (4, 6, 20–

28). Only a handful of works have addressed changing exposure

by disabling auto-exposure (29–31); calculating absorption frame-

by-frame in an online manner to avoid compression; attempting

to control white balance by designating a preset, most commonly

an incandescent setting to emphasize blue and green channels

(32–34); or opting to control each color channels with individual

gain settings (8, 11). Although these works hint at the right

direction in addressing the issues, our investigation finds that
FIGURE 1

Block diagram of smartphone calibration procedure for reliable PPG measure
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these solutions are inadequate, and in fact, overlook some of the

most crucial camera parameters affecting cPPG measurements.

In order to address the nonlinearities, prior works heavily rely

on using data-driven models. Such solutions usually involve

measuring the target biomarker (i.e. pulse oximetry, hemoglobin

concentration) on one phone and a reference clinical device. The

performance of such data-driven solutions is based on a strong

assumption that the nonlinear preprocessing will be (1) the same

under new conditions such as a different user with darker skin

tones, (2) the same under updates to camera algorithms, and (3)

the same on different phones. However, none of these are

guaranteed.

In this paper, we propose a guide to proper camera settings and

a scalable calibration method for reliable smartphone cPPG

measurements. The proposed calibration method relies on a

photonic test bench design that employs a light-blocking box and

off-the-shelf LEDs. The device outputs a range of LED

brightnesses in RGB using Pulse-Width Modulation (PWM) to

emulate a variety of PPG amplitudes, thereby mimicking

different optical signals resulting from a range of blood

compositions. Complementing the calibration device is a custom

Android application that uses the Camera2 API to measure the

calibration input and calculate the smartphone model-specific

sensor characteristic, which involves the measurement of the

minimum light threshold. This minimum light threshold value,

referred to as the zero light offset (ZLO) in this paper, is crucial

for correcting the amplitude measured by the camera, as it

directly affects the DC component of the PPG measurement. The

overall calibration procedure is outlined in a block diagram in

Figure 1 Without this correction, the ratiometric calculation

would grossly overestimate the effect of the AC measurement.

We evaluate the performance of the proposed calibration

method through a series of simulation studies. These studies use

the test bench device to emulate the optical signal of different

ratios of AC and DC intensities across color channels, thus

producing a range of Ratio of Ratios (RoR) from 0.5–2.0. This

range represents the expected operational range of typical pulse

oximeters. To assess the effectiveness of our calibration method,

we compare the RoR calculated from the signal captured using

three settings: Default Auto Tone Mapping, Uncalibrated Linear

Tone Mapping, and Calibrated Linear Tone Mapping. We find

that by properly setting the tone mapping to a linear mode and

calibrating the sensor for its ZLO for each phone model (N ¼ 4),

the calibrated results exhibit 74% and 60% lower Mean Absolute

Error (MAE) compared to the Default automatic setting and the

uncalibrated linear setting, respectively. Similarly, the R2 is

improved to 0.97 from 0.81 and 0.72. Furthermore, we find that
ments.
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the calibration found for one phone of a model can be used for

other phones of the same model without recalibration (N ¼ 6).

These findings strongly advocate for the importance of our

calibration method in reliably measuring PPG amplitude to

faithfully reproduce RoR values that are needed to measure

optical blood absorption.
1.1. Smartphone camera PPG (cPPG)

Smartphone cameras, extensively explored as sensors for pulse

measurements at the finger via photoplethysmography (PPG) (3),

utilize a common method where the finger covers either the LED

or the screen, referred to as Camera PPG (cPPG). This method

contrasts with Remote PPG (rPPG) (35), which captures the

PPG signal non-contactly by detecting absorption fluctuation at a

distance. While this paper primarily focuses on cPPG due to its

widespread study and public use, the introduced findings and

techniques remain pertinent to rPPG measurements and invite

future exploration.

Various digital biomarkers, including heart rate (4, 20–24, 36,

37), heart rate variability (6, 22, 24–26), and breathing rate (27,

28, 38, 39), can be estimated through cPPG. These estimations

are largely frequency-dependent, thus remaining unimpacted by

calibration absence since signal amplitude and color channel

relationships, rather than frequency information, are primarily

influenced by camera alterations. Conversely, amplitude-

dependent measurements like pulse oximetry (5, 30, 40–42) and

hemoglobin concentration (31, 43–45), are significantly affected

by a lack of calibration, thereby rendering them unreliable due to

sensing variations from the complex smartphone camera system.

Blood composition measurements are based on calculating the

ratio of amplitudes between different PPG wavelengths, capturing

the baseline(DC) and the fluctuation (AC) of absorption. As

depicted in Figure 2B, the AC component arises from blood

volume changes as the heart pumps blood with each beat. The

goal of any blood color analysis is to measure the ratio of AC/

(ACþDC) in the signals between two color channels, capturing
FIGURE 2

(A) Two common forms of smartphone PPG using the front camera with the s
tissue. Adapted from Webster et al. (47). The absorption of light changes due
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blood’s absorption at specific wavelengths (46). Ensuring accurate

measurement of this RoR is vital for blood color and blood

composition analysis. This paper identifies how standard

smartphone camera applications with automatic tone mapping

settings introduce a nonlinear scaling of the measurement due to

dynamic range adjustments, leading to significant inaccuracies in

DC and AC measurements and thus affecting the RoR

calculation and blood color and blood composition analysis

accuracy. To rectify this issue, a method is proposed to correct

these errors and obtain accurate measurements, enabling more

reliable blood color and composition analysis using smartphone-

based PPG systems.
1.2. Smartphone computational camera
complexity and control

Despite cPPG’s attempt to utilize smartphone cameras as

photosensors, the camera is far more complex, undergoing

various hardware and software manipulations. This paper

primarily focuses on the control developers have over these

camera characteristics via Application Programming Interfaces

(APIs). If certain control over the camera is not exposed at the

API level, an app cannot exert that control. While such

limitations can be circumvented if a smartphone is rooted,

allowing custom flashing of modified firmware, this solution is

often blocked and not user-friendly, making it unsuited for the

app ecosystem.
1.2.1. Access and compensations of smartphone
configurations for cPPG

Because prior works did not fully control the nonlinear effects

introduced by nonlinear tone mapping, the resulting PPG

measurement incorporates such nonlinearities. However, prior

works have still demonstrated the feasibility of smartphone cPPG

for the many applications we have mentioned here. This can

largely be credited to the use of data-driven models.
creen and the back camera with the flash LED (B) Light absorbed by living
to the change in the volume of blood when the heart pulses.
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FIGURE 3

Bench top calibration set up.
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Several works have used data-driven models to successfully

measure blood oxygenation using the smartphone camera with

the flash LED for SpO2 measurement, achieving an MAE of 5%

or less (8, 9). For anemia screening via HgB measurement, Wang

et al. (10) leveraged a Support Vector Machine (SVM) to train a

model utilizing various combinations of amplitude and ratios

achieving a rank order correlation of 0.82. In a later study, they

fitted a linear regression model (11). Other approaches in the

field use artificial neural networks (43), a variety of machine

learning methods (31), or linear regression with data collected

from an array of LEDs (44).

Notably, smartphone cPPG-based solutions for SpO2

measurements have depended on data-driven techniques, even

though a simple ratio between red and green absorptions should

theoretically suffice. This reliance on complex models may be

due to the need to reverse the nonlinearities imposed by the

camera and learn the relationship between the PPG and the

target measurement. However, relying on data-driven models to

simultaneously address both issues has multiple implications.

First, the nonlinearities can differ from phone to phone, and no

work clearly demonstrates that a system trained on one phone

can be deployed on another, potentially necessitating device-

specific training and a new dataset for the algorithm to work on

a new phone. Secondly, nonlinearities can vary depending on

measurement conditions as the tone mapping curve may change

if not under control. The proposed solution in this paper

linearizes the measured signal, allowing for directly comparable

PPGs from phone to phone and from one exposure setting to

another.

The remainder of the paper is organized in order as follows: (2)

the methods section detailing the proposed settings, calibrations

procedure, and evaluation process; (3) the results section

presenting data from the evaluation; (4) the discussion section

commenting on the importance, implications, and limitations of

the proposed work; and (5) the conclusion providing the final

thoughts for the reader.
2. Methods

2.1. Benchtop calibration device

A test bench device was designed utilizing commodity off-the-

shelf components, as depicted in Figure 3. The primary elements

of the test bench include a black 3D printed light shield that

connects a smartphone camera to a dark chamber, and a

microcontroller (specifically, a Qduino development board)

situated within the dark chamber that illuminates the camera

scene with a pulse width modulation (PWM) controllable RGB

LED.

The PWM frequency was empirically determined to be 32MHz

to avoid the rolling shutter effect. The primary objective of the test

bench is to establish a controlled environment, enabling us to

emulate various PPG measurement conditions in reproducible

experiments where the AC and DC inputs are known and

adjustable. This test bench setup also provides a platform to
Frontiers in Digital Health 04
perform a calibration technique that we have identified as

necessary for each phone to compute the RoR accurately.
2.2. Smartphone settings

Paired with the calibration device is a custom Android

application that leverages the Android Camera2 API for

comprehensive control over the camera’s parameters. The

proposed calibration method relies on this API to reliably yield

accurate cPPG measurements. An important aspect of the

smartphone setup is the intentional avoidance of many default

automatic “enhancements.” Configurations accessible via the

Camera2 API, such as manually setting and locking the white

balance, sensor exposure time, frame rate, and sensitivity boost,

are manipulated for this purpose. These parameters may be

modified before or after the measurements, but need to remain

consistent during a cPPG measurement. Furthermore, to bypass

the automatic image adjustments typical of smartphone camera

systems, the image processing pipeline must be tuned to produce

reliable images for measurements. This involves specifying the

color correction settings, including the color correction mode,

gain, and transformation matrix.
2.2.1. Tone mapping
Tone mapping is a key parameter for linear and reproducible

cPPG measurements that has not been previously explored. The

default setting for tone mapping in Android is called FAST and

is nonlinear. In this paper, we refer to it as Default Automatic.

Default Automatic adapts the control points of the previously

used tone map based on the scene. The adaptive control causes

nonlinear effects that cannot be reversed in post processing. For

proper calibration, the tone mapping parameter should be set to

linear by setting the tone mapping mode to CONTRAST_CURVE

and manually setting two control points as [(0, 0), (1.0, 1.0)] for

all color channels in the tone curve parameter.

For this paper, the Default Automatic tone mapping parameter

serves as a default for comparison against the current state of the

art employed in many prior works. Earlier cPPG studies typically

used the default setting, and, to our knowledge, most camera

applications use sRGB or other nonlinear tone maps. Figure 4

illustrates the impact of 3 different tone mapping settings across

a range of incident light intensities: Linear, sRGB, and Default
frontiersin.org
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FIGURE 4

The response of the same pixel to a linearly increasing amount of brightness under different tone mapping settings: only the Linear tone mapping setting
preserves the linearity of the original signal. Note the y-intercept (indicated as Zero Light Offset in this paper) of the fitted line is not zero and it is different
for different smartphone models as shown in Table 1.
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Automatic. It is evident that the linear measurement exhibits a high

degree of linearity, which indicates that the camera’s CMOS sensor

is well-engineered for a linear response. Meanwhile, a nonlinear

tone mapping significantly alters the signal, rendering the

measured pixel values unsuitable for cPPG measurements or RoR

calculations.

2.2.2. Zero light offset
As illustrated in Figure 4, a fitted line of brightness-to-pixel

value via linear tone mapping results in a non-zero y-intercept,

which we refer to as the ZLO. This phenomenon is due to the

intrinsic detection threshold of the camera’s photosensor, with

different smartphone models exhibiting varying hardware or

firmware settings that influence the camera sensor.

The presence of a negative y-intercept ZLO implies that an

increase in the measured pixel value does not proportionally

reflect the actual increase in brightness, thus inducing errors in

RoR calculations. It is essential to recognize that while the slope

of this line affects all measurements uniformly and hence cancels

out in the RoR calculations, the ZLO manifests as an additive

shift. This shift can distort the relative differences between the

two wavelengths, especially when the pixel values are low,

thereby affecting the final RoR.
TABLE 1 ZLO characterized for different phone models.

Phone model ZLO
Pixel 4 �22.5

Pixel 7 �14

Samsung S22 �19.6

Motorola G 2022 �14.9
2.3. Calibration procedure

For accurate and reliable cPPG measurements with a specific

phone model, it is essential to calibrate of ZLO, which is a

critical hardware-specific parameter. As discussed in Section
Frontiers in Digital Health 05
2.2.2, ZLO significantly influences the computation of RoR and

other proportionality metrics, all of which are fundamental in

determining hemoglobin concentration or pulse oximetry.

Therefore, the calibration process must carefully account for ZLO

within the constraints of the recommended camera settings.

The calibration process requires the gradual escalation of LED

brightness on the test bench by linearly increasing the PWM duty

cycle, while a single pixel at a fixed position on the smartphone

records the intensity. It is important to ensure that the

smartphone camera is configured with the aforementioned

settings, which include linear tone mapping. The pixel values

recorded can then be fitted into a simple line to characterize the

ZLO. Characterizations on N ¼ 4 phone models confirmed that

different phone models indeed have distinct ZLO values (Pixel 4:

�22.5; Pixel 7: �14; Galaxy S22: �19.6; Moto G 2022: �14.9)

(Table 1).

To apply the calibration, this ZLO can serve as a correction in

RoR calculations to avoid additive shifts. By subtracting the ZLO

from the recorded pixel value, we can normalize the pixel values,

thereby yielding an accurate RoR. This adjustment for the ZLO

ensures that the intrinsic camera detection threshold does not

skew the final RoR measurements.
frontiersin.org
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2.4. Evaluation

An evaluation process was designed to assess the reliability of

the ZLO correction in accurately retrieving the RoR value. We

created a simulation with signals that produced a range of RoRs,

using the red and green LEDs from the test bench to emit

controlled brightness levels. The validation process involves

sweeping through a variety of DC and AC value combinations

for both the red and green LEDs to randomly sample RoRs

between 0.5 and 2 for 100 iterations (Figure 5). Each

combination was repeated five times, with a 100 millisecond gap

between each repetition. Prior to the simulation, the duty cycles

of both LEDs were set to 100%, and two pixels were selected,

one for each color channel, with a reading close to 250 in the

corresponding color channel. This ensured that neither pixel

would be saturated during the simulation, while maintaining as

much dynamic range as possible. For each smartphone, the same

set of signals were recorded twice using Default Automatic and

Linear tone mapping settings.

Our study utilized nine phones: Google Pixel 4 (N ¼ 6),

Google Pixel 7 (N ¼ 1), Samsung Galaxy S22 (N ¼ 1), and

Motorola Moto G 2022 (N ¼ 1). For the camera settings, auto-

exposure was disabled and an exposure time of 30 ms, a

sensitivity of 55, and a sensitivity boost of 100 were employed.

Auto-white balancing was also turned off, with the color

correction gains set to 2 for red and blue, and 1 for both

green_even and green_odd. An identity matrix was used for the

color transform matrix. Pixel values were extracted per frame in
FIGURE 5

Simulated Signal to Create Pulses w/Controlled RoR. Bottom: a portion of sim
troughs. The data in the plot are recorded with Pixel 4 under Linear tone ma
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real-time to avoid artifacts from the video compression

algorithm. When recording for an LED of a specific color, a

pixel was selected where there was no overlap with any

neighboring LED of a different color.

During data analysis, the recorded signals were divided into

100 segments of equal length, each containing five simulated

pulse repetitions. The first and last pulse were discarded during

data cleaning, and the maximum and minimum values were

identified as the peak and the trough for the simulated pulse,

respectively. This approach mitigates potential inaccuracies due

to variations in sampling rate. The AC was then defined as the

difference between the peak and the trough, and the DC as the

value of the trough. If the DC of any color channel was 0, the

segment was discarded. Finally, 50 segments were randomly

selected for RoR calculation. The RoR values were calculated

based on Eq. 1, where l1 is red and l2 is green. For recordings

with the Linear tone map, in addition to RoR calculated from

raw pixel values (Uncalibrated Linear) (Eq. 1), RoR was also

calculated with the calibration taken into account (Calibrated

Linear) (Eq. 2). The results from these studies are orgnized into

regresion plots, bland altman plots, and tables in the results section.

Uncalibrated Ratio of Ratios ¼ ACl1=(ACl1 þ DCl1)
ACl2=(ACl2 þ DCl2)

(1)

Calibrated Ratio of Ratios ¼ ACl1=(ACl1 þ DCl1 � ZLO)
ACl2=(ACl2 þ DCl2 � ZLO)

(2)
ulated signals. Top: a zoomed in version. Dashed line indicates peak and
pping setting.
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3. Results

3.1. Across phone model validation

Figure 6 presents calculated RoR values from different tone

mapping settings for four different phone models: Pixel 4, Pixel

7, Galaxy S22, and Moto G 2022. As observed, the Calibrated

Linear RoRs demonstrates a smaller absolute error compared to

both the Uncalibrated Linear RoRs and the Default Automatic

RoRs across all models. Specifically, for Pixel 4, the Calibrated
FIGURE 6

Using calibration in combination with the Linear tone mapping setting
models. (A) Correlation plot of ground truth RoR VS Calculated RoR. Ro
correlated to the ground truth. The dashed line indicates y ¼ x. (B) Bland-
limits of agreement (LoA).

TABLE 2 Statistical analysis of RoR calculations for different tone mapping s

Device Pixel 4 Pix
Correlation MAE Default automatic 0.19 0

Uncalibrated linear 0.18 0

Calibrated linear 0.079 0.

R2 Default automatic 0.86 0

Uncalibrated linear 0.73 0

Calibrated linear 0.97 0

Bland-Altman Bias Default automatic 0.14 0.

Uncalibrated linear �0.049 0.

Calibrated linear �0.078 �0

LoA lower Default automatic �0.48 �
Uncalibrated linear �0.61 �
Calibrated linear �0.2 �

LoA upper Default automatic 0.76 0

Uncalibrated linear 0.51 0

Calibrated linear 0.047 0

The table includes Mean Absolute Error (MAE), R2 values for correlation analysis, Bias

Uncalibrated Linear, and Calibrated Linear settings. Mean and standard deviation (STD

Frontiers in Digital Health 07
Linear RoRs’ absolute error is 58% less than that of the

Uncalibrated Linear RoRs and 56% less than that of the Default

Automatic RoRs, as determined by paired t-tests with p-values of

0.009 and 0.0014, respectively. Similarly, for Pixel 7, the absolute

error reductions for the Calibrated Linear RoRs compared to the

Uncalibrated Linear RoRs and Default Automatic RoRs are 72%

(p�value ¼ 3:2� 10�6) and 64% (p�value ¼ 0:031), respectively.

For Galaxy S22, the reductions are 66% (p�value ¼ 8:6� 10�3)

and 61% (p�value ¼ 0:026), and for Moto G 2022, they are 87%

(p�value ¼ 2:2� 10�4) and 62% (p�value ¼ 0:011). Across
significantly improves RoR accuracy for all four phones of different
R calculated with Calibrated Linear has the lowest MAE and is highly
Altman Plot. The dashed line indicates Bias; the dotted lines indicate

ettings across four phone models.

el 7 Galaxy S22 Moto G 2022 Mean STD
.21 0.16 0.38 0.24 0.10

.16 0.14 0.13 0.15 0.02

058 0.054 0.05 0.06 0.01

.84 0.78 0.77 0.81 0.04

.63 0.7 0.8 0.72 0.07

.93 0.99 0.98 0.97 0.03

055 0.23 0.099 0.13 0.07

041 0.013 �0.0022 0.00 0.04

.0093 �0.037 �0.053 �0.04 0.03

0.63 �1.1 �0.5 �0.68 0.29

0.81 �0.5 �0.59 �0.63 0.13

0.23 �0.14 �0.12 -0.17 0.05

.74 1.5 0.69 0.92 0.39

.89 0.52 0.58 0.63 0.18

.21 0.061 0.015 0.08 0.09

, and Limits of Agreement (LoA) for Bland-Altman analysis for Default Automatic,

) values are also included.
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devices, on average, the reductions are 74% (p�value ¼ 0:01) and

60% (p�value ¼ 5� 10�4) (Table 2).

The performance of each smartphone with respect to the RoR

of different settings are visualized with the regression and bland

alman plots in Figure 6. These paired t-test results corroborate

that for all tested phone models, using calibration in

combination with the Linear tone mapping setting significantly

improves the accuracy of RoR calculations.
3.2. Within phone model validation

The applicability of a calibration performed on one phone to

other phones of the same model was further validated. The

calibrated value from Pixel 4 #1 was used to calculate the RoR

with the recording from five other Pixel 4 devices. As

presented in Figure 7, for all six Pixel 4 devices, the

Calibrated Linear RoR demonstrated a significantly lower

absolute error than both the Uncalibrated Linear RoR and

Default Automatic RoR.

In Pixel 4 #1, the Calibrated Linear RoR absolute error was 58%

less than the Uncalibrated Linear RoR (p�value ¼ 0:009, paired

t-test) and 56% less than the Default Automatic RoR

(p�value ¼ 0:0014, paired t-test). Similar improvements in error

reduction were observed across the other Pixel 4 devices. For

Pixel 4 #2, the errors were 82% and 67% less

(p�values ¼ 8� 10�15 and 1:6� 10�5, respectively). For Pixel 4

#3, the errors were 71% and 45% less (p�values ¼ 2:5� 10�13

and 2:5� 10�4). For Pixel 4 #4, the errors were 72% and 49%

less (p�values ¼ 7:1� 10�8 and 7:1� 10�4). For Pixel 4 #5, the

errors were 60% and 40% less (p�values ¼ 4:1� 10�10 and

6:7� 10�3), and for Pixel 4 #6, the errors were 77% and 69%

less (p�values ¼ 1:9� 10�12 and 3:8� 10�5). Across devices, on

average, the errors were 70% and 55% less (p�values ¼ 1� 10�4

and 1� 10�3) (Table 3).

These results further underscore the efficacy of our

calibration method in enhancing the accuracy of cPPG

measurements across multiple devices of the same model,

indicating that recalibration for each smartphone of the same

model is not necessary.
4. Discussion

4.1. Recommended camera settings for
accurate smartphone cPPG measurements

Based on our experimentation and results, we list the following

as a set of recommended settings and parameters that should be

followed for accurate and reproducible cPPG measurements.

• Set the tone mapping setting to Linear

• Characterize the smartphone camera sensor’s ZLO as outlined

in Section 2.2.1 for later use during RoR calculation.

• Disable auto exposure and set fixed ISO and exposure time

values to ensure the target signal maintains the desired strength.
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• Disable auto white balancing and lock each color channel gain

to a fixed value so that the target signals in all color channels

are of desired strength. In addition, use an identity matrix as

the color correction matrix.

• Disable auto focus.

• Perform PPG processing frame by frame in real time to avoid

artifacts from video compression algorithms.

It is only possible to manually set the camera tone mapping to

linear within the Android Camera 2 API. Such an option is not

available in iOS. Although it is possible to capture RAW photos

using iOS AVFoundation, the RAW capture mode is not possible

for video recordings necessary for cPPG measurements. As such,

our current findings and recommended settings are only

immediately adaptable to Android devices.
4.2. Importance of tone mapping

It’s important to note that the Default Automatic tone

mapping setting operates as a black box algorithm, capable of

dynamically changing the tone map. Based on our testing,

Default Automatic is influenced by the last used tone mapping

and adjusts it based on the current scene. Given that most

applications would favor the use of high dynamic range, we

anticipate the Default Automatic algorithm to employ a

nonlinear map that is a shifted version of an sRGB tone map.

However, the dynamic nature of the automatic setting, which is

used as the default, leads to unpredictable mapping. If not

appropriately controlled, this can induce drastic variations in the

measurements taken at different instances.

In our experiments, we discovered that tone mapping is a key

component in capturing highly linear signals using the

smartphone camera. This aspect has been incorrectly configured

in all prior work, to the best of our knowledge. When

comparing the effect of linear versus nonlinear tone mapping,

we observe a notable difference in the RoR calculation, with the

LoA being an order of magnitude lower when using a calibrated

linear tone map.
4.3. Importance of device calibration

Even with the introduction of linear tone mapping, we find that

without calibrating the threshold offset for each phone, the

recorded PPG signal can still show significant deviation. The DC

value (offset due to tissue and diastolic blood volume) is

consistently underestimated. This makes sense, as the offset

illustrated in Figure 4 where the ZLO leads to a loss in signal

but then linearly tracks above it, minimizing the contribution of

DC. The effect of the calibration is also prominent in the

conversion of the measurement to a ratio measurement. Even

though the linear tone mapping results in a lower error than the

default automatic setting, it is still an order of magnitude higher

than the fully calibrated performance. These findings underscore

the importance of performing a calibration on each phone.
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FIGURE 7

Calibration done for Pixel 4 # 1 is applied to other devices of Pixel 4. (A) Correlation plot of ground truth RoR VS Calculated RoR. The dashed line indicates
y ¼ x. (B) Bland-Altman Plot. The dashed line indicates Bias; the dotted lines indicate limits of agreement (LoA).
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We would like to emphasize, however, that the per-phone

model calibration is not a burdensome process. As we

demonstrated, a calibration made with one instance of a
Frontiers in Digital Health 09
model is applicable to other phones of the same model. This

means that each user’s device does not need individual

calibration.
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TABLE 3 Calibration performance across six different Pixel 4 devices.

Pixel 4 device no. Pixel 4 #1 Pixel 4 #2 Pixel 4 #3 Pixel 4 #4 Pixel 4 #5 Pixel 4 #6 Mean STD
Correlation MAE Default automatic 0.19 0.2 0.21 0.18 0.15 0.15 0.18 0.03

Uncalibrated linear 0.18 0.11 0.11 0.099 0.1 0.11 0.12 0.03

Calibrated linear 0.079 0.036 0.061 0.05 0.06 0.034 0.05 0.02

R2 Default automatic 0.86 0.84 0.86 0.88 0.92 0.94 0.88 0.04

Uncalibrated linear 0.73 0.82 0.83 0.88 0.83 0.84 0.82 0.05

Calibrated linear 0.97 0.99 0.99 0.97 0.99 0.99 0.98 0.01

Bland-Altman Bias Default automatic 0.14 -0.14 �0.18 �0.094 �0.13 �0.037 �0.07 0.12

Uncalibrated linear �0.049 �0.029 �0.075 �0.0058 �0.049 �0.053 �0.04 0.02

Calibrated linear �0.078 �0.034 �0.058 �0.0095 �0.06 �0.029 �0.04 0.02

LoA lower Default automatic �0.48 �0.51 �0.45 �0.5 �0.33 �0.37 -0.44 0.07

Uncalibrated linear �0.61 �0.37 �0.33 �0.31 �0.34 �0.38 �0.39 0.11

Calibrated linear �0.2 �0.11 �0.14 �0.15 �0.14 �0.097 �0.14 0.04

LoA upper Default automatic 0.76 0.22 0.08 0.31 0.07 0.3 0.29 0.25

Uncalibrated linear 0.51 0.31 0.18 0.29 0.24 0.27 0.30 0.11

Calibrated linear 0.047 0.038 0.028 0.13 0.016 0.04 0.05 0.04

The table presents Mean Absolute Error (MAE), R2, Bias, Limits of Agreement (LoA Lower and LoA Upper) for each of the three tone mapping settings (Default Automatic,

Uncalibrated Linear, and Calibrated Linear). These metrics are used to assess the calibration technique’s effectiveness in improving the accuracy of cPPG measurements

across multiple devices of the same model. Mean and standard deviation (STD) values are also included.
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Although the need for a physical calibration is not ideal, it is

important to note that this form of calibration is biomarker

algorithm agnostic. This means that the calibration is only to

ensure the measurement from the phone is linear, allowing for

faithful recovery of the signal amplitude recorded. This process is

distinct from model training typically done for discovering the

relationship between pulse measurement and a biomarker (such

as SpO2, Hemoglobin, Blood Pressure, etc). The calibration’s goal

is to ensure that measurement from one phone is comparable to

the measurement from another phone. In this way, when

developing a new biomarker to measure with cPPG, the data-

driven model trained on data collected on one phone will work

on the next, regardless of the phone’s model. Prior work that

does not perform such calibration would require recording the

human subject data on every phone model that the data-driven

model would be used on, which scales poorly. Moreover, given

the nature of nonlinear tone mapping, if the exposure or

incident light changes, the transformation can be different,

leading to unpredictable performance even when used on the

same phone model.

Given our findings, we believe that prior work using cPPG for

digital biomarker measurements would significantly benefit from

the calibration proposed in this paper. Furthermore, this

calibration does not need to be conducted by every developer of

smartphone cPPG measurement applications. It may be possible

to build a shared public lookup table of the calibration value to

correct the bias term for each phone model that can be used

across applications.
4.4. Implications for smartphone medical
imaging beyond cPPG

The calibration proposed in this paper suggests that cPPG

monitoring in human subjects could achieve 73% higher
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accuracy compared to default settings. As smartphone health

measurements become increasingly prominent, the reliability of

the measurement will become increasingly important. Even with

the theoretical improvements from our proposed methods,

clinical studies with human subjects should be performed to fully

understand the accuracy and validity of smartphone clinical

measurements.

Beyond cPPG, the influence of default smartphone camera

alterations can significantly impact other health measurements.

It is likely that remote PPG (rPPG) measurements are

similarly influenced by the issues of smartphone-based

imaging. More broadly, any image-based medical information

collected using smartphones could be influenced. For example,

prior work using smartphone cameras to perform jaundice

measurement can also be significantly affected by the effects of

tone mapping and color correction as the proportionality of

colors can be significantly altered depending on the total

illumination of the scene. Similarly, techniques for measuring

hemoglobin by taking single photos of the nailbed or the inner

eyelid may also be significantly affected. In these situations

where a single image is needed, we would recommend the use

of RAW image capture when available, as this approach

eliminates all the issues proposed and is not overly

computationally intensive compared to the cPPG scenario

where a higher frame rate is needed. When RAW image

format is not available, adhering to the guidelines put forth in

this paper for maximally linearizing the measurement will

provide a close representation.
4.5. Limitations

This study relies on the use of benchtop simulations to evaluate

our calibration. Although the ideal scenario would involve rigorous

testing with human subjects, it is practically unfeasible to test the
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system in a manner where a range of RoR can be examined without

significant physiological intervention. Considering that RoR is

associated with variations in blood composition, a comprehensive

examination of the wide range of potential RoR values would

necessitate manipulating oxygenation or hemoglobin

concentration of individuals, all the while measuring them with

multiple phones. Although such studies can be conducted with

contract research organizations (CRO) as demonstrated in

Hoffman et al. (8), these investigations tend to be costly. We

advocate that the use of simulation to capture this wide range of

RoR serves as a productive initial step in motivating the necessity

for system linearization and calibration.

It is worth noting that the same constraints apply when

calibrating new designs of pulse oximeters. These devices are

regularly calibrated using a similar system that employs an LED

and photodiodes to simulate a wide range of RoR, as would be

expected from a diverse range of oxygen saturation levels (48).

These SpO2 functional testers are a vital component in scaling

the manufacturing of systems, as they facilitate device calibration

without necessitating repeated human subject testing. In future

work, we believe that our calibration solution should also be

considered as standard practice for developing smartphone-based

pulse monitoring solutions.

The findings from this paper can only be fully adapted to

smartphones supporting the Android Camera2API. We

identified that the current version of iOS AVFoundation (Xcode

14.3) does not expose the same level of control over tone

mapping as Android Camera2API. Without such control, iOS

phones will utilize a nonlinear, black box algorithm for tone

mapping, which can lead to unreliable PPG measurements.

However, it is entirely possible for such control at the firmware

level. Also, it is possible that future version of AVFoundation

will support such capabilities.
5. Conclusion

This paper is the first deep-dive investigation into the

nuanced effects of camera parameters on the fidelity of the PPG

captured by a smartphone camera. We show a clear dependency

on such parameters as tone mapping and color correction

settings. Furthermore, we determined that parameter control

alone is not enough, and that a per-device model calibration is

important. We devised a simple calibration solution using

straightforward construction requiring only a dark light shield

and a PWM controlled LEDs. We further substantiate our claim

through simulation testing across multiple smartphones. The

proposed guidelines around the proper use of cPPG can

substantially improve the quality of smartphone-based PPG

measurements when followed properly, grounding the use of

smartphone sensors for producing reliable measurements for a
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wide array of medical measurements from blood analysis to

diabetes screening. This investigation motivates the need for

developing a thorough understanding of smartphone-based

imaging systems and possible regulation or standardization

around smartphone based medical sensing. Incorporating

appropriate safeguards in future smartphone-based medical

measurements rather than simply relying on data-driven models

for correction and feature discovery promotes reliable

measurements for the future.
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