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Report
Dosage-Dependent Deregulation of an
AGAMOUS-LIKE Gene Cluster Contributes
to Interspecific Incompatibility
Harkamal Walia,1,2,4 Caroline Josefsson,3,5 Brian Dilkes,1,2,6

Ryan Kirkbride,1 John Harada,1 and Luca Comai1,2,*
1Department of Plant Biology
2Genome Center
University of California at Davis, Davis, CA 95616, USA
3Department of Biology, University of Washington, Seattle,
WA 98195, USA

Summary

Postzygotic lethality of interspecies hybrids can result from
differences in gene expression, copy number, or coding

sequence [1] and can be overcome by altering parental
genome dosage [2–5]. In crosses between Arabidopsis thali-

ana and A. arenosa, embryo arrest is associated with endo-
sperm hyperproliferation and delayed development similar

to paternal-excess interploidy crosses and polycomb-
repressive complex (PRC) mutants [6, 7]. Failure is accompa-

nied by parent-specific loss of gene silencing including the
dysregulation of three genes [1] suppressed by PRC [8, 9].

Increasing the maternal genome dosage rescues seed devel-
opment and gene silencing [2]. A gene set upregulated in the

failing seed transcriptome encoded putative AGAMOUS-
LIKE MADS domain transcription factors (AGL) that were

expressed in normal early endosperm and were shown to
interact in a previous yeast 2-hybrid analysis [10]. Suppres-

sion of these AGL’s expression upon cellularization required

PRC. Preceding seed failure, expression of the PRC member
FIS2 decreased concomitant with overexpression of the AGL

cluster. Inactivating two members, AGL62 and AGL90, atten-
uated the postzygotic barrier between A. thaliana and A. are-

nosa. We present a model where dosage-sensitive loss of
PRC function results in a dysregulated AGL network, which

is detrimental for early seed development.

Results and Discussion

Induction of AGAMOUS-LIKE Genes during Incompatibility

We wished to determine the dosage-sensitive pathways asso-
ciated with failure of A. thaliana and A. arenosa crosses.
A. thaliana Col-0 is a natural diploid, but colchicine tetraploi-
dized strains are available. Diploid Col-0 and tetraploid Col-0
are isogenic and differ only in total chromosome number
(10 and 20, respectively). They were used as seed parent
plants. A. arenosa accession Strecno is a natural diploid and
was used as the pollen parent. By changing the seed parent
ploidy from tetraploid to diploid, we defined compatible (4 3
2) and incompatible (2 3 2) crosses, which produce, respec-
tively w70% and w1% live seeds [2]. By comparing the seed
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transcriptomes of 5-day-old siliques of compatible and incom-
patible crosses, we identified genes differentially expressed
during interspecies hybrid failure. Among others, incompati-
bility was associated with the activation of seven genes en-
coding AGAMOUS-LIKE Type-1 MADS-box genes (AGL).
Induction of these genes in globular embryo-stage seed was
confirmed by RT-qPCR (Figure 1). One of these, PHERES1,
a direct PRC target [8], was previously shown to be activated
in incompatible crosses [2]. Another induced gene is AGL62.
In agl62 mutant seeds, early syncytial endosperm overprolifer-
ates, resulting in death [11]. In addition to AGL62 and
PHERES1, the five additional AGL genes upregulated in the
incompatible crosses were PHERES2, AGL35, AGL36,
AGL40, and AGL90. Parent-specific primers were developed
for the AGLs and induction was observed for both homoeol-
ogous copies (Table S2 available online). The role of these
AGLs, other than AGL62 and PHERES1, is unknown. Based
on the A. thaliana expression atlas [12], six of these seven
AGLs are coexpressed in pollen and during early seed devel-
opment and downregulated at the transition from syncytial to
cellular endosperm growth, corresponding to the transition
from midglobular to early-heart-stage embryos. Moreover,
the expression levels of these AGLs with the exceptions of
PHERES1 and PHERES2 are reduced in heart-stage
samples. Expression of these and other AGL genes in endo-
sperm has been recently reported [13]. Their coexpression
with the two known seed regulators PHE1 and AGL62
suggest that the remaining five AGLs are important in early
seed development. The sensitivity of their expression levels
to a change in genomic dosage in the interspecies crosses
indicates that this perturbation might play a role in hybrid
lethality.

Expression during Seed Development
We investigated the expression of these genes during early
hybrid seed development. RNA was extracted from whole
siliques from 2 3 2 and 4 3 2 hybrid crosses at 4, 5, and
6 days after pollination (DAP). The relative expression levels
of the AGLs were determined by quantitative RT-PCR
(Figure 1). We found no significant differences in the relative
expression levels of the AGL cluster genes at 4 DAP between
incompatible and compatible crosses. However, at 5 DAP,
the expression of the AGL genes in the 4 3 2 compatible cross
remained low, while increasing in the 2 3 2 incompatible cross.
The relative differences between compatible and incompatible
crosses increased further by 6 DAP. Thus, AGLs become de-
regulated in synchrony between DAP 4 and 5, concurrent
with abnormal syncytial endosperm proliferation and a lack
of cellularization of endosperm. Our data and those of others
suggest that suppression of the AGL cluster at 5 DAP is critical
for restricting endosperm proliferation in hybrids and for a
successful transition from the syncytial to cellularized stages
of seed development.

We further refined our analysis of the coexpressed AGL
genes by examining the spatial expression pattern of AGL35/
90 (which in this experiment could not be distinguished),
AGL36, AGL40, AGL62, PHE1, and PHE2. We used a microar-
ray data set (GSE11262) that reports expression in different
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regions of wild-type seed at the globular-stage embryo (about
DAP3). We found that these genes were expressed in the
endosperm and absent in the embryo. Within the endosperm,
AGL36, PHE1, and AGL62 were expressed in both the chalazal
and peripheral endosperms, whereas AGL35/90 and AGL40
were primarily expressed in the chalazal endosperm.

Interactions among AGL Cluster Members

Coexpressed genes often play a role in a common pathway or
encode members of protein complexes. Yeast 2-hybrid inter-
actions between the proteins encoded by the coexpressed
AGL genes were examined previously [10]. Six of the seven
coexpressed genes in the set were included in the interaction
study and although none homodimerized, all six AGLs formed
heterodimers with at least two others. The interactions are de-
picted as lines connecting each protein in Figure 2. AGL62
interacted with the other five AGL proteins, suggesting
that AGL62 is a central hub of the network. PHERES1 was
the second-most connected member and interacted with
three other AGL proteins, but not with PHERES2. The

A

B

C

Figure 1. Expression of Incompatibility Genes

during Seed Development

(A) Images of seeds 4, 5, and 6 day after pollina-

tion (DAP) for compatible crosses (43 A. thaliana

mother 3 23 A. arenosa father) and incompatible

crosses (23 A. thaliana mother 3 23 A. arenosa

father). Delayed embryo development in the

incompatible cross is evident.

(B) Clustering of expression of the induced AGLs

in pollen and early embryo. The heat map (red,

high relative expression; blue, low relative

expression) is derived by comparison of the

expression data in the atlas database for Arabi-

dopsis (http://www.arabidopsis.org).

(C) Quantitative RT-PCR analysis of temporal

expression pattern. The relative scale based on

the expression of the constitutive ROC1 standard

is given for each gene.

interaction network and coexpression
of these AGLs are consistent with
a shared function during early endo-
sperm development.

Regulation by Polycomb Repressive

Complex
Two of the coregulated AGL genes,
PHERES1 and AGL62, were reported to
be regulated by members of the PRC
[8, 11]. To test whether the PRC regu-
lated the AGL-biomodule in its entirety,
we determined the expression levels of
the seven AGL genes in seeds deficient
in the PRC member FIS2. From a selfed
heterozygous fis2/+ individual, we
sampled fis2/+ and +/+ seeds, which
when harvested 5 DAP cannot be
distinguished, and compared them to
wild-type Col-0 seeds. We found the
expression of all members of the coex-
pressed set to be very high in the seed
of the FIS2/fis2 plant compared to
wild-type seeds (Figure 3A). This indi-
cates that FIS2 directly or indirectly

regulates the temporal expression of the AGL biomodule
during early seed development.

The MEDEA gene encodes another member of the PRC, is
dosage regulated in the hybrid seed development [2], is known
to be paternally imprinted [14], and is autoregulated, either with
[15, 16] or without [9] PRC participation. The timing of the
MEDEA response to hybridizationmay helpelucidate themech-
anisms at work. We measured MEDEA’s transcript abundance
in two independent samples from compatible and incompatible
crosses by using quantative RT-PCR assays. MEDEA’s levels in
incompatible crosses at day 4 showed no difference from the
compatible levels. However, progressive induction at day 5
and 6 was observed as for the AGLs (Figure 3B). To determine
the parental source of the MEDEA transcript, we used
species-specific primers. We found that transcripts in the
incompatible hybrid seed were derived from both the A. thali-
ana and the A. arenosa parent. MEDEA’s aberrant induction in
this system is consistent with alteration of PRC activity.

To investigate possible causes of aberrant PRC function,
we surveyed the expression of FIS2 in siliques 4, 5, and

http://www.arabidopsis.org
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6 DAP by RT-qPCR. At all three time points, FIS2 expression
was decreased 2- to 10-fold in the incompatible response
(Figure 3B). Higher level of FIS2 expression in the compatible
4 3 2 cross could be explained by the increased maternal
dosage of this imprinted factor [17]. This hypothesis was
tested by measuring the expression of FWA, which being im-
printed and maternally expressed [18] should also respond
to dosage. Contrary to the above hypothesis, we did not find
increased expression of FWA in the 4 3 2 compatible cross
(Table S2). Although we do not know the level of FIS2 expres-
sion required for wild-type function, this reduction in expres-
sion of a critical regulator is consistent with its deficiency
being a cause of the reduced PRC activity.

To find evidence for chromatin modification by PRC
complex associated with the AGL biomodule genes, we at-
tempted chromatin immunoprecipitation (ChIP) on 5 DAP
seed but found the chromatin yield from the microdissected
seed to be problematically low. As a proxy, we examined the
data from a whole-genome ChIP study in A. thaliana seedlings
that profiled chromatin marked by trimethylation of lysine 27 of
histone H3 (H3K27me3) [19]. We searched for H3K27me3-
positive regions closely linked to six AGL genes of the

biomodule but found no evidence for PRC-mediated histone
modification marks. PHERES1, on the other hand, is a direct
target of the PRC silencing complex and is marked by
H3K27me3 in the flower and silique [20]. Deficiency in FIS2
results in loss of regulation of the AGL-biomodule genes in
hybrid and wild-type seeds, so we asked whether PHERES1
is the upstream regulator of the biomodule. We measured
the expression levels of the AGL gene set in homozygous
phe1 knockout mutant seeds and in the corresponding
parental accession, Ler. We found that only the expression
of PHERES2 increased 5- to 11-fold in the absence of a func-
tional copy of PHERES1. The expression of the other five
AGL genes remained unchanged. Based on this data, we
conclude that suppression of AGL genes by FIS2 does not
require PHERES1.

Functional Analysis of AGL Cluster

We wished to determine whether the expression of this AGL
module had an effect on the incompatibility phenotype.
Notably, seeds of interspecies crosses can be grouped into
four phenotypes. The first, shriveled, results in small and

Figure 2. Spatial Expression Pattern of the AGL Cluster Members and

Interactions

Top: seed developmental zones. Mid: heat maps summarizing relative

expression patterns (red, high relative expression; blue, low relative expres-

sion) according to GSE11262. AGL36 and AGL90 are closely related genes

and could not be discriminated. Bottom: interactome of AGL proteins

derived from published yeast 2-hybrid data. The halo surrounding each

protein symbol represents the relative amounts expressed in the different

seed zones.

A

B

Figure 3. FIS2 Regulation of AGLs

(A) The graph shows expression of AGLs and FIS2 in developing 5-day-old

seeds of a selfed fis2 heterozygote (circles), in which half of the seeds are

FIS2 deficient. A wild-type control is shown for comparison (squares).

Each point represents a biological replicate.

(B) Quantitative RT-PCR analysis of temporal expression pattern of Poly-

comb Repressive Complex 2 genes. The relative scale based on the expres-

sion of the constitutive ROC1 standard is given for each gene.
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collapsed seed consistent with early failure and death. The
next two phenotypes, viviparous and green, correspond to
seed that has avoided early death but failed to complete
normal development. The last phenotype, normal or plump,
describes normal seed. We obtained mutants in the Col-0
accession with T-DNA insertions [17] in AGL62 and AGL90.
Wild-type Col-0 crossed to diploid A. arenosa produced
1.6% live seed (of these, 0.5% were normal, 0.3% viviparous,
0.8% were green, n = 358). Consistent with a previous report
[11], plants heterozygous for the AGL62 knockout produced
1/4 dead seed when selfed, indicating homozygous lethality.
When the heterozygotes were crossed to diploid A. arenosa,
10.9% of the seeds were alive at maturity (6.4% normal,
0.6% viviparous, 3.7% were green; n = 848, p value = 4.01e-06).
Plants homozygous for the AGL90 knockout mutation
produced normal seed when selfed, indicating that this gene
is either redundant or not essential for embryogenesis. Never-
theless, when the diploid mutant was crossed to diploid A. are-
nosa, the homozygote significantly improved seed set and
produced a higher fraction of green seed than the AGL62
mutant (10.9% live seeds of which 3% were normal, 0.6%
viviparous, and 7.2% green; n = 1221, p value = 1.03e-07).
The beneficial effect of the knockout alleles of both AGL62
and AGL90 should result in segregation distortion. We germi-
nated seed from crosses of heterozygous A. thaliana to A. are-
nosa and genotyped the hybrid seedlings. The knockout
alleles were preferentially inherited by the progeny (AGL62,
17:5, p = 0.058; AGL90, 14:3, p = 0.046). The AGL62 and
AGL90 effects are notable considering that a previously char-
acterized knockout of PHERES1 failed to ameliorate the
strongly incompatible 2 3 2 cross used here, whereas it had
a distinct effect on the compatible 4 3 2 cross [2].

In summary, a cluster of coregulated and interacting AGLs is
induced in a dosage-sensitive manner in the postzygotic
incompatibility response. The central role of the AGL biomod-
ule in seed failure is consistent with the observation that two
members are required for full expression of lethality. PRC
activity represses the expression of the AGL genes. Concom-
itant with the AGL induction, expression of the gene encoding
the PRC member FIS2 is decreased several-fold. These obser-
vations suggest a model in which sensitivity of PRC, perhaps
of FIS2 itself, to the dose of maternal contributions misregu-
lates factors such as the AGL that coordinate endosperm
development. Therefore, this work suggests a molecular
mechanism for the role of endosperm in the interspecific
barrier.

Experimental Procedures

Plant Material

The A. thaliana accession Columbia-0 was used as the wild-type for all

crosses. Wild-type Ler accession was used for the q-PCR expression anal-

ysis comparison with the phe1 knockout line. The Phe1 knockout line

(ET189) was obtained from Cold Spring Harbor Collection and is in Ler back-

ground. The diploid line of A. thaliana was tetraploidized with a modified

protocol from Santos et al. [21] and is described in Josefsson et al. [2].

The diploid A. arenosa strain, collected in Strecno (Slovakia), was provided

by M. Lysak. The Arabidopsis T-DNA insertion knockout lines used for

AGL62 were SALK_137707 and SALK_013792. Insertion lines used for

AGL90 were homozygous for insertion in the promoter, SALK_092748 and

SALK_008897. All four lines were obtained from the SALK collection. The

fis2-8 mutant was a gift from Ramin Yadegari (University of Arizona, Tucson,

AZ). All crosses were performed by emasculating flowers before anthesis

and pollinating healthy stigmas the following morning. For analysis of segre-

gation distortion, seed produced by crossing the A. thaliana agl62 (+/2) and

agl90 (+/2) mutants to A. arenosa was germinated on nutrient salt agar.
Seedlings were used for DNA purification and genotyped for the relevant

T-DNA [22] with wild-type and insertion-specific PCR products. Many green

seeds and some apparently normal seed produced by the AGL90 heterozy-

gous seed parent failed to germinate.

Plant Growth Conditions

Plants were grown in a growth room with 16 hr of light period at 22�C and

8 hr of dark at 18�C.

RNA Extraction

RNA for q-RT-PCR was extracted with the hot borate method [23]. We used

whole siliques for the time series analysis of the compatible and incompat-

ible hybrid crosses. For all other experiments, RNA was derived from devel-

oping seeds. Unless otherwise specified, all materials were collected 5 DAP.

RNA was purified with the QIAGEN RNA columns and DNaseI treated.

For reverse transcription, we used SuperScript VILO cDNA synthesis kit

(Invitrogen, Carlsbad, CA) and followed the manufacturer’s protocol. The

cDNA was diluted 1:20 and then used for subsequent q-PCR reactions.

Quantitative PCR

Quantitative PCR was performed with SYBR Green PCR Master Mix

(Applied Biosystem Inc.) in 20 mL volume reactions. We used an Opticon 2

(MJ Research) for q-PCR. We used 2 mL of the cDNA template and 1 mM

gene-specific primers (see Table S1). PCR conditions were as follows:

2 min incubation at 50�C, 10 min denaturation at 90�C followed by 40 cycles

of 95�C for 15 s, 60�C for 1 min. A melting curve analysis was performed for

all primer pairs to ensure that signal was derived from a single product. All

reactions were conducted at least in triplicate. We used ROC1 as a control

gene and employed the relative quantification feature in Opticon 3 (Bio-Rad

Inc) for determination of relative quantities of transcript for any given gene.

The data were exported to MS-EXCEL for statistical analysis (mean and

standard error) and for graphing.

Analysis of Segregation Distortion

Pearson’s goodness of fit chi-square was used to calculate probabilities

with one degree of freedom.

Phenotyping

Hybrid seeds from the compatible and incompatible crosses were har-

vested 4, 5, and 6 DAP. The seeds were removed from the siliques and

cleared with Hoyer’s solution. Images were obtained with Leica DM-6000

microscope equipped with Nomarski optics.

Microarray Data and Analysis

Differentially expressed genes in siliques of compatible and incompatible

hybrids at 5 DAP were identified by employing the A. thaliana Whole-

Genome Tiling Array from Affymetrix. The array covers w97% of the A. thali-

ana genome at a 35 bp resolution. To identify significant expression differ-

ences, we employed two independent statistical approaches. We combined

probe-level t statistics generated by a Hidden Markov Model implemented

in TileMap [24] with a second approach, which used a Wilcoxon-Signed

Rank test implemented in Tiling Array Software (TAS) from Affymetrix. Any

genomic region corresponding to a gene model in TAIR and called by

both softwares was hereafter termed as a differentially expressed gene.

The experiment for microarray analysis was performed in three independent

biological replicates. We found 315 genes to be dosage responsive, 155

genes showed increased transcript abundance in the incompatible hybrids,

and 160 genes displayed higher transcript levels in compatible hybrids.

Among the 155 genes, the seven Type 1 AGAMOUS-LIKE (AGL) genes

were highly induced in the incompatible hybrids. The expression of AGLs

was further validated by quantitative PCR with several independent biolog-

ical replicates.

We used the NCBI GEO microarray data portal for downloading the raw

(CEL files) Arabidopsis Atlas data set and the LCM data from globular stage

seed compartments (GSE11262). The data set was independently imported

into DChip [25], the analysis software used for hierarchical clustering. In

brief, the data were normalized by the invariant set approach, and expres-

sion values calculated for each probe set by model-based expression index

(MBEI). Unsupervised hierarchical clustering was performed with the mean

of a given probe set for calculating the relative signal and the color for the

gene in the heat map. The clustering was limited to the probe sets repre-

senting the AGL module members. The p value threshold used for clustering

genes was 0.005.
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Accession Numbers

The NCBI GEO accession number for the tiling microarray analysis is

GSE14090.

Supplemental Data

Supplemental Data include two tables and can be found with this article

online at http://www.cell.com/current-biology/supplemental/S0960-9822

(09)01247-0.
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