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Chemical Isotope Labeling LC-MS 
for Metabolomics

Shuang Zhao and Liang Li

1  LC-MS for Metabolomics: 
Conventional Approach

The main goal of metabolomics is to characterize 
the metabolome by qualitative and quantitative 
analysis of as many metabolites as possible [1, 
2]. Achieving this goal requires highly sensitive 
metabolite detection, accurate relative or abso-
lute quantification, and confident metabolite 
identification. In conventional LC-MS-based 
metabolomics approach, increasing the number 
of metabolites detected and quantified (i.e., 
metabolomic coverage) is achieved by the use of 
different instrumental platforms and methods to 
analyze the same samples [3, 4]. The combined 
results from individual analyses represent the 
overall metabolome covered. These individual 
analyses are usually carried out according to the 
metabolites’ physical and chemical properties. In 
a typical LC-MS workflow, after sample collec-
tion and pretreatment (e.g., protein removal, 
metabolite extraction, etc.), reversed phase (RP) 
LC is used for separating hydrophobic metabo-
lites, while hydrophilic interaction LC (HILIC) is 
used for separating more polar compounds [5]. In 
each case, the eluted analytes are ionized in posi-
tive ion mode and negative ion mode. In this way, 

four LC-MS runs are required to analyze one 
sample. The main advantage of this approach is 
that it is easy to implement by using readily avail-
able LC and MS instruments to collect data and 
commercial or freely available software to pro-
cess the resultant data. The major limitation of 
this approach is that the metabolome coverage is 
still low even after combining all the multiple 
analysis data. Although tens of thousands of fea-
tures can be detected in LC-MS analysis of a 
metabolome sample, only a small fraction of 
them (hundreds) are originated from unique 
metabolites. Many redundant peaks, such as 
adduct ions and fragment ions, are detected from 
one metabolite. This is not surprising considering 
that electrospray ionization (ESI), the most 
widely used method for LC-MS, does not offer 
the same ionization efficiency for all metabolites. 
In fact, a large number of metabolites cannot be 
ionized with high efficiency. The combined low 
ionization efficiency and low metabolite concen-
tration result in low or no MS signals.

Another challenge in conventional LC-MS for 
metabolome analysis is on quantification which 
relies on the use of internal standards to correct 
for sample loss, instrument drift, matrix effect, 
and ion suppression in the whole workflow. 
Compared with chemical structural analogue, 
stable isotope labeled (SIL) internal standard is a 
better choice due to its nearly identical physical 
and chemical properties to the analyte of interest. 
However, SIL internal standards are generally 

S. Zhao · L. Li (*) 
Department of Chemistry, University of Alberta, 
Edmonton, AB, Canada
e-mail: liang.li@ualberta.ca
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expensive and their availability is limited. 
Particularly in metabolomics area, it is impossi-
ble to purchase or synthesize isotopic internal 
standards for all the metabolites. Thus, conven-
tional LC-MS is widely used for quantification of 
a small number of metabolites with SIL (i.e., tar-
geted analysis). Untargeted analysis of metabo-
lites without using SIL offers limited 
quantification precision and accuracy.

2  Stable Isotope Labeling 
LC-MS for Metabolomics

In order to perform quantitative metabolomics 
using LC-MS, methods that can simultaneously 
introduce stable isotopes into many metabolites 
have been developed. In one approach, cells are 
cultured with a stable isotope-labeled substrate 
(e.g., D, 13C, 15N, etc.) in growth medium. During 
cultivation, the substrate-related metabolites and 
metabolic networks are “in vivo” labeled with 
enriched heavy isotopes. As a result, each heavy- 
isotope- labeled metabolite can potentially serve 
as the internal standard. This cell-culture-based 
metabolic isotope labeling (MIL) is not only use-
ful for quantitative metabolite measurement but 
also an important tool for metabolic flux analysis 
[6]. For example, growing cells using 13C-glucose 
or 13C- or 15N-glutamine as main energy sources 
can be used for monitoring and analyzing many 
cellular pathways, such as glycolysis and pentose 
phosphate pathway [6, 7]. This MIL approach is 
particularly convenient for metabolomic analysis 
of cells or organisms that can be cultured in 
isotope- enriched media, including microbial, 
yeast, some mammalian cell cultures [7] or plants 
[8]. However, this approach is not easily appli-
cable for samples that cannot be readily cultured, 
such as human biofluids including urine, blood, 
etc. [9] In addition, this approach does not alter 
the chemical and physical property of a metabo-
lite to improve its detectability in 
LC-MS.  Metabolites that are not ionized effi-
ciently will still not be detected. In other words, 
MIL can improve quantification in analyzing spe-
cial types of samples, but cannot overcome the 
limitation of low coverage.

An alternative approach to create isotope inter-
nal standards for LC-MS-based quantitative 
metabolomics is to use chemical-reaction-based 
isotope labeling or chemical isotope labeling 
(CIL), which is, in principle, suitable for all cate-
gories of samples. In contrast to MIL, biological 
samples are “in vitro” labeled in CIL using a 
reagent which targets a specific chemical func-
tional group. Ideally, all the metabolites contain-
ing the same functional group react with the 
reagent to form the corresponding derivatized 
metabolites. Many reagents can incorporate one or 
more isotopic atoms (e.g., H/D, 12C/13C, 14N/15N, 
etc.) in the molecular structure, thereby introduc-
ing the isotopic moiety into the labeled metabo-
lites after chemical derivatization. The metabolites 
derivatized by a heavy isotope reagent can serve as 
the internal standards for light isotope reagent 
labeled metabolites. This CIL strategy has been 
widely used in relative quantification for untar-
geted metabolomics as well as absolute quantifica-
tion for targeted metabolomics.

3  Chemical Isotope Labeling 
LC-MS Metabolomics 
Workflow

The general workflow using CIL LC-MS for 
metabolomics is shown in Fig. 1. In this work-
flow, for metabolome profiling or relative quanti-
fication in two comparative groups of samples, a 
control sample (e.g., a pooled sample) is labeled 
by a heavy isotope reagent, while individual sam-
ples are derivatized by a light isotope reagent. 
Then the two derivatized samples are mixed and 
injected into LC-MS for analysis. Since the light-
labeled derivative and heavy-labeled derivative 
of a metabolite have nearly identical properties, 
they elute out at the same time from LC. In the 
mass spectra, the two derivatives of the same 
metabolite are shown as a peak pair. The relative 
amount of the metabolite can be determined from 
the comparison of peak areas of two derivatives. 
Combined with database identification and statis-
tical analysis, this approach has been success-
fully used for biological studies and biomarker 
discovery [10].

S. Zhao and L. Li
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For absolute quantification of metabolites in 
samples, similar to the above-described method, 
samples are derivatized with a light isotope label-
ing reagent and the analyte standards of known 
concentrations are labeled with a heavy isotope 
reagent. The resulting heavy derivatives are used 
as CIL internal standards for performing quantifi-
cation with MS. For absolute quantification of a 
small number of metabolites of interest, tandem 
MS can also be used to increase sensitivity and 
quantification dynamic range by using selected 
reaction monitoring (SRM) or multiple reaction 
monitoring (MRM).

4  Derivatization Reagents 
for CIL LC-MS Metabolomics

Many derivatization reagents are developed for 
different functional groups and have been widely 
used for biological studies. Table 1 lists a number 
of reagents that are used for CIL LC-MS-based 
metabolomics. We highlight some examples of 
reagents below. Detailed information for each 
reagent can be found in the references listed in 
the table.

For amine-containing metabolites, sulfonyl 
chloride, acyl chloride, NHS esters, and isothio-

Control Sample
or Metabolite Standards

Individual Samples

Light Labeled 
Individual Samples

Light Labeling Heavy Labeling

Heavy Labeled 
Control Sample

LC-MS/(MS)

Data Processing

Mixture Light 
labeled

Heavy 
labeled

m/z

In
te

ns
ity

Fig. 1 General 
workflow of CIL 
LC-MS-based 
metabolomic analysis

Chemical Isotope Labeling LC-MS for Metabolomics
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Table 1 Reagents that are used for CIL LC-MS based metabolomics

Reagent Isotope reagent Targets Applications References
DnsCl 13C2-DnsCl Amines/phenols - Constructed library containing 

273 dansylated metabolites
- Profiled and positively identified 
metabolites in urine, blood, serum, 
fecal, CSF, cells
- Targeted absolute quantification 
of 19 metabolites as asthma/
CPOD potential biomarkers

Guo and Li 
[27],
Chen et al. 
[44],
Han et al. [10],
Xu et al. [47],
Guo et al. [46] 
and Khamis 
et al. [42]

13C2-DnsCl Hydroxyls - Constructed library containing 
85 hydroxyl standards
- Untargeted profiled urinary 
hydroxyl submetabolome and 
positively identified 20 
metabolites

Zhao et al. [22]

DensCl 13C2/13C4-DensCl Amines/phenols Zhou et al. [52]
MASC d3-MASC Amino acids - Absolute quantification of amino 

acids and monoamine 
neurotransmitters using MRM 
mode

Song et al. [53] 
and Zheng 
et al. [54]

Benzoyl 
chloride

13C6-BzCl Neurochemicals - Absolute quantification of 70 
neurochemicals

Wong et al. 
[11]

MBAA-NHS 13C2-MBAA-NHS Amines - Untargeted profiling of urinary 
amine submetabolome
- Absolute quantification of amino 
acids in human urine

Zhou et al. [55]

DBAA-NHS 13C2-DBAA-NHS Amines - Untargeted profiling of urinary 
amine submetabolome
- Absolute quantification of amino 
acids in human urine

Zhou et al. [55]

BZ-NHS 13C6-BZ-NHS Amines/thiols/
phenols

- Untargeted metabolome profiling 
of cell extracts
- Positively identified 10 
metabolites

Wagner et al. 
[56]

DIPP-L-Ala- 
NHS

18O2-DIPP-L-Ala-
NHS

Amines - Determination of 20 L-amino 
acids and 10 D-amino acids

Zhang et al. 
[57]

iTRAQ iTRAQ Amines - Analysis of 44 amino acids in 
plasma, urine and tissue

Takach et al. 
[35]

DiLeu 4-plex DiLeu Amines - Profiling and relative 
quantification of amine 
submetabolome of mouse urine

Hao et al. [58]

DMAP d4-DMAP Amines - Constructed library containing 
118 amine compounds
- Positively identified 46 amine 
metabolites in fecal sample

Yuan et al. [34]

Cyanuric 
chloride/
methylamine

Methyl-d3-amine Amines - Determined concentrations of 27 
metabolites in HepG2 cells

Lee and Chang 
[59]

Acetone d6-acetone Phosphatidyl- 
ethanolamine

- Identified and quantified 45 PE 
species in rat livers using double 
neutral loss scan.

Wang et al. 
[60]

MPBS d3-MPBS Amino acids - Analysis of amino acids in 
newborn bloodspot

Johnson [28]

(continued)
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Table 1 (continued)

Reagent Isotope reagent Targets Applications References
DMABS d3/d6-DMABS Amino acids - Analysis of amino acids in 

newborn bloodspot
Johnson [28]

Cn-NA-NHS C4d9-NA-NHS Amines Yang et al. [61]
Methyl 
acetimidate

13C2-methyl 
acetimidate

Amines - Relative quantification of 
primary and secondary amines in 
Arabidopsis seed extracts

Shortreed et al. 
[62]

Formaldehyde 13C-formaldehyde Amines - Analysis of 20 amino acids and 
15 amines
- Profiling human urine amine- 
containing metabolites

Guo et al. [63]

Acetyaldehyde d4-acetaldehyde Monoamine 
neurotransmitters

- Determination of 
neurotransmitters in brain 
microdialysate

Ji et al. [64]

PEG-OPFP 13C-PEG-OPFP Primary amines - Quantification of intracellular 
amino acids

Abello et al. 
[65]

TAHS d3-TAHS Amino acids - Determination of amino acids in 
rat plasma

Shimbo et al. 
[66]

L-PGA-OSu L-PGA(d5)-OSu Chiral amines - Differential analysis of 
DL-amino acids in serum and 
yogurt

Mochizuki 
et al. [67]

DMED d4-DMED Carboxylic acids - Constructed library containing 
184 carboxyl metabolites
- Positively identification of 83 
carboxyl metabolites

Yuan et al. [34]

Cholamine d9-cholamine Carboxylic acids - Relative quantification of fatty 
acids from hydrolyzed egg lipid 
using nanoLC

Lamos et al. 
[68]

15N-cholamine Carboxylic acids - Analysis of 48 carboxylic acids Tayyari et al. 
[69]

3-NPH 13C6-3-NPH Short-chain fatty 
acids

- Quantification of short-chain 
fatty acids in human feces

Han et al. [14]

Butanolic HCl d9-butanol Carboxylic acids - Profiling and relative 
quantification of human plasma 
metabolites

O’Maille et al. 
[16]

Aniline 13C6-aniline Carbonyl, 
phosphoryl, and 
carboxyl

- Quantification 33 intermediate 
metabolites in central carbon and 
energy metabolism

Yang et al. [21]

BAMP/HAMP d9-BMAP Carboxylic acids - Metabolome profiling of rat 
urine sample and positively 
identified 32 metabolites

Yang et al. [70]

BMP/CMP d3-CMP Fatty acids - Metabolome profiling, relative 
quantification and absolute 
quantification of human serum

Yang et al. [71]

DmPA bromide 13C2-DMPA Carboxylic acids - Constructed library containing 
113 carboxylic acid
- Positively identified 51 
metabolites in urine

Guo and Li 
[17]

HMEP d5-HMEP Fatty acids - Monitored changes of metabolite 
levels in plasma of individuals

Koulman et al. 
[72]

DBD-PZ-NH2 d6-DBD-PZ-NH2 Carboxylic acid - Determination and relative 
quantification of fatty acids in 
plasma

Tsukamoto 
et al. [73]

(continued)
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Table 1 (continued)

Reagent Isotope reagent Targets Applications References
DMPP d6-DMPP Carboxylic acid - Determined trace free fatty acids 

in human urine and thyroid tissues
Leng et al. [74] 
and Leng et al. 
[75]

T3 d20-T3 Fatty acids - Relative quantification of FAs 
with general MRM conditions.
- Discovered FA species related to 
the ageing process

Tie et al. [76]

HIQB d7-HIQB Carbonyls - Constructed library containing 
147 carbonyl compounds
- Untargeted profiling of carbonyl 
submetabolome of human serum 
and fecal sample using double 
precursor ion scan. 12 and 50 
metabolites were positively 
identified, respectively

Guo et al. [77] 
and Yuan et al. 
[34].

4-APC d4-4-APC Aldehydes - Profiled aldehyde 
submetabolome using double 
neutral loss scan of urine, beer, 
and wine samples

Zheng et al. 
[78], and Yu 
et al. [79]

DnsHz 13C2-DnsHz Carbonyls - Constructed library containing 
78 carbonyl compounds
- Profiling of urinary carbonyl 
submetabolome and positive 
identification of 33 metabolites

Zhao et al. [37]

Aniline 13C6-aniline Carbonyls, 
phosphoryls and 
carboxyls

- Quantification of 33 intermediate 
metabolites in central carbon and 
energy metabolism

Yang et al. [21]

Girard P d5-GP Steroid hormones - Quantified steroid hormones in 
human follicular fluid

Guo et al. [29]

d5-GP/isobaric 
mass

Sterols/oxysterols - Profiled plasma sterols/
oxysterols to identify inborn 
errors

Crick et al. 
[80]

HMP d3-HMP Neurosteroids - Relative and absolute 
quantification of allopregnanolene 
and pregnenolone levels in brain

Higashi et al. 
[81]

T3 D3 (d20-T3) Fatty aldehydes - Globally profiling of fatty 
aldehyde in plasma and brain 
tissue

Tie et al. [82]

QAO d3-QAO Ketosterols - Absolute quantification of 
ketosterol in very small volumes 
of plasma

DeBarber et al. 
[83]

DMBA d4-DMBA Hydroxyl-
containing steroid 
hormones

- Measurement of 17 derivatized 
free steroid hormones in urine

Dai et al. [23]

MDMAES 13C4-MDMAES Steroids - Quantitative and comparative 
analysis of SIRS and sepsis 
clinical samples

O’Maille et al. 
[16]

Acetone d6-acetone Ribonucleosides - Profiled urinary metabolome and 
positively identified 56 
ribonucleosides
- Metal oxide-based dispersive 
SPE applied for enrichment of 
ribonucleosides

Li et al. [33], 
and Chu et al. 
[84]

(continued)
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cyanates are used for CIL.  For example, 
Kennedy’s group developed a method targeting 
70 neurochemicals using LC-MS/MS and ben-
zoyl chloride (BzCl) derivatization [11]. The 
commercially available 13C-BzCl was used for 
labeling internal standards. The reagent offers 
very fast reaction (seconds at room temperature). 
This approach has been proved to be effective in 
various matrix, including tissue, serum, CSF, and 
microdialysate [12].

Many reactions for labeling carboxylic acids 
are based on condensation reaction with amines. 
In this type of reaction, carboxyl groups in metab-
olites are activated by a condensation reagent 
(e.g., carbodiimide), followed by reacting with 
amine groups in the labeling reagents, generating 
a stable amide bond [13]. The method of using 
12C/13C-3-nitrophenylhydrazine (3-NPH) to ana-
lyzed carboxylic acids was reported. The labeled 
metabolites gain significant enhancement of 
detection in negative ion mode. It has been suc-
cessfully applied in the detection and quantitation 
of many important categories of acids, including 
carboxylic acids in central carbon metabolism 
[13], short-chain fatty acids [14] and bile acids 
[15]. In addition, esterification reaction was also 
used to derivatize carboxyl group [16, 17].

Various hydrazine or hydrazide reagents 
have been proven to be effective on labeling 
ketones or aldehydes, such as Girard reagents. 
Girard’s reagent P was used in quantitative gly-
comics with its pentadeuterated (d5-) counter-
part [18]. In this method, reducing glycans 
were labeled with either nondeuterated (d0-) or 
deuterated (d5-) Girard’s reagent P, followed by 

online HILIC-MS analysis to achieve rapid and 
sensitive relative quantitation of reducing gly-
cans between two comparative groups. It was 
also used for analyzing oxysterol [19, 20]. The 
signal enhancement factor after Girard 
derivatization was more than 30-folds. Several 
amine-containing reagents are also developed 
for carbonyl group derivatization, such as 
12C6/13C6-aniline [21].

For hydroxyl group, which is a weaker nucleo-
phile compared with amine groups, electrophilic 
reagents were also used for chemical isotope 
labeling, such as sulfonyl chloride (e.g., 12C-/13C- 
dansyl chloride [22]) or carboxylic acids (e.g., d0/
d4-(dimethylamino)-benzoic acid [23]).

At last, thiol groups are easily oxidized by 
autoxidation and disulfide formation during the 
sample preparation process [24]. Several reagents 
were reported to be useful in both isotopic label-
ing and stabilizing for thiol-containing metabo-
lites [25, 26].

5  Key Features of High- 
Performance CIL LC-MS

In addition to the introduction of isotopic moiety 
into metabolites to create isotope internal stan-
dards, many CIL LC-MS methods also provide 
enhancement in other aspects of the LC-MS anal-
ysis, including detection and separation. 
Therefore, using a rationally designed labeling 
reagent with proper structure can improve the 
overall performance of LC-MS analysis for a 
complex metabolomic system.

Table 1 (continued)

Reagent Isotope reagent Targets Applications References
Pyridine and 
Tf2O

d5-pyridine Steroids, fatty 
alcohols and 
carbohydrates

- Ten pairs of d0/d5 ion peaks were 
identified as cholesterol and fatty 
alcohols

Wang et al. 
[85], and Wang 
et al. [86],

BQB d7-BQB Thiols and oxidized 
thiols

- Constructed library containing 
27 thiol metabolites
- Profiled thiol submetabolome in 
urine, beer and fecal samples
- Positively identified 14 and 8 
thiol metabolites in fecal and 
urine, respectively

Yuan et al. 
[34],, Huang 
et al. [87], and 
Liu et al. [26]

Chemical Isotope Labeling LC-MS for Metabolomics
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Improving metabolite detectability is a com-
mon advantage of many CIL LC-MS methods. 
This is achieved by introducing permanent charge 
or easily ionizable moiety to metabolites in order 
to increase their ionization efficiency. For exam-
ple, 13C-/12C-dansyl chloride (DnsCl) was devel-
oped as a high-performance CIL reagent for 
derivatizing amine-, phenol- [27] and hydroxyl- 
containing metabolites [22]. The dimethylamino 
structure is an easily ionizable group and can 
increase the detection ability by 10–1000-folds 
compared with unlabeled metabolites. Figure  2 
shows the ion chromatograms comparison 
between dansyl-labeled and unlabeled human 
urine. Enhancement of detection can be clearly 
observed. The presence of permanently charged 
moieties can also greatly improve ionization effi-
ciency of labeled molecules, such as quaternary 

ammonium [28], pyridinium [29] and phospho-
nium [30] salts for positive ion mode detection. 
After labeling, the labeled metabolites can be 
charged readily in ESI, requiring only positive 
ion mode detection.

Improvement of separation is another impor-
tant feature of high-performance CIL LC-MS. In 
conventional LC-MS metabolomics, RPLC and 
HILIC are usually used to separate complex 
metabolome. However, this approach suffers 
from poor retention of polar compounds on 
RPLC, less-than-ideal reproducibility of HILIC 
separation [31] and requirement of multiple 
instruments or changing of columns. Some high- 
performance CIL methods have been proved to 
be effective to overcome these problems by 
improving the separation ability of a complex 
biological sample. If the introduced moiety dur-

Fig. 2 Comparison of ion chromatograms obtained from 
(a) unlabeled human urine with the injection of 5 μL of 
sample containing 5  μL of the original urine and (b) 
dansyl- labeled human urine with the injection of 2 μL of 
sample containing 0.48 μL of the original urine. Despite 

the injection of 10.4-fold less sample in (b), the labeled 
urine sample gave significantly higher intensities with 
peaks distributed along the entire gradient elution 
window

S. Zhao and L. Li
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ing derivatization contains an aromatic ring (e.g., 
dansyl chloride for amine/phenol/hydroxyl group 
derivatization [22, 27]), an alkyl chain (e.g., 
N,N′-dimethylethylenediamine for carboxyl 
group derivatization [32]), or parts that can block 
polar groups (e.g., acetone for ribonucleosides 
derivatization [33]), the hydrophobicity of the 
labeled metabolites would increase, resulting in 
better retention and peak shapes in RPLC. As a 
result, polar metabolites in a biological sample 
can be retained and separated effectively only 
using RPLC. We note that the consideration of 
retention properties of metabolites on RPLC 
favors the use of a reagent without a permanently 
charged moiety to labeled metabolites. A reagent 
with permanent charges will increase the hydro-
philicity of labeled metabolites and thus poor 
retention on RPLC. The use of HILIC or other 
mode LC is required for separation. For the con-
venience of a user to perform LC-MS, sticking 
with one mode of separation (i.e., RPLC) for all 
sample analyses offers a significant advantage.

Introduction of hydrophobic moiety into 
metabolites also increases the detection ability. 
This is because the labeled metabolites will elute 
out at higher composition of organic phase on RP 
column, leading to more efficient desolvation 
process and less surface tension of droplets in 
ESI. In the meantime, increased hydrophobicity 
prompts metabolite molecules to reside on the 
surface of the droplets. Both of them benefit the 
ionization process.

Another significant improvement in metabolite 
detection offered by CIL is that adding one or more 
labeling moieties or tags increases the mass of the 
analyte, thereby avoiding severe interferences in 
the low m/z region from the low mass impurities 
and backgrounds in solvents and reagents.

Finally, CIL allows data processing to be done 
relatively easier with much higher confidence in 
determining true metabolite peaks, compared to 
analyzing LC-MS data of unlabeled samples. If 
differential isotope labeling (e.g., mixture of 
heavy-labeled pooled sample and light-labeled 
individual sample) is used for CIL LC-MS 
metabolome profiling, all metabolite peaks are 
detected in pairs of light-labeled and heavy- 
labeled metabolite ions. Impurity and back-

ground peaks are detected in singlet peaks. Thus, 
special software program can be developed to 
filter out the singlet peaks to improve the data 
quality. For example, IsoMS was developed to 
pick the peak pairs from all the peaks detected in 
mass spectra, followed by removing redundant 
peaks such as adduct ions, dimers, multimers, 
etc. These redundant peaks are detected as peak 
pairs with different m/z values in the same mass 
spectrum as the peak pair of [M + H]+. A simple 
algorithm can be used to filter these additional 
peak pairs to retain only one peak pair for one 
labeled metabolite.

Instead of directly extracting peak pairs from 
MS spectra, using common MS/MS fragmenta-
tion pattern is another approach to recognize 
metabolite peaks. For example, Feng and cowork-
ers developed stable isotope labeling combined 
with double precursor ion scan/double neutral 
loss scan in MS to selectively analyze a particular 
group of metabolites [34].

The isobaric tag for relative and absolute quan-
tification (iTRAQ) reagents has been widely used 
in proteomics. These reagents have been applied 
for analyzing amino acids [35] and other amine-
containing metabolites. Unlike the reagents used 
in MS-based peak pair detection, iTRAQ reagent 
consists of a reporter group, a mass balance group, 
and an amine-reactive group which could be NHS 
ester. Two differential iTRAQ reagents use differ-
ent isotope coding patterns in both reporter group 
and balance group; however, the overall mass of 
the reagents keeps constant. In derivatization for 
absolute quantification, metabolites of a sample 
will be labeled by the reagent containing a light 
reporter group and a heavy mass balance group. 
The metabolite standards are labeled by the 
reagent containing a heavy reporter group and a 
light mass balance group, which are spiked into 
the labeled sample as internal standards for 
LC-MS analysis. The labeled standards and cor-
responding metabolites in the sample elute out at 
the same time and have the same m/z in mass 
spectra. Upon MS/MS fragmentation, the reporter 
group will be cleaved from the labeled com-
pounds and produce unique product ions, which 
can be quantified in the SRM mode to reflect the 
metabolite quantity in a sample.

Chemical Isotope Labeling LC-MS for Metabolomics



10

6  Multichannel CIL LC-MS 
Metabolome Analysis

In CIL LC-MS-based metabolomics approach, 
several different submetabolomes targeting dif-
ferent groups of metabolites can be analyzed 
separately, and the combined datasets can be 
used to represent the entire metabolome. Zhao 
et al. have recently reported a study of analyzing 
the chemical structures of compound entries in 
several well-used databases to determine the dis-
tributions of chemical groups in each database 
[36]. Because of the interest in studying endoge-
nous metabolites of a metabolome, they removed 
the lipids, inorganic species, and other molecules 
that are unique to drug, food, plant, and environ-
mental origins from database compound entries. 
They found that five groups, namely, amine, phe-
nol, hydroxyl, carboxyl, and carbonyl, are the 
dominant classes in the remaining endogenous 
metabolites. In the databases of MCID (2683 fil-
tered metabolites), HMDB (5506), KEGG 
(11,598), YMDB (1107), and ECMDB (1462), 
94.7%, 85.7%, 86.4%, 85.7%, and 95.8% of the 
filtered metabolites were found to be belonging 
to one or more of the five groups, respectively. 

Figure 3 shows an example of the chemical group 
distribution analysis for the 2683 filtered metabo-
lites in MCID. Thus, in-depth analysis of these 
five groups of metabolites can result in a very 
high coverage of a metabolome.

Zhao et  al. described a 4-channel high- 
performance CIL LC-MS approach (Fig.  4) for 
targeting amine/phenol- [27], carboxyl- [17], car-
bonyl- [, 37] and hydroxyl-containing metabo-
lites [22] using dansyl and DmPA labeling 
reagents (Fig. 5) [36]. They showed the detection 
of a total of 7431 peak pairs with 6109 unique- 
mass pairs in labeled human plasma using 
4-channel CIL LC-MS. Among them, 670 peak 
pairs (9.0%) could be identified with high confi-
dence and 6256 (84.3%) could be mass-matched 
to metabolome database entries. In the case of 
yeast samples, a total of 5629 pairs with 4955 
unique-mass pairs were detected. There were 431 
peak pairs (7.6%) identified with high confidence 
and 4836 peak pairs (85.7%) mass-matched to 
database entries. These results illustrated that the 
combined datasets from the analyses of four sub-
metabolomes can detect many metabolites. While 
four different labeling methods were used for 
profiling four submetabolomes, the LC-MS setup 

Group

(A)  

(B)  

Belong to the five groups (94.7%)

Ester (0.4%)

Amide (2.1%)

Heterocycle (0.7%)

Organophosphorus (0.5%)

Organosulfur (0.5%)

Others (0.9%)

Fig. 3 (a) Classification 
of chemical groups of 
2683 known human 
endogenous metabolites 
from the 
MyCompoundID library. 
(b) Percent distributions 
of metabolites belonging 
to the five groups

S. Zhao and L. Li
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remained to be the same; all labeled samples 
were analyzed using RPLC-MS with positive ion 
detection.

In a similar way, Yu-Qi Feng’s group reported 
profiling of mice fecal samples using integrated 
derivatization combined LC-MS strategy [34]. In 
their study, different reagents targeting amine-, 
carboxyl-, carbonyl-, and thiol-submetabolome 
were applied. 2302 metabolite candidates were 
detected and 308 metabolites were further 
confirmed.

7  Limitations and Future 
Direction of CIL LC-MS 
Metabolomics

One presumed weakness of CIL LC-MS is the 
requirement of performing chemical derivatiza-
tion. However, due to the need of carrying out 

multiple steps in a typical sample workup proce-
dure leading to LC-MS analysis, the addition of a 
chemical labeling step does not necessarily 
increase the workload significantly. If a very 
robust and convenient labeling method is used, 
the chemical derivatization step can be viewed 
like those of other sample handling steps, such as 
methanol precipitation of proteins used for ana-
lyzing serum samples, creatinine measurement 
sample normalization in urine sample analysis, 
cell lysis and metabolite extraction in cellular 
metabolomics, etc. Thus, developing a reproduc-
ible labeling procedure that can be easily imple-
mented in a laboratory and carried out by 
personnel with little chemistry expertise is critical 
for wide usage of CIL LC-MS in metabolomics.

Although the reactions that are chosen for 
derivatization have relatively rapid reaction 
speed, the required time for many reactions is in 
still in hours to ensure that the complex subme-

Carboxyl HydroxylAmine/
Phenol Carbonyl

RPLC-MS (+) Analyses

Sample Pretreatment

Data Processing

Metabolite ID

Data Analysis

Fig. 4 Workflow of 
4-channel high- 
performance CIL 
LC-MS-based 
metabolomics

Chemical Isotope Labeling LC-MS for Metabolomics
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tabolome can be fully labeled and analyzed. One 
way to address this is to develop and employ 
reaction conditions that can achieve very fast 
derivatization. For example, Bian et  al. used 
cholamine derivatization coupled with LC-MS to 
determine long-chain free fatty acids in complex 
biological samples [38]. The derivatization step 
can be finished within 1  min at room tempera-
ture. Increase in 2000-fold of sensitivity was 
obtained and the limits of detection of femtogram 
level were achieved. The feasibility of one- 

minute derivatization has been validated using 
both targeted quantification and untargeted pro-
filing approach with serum samples. Further the 
authors discovered several metabolites that have 
significantly differences between healthy and 
asthma groups. We note that while fast reaction is 
beneficiary for some applications, parallel label-
ing of multiple samples can be done, and thus the 
labeling step is usually not the rate-limiting step 
in determining the overall sample analysis 
throughput in metabolomics.

(B)

(A)

(C)

(D)

Fig. 5 Reaction schemes of (a) dansylation labeling for 
amine/phenol-containing metabolites; (b) DmPA bromide 
labeling for carboxyl-containing metabolites; (c) dansyl-

hydrazine labeling for carbonyl-containing metabolites; 
(d) base-activated dansylation labeling for hydroxyl- 
containing metabolites

S. Zhao and L. Li
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Using robotic liquid handling systems to auto-
matically perform derivatization can be very 
helpful to achieve high throughput. For example, 
an autosampler-in-needle-derivatization tech-
nique was reported by Siegel et  al. [39]. The 
authors used p-toluenesulfonylhydrazine to 
derivatize aldehydes and ketones in a UHPLC 
autosampler. The labeling reagents and samples 
were consecutively drawn into the autosampler 
needle and mixed. The complete derivatization 
can be finished within 10 min and the solution is 
ready to be injected for analysis. This automatic 
derivatization approach has been proved to be 
useful in simultaneously quantifying and identi-
fying molecules containing carbonyl groups.

Relative quantification by CIL LC-MS can be 
very accurate as the same metabolite in the 
pooled sample and an individual sample would 
encounter the same matrix (e.g., urine matrix for 
urine metabolome analysis). Moreover, the con-
centration of the metabolite in a pool should be 
similar to that in an individual sample (usually 
less than ten-fold changes among different sam-
ples). If we perform the labeling of the pool and 
an individual sample in parallel, the minor differ-
ences in matrix effect and labeling efficiency can 
be accounted for using the intensity ratio of a 
peak pair of the same metabolite in 
LC-MS.  However, for absolute quantification 
using CIL LC-MS, we need to be aware of poten-
tial pitfalls. In conventional LC-MS-based quan-
tification approach, an internal standard, either 
SIL or chemical structural analogue, is added to 
the sample at the very beginning of the sample 
workup process. Therefore, the internal standard 
and analyte share the identical preparation steps 
and, theoretically, the same recovery rate. 
However, an internal standard created by CIL is 
usually added to the sample just before the instru-
mental analysis. Thus, the analyte recovery rate 
from a sample is assumed to be 100%. Moreover, 
sample matrix effect, if any, on the labeling effi-
ciency is not accounted for; labeling the internal 
standard dissolved in a clean solvent may be 
more or less efficient than labeling the analyte 
with the presence of many other components in a 
sample. To address these issues, sample pretreat-
ment procedures need be optimized to obtain 

high recovery rates of analytes. Matrix effect on 
labeling efficiency should be measured. Another 
approach is to use the standard addition method 
for quantification. However, this method has a 
low throughput for quantifying many metabolites 
in a metabolomic sample.

Another potential pitfall of using CIL internal 
standards is the isotope effect in chromatography 
when using deuterium [40, 41]. The retention of 
deuterium derivatized species is generally less 
than its hydrogen coded counterpart on RPLC 
column due to weaker hydrophobic interactions 
with the stationary phase. The lack of co-elution 
leads to different matrix for ionization, which 
may be detrimental for quantification. The iso-
tope effect of 13C-, 18O-, or 15N- is usually negli-
gible. Thus, in high-performance CIL methods, 
these isotope atoms are preferred; however, the 
synthesis of the reagents containing these iso-
topes may be more expensive than making the 
deuterium-coded reagents.

Finally, current CIL methods do not cover all 
chemical groups. There are several chemical 
groups such as amides and esters that require the 
development of efficient and robust labeling 
methods. Prior to the available of these methods, 
targeted analysis using LC-MRM-MS may be 
used to analyze some important metabolites that 
are not covered with current labeling methods.

8  Applications of CIL LC-MS 
for Cancer Metabolomics

Because of the possibility of performing highly 
accurate relative quantification of many different 
metabolites in metabolome samples, CIL LC-MS 
is a powerful technique in many metabolomics 
applications, including cancer metabolomics. For 
example, dansylation isotope labeling LC-MS 
has been widely used in various metabolomics 
studies. Dansyl chloride is one of the most com-
monly used reagents to derivatize primary, sec-
ondary amines, phenol [27] and alcoholic 
hydroxyl [22]. It provides all the features men-
tioned above that improve the analytical power 
for metabolome analysis. In addition, the concen-
tration of dansyl-labeled metabolites can be 

Chemical Isotope Labeling LC-MS for Metabolomics
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determined using UV absorbance, which can be 
very useful for sample normalization. The work-
flow of using DnsCl for metabolites profiling and 
biomarker discovery in various samples have 
been developed, including urine [42, 43], blood 
[44], serum [10], sweat [45], cerebrospinal fluid 
[46], faces [43, 47] and cell extracts [48, 49]. 
This method has been used for cancer biomarker 
discovery research.

One example is the work reported by Huan 
et al. describing a method of metabolomic profil-
ing of prostate tissue samples using DnsCl label-
ing and conducted a proof-of-principle study for 
metabolic classification of prostate cancer [50]. 
In this study, the authors presented a typical 
workflow of high-performance CIL LC-MS 
method for metabolomics biomarker discovery 
of disease. In this workflow, metabolites were 
first extracted from prostate needle biopsies using 
molecular preservation by extraction and fixation 
techniques. Then samples from patients were 
individually labeled with 12C-dansyl chloride and 
the total concentration of the labeled metabolites 
was determined using LC-UV. Based on the total 
concentration information, the same amount of 
13C-labeled universal metabolome standard gen-
erated from a pooled tissue extract was spiked 
into each labeled individual sample, served as 
internal standard for metabolome comparison. 
The generated 12C-/13C- mixtures were analyzed 
by RPLC-QTOF-MS.  The data were then pro-
cessed using a set of in-house programs in batch 
mode, including peak pair picking and chromato-
graphic peak ratio measurement. Metabolite 
identification was performed either using labeled 
standard library [51] for definitive identification 
or other metabolite database (e.g., HMDB, 
MyCompoundID) for putative matches. At last, 
various statistical tools were used to visualize the 
separation between groups, find significant 
metabolites, and understand biological 
meanings.

Using this workflow, three batches of samples 
were analyzed. In the first batch of experiment, 
2900 metabolites were consistently detected in 
more than 50% of the samples and 88 metabolites 
were positively identified. Then the panel of sig-
nificant metabolites was refined using the second 

batch of samples. Receiver operating characteris-
tic (ROC) analysis showed area under the curve 
(AUC) of 0.896 with sensitivity of 84.6% and 
specificity of 83.3% using 7 metabolites. At last, 
a blind study of validation samples was con-
ducted, providing specificity of 90.9% and sensi-
tivity of 84.6%. Although the sample numbers in 
this proof-of-concept studies is limited (in total 
85 samples), it was still a good example showing 
the analysis power of high-performance chemical 
isotope labeling LC-MS method in disease bio-
marker discovery.

9  Conclusions

CIL LC-MS is a very powerful method for 
improving metabolomic coverage and quantifica-
tion accuracy and precision. The presumed disad-
vantage of adding an extra step of performing 
chemical labeling of samples in the metabolome 
analysis workflow is often outweighed by the 
benefits offered by CIL. We envisage a wide use 
of this method for comprehensive and quantita-
tive metabolomics in many areas of applications 
including discovery studies of biomarkers and 
therapeutic targets. For technical development, 
work on expanding the labeled standard library to 
identify more metabolites is needed. In addition, 
developing new labeling methods targeting 
chemical groups that are not covered by the cur-
rent methods will further increase the overall 
metabolome coverage.
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NMR-Based Metabolomics

G. A. Nagana Gowda and Daniel Raftery

1  Metabolomics

The field of metabolomics involves the quantita-
tive and simultaneous analysis of large numbers 
of metabolites in biological systems. Metabolites 
provide information on action, inaction, or over 
action of the upstream molecular species such as 
genes, transcripts, and proteins, in health and dis-
eases. Analysis of complex metabolite data in 
combination with univariate and multivariate sta-
tistical methods, as well as mapping of altered 
pathways, enables understanding of biological 
phenotypes, deciphering mechanisms, and iden-
tifying biomarkers or drug targets for a variety of 
conditions [1-5]. Applications of metabolomics 
span a wide range of disciplines including health 
and various diseases, pharmacology, drug devel-
opment, toxicology, environment, plants, and 

food and nutrition. However, a majority of the 
studies are focused on improving the mechanistic 
understanding, along with prevention, early diag-
nosis, and management of human health and 
diseases.

2  Analytical Methods 
for Metabolomics

Development of analytical methods represents 
a major component of metabolomics research. 
Numerous types of analytical techniques have 
been used; however, nuclear magnetic reso-
nance (NMR) spectroscopy and mass spec-
trometry (MS) are the two most commonly 
employed methods in the metabolomics field. 
MS is a highly sensitive method and it enables 
the analysis of several hundreds to thousands 
of metabolites from a single measurement and 
on a routine basis. In MS analysis, often, 
metabolites are subjected to chromatographic 
separation using liquid chromatography, gas 
chromatography, or capillary electrophoresis 
prior to detection. A variety of MS methods are 
often used for analysis of different classes of 
metabolites from the same samples to achieve 
a wider coverage of the metabolome. NMR 
spectroscopy, on the other hand, is often used 
without combining with any sample prepro-
cessing or separation techniques and provides 
data complementary to MS. Peaks in the NMR 
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spectra can be reliably assigned to specific 
metabolites and peak intensities are directly 
proportional to the number of contributing 
nuclei. Thus, NMR provides a wealth of infor-
mation on both the identity and quantity of 
many metabolites in parallel.

3  Characteristics of NMR 
Spectroscopy

NMR spectroscopy exhibits numerous unique 
characteristics that are beneficial to the field of 
metabolomics [6-8]. Some of these important 
characteristics include:
 1. It is highly reproducible and quantitative.
 2. A single internal reference is sufficient for 

absolute quantitation of all metabolites in a 
spectrum.

 3. It enables establishment of the identity for 
unknown metabolites, which is important 
considering that advances in analytical tech-
nologies have enabled the detection of an 
increasing number of signals in complex bio-
logical mixtures and many of them are 
unknown.

 4. It enables the analysis of intact biofluids and 
tissue with no need for sample separation or 
preparation, which is important considering 
that sample preparation and separation pro-
cesses contribute significantly to the analyti-
cal variability.

 5. It is nondestructive, which means the sample 
remains intact after the analysis and can be 
used for reanalysis using NMR at a later time 
or other methods such as MS.

 6. It enables tracing of metabolic pathways and 
measuring metabolic fluxes utilizing a variety 
of stable isotope-labeled precursors.

 7. It has the ability to detect metabolites through 
one or more types of atomic nuclei such as 1H, 
13C, 31P, or 15N.

 8. It does not involve harsh sample treatment 
prior to or during the analysis, which is impor-
tant for analysis of metabolites such as gluta-
mine and coenzymes that are fragile or 
sensitive to ionization voltage as used in the 
MS analysis [9-13].

4  Workflow for NMR-Based 
Metabolomics

Figure 1 shows a schematic diagram for a general 
workflow involved in NMR-based metabolomics. 
Biological samples from humans (e.g., plasma or 
serum, urine, and tissue), animal models, or cell 
lines can be used for NMR-based metabolomics 
studies. Important steps involved are detection of 
metabolite signals, metabolite identification 
using a combination of 1D and 2D NMR meth-
ods, database searching and spiking with authen-
tic compounds, and finally quantifying the 
identified metabolites using a single internal or 
external standard. Metabolite concentrations are 
then used for distinguishing diseases from con-
trols; this is done generally based on univariate or 
multivariate statistical analysis, developing and 
validating classification models, and testing the 
sensitivity and specificity of the models based on 
the area under the receiver operating characteris-
tic (ROC) curve. Additionally, metabolite con-
centrations are used for identifying altered 
metabolic pathways, which help provide a mech-
anistic understanding of cellular function includ-
ing information on drug targets for therapeutic 
development and translational opportunities for 
preventing or curing diseases.

5  Biological Samples

NMR-based metabolomics studies use a wide 
variety of biological specimens. The most widely 
used biological specimen for investigation of vir-
tually all human diseases is blood. The clinical 
relevance of blood arises from its close associa-
tion with essentially every living cell in the 
human body combined with its relatively easy 
access for routine investigations. Generally, 
blood samples from overnight fasted subjects are 
preferred to avoid confounding effects from the 
diet. Conventional metabolomics studies of 
serum or plasma samples provide a wealth of 
metabolic information on health and diseases 
[14, 10, 15]. However, serum and plasma metab-
olomics lacks the ability to measure and evaluate 
important metabolites such as redox and energy 
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coenzymes, as well as antioxidants, which are 
generally present in high concentrations in red 
blood cells. An important alternative to serum/
plasma metabolomics is a whole blood metabolo-
mics approach using NMR [16]. Whole blood 
metabolomics enables access to a wider and 
complementary pool of metabolites and also 
avoids the potential confounding effects of hemo-
lysis often encountered in serum/plasma metabo-
lite analysis.

Other biological specimens used in NMR- 
based metabolomics include urine [17, 18], saliva 
[19], cerebrospinal fluid [20], gut aspirate [21], 
bile [22], amniotic fluid [23], synovial fluid [24], 
exhaled breath condensate [25], intact tissue [26], 

and tissue extracts [27]. Specimens from animal 
models, cell lines, yeast [28], bacteria [29], tumor 
cells [30], and tumor spheroids have also been 
analyzed by NMR [31].

Urine is the most widely used biological spec-
imen, apart from blood. Interest in using urine for 
NMR-based metabolomics stems from the fact 
that it is a rich source of disease biomarkers and 
the sample can be obtained noninvasively. In 
addition, unlike blood, urine has a relatively low 
concentration of proteins and a large number of 
low molecular weight compounds (metabolites); 
hence metabolomics studies of urine are  relatively 
simple in terms of both sample preparation and 
NMR analysis.
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Metabolite profiling of intact tissues has 
gained increased interest for investigations of 
human diseases. A major advantage of using tis-
sues is that disease biomarkers are considered to 
be highly concentrated in tissue due to their 
close association with the pathological source, 
such as tumors. Importantly, biomarkers identi-
fied from tissues can be translated into disease 
detection tools using the relatively easily acces-
sible biofluids such as blood and urine. 
Technological advancements in NMR have 
reduced the amount of tissue needed to as little 
as a few nanoliters, which is beneficial for anal-
ysis of mass limited samples [32].

6  Sample Processing

One of the advantages of NMR is its ability to 
analyze intact samples with no need for sample 
processing. Specimens such as serum/plasma and 
urine have thus been widely used for the analysis 
without processing.

6.1  Serum/Plasma

A major challenge for metabolite profiling of 
serum/plasma samples is the interference from a 
massive amount of serum/plasma proteins (6–
8  g/dL). The unwanted macromolecular signals 
from proteins are typically suppressed prior to 
NMR experiments that use a T2 (transverse relax-
ation) filter, such as the CPMG sequence [14]; 
metabolites generally exhibit longer T2 relaxation 
times compared to macromolecules, and hence 
they are selectively retained by the CPMG 
sequence. The CPMG-based NMR experiments 
have thus long been exploited for serum and 
plasma metabolomics. While the analysis of 
intact serum/plasma samples is attractive, numer-
ous limitations as shown below make this 
approach less suitable for metabolomics studies:

 1. The number of metabolites detected using 
intact serum/plasma is restricted to about 30 
or less, which is far fewer compared to the 
actual number of blood metabolites present in 
the sample [15].

 2. Concentrations of many metabolites detected 
in intact serum or plasma are grossly underes-
timated due to the attenuation caused by 
metabolite binding to serum/plasma proteins 
(Fig. 2a) [33-36].

 3. Residual macromolecule signals cause dis-
torted spectral baseline in the NMR spectra, 
which deleteriously affects metabolite 
quantitation.

 4. Massive amounts of serum/plasma proteins 
cause reduced T2 relaxation times for metabo-
lite signals, which results in broader NMR 
peaks and affects spectral resolution.

 5. The exchange between protein-bound and free 
metabolites results in significantly broadened 
NMR peaks, which adds to the line broaden-
ing and affects quantitative accuracy.

An alternative approach to overcome chal-
lenges arising from the interference of proteins 
involves physically removing serum/plasma pro-
teins. Numerous methods have been explored to 
achieve the protein removal, which include using 
ultrafiltration, solid phase extraction, or protein 
precipitation using an organic solvent such as 
methanol, acetonitrile, acetone, perchloric acid, 
or trichloroacetic acid [37-40]. Such protein 
removal approaches enable significant improve-
ments in the number of metabolites identified in 
blood. For example, based on the analysis of 
ultrafiltered serum, as a part of the investigation 
of the human serum metabolome, 49 metabolites 
could be analyzed [15]. In another study, based 
on ultrafiltered human plasma from NIST SRM 
(National Institute of Standards and Technology 
Standard Reference Material), 39 metabolites 
were identified [41].

Realizing the need to process serum/plasma 
before the analysis, additional efforts were 
focused on the development of a method for 
both optimal recovery of metabolites and 
expanding the number of quantifiable metabo-
lites. A detailed quantitative assessment of the 
performance of protein precipitation methods 
and the ultrafiltration approach was made 
based on a comprehensive analysis using vari-
ous NMR techniques. Both methods (protein 
precipitation and  ultrafiltration) allowed the 
detection of metabolites with comparable 
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reproducibility. However, nearly half of the 
metabolites in ultrafiltered serum exhibited 
10–75% lower concentrations [35] (Fig.  2). 
Further experiments indicated that protein pre-
cipitation using methanol offers a more opti-
mal approach for NMR-based metabolomics of 
serum/plasma. In addition, comparison of the 
serum NMR spectra obtained after protein pre-
cipitation using methanol and acetonitrile 
revealed a surprisingly poor performance for 
protein precipitation using acetonitrile [10]. 
Nearly one-third of the detected metabolites 
were attenuated up to nearly 70% compared to 
methanol precipitation at the same solvent to 
serum ratio of 2:1 (v/v). A further attenuation 
of nearly two- thirds of the metabolites (by up 
to 65%) was observed upon increasing acetoni-
trile to serum ratio to 4:1 (v/v). Therefore, pre-
cipitation using a methanol to serum/plasma 

ratio of 2:1 (v/v) is recommended for NMR- 
based metabolomics studies.

6.2  Urine

For urine analysis, no sample preprocessing is 
required due to the absence of macromolecules, 
and hence, intact urine samples are generally 
used. The pH of normal human urine varies 
widely, from approximately 5 to 8 [42-44]. Many 
peaks in the urine NMR spectra are sensitive to 
the pH variation, and sample to sample variation 
in pH is therefore a major challenge in the analy-
sis of urine. Therefore, urine samples are gener-
ally mixed with a buffer solution in D2O, typically 
in a 1:1 (v/v) ratio (at pH = 7.4). A detailed proce-
dure for urine analysis by NMR is provided in a 
comprehensive article published previously [14].
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Fig. 2 Comparison of 
portions of 1H NMR 
spectra of the same 
pooled human serum 
sample obtained by 
suppressing protein 
signals by (a) T2 filtering 
using the CPMG pulse 
sequence, (b) 
ultrafiltration using a 
3 kDa molecular weight 
cutoff filter, and (c) 
protein precipitation 
using methanol 
(1:2 v/v). In (a) most of 
the metabolite signals 
are missing or 
significantly attenuated, 
while in (b) many 
metabolites including 
tryptophan, benzoate, 
and formate are 
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when compared to (c). 
(Reproduced with 
permission from [35])
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6.3  Cells and Tissues

Metabolites in biological specimens such as cells 
and tissues can be analyzed using two different 
methods. In one method, intact cells or tissues 
can be analyzed with no need for sample process-
ing. Although this method is attractive, it has two 
major issues: (1) poor spectral resolution due to 
magnetic susceptibility inhomogeneity across the 
sample, as well as the undesired intra and inter-
molecular interactions, and (2) altered metabolite 
profiles due to enzyme activity. To alleviate the 
first issue, sample tubes containing the biological 
specimens are spun at the magic angle (54.7° 
with respect to the magnetic field) during NMR 
data acquisition. To alleviate the second issue, the 
sample is generally maintained at low tempera-
ture (4° C) during the analysis. A different 
approach for analysis of cells and tissues is to 
extract the metabolites before analysis. This 
approach alleviates major challenges associated 
with the analysis of intact samples. Typically, the 
cell or tissue samples are homogenized in a cold 
water and methanol solvent mixture to extract 
aqueous metabolites. Addition of chloroform to 
the water-methanol mixture enables extraction of 
both aqueous and lipid metabolites, in a single 
step. This three solvent mixture forms two 
phases; aqueous metabolites dissolve in the top 
phase, which contains water and methanol, 
whereas lipid metabolites are dissolved in the 
bottom phase, which contains methanol and chlo-
roform. The two phases are separated and sol-
vents removed by drying. The dried residue 
containing aqueous metabolites is then dissolved 
in D2O, whereas the residue containing lipids is 
dissolved in a mixture of deuterated chloroform 
(CDCl3), deuterated methanol (CD3OD), and 
water (D2O) typically in 16:7:1 (v/v/v) ratio 
(which does not phase separate) for analysis 
using NMR.

7  NMR Experiments

Many NMR active nuclei such as 1H, 13C, 31P, and 
15N can be used to analyze metabolites in biologi-
cal mixtures [45, 8, 46-48]. However, 1H NMR is 

most widely used because 1H is present virtually 
in all the metabolites, and it has a higher NMR 
sensitivity relative to other nuclei.

7.1  1D NMR Methods

One-dimensional (1D) NMR is the most widely 
used method in the metabolomics field, owing to 
the ease of use and high throughput. The 1D 
NOESY (nuclear Overhauser enhancement spec-
troscopy) and CPMG (Carr-Purcell-Meiboom- 
Gill) are the most popular NMR experiments and 
are complementary in nature. 1D NOESY is used 
for samples that provide narrow line shapes such 
as urine, cells, and tissue extracts, due to their 
low macromolecular content. The CPMG experi-
ment, on the other hand, is useful for samples 
such as serum/plasma, which contain macromol-
ecules such as proteins. Signals from the macro-
molecules are suppressed selectively by this 
experiment as these signals are often not of inter-
est for metabolomics studies.

7.2  2D NMR Methods

Two-dimensional (2D) NMR experiments are 
increasingly used in metabolomics. Two major 
areas of 2D NMR applications are unknown 
metabolite identification and improved metabolite 
quantitation. Unknown metabolite identification is 
a major issue in the metabolomics field and NMR 
represents a gold standard method. Two-
dimensional NMR experiments are particularly 
well suited for the identification of unknown com-
pounds. In addition, due to the fact that 2D NMR 
experiments significantly improve the spectral 
resolution and alleviate the peak overlap problem 
for complex biological samples, 2D NMR offers 
improved accuracy for metabolite quantitation. 
Statistically relevant changes in low abundant 
metabolites can be better characterized using 2D 
NMR compared to 1D NMR [49]. The most com-
monly used 2D NMR experiments involving only 
1H nuclei are correlation spectroscopy (COSY) 
and total correlation spectroscopy (TOCSY). Two-
dimensional J-resolved  spectroscopy is another 
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type of 2D experiment used in metabolomics; it 
provides no additional peaks compared to 1D 
NMR, unlike COSY and TOCSY, but it greatly 
simplifies the NMR spectrum. Important 2D 
experiments that involve heteronuclei such as 13C 
or 15N are heteronuclear single quantum coherence 
spectroscopy (HSQC), heteronuclear multiple 
quantum correlation spectroscopy (HMQC), and 
heteronuclear multiple bond correction spectros-
copy (HMBC). A challenge for heteronuclear 2D 
experiments is the low natural abundance of the 
13C and 15N; while the 2D experiments involving 
the natural abundance 13C require significantly 
increased data acquisition time, those involving 
the natural abundance 15N are currently largely 
impractical to use in the metabolomics field owing 
to its extremely lower sensitivity. Nevertheless, 
isotope- labeled experiments (described below) do 
provide opportunities to measure 15N containing 
compounds. When compared to 1D NMR, 2D 
NMR experiments generally involve longer data 
acquisition times, larger data size, and less conve-
nience for data analysis.

7.3  NMR Techniques for Analysis 
of Mass Limited Samples

Use of micro-coil probes offer additional sensi-
tivity for NMR detection and are particularly 
useful for mass limited samples [50-53]. Various 
analysis methods using micro-coil NMR include 
online detection of eluted fractions from the liq-
uid chromatography (LC), LC followed by 
online pre-concentration and micro-coil NMR 
detection, and LC followed by offline detection 
[54-56]. Commercially available micro-coil 
probes integrated with automation enable high 
throughout analysis and are well suited for large 
cohorts of small volume samples. Recently, as 
an important alternative to conventional 5 mm 
and 3 mm NMR probes, a commercially avail-
able 1.7 mm micro-coil probe is gaining interest 
for metabolomic applications. Cryoprobes offer 
further enhancement to the sensitivity by a fac-
tor of 3–4 compared to room temperature 
probes. A combination of cryoprobe and micro-
coil technologies offers an order of magnitude 

reduction in the data acquisition time. It is 
important, however, to remember that sample 
preparation for micro-coil NMR experiments 
can be challenging as sample pre-concentration 
can result in the loss of linear response among 
the metabolites due to their varied solubilities 
[51]. Thus, while the use of micro-coil NMR 
offers significant enhancement in sensitivity, 
care should be exercised while concentrating 
samples, online or offline, for enhancing the 
sensitivity.

7.4  Fast Data Acquisition 
Methods

A number of approaches have been used to speed 
the acquisition of NMR data. Important develop-
ments in fast acquisition methods include nonlin-
ear sampling and forward maximum entropy 
reconstruction, which offers significant reduction 
in data acquisition times [57, 58]. Using this 
approach for 2D HSQC experiments, a reduction 
in acquisition time of an order of magnitude was 
achieved [57]. Separately, nonlinear sampling 
and forward maximum entropy reconstruction 
was applied to 2D HSQC experiments in combi-
nation with J-compensation to achieve more than 
a 20-fold reduction in data acquisition time [59]. 
Another approach that speeds up the data acqui-
sition is the SOFAST (band-selective optimized 
flip angle short transient) technique, in which 2D 
data are acquired in a few seconds; fast acquisi-
tion in SOFAST is achieved through the enhance-
ment of the steady-state magnetization by 
combining an accelerated T1 relaxation time and 
optimized flip angle [60, 61]. SOFAST HMQC 
with its capability to acquire data within 15  s 
enables real-time metabolism studies in live cells 
[62]. Somewhat recently, the SOFAST HMQC 
was combined with nonlinear sampling to acquire 
serum and urine spectra at natural 13C abundance 
with sevenfold reduced time compared to the 
conventional heteronuclear 2D experiment [63]. 
Covariance NMR spectroscopy is another fast 
acquisition approach, which provides high reso-
lution 2D NMR spectra with minimal data points 
in the indirect dimension [64]. An altogether 
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 different class of NMR experiments that speeds 
up the data acquisition is the so-called ultrafast 
NMR techniques. The 2D NMR spectrum is 
acquired in a single scan with a sub-second data 
acquisition based on the application of field gra-
dients that divide the sample into different seg-
ments; the NMR signals from these segments are 
then acquired in parallel using magnetic reso-
nance imaging type of acquisition. Applications 
of this approach to areas including metabolomics 
have been demonstrated [65].

7.5  Ultrasensitive NMR Methods

Hyperpolarization methods such as optical 
pumping of 3He or 129Xe, parahydrogen-induced 
polarization (PHIP), and dynamic nuclear polar-
ization (DNP) are shown to boost NMR sensitiv-
ity by several orders of magnitude. Of these, 
PHIP and DNP have been shown to be promising 
for metabolomics applications. Parahydrogen 
produced by PHIP can be transferred to other 
spins by chemical synthesis using an unsaturated 
compound or by transfer of magnetization to 
metabolites via a catalyst [66, 67]. PASADENA 
(parahydrogen and synthesis allow dramatically 
enhanced nuclear alignment) is a commonly used 
PHIP method [68-70]. DNP is an especially 
promising signal enhancement method for 
metabolomic applications because, unlike PHIP, 
DNP enables hyperpolarization of a very wide 
range of substrates. DNP uses paramagnetic cen-
ters to transfer polarization from electron spins to 
nuclear spins of substrates [71-73]. The dissolu-
tion DNP approach starts with nuclear spin polar-
ization in the solid state at low temperature, after 
which the sample is liquified, transported, and 
then injected into a high-resolution NMR spec-
trometer for detection. This approach promises 
new avenues for real-time metabolism studies 
[74, 75]. Some drawbacks of DNP are the long 
hyperpolarization preparation time, the need for 
an expensive polarizer, and short relaxation times 
of a number of biologically interesting substrates, 
which limit signal intensities for metabolite 
tracer studies. Progress is being made on multi-
sample polarization approaches that promise 

high- throughput studies using dissolution DNP 
[74].

8  Isotope Labeling Methods

NMR methods involving isotope incorporation 
in vivo or ex vivo offer unique opportunities to 
the metabolomics field. These methods offer a 
combination of selectivity, sensitivity, and reso-
lution and alleviate major challenges in NMR 
experiments involving low natural abundant 
nuclei. Numerous isotope labeling studies using 
nuclei such as 13C, 15N, 2H, and/or 31P have so far 
been reported.

8.1  Isotope Labeling in Flux 
Measurements

Isotope labeling in  vivo enables the tracing of 
metabolic pathways and measurement of fluxes 
through specific pathways. Using this approach, 
the same metabolite that flows through multiple 
pathways can be identified with a particular flux 
or pathway, unlike the traditional metabolic pro-
filing approach that measures the overall metabo-
lite intensity and lacks such an ability. As an 
illustration, lactate can be formed by the catabo-
lism of glucose or through pathways unconnected 
to glycolysis. Pyruvate arising from glycolysis 
can be distinguished from that arising from sev-
eral other pathways by treating cells with 
13C-labeled glucose, for example, and measuring 
the 13C-labeled pyruvate. Numerous pathways 
including glycolysis, glutaminolysis, and TCA 
cycle can thus be investigated using NMR- and 
isotope-labeled substrates such as 13C-glucose 
and 13C/15N-glutamine [76-78]. Understanding 
the alterations of these pathways under different 
conditions and diseases is important owing to the 
fact that catabolism of glucose and glutamine is 
critical for the viability and growth of mammalian 
cells [79, 80]. Cancer cells have been shown to 
depend on high rates of glucose and/or glutamine 
uptake and metabolism to maintain their viability 
[81, 78]. While in  vivo isotope-labeled studies 
using cell line models enable understanding of 
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metabolic pathways under controlled conditions, 
the use of animal models or humans can translate 
the findings from cellular studies to the pathogen-
esis in the relevant organs [82- 85].

8.2  Isotope Labeling in Plants/
Organisms

Generally, the high level of biological complex-
ity continually demands new approaches for 
unraveling such complexity. NMR methods 
combined with isotope labeling in vivo in plants 
and organisms such as bacteria and yeast offer 
significant enhancement to spectral resolution 
and the detection sensitivity [86-89]. In particu-
lar, in vivo labeling enables a systematic analysis 
of a large number of metabolites (including 
novel metabolites) using conventional high-reso-
lution 2D NMR experiments such as HSQC. In 
addition, owing to the uniform labeling of 
metabolites using nuclei such as 13C, the 
approach also enables characterization of metab-
olites based on homonuclear 2D 13C NMR 
experiments, whereas it is generally impractical 
to perform such experiments under natural 13C 
abundance. Carbon-bond topology networks 
obtainable from the homonuclear 2D 13C experi-
ments provide additional avenues for unknown 
metabolite identification [86, 88].

8.3  Ex Vivo Isotope Labeling

Isotope labeling ex vivo selectively targets differ-
ent classes of metabolites based on the specific 
functional group [45, 46, 48]. Derivatization of 
metabolites using substrates containing isotope- 
labeled nuclei, such as 13C, 15N, and 31P offers 
benefits in terms of both sensitivity and resolu-
tion, owing to the high isotopic abundance and 
wide chemical shift dispersion of tagged hetero-
nuclei (Fig. 3). 2D NMR experiments involving 
heteronuclei generally provide a single peak for 
each tagged metabolite, devoid of multiplicity, 
which further adds to the sensitivity and resolu-
tion. Numerous substrates for isotope tagging 
have been used to date focusing on metabolite 

classes such as amines, carboxylic acids, and 
hydroxyls [45, 46, 48]. The “smart isotope tag” 
15N-cholamine targets carboxylic acids contain-
ing metabolites and can detect the same metabo-
lites using both NMR and MS methods [47]. This 
is because the smart isotope tag possesses an 
NMR sensitive isotope (15N) that offers good 
chemical shift dispersion and a permanent posi-
tive charge that improves MS sensitivity. Use of 
this smart isotope tag approach enables direct 
comparison of NMR and MS data for the same 
samples and hence allows exploitation of the 
combined strengths of the two analytical 
platforms.

9  Data Analysis

Analysis of complex NMR data in metabolomics 
is made using one of the two major approaches: 
One is a global chemometric analysis and the 
other is quantitative analysis, referred to as quan-
titative metabolomics [90].

9.1  Chemometric Analysis

Chemometric analysis is a traditional method 
in untargeted or global metabolomics, in which 
metabolites are not identified initially. Instead, 
the complex data are directly used for statisti-
cal analysis. Prior to the analysis, the data are 
subjected to preprocessing such as baseline 
correction, peak alignment, and solvent peak 
removal. Finally, the data are subjected to mul-
tivariate analysis. A challenge to the chemo-
metric approach, however, is that often sample 
classes are differentiated based on minor spec-
tral features, which needs to be addressed by 
appropriate data scaling or filtering. In addi-
tion, imperfect peak alignments and spectral 
baselines pose significant challenges to the 
analysis. Peak misalignment is particularly 
pronounced for biological samples such urine, 
for which peak positions are sensitive to sam-
ple conditions such as pH, ionic strength, tem-
perature, and concentration of metabolites [91, 
92].
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Multivariate statistical approaches are broadly 
classified into two categories: unsupervised anal-
ysis and supervised analysis. In unsupervised 
analysis, the sample class identity is not known, 
whereas in supervised methods the sample class 
information (e.g., disease or control) is provided 
as an input prior to the analysis. Detailed descrip-
tions of multivariate statistical analyses are 
widely available [93-96].

9.1.1  Unsupervised Analysis
Unsupervised analysis is often used in the explor-
atory research for hypothesis generation. Several 
methods including principal component analysis 
(PCA), hierarchical cluster analysis (HCA), 
k-nearest neighbor (KNN), and factor analysis 
are often used [97]. However, PCA is the most 
widely used among these in the metabolomics 
field [98]. Using PCA, it is relatively straightfor-
ward to detect potential outliers and clusters in 
the whole sample set. It transforms metabolites 

data into a set of ranked principal components 
(PCs). The variance in PCs can then be visualized 
through the “scores” plot, and specific variables 
that cause such variance are visualized through 
the “loadings” plot. The variables’ identities may 
not be known and hence further analysis can be 
required to establish their identities [99]. HCA, 
another unsupervised method, is most useful for 
comparing a small number of variables. It defines 
natural clusters based on the distances between 
pairs of samples or variables within the data set. 
The smallest distances between samples imply 
that this subset of samples share similar metabo-
lite levels and signify that the samples exhibit 
similar physiological properties or disease states.

9.1.2  Supervised Analysis
Supervised statistical analysis methods are used 
for developing predictive models; they take into 
account the sample class (e.g., disease versus 
control), which are used as dependent variables, 
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Fig. 3 Reaction schemes for chemical derivatization using 13C, 15N, or 31P tags to target amine, carboxylic acid, or 
hydroxyl group containing metabolites in complex biological mixtures that enable detection of metabolites by NMR 
with enhanced resolution and sensitivity. (Reproduced with permission from [7])

G. A. Nagana Gowda and D. Raftery



29

as well as the metabolites used as independent 
variables. Partial least squares discriminant anal-
ysis (PLS-DA) [100], often combined with 
orthogonal signal correction [101], is by far the 
most popular method used in metabolomics. This 
is in part because PLS-DA can handle well the 
inherent correlation among metabolite variables. 
Other methods, such as logistic regression, soft 
independent modeling of class analogies 
(SIMCA), random forests, and neural networks 
are also used as supervised methods in metabolo-
mics. Somewhat similar to PCA, in PLS-DA, 
each orthogonal axis is referred to as a latent vari-
able (LV) and the LVs contain the combinations 
of weights of each metabolite variable. Based on 
the LVs, putative biomarker variables can be 
identified. Supervised methods need extensive 
validation using a “set-aside” part of the same 
data set or, ideally, a separate data set to test the 
predictive model. The model is evaluated, typi-
cally, by single or multiple cross-validation steps, 
to test the robustness of putative variables (bio-
marker candidates) [102]. The successful use of 
additional sets of samples, preferably from inde-
pendent sources, which are sufficiently large to 
yield statistically significant results, is a current 
challenge in metabolomics.

9.2  Quantitative Analysis

Quantitative analysis, on the other hand, involves 
metabolite identification and quantitation, which 
may then be followed by multivariate statistical 
analysis. Pathway analyses are also made based 
on the obtained metabolite levels. Quantitative 
analysis is generally a targeted method wherein 
the metabolites are first identified based on the 
literature or databases of standard compounds. 
The identified metabolite peaks are then quanti-
fied using internal or external reference com-
pounds. Such quantitative data become the input 
variables for multivariate statistical analysis. A 
major benefit of the quantitative analysis 
approach compared to global chemometric anal-
ysis is that it can reduce potential errors arising 
from factors such as baseline distortions, strong 
solvent signals, and peak misalignments. Hence 

the quantitative metabolomics approach prom-
ises numerous benefits including reliable insights 
into the mechanistic understanding of diseases.

Recent advances have expanded the pool of 
metabolites quantifiable by NMR in various bio-
logical specimens including serum/plasma, 
whole blood, tissue and cells, thus offering new 
avenues in the quantitative metabolomics field.

9.2.1  Quantitative Analysis 
of Metabolites in Serum, 
Plasma, and Whole Blood

Metabolite profiling of human serum/plasma is 
of major interest for the investigations of virtu-
ally all human diseases. Despite its signifi-
cance, for many years, metabolomics analysis 
of blood was largely restricted to serum/plasma. 
A significant challenge for widespread quanti-
tative metabolomics of blood by NMR was lim-
ited number of metabolites that could be 
identified and quantified. Limited resolution 
and sensitivity combined with the challenges 
associated with unknown metabolite identifica-
tion have long restricted both the number and 
quantitative accuracy of measuring blood 
metabolites. The origin for such a limitation 
was due to the practice of performing serum/
plasma analysis in their intact form, which 
invariably met with interference from a vast 
amount of serum/plasma proteins. In contrast, 
removal of the proteins, physically, prior to the 
analysis improved resolution and sensitivity, 
dramatically [37-40], and enabled significant 
improvement to quantitation in terms of the 
number of metabolites. Subsequent develop-
ments have enabled optimized protein removal 
methods [35] (Fig.  2). Use of this optimized 
method has resulted in the identification of the 
vast majority of peaks in the NMR spectrum 
and identification and quantitation of nearly 70 
serum/plasma metabolites from a single 1D 
NMR experiment [10]. Characteristic peaks for 
the identified metabolites were annotated in the 
NMR spectra to enable their identification and 
quantitation, routinely, even for beginners to 
the metabolomics field (Fig. 4). The ability to 
analyze such a vast pool of metabolites by 
NMR, quantitatively, promises significant 
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Fig. 4 (a) A typical 800 MHz 1D CPMG 1H NMR spectrum of a human serum obtained after protein precipitation 
using methanol with expanded regions (b − h) and annotations for all identified metabolites. (Modified from [10])
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advances in the quantitative metabolomics area. 
Further, and more recently, quantitative analy-
sis of serum/plasma by NMR was extended to 
whole blood [16]. Whole blood analysis now 
enables analysis of many major coenzymes and 
antioxidants, as described in the following sec-
tion, in addition to the other metabolites, and 
has extended the total number of metabolites 
quantified in blood to nearly 80.

9.2.2  Quantitative Analysis of Major 
Coenzymes/Antioxidants 
in Blood, Tissue, and Cells

Recently, NMR analysis has been extended to the 
measurement of a series of coenzymes, including 
coenzyme A, acetyl coenzyme A, coenzymes of 
cellular redox reactions, and cellular energy, as 
well as antioxidants in blood, tissue, and cells in 
one step [103, 16, 11, 104]. These species include 
the major cellular redox coenzymes NAD+ (oxi-
dized nicotinamide adenine dinucleotide), NADH 
(reduced nicotinamide adenine dinucleotide), 
NADP+ (oxidized nicotinamide adenine dinucleo-
tide phosphate), and NADPH (reduced nicotin-
amide adenine dinucleotide phosphate); major 
energy coenzymes ATP (adenosine triphosphate), 
ADP (adenosine diphosphate), and AMP (adenos-
ine monophosphate); and antioxidants GSSG 
(oxidized glutathione) and GSH (reduced gluta-
thione). Increased interest to develop methods to 
analyze the coenzymes/antioxidants in one step 
stems from the fact that they are fundamental to 
the function of all living cells and hence are 
extremely relevant to mechanistic studies in 
health and virtually all human diseases. Analysis 
of these coenzymes in one step using the highly 
sensitive method of mass spectrometry is chal-
lenging owing to factors such as ion suppression, 
unit mass difference between many coenzymes, 
and in-source fragmentation [11]. Another major 
challenge unconnected to the analytical platform 
is the extremely unstable nature of the coenzymes; 
many coenzymes, depending on the sample har-
vesting and extraction procedure used, evade 
detection altogether or their levels attenuated sig-
nificantly. Recent methodological developments 
in sample harvesting, processing, and NMR anal-
ysis have alleviated the major challenges and 

enabled their analyses in one step [16, 11, 104] 
(Fig.  5). For blood, the coenzymes and antioxi-
dants were detected only in whole blood and not 
in serum or plasma as shown in Fig. 5 indicating 
that they are endogenous to the blood cells. Nearly 
half of the blood volume is comprised of cells and 
more than 99% of these are red blood cells 
(RBCs), and hence the measured coenzymes in 
whole blood represent their levels in RBCs. The 
newly reported method offers numerous opportu-
nities in the metabolomics field. An additional 
advantage of measuring the coenzymes/antioxi-
dants by NMR is that the method also provides 
quantitative data for a large pool of other metabo-
lites with little additional effort.

10  Summary

In summary, due to its unique capabilities, 
NMR spectroscopy plays a key role in the 
growing metabolomics field, despite its lower 
sensitivity and resolution compared to the 
other widely used analytical platform, mass 
spectrometry. NMR- based metabolomics 
offers opportunities to understand systems 
biology, discover biomarkers and potential 
therapy targets, and translate laboratory find-
ings to clinical applications. Numerous efforts 
focused on alleviating the sensitivity and reso-
lution bottlenecks in NMR have enabled iden-
tification and quantitation of an expanded pool 
of metabolites and led to the developments 
that now promise monitoring of metabolism in 
real time. NMR-based metabolomics 
approaches, however, are not devoid of limita-
tions. Owing to the increasingly realized com-
plexity of biological mixtures, reliable 
detection, unknown identification, and quanti-
tation continue to pose major challenges. 
However, continued, multifaceted efforts to 
boost sensitivity, resolution, and the speed of 
data acquisition and to improve quantitative 
accuracy promise to alleviate the current chal-
lenges. With constant advances in the field, 
NMR-based metabolomics is anticipated to 
continue to greatly impact the understanding 
of systems biology and to help make progress 
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in the treatment and management of a range of 
human diseases.
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1  Introduction

Lipids are a class of small molecules that differ in 
their structural properties and are largely insolu-
ble in water, but soluble in organic solutions. 
Lipids are either hydrophobic or amphiphilic. 
The most common forms are fatty acids and their 
derivatives. According to the structural character-
istics of lipid molecules and their building blocks 
(ketoacyl and isoprene subunits) utilized in bio-
chemical synthesis in vivo, the lipid metabolites 
and pathway strategy (LIPID MAPS) consortium 
funded by the National Institutes of Health in 
2003 classifies cellular lipids into eight catego-
ries. They include 1) fatty acyls, 2) glycerolipids, 
3) glycerophospholipids, 4) sphingolipids, 5) 
saccharolipids, 6) polyketides, 7) sterol lipids, 
and 8) prenol lipids [1, 2]. The number of lipid 
species is enormous. More than 43,000 unique 
lipid structures have been recorded in the LIPID 
MAPS Structure Database (LMSD), excluding 
the various forms of oxidation, regioisomers, and 
modifications [3].

Lipids are the main components of the cell 
membrane, the secretory vesicles, and lipopro-
teins. Lipids play numerous essential roles in cel-
lular functions such as energy storage and 
utilization, molecular transportation, signaling, 
and cell cycle regulation [4]. Therefore, abnor-
malities in lipid content, composition, and metab-
olism could lead to disorders in physiological 
functions of organisms and are associated with 
the pathogeneses of many diseases, such as dia-
betes, neurodegenerative diseases, cardiovascular 
diseases, and cancer [4–10]. A comprehensive 
analysis and understanding of the changes in 
total lipid entities (i.e., lipidome) of organisms 
under different pathophysiological conditions 
can effectively achieve the biomarker discovery 
and the understanding of disease mechanisms.

Shotgun lipidomics is an analytical approach 
for large-scale and systematic analysis of the 
composition, structure, and quantity of cellular 
lipids directly from lipid extracts of biological 
samples by mass spectrometry (MS) [11, 12]. 
This approach has the advantages of high 
throughput and quantitative accuracy (especially 
in absolute quantification) compared to the online 

separation-detection lipidomics approaches such 
as liquid chromatography-mass spectrometry 
(LC-MS) [13]. The effectiveness of this approach 
has led to great advances in biomedical research, 
including a variety of metabolic-related diseases 
such as diabetes, neurodegenerative diseases, 
cardiovascular diseases, and cancer [14, 15]. In 
cancer research, as the focus on metabolic repro-
gramming increases, so do the application and 
demand for lipidomic analysis.

At present, lipidomics has become one of the 
most important branches of omics and is a very 
active research field [15]. However, analytical 
methods of lipidomics are less mature than those 
of proteomics or metabolomics for water-soluble 
metabolites [16]. This is mainly hindered by the 
development of MS methods for nonaqueous bio-
logical samples. Moreover, the foundation of 
shotgun lipidomics is very different from those of 
other “omics” analyses. Shotgun lipidomics takes 
full advantage of the structural and chemical 
properties of lipid molecules, as well as the phys-
ics of MS, and focuses on the ability for quantita-
tive analysis [17, 18]. Development of shotgun 
lipidomics has helped the lipidomics discipline 
become an independent one from metabolomics. 
However, owing to the complexity of individual 
lipid structures and lipid class diversities, there is 
still room for evolving and improving the lipido-
mic approaches—from sample preparation to MS 
analysis and data processing [19–21].

A shotgun lipidomics workflow usually con-
sists of the following processes (Fig. 1): the intro-
duction of lipid molecules from lipid extracts, 
biological matrix, or a tissue section into the 
mass spectrometer (i.e., direct infusion or desorp-
tion in the case of MS imaging); data acquisition 
and lipid identification and quantification; and 
data mining and bioinformatic analysis. In step 
two, there are three major and intensively devel-
oped MS data acquisition strategies, including 
tandem MS-based shotgun lipidomics, high mass 
accuracy-based shotgun lipidomics, and multidi-
mensional MS-based shotgun lipidomics 
(MDMS-SL). MS imaging is another pseudo- 
approach of shotgun lipidomics. Although the 
analytical capabilities for quantification and 
structural identification are limited, imaging 
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methods can provide spatial information on lipid 
distribution and are important for biomedical 
studies. In this chapter, we will introduce the 
principles, approaches, and applications of shot-
gun lipidomics for cancer research.

2  MS-Based Shotgun 
Lipidomic Approaches

2.1  Mass Spectrometers 
and Ionization Methods

The development of biological MS is the techni-
cal basis of lipidomics. The standard triple quad-
rupole (QqQ) instrument plays a central role in 
shotgun lipidomic analysis due to its quantitative 
analysis power. At the same time, high-resolution 
MS has expanded the capabilities for lipid identi-
fication and discovery. Table 1 shows a compari-
son of the representative mass spectrometers 
frequently used in shotgun lipidomics.

The variety of ionization methods funda-
mentally determines the detectable range of 
lipid species (Fig. 2). Currently, the frequently 
used ionization methods in MS for lipidomics 
include electrospray ionization (ESI), desorp-
tion electrospray ionization (DESI), matrix-
assisted laser desorption/ionization (MALDI), 
atmospheric pressure chemical ionization 
(APCI), atmospheric pressure photoionization 

(APPI), and secondary ion mass spectrometry 
(SIMS). DESI is a variant of ESI, where the 
ionized solvent droplets sprayed separately 
from the analyte provide it to be suitable for in 
situ analysis. APCI uses a corona discharge 
method to produce high- energy metastable ions 
that react with the analyte to accomplish ioniza-
tion. APPI uses energy from a vacuum-ultravio-
let lamp to directly or indirectly (chemical 
reaction of metastable ions) ionize the analyte. 
APCI and APPI are necessary additions to the 
ESI source. They work well with solvents of 
very low polarity. APCI is a soft ionization 
source that is more suitable for ionizing low-
polarity molecules. Compared with APCI or 
ESI, APPI is a relatively hard ionization source, 
but it can increase the ionization efficiency of 
samples that are not easily ionized under APCI 
and ESI. SIMS utilizes the focused high-energy 
ion (the primary ion) to bombard the analyte, 
causing the ionization (often accompanied with 
severe fragmentation) of the analytes (the sec-
ondary ion). MALDI can ionize molecules of a 
wide range of properties under laser excitation 
employing the energy transfer of the matrix. 
Despite the availability of multiple ionization 
methods, the most widely used methods are ESI 
(including DESI) and MALDI. Since MALDI, 
DESI, and SIMS are often used in MS imaging 
for lipidomics, we will discuss them separately 
in Sect. 2.3.

Fig. 1 A schematic workflow of MS-based shotgun lipi-
domics. HRMS, high-resolution mass spectrometry; 
MDMS, multidimensional mass spectrometry; MALDI, 

matrix-assisted laser desorption/ionization; DESI, desorp-
tion electrospray ionization; and SIMS, secondary ion 
mass spectrometry
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2.2  Direct Infusion-Based 
Shotgun Lipidomics

2.2.1  Introduction
In most circumstances, shotgun lipidomics is 
also referred to as direct infusion-based lipido-
mics. The lipids are not separated by chromatog-
raphy, and the continuously injected lipid extract 
mixture is ionized directly from solution (e.g., 
ESI) under a constant lipid concentration [17]. 
Although there is no chromatographic separa-
tion, lipid sample preparation can be carried out 
by multiplexed extraction strategies according to 
the diversity in hydrophobicity, acid/base stabil-
ity, and reactivity among the lipid classes and 
subclasses [22]. The most commonly used ion-
ization methods in this approach are ESI, and 
then APCI, APPI, and MALDI.

An important feature of shotgun lipidomics is 
to employ a selective ionization strategy (Fig. 3). 
Different lipid classes have different charged 
properties in solution due to their distinctive 

structures (e.g., different polar head groups in 
polar lipids). These different lipids can be selec-
tively ionized in the ion source under a given 
solution condition, referred to as intrasource sep-
aration [23, 24]. The concept of the pseudo- 
separation in the ion source is analogous to the 
electrophoresis of different compounds with dif-
ferent pI values.

Shotgun lipidomics maximizes the original 
information of a biological sample. A long-term 
MS analysis time is possible via a low flow rate 
of continuous direct injection, allowing multiple 
acquisitions in different MS scan modes for the 
analysis of the same component in a sample [18]. 
Usually, shotgun lipidomics is not suitable for 
analyzing low-abundance or less-ionizable lipids 
due to ion suppression. However, it can be 
improved by derivatization or multiplex extrac-
tion [25–27]. Since there is no change of lipid 
concentrations and solvent composition during 
the analysis, it is possible to achieve a high 
signal- to-noise (S/N) ratio by long-time acquisi-

Fig. 2 The relationship 
between ionization 
methods and applicable 
analysis range

Table 1 Comparison of the features of some common mass analyzers

Mass analyzer Mass resolutiona Mass accuracy (ppm) Sensitivity Identification Quantification
LTQ (LIT) 2000 100–500 Good ++ +
Q-q-Q 1000 100–1500 High + +++
TOF/TOF-TOF 10,000–40,000 5–50 High ++ ++
Q-q-TOF 10,000–60,000 5–50 High ++ +++
Orbitrap 100,000–800,000 <5 Medium +++ ++
FTICR >1,000,000 <1 Medium +++ ++

aMass resolution at full width half maximum
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tion, which ensures accurate quantification using 
internal standards [18].

Currently, there are three well-developed and 
widely used approaches in shotgun lipidomics: 
tandem MS (MS/MS)-based shotgun lipidomics, 
high mass accuracy-based shotgun lipidomics, 
and multidimensional MS-based shotgun lipido-
mics (MDMS-SL).

2.2.2  Tandem MS-Based Shotgun 
Lipidomics

Lipid molecules contain structural building 
blocks that reflect their chemical characteristics. 
In MS/MS of lipids, especially for polar lipids, 
there are individual fragments related to their 
head groups. A lipid class can be specifically 
identified by a neutral loss scan (NLS) or precur-
sor ion scan (PIS) of the specific fragment. 
According to the structural features of each lipid 
class, researchers should design a shotgun-based 
MS/MS scanning that “isolates” a category of 
lipid species of interest from a lipid mixture 
employing a unique NLS or PIS [24]. The filtered 
head group fragments that detected by PIS or 
NLS are used to classify lipid classes, and the PIS 
or NLS of fatty acyl chains is used to identify the 

exact molecular species in a lipid class [28]. 
Orders of magnitude of S/N ratio can be increased 
through this MS/MS double-filtering process. In 
general, QqQ mass spectrometers are the most 
common instrument (usually because of their 
multiple acquisition modes, high dynamic range, 
and low cost) to detect all species in a lipid class 
directly from total lipid extracts in one MS/MS 
acquisition.

The benefits of the MS/MS-based approach 
include its simplicity, high sensitivity, easy to 
use, and low cost. However, there are some limi-
tations to this approach. For example, the length 
and unsaturation of the fatty acyl chain of lipid 
species are usually not determined. The speci-
ficities of individual fragments used in MS/MS 
scans may not be sufficient, which may intro-
duce some false-positive results. Since the signal 
responses of the fragment to different species of 
a lipid class are not fundamentally constant, 
accurate quantification of the identified lipid 
species may be difficult. It requires at least two 
internal standards to accomplish accurate mea-
surements for each lipid class [29], which 
increases the difficulty of internal standard 
selection.

Fig. 3 Scheme of a typical experimental strategy based on the concept of intrasource separation for measurement of 
different categories of lipids from lipid extracts to achieve maximal lipidomics coverage
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2.2.3  High Mass Accuracy-Based 
Lipidomics

High mass resolution/accuracy is beneficial for 
both qualitative and quantitative analysis. The 
three mainstream mass analyzers for high- 
resolution MS are quadrupole time-of-flight 
(Q-TOF), Orbitrap, and Fourier-transform ion 
cyclotron resonance (FTICR). High mass accu-
racy enables to accurately record the mass-to- 
charge ratio (m/z) information of the fragment 
ions in a particular mass window, and the high 
mass resolution minimizes false positives. The 
high mass accuracy-based shotgun lipidomics 
can quickly determine all product ions in a small 
mass bin width over the entire mass range of 
interest [30–33]. Thus, qualification and quantifi-
cation of the lipid species can be obtained from 
the product ion mass spectral set. This full range 
of coverage of a product ion scan is referred to as 
“top-down lipidomics” or “bottom-up shotgun 
lipidomics” [34, 35].

A high mass accuracy-based shotgun lipido-
mics can perform data-independent analysis due 
to its high mass resolution and high mass accu-
racy [36–38]. MS/MSall is a data-independent 
analytical method that has been applied in lipido-
mic analysis [37, 39, 40]. In MS/MSall, parallel 
scanning over the quadrupole is done across the 
full mass range, with 1 Da as the mass window. 
The selected precursor ions (usually with a quad-
rupole analyzer) are injected to collision cell, and 
then all fragment ions are detected with a high- 
resolution mass analyzer. This method could pro-
vide more comprehensive coverage of 
identification than that provided by data- 
dependent analysis, with better reproducibility 
and sensitivity. It theoretically maximizes the 
fragmentation information of the sample, if frag-
mentation of the lipid species in the mass range 
does not depend too much on CID energy, and 
provides a large data pool for data mining, includ-
ing the distinguishment of isomers and the iden-
tification of unknown species.

The high mass accuracy-based shotgun lipido-
mic approach can provide highly efficient, adapt-
able, and sensitive determinations of lipid 
species. Within the dynamic range allowed by the 
instrument, all of the potentially existing lipid 

species can be covered, and the method can be 
performed in an untargeted manner for the analy-
sis of any lipid species present in the cellular lipi-
dome. Since the method is essentially based on 
the MS/MS technology, each lipid class needs to 
contain multiple (at least two) internal standards 
to achieve accurate quantification [29].

2.2.4  Multidimensional MS-Based 
Shotgun Lipidomics

MDMS-SL combines a full mass scan and all 
MS/MS scans for headgroups and acyl chains to 
identify individual lipid species (including iso-
mers) entirely and to accurately quantify these 
identified species with a two-step quantification 
procedure [13]. It is designed to achieve high 
accuracy of quantification and broad linear range 
of quantification.

In MDMS-SL, the unique structural building 
blocks of the lipid molecules are fully applied to 
identify individual lipid species [5, 12]. A two- 
dimensional (2D) mass map can be constructed 
from MDMS-SL, with the m/z range as the first 
dimension and all spectra (including a full scan 
and unit-by-unit NLS and PIS scans) as the sec-
ond dimension [18]. As can be deduced from the 
description in the MS/MS method, the NLS and 
PIS scans over the mass range of interest can pro-
vide sufficient data to distinguish the class and 
the fatty acyl chain length that are required for 
characterization of the lipid species. Typically, 
for identification of a specific class of lipids, it is 
adequate to selectively scan the structurally spe-
cific building blocks and fatty acyl chains by PIS 
or NLS or both (Fig. 4). Currently, this approach 
is capable of analyzing thousands of lipids from a 
small amount of biological sample, covering 
around 50 lipid classes. The total coverage has 
exceeded 95% of the mass content of a cellular 
lipidome [13, 19].

Moreover, the direct acquisition of multidi-
mensional spectra provides much more informa-
tion that can be mined for reliable identification 
and quantification of lipid species, including iso-
mers with different fatty acyl chains and regioiso-
mers with identical fatty acyl chains at different 
linked position with glycerol. Accurate absolute 
quantification can be achieved with two-step 
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Fig. 4 A 2D mass spectrum of rat myocardial lipid 
extract in negative ion electrospray ionization for analy-
sis of phospholipids. As shown, the first dimension rep-
resents the mass range from m/z 600 to 1000. The second 
dimension, composed of different PIS and NLS analy-
ses, shows specific fragment (building block) informa-
tion about these species. For example, the ion at m/z 
885.7 was present in the negative ion full scan (the most 
top one), as well as PIS153, PIS241.2, PIS283.3, and 
PIS303.3 spectra. This indicates that this molecular ion 
is an anionic phospholipid and can yield fragments at 
m/z 153, 241.2, 283.3, and 303.3 corresponding to the 
building blocks of dehydrated glycerophosphate, inosi-
tol phosphate, and carboxylate ions of stearic acid (18:0) 
and arachidonic acid (20:4), respectively. These building 

blocks plus their intensities allow us to identify the ion 
as PI (18:0–20:4). Similarly, the 2D analysis identifies 
the ion peaks at m/z 619.6, 678.5, 693.6, and 708.6 as the 
internal standards (IS) of CL (14:0/14:0/14:0/14:0), PS 
(14:0/14:0), PG (15:0/15:0), and PC (14:1/14:1), respec-
tively, which were added prior to lipid extraction for 
quantification. The peaks at m/z 723.6 and 747.6 were 
also apparently identified as CL (18:2/18:2/18:2/18:2) 
and PG (16:0/18:1), respectively, which are the major 
species of lipids present in rat myocardium. The identi-
fied major species could be quantified in the full MS 
scan mode in comparison to the corresponding IS.  By 
using these quantified species plus IS, the low abun-
dance lipid species can be quantified by using PIS/NLS 
spectra
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quantification (see Sect. 3.2), which is a unique 
quantification method for MDMS-SL [13].

2.3  Imaging Lipidomics

Although the sensitivity of MS imaging is lower 
than that of optical detection methods, MS imag-
ing can directly obtain the information about 
hundreds of lipid compounds without the need 
for labeling [41, 42]. Because it is difficult to get 
specific labeling tags or antibodies to observe 
specific lipid molecules through microscopes, 
MS imaging has become the most potent method 
for large-scale profiling of the distribution of 
lipid molecules. Table 2 shows a comparison of 
the characteristics of various MS imaging meth-
ods used in lipidomics.

2.3.1  Matrix-Assisted Laser 
Desorption/Ionization-Mass 
Spectrometry Imaging

MALDI-MS imaging is an effective label-free 
method that simultaneously detects a wide range 
of biomolecules, identifies unknown species, 
and displays their distribution in high spatial 
resolution. MALDI-MS imaging is one of the 
most popularly applied approaches in current 
development [43] mainly because the method 
can achieve both high-resolution and high-sen-
sitivity imaging by using laser spot modulation 
and a wide variety of substrates to be chosen as 
matrices. Currently, commercial instruments 
provide a stable and reliable 10-micron level of 
imaging and achieve imaging at less than 
1-micron resolution in the laboratory [44]. Since 
MALDI can be modulated with the energy of a 
laser source, the sensitivity in high-resolution 

imaging is higher than that of other methods 
[45, 46].

The successful imaging of lipids by 
MALDI-MS largely depends on the choice of the 
matrix. The lipid molecule cannot be ionized 
without a matrix under the excitation of the ultra-
violet laser while keeping the lipid molecule 
intact. Matrix-assisted ionization allows the sen-
sitive detection of lipid molecules. One of the 
main challenges for the MALDI-MS imaging of 
lipids is that the matrix should avoid generating 
strong, cluttered background interference signals 
in the detection range and be also capable of ion-
izing lipid species efficiently. Many efforts have 
been devoted to find or optimize suitable matri-
ces and their imaging procedures [47–51]. The 
requirement of analysis for the complex distribu-
tion and diversity of lipid species leads to diverse 
matrices for MS imaging of lipids. Different 
matrices can be used to ionize the target lipid 
classes selectively [52]. Based on the knowledge 
of the distribution of lipid classes in different tis-
sue sections or organs, the reasonable selection 
of a suitable matrix can maximize data acquisi-
tion [51, 53–55]. For example, N-(1-naphthyl)
ethylenediamine dihydrochloride is a highly 
selective and sensitive matrix for ionization of 
glycerophospholipids [51], whereas 
9- aminoacridine is highly selective for analysis 
of sulfatides [53]. In order to improve the cover-
age of the lipids of interest and reduce unneces-
sary interference from other lipid classes, 
researchers should select the appropriate matrix 
according to the selectivity or preference.

In addition to organic matrices, nanomaterial- 
based matrices have been a focused research area 
in recent years in order to eliminate the effects of 
the matrix background on interference [56]. This 

Table 2 Comparison of the features of major MS imaging approaches

MALDI DESI SIMS
Typical spatial 
resolution

5–100 μm 100–200 μm 50 nm-2 μm

Mass range (m/z) Full range < 2000 < 1500
Mass analyzer TOF/TOF, Q-TOF, FTICR, 

Orbitrap
Q-TOF, 
Orbitrap

TOF, magnetic section

Sample preparation Tissue section; dehydration; 
matrix coating

No 
pretreatment

Tissue section; dehydration; fixation 
(optional)

J. Wang et al.
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is because many inorganic nanomaterials are sta-
ble under laser irradiation and do not have the 
propensity to generate fragmentation and free 
radicals. Nanomaterial matrices include the fol-
lowing categories: nano-metal oxides (e.g., TiO2, 
WO3, and ZnO) [57], nano-metal particles (e.g., 
platinum, gold, and silver) [58–60], nano-carbon 
materials (carbon dots, graphene, and diamond) 
[61–63], and 2D nanosheets (e.g., hBN nanosheet, 
MoS2 nanosheet, and tellurium nanosheet) [64–
66]. The nanomaterial matrices are the beneficial 
complementarity to organic matrices due to the 
advantage of low or free background interfer-
ence. However, the detection sensitivity of nano-
material matrices still lags behind that of organic 
matrices.

2.3.2  Desorption Electrospray 
Ionization Imaging

DESI imaging is a widely used ambient-MS 
imaging technique [67]. In the DESI process, 
charged primary organic droplets impact on the 
sample surface with specific kinetic energy, and 
the secondary droplets that are dissolving sample 
molecules are sputtered from the surface upon 
impact. The charged nanometer-scale sputtered 
sample droplets then undergo a desolvent and 
charge transfer process (similar to ESI) under the 
potential of the electric field to guide the gener-
ated ions into the mass spectrometer. It can be 
understood from the principle of DESI that 
although its spatial resolution and sensitivity are 
not as good as those of MALDI-MS, real-time or 
native imaging can be achieved by maintaining 
the original state of the sample because no pre-
treatment is required [68]. Accordingly, DESI 
imaging has some advantages that MALDI imag-
ing cannot replace, such as intraoperative assess-
ment, assisted diagnosis, and the surface analysis 
for forensic samples [69–72].

2.3.3  Secondary Ion Mass 
Spectrometry Imaging

SIMS imaging is performed by point-by-point 
bombarding a beam of highly focused high- 
energy ions onto the sample surface to produce 
secondary ions. Its concept is similar to that of 
electron microscopy, except that ions are excited 

and monitored instead of electrons. The most 
important feature of SIMS imaging is that it can 
reach the spatial resolution to an optical micros-
copy level, which is currently not possible for 
any other MS imaging methods. SIMS imaging 
has been used for single-cell lipid imaging [73]. 
Since it is not a soft ionization method, it is cur-
rently hard to obtain rich intact lipid peaks with-
out accompanying fragments.

3  Quantification Methods

3.1  Principles and Single-Step 
Quantification

The quantification of shotgun lipidomics is per-
formed in the absence of chromatographic sepa-
ration. The requirements for relative quantification 
and absolute quantification are similar. Both 
quantifications need the addition of internal stan-
dards, and the quantity cannot be derived from 
the ion count [74]. This is because the matrix 
effects of the samples on different groups may be 
very different. This feature makes it easier to per-
form relative quantification in chromatographic 
separation-based lipidomics [75, 76], while shot-
gun lipidomics is more conducive to an accurate 
absolute quantification.

Absolute quantification measures the amount 
of each lipid component under a specific physical 
unit reference, such as nanomole per milligram 
(nmol/mg) of protein. The absolute quantifica-
tion of lipids is critical for elucidation of lipid 
metabolism pathways/network. In addition, abso-
lute quantification is also beneficial for batch-to- 
batch studies. The most common absolute 
quantification method is the one that spikes the 
sample with internal standard(s) and thereby 
directly compares the relative signal relationship 
between the analytes and the internal standard(s) 
under identical experimental conditions. It is 
assumed that the concentration of the sample is 
proportional to the signal (i.e., a constant response 
factor). This proportional relationship is estab-
lished by subtracting the baseline effect, avoiding 
lipid aggregation, and being detected within the 
linear dynamic range of the MS system [29].

Mass Spectrometry-Based Shotgun Lipidomics for Cancer Research
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Individual species of polar lipids have nearly 
identical ionization efficiencies (i.e., same 
response factor) in the low concentration range 
after correction for different 13C isotope distribu-
tions [12, 77]. It is because the MS signal 
response factors of polar lipids are mainly deter-
mined by the polar groups, whereas the length 
and number of unsaturation of the fatty acyl 
chains have minimal effects on the signal under 
the same conditions. This property makes it easy 
to quantify lipid species with internal standards. 
However, for nonpolar lipids, the signal response 
is affected by the structure of the fatty acyl chain. 
The signal response factors between the analytes 
and the spiked internal standard are not identical, 
even in the low concentration region. The 
response factors of nonpolar lipids should be pre- 
corrected or derivatization should be conducted 
to ensure accurate quantification [78, 79]. 
Similarly, for the PIS and NLS spectra, lipid 
structures, such as molecular weight, acyl chain 
length, and unsaturation, also affect the reaction 
channel of the collision dissociation. Thus, cor-
rection for the signal response factors among 
internal standards is needed.

The quantitative methods of high mass accu-
racy and MS/MS approaches are both based on 
this principle. Ultrahigh-resolution MS increases 
the accuracy of quantification by reducing the 
overlapping effect of the isobaric peaks.

3.2  Two-Step Quantification by 
MDMS-Based Shotgun 
Lipidomics

The first step of the two-step quantification is 
based on the principle described in the previous 
section, which is to quantify high-abundance lip-
ids in a full-scan mass spectrum. Therefore, any 
of the quantified lipid molecules can be used as a 
new internal standard for the quantitative analy-
sis of the rest lipid species in this lipid class. In 
the second step of quantification, newly deter-
mined “internal standards” can be used to correct 
PIS and NLS signal responses for different struc-
tures to quantify low abundance lipids [23].

In MDMS-SL, the lipid molecules identified 
by intrasource separation and MDMS screening 
are typically quantified using a two-step quanti-
fication procedure [13, 17]. The two-step quanti-
fication method makes MDMS-SL particularly 
useful for accurate quantification of low- 
abundance lipids and peaks overlapping with 
lipid species from other lipid classes. In the 
MDMS scan, comprehensive PIS and NLS infor-
mation can be collected. The first step of the 
two- step quantification process is to use the 
spiked internal standard of a class to directly and 
ratiometrically compare full-scan MS peaks of 
other lipid species in the class that have both 
high abundance and no interference. The quanti-
tative results are corrected by baseline subtrac-
tion and 13C deisotoping. The second step of 
quantification is based on the results of the first 
quantification step, where the low-abundance 
peaks and the peaks that overlapped with other 
lipid classes are quantified. Since the signal 
response factors of different species are different 
in the PIS or NLS mass spectrum, the strategy is 
to use both the structural representative species 
quantified in the first step plus the originally 
spiked internal standard as the standard set for 
the second step quantification. Usually, the cor-
rection utilizes an algorithm based on multivari-
ate least-square regression. PIS and NLS 
scanning improves the S/N ratio of the low-
abundance peaks and excludes interference from 
other lipid classes. By using the second step of 
quantification, which is used as a dynamic range 
relay, it is possible to achieve a linear dynamic 
range of more than 5000-fold for many lipid 
classes.

4  Bioinformatics for Shotgun 
Lipidomics

The lipidomic analysis produces a large amount 
of data. Without proper computational tools and 
effective data mining, it is difficult to recognize 
the biological significance of the dataset. 
Therefore, bioinformatics has become a critical 
component of lipidomics [80].

J. Wang et al.
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4.1  Lipid Identification Tools 
and Databases

Many software packages can be applied for large- 
scale analysis of lipids in an automated or semi-
automated manner. These tools use the fragment 
information generated by CID to identify and 
quantify lipid species and chain lengths. 
LipidBlast [28] is an in silico tandem mass spec-
tral database containing hundreds of thousands of 
possible lipid structures. This library is very 
helpful for spectral annotation and lipid 
 identification. MDMS-SL requires a theoretical 
database based on the concept of building blocks, 
covering all lipids and including all possible 
structural building block combinations [13]. 
Other typical representatives of these tools are 
LipidFinder [81, 82], LipidProfiler [31], 
LipidInspector [32], and ALEX [83].

The LIPID MAPS website covers structural 
information of a wide range of lipid classes, as 
well as a variety of bioinformatics tools for lipid 
analysis [3]. Its main contents involve several 
aspects, including structural classification and 
nomenclature, experimental verified and in- 
silicon generated lipid database, and computer- 
aided spectral comparisons. These tools can help 
build and predict possible lipid structures from 
mass spectra. Similarly, both the METLIN 
Metabolomics Database [84] and the Human 
Metabolome Database (HMDB) [85] are large, 
comprehensive metabolite databases (including 
lipids) that provide rich functional information 
and cross-indexed links to facilitate metabolic 
pathway studies. Among them, HMDB provides 
a number of mass spectra measured under differ-
ent conditions that are helpful for lipid 
identification.

4.2  Biostatistics and Data 
Interpretation

The analysis and interpretation of the data require 
the use of statistical analysis. Descriptive statis-
tics and hypothesis testing are basic data analysis 

methods [86]. There are many general statistical 
packages in this area, for example, GraphPad and 
Minitab. Advanced statistical methods, such as 
multivariate statistical analysis and biomarker 
discovery, are also widely used in lipidomics 
studies. MetaboAnalyst is a set of online tools for 
metabolomics data analysis and interpretation 
[87]. It provides a variety of analytical tools, 
including descriptive statistics, multivariate sta-
tistical analysis, biomarker discovery, and meta-
bolic pathway analysis. Its numerous statistical 
tools are easy to understand and continent to use. 
However, MetaboAnalyst may not be able to 
meet the requirements of more advanced and 
complex statistics or highly customized visual 
output. For example, to support vector machine 
analysis, only two sets of comparisons are sup-
ported in MetaboAnalyst. For sophisticated data 
mining, some statistical software such as SIMCA 
(especially for multivariate analysis) and SPSS 
(general and comprehensive), and even fully pro-
grammable software such as SAS and R, provide 
powerful functions.

Biostatistics tools can reveal major changes in 
variables in samples. However, how these 
changes reflect or explain the disease mecha-
nism, and to exclude interference of the irrational 
changes caused by hidden variables, data inter-
pretation employing knowledge of lipid metabo-
lism is required. The continuous accumulation of 
metabolic pathways and lipidomics data has 
detailed information on lipid metabolism, trans-
formation, and regulatory pathways, such as 
KEGG [88] and VENTED [89]. Based on this 
type of information, the researcher can use the 
quantitative results obtained from lipidomics 
analysis to construct the changed pathways of the 
research object. It should be noted that the model 
pathways provided by various databases explain 
the overall pathways of the entire lipid class, but 
not the individual species of a class. However, the 
target of lipidomics research does not stop at this 
point. Analysis of factors for specific lipid spe-
cies changes is also a goal of lipidomics. This 
level of knowledge accumulation and the data-
base are still limited.
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5  Application of Shotgun 
Lipidomics for Cancer 
Research

Lipids play a key role in the crucial processes for 
tumor development [90]. Table 3 shows the cel-
lular function of the major cellular lipid classes. 
Tumors alter the cell cycle, function, differentia-
tion, morphology, homeostasis, and the depen-
dence of energy metabolism, so almost all types 
of lipid classes are affected and changed at differ-
ent stages of tumor development [91–96].

Shotgun lipidomics plays an important role in 
revealing the changes in lipid homeostasis 
 underlying the cancer progression to support 
mechanism studies or assessment of tumor mar-
gins [69, 97]. This type of lipidomic analysis, 
especially MS imaging analysis, provides an 
intraoperative assessment of tumor surgeon at 
shorter intervals than existing methods, and a 
more efficient and automated analysis system can 
be established by pattern recognition [98]. In 
addition, MS imaging analysis of early tumor 
development, especially the homeostasis of small 
tumor foci, provides important reference infor-
mation for the study of tumor metastasis and 
potential therapeutic targets [51, 99, 100].

Another active research at present is concen-
trated on the biomarker discovery and facilitating 
early diagnosis or prognosis. For example, 
numerous studies have shown that altered glyc-
erophospholipids can be considered biomarkers 
for cancer diagnosis [101–103]. In early diagno-
sis, the discovery of protein markers is much 
more difficult than lipid markers. This is mainly 
because a small number of changes in protein 
species may have a substantial chance of trigger-
ing a wider range of phenotype changes [104, 
105]. Less developed research areas relevant to 
cancer research are the lipidomics-assisted stud-
ies on the functions of microRNAs and long non- 
coding RNAs [106–108] and drug efficacy tests 
[109]. Overall, changes of lipid species are a 
valuable analytical window for early diagnosis 
and intervention of tumors and broad areas of 
cancer research.

6  Summary

In short, lipidomic analysis is the basis of bio-
medical science, as a limited understanding of 
the composition of biological systems often puts 
biomedical research in a state of inefficiency or 
even based on accidental discovery. Due to the 
extraordinary complexity of the lipidome, unlike 
the predictable proteome from the nucleic acid 
sequence, we do not know how many lipid spe-
cies are present in the cellular lipidome. 
Consequently, a comprehensive chemical analy-
sis, including both qualitative and quantitative 
aspects, is essential for the mapping of lipidomes 
and the study of their metabolism. In addition, 
statistical tools, such as those that facilitate data 
interpretation and visualization of lipid metabo-
lism pathways, are still at an underdeveloped 
stage. Combining the results of lipidomics with 
clinical pathology and pharmacology will 
become increasingly desirable. The future devel-
opment of lipidomics should significantly facili-
tate our understanding of the biological 
mechanisms of diseases including human 
cancers.

Table 3 Cellular functions of major lipid classes

Cellular 
functions Lipid classesa

Membrane 
structural 
component

PC, PE, PI, PS, PG, PA, SM, CL, 
cholesterol, cerebroside, glycolipids, 
ST, gangliosides, etc.

Energy 
storage and 
metabolism

NEFA, TAG, DAG, MAG, acyl CoA, 
acylcarnitine, etc.

Signaling All lysolipids, DAG, MAG, acyl 
CoA, acylcarnitine, NEFA, 
eicosanoids, and other oxidized FA, 
ceramide, sphingosine, S1P, 
psychosine, steroids, N-acyl 
ethanolamine, etc.

Other special 
functions

Plasmalogen (antioxidant), 
acylcarnitine (transport), CL 
(respiration), PS (cofactors, substrate 
of PE synthesis), etc.

aThe full name of abbreviations can be found in the list of 
acronyms
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1  Introduction

The metabolome is composed of all metabolites 
in an organism. Those metabolites form a large 
network of metabolic reactions. The outputs from 
one enzymatic reaction are inputs to the others. 
Compared with genome and proteome, the 
metabolome is much more dynamic and complex 
because each metabolite is biochemically, spa-
tially, and temporally defined [1, 2]. Metabolomics 
is the systematic study of metabolites and is usu-
ally divided into targeted metabolomics and 
untargeted metabolomics. Targeted metabolo-
mics analyzes a limited number of known metab-

olites [3], while untargeted metabolomics aims to 
comprehensively analyze all metabolites present 
in a biological sample [4, 5].

Metabolites have a wide range of molecular 
weights and large variations in concentration. 
They can be polar or nonpolar as well as organic 
or inorganic. To date, the number of metabolites 
in a biological sample remains unknown even 
though it is estimated that at least thousands of 
metabolites should be detectable. As the chemi-
cal diversity of metabolites is so broad and the 
types of metabolites are huge, the analytical tech-
nologies needed to analyze metabolites are inher-
ently complex, and there is not a singular 
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instrument capable of analyzing all types of 
metabolites [6–10].

Currently, multiple analytical platforms such 
as liquid chromatography–mass spectrometry 
(LC-MS), gas chromatography–mass spectrome-
try (GC-MS), and nuclear magnetic resonance 
(NMR) spectroscopy have been used in metabo-
lomics. Among those analytical platforms, bio-
logical samples are frequently analyzed by 
LC-MS and/or GC-MS to achieve higher metab-
olite coverage, while NMR is generally best 
suited to quantitatively measure the most abun-
dant metabolites or for molecular structure eluci-
dation [11, 12]. Some other techniques such as 
capillary electrophoresis-mass spectrometry 
(CE- MS) are also used in metabolomics [13].

2  GC × GC-MS System and Its 
Operation

Due to the limited peak capacity of a single col-
umn, a one-dimensional separation method in 
GC-MS can only resolve a limited number of 
metabolites in a biological sample [14]. In order to 
increase the analytic power of GC-MS, multidi-
mensional gas chromatography (MDGC) has been 
used for decades. Conventional MDGC technique 
uses the “heart cutting” method where selected 
portions of analytes eluted from the first dimen-
sion (1D) column are transferred to the second 
dimension (2D) column for further separation to 
achieve enhanced resolution for the heart- cutting 
zone [15]. This technique is unsuitable for untar-
geted metabolomics owing to its limited peak 
capacity and long analysis time. Comprehensive 
two-dimensional gas chromatography-mass spec-
trometry (GC × GC-MS) is the latest development 
to enhance the GC separation power.

A GC × GC-MS system has four major com-
ponents: a 1D column, a modulator, a 2D column, 
and a mass spectrometer. The two columns 1D 
and 2D are connected in series by a modulator. 
After the sample is injected into the system 
through an injector, metabolites are initially sep-
arated on the 1D column. Metabolites eluted from 
the 1D column within a certain period of time, 
termed as modulation period PM, are collected as 

a fraction by the modulator and then subjected to 
the 2D column for further separation. After the 
separation on the 2D column, metabolites are 
transferred to the mass spectrometer for measure-
ment. This process is sequential and continuous 
throughout the analysis until all fractions col-
lected from the 1D column are analyzed by the 2D 
column and mass spectrometer. Therefore, the 
GC × GC-MS offers a much more increased peak 
capacity and resolution.

2.1  Modulator

Modulator is a critical component in 
GC × GC-MS that isolates the elute from the 1D 
column into multiple fractions, focuses, and 
injects each fraction to the 2D column for further 
separation [16–20]. Modulators can be classified 
in two major categories: valve-based modulator 
and thermal modulator. In a valve-based modula-
tor, a flow of gas is used to isolate portions of the 
elute from the 1D column as a fraction and injects 
it to the 2D column for further separation. A ther-
mal modulator works by controlling the tempera-
ture to trap the elute from the 1D column and then  
injects it to the 2D column. While all types of 
modulators provide the common task of isolating 
a portion of elute from the 1D column, refocusing 
and transferring it to the 2D column for further 
separation, thermal modulators have fundamen-
tal advantages over the other types of modulators, 
by providing increased detection sensitivity and 
signal-to-noise (S/N) ratio due to its high duty 
cycle. The thermal modulators can be further 
subdivided into heater-based modulators and 
cryogenic modulators. Cryogenic modulators 
have been proven to be highly reliable, but costly.

To get optimal separation by GC × GC-MS, 
the modulation period (PM) should be optimized 
based on experimental design, but generally, it 
lies between 2 and 10 s. The ideal PM should be 
sufficient to resolve the unresolved peaks from 
the 1D column with minimum loss of the 1D sepa-
ration. A large PM value reduces the resolution of 
the 1D separation, while a small PM value may not 
provide enough 2D separation and can give rise to 
a wraparound problem.
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2.2  Column Configuration

The true power of a GC × GC-MS system lies in 
its orthogonal separation on the two columns 
[21]. In general, those two columns are mutually 
exclusive in their stationary phase and column 
dimension. The 1D column is usually a conven-
tional GC column with a nonpolar stationary 
phase, e.g., 100% dimethyl polysiloxane, 5% 
diphenyl-95% dimethylpolysiloxane, (5% 
phenyl)-polycarborane-siloxane, 5% diphenyl- 
dimethylpolysiloxane, etc. The stationary phase 
of the 2D column is usually polar, e.g., polyethyl-
ene glycol (PEG), 100% bicyanopropyl polysi-
loxane, dimethyl polysiloxane, 70% cyanopropyl 
polysilphenylene-siloxane, etc. [17, 22].

A highly polar 2D column can provide maxi-
mum orthogonality in separation if the 1D col-
umn has nonpolar stationary phase. However, a 
polar column is usually not thermally stable and 
its upper temperature limit is only about 
225  °C.  In addition, trace levels of oxygen and 
water can degrade the polar column. Therefore, 
columns with middle polarity and higher tem-
perature coverage are also used as the 2D column. 
For instance, the column with a stationary phase 
of 50% phenyl, 50% methylpolysiloxane has 
high temperature coverage ranging from 40 °C to 
320/340 °C. Furthermore, a mid-polarity column 
provides sufficient polarity and temperature 
range for derivatized metabolites because the 
polarity of a metabolite is usually reduced after 
derivatization.

In general, the optimal column combination is 
project dependent. Trial-and-error testing is the 
most popular way to find the optimal column 
combination. Since the 1D column separation is 
generally boiling point separation, a long column 
is preferable. To get the maximum separation, a 
short and comparatively narrow-bore column 
relative to the 1D column is often used as the 2D 
column. The 1D column has a typical length of 
30–60 m with an inner diameter of 0.25–0.3 mm 
and film thickness of 0.25–1 μm. The 2D column 
is typically 1–3 m long with an inner diameter of 
0.10–0.25 mm and film thickness of 0.1–0.25 μm 
[23–25]. While the most used column combina-
tion is a nonpolar column connected to a polar (or 

a mid-polar) column, numerous applications 
have used a reverse order, i.e., a polar or mid- 
polar column followed by a nonpolar column 
[26–29].

To maintain the orthogonal separation in 
GC  ×  GC-MS, the temperature program rate is 
generally kept lower, i.e., 0.5–5 °C to allow the 
production of a relatively broad 1D peak to pro-
vide the adequate modulation for 2D separation 
[17, 23]. However, a lower ramp rate needs a lon-
ger modulation period, and a longer modulation 
causes some loss of the resolution of the 1D sepa-
ration. The two columns are usually put in two 
different ovens under the same temperature- 
programed rate, but the 2D oven is kept with a 
10–30 °C offset from the 1D oven to maximize 
the separations. The flow rate of the gas is related 
to the column dimension. Several papers have 
been dedicated to optimizing these parameters of 
GC × GC-MS [23, 30, 31].

2.3  Mass Spectrometer

Any mass spectrometers applicable for conven-
tional GC-MS can be used in GC  ×  GC-MS. 
Quadrupole mass spectrometer (qMS) has been 
hyphenated with the GC × GC system. However, 
qMS has a slow acquisition rate, e.g., 33–50 Hz 
[31–33]. The most widely used mass spectrome-
ter in GC × GC-MS is a time-of-flight mass spec-
trometer (TOF-MS) equipped with an electron 
ionization (EI) source in which energetic elec-
trons interact with gas phase molecules to frag-
ment all metabolites eluted from the 2D column. 
The fragment ions are then separated by TOF and 
measured by a detector. The TOF-MS operates 
under a snapshot technique with a very high 
acquisition rate, e.g., 500 Hz. Most importantly, 
the TOF-MS can distinguish chromatographi-
cally co-eluted metabolites if their EI mass spec-
tra are different with a unique mass and have a 
small difference in their chromatographic peaks 
[34, 35].

High-resolution time-of-flight mass spectrom-
etry (HRTOF-MS) has also been hyphenated 
with the GC × GC system. A HRTOF-MS gives 
superior resolution compared to the qMS and the 
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unit mass resolution TOF-MS. The most impor-
tant feature of HRTOF-MS is its capability to 
obtain the elemental composition of a metabolite 
from its precisely determined molecular ion m/z 
value. For that reason, a chemical ionization (CI) 
source is also available in HRTOF-MS [36].

3  Sample Preparation 
for GC × GC-MS

GC × GC-MS can only analyze volatile and ther-
mally stable metabolites. A biological sample 
contains both volatile and nonvolatile metabo-
lites. The volatile metabolites are usually 
extracted from a biological sample by solid phase 
microextraction (SPME) and then analyzed by 
GC × GC-MS, while the nonvolatile metabolites 
must be extracted from the biological sample, 
derivatized by a derivatization reagent, and then 
analyzed by GC × GC-MS.

Metabolites containing functional groups 
with active hydrogens (e.g., -COOH, -OH, -NH, 
and -SH) are of primary concern in GC × GC-MS 
analysis. For instance, these functional groups 
can form intermolecular hydrogen bonds and 
affect the inherent volatility of metabolites con-
taining them. Therefore, derivatization is usually 
achieved by substituting the active hydrogen in a 
metabolite with another group such as -Si(CH3)3. 
Silylation, acylation, alkylation, and coordina-
tion complexation can all serve the purpose; of 
these, silylation is the most commonly used 
method. Nearly all functional groups can be 
derivatized by silylation reagents, and the deriv-
atives are generally less polar, more volatile, and 
more thermally stable. The introduction of a silyl 
group can also enhance the mass spectrometric 
properties of derivatives by producing either 
more favorable diagnostic fragmentation pat-
terns or characteristic ions.

Derivatization is a two-step procedure, 
methoxymation and derivatization. Some metab-
olites are thermally unstable even after derivatiza-
tion. For example, the enol forms of aldehydes 
and ketones have an acidic hydrogen and can 
therefore be derivatized to trimethylsilyl (TMS) 
ethers, which can be thermally and hydrolytically 

unstable. Methoxymation prior to silylation can 
convert those functional groups to oximes or 
alkyloximes. In addition, direct derivatization 
without methoxymation can cause incomplete 
derivatization and result in multiple peaks for one 
metabolite in GC  ×  GC-MS data. Incomplete 
derivatization also makes subsequent quantita-
tion inaccurate. The most commonly used 
methoxymation reagent is O-methoxylamine 
hydrochloride in pyridine.

The second step of the derivatization is to add 
the silylation reagent to the methoxymated sam-
ple. Trimethylchlorosilane (TMCS) can be used 
to catalyze the silylation reaction. The popular 
silylation reagents include N-(tert-butyl- 
dimethylsily))-N-methyltrifluoroacetamide 
(MTBSTFA), N, O-bis(trimethylsilyl trifluoro-
acetamide (BSTFA), and N-methyl-N-
(trimethylsilyl) trifluoroacetamide (MSTFA). 
Those reagents lead to the formation of either 
tert-butyldimethylsilyl (TBS) or TMS deriva-
tives. The TBS derivatives are often preferred 
because they are more stable and sensitive than 
the TMS derivatives [37–39].

4  Data Analysis

GC × GC-MS data contain four pieces of infor-
mation for each metabolite, the first dimension 
retention time 1tR, the second dimension retention 
time 2tR, parent ion or fragment ion m/z value, 
and its intensity. The m/z values of fragment ions 
and their corresponding intensities form the mass 
spectrum of that metabolite. The general work-
flow for analysis of GC × GC-MS data in metab-
olomics includes spectrum deconvolution, 
metabolite identification, cross-sample align-
ment, normalization, and statistical analysis.

4.1  Spectrum Deconvolution 
and Metabolite Identification

While the GC  ×  GC-MS system has greatly 
increased peak capacity, metabolites often co- 
elute from the 2D column owing to the high com-
plexity of biological samples. If the GC × GC-MS 
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is equipped with an EI source, the co-eluting 
metabolites are simultaneously fragmented and 
all fragments form one mass spectrum. In that 
case, the mass spectrum acquired by 
GC  ×  GC-MS is actually generated by the co- 
eluting metabolites. Spectral deconvolution dis-
tinguishes the signal arising from the instrumental 
noise and quantitatively deconvolutes the mass 
spectrum of those co-eluting metabolites into 
multiple mass spectra, each of which is the EI 
mass spectrum of one metabolite. Several soft-
ware packages such as ChromaTOF, parallel fac-
tor analysis (PRAFAC), and GC Image have been 
developed for spectrum deconvolution.

Metabolite identification in the analysis of 
GC × GC-MS data is usually achieved by match-
ing a query spectrum (i.e., an experimental mass 
spectrum) to the mass spectra of compound stan-
dards recorded in a reference library. A metabo-
lite in the reference library with the highest 
spectral similarity measure is usually considered 
as the metabolite giving rise to the query spec-
trum. This process is called mass spectrum 
matching [40]. Many algorithms have been 
developed for spectrum matching, including 
composite similarity [41], probability-based 
matching system [42], cosine correlation [43–
46], and Hertz similarity index [47].

A large mass spectral reference library 
increases the chance that the mass spectrum of 
the true metabolite is present in the library, but it 
also increases the chance that highly similar mass 
spectra from other metabolites are also present. 
Furthermore, multiple metabolites in a biological 
sample may have similar mass spectra, resulting 
in some metabolites in the mass spectral library 
having multiple mass spectrum-matched peaks in 
the experimental data. In addition, the mass spec-
trum represents only partial information concern-
ing the molecular structure of a metabolite. 
Identifying metabolites based solely on mass 
spectrum matching has inherent limitations. 
Therefore, additional molecular information such 
as metabolite separation information (i.e., reten-
tion time) has been employed to increase identifi-
cation confidence.

The magnitude of retention time depends 
heavily on experiment conditions. Therefore, the 

retention time is always converted into a reten-
tion index using the retention of reference com-
pounds such as n-alkanes. Both the mass 
spectrum and the retention index have been used 
for metabolite identification in GC  ×  GC-MS 
[48–50]. Most of the existing methods employ 
the retention index as a filter to remove the poten-
tial false-positive identifications generated by 
mass spectrum matching. Such an analysis strat-
egy uses the retention index and mass spectrum 
in two separate analysis steps. The sequential 
nature of the two-step analysis strategy increases 
the risk of introducing errors from each indepen-
dent stage since there is no way to correct the 
errors caused in the previous step. To improve the 
identification accuracy, a SimMR method was 
developed to simultaneously evaluate the mass 
spectrum similarity and the retention index dis-
tance using an empirical mixture score function 
[51]. It was demonstrated that the SimMR 
method improved the overall identification accu-
racy up to 1.53% compared to the sequential 
mass spectrum matching and retention index fil-
tering. To identify metabolites from the 
GC × GC-MS data, the second-dimension reten-
tion index is not yet widely used in metabolomics 
because large variations are introduced during 
the process of calculating the second-dimension 
retention index [52].

4.2  Cross-Sample Alignment 
and Normalization

To increase the statistic power in metabolomics, 
multiple samples with the same treatment are 
usually analyzed on an instrument. Owing to 
some uncontrollable experimental conditions, 
such as the differences in temperature or pres-
sure, matrix effects on samples, and stationary 
phase degradation, there is always a shift in the 
1tR and 2tR of a metabolite between samples. This 
problem is generally overcome by cross-sample 
alignment. To date, cross-sample alignment has 
been done either directly using the instrumental 
data (profile alignment) or using peak lists decon-
voluted from the instrumental data (peak align-
ment). Four profile alignment methods have been 
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reported using the two-dimensional retention 
times: the rank annihilation method [53], a 
correlation- optimized shifting method [54], a 
piecewise retention time alignment [55], and a 
two-dimensional correlation optimized warping 
[56]. Aligning metabolite peaks solely based on 
the two-dimensional retention times may intro-
duce a high rate of false-positive alignment 
because some metabolites with similar chemical 
functional groups have similar retention times in 
both GC dimensions. For this reason, methods 
such as MSort [57], DISCO [58], mSPA [59], and 
SWPA [60] were developed to perform peak list 
alignment using both the two-dimensional reten-
tion times and mass spectrum similarity.

After cross-sample alignment, the aligned 
data are generally normalized to reduce the tech-
nical variations while preserving the biological 
variations among samples. Several normalization 
algorithms have been used in metabolomics, 
including scaling and transformation. For 
instance, the auto-scaling method considers the z 
score of each data point rather than its initial 
value. Pareto scaling is a variation of auto- 
scaling, whereas the scaling factor is the square 
root of the standard deviation [61]. A common 
power transformation method is the one parame-
ter Box-Cox transformation [62]. The other nor-
malization methods include cyclic loess [63] and 
contrast-based normalization [64], among 
others.

4.3  Statistical Analysis

Two types of statistical analysis are usually per-
formed in metabolomics, classification and sta-
tistical significance tests. The purpose of 
classification is to investigate the overall metabo-
lite abundance profile, i.e., the abundance of all 
detected metabolites, between groups. The statis-
tical significance tests check the difference of 
abundance levels of each metabolite between 
groups.

While different dimension reduction and clas-
sification methods, such as principal component 
analysis (PCA) and random forests, can be used 
to analyze metabolomic data, partial least squares 

discriminant analysis (PLS-DA) is the one most 
widely used in the field. PLS-DA combines 
dimensionality reduction and discriminant analy-
sis into one algorithm. It sharpens the separation 
between groups to obtain a maximum separation 
among groups and to understand which variables 
carry the class separating information. The vari-
able importance in projection (VIP) in PLS-DA 
is used to calculate the importance of individual 
metabolites among groups. Orthogonal signal 
correction PLS-DA (O-PLS-DA) is an extension 
of PLS-DA that seeks to maximize the explained 
variance between groups in a single dimension or 
the first latent variable and to separate the within 
group variance into orthogonal latent variables.

While the VIP in PLS-DA can be used to cal-
culate the importance of individual metabolites 
among groups, statistical significance tests are 
also widely used in metabolomics to investigate 
whether a metabolite has different abundance 
levels between groups. For example, Student 
t-test checks whether the abundance levels of a 
metabolite have different means among groups. 
Other methods for statistical significance tests 
include Kolmogorov–Smirnov test, Wilcoxon 
rank sum test, Kruskal–Wallis H test, and others, 
depending on whether or not the data are para-
metric. The false discovery rate (FDR) is usually 
performed to adjust the p-value for multiple 
comparisons.

5  Applications of GC × GC-MS 
in Metabolomics

GC × GC-TOF MS has been employed in metab-
olomics for analysis of volatile organic com-
pounds (VOCs). Testing of VOCs in breath is an 
exciting tool for rapid and noninvasive diagnosis. 
Phillips et al. detected around 2000 VOCs in nor-
mal human breath by GC  ×  GC-TOF MS, of 
which many had not been detected before [65]. 
They further discovered a set of volatile biomark-
ers of radiation in human subjects receiving radi-
ation therapy [66]. The same group also used the 
Göttingen minipig as an animal model and iden-
tified candidate biomarkers linked with external 
gamma radiation exposure [67]. Das et  al. ana-
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lyzed the breath of male and female subjects by 
GC  ×  GC-TOF MS and discovered eleven 
exhaled breath VOCs that can differentiate the 
genders [68]. Recently, Beccaria1 et  al. used 
GC × GC-TOF MS in combination with machine 
learning to investigate the possibility of using 
human breath for the diagnosis of active tubercu-
losis (TB) among TB suspect patients [69].

GC × GC-TOF MS has been also used in liver 
metabolomics. Shi et  al. studied the effects of 
chronic arsenic exposure in a mouse model and 
discovered that distinct hepatic metabolomic pro-
files were associated with eating a high-fat diet, 
drinking arsenic-contaminated water, and the 
combination of the two [70]. They also studied 
the effects of Lactobacillus rhamnosus GG 
(LGG) on alcoholic liver disease (ALD) in mice, 
showing that LGGs alleviate alcohol-induced 
fatty liver by mechanisms involving increasing 
intestinal and decreasing hepatic fatty acids and 
increasing amino acid concentration [71]. Warner 
et al. found that ethanol and unsaturated dietary 
fat induced unique patterns of hepatic ω-6 and 
ω-3 polyunsaturated fatty acid (PUFA) oxylipins 
in a mouse model of ALD [72]. Schmidt et  al. 
analyzed liver tissue by GC × GC-TOF MS and 
found that olanzapine administration increases 
weight and adiposity, promotes hepatic lipid 
accumulation, modifies hepatic expression of 
metabolism-regulating genes, and affects the 
hepatic metabolome [73].

GC × GC-TOF MS has been used to study the 
fecal metabolome. Nonalcoholic fatty liver dis-
ease (NAFLD) is the most common liver disease. 
Wei et al. analyzed rat feces to assess the effects 
of different dietary doses of copper combined 
with high fructose feeding on the homeostasis of 
intestine luminal metabolites [74]. Kirpich et al. 
analyzed the mouse fecal samples to evaluate the 
effects of different types of dietary fat and etha-
nol on the gut microbiota composition and meta-
bolic activity and found that diet enriched in 
unsaturated fats enhanced alcohol-induced liver 
injury and caused major fecal metagenomic and 
metabolomic changes [75].

GC  ×  GC-TOF MS has also been used for 
plasma metabolomics. In order to identify bio-
markers of Salmonella carriage, Näsström et al. 

performed metabolite profiling on human plasma 
samples and discovered that Salmonella carriers 
could be distinguished from noncarrier controls 
by five metabolites, suggesting the potential of 
those metabolites as diagnostic markers for 
detecting chronic Salmonella carriers [76]. In 
another study, the same team used GC × GC-TOF 
MS for plasma metabolic profiling and showed 
that enteric fever induces distinct and reproduc-
ible metabolite profiles in the plasma of enteric 
fever patients [77]. Recently, Miyazaki et  al. 
examined temporal changes in serum metabolites 
of neonatal calves after first ingestion of colos-
trum by GC × GC-TOF MS [78].

Cancer cell metabolomes have also been stud-
ied by GC × GC-TOF MS. Altered metabolism is 
considered as a key hallmark of cancer. Carlisle 
et al. explored the polar metabolome differences 
between MDA-MB-231 breast cancer cells 
expressing different levels of NAT1 activity using 
an untargeted metabolomics approach [79]. 
Dhakshinamoorthy et  al. used GC  ×  GC-TOF 
MS to identify systems-scale changes in meta-
bolic dynamics that are distinct from changes 
induced in noncancerous cells or by other che-
motherapeutics and found that phosphoethanol-
amine was one of the most significantly affected 
metabolites [80].

Weinert et  al. successfully equipped a 
GC  ×  GC system with a fast-scanning quadru-
pole mass spectrometer to analyze human urine 
samples and proved that GC × GC-qMS could be 
applicable for large-scale metabolome analyses 
[81]. Vasquez et  al. analyzed children’s urines 
using GC  ×  GC-qMS.  They also compared the 
GC  ×  GC-qMS results with the GC-qMS and 
found 92 additional metabolites [82]. Luies et al. 
analyzed urinary metabolomes using 
GC × GC-TOF MS, to compare and differentiate 
between the culture-confirmed active TB-positive 
and TB-negative healthy control groups and 
identified 12 metabolites that could be used for 
explaining the differences occurring between 
those groups [83]. Loureiro et  al. used 
GC × GC-TOF MS for urinary metabolite profil-
ing to reveal the relation between oxidative stress 
extension, eosinophilic inflammation, and dis-
ease severity in asthmatic patients [84].
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6  Conclusions

Compared with GC-MS, GC × GC-MS provides 
greatly increased peak capacity, resolution, and 
sensitivity for analysis of complex biological 
samples. In the last decade, GC  ×  GC-MS has 
been increasingly used in metabolomics for 
metabolite biomarker discovery and elucidation 
of disease mechanisms. The recent development 
of coupling GC  ×  GC with a high-resolution 
mass spectrometer further accelerates the appli-
cations of GC  ×  GC-MS in metabolomics. 
However, metabolite derivatization and compli-
cated data analysis remains as the two factors that 
prevent the wider use of GC  ×  GC-MS in 
metabolomics.
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Single-Cell Metabolomics by Mass 
Spectrometry Imaging

Maria Emilia Dueñas and Young Jin Lee

1  Introduction to Mass 
Spectrometry Imaging

Exploring the metabolic differences directly on 
cells and tissues is essential for the comprehen-
sive understanding of how multicellular organ-
isms function. An improved understanding of the 
metabolism relies on analytical capabilities for 
accurate identification and quantification of 
metabolites, and metabolomics has largely 
addressed this through the development of mass 
spectrometry (MS) approaches, as well as separa-
tion techniques and computational tools [1, 2]. 
Most of the analysis performed by these method-
ologies provide excellent qualitative and quanti-
tative information about chemical composition, 
but disregard information regarding the spatial 
distribution of these metabolites. Multicellular 
organisms, such as plants and animals, achieve 
their complex living activities through the highly 
organized metabolic interplay of a three- 
dimensional array of individual cells and tissues. 

Therefore, data regarding the original spatial dis-
tribution of metabolites in situ is necessary for 
in-depth understanding of biology in action.

Single-cell metabolomics is an emerging 
research field to understand heterogeneity and 
stochastic nature in cellular populations [3–5]. 
However, it is mostly accomplished by single- 
cell analysis of cultured cells and not directly 
applicable to multicellular organisms to under-
stand intercellular interactions. In recent decades, 
mass spectrometry imaging (MSI) has demon-
strated enormous potential in many fields, from 
mapping metabolites and other biomolecules in 
tissues [6–8] to drug research and development 
[9, 10]. This analytical tool enables untargeted as 
well as targeted analysis to discover biomarkers 
[11] or to understand biological systems at the 
metabolite level [12]. MSI can achieve chemical 
specificity and sensitivity, does not require label-
ing so that any compound present on the tissue 
can be analyzed, and allows for simultaneous 
imaging of hundreds of compounds. Most impor-
tantly, MSI can be used to spatially resolve the 
distribution of endogenous and exogenous spe-
cies in tissue sections down to single- cell level 
resolution.

The MSI process is schematically presented in 
Fig. 1. In a traditional MSI experiment, the tissue 
sample is interrogated by a sampling beam (i.e., 
laser, solvent stream, ion beam) where analytes 
are desorbed from the surface. Matrix-assisted 
laser desorption/ionization (MALDI) [13], 
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 secondary ion mass spectrometry (SIMS) [14], 
laser ablation electrospray ionization (LAESI) 
[15], liquid extraction surface analysis (LESA) 
[16], and desorption electrospray ionization 
(DESI) [17] are the main sampling/ionization 
techniques used for MSI measurements. The ions 
are then introduced into a mass analyzer and 
sorted on the basis of their mass to charge ratios 
(m/z). A series of mass spectra are obtained by 
rastering the sampling beam or moving the sam-
ple plate across hundreds of x and y positions. An 
ion density map can then be produced for each 
m/z value detected showing where certain com-
pounds are localized in the tissue sample, which 
can be correlated to an optical image of the 
sample.

MALDI-MSI is an attractive technique 
towards single-cell level resolution due to its soft 
ionization (compared to SIMS) and small sam-
pling size (compared to DESI, LESA, or LAESI). 
Although nanoDESI has been developed and can 
reduce the sampling size down to ~10 μm, it is 
not readily available due to its delicate instru-
mentation [18, 19]. LESA coupled with liquid 
chromatography (LC)-MS is compatible with tra-
ditional metabolomics and can be integrated into 
MSI workflows, but is critically limited to a spa-
tial resolution of ~400  μm for routine use and 
requires long data acquisition times [20].

Recently, MS images with spatial resolution 
of 1–5 μm have been obtained [6, 21–24] which 
enables the study of the molecular distribution of 
metabolites at cellular and subcellular levels. 
Although MALDI-MSI provides high- spatial- 
resolution information that is unprecedented in 
traditional metabolomics, it has fundamental 
limitations including the lack of chromatographic 

separation, the limited number of molecules 
available in a small sampling size, and matrix-
dependent analyte selectivity, which has stalled 
the ability to visualize metabolites at the metabo-
lomics scale. Many efforts are under way to over-
come these limitations, and we envision that 
MSI-enabled metabolomics could be achieved at 
the single-cell resolution in the near future.

Here, we highlight the recent developments in 
the field of MSI, focused on single-cell level res-
olution metabolomics directly on tissue, particu-
larly using MALDI-MSI.  First, we present the 
advancements in instrumentation for MSI to 
achieve single-cell resolution. Second, we illus-
trate the advances and applications towards 
metabolomics scale imaging. Finally, we provide 
a future outlook in the field of single-cell metabo-
lomics directly on tissue.

2  Technological Advances 
in High-Spatial-Resolution 
MALDI-MSI

The spatial resolution in MALDI-MSI is largely 
governed by the laser spot size as it determines 
the sampling size. Several efforts have been 
made to reduce the laser spot size including the 
use of a small-diameter optical fiber [25], an 
expanded laser beam focused close to sample 
specimens [26–28], and transmission geometry 
setups [28]. Jun et al. achieved laser spot size of 
~12  μm by replacing 200  μm inner diameter 
optical fiber with a 25 μm core multimode opti-
cal fiber [25]. Using this modification, surface 
lipids from multiple tissue organs of a whole 
Arabidopsis flower were visualized at single-cell 

Fig. 1 Schematic representation of the MSI process

M. E. Dueñas and Y. J. Lee



71

resolution. Figure  2 illustrates that MSI can 
indeed provide single- cell resolution informa-
tion from the profiles of ion signals along a sta-
men; i.e., the periodic fluctuation of ion signals, 
typically every two or three pixels, matches with 
longitudinal epidermal cell size of ∼30 μm on a 
stamen filament. It is difficult, however, to 
achieve a smaller laser spot size using optical 
fibers, especially because the fibers can be easily 
damaged at higher laser density.

Multimode homogeneous laser beams, such as 
Smart Beam™ [29] or TopHat [30], provide 
homogeneous distribution of laser beam profiles 
over the sampling area, but cannot be focused to 
a very small spot size. The direct delivery of a 
Gaussian shape laser profile (e.g., Nd:YAG laser) 
is better suited to achieve minimum laser spot 
size for MALDI experiments. For a Gaussian 
shape laser beam, the diffraction-limited spot 
size is defined by the following equation [23]:
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where Ds is the diffraction-limited spot size, M2 is 
the beam quality factor, λ is the laser wavelength, 
f is the focal length of the focusing lens, Db is the 
input beam diameter, and θ represents the inci-

dent angle of the laser beam on the sample. 
Although some of the parameters (λ, θ) can be 
difficult to modify in a given instrument, other 
parameters (M2, f, Db) can be altered to achieve a 
small laser spot size.

Three major instrumental setups, as illustrated 
in Fig. 3, have been developed over the years to 
achieve a small laser spot size. Using a large 
beam diameter (Db) with a beam expander and a 
relatively simple modification to make the focus 
lens (f) close to the sample surface, a small laser 
spot size (Ds) can be obtained in a commercial 
MALDI-MS as represented in Fig. 3a. Due to the 
mass spectrometry ion optics occupying in front 
of the sample surface, however, the focus lens 
cannot be made any closer than ~60 mm, limiting 
the laser spot size of ~4–5 μm [6, 21, 23, 24]. The 
Spengler group overcame this limitation with 
atmospheric pressure MALDI-MS using a focus 
lens with the center bored for ion transfer capil-
lary (Fig. 3b). In this setup, the focus lens can be 
as close as ~40 mm to achieve laser spot size of 
~2–3  μm. An even smaller laser spot size of 
~0.5–1 μm [28] can be achieved with transmis-
sion geometry as shown in Fig. 3c. In this setup, 
a much closer focal length can be achieved with-
out interfering with the mass spectrometry ion 

Fig. 2 Demonstration of single-cell level spatial resolu-
tion: (a) MS image of a stamen in Arabidopsis flower for 
C29 alkane detected as silver adduct (m/z 515); (b) the 
profiles of the relative ion abundance for C29 alkane, C29 
ketone, and C26 fatty acid (FA) as silver ion adducts (m/z 

515, 529, and 503, respectively) normalized to the silver 
dimer, [107Ag + 109Ag]+ (m/z 216), along the series of sin-
gle pixels vertically at the X position indicated by the 
arrow in (a). Pixel size is 12 μm. (Reproduced with the 
permission of American Chemical Society [25])
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optics, since the laser beam is coming from the 
back of the transparent sample slide.

The Lee group improved the spatial resolu-
tion to 5–10 μm for a commercial MALDI-ion 
trap- Orbitrap [6, 21, 31] and has demonstrated 
the visualization of the distribution of a number 
of different metabolites in various plant tissues 
[21, 32–37]. A study by Korte et al. [6] revealed 
that molecular distributions of metabolites and 
lipids may be heterogeneous even among cells 
of the same tissue type (Fig. 4a). For example, 
2,4-dihydroxy-7-methoxy-1,4-benzoxazin-
3-one glucoside (DIMBOA-Glc) and 2-hydroxy-
7-methoxy-1,4-benzoxazin-3-one glucoside 
(HMBOA-Glc) are known to be present in 
mesophyll cells of maize, but these compounds 
were not detected in all mesophyll cells but only 
between each pair of vascular bundles. In con-
trast, sulfoquinovosyl diacylglycerol (SQDG) 
34:3 was found in all photosynthetic cells. 
Additionally, DIMBOA-Glc and HMBOA- Glc 
have almost no overlap with SQDG because of 
their different subcellular localization; i.e., 
DIMBOA-Glc and HMBOA-Glc are located in 
vacuole while SQDG in chloroplast. This plat-

form was also applied to explore the quantita-
tive fatty acyl distribution of thylakoid 
membrane lipids along the developmental gra-
dient of maize leaves of four inbred lines of 
maize [33]. This study demonstrated that high-
spatial resolution MALDI-MSI analysis can be 
directly applied to multicellular plant tissues to 
uncover cell-specific metabolic biology. For 
example, certain thylakoid membrane lipids 
(e.g., phosphatidylglycerol (PG) 32:0) displayed 
genotype-specific differences in cellular distri-
bution. Inbred B73 showed preferential local-
ization of PG 32:0 in bundle sheath cells, while 
a more uniform distribution between bundle 
sheath and mesophyll cells in inbred Mo17. 
Subcellular localization was also demonstrated 
in other studies. For example, Hansen et  al. 
demonstrated that Arabidopside A (blue) is 
localized to the chloroplast as it is present only 
when pheophytin a (green, chlorophyll a with-
out Mg2+) is present, as illustrated in Fig.  4b 
[36].

Using atmospheric pressure scanning micro-
probe MALDI (AP-SMALDI) (Fig.  3b), the 
Spengler group visualized the subcellular localiza-

Fig. 3 Three major instrumentation setups developed to 
reduce the laser spot size: (a) a commercial MALDI-MS 
with a modified laser optics system to use a larger diame-
ter beam at close distance to the sample, (b) atmospheric 

pressure MALDI to make a focus lens closer using a 
center- bored focus lens, and (c) transmission geometry 
without interfering ion optics
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tion of lipids, metabolites, and peptides [22, 39]. 
This atmospheric pressure MSI platform enabled 
images with 1 or 2 μm spatial resolution of mouse 
cerebellum cross sections (Fig. 4c), allowing the 
visualization of phospholipids at subcellular level. 
Moreover, an autofocusing operation mode can be 
incorporated in the AP-SMALDI system to simul-
taneously obtain topographic and chemical infor-
mation at subcellular resolution [40]. This system 
keeps the MALDI laser focus, fluence, and abla-
tion spot size constant over sample height variety, 
thus providing high spatial resolution of <10 μm 
for nonplanar surfaces.

The Caprioli group [23, 24] has been develop-
ing high-spatial-resolution MSI down to 
0.5–5  μm using both reflection (Fig. 3a) and 
transmission geometries (Fig. 3c). In transmis-
sion geometry, the laser beam can be irradiated 
from the back side of the sample to achieve 
molecular images down to 1 μm spatial resolu-
tion [41, 28]; this system is limited by the trans-
parent substrate thickness. This platform was 

used for targeted imaging of human pancreatic 
islet at subcellular spatial resolution (Fig. 4d) for 
insulin, synaptophysin, and somatostatin in pan-
creatic islet cells. This demonstrated that targeted 
MSI in transmission geometry can be used to 
image a single mammalian cell.

A critical limitation of any “micro-probe” 
mode high-spatial-resolution MSI is the data 
acquisition time; acquiring MSI with smaller 
sampling size dramatically increases the data 
acquisition time. A next-generation high-speed 
MALDI imaging platform, Bruker rapifleX 
MALDI Tissuetyper™, uses Smartbeam™ 3D, 
which is capable of rapidly generating data by 
moving the laser and the stage independently 
[42]. This system also uses two rotating mirrors 
to rapidly scan a laser beam within a pixel to 
ensure homogeneous sampling. With 20–50 
times faster speed, higher-spatial-resolution 
imaging is now practically possible for a large 
tissue area.

Fig. 4 (a) Optical (top) and selected MS images (bottom) 
of maize cross section obtained with 5 μm spatial resolu-
tion. Reproduced with permission of Springer Berlin 
Heidelberg [6]. (b) Five micron spatial resolution MSI of 
a non-wounded feronia mutant leaf cross section (right) 
and mass spectra of selected single pixels (left). 
Reproduced with permission of John Wiley and Sons Ltds 
[36]. (c) Cerebellar region of mouse brain obtained with 
(a) 2 μm and (c) 1 μm step size using AP-MALDI-MSI. 
(b,d) Optical image of the H&E stained tissue section 
after MSI measurement. [PC(40:6) + K]+ (m/z 872.5570; 

red), [PC(38:6)  +  K]+ (m/z 844.5254; green), and 
[PC(36:1) + K]+ (m/z 826.5725; blue). Scale bars, 100 μm 
(a,b) or 50  μm (c, d). Reproduced with permission of 
Springer Nature [22]. (d) Double labelling by targeted 
IMS of synaptophysin (m/z 323) and somatostatin (m/z 
532) in single cells. (a) Optical image of islet cells. (b) 
Targeted IMS of an immunoreactive islet cell for synapto-
physin. (c) Targeted MSI of a delta cell for synaptophysin 
(green) and somatostatin (red), showing them located in 
different cellular structures. (Reproduced with permission 
of Springer-Verlag [41])
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3  Mass Spectrometry Imaging 
for Metabolomic Analysis

In order to advance MSI for metabolomic analy-
sis, one must detect and confidently identify a 
wide range of compounds. High-resolution mass 
analyzers, such as the Orbitrap or Fourier trans-
form ion cyclotron resonance, provide high mass 
resolution and high mass accuracy enabling con-
fident assignment of the chemical composition of 
metabolites. In addition, tandem mass spectrom-
etry (MS/MS or MSn) can be used to assist the 
identification of the metabolites; however, this 
typically needs to be done on separate tissue sec-
tions. To overcome this limitation, a “multiplex 
MSI method” has been developed by the Lee 
group to allow multiple data acquisition types to 
be incorporated in a single instrument run [43]. 
Using a hybrid linear ion trap-Orbitrap mass 
spectrometer, each raster step is split into several 
spiral steps, and each spiral step is assigned to a 
different scan type (high-resolution mass spec-
trometry (HRMS), MS/MS, etc.) [43]. The vari-
ous scan types are then repeated at each raster 
step over the entire imaging area. This allows the 
collection of chemical composition from HRMS 
and structural information from MS/MS in a sin-
gle MSI run. Polarity switching can also be 
incorporated in multiplex imaging to obtain both 
positive and negative ion mode data on a single 

tissue section [44]. Ellis et al. adopted this multi-
plex strategy for an automated lipid-identification 
pipeline, based on the ALEX123 software frame-
work [45], to identify and validate 104 unique 
molecular lipids and their spatial location from 
rat cerebellar tissue [46]. One major limitation 
with multiplex MSI is the loss of spatial resolu-
tion as a result of the increased number of spiral 
steps, which limits the applicability to high- 
spatial resolution MSI. It has been demonstrated, 
however, that multiplex data acquisition can be 
performed on the same sample spot utilizing 
overlapped MALDI-MSI [47].

Despite the fact that cellular and subcellular 
resolution MALDI-MSI has been established, the 
lack of metabolite coverage is hindering the full 
realization of this technique to visualize metabo-
lites at the metabolomic scale. To overcome this 
limitation, Feenstra et al. proposed a MSI meth-
odology that combines multiplex MSI data acqui-
sition with multiple matrices on consecutive 
tissue sections [48]. In this proof-of-concept 
experiment, multiple matrices were used for con-
secutive tissue sections to increase the diversity 
of chemical compounds that could be visualized 
and a multiplex MSI method was used to improve 
the compound identification. With this approach, 
the visualization of many compounds is possible 
in a metabolic pathway, such as in the TCA cycle, 
as shown in Fig. 5a.

Fig. 5 (a) MS images of metabolites involved in TCA 
cycle in germinating maize seeds. Reproduced with per-
mission of Royal Society of Chemistry [48]. (b) Mass 
spectra and MS images recorded from mouse cerebellum 

comparing MALDI vs MALDI-2. (Reproduced with per-
mission of the American Association for the Advancement 
of Science [49])
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Although this approach can eventually lead 
to untargeted metabolomics analysis, one criti-
cal limitation is the lack of sensitivity for some 
metabolites due to the inherent low ionization 
efficiency, especially when combined with a 
low number of analytes in a small sampling 
size. This limitation can be resolved by per-
forming on- tissue chemical derivatization to 
selectively enhance targeted classes of metabo-
lites. For example, as amphiprotic species, 
amino acids have variability in their protonation 
or deprotonation efficiency, depending on its 
pKa and local pH. On-tissue chemical derivatiza-
tion has been developed to dramatically improve 
the sensitivity of amino acids and neurotrans-
mitters using (i) coniferyl aldehyde [38], (ii) 
pyrylium salt [50], or (iii) p-NNN-trimethylam-
monioanilyl N-hydroxysuccinimidyl carbamate 
iodide [51]. As for other on-tissue chemical 
modifications, Girard’s reagent T has been used 
to derivatize ketones and aldehydes [52, 53], 
and 2- picolylamine has been used for carboxyl 
acids [54]. We have recently proposed that mul-
tiple chemical reactions can be combined to 
enable the visualization of different classes of 
compounds in an untargeted manner [55]. Over 
six hundred new metabolite features could be 
detected by combining three derivatization reac-
tions, dramatically improving metabolic 
coverage.

One drawback in MALDI-MSI is the fact 
that less than 1 out of 1000 desorbed molecules 
is on averaged ionized [56, 57]. To overcome 
this limitation, “MALDI-2” has been developed 
to enhance analyte signals for high-spatial- 
resolution MALDI-MSI (as shown in Fig. 5b). 
In this strategy, a second laser initiates an addi-
tional ionization process in the gas phase laser 
plume produced by the first MALDI process 
[49]. This allows for an increase in ion yields 
for numerous classes of compounds, by up to 
two orders of magnitude. Moreover, MALDI-2 
can be combined with transmission geometry 
laser optics to compensate for the low number 
metabolites available in small sampling areas 
[58, 59].

4  Metabolite Identification 
and Localization

The advancements above have shown that 
metabolomic- scale MSI can add benefits of 
allowing differentiation of metabolites at a cellu-
lar and subcellular level. Currently, the identifica-
tion of unknown compounds is a bottleneck that 
needs to be addressed in order to achieve 
metabolomic- scale MSI in a robust manner. 
Public MS/MS libraries, such as METLIN [60], 
have been broadly used to help identify metabo-
lites or any other chemical entities. However, the 
number of molecules available in experimental 
MS/MS databases is limited and grows slowly 
due to the limited availability of authentic stan-
dards. To overcome this limitation, there has been 
a surge in software tool developments such as 
MetFrag, CSI:Finger ID, CFM-ID, iMet, 
ALEX123, and MS-Finder that prove useful for 
confident metabolite identification [61–64]. 
Using these tools, one can search experimental 
MS/MS spectra against in silico MS/MS frag-
mentation databases with millions of chemical 
entries.

MetFrag can be used to obtain a candidate list, 
from compound libraries or from user defined 
structure data files, based on the precursor mass, 
subsequently ranked by the agreement between 
measured and in silico fragments [64, 65]. After 
in silico fragmentation, the candidate list gets fil-
tered and scored on criteria such as reference 
information, retention time information, and 
occurrence of certain elements/substructures. 
iMet, a network-based computational tool, anno-
tates metabolites for which there are no chemical 
structures available. This tool uses MS/MS spec-
tra and the exact mass of an unknown metabolite 
to identify metabolites in a reference database 
that are structurally similar to the unknown 
metabolites [61]. CSI:FingerID predicts molecu-
lar fingerprints based on fragmentation tree 
trained with machine learning [66]. This finger-
print is then used to search chemical databases, 
such as PubChem or ChemSpider, and has shown 
to  significantly improve the metabolite identifica-
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tion, according to the 2016 Critical Assessment 
of Small Molecule Identification (CASMI) com-
petition [67].

CFM-ID is a web server that automatically 
identifies metabolites by annotating each peak in 
a MS/MS spectrum for a known chemical struc-
ture, predicting the spectra for a given chemical 
structure, and tentatively identifying the metabo-
lite [62]. The algorithms used in CFM-ID are 
based on competitive fragmentation modeling, a 
probabilistic generative model for the MS/MS 
fragmentation process that uses machine learning 
techniques to learn its parameters from data. This 
model estimates the likelihood of any given frag-
mentation event occurring, thereby predicting 
those peaks that are most likely to be observed. 
This freely available web server provides a sim-
ple and interactive interface that graphically dis-
plays the resulting annotation. The ALEX123 
framework can be used for lipidomics data to 
automatically identify and quantify spectral data 
of lipid species [45]. A key advantage of ALEX123 
is the storage of lipidome data in a “database 
table format” which enables robust data process-
ing and visualization. This framework features 
(1) a database with ionization and fragmentation 
information for lipid molecules, (2) script for 
harnessing MSn (n  =  1–3) information in raw 
mass spectral data files, and (3) auxiliary code for 
high confidence lipid identification, quantifica-
tion, and dynamic lipidome visualization. The 
Global Natural Product Social Molecular 
Networking (GNPS) is another open-access web 
platform that can aid in metabolite identification 
[68]. The GNPS analysis infrastructure allows 
the fragmentation patterns of each MS/MS to be 
automatically compared and visualized in form 
of a network. The information of a known spectra 
can be used to predict the structure of unknowns 
by using differences in masses from the MS/MS.

Recent advancement to automate the image 
generation [69] and metabolite annotation [70] 
has allowed the MSI community to evaluate their 
data in greater depth and in less time. 
METASPACE is a web-based bioinformatics tool 
that allows for automated database-driven metab-
olite annotation by screening for metabolites 
with known sum formulas, an original metabolite- 

signal match (MSM) score combining spectral 
and spatial measures, and a target-decoy false 
discovery rate-estimation approach with a decoy 
set generated via the use of implausible adducts 
[70]. The MSM score uses the instrument’s 
resolving power to quantify the likelihood of the 
presence of a metabolite in the sample by gener-
ating its isotopic pattern without MS/MS 
information.

As demonstrated above, a variety of tools are 
being used to help with metabolite identification 
for MSI. Due to the large and complex nature of 
MSI datasets, statistical methods and imaging 
software are needed for processing and visualiza-
tion of mass spectra, statistical analysis, and seg-
mentation and classification of the resulting 
images. MSiReader is an open source MSI soft-
ware that allows for a semi-targeted discovery of 
molecular distributions of interest from MSI 
data, using an image similarity scoring algorithm 
to rank images by spatial correlation [71]. This 
tool enables identification of molecular distribu-
tions correlated to some features such as a known 
region of the sample or the distribution of some 
known compound such as a disease marker or a 
drug. Cardinal MSI is an R package that imple-
ments statistical tools for analyzing MSI datasets 
[72]. This open-source software can be used for 
processing and visualization of mass spectra and 
for statistical segmentation and classification of 
resulting images. Commercially available soft-
ware tools, such as SCiLS Lab (SCiLS), 
IMAGEREVEAL (Shimadzu), and HDI 
(Waters), also allow statistical analysis for MSI.

5  Recent Applications

Single-cell resolution, metabolomic-scale MSI 
exhibits a great potential in the advancement of 
various scientific disciplines. Not only do these 
experiments provide a comprehensive picture 
about the cellular dynamic and its phenotypic fin-
gerprint, but also reveal crucial information about 
individual cells in a tissue sample that are often 
unattainable by traditional metabolomics experi-
ments. Here, we summarize some recent 
 applications of cellular and subcellular level tis-
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sue MSI in biological, pharmaceutical, and medi-
cal sciences.

High-spatial resolution MALDI-MSI was per-
formed on mouse and human pancreatic tissues 
to study phospholipid and glycolipid distribu-
tions in pancreatic islets [73]. In this work, 
immunofluorescent images were used to accu-
rately co-register and verify islet location, 
enabling the acquisition of MSI data from 
selected subregions rather than of the entire tis-
sue section. This demonstrated the importance of 
both spatial resolution and specificity when it 
comes to performing molecular measurements of 
complex heterogeneous tissues. More on this 
regard, a histology-directed platform used auto-
fluorescence microscopy and MSI data to 
improve the registration and alignment process 
[74]. An autofluorescence image was acquired 
prior to the MSI run in order to align with the 
microscope image. Then, another autofluores-
cence image was obtained post MSI to align the 
matrix burn mark with the corresponding MS 
spectra. This is advantageous in cellular and sub-
cellular imaging due to the fact that having a 
microscopy grade view of the tissue structure 
will be an important aid in localizing the metabo-
lites of interest.

Three-dimensional (3D) MALDI-MSI has 
also been used to visualize metabolites and lipids 
at the cellular level in cell cultures [75, 76] and 
zebrafish embryos [77]. This application can be 
used in clinical settings to help solve problems, 
such as understanding how drugs are distributed 
within the tissue and finding where set metabo-
lites are located. For example, drug penetration 
into solid tumors is critical for the effectiveness 
of chemotherapy and cancer chemotherapeutics 
often fail to reach all diseased cells [78]. To solve 
this problem, 3D cell cultures can be used as a 
model system to assess the distribution of anti-
cancer drugs. In a study by the Hummon group, a 
time-dependent penetration of irinotecan was 
visualized by tracking the parent drug, as well as 
some metabolites [75]. This proof-of-principle 
study demonstrated that spheroids can be used in 
MALDI-MSI to screen and select drugs in a for-
mat that more closely resembles conditions in 
patients. In another study, MALDI-MSI was 

applied, for the first time, for 3D chemical imag-
ing of a single cell using newly fertilized indi-
vidual zebrafish embryos as a model system. MSI 
was used to map and visualize the 3D spatial dis-
tribution of certain lipids, revealing heteroge-
neous localization of different classes of lipids in 
the embryo [77].

MALDI-MSI can also enable the exploration 
of cellular molecular signatures required for 
many pathology applications [79]. Multivariate 
data analysis method can be applied to MS imag-
ing data for the automated annotation of tissues. 
Furthermore, MSI integrates the histology of the 
sample which allows studying the molecular 
information in a histopathological context [80]. 
In a study by the Heeren laboratory, a pixel-wise 
analysis of MALDI-MSI was used to distinguish 
between steatotic and nonsteatotic tissue, specifi-
cally to study nonalcoholic fatty liver disease. 
Using this method, they were able to detect subtle 
changes between the groups and concluded that 
lipid composition of steatotic and nonsteatotic 
tissue is highly distinct, implying that spatial 
context is important for understanding the mech-
anisms of lipid accumulation in diseases [81].

6  Conclusion and Outlook

High-spatial-resolution MALDI-MSI at the 
single- cell resolution is essential for detecting 
chemical signatures of phenotypic heterogeneity 
at the cellular and subcellular level. Recent 
advancements in overall analytical workflow and 
instrumentation have allowed MALDI-MSI to 
become a unique tool towards cellular or subcel-
lular level imaging at the metabolomic scale. The 
convergence of spatial resolution at the microm-
eter scale, the improved sensitivity, and the surge 
of computational tools available provide exciting 
new possibilities towards metabolomic-scale 
imaging at a subcellular level. New insights can 
be gained about the behavior of individual cells, 
which can be applied to fields of biology, medi-
cine, and pharmaceutics.

As a technique that is under continuous devel-
opment, the MSI community still needs to 
 overcome many challenges. These are mainly 
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connected with problems such as management 
and interpretation of big data, the sensitivity of 
measurements, reliable methodology for statisti-
cal analysis, automated data interpretation, and 
integration of molecular information provided by 
MSI with other imaging modalities. The acquired 
data obtained from MSI are complex and contain 
features belonging to both known and unknown 
metabolites. Improvements in software and data-
bases are essential to identify metabolites with 
high confidence in order to draw biological con-
clusions. Moreover, advances in quantification 
methods are essential to differentiate between 
results that are skewed by matrix effects or ion-
ization efficiency of analytes.

MALDI-MSI coupled with ion mobility sepa-
ration (IMS) has demonstrated significant utility 
over the past decade for separation of isobaric 
species in the gas phase. IMS, a gas phase separa-
tion method based on collisional cross-section 
differences between ions, allows for the mole-
cules to be separated based on charge, size, and 
shape [82]. MALDI-IMS has not been demon-
strated for high-spatial resolution MS imaging 
yet, but the future of this technique looks promis-
ing, especially as multiple commercial instru-
ments have become available. This type of 
instrument platform will improve separation and 
identification of metabolites, making it a particu-
larly useful tool in the field for structure 
determination.

There is still a long way to go before MSI can 
be implemented in routine metabolomic analysis. 
Continuous efforts in MSI-based single-cell 
metabolomics are moving the field towards 
higher sensitivity, higher throughput, higher 
reproducibility, and better quantification. Once 
all of these obstacles are addressed, MSI will 
revolutionize our understanding of how cells 
function by revealing unprecedented details of 
cellular metabolism.
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Detection of N6-Methyladenine 
in Eukaryotes

Baodong Liu and Hailin Wang

1  Introduction

Four bases, adenine, cytosine, guanine, and thy-
mine, constitute the heritable life blueprint. DNA 
methylation, as part of precision gene expression 
regulator, usually takes place at the C5 position 
of cytosine (5mC), N4 position of cytosine (4mC), 
and N6 position of adenine (6mA). In 1973, 
Gorovsky et  al. found 6mA in nuclear DNA of 
Tetrahymena pyriformis using radioactive 3H 
labeling technology combined with paper chro-
matography [1]. In 1981, Pratt et  al. detected 
6mA in Tetrahymena pyriformis by high-perfor-
mance liquid chromatography with ultraviolet 
detection (HPLC-UV) and showed that 6mA was 
rich, but not randomly present in its large nuclear 
DNA, and further distributed at linker DNA [2]. 
Based on the restriction endonuclease DpnI rec-
ognizing hypermethylated G(6mA)TC site, 
Harrison et  al. confirmed GATC-specific meth-
ylation sites at the nuclear DNA of Tetrahymena 
pyriformis [3]. In addition, capillary electropho-
resis laser-induced fluorescence (CE-LIF) was 
also used for 6mA detection [4, 5]. These early 

6mA assays have the disadvantages of low detec-
tion sensitivity (detection limits of 0.01–0.1% 
6mA/dA) and cannot provide structural informa-
tion for identification of 6mA.

Current 6mA detection methods mainly 
include UHPLC-MS/MS, 6mA-antibody based 
assay, and DNA sequencing analysis. In 2015, 
using the ultrasensitive UHPLC-MS/MS method, 
we detected 6mA (0.001%  ~  0.07%) in the 
genome of the model organism Drosophila [6]. In 
order to verify our findings, qualitative examina-
tion of “6mA” from fly was performed with 6mA 
antibody-based assay and HPLC with high-reso-
lution time-of-flight mass spectrometry (TOF 
MS). The “6mA” from fly and 6mA standard had 
exact mass of precursor ion, as well as 17 main 
daughter ions (fragments), and the maximum 
deviation was less than 4.0 ppm. In addition, the 
whole 6mA level in genome was analyzed by 
UHPLC-MS/MS in many species, such as 0.01–
0.4% 6mA/dA in Caenorhabditis elegans [7], 
0.0001–0.0005% in mouse embryonic stem cells 
[8], 0.00009% 6mA/dA in Xenopus laevis [9], 
and ~ 0.4% in Chlamydomonas [10].

6mA antibody-based assays include dot blot, 
immunofluorescence imaging (IF), enzyme-
linked immunosorbent assay (ELISA), and 
immunoprecipitation (IP). Dot blotting of 6mA 
[6–9, 11] is a qualitative and semiquantitative 
method and measures a relative level of 6mA in 
genomic DNA in  vitro. As a visual and in situ 
6mA analysis method, IF was performed to show 
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6mA dynamic change in early embryonic devel-
opment of Drosophila, C. elegans, and zebrafish 
[6, 7, 11, 12]. ELISA was used to detect 6mA in 
the genomes of Mnemiopsis leidyi, Beroe abys-
sicola, and Pleurobrachia, and the abundance of 
6mA was 0.02%, 0.01%, and 0.025%, respec-
tively [13]. In addition, immunoprecipitation is 
an important approach to enrich the DNA frag-
ments containing 6mA, especially for DNA with 
low 6mA abundance. Then the enriched 6mA 
containing fragments were sequenced to deter-
mine the 6mA-rich region in genome by mapping 
to the corresponding whole genome sequence. 
The 6mA antibody-dependent assays require 
highly specific 6mA antibody.

In addition, photo-crosslinking-exonuclease-
assisted method [10, 14, 15] and restriction 
enzyme method [10] were used to obtain a much 
higher resolution, even at single-molecule resolu-
tion for 6mA analysis. Recently, Hong et  al. 
found that Ag+ could effectively cause steady 
A-C mismatch in polymerase chain reaction, but 
6mA-C mismatch was unstable, leading to DNA 
amplification termination. They demonstrated 
that in the presence of Ag+, 6mA was discrimi-
nated at a single base resolution from dA by roll-
ing circle amplification both at single-strand and 
double-strand DNA probes [16].

Active DNA cytosine methylation pathway in 
mammals is well known. It includes writer 
(DNMT1, DNMT3A/DNMT3B), reader (MBD2, 
MECP2), and demethylase (TET1/TET2/TET3). 
Similarly, recent studies have revealed the candi-
dates for writer, reader, and eraser in DNA ade-
nine methylation pathway. We have demonstrated 
that the TET homologous protein DMAD (DNA 
N6-methyl adenine demethylase) is a 6mA eraser 
in fly genome. When DMAD was knocked out in 
fly, the 6mA level was found to be significantly 
increased (10–70-fold) at whole genomic level in 
fly brain and ovary. This result indicates that 
DMAD may regulate the 6mA demethylation by 
direct or indirect enzymatic catalysis in vivo. In 
order to verify DMAD is the direct 6mA demeth-
ylase, catalytic domain of DMAD (DMAD-CD) 
and DMAD-CDmut was purified from 293 T cells 
and then incubated with adenine methylated calf 
thymus DNA, respectively [6]. DMAD-CD 

showed significantly 6mA demethylase activity, 
but the DMAD-CDmut displayed very poor 
demethylase activity. Our findings have clearly 
demonstrated that DMAD is a 6mA demethylase 
in fly. Greer et al. demonstrated DNA N6-methyl 
adenine demethylase (NMAD-1) as a 6mA 
demethylase and DNA N6-methyl methyltrans-
ferase (DAMT-1) as a potential 6mA methylase 
in Caenorhabditis elegans [7]. Wu et al. showed 
that deposition of 6mA in LINE-1 transposons 
inversely correlated with the evolutionary age, 
and histone H2A dioxygenase ALKBH1 played 
the role of 6mA demethylase in vivo and in vitro 
in mouse embryonic stem cells [8]. Koh et  al. 
demonstrated single-stranded DNA binding pro-
tein 1 (SSBP1) as a 6mA reader and mitochon-
drial ALKBH1 as the eraser in human 293 T cells 
[15]. In addition, N6-adenine-specific DNA 
methyltransferase 1 (N6AMT1) and ALKBH1 
were reported as the 6mA writer and eraser, 
respectively, in human [17]. In a word, 6mA has 
been proposed as a new epigenetic mark in 
eukaryotes and regulated possibly by several N6-
adenine methylases and demethylases. The prob-
able DNA methylation and demethylation 
pathways of DNA adenine in eukaryotes is shown 
in Fig. 1.

Cytosine methylation is generally well known 
as gene suppresser. However, the function of 
6mA in gene regulation is much more compli-
cated. In order to obtain the overall relationship 
between 6mA and gene regulation, the detailed 
distribution of 6mA in genome was investigated 
with the RNA-seq data. Using 6mA immunopre-
cipitation sequencing technique (6mA-DIP-seq), 
we found that 6mA tended to be enriched in the 
transposon element region of wild-type 
Drosophila ovary genome, and 6mA was 
removed from the transposon in DMADmut 
Drosophila [6]. Global expression profiling anal-
ysis showed that transposons with 6mA pos-
sessed significantly higher expression level in 
DMADmut ovary than those in wild type. Greer 
et al. found that 6mA was widely distributed in 
genome of Caenorhabditis elegans [7]. Liu et al. 
demonstrated that 6mA was mainly distributed at 
the repeat sequence of genome from the early 
embryo of zebrafish [12]. DNA cytosine modifi-
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cations have been linked to human diseases such 
as cancer. For instance, studies have shown that 
global 5-methylcytosine (5mC) contents gener-
ally decrease in cancers [18–20]. We found 
5-hydroxymethylcytosine (5hmdC) and 5-form-
ylcytosine (5fdC) also declined dramatically in 
the very early stage of hepatocellular carcinoma 
[20]. The reduction of 5hmdC and 5fdC was prin-
cipally due to the decrease of 5mC and was 
related to hepatitis B virus infection. However, to 
the best of our knowledge, there is no adequate 
evidence of the link between 6mA and human 
diseases.

Next, we will focus on the discussion about 
the studies of 6mA with analytical methodolo-
gies, particularly LC-MS, antibody-based assays, 
and DNA sequencing technology.

2  LC-MS for Qualitative 
and Quantitative Analysis 
of 6mA

HPLC-MS/MS is a hyphenated technique which 
combines highly efficient chromatographic sepa-
ration and powerful MS identification. Three 
forms of DNA methyladenine (1mA, 3mA, and 
6mA) can be well differentiated by LC-MS 
because of their differences in chromatographic 
behavior and chemical structure. Therefore, 
LC-MS/MS method has been reliably used for 
qualitative and quantitative analysis of 6mA.

2.1  MS Analysis of 6mA in Oligos

The in vitro activity of DNA methyltransferase or 
demethylase is usually verified by incubation 
with synthetic oligos, and then the 6mA levels in 

oligos are measured by HPLC-ESI-TOF MS or 
MALDI-TOF MS.  For example, the oxidative 
demethylation of N6-methyladenosine (m6A) in 
RNA oligo by alpha-ketoglutarate-dependent 
dioxygenase (FTO) can be detected by MS. Since 
producing adenine from methyladenine accom-
panies with a mass loss of 14 Da, and producing 
formyladenosine from methyladenine with a 
mass increase of 14  Da [21], qualitative and 
quantitative analysis of the 6mA demethylation 
activity of FTO can be easily attained through the 
exact mass changes detected by MS.

2.2  Preparation 
of Mononucleotides by DNA 
Hydrolysis for LC-MS Analysis

In order to analyze the target DNA modification 
directly and obtain much higher sensitivity, the 
DNA from the cells or body fluids was usually 
digested into mononucleotides for MS analysis. 
There are two ways of DNA digestion for this 
purpose. One is robust hydrolysis under strong 
acidic condition and high temperature (140–
170  °C), which produces nucleotide bases and 
2′-desoxyribose [22]. This method requires 
RNA-free DNA, because RNA also contains ade-
nine, cytosine, guanine, and modified bases. For 
example, RNA m6A, as an abundant modifica-
tion in RNA, also released N6-methyladenine 
bases. All the N6-methyladenine base signal will 
be assigned to 6mA by LC-MS. On one hand, it 
is time consuming and difficult to achieve pure 
RNA-free DNA sample. On the other hand, this 
method, which is based on hot acidic hydrolysis 
conditions, is not suitable for unstable modified 
nucleotide analysis. The other approach is DNA 
hydrolysis by enzymes and the general procedure 
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consists of DNA extraction, DNA enzymatic 
hydrolysis, and hydrolysate ultrafiltration, as 
shown in the Fig. 2.

The demethylated products of m6A include 
N6-hydroxymethyladenosine (hm6A), 
N6-formyladenosine (f6A), and the other two 
unstable modifications (half-life, ~3 h) in physi-
ological aqueous solution [21]. For the analysis 
of the unstable DNA modifications, we have 
demonstrated two promising DNA hydrolysis 
strategies. One is mild digestion of DNA by 
hydrolases, including DNase I, phosphodiester-
ase, and alkaline phosphatase (ALP) [23], as 
illustrated in Fig. 3. We found that 1.0 mM Mg2+ 
stimulated the DNase, snake venom phosphodi-
esterase (SVP), and ALP to digest DNA 
(~5.0 μg) completely within 2–3 h [24]. It sig-
nificantly shortens the digestion time than tradi-
tionally enzymatic hydrolysis method (6–18 h). 
In addition, the efficiency of DNase/SVP/ALP 
set was significantly inhibited by the Na+ and 
K+, which were general components of the 
phosphate buffered solution. Of note, we 
observed 2′-deoxycytosine (dC) and 5-methyl-
deoxycytidine (5mdC) possessed different 
release rate in the digestion of DNA. Our results 
suggest that there are differences probably 
widespread among the release rate of numerous 
DNA modifications.

The second strategy is that hydrolysis of DNA 
with immobilized enzyme cascade bioreactors 
[25, 26]. We constructed a three-enzyme cascade 
bioreactor, with Benzonase immobilized capil-
lary bioreactor combined with SVP/ALP immo-
bilized capillary bioreactor. Genetic DNA can be 
fully digested (>99.5%) within 10 min [26]. This 
three-enzyme cascade bioreactor can be directly 
combined with LC-MS for DNA modification 
analysis.

2.3  Enhancement of the MS 
Signal for Released 
Nucleosides

Many DNA modifications are essentially polar 
and tend to be detected by LC-ESI-MS in positive 
mode. Generally, the pH and additives were opti-
mizable to enhance MS detection of DNA modifi-
cations. For example, we found ammonium 
bicarbonate (NH4HCO3) was able to enhance MS 
signal (1.8–14.3 times) than formic acid for a 
class of modified nucleosides (5hmdC, 5fdC, 
acrolein-dG adducts) [27, 28]. To explore the 
mechanism of the enhancement of MS detection 
by ammonium bicarbonate, MS2 scan analysis of 
acrolein-dG was performed. There were abundant 
[acrolein-dG + Na]+ and [acrolein-dG + K]+ rela-
tive to [acrolein-dG + H]+(22.8–72%) under the 
mobile phase containing HCOOH, HCOONH4, or 
CH3COONH4, but there was only 3.6% to [acro-
lein-dG + H]+ at the condition of NH4HCO3. This 
indicated NH4HCO3 inhibited the formation of 
compound acrolein-dG-metallic ions in the pro-
cess of ionization and then enhanced the portion 
of acrolein-dG-proton. We speculated NH4

+ prob-
ably formed ionic complexes with acrolein-dG 
([acrolein-dG + NH4]+), which formed [acrolein-
dG + H]+ with loss of NH3 by heated gas phase. 
Meanwhile, the HCO3

− was liable to be degraded 
to CO2 and H2O.  This process was expected to 
enhance the protonation of acrolein-dG.  Also, 
NH4HCO3 was able to enhance chemically labeled 
nucleoside triphosphates [29]. Of note, ESI nega-
tive mode was much more suitable for analysis of 
5cadC and 5hmdU.

DNA derivatization is another strategy to 
enhance the MS detection sensitivity of modified 
nucleotides. DNA chemical derivatization using 
2-bromo-1-(4-dimethylamino-phenyl)-ethanone 

Fig. 2 General procedure of DNA hydrolysis into single nucleotides for HPLC-MS analysis
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(BDAPE) [30] and 8-(diazomethyl) quinoline 
(8-DMQ) [29] was used for enhancing the MS sig-
nal of DNA modifications. This method signifi-
cantly decreased the limits of detection for NTPs 
from 56- to 137-fold [29]. Enzymatic derivatiza-
tion of DNA modifications is another promising 
strategy. For example, 5hmdC can be selectively 
derivatized by T4 c-glucosyltransferase, into 
6-azide-β-glucosyl-5-hydroxymethylcytosine, 
with an elevated eightfold signal sensitivity by 
LC-MS [31].

2.4  Stable Isotope Labeling 
[15N5]-dA Tracing Veritable 
6mA

The analysis of 6mA usually faces severe chal-
lenge of ubiquitous bacterial contamination [9, 
32]. Routine LC-MS and 6mA antibody-based 
assays are generally not able to distinguish 6mA 
of different origins. However, the genomic DNA 
of cultured cells can be labeled by stable isotope 
labeling nucleotides via the purine salvage path-
way, which may be used to distinguish endoge-
nous and exogenous DNA by LC-MS.

2.4.1  Involvement of [15N5]-dA 
in the Adenine Deamination-
Regulated Purine Salvage 
Pathway

In order to test our approach, 20 μM of [15N5]-dA 
was added to the culture medium of human 293 T 

cells. After 24-h treatment, the genomic DNA of 
293 T cells was extracted and digested into single 
nucleotides for UHPLC-TOF MS analysis. Based 
on the exact mass of labeled and unlabeled dA, we 
unexpectedly found that [15N5]-dA was almost 
entirely incorporated into genomic DNA in the 
form of [15N4]-dA instead of [15N5]-dA in 293 T 
cells. To determine which 15N atom of [15N5]-dA 
was replaced with 14N in the transformation 
in  vivo, the co-eluted fraction of dA containing 
unlabeled dA and [15N4]-dA was collected and 
analyzed by the Agilent 6530 TOF MS under tar-
geted MS/MS mode. Given a 20-eV collision 
energy, most of the target precursor ions (dA or 
[15N4]-dA) were fully dissociated into adenine 
bases (unlabeled A or [15N4]-A), together with con-
stant neutral loss of 2′-deoxyribose. With a given 
collision energy of 55 eV, there were 12 and 15 
product ions from the unlabeled adenine and 
[15N4]-adenine, respectively. Based on the reliable 
dissociative principle of adenine reported in a pre-
vious study by Nelson et al. [33], we demonstrated 
that the exocyclic N atom of [15N4]-dA was unla-
beled. It means that the exocyclic N6th 15N of 
[15N5]-dA undergone certain process of biological 
deamination in vivo. Adenosine deaminase (ADA) 
is an important deaminase of adenosine and 
deoxyadenine [34]. In order to verify the potential 
role of ADA in the deamination of [15N5]-dA 
in vivo, ADA expression was knocked down via 
transfection with ADA siRNA. We found that the 
relative level of [15N4]-dA/dA in genome signifi-
cantly decreased ~37.2% after 293 T cells trans-

Fig. 3 DNA was desalted and digested with stepwise pretreatment for UHPLC-MS/MS detection [23]. Reprinted with 
permission from Lai, W., Mo, J., Lyu, C., Wang, H. Anal  Chem 110: 173–182. Copyright 2018. American Chemical 
Society
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fected with ADA siRNA, but [15N5]-dA was still 
undetectable in the genome. This may be due to 
ADA inhibited with a knockdown instead of a 
knockout and ADA was a strong adenine deami-
nase. Meanwhile, the 293 T cells were treated with 
different concentrations (0, 1, 5, 20  μM) of an 
ADA inhibitor EHNA (erythro-9-(2-hydroxy-3-
nonyl) adenine). The relative level of [15N4]-dA in 
genome reduced 75%–96.4% compared to the 
control group. Importantly, [15N5]-dA in genome 
was observed by LC-MS, though the level of 
[15N5]-dA/dA was less than 5% under our experi-
mental condition. Our results have demonstrated 
that [15N5]-dA is overwhelmingly involved in the 
adenine deamination-regulated purine salvage 
pathway in 293 T cells (Fig. 4).

2.4.2  Differentiation of the 6mA 
from Nonproliferative 
Prokaryotic DNA and Human 
DNA

We have demonstrated that the incorporation of 
exogenous nucleoside [15N5]-dA into the genomic 
DNA was in the form of [15N4]-dA and [15N4]-dG, 
but not [15N5]-dA itself [35]. After 293  T cells 
(1 × 105) were treated with 20 μM [15N5]-dA for 
24  hrs, the molar ratios of [15N4]-dA/dA and 
[15N4]-dG/dG were 25.5 ± 0.6% and 29.5 ± 0.2% 
in the genomic DNA, respectively [35]. 
Therefore, if 6mA is a chemical modification 
from dA, there must be two forms of 6mA, unla-

beled 6mA and [15N4]-6mA, but not detectable 
[15N5]-6mA. Because 6mA is a rapid DNA post-
replication methylation in Chlamydomonas and 
many bacteria [10, 36], the molar ratio of 
[15N4]-dA/dA should be almost equal to [15N4]-
6mA/6mA.  Fortunately, the 6mA in the exoge-
nous DNAs from engineering bacteria or from 
the environmental bacteria was not isotope-
labeled and only in the form of unlabeled 
6mA.  Therefore, the quantification of endoge-
nous and exogenous 6mA from cultured cells can 
be straightforward.

2.4.3  Tracing of 6mA Origin by LC-MS 
with Stable Isotope Labeling

As a common bacterial contaminant of mamma-
lian cell cultures, a plenty of mycoplasmas slow 
the growth of cells by competition for nutrients, 
but do not cause media turbidity. In order to ver-
ify the presence of mycoplasma, universal myco-
plasma primers and mycoplasma species-specific 
primers were used in polymerase chain reaction, 
and the products were separated by 1% agarose 
gel [35], as shown in Fig. 4. There are two posi-
tive strands (strand 1 and 2), corresponding to 
theoretical products size 425 bp (universal prim-
ers) and 334  bp (Mycoplasma hyorhinis) [37]. 
The results demonstrated that the DNA extracted 
from the 293 T cells with abundance of 6mA con-
tained the bacterial DNA from Mycoplasma hyo-
rhinis. This means that the 293  T cells were 

Fig. 4 Incorporation of a metabolically generated code of [15N5]-dA into the genome by adenine deamination-regulated 
purine salvage pathway in human cells [35]. Reprinted with permission from Liu, B., Liu,  X., Lai, W., Wang, H. Anal 
Chem 89 (11): 6202–6209. Copyright 2017. American Chemical Society
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infected with Mycoplasma hyorhinis and its bac-
terial DNA was one source of 6mA (Fig. 5).

We then explored the metabolic difference of 
15N-labeled dA between the Mycoplasma-positive 
and Mycoplasma-negative 293  T cells by treat-
ment with 20 μM [15N5]-dA for 24 hrs. The DNA 
was extracted and digested as previously described 
for UHPLC-MS/MS analysis. The results showed 
that both [15N4]-dA and [15N4]-dG existed in the 
two extracted samples. The ratio of [15N4]-dG/dG 
and [15N4]-dA/dA of Mycoplasma-positive 
genomic DNA was 0.96- and 1.28-fold, respec-
tively, to the Mycoplasma-negative DNA (Fig. 6). 
However, [15N5]-dA, 6mA, and [15N5]-6mA 
existed only in the Mycoplasma-positive 293  T 
cells, but not in Mycoplasma-negative 293 T cells. 
UHPLC-MS/MS analysis showed that there was 
about 560 6mA per million dA in the extracted 
DNA from the 293 T cells. More importantly, the 
frequency of the three forms of 6mA was unla-
beled 6mA (32%), [15N4]-6mA (24%), and [15N5]-
6mA (44%) [35]. Of note, [15N5]-6mA was 
predominated among the three forms of detected 

6mA. Consistent with our report, there was ∼2% 
6mA in the genome of Mycoplasma hyorhinis 
[38] and no detectable ADA activity in 
Mycoplasma hyorhinis [39]. Moreover, myco-
plasma owned capacity of uptaking nucleotides 
from both the nucleotide pool of the medium and 
the host nucleotide pool [40], and there was no 
detectable 6mA (lower than 0.4 6mdA per million 
dA) in the Mycoplasma-negative cells [35]. Based 
on these observations, we concluded that the 
detected 6mA was mainly from mycoplasma, but 
we could not exclude the possibility of minor 
6mA from the host gnomic DNA itself.

It is known that routine LC-MS and antibody-
based methods (IF, IP, dot blot) are unable to dis-
criminate the 6mA from different origins, because 
of their identical exact masses and chemical 
structures. Due to the high ADA activity in many 
human or mouse cells [41–43], there should be 
predominant [15N4]-dA, but not [15N5]-dA after 
the cells are treated with [15N5]-dA. On one hand, 
the stable isotope labeling method that we devel-
oped was very reliable, rapid, and effective to 

Fig. 5 Agarose gel electrophoresis (1%) analysis of the PCR products for identification of potential mycoplasma con-
tamination in DNA of infected 293 T cells [35]. Reprinted with permission from Liu, B., Liu,  X., Lai, W., Wang, H. 
Anal Chem 89 (11): 6202–6209. Copyright 2017. American Chemical Society
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trace 6mA in cultured cells. On the other hand, 
Mycoplasma as a common contamination in cell 
culture, and other prokaryotes with deficiency in 
ADA activity [39, 44], can be monitored by the 
production of [15N5]-6mA and [15N5]-dA with 
LC-MS.

2.4.4  Undetectable [15N4]-6mA 
in Mouse Embryonic Stem Cells

The mouse embryonic stem cells (mESCs, 
129SvEv) were treated with 20 μM of [15N5]-dA 
for 5 days and the medium was replaced with the 
fresh medium with the same concentration of 
[15N5]-dA every day. The labeling ratio of 
[15N4]-dA/dA and [15N4]-dG/dG increased from 
zero to ~0.7 along with the cell growth. Three 
forms of 6mA were detected, including unlabeled 
6mA, [15N4]-6mA, and [15N5]-6mA. The level of 
unlabeled 6mA was about 4 6mA per 107 dA, but 
[15N4]-6mA and [15N5]-6mA were undetectable 
(unpublished data). These results indicated there 
was no detectable N6-adenine methyltransferase 
activity in the mESCs.

3  Antibody-Based Assays

The 6mA antibody-based assays such as dot blot 
[6–9, 11], immunofluorescence imaging [6–8, 
11], and ELISA [13] have been used for 6mA 
analysis in many species. Besides a high-quality 

6mA antibody, RNA contamination should be 
completely removed, because of the nonspecific 
recognition of RNA m6A by 6mA antibody. 
Therefore, if there is very low abundance of 6mA 
in a DNA sample, it is essential to verify the 
actual level of 6mA using other techniques, such 
as LC-MS or SMRT-Seq. The dynamic change of 
6mA in embryonic development [6, 12] has sug-
gested its potential important role in this process. 
However, it is very difficult to obtain enough 
number of early mammalian embryonic cells 
(zygote, 1 cell, and morula, 32 cells) for the 6mA 
analysis. New analytical methods, e.g., in situ 
detection, are needed to overcome this sample 
size issue when analyzing the 6mA levels during 
embryonic development.

3.1  Enrichment of 6mA-Specific 
DNA Fragments by Multiple 
Immunoprecipitation

IP is a common tool for studying the locus-spe-
cific DNA methylations and profiling of DNA 
methylations at a genome-wide level [6, 10]. 
However, the use of antibodies, microbeads, and 
protein A/G probably results in nonspecific bind-
ing of 6mA-free DNA fragments in 6mA IP.  In 
our previous study [45], prior to 6mA IP, the low 
methylation Lambda DNA (0.68 6mA modifica-
tion per 104 deoxynucleotides) was fragmented 

Fig. 6 DNA 
modification products 
from metabolism of 
[15N5]-dA in the genome 
of Mycoplasma-positive 
or negative 293 T cells 
treated with [15N5]-dA 
for 24 h [35]. Reprinted 
with permission from 
Liu, B., Liu,  X., Lai, 
W., Wang, H. Anal 
Chem 89 (11): 
6202–6209. Copyright 
2017. American 
Chemical Society
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and thermally denatured into single-strand (ss) 
DNA (~150 nt). Then, five anti-6mA antibodies 
from different sources (3 μg of each antibody) 
were incubated with 5  μg ssDNA [45]. The 
enrichment coefficient of each anti-6mA anti-
body was determined to be from 5.3-fold to 
37-fold. Surprisingly, the ultimate enriched frag-
ments contained 62.7% to 94.6% 6mA-free DNA 
fragments [45]. The next-generation sequencing 
(NGS) method could not distinguish the 6mA 
from dA, which means all the enriched DNA 
fragments would be read and mapped to the 
genome as 6mA-rich regions. The oversize false-
positive background prevented us from revealing 
the truth of 6mA distribution in genome (Fig. 7). 
The single-molecule real-time sequencing was 
able to distinguish 6mA from dA at single base 
resolution, but it required large amounts of DNA 
and was not suitable for sequencing of very low 
abundant 6mA genome [46].

Based on previous IP results, we speculated 
the affinities of the 6mA antibodies against 6mA 
are probably at submicromolar level, in the pres-
ence of copious 6mA-free fragments, suggesting 
that IP is a moderate affinity solid-phase (anti-
body) extraction. Therefore, the multiple-round 
6mA-IP procedure should be very efficient to 
enrich a high proportion of 6mA-specific frag-
ments in the final pull-down fraction. The first 
and second round IP enriched 34-fold and 61-fold 
6mA fragments, respectively, but 6mA-free frag-
ments remained to be the majority as the 6mA-
specific fragments only took up 0.23% and 13.7% 
of the entire pull-down fraction. Only after the 
third round IP, 60% 6mA-specific fragments 

were obtained. Finally, 13.7  ng DNA was 
enriched and the overall length (2.5 × 1013  nts) 
was 4700-fold higher than the length of mouse 
genomes (5.3 × 109 nts). Therefore, the enriched 
6mA-specific fragments were enough for con-
struction and sequencing of DNA libraries. The 
multiple-round 6mA-IP combined with high-
throughput sequencing is promising to reveal the 
authentic genome-wide distribution of low abun-
dance 6mA in multicellular organisms.

4  High-Throughput DNA 
Sequencing Technology

4.1  Next-Generation Sequence

NGS usually consists of the following steps: 
library construction, surface attachment and bridge 
amplification, denaturation and complete amplifi-
cation, single base extension and sequencing, and 
data analysis [47]. As a result, PCR-based NGS 
was not able to directly read the sequence informa-
tion of DNA modifications, but there are other 
ways for mapping the DNA modification sequence. 
For example, bisulfite oxidation deaminizes C to 
U, but 5mC is invariable in DNA. The U is read as 
T and 5mC is read as C by the NGS. This so-called 
BS-Seq method was widely used in genome-wide 
mapping of 5mC. Similarly, the 6mA and dA are 
both read as dA by NGS. Unfortunately, as far as 
we know, there was no sufficiently effective way 
to convert 6mA to other derivative at genomic 
level, because of its extreme stability. Of note, 
6mA could be demethylated by fly DMAD or 

Fig. 7 Multiple-round 6mA-IP significantly enhanced the proportion of 6mA-specific fragments in the total enriched 
fragments using a genome with very low 6mA abundance [45]. Reprinted with permission from Liu,  X., Lai, W., 
Zhang, N., Wang, H. Anal Chem 90 (9): 5546–5551. Copyright 2018. American Chemical Society
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mouse ALKBH1 to potential intermediates such 
as 6hmA and 6fA. TET2 can stepwise oxidize to 
5hmdC and 5fdC [48], and the oxidation may be 
stalled at 5hmdC by TET2 mutant [49]. Similarly, 
oxidization of 6mA may be potentially stalled at 
6hmA or 6fA by remodeled 6mA demethylases. 
Derivatization of the hydroxy and formyl groups 
of the 6hmA and 6fA, which probably are stable 
under certain conditions, then provides another 
strategy for the 6mA methylome sequencing.

Sample preparation for sequencing analysis 
can be carried out with a method combining the 
use of 6mA antibody with photo-crosslinking and 
exonuclease digestion. Methylated DNA sample is 
adequately incubated with 6mA antibody and then 
photo-crosslinked at UV 254 nm, and the cross-
linked DNA was digested by two exonucleases, 
Lambda exonuclease and RecJf exonuclease for 
sequencing analysis [10, 15]. With this method, 
Koh and colleague [15] obtained a single-nucleo-
tide resolution for 6mA analysis, which is different 
from the previous report (~33 bp 6mA mapping 
resolution) [10]. This is probably caused by the 
difference in the degree enzymatic digestion.

Restriction enzyme-based 6mA sequencing 
(6mA-RE-seq) has also been demonstrated for 
global-scale 6mA analysis. Luo and colleagues 
[50] found that DpnI not only can recognize 
G(6mA)TC in dsDNA but also weakly cut C(6mA)
TC and G(6mA) TG sites. The 6mA sites would be 
at terminal of the derived fragments ready for 
sequencing analysis. The 6mA-RE-seq is highly 
sensitive and low cost and can provide genome-
wide mapping of 6mA at single base resolution. 
Of note, restriction endonucleases selectively rec-
ognize specific motif containing 6mA, which gen-
erally is only a part of the whole 6mA sites in the 
genome. In other words, a lot of information of 
6mA distribution in the genome may be ignored.

4.2  Single-Molecule, Real-Time 
(SMRT) Sequencing 
Technology

The principle of SMRT lies in that the fluoro-
phores are cleaved off when dNTPs are incorpo-
rated into expanded DNA by the DNA 

polymerase. A detector detects the fluorescent 
signal of the nucleotide incorporation, and the 
base call is made according to the corresponding 
fluorescence of the dye. SMRT sequencing is 
antibody independent, without native DNA clon-
ing or amplification, but had an overall lower 
read accuracy (~87%) [51]. This means much 
more native DNA is required for SMRT than the 
NGS method. The read length of SMRT sequenc-
ing generally exceed 5 kilobases. The longer read 
length increases the reliability of mapping 
genome, decreases the GC bias, and reduces the 
difficulty of mapping to repetitive elements, 
paralogous sequences, and phasing alleles in the 
genome. However, SMRT sequencing consumes 
more native DNA and the cost is high, which lim-
its its popularity. Generally, to generate a com-
plete human 6mA methylome, no less than 75 
runs are required to achieve the minimal ∼150× 
coverage by the SMRT sequencing on the PacBio 
Sequel System [52].

SMRT sequencing was used to analyze the 
distribution of 6mA in the C. elegans genome, 
and two methylation-specific sites AGAA and 
GAGG were verified [7]. Meanwhile, there were 
no significantly depleted or enriched regions of 
6mA in the genome of C. elegans. Of note, SMRT 
cannot distinguish 6mA from 1mA; therefore, 
UHPLC-MS/MS is usually required to differenti-
ate 6mA and 1mA signals [7]. Wu et  al. used 
SMRT-ChIP to sequence the H2A.X deposition 
region in mouse embryonic stem cells and found 
the 6mA was accumulated on young full-length 
L1 elements, but less on old L1 elements [8]. 
Also, early-diverging fungi genome was 
sequenced by the SMRT sequencing and showed 
that 6mA is symmetrically distributed on the ApT 
dinucleotide. This was similar to the finding that 
6mA was mostly distributed at the AT modif of 
the linker DNA region in Tetrahymena [11]. The 
6mA was found to be concentrated around the 
transcription start sites, which is the opposite of 
the distribution of 5mC [53]. In Dikarya, the 
abundance of 6mA ranged from 0.048% 
(Pucciniomycotina, Leucosporidiella creatiniv-
ora) to 0.21% (Taphrinomycotina, Protomyces 
lactucaedebilis). The excessively low level of 
6mA (0.048%) probably caused the false-posi-
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tives when using the SMRT sequencing for 6mA 
mapping [53]. It should be noted that the abun-
dance level of 0.048% (6mA/A) in the genome is 
generally comparative or higher than the level of 
6mA in mammalian somatic cells [8, 17].
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Microbial Metabolomics: 
From Methods to Translational 
Applications

Rui Guo, Xialin Luo, Xu Xin, Lian Liu, Xijun Wang, 
and Haitao Lu

1  Introduction

Microbes, which are generally divided into five 
categories, namely, bacteria, viruses, fungi, 
archaea, and protozoa, are the pathogens respon-
sible for many infectious diseases that remain a 
leading cause of death worldwide due to the 
ongoing emergence of new pathogens and resur-
gence of previous pathogens. For instance, the 

gut microbiota is a contributing factor to the 
pathophysiology of obesity. Escherichia coli is 
the major pathogen of urinary tract infection 
(UTI), which has a high rate of recurrence. 
Hepatitis C virus (HCV) induces the develop-
ment of hepatitis C, and some other serious infec-
tious diseases, even cancer, are associated with 
microbes [1–4].

Conventionally, molecular and cellular bio-
logical methods are used to study infections at 
the gene and protein levels, but these methods 
cannot be used for precise and direct monitoring 
of minor changes in biological niches, let alone 
for pathogenic annotation. As the final down-
stream event of transcription and translation, 
metabolism will amplify these changes, which 
can then be traced back to easily identify the 
pathogenesis of infectious diseases [5]. To our 
knowledge, microbial metabolism refers to a 
series of chemical reactions that occur during the 
growth, proliferation, and differentiation of 
microbes and substrate degradation by microbes, 
including catabolism and anabolism, which are 
closely associated with pathogenesis and viru-
lence [6]. Therefore, microbial metabolomics 
provide a new opportunity to study the diagnosis, 
pathogenesis, and treatment of diverse 
infections.

Over the past few years, microbial metabolo-
mics, which is designated for global profiling of 
a large number of small molecules (molecular 
weight <1000) from a microbiological system, 
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has developed rapidly and been introduced into 
life science research. Owing to the development 
of techniques such as high-resolution mass spec-
trometry (MS), methods of sample preparation 
and biological annotation databases such as the 
Human Metabolome Database (HMDB), we can 
precisely target microbiological functions and 
then apply microbial metabolomics to study the 
diagnosis, pathogenesis, and treatment of many 
infections, such as type 1 diabetes (T1D), UTI, 
and cystic fibrosis (CF) [2].

In this chapter, we attempt to summarize 
microbial metabolomics from methods to appli-
cations in the study of diverse infectious diseases, 
allowing us to better understand how microbial 
metabolomics aids the study of the diagnosis, 
pathogenesis, and treatment of microbe-related 
infections (Fig. 1).

2  Methods in Microbial 
Metabolomics

2.1  Key Analytical Tools 
for Microbial Metabolomics

Microbial metabolomics strives to analyze the 
metabolomes of microbiological systems and 
then translates the metabolic differences to phe-

notypic differences, enhancing our knowledge 
about the molecular mechanisms of infectious 
diseases [7]. Accuracy, sensitivity, and high 
throughput are three basic characteristics that 
analytical instruments used for microbial metab-
olomics should possess. However, because the 
classes and concentrations of metabolites vary 
greatly and due to the presence of a large number 
of metabolites in biological samples, it is very 
challenging for only one analytical tool to meet 
all three requirements and detect all known and 
unknown metabolites [8]. Two types of instru-
mentation platforms based on nuclear magnetic 
resonance (NMR) and MS are currently pre-
ferred, although neither of these platforms can 
profile all the metabolites present in microbial 
samples in an unbiased manner.

NMR spectroscopy identifies chemical struc-
tures based on the absorption spectra of radio fre-
quency (RF) pulses from the nuclei of atoms in 
strong magnetic fields. The commonly employed 
atoms for analysis include 1H, 13C, and 31P, and 
this technique can analyze metabolites in sam-
ples both qualitatively and quantitatively at the 
same time. The applications of NMR spectros-
copy in metabolomics vary widely, with the most 
common application being qualitative and quan-
titative analysis of metabolites in body fluid sam-
ples. For example, 1H-NMR was applied to 

Fig. 1 Applications of metabolomics in the study of microbe-related infectious diseases
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compare metabolomes between biofilms, which 
are associated with many infections, and plank-
tonic cells of Staphylococcus aureus [9]. 
However, due to the complexity of metabolites 
from microbes and wide range of metabolite con-
centrations, as well as the relatively low sensitiv-
ity and high cost of NMR, the application of 
NMR in microbial metabolomics has been 
limited.

To overcome these problems, high-resolution 
MS has recently become an indispensable tool in 
metabolomics. Sample preparation techniques 
such as gas chromatography (GC), liquid chro-
matography (LC), or capillary electrophoresis 
(CE) coupled with high-resolution MS methods 
are broadly employed in microbial metabolomics 
[7].

GC-MS is a hyphenated technique in which 
the metabolites of the sample are first separated 
by GC and then detected and identified by MS 
[10]. GC-MS only detects volatile and thermally 
stable compounds, while a majority of microbial 
metabolites are nonvolatile and thermally labile, 
such as phosphorylated metabolites, which may 
degrade when placed at high temperatures in the 
GC oven. However, this method has been used to 
analyze microbial metabolites after derivatiza-
tion due to the advantages of GC, including the 
ability to efficiently distinguish isomeric com-
pounds, the ease of use, and the low cost com-
pared to other separation tools [8]. For example, 
a derivatization reaction combined with GC-MS 
analysis has been used to study numerous 
microbes, such as Propionibacterium freuden-
reichii, E. coli, and Bacillus subtilis [7].

LC-MS is another hyphenated technique that 
offers analyte separation via LC followed by ion-
ization and MS detection. There are two com-
monly used ionization methods for LC-MS, 
namely, electrospray ionization (ESI) and atmo-
spheric pressure chemical ionization (APCI), 
which are both very sensitive. However, ESI is 
more desirable in microbial metabolomics 
because ESI-MS preferentially detects polar 
compounds, while APCI-MS detects nonpolar 
compounds. In addition, in contrast to GC-MS, 
LC-MS does not require high temperatures and 
volatility of analytes, which increases the ease of 

sample preparation [10]. Furthermore, LC-MS is 
also highly sensitive with small sample volumes 
[11]. For example, myxoprincomide, a novel 
myxobacterial metabolite of Myxococcus xan-
thus DK1622, was discovered by LC coupled 
with high-resolution MS (LC-HRMS) [12]. 
Nevertheless, there remain some challenges asso-
ciated with LC-MS techniques, such as interfer-
ence by the high salt content in microbial media 
samples, ionization suppression, and the rela-
tively low resolution of high-performance LC 
(HPLC). Nevertheless, the emergence of 
ultrahigh- performance LC (UPLC) has improved 
chromatographic resolution greatly [10]. For 
instance, Marcobal and colleagues used an 
UPLC-MS method to examine the influence of 
the gut microbiota on the urinary and fecal 
metabolome of a humanized mouse [13]. CE-MS 
is another useful tool for metabolomic analysis, 
the advantages of which include exquisite separa-
tion efficiency, very small sample volumes (nL 
range), and low cost when compared to GC-MS 
and LC-MS. However, the major shortcoming of 
CE-MS is the difficulties at the interface between 
CE and MS [11].

In short, there are several platforms employed 
in microbial metabolomics (Fig.  2), and each 
type of instrument has advantages and disadvan-
tages. Researchers should choose the best method 
or combine the tools to analyze microbial metab-
olites based on the characteristics of compounds 
of interest and analytical tools (Fig. 2).

2.2  Sample Preparation and Data 
Mining of Microbial 
Metabolomics

Microbial metabolomics focuses on intracellular 
metabolites that change quickly over time. 
Therefore, the methods and conditions of sam-
pling and sample preparation, including time, 
storage condition, and other factors, greatly influ-
ence the reproducibility, precision, and accuracy 
of detection. In addition, the biological variabil-
ity tends to be larger than analytical variability, 
which enhances the importance of optimizing 
sampling and sample preparation methods.

Microbial Metabolomics: From Methods to Translational Applications
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Some metabolic processes are so rapid (usu-
ally less than 2 s) that quick collection of samples 
from the reactor to stop cell metabolism, espe-
cially enzymatic processes, is very crucial. Quick 
harvesting of metabolites followed by freezing in 
liquid nitrogen and then storing at −80  °C is 
commonly used by many researchers. Choosing 
an effective approach for instant quenching is 
also rather important for the harvesting of metab-
olites, and the approach should meet basic 
requirements such as absence of cell leakage or 
detection of any leaked metabolites. The use of 
acidic reagents such as nitric and perchloric acid 
drastically reduces the number of detected 
metabolites, and unstable compounds are 
severely degraded. Hot alcoholic polar (e.g., 
methanol/water) and nonpolar (e.g., chloroform) 
extractions are also employed. According to 
many related studies, prokaryotic microbes such 
as E. coli have a greater tendency to exhibit leak-
age of intracellular metabolites than eukaryotic 
microbes such as yeasts when treated with cold 
methanol, which might be due to the differences 
in cell wall and membrane structures between the 
two types of microorganisms. Therefore, cold 
methanol extraction may be promoted as a com-
mon quenching method for extraction of intracel-
lular metabolites from some prokaryotic microbes 

[14]. A detailed procedure for sampling and sam-
ple processing is shown in Fig. 3.

After analyzing the samples via MS-based 
platform, we obtained the raw data that were very 
complex. Therefore, data analysis requires the 
use of appropriate informatics tools for metabo-
lite identification and quantification (Fig.  3). 
First, pretreatment of raw data to exclude irrela-
tive factors is important and indispensable. 
Several major processes that involve noise filter-
ing, resolution of overlapping peaks, peak align-
ment, peak matching, and peak normalization are 
needed. Current software programs for perform-
ing data pretreatment include MetAlign, MET- 
IDEA, MZmine, Progenesis QI, XCMS, and 
MSFACTs. The first three can be used to pretreat 
all LC-MS and GC-MS raw data, while 
Progenesis QI and XCMS can only process data 
produced by LC-MS, and MSFACTs is a soft-
ware for GC-MS data processing. Among the 
tools mentioned above, MetAlign and MZmine 
cannot resolve overlapping peaks; MET-IDEA 
can extract semiquantitative information in addi-
tion to resolving overlapping peaks; and XCMS 
can perform alignment of nonlinear retention 
times, noise filtering, and other functions. 
STOCSY (statistical total correlation spectros-
copy) is a commonly used method for molecule 

Fig. 2 Platforms used for microbial metabolomics
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identification in microbial metabolomics based 
on NMR.  It takes advantage of the multicol-
linearity of the intensity variables in a set of spec-
tra to generate a pseudo-two-dimensional NMR 
spectrum that displays the correlation among the 
intensities of the various peaks across the whole 
sample. This method is not limited to the usual 
connectivities that are deducible from more stan-
dard two-dimensional NMR spectroscopic meth-
ods, such as TOCSY. Moreover, two or more 
molecules involved in the same pathway can also 
present high intermolecular correlations because 
of biological covariance or can even be anticor-
related. The combination of STOCSY with 
supervised pattern recognition and particularly 
orthogonal projection on latent structure- 
discriminant analysis (O-PLS-DA) offers a new 
powerful framework for analysis of metabolomic 
data. In a first step O-PLS-DA extracts the part of 
NMR spectra related to discrimination. This 
information is then cross-combined with the 
STOCSY results to help identify the molecules 
responsible for the metabolic variation [15].

In addition to data pretreatment, mining of 
useful information from a large amount of data 
and functional annotation of this data is another 
key challenge in microbial metabolomics. 
Multivariable data analysis (MVDA) is 
 commonly used to extract information from data 
sets, including analysis of variables that contrib-

ute to classification, identification of biomarkers 
associated with phenotypes, and annotation of 
regulatory mechanisms via metabolic pathways. 
Recently developed MVDA techniques comprise 
supervised and unsupervised methods as two 
main types. In microbial metabolomics, super-
vised methods include clustering analysis (CA) 
and principal component analysis (PCA), and 
unsupervised methods include linear discrimi-
nant analysis (LDA), partial least squares (PLS) 
analysis, partial least squares-discriminant analy-
sis (PLS-DA), and artificial neural network 
(ANN) analysis. Among these analytical meth-
ods, PCA and PLS-DA are the most commonly 
applied methods, yielding classification informa-
tion via a score plot and revealing metabolites 
that contribute to the classification as well as the 
determining the contribution of these metabolites 
via a loading plot [3, 16, 17].

2.3  Biological Annotation 
of Differential Metabolic 
Pathways Characterized by 
Microbial Metabolomics

After identification of the contributive molecules, 
the next important step is to identify relevant 
metabolic pathways that could explain the roles 
of these molecules in metabolism. Identification 

Fig. 3 Sample preparation and data mining of metabolites from E. coli
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of metabolic pathway has actually helped eluci-
date the connections among metabolites and 
proven to be effective for understanding pathway 
genes/enzymes and related molecular biology 
[18]. Over the past decade, many excellent online 
metabolic pathway databases have emerged to 
provide intuitive bioinformatic tools for the visu-
alization, interpretation, and analysis of path-
ways (Fig.  4), such as Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (https://www.
genome.jp/kegg/), BioCyc (https://biocyc.org/), 
Reactome (https://reactome.org/), Small 
Molecule Pathway Database (SMPDB) (http://
www.smpdb.ca/), and Metabolomics Pathway 
Analysis (MetPA) (http://metpa.metabolomics.
ca/) [18–24]. The KEGG pathway database is a 
reference database consisting of metabolic path-
way maps with functional significance [25]. 
BioCyc provides not only a reference for genomes 
and metabolic pathways but is also a powerful 
computational analytical tool for prediction of 
metabolic pathways and operons; BioCyc 

includes EcoCyc, which is a specific database for 
the bacterium E. coli K-12 MG1655. The 
Reactome database is based on reactions that are 
grouped into causal chains to form pathways in 
human systems [20].

Metabolic pathway analysis is usually based 
on high-throughput metabolomic data achieved 
by NMR- or MS-based analysis of biological 
samples. Correct mapping of metabolic pathways 
relies on robust data processing and analysis, 
such as identification and characterization of 
metabolites, and visualization of the results. In 
targeted metabolomics (quantitative metabolo-
mics), compound identification and quantifica-
tion are usually achieved by comparing analytical 
samples on the basis of a series of chemical stan-
dards [26]. For statistical analysis of targeted 
metabolomic data, openly accessible software/
database tools such as MetaboAnalyst (http://
www.metaboanalyst.ca/), MeltDB (https://
meltdb.cebitec.uni-bielefeld.de/), HMDB, and 
MeTPA are usually preferred [26–28]. In 

Fig. 4 Online metabolic pathway databases for biological annotation
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MetaboAnalyst, detailed and hyperlinked diagrams 
of pathways can be obtained after uploading a 
peak list and including information regarding the 
name and peak intensity of each identified metab-
olite. MeltDB is similar to MetaboAnalyst to 
some extent but is only used for MS-based 
metabolomics data analysis. All the results are 
linked to the HMDB, which is currently the most 
comprehensive database of human metabolites 
and related metabolisms [29]. MetPA is another 
powerful tool that helps identify the most rele-
vant metabolic pathways and visualizes pathway 
data.

Metabolic pathway analysis of untargeted 
metabolomic data is quite challenging because 
it requires confident identification of a large 
number of metabolites and building of complex 
relationships among the identified metabolites. 
Therefore, comprehensive databases such as the 
HMDB, METLIN (https://metlin.scripps.edu/), 
and Madison Metabolomics Consortium 
Database (MMCD) (http://mmcd.nmrfam.wisc.
edu/) [29, 30] are needed to provide the struc-
tural properties (e.g., MS/MS spectra) and func-
tional properties of metabolites. Such publicly 
accessible, web-based databases provide hyper-
links to other databases and share some infor-
mation in common. HMDB integrates 
information regarding compound description, 
chemical structure, and disease associations and 
reference NMR and MS spectra [29]. METLIN 
is centered on MS-based data, especially MS/
MS data. This database can be used to match 
metabolites based on MS and MS/MS data. 
Recently, isoMETLIN, a version for isotope-
labeled compounds, has facilitated untargeted 
global isotope-tracer experiments [30]. The 
MMCD database supports an extensive search 
using experimental MS or NMR data, and this 
database contains information for more than 
20,000 biologically relevant small molecules 
chosen from KEGG, BioCyc, HMDB, and oth-
ers [31]. These open-source databases allow 
their content and software infrastructures to be 
optimized and updated according to user feed-
back, greatly increasing the convenience and 
efficiency of metabolic pathway analysis of bio-
logical systems.

3  Translational Applications 
of Microbial Metabolomics

3.1  Diagnosis of Infectious 
Diseases Caused by 
Pathogenic Microbes

Many infectious diseases, such as UTI, spleen- 
yang- deficiency syndrome (SYDS), and 
CF-associated lung disease, cause serious issues 
to patients’ health. However, diagnosis of these 
diseases remains highly challenging due to the 
lack of effective biomarkers. Fortunately, the 
applications of microbial metabolomics have sig-
nificantly contributed to the diagnosis of infec-
tion diseases. UTI is a serious disease worldwide 
that mainly affects females, and the most com-
mon pathogen is E. coli [2]. LC-MS was used to 
globally profile the metabolites in urine from 
healthy controls and patients with UTI, and sev-
eral potential biomarkers were identified 
 successfully (Fig. 5) [32]. Lam et al. applied pro-
ton NMR spectroscopy to analyzing 88 urine 
samples from UTI patients and demonstrated that 
trimethylamine (TMA) could serve as a human-
microbial marker of UTI associated with E. coli, 
and NMR-based urinalysis could aid the etiologi-
cal diagnosis of this infectious disease [33].

SYDS is a typical syndrome in traditional 
Chinese medicine (TCM). Patients with SYDS 
can be distinguished from healthy controls by 
performing liquid chromatography/quadrupole 
time-of-flight mass spectrometry (LC-QTOF- 
MS)-based metabolomics and 16S rRNA 
sequencing because the number of Firmicutes 
and Clostridia bacteria that contribute to energy 
dysfunction is increased in the gut of SYDS 
patients. Therefore, Firmicutes and Clostridia 
bacteria may become new markers for the 
 diagnosis of SYDS via microbial metabolomics 
coupled with 16S rRNA sequencing [34]. 
Pseudomonas aeruginosa is one of the most 
common pathogens and causes CF-associated 
lung disease. By analyzing the metabolites of 
CF patients and non-CF patients via LC-MS/
MS, sphingolipids were found to be the most 
abundant molecules in the sputum of CF 
patients. This study showed that microbial 

Microbial Metabolomics: From Methods to Translational Applications

https://metlin.scripps.edu/
http://mmcd.nmrfam.wisc.edu/
http://mmcd.nmrfam.wisc.edu/


104

metabolomics could identify specific com-
pounds that are abundant in clinical samples to 
help diagnose the disease [35].

Microbial metabolomics could also improve 
the diagnosis of inflammatory bowel disease 
(IBD), Crohn’s disease (CD), and ulcerative coli-
tis (UC) caused by the gut microbiota by identi-
fying the altered metabolite signatures in 
biological samples [36]. For instance, GC-MS 
was performed to analyze the fecal samples from 

20 UC patients, 22 CD patients, 26 IBS patients, 
and 19 healthy controls and reveal the increased 
levels of ester and alcohol derivatives of short 
chain fatty acids (SCFAs) and indole in the CD 
group [27]. Based on 1H-NMR analysis, the lev-
els of 3-hydroxybutyrate, β-glucose, α-glucose, 
and phenylalanine were found to be significantly 
increased and lipid levels were significantly 
decreased in the serum samples of UC patients 
compared to healthy controls [4]. In addition, uri-

Fig. 5 LC-MS-based global metabolic profiling platform for human urine from healthy controls and patients with UTI
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nary metabolites, including those originating 
from the gut microbiota, such as hippurate, ace-
tate, methanol, methylamine and formate, TCA 
cycle intermediates, creatine, urea, taurine, and 
trigonelline, were identified as potential biomark-
ers to distinguish IBD patients from healthy con-
trols [38]. Ahmed et al. reported a comprehensive 
study of the fecal volatile organic metabolites 
(VOMs) in the patients with diarrhea- predominant 
IBS (IBS-D, n = 30), CD (n = 62) or UC (n = 48), 
and healthy controls (n = 109). Fecal VOMs were 
extracted by solid-phase microextraction and 
analyzed by GC-MS.  In total, 240 VOMs were 
identified. Esters of short chain fatty acids, cyclo-
hexanecarboxylic acid, and its ester derivatives 
were associated with IBS-D, while aldehydes 
were more abundant in IBD. A predictive model, 
developed by multivariate analysis, could differ-
entiate IBS-D from active CD, UC, and healthy 
controls with high sensitivity and specificity [39].

3.2  Pathogenesis Annotation 
of Microbial Infections

Although many drugs have been developed to treat 
infections, patients also experience side effects due 
to the nonspecificity of drug targets. In this regard, 

microbial metabolomics may be a useful tool to bet-
ter understand the pathogenesis of infectious dis-
eases and to promote precision treatment. Infections 
such as T1D, neonatal necrotizing enterocolitis 
(NEC), and UTI are increasingly prevalent condi-
tions associated with gut microbiota, and the early 
mechanism of these illnesses remains elusive. By 
profiling the serum metabolites from transgenic 
mice with a combined LC-MS and GC-MS 
approach, decreased levels of lysophosphatidylcho-
line (LPC) and methionine and accumulation of 
ceramides were observed, which may facilitate our 
understanding of early T1D pathogenesis [40]. 
NEC mainly leads to the mortality of infants with 
very low birth weight. Metabolomics and next-gen-
eration sequencing tools have been used to investi-
gate the contribution of intestinal microbes to NEC 
pathogenesis. The role of intestinal microbes was 
redefined and numerous evidences support the sup-
ported the hypothesis that NEC is a microbe- 
mediated disorder [41].

In addition, NMR has been used to determine 
the relationship between siderophores (second-
ary metabolites of microorganisms) and the 
pathogenesis of E. coli, the gut microorganism 
that causes UTI, demonstrating that the molecu-
lar interactions between the host and pathogen 
provide novel insight into pathogenesis (Fig. 6) 

Fig. 6 Urinary metabolites altered by siderophore treatment, as identified via NMR spectroscopy, and related meta-
bolic pathways
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[42]. Similarly, GC-MS was employed to explore 
the relationships among the host, Salmonella 
enterica serovar Typhimurium (S. Typhimurium), 
and the commensal gut bacteria during S. 
Typhimurium-mediated intestinal infection, and 
the data demonstrated the accumulation of 
metabolites consumed by commensal microbes. 
This result offers insights into the molecular 
interplay among the host, pathogen, and com-
mensal microbes during pathogenesis [43].

Liver disease is a serious illness worldwide, 
and HCV is the leading cause, but the pathogen-
esis of HCV is not fully understood. Fortunately, 
some progress has been made with the help of 
microbial metabolomics. For instance, Sun and 
colleagues applied UPLC/ESI-SYNAPT-HDMS 
to analysis of metabolites of an HCV animal 
model and identified 38 distinct compounds, such 
as hypotaurine, glycerophospholipid, and trypto-
phan, as effective biomarkers for HCV diagnosis 
and pathogenesis [44]. Another microbe, 
Mycobacterium leprae, causes leprosy, which 
mainly infects the skin and peripheral nervous 
system. UPLC-MS was used to investigate the 
serum samples from the patients with high bacte-
rial indices (BIs) and low BIs, and the levels of 
arachidonic acid, eicosapentaenoic acid, and doc-
osahexaenoic acid were found to significantly 
increase, particularly in high-BI patients, which 
may serve as potential biomarkers and facilitate 
the study of high-BI pathogenesis [45].

3.3  Development of Antibiotic 
Resistance Against Microbe- 
Associated Infections

Penicillin and sulfonamide were the first two 
effective antimicrobials, and the former has saved 
thousands of lives. A number of other prevalent 
antibiotics such as streptomycin, aureomycin, 
chloramphenicol, and kanamycin were subse-
quently discovered. However, antibiotic resis-
tance (AR) has emerged with misuse, overuse, 
and even underuse of antibiotics. In fact, the main 
reason for the lack of success in AR control is 
that the wide range of biochemical and physio-
logical mechanisms is poorly understood due to 

the complexity of the processes that contribute to 
the emergence and dissemination of resistance 
[46]. Nonetheless, microbial metabolomics may 
have potential applications in the control of AR 
because most AR processes consume cellular 
energy, which leads to clear downstream changes 
in microbial metabolism [47].

Biofilms are sessile communities of microbes, 
usually bacteria or fungi, on surfaces or liquid-air 
interfaces. Biofilms are closely associated with 
many health problems, such as UTI, dental  caries, 
chronic osteomyelitis, and CF-associated lung 
infection. However, these diseases are difficult to 
treat due to the resistance of biofilms to antibiot-
ics [2]. To overcome the resistance, both MS- and 
NMR-based metabolomics have recently been 
used to study biofilms. For instance, Stipetic 
et al. demonstrated a novel extraction method via 
bead beating in a chloroform/methanol/water 
extraction solvent, and the metabolites were then 
analyzed by LC-MS to detect metabolic altera-
tions between biofilm and planktonic cells of S. 
aureus. Significant changes in arginine biosyn-
thesis were identified [48]. Another study by 
Hess et  al. was performed on a biofilm of S. 
aureus with 1H NMR, and low oxygen concentra-
tions were found to inhibit biofilm formation and 
regulate the ability of gentamicin and vancomy-
cin. The results showed differential metabolomic 
profiles between aerobic and anaerobic biofilms 
and demonstrated that microbial metabolomics is 
an effective tool for identification of the main 
molecules involved in biofilm development [49]. 
In addition, mannoside was shown to potentiate 
the activity of trimethoprim-sulfamethoxazole in 
the treatment of UTI [50]. All these studies indi-
cate that microbial metabolomics may serve as a 
powerful tool to understand the mechanisms 
underlying the resistance of biofilms to 
antibiotics.

An untargeted metabolomics approach was 
used to quantify the short-term metabolic changes 
that occur in treating E. coli with several antibiot-
ics; this study was performed with QTOF-MS to 
understand the mechanisms of drug action and 
determine approaches to potentially address AR 
(Fig. 7). The results revealed that an imbalance of 
ammonium could improve chloramphenicol tox-
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icity and the function of dTDP-rhamnose synthe-
sis in response to quinolone antibiotics [51]. 
Klebsiella pneumoniae, a major pathogen of 
bloodstream infections, is also an AR-associated 
strain. Rees and colleagues applied 
GC × GC-TOFMS to profiling the volatile com-
pounds produced by K. pneumoniae in human 
blood and identified 33 volatile metabolites that 
are abundant in the pathogenic strain [52]. In 
addition, Campylobacter jejuni (C. jejuni), a 
foodborne microbe, is a great burden on human 
health due to resistance to antibiotics. UPLC−
TOF/MS was used to profile metabolites and dis-
cover metabolic signatures associated with 
chloramphenicol and florfenicol resistance- 
causing mutations in C. jejuni. Up to 41 differen-
tial metabolites involved in glycerophospholipid 
metabolism, sphingolipid metabolism, and fatty 
acid metabolism were observed in a 

chloramphenicol- resistant mutant strain of C. 
jejuni. A panel of 40 features was identified in 
florfenicol-resistant mutants, demonstrating 
changes in glycerophospholipid metabolism, 
sphingolipid metabolism, and tryptophan metab-
olism. This study shows that the UPLC-MS- 
based metabolomics is a promising and valuable 
tool to generate new insights into the drug- 
resistant mechanism of C. jejuni [53].

3.4  Treatment of Infectious 
Diseases Caused by 
Pathogenic Microbes

Although traditional antibiotics have saved mil-
lions of lives and revolutionized the treatment of 
infectious diseases, side effects associated with 
the broad use of antibiotics, such as increased 

Fig. 7 Monitoring of short-term metabolic changes in E. coli after exposure to antibiotics by QTOF-MS
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emergence of AR and indiscriminate disruption 
of the beneficial microbiota, have stimulated the 
need for alternative treatment strategies [54, 55]. 
One approach is the development of a new gen-
eration of antimicrobials that mitigate the spread 
of AR. Microbial metabolomics could provide 
the opportunity to understand the biochemistry 
and pathogenesis of microbial pathogens and 
facilitate the discovery and development of novel 
anti-infective drugs [56]. Therefore, investigation 
of the targets and action modes of drugs via 
metabolomics can be used to predict the safety 
and efficacy of a drug (Fig. 8) [57]. For example, 
a quantitative metabolomics analysis of non-
mevalonate isoprenoid synthesis in Plasmodium 
falciparum identified the primary antiparasitic 
activity of fosmidomycin, and this study will 
guide future research on the chemical modifica-
tion of fosmidomycin for treating infections [58]. 
To investigate the activity of benznidazole, a drug 
proven to be effective against Chagas disease 
caused by Trypanosoma cruzi (T. cruzi), an untar-
geted LC-MS-based metabolomics approach was 
developed, and the results revealed that covalent 
binding of benznidazole with thiols is a primary 

cause of the drug’s activity, which helped us 
understand the natural variation in T. cruzi [59]. 
A multiomics analysis has facilitated our under-
standing of the molecular mechanism of eflorni-
thine resistance in African trypanosomes. 
Metabolic profiling of wild-type Trypanosoma 
brucei (T. brucei) and eflornithine-resistant T. 
brucei showed that eflornithine levels were 
greatly reduced in resistant cells compared to the 
wild type, and genetic analysis confirmed the role 
of TbAAT6 (T. brucei eflornithine transporter 
AAT6) in eflornithine action [60]. In addition, tri-
phenylbismuthdichloride (TPBC) has been 
proven to have toxic effects on many antibiotic- 
resistant strains, such as methicillin-resistant 
Staphylococcus aureus (S. aureus) and 
vancomycin- resistant enterococci. The use of 
exometabolomic approaches to monitor meta-
bolic changes in S. aureus treated with TPBC 
showed that this compound has potent antimicro-
bial activity against many bacterial pathogens, 
acting by blocking bacterial pyruvate catabolism. 
Enzymatic studies indicated that TPBC is a 
highly efficient inhibitor of the bacterial pyruvate 
dehydrogenase complex [61].

Fig. 8 Microbial metabolomics is applied to investigat-
ing the systems actions of antimicrobial drugs involving 
therapeutic efficiency and toxicology. Microorganisms 
are grown in the medium with and without drug. Medium 

is removed; metabolites are extracted from microorgan-
isms and detected by metabolomics methods based on 
LC-MS, GC-MS, or NMR spectroscopy
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In addition to the development of new anti-
microbials, there are alternative approaches for 
the treatment of infectious diseases, such as 
photodynamic therapy (PDT), radioimmuno-
therapy, and bacteriophage treatment. PDT is a 
technique that combines a nontoxic dye, photo-
sensitizer (PS), and low-intensity visible light in 
the presence of oxygen to produce cytotoxic 
species for killing cells [62]. PDT treatment 
using Green 2 W as the PS has been reported to 
have a significant effect against Aspergillus 

fumigatus in vitro [63]. Radioimmunotherapy is 
theoretically useful as an anti-infective therapy 
against any microbe (including bacteria, fungi, 
viruses, and parasites) susceptible to radiation. 
Studies have shown the applicability of radioim-
munotherapy to treat Streptococcus pneumoniae 
infections [64]. The efficacy of phages in the 
treatment of bacterial disease in animal models 
has been demonstrated, and bacteriophage treat-
ment is a feasible alternative treatment modality 
for microbe-infected diseases [65]. Nonetheless, 

Fig. 9 Overview of microbial metabolomics: from methods to applications
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although many therapeutic strategies against 
infectious diseases have been reported, these 
strategies remain in the stage of in vitro or ani-
mal model experiments.

4  Concluding Remarks 
and Future Perspective

Microbes contribute to serious infections, such as 
UTI, CF-associated lung disease, diabetes, and 
many other diseases, which remain a leading 
cause of death worldwide. Conventional methods 
to study infectious diseases, including genomics, 
transcriptomics, and even proteomics, have pre-
sented some shortcomings recently because 
minor changes in microbiological niches cannot 
be precisely and directly monitored by these 
methods. Targeting microbial metabolism has 
been considered as a promising strategy to solve 
these problems, because these small changes at 
gene/protein levels are amplified at metabolite 
level, which offers valuable information about 
the functional role of these small molecules in 
microbial systems. Metabolomics has been 
widely used to analyze metabolites in biological 
samples from many sources, including microor-
ganisms [66]. With the advances of MS- and 
NMR-based metabolomics platforms, microbial 
metabolomics has been demonstrated as a power-
ful tool to study microbe-associated infections, 
particularly the diagnostic biomarkers, patho-
genic mechanisms/pathways, antibiotic resis-
tance, and new antimicrobial treatment (Fig. 9).

However, current microbial metabolomics 
approach has certain limitations. First, the exist-
ing methods of metabolite extraction cannot 
extract all the metabolites of interest from 
 samples. Second, no single analytical instrument 
alone can perform whole-metabolome profiling. 
Third, there is no database that contains compre-
hensive information for all bioactive compounds. 
Last, but not least, there are challenges associ-
ated with the identification of metabolites. To 
overcome these challenges, combination of 
microbial metabolomics with other omics tech-
nologies, such as genomics, transcriptomics, and 

proteomics, may become a leading methodology 
in microbial research.

We hope that this critical review will inspire 
scientific communities to pay more attention to 
microbial metabolism from a metabolomics per-
spective and will significantly advance the dis-
covery and translational applications of microbial 
metabolomics in clinical diagnosis and patho-
genesis, as well as in the discovery of novel ther-
apeutics against a variety of complex infections 
caused by rapidly expanding microbes.
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1  Introduction

Tumor metabolism is a vast network of metabolic 
pathways, such as oxidative phosphorylation, 
glycolysis, the tricarboxylic acid (TCA) cycle, 
the pentose phosphate pathway (PPP), and the 
synthesis of nucleotides and lipids. Corresponding 
functions of these metabolic pathways address 
the strong biosynthesis needs of rapid growth and 
reproduction of tumor cells. Otto Warburg first 
put forward that even with sufficient oxygen sup-
ply, tumor cells mainly generate energy (e.g., 
ATP) by non-oxidative breakdown of glucose 
(glycolysis). According to his hypothesis 
(Warburg effect), carcinogenesis stems from the 
lowering of mitochondrial respiration [1]. Ever 
since, reports of changes in glucose metabolism 
of cancer cells have been published extensively. 
Several signaling pathways contribute to the 
Warburg effect and other metabolic phenotypes 
of cancer cells (Fig. 1). For instance, most cancer 
cells and tissues exhibit high lactate (Lac) secre-

tion rates [2]. There are also strong evidences 
supporting that tumor cell proliferation can be 
greatly contributed by the anabolic effects of glu-
tamine [3]. In fact, studies have shown that 
glycolysis- preferred tumor cells consume more 
glutamine than normal cells to synthesize pro-
teins, nucleotides, and fatty acids, thereby pro-
ducing energy to meet the vigorous growth and 
reproduction needs [4, 5].

In cancer biology, a main bottleneck is to elu-
cidate the cancer metabolism in vivo, which can 
lead to targets for diagnostics or therapeutics. 
Metabolomics refers to a global-scale analysis of 
metabolites in a biological system. In fact, mea-
suring intracellular metabolites is a practical way 
to record the “snapshots” of biological processes 
[6]. However, the best method for studying meta-
bolic pathways is to measure flux, which 
describes the genuine function of specific 
enzymes or pathways [7]. To this end, the combi-
nation of isotope tracers and computational algo-
rithms enable quantitative analysis of intracellular 
fluxes intensity and relevant confidence intervals 
in metabolic control systems [8]. The interaction 
between the central carbon metabolic pathway 
and other metabolic pathways have been studied 
with a stable isotope tracer method by using 
13C-glucose, 15N-glutamine, 13C-propionate, and 
other labeled substrates [9]. Stable isotope trac-
ing provides a powerful approach to studying the 
physiological processes in tumor and its sur-
rounding microenvironment. These methods, 
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which usually based on nuclear magnetic reso-
nance spectroscopy (NMR) or mass spectrometry 
(MS), may find key applications in the study of 
cancer diseases and advancing personalized med-
icine for cancer patients in the future [10], and 
these methodologies can be applied to both 
in vitro and in vivo studies [6]. In this chapter, we 
will focus on Stable Isotope Resolution 
Metabolomics (SIRM) and its applications to 
studying cancer metabolism.

2  Isotope Analysis of Cancer 
Metabolism

The isotopic tracer is a compound consisting of 
one or more tracer atoms. One atom-labeled 
compound is called a single-labeled tracer 
whereas a compound with two atoms labeled is 
called a double-labeled tracer (e.g., 2H2

18O). 

Tracers can be used to effectively study the 
unique metabolic pathways of cancer cells. It can 
also help identifying the complicated interplay 
among interacting metabolic pathways. Recently, 
stable isotope-labeled glucose and glutamine 
have been used as metabolic tracers for cancer 
metabolism studies. Researchers have used iso-
topes with a low natural abundance, such as 13C 
or 15N, as tracer labels and then analyze the 13C 
and/or 15N distribution within the metabolites to 
determine the contribution of different metabolic 
pathways.

2.1  13C Isotopic Tracer

Since the glycolysis flux significantly increases 
in cancer cells, 13C-glucose (13C-Glc) tracer can 
be used to effectively monitor glycolysis. Newly 
produced 13C-enriched pyruvate equilibrates with 

Fig. 1 Signaling pathways that may contribute to the Warburg effect in cancer cells
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lactate and leads to the formation of 13C-enriched 
lactate, which is distinguishable from the non- 
enriched counterpart. Due to their fast anabolic 
processes, cancer cells demand for increased 
glutamine-derived carbons. Recent reports have 
shown that reductive carboxylation of 
α-ketoglutarate (α-KG) by isocitrate dehydroge-
nase 1 (IDH1) and 2 (IDH2) is a major source of 
citrate synthesis from glutamine. 13C-Glutamine 
(13C- Gln) can be used as a tracer to monitor the 
glutaminolysis flux in cancer cells.

The PPP, which branches from glycolysis at 
the first committed step of glucose metabolism, is 
required for the synthesis of ribonucleotides. It is 
a major source of nicotinamide adenine dinucleo-
tide phosphate (NAPDH), a reducing agent 
required and consumed during fatty acid synthe-
sis and the scavenging of reactive oxygen species 
(ROS) [7]. Therefore, the PPP plays an important 
role in cancer cell metabolism and survival. The 
involvement of the PPP pathway in overall cel-
lular metabolism can be easily monitored from 
the analysis of the lactate isotopomer following 
the administration of [2-13C] Glc [8]. Most of 
cancer cells have a plethora of oncogene- driven 
metabolic changes in order to sustain fast growth 
and proliferation [9]. The use of 13C tracers can 
clearly detect these metabolic differences 
between cancer and normal cells.

2.2  15N Isotopic Tracer

Nucleotides are continually synthesized de novo 
in cells [10], and glutamine serves as an essential 
substrate for key enzymes involved in the de novo 
synthesis of purine and pyrimidine nucleotides. 
Recently, liquid chromatography mass spectrom-
etry (LC-MS) has been used to quantify gluta-
mine-derived 15N flux into nucleosides and 
nucleobases (purines and pyrimidines). DNA from 
bladder cancer cell line is cultured in 15N-labeled 
glutamine and then enzymatically hydrolyzed by 
sequential digestion. Subsequently, DNA hydroly-
sates were separated by LC-MS and selected reac-
tion monitoring (SRM) was employed to identify 
and quantify the nucleobases and nucleosides. The 
results indicated that 15N-glutamine flux measure-

ment using LC-MS/MS-SRM can be used for dis-
crimination of aggressive tumors from 
nonaggressive tumors and may be further adapted 
for high-throughput analysis of a large set of DNA 
in a clinical setting [11].

The glutamine and citrulline are indispensable 
in cell metabolisms and act as fuel source and 
product, respectively. It has been shown that the 
administration of 15N-labeled glutamine results in 
the incorporation of the 15N label into citrulline, 
but it is not clear which of the three nitrogen 
groups of citrulline is actually labeled. A rapid 
LC-MS/MS method was developed to determine 
the 15N enrichment of the positional isomers of 
glutamine and citrulline. The method developed 
provides an additional insight into the metabo-
lism of glutamine and citrulline tracing the 
precursor- product relationship between these two 
amino acids [12].

2.3  2H Isotope Tracer

NADPH is involved in a variety of metabolic 
reactions, such as the synthesis of lipids, fatty 
acids, and nucleotides [13]. In order to analyze 
the dynamic changes in the metabolic substrates 
converted to NADPH, a D2-based tracing method 
has been developed to quantitatively analyze the 
differences and dynamic changes of NADPH by 
different metabolic pathways [14]. In cancer 
cells, the PPP and malic enzyme produce about 
30% of NADPH, respectively, while one-carbon 
metabolism produces about 40% of NADPH. This 
suggests that one-carbon metabolism plays an 
important role in cancer cell survival. As metabo-
lism precursors, serine and glycine are used to 
produce NADPH by one-carbon metabolism. 
During cell culture, [2,3,3-2H3] serine or [2,2--
2H2] glycine can be used for tracing [2H]-NADPH 
in the cells. As shown in Fig. 2, the conversion of 
serine to glycine is catalyzed by serine hydroxy-
methyl transferase 2 to produce 
NADPH. Similarly, the labeling glycine with 2H 
reveals that glycine is catalyzed by glycine decar-
boxylase to produce NADPH.

NADPH is used as an electron carrier for 
maintaining redox homeostasis and reducing bio-
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synthesis, wherein individual cytoplasmic and 
mitochondrial pools provide reducing power at 
each respective location. This cellular organiza-
tion of reducing power is critical for many func-
tions, but the use of existing methods complicates 
metabolic pathway analysis. Theoretically, as 
much as half of the hydrogen transferred to 
NADH by GAPDH is derived from glucose. 
However, exchange with water in the aldolase 
and triosephosphate isomerase (TPI) reactions 
reduces the net contribution of the hydrogen 
atom to NADH (Fig. 3). Lewis et al. [15] cultured 
A549 and H1299 cells with [4-2H] glucose to 
trace NADH metabolism. They observed meta-
bolic pathway activity in these distinct cellular 
compartments and determined the direction of 
serine/glycine interconversion within the mito-
chondria and cytosol, highlighting the ability of 
this approach to resolve compartmentalized reac-
tions in intact cells.

3  Flux Measurement

In order to better understand the metabolic activ-
ity as well as the concentration of metabolites, it 
is also needed to quantify metabolic flux, which 
is the most direct measurement of enzyme activi-
ties in living systems. Kinetic flux profiling is a 
pioneering method for the quantification of meta-
bolic flux in cultured cells. Briefly, the cells are 

cultured with identical media that contains 
isotope- labeled nutrients instead of common 
media, which will lead to labeling of downstream 
metabolites. This supplies the information of 
metabolic flows, even in non-steady-state condi-
tions (e.g., drug treatment and transient nutrient 
deprivation). Table 1 lists different labeled sub-
strates and related applications to tracing multi-
faceted metabolism. For instance, 13C-Gln tracing 
can probe TCA cycle efflux and turning, whereas 
15N-Gln tracing can probe the synthetic processes 
of amino acids and nucleotides. Tracing with 
these tracers can reveal key changes in particular 
metabolic pathways in cancer cells and identify 
the intricate interactions among different meta-
bolic pathways.

3.1  Glycolysis/Lactic 
Fermentation

Usually, [13C6] Glc is used as the tracer for glyco-
lytic metabolic flux measurement, because it 
allows each carbon to be labeled to facilitate 
tracking of the metabolites derived from glycoly-
sis in other metabolic pathways. Recent studies 
have indicated that the “Warburg effect” can also 
be found in the non-tumorigenic fast-dividing 
cells and the tissues that possess a high biosyn-
thetic activity. Glycolysis can be well monitored 
with the 13C-Glc tracer and can be distinguished 

Fig. 2 2H-labeled amino acid tracers to study one-carbon 
metabolism in mitochondria [15]. (a): Deuterium-labeled 
serine for NADPH tracing; (b): deuterium-labeled glycine 
for NADPH tracing

SHMT2, serine hydroxymethyl transferase 2; GLDC, 
glycine decarboxylase; 5,10-methylene-THF, 
5,10-methylene- tetrahydrofolate; 5,10-methenyl-
THF, 5,10-methenyl-tetrahydrofolate
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by enriched 13C-labeled Lac and pyruvate (Pyr). 
This distinction can be resolved by 1H-NMR 
spectroscopy due to direct (1J HC) and long-
range (2J HC, 3J HC) 1H-13C scalar-scalar cou-
pling. Therefore, 13C-Lac present in cell culture 
media is often used as a measure of glycolysis 
and combined with the disappearance of labeled 
tracers ([1- 13C]-, [U-13C]- or [1,6-13C2]- Glc) to 
indirectly reflect the contributions of TCA cycle 
and glycolysis flux to full-scale cellular 
metabolism.

3.2  Pentose Phosphate Pathway

PPP is an alternative pathway for Glc metabo-
lism, providing a large number of NADPH for the 
biosynthesis of fatty acids and the breakdown of 
peroxides while producing 5-phosphate ribose 

for nucleotide biosynthesis. PPP can be moni-
tored by analyzing the Lac isotopomers after 
[2-13C]-Glc treatment. Moreover, this tracer 
results in the appearance of labeling patterns at 
Lac level, such as [3-13C]- and [1,3-13C2]-Lac. 
[13C6] Glc can be used to label all carbons of the 
PPP precursors to detect changes in the PPP of 
cancer cells with maximum flux. However, the 
[1,2-13C2] Glc label can distinguish between the 
oxidized and non-oxidized branches of PPP.

3.3  Pyruvate Cycling

Pyruvate (Pyr) can be carboxylated via the action 
of pyruvate carboxylase (PC) producing oxaloac-
etate (OAA); OAA can follow the TCA cycle or 
be converted back to Pyr via the combination of 
phosphoenolpyruvate carboxykinase (PEPCK) 

Fig. 3 2H-labeled tracer 
to study the NADH 
metabolic map
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and pyruvate kinase (PK) or via the action of 
malic enzyme (ME). In these pathways, carbon 
scrambling changes the labelling patterns of the 
TCA cycle intermediates. In particular, cancer 
cells may increase the biosynthetic activity, 
which involves this Pyr cycling pathway.

3.4  TCA Cycle and Glutaminolysis

The mutations of several enzymes in TCA cycle, 
such as fumarate hydratase (FH), succinate dehy-
drogenase (SDH), and isocitrate dehydrogenase 
(IDH), are associated with tumorigenesis. Briefly, 
FH and SDH mutations can cause an accumula-
tion and a loss of function of fumarate (Fum) and 
succinate (Suc), respectively. These changes of 
metabolite concentrations inhibit prolyl hydroxy-
lases (PHD) that prevents the degradation of the 
hypoxia inducible factor (HIF) and, finally, 
results in a pseudohypoxic response and increased 
glycolysis, which can promote tumorigenesis. 
Highly abundant metabolites, such as amino 
acids and ketoacids, are easily transformed into 
less abundant but also demanded species for pro-
tein synthesis or directed toward de novo lipo-

genesis to account for the higher need of lipids in 
cancer cells. 13C-enriched anaplerotic metabo-
lites may suffer several carbon rearrangements 
that are full of information about the interaction 
between TCA cycle and other major metabolic 
pathways such as glycolysis, pyruvate cycling, 
and de novo lipogenesis (Fig. 4).

Cancer cells rely primarily on glycolysis- 
derived ATP and use the TCA cycle as a meta-
bolic pathway for metabolite interconversion 
[30].The interaction between glycolysis and TCA 
cycle can be analyzed with NMR by using 
13C-enriched precursors [30]. Acetyl-CoA 
(AcCoA) should be preferentially labeled in car-
bon 2 or carbon 1, 2 of the acetyl moiety. That is 
because the label in carbon 2 of AcCoA produces 
a label in the various carbons of the TCA cycle 
intermediate and is sensitive to the level of incor-
poration of the TCA cycle turnover. For example, 
after the production of [U-13C] Pyr, [1,2-13C2] 
AcCoA is produced via the action of pyruvate 
dehydrogenase (PDH). In the first cycle, oxaloac-
etate (OAA) carbon 1, 2 or 3, 4 become 13C 
enriched, followed by condensation with another 
molecule [1,2-13C2] AcCoA, forming multiple 

Table 1 Common stable isotope tracers and their 
applications

Tracer Labeled pathway Ref.
[U-13C] Glc Glycolysis, PPP, TCA cycle, 

hexosamine, nucleotide, and 
lipid synthesis

[16, 
17]

[1,2-13C] Glc Non-oxidative versus oxidative 
PPP

[18, 
19]

[3,4-13C] Glc Pyruvate-carboxylase- 
mediated anaplerosis

[20, 
21]

[13C /15N] 
Glc

Glutaminolysis, nucleotide 
biosynthesis, TCA cycle, and 
fatty acid synthesis

[22–
24]

[13C] Gln TCA cycle efflux and turning [4, 
25]

[15N] Gln Synthesis of amino acids and 
nucleotides

[4]

13C-labeled 
fatty acids

Fatty acid oxidation, fatty acid 
synthesis

[26]

[13C] Ser Serine metabolism, one-carbon 
metabolism, lipid synthesis

[27]

[13C] 
glycerol

Lipid synthesis, 
gluconeogenesis-pentose cycle 
interactions

[28, 
29]

Fig. 4 13C-labeling patterns via the metabolic pathways 
of TCA cycle and glutaminolysis. Circles of different col-
ors illustrate the different metabolic pathways. Molecules 
are represented by their skeletal carbons and depicted as 
circles. Moreover, the empty and filled circles represent 
12C and 13C, respectively
α-KG, α-ketoglutarate; Acetyl-CoA, acetyl-coenzyme A; 
Gln, glutamine; Glu, glutamate; OAA, oxaloacetate
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labeled intermediates, i.e., [3,4,5-13C3]- and 
[2,4,5-13C3]-αKG.  In subsequent turns, the 
enrichment mode is further complicated until the 
isotope steady state is reached. Due to the bal-
ance with the αKG pool, the Glu pool also 
becomes enriched with 13C.  However, special 
attention must be paid to certain tissue and/or 
metabolic conditions in which exchange between 
metabolite pools may be compromised. If Glu 
pool is not rapidly exchanged with the αKG pool, 
its labeling mode will not fully reflect the TCA 
cycle dynamics, and metabolic and isotopic 
homeostasis must be obtained to derive meta-
bolic conclusions from the isotope data [31, 32].

Gln can be converted to Glu through gluta-
minase and form other nonessential amino acids 
via transaminases, which convert amino groups 
to αKG, thereby producing Glu in quickly revers-
ible reactions. Furthermore, Glu can also be con-
verted to αKG by glutamate dehydrogenase 
(GLDH), facilitating the carbon entry in the TCA 
cycle. Compared to any other amino acids, Glu 
and Gln are always present in higher concentra-
tions. Tumor tissue displays an altered metabolic 
profile and is usually accompanied with an eleva-
tion of Gln uptake. Moreover, the biosynthesis of 
nucleotide in purines and pyrimidines requires 
the γ-amido group of Gln and aspartate (Asp). 
Therefore, the labeled Gln tracer can be used in 
metabolic flux measurement, and 13C labeling 
experiments are more important than the 15N 
labeling experiments. This is because that 15N 
experiments always need extensive sample prep-
aration and provides less comprehensive data.

3.5  De Novo Lipogenesis

De novo lipogenesis is upregulated in cancer 
cells to assemble the membranes of dividing cells 
or organelles. Stable isotope tracers, such as 2H2O 
and 13C-labeled Glc or Gln, can be used to moni-
tor the lipogenic sources. It is possible to obtain 
the absolute rate of de novo lipogenesis with the 
2H2O labeling method. Moreover, through the 13C 
labeling patterns, the contributions of the lipo-
genic sources and pathways can be obtained at 
the same time. Briefly, the use of [1,6-13C2]-Glc 

can produce [2-13C]-AcCoA, and the use of 
[U-13C]-Gln can produce [1,2-13C2]-AcCoA 
through the reductive carboxylation via IDH. By 
using these tracers, we can monitor the preva-
lence of certain sources or pathways for lipogen-
esis in cancer cells or tissues by adequately 
defining the interplay among metabolic 
pathways.

4  NMR-Based Isotope Tracer 
Analysis

Isotope tracer analysis using 13C1 glucose and 
NMR was first reported by Ugurbil et al. in 1978 
[33]. Under conditions of aerobic and anaerobic, 
13C NMR spectra were acquired from E. coli cells 
treated with the tracer for 15 min. Lactate, gluta-
mate, succinate, acetate, valine, alanine Ala, and 
fructose 1,3-bisphosphate were found to be 
labeled and labeling positions were identified. In 
1988, Malloy et al. investigated the relative activ-
ity of anaplerotic and oxidative reactions in the 
TCA cycle using 13C NMR analysis of the rat 
hearts perfused with 13C tracers such as 13C1,2 
acetate and 13C3 pyruvate [34]. In recent years, 
more and more studies have been conducted on 
tracer analysis using NMR isotopes, especially in 
the field of energy metabolism reprogramming of 
malignant tumors.

4.1  NMR-Based Isotope Tracing 
Methodology

In the past 20 years, NMR has become a pivotal 
technology to study cellular metabolisms, includ-
ing the metabolic reprogramming of cancer cells. 
NMR-based isotope analysis can be applied to 
originate information about the topology and flux 
analysis of cellular metabolism [35]. NMR and 
MS are two powerful analytical platforms for 
cancer metabolism studies. Although the devel-
opment of MS technology has been more 
advanced than that of NMR, and more exten-
sively applied to cancer metabolism research, 
NMR is such a valuable tool for elucidating 
molecular structures at the atomic level [36]. The 
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unique advantage of NMR lies in its ability to 
directly detect elements and determine the effect 
of one element on another by coupling interac-
tions, which together can be used in a large num-
ber of isotope-editing experiments to determine 
specific isotope distributions [37, 38].

In the stable isotope tracer studies, enriched 
biologically relevant nuclei (e.g., 13C, 15N, or 2H) 
tracers are introduced into a cell, tissue, or whole 
organism and incorporated into a variety of 
metabolites. Isotope labeling is incorporated into 
specific atomic positions of a given metabolite, 
depending on the transformation pathway. For 
example, 13C2-glucose can be metabolized into 
13C2-lactate via glycolysis, and through the PPP 
13C1-glucose can be metabolized to ribose- 5- 
phosphate. Conversion was determined by 
metabolite (position isotopomer) and a stable 
isotope-labeled quantity (mass isotopomer), and 
the reconstruction can confidently identify the 
transformation routes. NMR is well suited for 
positional isomer analysis, while MS is tailored 
for large-scale isotope analysis. It is worth noting 
that stable isotope enrichment patterns in metab-
olites are not only essential for reconstituting 
metabolic networks, but also the basis for the 
establishment of flux models, which may require 
isotope homeostasis or are compatible with 
dynamic conditions, as necessitated by many 
studies in vivo [37, 39, 40]. In the early days of 
metabolomics, one-dimensional proton NMR 
was commonly used to produce metabolomic 
profiles. While peaks could be assigned to func-
tional groups (e.g., CH2 signal from fatty acid 
tails), most peaks reflected the integrated signals 
from multiple metabolites. These limitations 
have been partially resolved by multidimensional 
NMR [41, 42], and NMR continues to play an 
important role in metabolomics due to its capac-
ity for structure elucidation and in vivo metabo-
lite measurement [43].

4.2  Applications of NMR-Based 
Isotope Analysis

An important advantage of the NMR stable iso-
tope tracer method is that the biologically relevant 

stable isotopes which include 13C, 15N, and 2H can 
be used to detect the changes of structure and 
motions in individual sites. 13C and 15N tracers can 
be easily monitored using a large number of direct 
and indirect detection by NMR methods. The sen-
sitivity and resolution of NMR analysis, as well as 
the ability to resolve structures, have been greatly 
improved. The integrated 13C or 15N labeling pat-
tern for a large number of metabolites can now be 
ascertained using as little as a sub- milligram quan-
tity of dry cells or tissue biomass or low volumes 
of biofluids. These advances in NMR, as well as 
revolutionary progress in MS, have significantly 
expanded the applications of isotope tracers in 
metabolomic studies.

Different position-labeled 13C-glucose have 
been used as tracers for studying different types 
of cellular metabolisms. For instance, 1H NMR 
analysis with [1-13C1-], [2-13C1-], or [6-13C1-] Glc 
tracers was used to track the metabolic progres-
sion of 13C-Ala and 13C-Lac in continuously cul-
tured hybridoma cell culture media with a 
chemostat. Metabolic flux analysis showed that 
20% of the consumed glucose was metabolized 
by the oxidative branch of PPP, and the malic 
enzyme flux supporting fatty acid biosynthesis 
was about 10% of the glucose uptake. The bio-
synthesis rate of cells cultured continuously in 
the chemostat was found to be higher than that of 
adherent cells grown in the perfused hollow fiber 
bioreactor, thereby contributing to the progres-
sion of glucose metabolism in mammalian cells 
[44].

In the SIRM study of mouse models of trans-
genic tumors, Yuneva and colleagues [45] investi-
gated the metabolic reprogramming caused by 
the genes C-MYC and MET in liver and lung 
tumor tissues using NMR and gas 
chromatography- mass spectrometry (GC-MS) 
with [U-13C6] Glc and [U-13C5, 15N2] Gln tracers. 
The results indicated that accelerated glycolysis 
was not always associated with glucose metabo-
lism and the Gln genotype depended not only on 
oncogenic tumors but also on the tissue 
 environment. Glucose and Gln catabolism were 
enhanced in MYC-induced liver tumors, and 
MET-induced liver tumors used glucose to syn-
thesize Gln. These events were associated with 
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decreased levels of glutamine synthetase (GLU1) 
and the switch from GLS2 to GLS1 glutaminase 
(reprogrammed expression of glutamine synthe-
tase and glutaminase). In contrast, MYC-induced 
lung tumors showed enhanced GLU1 and GLS1 
expression and accumulated Gln. They further 
showed that MYC overexpression and Gln catab-
olism in cancer cells can be inhibited by GLS1 
inhibitor. These results suggest that the metabolic 
profiles of tumors are likely to depend on both 
the genotype and tissue of origin and have impli-
cations regarding the design of synergistic thera-
pies targeting tumor metabolism [37, 45]. The 
study also showed that SIRM is a powerful tool 
to elucidate downstream effects of oncogene acti-
vation through charactering pivotal metabolic 
alterations in tumor cells [25, 45].

NMR has the advantage of noninvasiveness 
and structural resolution capabilities, making it an 
ideal choice for real-time tracking of metabolic 
transformation in vivo. NMR can perform detailed 
kinetic analysis of metabolic pathways using only 
a single sample, which eliminates the effects of 
variations between samples while greatly reducing 
cost and labor. Most importantly, NMR analysis 
allows the detection of metabolic reactions directly 
in tissues or whole organisms in a tissue-specific 
manner, which is a difficult task to achieve with 
other analytical methods. Technological advances 
in hyperpolarized NMR methods have further 
enhanced the utility of 13C NMR in real-time 
kinetic measurements of specific metabolic reac-
tions in vivo [37].

5  MS-Based Isotope Analysis

In addition to NMR, MS is a commonly used 
analytical tool for SIRM studies. After isotopi-
cally labeling a biological system and extracting 
its metabolites, the number of heavy atoms (iso-
topologues) and their positions (isotopomers) can 
be determined for each metabolite by MS. As 13C 
has a nominal mass of 1 Da greater than that of 
12C, MS can readily determine the number of 13C 
atoms incorporated. GC and LC methods allow 
to separate a large number of metabolites, which 
are often used orthogonally with MS detection. 

High-resolution MS, such as Orbitrap MS and 
Fourier transform MS, can well distinguish the 
metabolites containing 13C, 15N, or 2H, allowing 
for multiplexed labeling experiments.

5.1  LC-MS-Based Isotope Analysis

LC-MS is a hyphenated analytical technique 
combining LC separation and MS for detection 
and identification. LC-MS with stable isotope 
labeling can be used for isotope tracer analysis 
and flux measurements in cancer cells (Fig.  5) 
[46]. Tracing of metabolic pathways can be 
achieved by analyzing the stable isotope-labeled 
metabolites using LC-MS with stable isotope 
tracers such as 13C-Glc and 15N-Gln. Alexander A 
et  al. presented a validated metabolic network 
model (Cumomer analysis) for the analysis of 
key pathways in tumor metabolism, including 
glycolysis, PPP, TCA cycle, and other comple-
mentary pathways. To achieve dynamic isotope 
labeling, they cultured DB-1 melanoma cells for 
8 hours in the DMEM medium containing 2 mM 
[U-13C5, 15N2] glutamine and glucose (either 5 or 
25  mM), and both culture solutions and cells 
were lyophilized for LC-MS analysis of isotope- 
labeled metabolites. The results indicated that 
melanoma tumors acquired 51% ATP by mito-
chondrial metabolism and 49% by glycolysis. 
Although high levels of glutamine uptake were 
equivalent to about 50% and 100% of TCA circu-
lating flux under hyperglycemic conditions and 
normal blood glucose conditions, respectively, 
glutamine flux and its effect on ATP contribution 
of synthesis was still small [47].

Ying et al. investigated the effects of KrasG12D 
activity on glucose metabolism using LC-MS and 
U-13C6-glucose to trace glucose flux. 13C-labeled 
glucose was added to culture pancreatic cancer 
cells with high expression of the oncogene K-Ras, 
and then the cellular metabolites were harvested 
for LC-MS analysis. They observed that KrasG12D 
enhanced glycolytic flux but did not affect the 
glycolytic metabolites entering the TCA cycle 
[48], and KrasG12D served a vital role in control-
ling tumor metabolism through stimulation of 
glucose uptake and channeling of glucose inter-
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mediates into the hexosamine biosynthesis and 
PPP. This study also revealed that oncogenic Kras 
promotes ribose biogenesis, and unlike canonical 
models, KrasG12D drived glycolysis intermedi-
ates into the nonoxidative PPP, thereby decou-
pling ribose biogenesis from NADP/
NADPH-mediated redox control. Together, these 
findings provide in vivo mechanistic insights into 
how oncogenic Kras promotes metabolic repro-
gramming in native tumors and illuminates poten-
tial metabolic targets that can be exploited for 
therapeutics in pancreatic cancer. MS-based iso-
tope tracing technology demonstrates unique 
advantages for quantitative analysis of cellular 
metabolic dynamics.

5.2  GC-MS-Based Isotope Analysis

In order to maximumly detect and quantify 
metabolites from biological samples, different 
analytical platforms such as NMR, LC-MS, and 
GC-MS may be combined for a more compre-

hensive analysis [49–53]. Although LC-MS is a 
very commonly used technique for metabolomic 
analysis [54, 55], GC-MS is particularly suitable 
for measuring compounds with low molecular 
weight (e.g., acetate), high volatility (e.g., alco-
hols), or not easily ionized by electrospray (e.g., 
sterols). With chemical derivatization of analytes, 
GC-MS can also be used to measure medium- 
sized, charged metabolites (e.g., monophos-
phates) [56]. Therefore, GC-MS has been 
commonly used for metabolomic analysis [57]. 
In addition, GC-MS only requires a very small 
amount of cellular material for analysis. 
Therefore, this method can greatly reduce the 
cost of expensive isotope tracers. So far, isotope 
labeling and GC-MS have been used to trace 
metabolites and metabolic flux in a variety of 
mammalian systems, including hepatocytes [58], 
cardiac cells [59], and glial cells [60].

Dong et al. investigated the effect of fructose- 
1,6-biphosphatase (FBP1) on metabolic path-
ways in MDA-MB231 breast cancer cells using 
GC-MS and NMR with [U-13C6]-Glc as a tracer. 

No isotope labeling

Control Sample

Mix

Isotope labeling

LC-MS/MS

m/z

Fig. 5 Isotope tracer analysis by LC-MS/MS with stable 
isotope labeling. The sample (e.g., cultured cancer cells 
under treatment) is labeled with a stable isotope whereas 

the control (untreated, cultured cancer cells) is unlabeled. 
Metabolites are extracted from both sample and control 
and mixed for a single LC-MS/MS analysis
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They found that loss of FBP1 induced glycolysis 
and resulted in increased glucose uptake, macro-
molecules biosynthesis, formation of tetrameric 
PKM2, and maintenance of ATP production 
under hypoxia. Loss of FBP1 also inhibited oxy-
gen consumption and ROS production by sup-
pressing mitochondrial complex I activity. This 
study indicates that the loss of FBP1 is a critical 
oncogenic event in basal-like breast cancer 
(BLBC) [61].

6  Combined Analysis of NMR 
and MS Spectra (CANMS)

Although the metabolic pathways are different in 
mammalian cells, their pathway metabolites 
sometimes are identical. When using the isotope 
pattern, this overlap among different pathways 
complicates subsequent analysis, which requires 
new model-free approach for data processing. 
The combination of MS and NMR analyses may 
provide us a potentially effective approach to 
solving this issue (Fig.  6). Coupling NMR and 
ultrahigh-resolution Fourier transform MS 
(UHR-FTMS) with an atom-resolved metabolic 
database and tracing tools can lead to robust and 
unprecedented reconstruction of interconnected 
pathways and networks [62–65]. When labeled 
with an isotope such as 13C, information on the 
mass increments of metabolites can be obtained 
by MS [66]. However, MS is difficult to distin-
guish the atomic position of the isotope label, 
e.g., Ala labeled at C1, 2, or 3 positions [67]. In 
contrast, NMR can easily identify each position 
isotope because appropriate NMR techniques 
yield significant resonances corresponding to 
each individual 13C position. With the develop-
ment of two-dimensional NMR methods, more 
direct and rigorous structural analysis can be 
achieved, which greatly expands the size range 
and complexity of molecules that NMR can be 
applied [68]. In biochemistry, the sources of 
these carbon atoms are fixed. Through the joint 
analysis of NMR and MS, we can achieve the 
quantitative data about the abundance of metabo-
lites labeled by isotopes and the location of the 
labeled atoms in the metabolites.

Using 13C as a tracer, combined with NMR 
and GC-MS for SIRM analysis, Fan et al. [69] 
found that cancer tissues expressed higher lev-
els of many primary metabolites compared with 
surrounding noncancerous tissues in lung can-
cer patients. Metabolic changes were investi-
gated by infusing uniformly labeled 13C-glucose 
into human lung cancer patients, followed by 
resection and processing of paired noncancer-
ous lung and non-small cell carcinoma tissues. 
NMR and GC-MS were used for 13C-isotopomer-
based metabolomic analysis of the extracts of 
tissues and blood plasma. Many primary metab-
olites were consistently found at higher levels 
in lung cancer tissues than their surrounding 
noncancerous tissues. 13C enrichment in Lac, 
Ala, succinate, Glu, Asp, and citrate was also 
higher in the tumors, suggesting more active 
glycolysis and TCA cycle in the tumor tissues. 
Particularly notable were the enhanced produc-
tion of the Asp isotopomer with three 
13C-labeled carbons and the buildup of 13C-2,3-
Glu isotopomer in lung tumor tissues. This is 
consistent with the transformations of glucose 
into Asp or Glu via glycolysis, anaplerotic 
pyruvate carboxylation (PC), and the TCA 
cycle. PC activation in tumor tissues was also 
shown by an increased level of pyruvate car-
boxylase mRNA and protein [69].

CANMS allows us to trace the flow of car-
bon atoms in the metabolic pathways. Figure 7 
shows the isotopomer analysis for Lac and Ala 
by CANMS [70]. Lac and Ala are labeled with 
[1,2-13C2]-Glc and exhibit typical labeling 
characteristics. If both are produced by the gly-
colysis pathway, both C-2,3 Lac and Ala should 
be labeled and the amount of labeling should 
be equal. However, due to the presence of the 
PPP pathway, the C-1 Glc is removed in the 
first step, and the labeled proportion of C-2,3 
Lac and Ala will be different as a result. The 
labeled Lac obtained from the PPP pathway 
has three forms [13C-3], [13C-1], and [13C-1,3] 
[67]. NMR can detect the first isotopomers, but 
for the isotopomers labeling in C-1, NMR is 
powerless. Under this situation, only the infor-
mation of MS can be used to distinguish the 
two isotopomers. In this analysis, Chong et al. 
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observed approximately 3.5% PPP contribu-
tion for Lac and Pyr, whereas glycolysis con-
tributes 22.5–23.5% to the label incorporation. 
Given that the glucose molecule is split into 
two parts, with one unlabeled for [1,2-13C2]-
Glc, this is equivalent to 7% PPP and 45% gly-
colytic activity, respectively, assuming no Pyr 
cycling from the TCA cycle [70]. This study 
demonstrates that CANMS yields highly accu-
rate data about metabolic flux and pathway 
interactions.

7  Conclusions

Tumor metabolism studies have regained signifi-
cant attention in recent years. Although the Warburg 
effect was discovered in the 1920s, our understand-
ing of cancer metabolism remains to be quite lim-
ited. While quantification of metabolite 
concentrations in cancer tissues and cells represents 
an important aspect of cancer metabolomics, we 
need to explore how the flow of these metabolites 

Fig. 6 Schematic representation of model-free isotopomer analysis
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(metabolic flux) per unit time changes in the acti-
vated metabolic pathway. In fact, the concentration 
of metabolites and the flow rate do not always 
match. For example, when glucose is removed from 
yeast, glycolytic efflux drops sharply, leading to 
buildup of lower glycolytic intermediates even 
though pathway influx is decreased [71].

To identify altered metabolic pathways in cancer 
cells, SIRM can be used to determine the flow 
direction and size of the metabolic pathway, so as to 
accurately determine which metabolic pathways 
have changed, by measuring the ratio and rate of 
isotope-labeled metabolic substrate among different 
pathways [71]. SIRM analysis provides a new 
global perspective that allows us to better under-
stand the metabolic switch under the regulation of 
oncogenes or tumor suppressor genes [25]. SIRM 
can further illustrate the complexity and plasticity 
of tumor metabolism, which allows tumor cells to 
better adapt to changes in the microenvironment 
and utilize more energy. For example, by using trac-
ers and GC-MS or NMR- based metabolomic analy-
ses recent studies have demonstrated the importance 
of the microenvironment for tumor metabolism 
through immunoregulation [16] or through direct 
regulation of stromal cells [72].

SIRM is a useful complement to other omics 
technologies which are already used in the clinic. 
It can be combined with genomics and pro-

teomics techniques to greatly promote the devel-
opment of precision medicine from the 
perspective of systems biology. Numerous stud-
ies have led to the discovery of metabolite bio-
markers for early detection of cancer or prediction 
of anticancer drug responses [73, 74]. A combi-
nation of SIRM with genomics and proteomics 
will lead to the discovery of mechanistic bio-
markers for early cancer detection or metabolic 
targets for therapeutic interventions.

A major challenge in conducting SIRM 
research is the establishment of data mining and 
analytical models [71]. Graphical representations 
of markup patterns and intuitive data interpreta-
tion may still be important, but as complexity 
increases, mathematical modeling may become 
the core of bio-discovery. This section does not 
discuss large-scale quantitative flux analysis 
because the models currently relied on are beyond 
the capabilities of most wet laboratories. 
Therefore, developing software that can perform 
quantitative analysis of flux data is an important 
task. Nevertheless, it is gratifying to note that 
many teams in the world are conducting research 
on tumor metabolic flow calculation algorithms. 
With the advancement of technology platforms 
and data analysis models/tools, the applications 
of SIRM will significantly promote the diagnosis 
and treatment of cancer diseases.

Fig. 7 Tracing central metabolic processes using [1,2-13C2]-Glc
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Functional Metabolomics 
and Chemoproteomics 
Approaches Reveal Novel 
Metabolic Targets for Anticancer 
Therapy
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1  Introduction

Compared with normal cells, cancer cells feature 
distinct metabolic phenotypes in order to survive, 
grow, and proliferate. A growing body of studies 
has shown that the remodeled metabolic pro-
grams of cancer cells are driven by oncogenic 
signaling and can in return commit more efficient 
bioenergetics and macromolecule synthesis for 
the survival and growth of cancer cells [1–3]. 
Besides modulating the synthesis and degrada-
tion of functional metabolites to meet the needs 
of cancer cells, recent studies have revealed that 
metabolites and metabolic enzymes can regulate 

cell fates by affecting a wide range of proteins 
beyond our previous knowledge, spanning from 
central players of signaling pathways, such as 
kinases [4] and transcription factors [5], to highly 
abundant housekeeping proteins [6].

Based on the metabolic differences between 
normal and cancer cells, scientists attempted to 
block abnormal metabolic pathways in order to 
exert anticancer effects. Some metabolic targets 
have been successfully adopted in clinics. For 
example, mutant IDH1 and IDH2 were identified 
in acute myeloid leukemia (AML) patients 
(approximately 12% and 8–19%, respectively) 
[7, 8]. Recently, ivosidenib (mutant IDH1 inhibi-
tor) and enasidenib (mutant IDH2 inhibitor) have 
been approved by the FDA to treat the AML 
patients carrying IDH1/2 mutation [9]. In con-
trast, targeting metabolic enzymes that are essen-
tial for both tumor and normal cells have failed in 
previous clinical trials. For example, 2-deoxy-D-
glucose (2-DG) that inhibits glycolysis by bind-
ing to hexokinase and subsequently suppresses 
growth in tumor cells can bring severe side effects 
such as hypoglycemia to treated subjects [10]. 
Hence, pressing needs in metabolic target discov-
ery is to examine the metabolic differences 
between normal and cancer cells and exploit the 
metabolic differences to develop “precise” anti-
cancer treatments that specifically affect tumor 
cells.

To accommodate such needs, metabolomics 
is emerging in the field of cancer metabolism 
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research in the past decades due to its capabil-
ity in delineating the metabolic profiles of cells 
and tissues on a system level with high sensi-
tivity, speed, and robustness. Its application to 
biomarker discovery has achieved numerous 
successes in different types of cancers, such as 
lung cancer [11], breast cancer [12], and pros-
tate cancer [13]. Nevertheless, the knowledge 
regarding the pathological causes and conse-
quences of metabolic alterations probed by 
metabolomics is lacked and awaits to be unrav-
eled by other techniques. To this end, pro-
teomics tools that can analyze the composition, 
expression, and modification of proteins are 
complementary to metabolomics. It provides 
another dimension of biological information 
and offers valuable insights into the cellular 
and molecular mechanisms that explain how 
the abnormal metabolic patterns in cancers are 
induced and what outcomes the remodeled 
metabolism may potentially lead to. In turn, 
the different levels of metabolites can also ver-
ify the abundance changes of specific meta-
bolic enzymes detected by proteomics. Hence, 
the combined use of metabolomics and pro-
teomics can provide a unique and holistic 
understanding of the abnormal metabolism in 
cancers and holds potential in discovering met-
abolic targets of therapeutic value with the aid 
of biochemical and genetic tools, such as RNAi 
technology used in vitro and tumor xenograft 
mice model tested in  vivo (See Fig.  1). 

Therefore, we focused on reviewing the tech-
nology advances and diverse applications of 
metabolomics and proteomics in cancer bio-
marker discovery and target identification in 
this chapter.

2  Metabolomics in Anticancer 
Target Discovery

In contrast to genomics and transcriptomics data 
that may provide the insights on a pathological 
process, metabolic profiling of biological sam-
ples is instantaneous snapshots of physiological 
and pathological events that are currently under-
going within bodies and is thus increasingly 
being utilized to diagnose cancers, predict thera-
peutic outcomes, understand disease mecha-
nisms, and identify novel targets to develop 
anticancer therapy.

2.1  Essential Procedures 
and Advancements 
of Metabolomics Technologies

2.1.1  Sample Collection 
and Preparation

Metabolomics relies on the use of cutting-edge 
analytical techniques to detect and identify 
metabolites comprehensively from complex bio-
logical samples for biomarker or target discovery. 

Fig. 1 Schematic workflow of the combined use of metabolomics and proteomics for the discovery of cancer therapeu-
tic targets
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Urine, serum, and plasma are easily accessible 
and contain thousands of metabolites and are 
thus most frequently used for metabolic bio-
marker discovery [14]. In addition to this, tissue 
biopsies and body fluids such as saliva, cerebro-
spinal fluid, and bile acid have also been used for 
metabolomic analysis [15].

Nevertheless, metabolites are sensitive and 
prone to degradation. Hence, reproducible and 
reliable sample collection and processing proto-
cols are essential for metabolic biomarker dis-
covery. In fact, sample collection and processing 
steps are of paramount importance. This was 
demonstrated by studies showing distinct meta-
bolic profiles were obtained due to variances in 
sample collection and sample preparation. For 
example, Liu et  al. used gas chromatography 
coupled to mass spectrometry (GC-MS) to ana-
lyze the metabolic patterns in serum and plasma 
from 15 healthy individuals. They found that the 
incubation of plasma at 4 °C for 2, 3, and 4 h had 
pronounced influences on detected intensities of 
plasma metabolites [16]. Therefore, proper col-
lection and storage steps are critical factors to 
acquire primitive metabolic information from 
samples. Biological samples subjected to metab-
olomic analysis are recommended to be stored in 
liquid nitrogen or  −  80  °C and must avoid 
repeated freezing and thawing.

2.1.2  Metabolomic Acquisition 
Methods and Data Analysis 
Tools

Metabolites present in biological samples may 
possess a wide range of physicochemical proper-
ties including polarity, molecular weight, and 
concentrations [17]. Therefore, it remains a great 
challenge to comprehensively detect and charac-
terize endogenous metabolites. Nevertheless, 
advances in state-of-the-art analytical instrumen-
tation and acquisition methods have emerged and 
posited metabolomics as a current workhorse in 
bioanalysis. Among different technologies, 
nuclear magnetic resonance (NMR) and gas/liq-
uid chromatography coupled to mass spectrome-
try (GC/LC-MS) are most frequently used.

NMR spectroscopy is one of the earliest tech-
niques applied to metabolomic analysis [18]. It 

uses the energy changes of the nucleus in mag-
netic field to obtain relevant nuclear information. 
1H-NMR, 13C-NMR, 15N-NMR, and 31P-NMR 
are commonly used with 1H-NMR as the most 
prevalent technique [19]. Current NMR advances 
in automation and the capability in unambiguous 
assignment of molecular identities. Its relatively 
low sensitivity has been improved by increasing 
the magnetic field strength and the introduction 
of cryogenically cooled probes and microprobes 
[20]. In addition, the unique advantage of NMR 
in nondestructive analysis is exemplified by a 
high-resolution magic angle spinning (HRMAS) 
NMR technology. It is an exciting development 
that allows to perform metabolic analysis of 
intact tissues without sample preparation and has 
been widely applied to probe intact tissues 
including but not limited to the brain, kidney, and 
liver [21, 22]. With rapid development in NMR 
theory and technology, its applications in metab-
olomics studies have rejuvenated.

Due to their robustness and high sensitivity 
and throughput, GC/LC-MS has become a core 
platform for metabolite detection and identifica-
tion. The coupling of chromatography to MS 
reduces sample complexity, enabling a compre-
hensive analysis of metabolome with great cover-
age. The optimized front end based on separation 
science thus shines in identification of low- 
abundance metabolite species and has resulted in 
successful discovery of a myriad of metabolite 
biomarkers for various diseases. For instance, 
Furusho et  al. developed a three-dimensional 
high-performance liquid chromatographic 
(3D-HPLC) method, which included a reversed- 
phase column in the first dimension, an anion- 
exchange column in the second dimension, and 
an enantioselective column in the third dimen-
sion, for metabolite separation. With this setup, 
they successfully differentiated D-amino acids 
such as D-alanine, D-serine, D-asparagine, and 
D-proline from the L-forms in human plasma and 
found the abundances of D-alanine, D-serine, 
D-asparagine, and D-proline were significantly 
increased in the plasma of patients with chronic 
kidney disease (CKD) compared with those of 
the healthy donors [23]. Ibáñez et al. combined 
reversed phase (RP) with hydrophilic interaction 
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chromatography (HILIC) to analyze the cerebro-
spinal fluids of patients at different stages of 
Alzheimer’s disease (AD) and identified a 
broader polarity range of metabolites that allows 
the differentiation of AD developmental stages 
[24]. Cui and Hu et al. used ion chromatography 
(IC) as an orthogonal separation method for 
 analysis of charged and polar compounds such as 
carbohydrates, organic acids, sugar phosphates, 
and nucleotides from head and neck cancer cells 
[25] and saliva from gout patients [26], respec-
tively. The outstanding chromatographic resolu-
tion of IC even allows differentiation of isobaric 
and isomeric polar metabolites and thus holds 
promise for accurate identification of biomarkers 
for diagnostic and prognostic purposes.

Besides chromatography, cutting-edge tech-
nological advances in MS also allow metabolo-
mic analysis with enhanced coverage and 
accuracy. The development in mass analyzers 
such as Orbitrap and Q-TOF together with the 
inclusion of ion mobility cell for gas-phase ion 
separation has pronouncedly improved the 
breadth and depth of detected metabolites [27, 
28]. For example, Damen et  al. combined ion 
mobility spectrometry and Q-TOF to separate 
different lipid molecular species and lipid iso-
mers using a charged surface hybrid (CSH) C18 
column. Compared to conventional MS approach, 
the combined method delivered a superior perfor-
mance that can be exemplified by the separation 
of lipid isomers such as PC 36:3 at m/z 784.5851 
and PE 36:2 at m/z 742.5392 [29].

Although the combination of GC/LC with 
MS has been successfully implemented for both 
metabolite identification and biomarker screen-
ing, current analytical toolkits are still limited in 
achieving an in-depth analysis of all metabolites. 
This limitation could be attributed to multiple 
factors. First, the most prevalent acquisition 
method, data-dependent acquisition (DDA), in 
nontargeted analysis is biased toward the selec-
tion of high-abundance ion species for MS/MS 
fragmentation. A number of biologically signifi-
cant metabolites may present with relatively low 
abundance and therefore is limited. To overcome 
this challenge, data-independent acquisition 
(DIA) is thus developed as an alternative strat-

egy. Theoretically, DIA methods enable compre-
hensive fragmentation of all metabolite 
precursors in a sample run, whereas the data can 
be repetitively analyzed to re-extract fragment 
ions for precursors of interest. DIA method has 
been proven to improve the number of detected 
endogenous metabolites with better reproduc-
ibility through direct comparison with results 
acquired via the DDA analysis. In addition, 
quantitative accuracy was improved due to a 
shortened duty cycle conferred by DIA analysis. 
A representative example of DIA in metabolo-
mics is that Wang et  al. employed sequential 
windowed acquisition of all theoretical fragment 
ion (SWATH) MS with variable isolation win-
dows on an ultrahigh- performance liquid chro-
matography (UPLC)-quadrupole time-of-flight 
(Q-TOF) to characterize the Standard Reference 
Material (SRM 1950) in plasma. A total of 1373 
unique metabolites was identified, confirming 
significantly increased coverage compared with 
DDA [30].

Although the DIA strategy enables acquisition 
of MS/MS spectra with high quality and effi-
ciency, it is challenging to process the large-scale 
DIA data. To meet this demand, several 
approaches have been developed for DIA data 
analysis. Li et  al. developed a program named 
MetDIA, which identified metabolite by five 
steps, including peak detection and alignment, 
targeted chromatogram extractions, generations 
of peak groups and pseudo MS2 spectra, 
metabolite- centric identification, and statistical 
analysis. Compared with DDA, MetDIA identi-
fied five more true positive metabolites in a stan-
dard mixture sample containing 30 metabolites. 
This method was applied to studying the function 
of Fas-associated protein with death domain 
(FADD) by comparing metabolome in FADD 
wild-type and FADD-deficient Jurkat cells. 
Based on MetDIA, 156 metabolites were identi-
fied and 37 metabolites were detected with sig-
nificant changed abundances [31].

Another factor on metabolome analysis 
coverage stems from the way the MS/MS frag-
mentation ions are collected. Normally, a gen-
eral MS/MS fragmentation parameter is set in 
the acquisition method that applies to all 
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metabolites. Nevertheless, metabolites are 
synthesized from different routes and result in 
production of compounds with distinct molec-
ular structures and physicochemical proper-
ties. Therefore, a generalized parameter such 
as collision energy (CE) is insufficient for all 
precursors to produce MS/MS spectra of good 
quality for subsequent structural characteriza-
tion. Ye et al. have shown that this holds espe-
cially true for natural products and developed 
stepped MSAll strategy to produce MS/MS 
spectra for all detected small molecules by 
setting pronouncedly wide CE range in each 
duty cycle [32, 33]. This guarantees precur-
sors are subjected to sufficient MS/MS frag-
mentation under their optimal settings in a 
sample run. This application has been further 
propagated to optimize multiple reaction mon-
itoring (MRM) parameters with automation 
capability and without the need of a large 
amount of pure standards for tuning [34, 35]. 
Another study reported by Luo et al. proposed 
a pseudotargeted metabolomics approach by 
generating DIA data from pooled serum 
metabolites under 20, 40, and 60 eV. Candidate 
ion pairs for MRM were extracted using a 
house-developed software MRM-Ion Pair 
Finder, and 854 transitions were applied to 
discover metabolites showing abnormal 
expression levels in sera from hepatocellular 
carcinoma (HCC) patients [36].

2.1.3  Innovative Metabolomics Data 
Analysis Approaches

With increasingly more metabolic features being 
detected, the great challenge lies in how to accu-
rately and specifically identify the detected meta-
bolic features. Conventional approaches rely on 
searching the acquired m/z and fragment ions of 
metabolites against various online databases 
including the Encyclopedia of Genes and 
Genomes (KEGG), METLIN, human metabo-
lome database (HMDB), etc. Matching m/z 
would often result in multiple hits for single pre-
cursor query, necessitating the need to match 
retention time and MS/MS fragmentation ions 
with those generated from pure standards. This 
time-consuming task cannot always be accom-

plished due to limited availability of standards, 
and this accounts for elusive identities of disease- 
related metabolic biomarkers in numerous 
studies.

To solve this dilemma, tremendous efforts 
have been devoted to structural assignment. 
Specifically, a recently reported data analysis 
program termed metabolic pathway extension 
(MPE) proposed a concept of “submetabo-
lome” and a novel means to infer unknown 
structures from the pool of metabolites by 
exploiting the well-classified metabolic reac-
tions normally occurring in biological systems. 
Firstly, metabolites that displayed abundance 
changes in response to a drastic intensity 
change of a “core metabolite” are included as a 
pool. Then, metabolic reactions are used to 
connect the metabolites, which leads to the 
establishment of a network with the core 
metabolite posited in center. Lastly, metabo-
lites of unknown identities in current databases 
can be inferred based on its transformation 
from a known structure within the network. 
Using the MPE approach, Wang et al. studied 
the metabolic network of carnitine and vali-
dated the assigned molecular structures based 
on databases. The newly constructed reposi-
tory of carnitine metabolic network enables 
identification of more metabolite biomarkers 
compared to that achieved by database search-
ing in a mice model of fasting. This approach 
has thus opened up a new window for identifi-
cation of metabolism- associated compounds 
(Fig. 2) [35].

Similar to the concept of establishing meta-
bolic network via biotransformations, Shen 
et  al. developed a metabolic reaction network 
(MRN)-based recursive algorithm (MetDNA), 
which is based on the assumption that similar 
MS/MS spectra are produced from seed metab-
olites and their reaction-paired neighbors due to 
high structural similarities. Using MetDNA, 
about 2000 metabolites can be annotated from 
one dataset, which expands the capability of 
metabolite annotation and facilitates metabolo-
mics analysis [37]. Another example is Huan 
et al., who developed a web-based online ana-
lytical tool named MyCompoundID.org 
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(MCID). MCID is established by constructing a 
library of over 383,830 predicted human metab-
olites by extending the known metabolites with 
a limited number of biotransformation, which 
facilitates the identification and validation of 
novel metabolite structures [38].

2.2  Metabolomics for Biomarker 
Discovery and Therapeutic 
Target Identification

Cancer cells purposely reprogram the metabo-
lisms to commit sources to energy production 
and biosynthesis while maintaining redox bal-
ance [39]. These rewired metabolic traits are vital 
for cancer cell survival, growth, and prolifera-
tion. Therefore, the sensitivity, throughput, and 
robustness offered by metabolomics have made it 
a powerful tool for profiling the metabolomic 
alterations between normal and cancerous cells 
and tissues. The knowledge gained by metabolo-

mics not only enables the discovery of sensitive 
and specific biomarkers but also provides mecha-
nistic insights regarding the fundamental causes 
of cancers and therapeutic outcomes. Such infor-
mation can redefine the targets for anticancer 
drug discovery and development. In the follow-
ing sections, successful applications of metabo-
lomics in cancer biomarker discovery and further 
validation of the key players responsible for 
mediating the corresponding metabolic changes 
are reviewed.

2.2.1  Metabolomics in Metabolic 
Biomarker and Target 
Discovery

Metabolomics has been frequently used for dis-
covery of cancer diagnostic and prognostic bio-
markers as complementary with genomics data 
and gene risk scores [40]. For instance, lung can-
cer is the leading cause of cancer-related mortal-
ity worldwide [41]. Nevertheless, early diagnosis 
of lung cancer can increase the survival rate to 

Fig. 2 Metabolic pathway extension (MPE) approach. 
(a) Overall workflow of the MPE approach. Briefly, the 
carnitine metabolome was first constructed by differential 
analysis of the plasma samples collected from mice 
administered with or without the core metabolite, carni-
tine in this case, by LC-MS. The accurate m/z and corre-
sponding MS/MS of the metabolites changed in response 
to carnitine intake were then extracted from the raw data 
and imported to a stand-alone program we developed 
named Metabolic Pathway Extension Analysis (MPEA). 
The MPEA program used the accurate m/z information on 
the carnitine metabolome to establish the targeted meta-

bolic network of carnitine by calculating the mass differ-
ences between any pairs of metabolites within the pool of 
carnitine metabolome and subsequently matching them 
against a list of metabolic reactions commonly encoun-
tered in biological systems. (b) Carnitine metabolome 
connected by metabolic reactions via the metabolic path-
way extension approach. All the metabolites are registered 
with a number based on m/z values, and carnitine is the 
initial metabolite (highlighted in red). A sequential layer- 
by- layer characterization strategy enables the connection 
of the 93 metabolites into the metabolic network of carni-
tine by one, two, three, or multiple-step metabolic 
reactions
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85% [42]. Hence, many researchers are striving 
in exploring the biomarkers for lung cancer diag-
nosis. Specifically, Mu et al. collected 65 serum 
samples from nonsmoking female patients with 
non-small cell lung cancer (NSCLC) and 65 
serum samples from healthy donors and  examined 
the metabolomic differences by GC-MS analysis. 
Cysteine, serine, and 1- monooleoylglycerol were 
found to significantly decrease in lung cancer 
patients. These metabolites can be further com-
bined as a biomarker panel for sensitive diagno-
sis of NSCLC [43]. Rocha et  al. employed 
NMR-based metabolomics to analyze 85 plasma 
samples collected from primary lung cancer 
patients and 78 plasma samples from healthy 
donors as control. They found that several amino 
acids, including alanine, glutamine and valine, 
and acetate and formate, were significantly 
decreased in cancer patients’ plasma [44]. 
Moreover, Ni et al. found glycine, valine, methio-
nine, citrulline, and arginine decreased in sera of 
57 lung cancer patients compared with those 
from the 130 matched healthy control donors. 
Intriguingly, both studies showed that valine, a 
branched-chain amino acid (BCAA), was 
decreased in patients with lung cancer [45]. This 
finding was supported by a mechanistic study by 
Mayers et  al. showing the BCAA metabolism 
occurred in NSCLC patients, of which two 
BCAA transporters, BCAT1 and BCAT2, were 
both upregulated. These metabolic alterations 
enabled the tumor cells to adaptively use free 
BCAAs as a nitrogen source for DNA and mac-
romolecule synthesis. The increased uptake of 
BCAA into tumor cells explains the reduced 
BCAAs in NSCLC patients’ circulation system. 
This study suggested the potential of targeting 
BCAT1 and BCAT2 for therapeutic treatment of 
NSCLC [46].

Tumor is notorious for its heterogeneity. 
Heterogeneity leads to different metabolic altera-
tions in specific tissues or variant genetic back-
grounds [47–49]. This means metabolic profiles 
can thus be utilized in tumor classifications. For 
instance, breast cancer can be classified into 
luminal A subtype, luminal B subtype, Her-2 
positive subtype, basal-like subtype, and triple- 
negative breast cancer (TNBC) according to the 

expression level of estrogen receptor (ER), pro-
gesterone receptor (PR), and human epidermal 
growth factor receptor 2 (Her-2) [50, 51]. Cao 
et al. used high-resolution magic angle spinning 
magnetic resonance spectroscopy (HR-MAS- 
MRS) to analyze breast cancer tissue from 75 
patients with TNBC or triple-positive breast can-
cer (TPBC). They found that choline and gluta-
mate were significantly higher in TNBC 
compared to TPBC tumors. Meanwhile, they also 
found a significantly lower level of glutamine in 
TNBC, which indicated an increased glutami-
nolysis in TNBC [52]. Jin et  al. showed that 
oncogenic receptor tyrosine kinase (RTK) differ-
entially reprogramed the metabolic phenotype in 
NSCLC cells. Based on metabolomics profiling, 
they found that NSCLC cells with EGFR muta-
tion were highly dependent on the serine synthe-
sis pathway for nucleotide biosynthesis and 
redox homeostasis, while NSCLC cells with 
EGFR amplification utilized lactate as fuel for 
energy production. The results linked molecular 
genotype with metabolic dependency and laid the 
foundation for personalized medical treatment 
[53]. Combinatorially, these metabolic pheno-
types delineated by metabolomics studies dem-
onstrated that signature metabolites may serves 
as biomarkers for cancer classification. More 
importantly, these metabolic changes reflect dif-
ferent cell types’ need for specific metabolites or 
metabolic pathways, whereas the metabolic vul-
nerability can be specifically targeted by select-
ing tumors that are hypersensitive to these 
targeted therapies. This information is extremely 
valuable for cancer types where druggable targets 
are lacked or expressed at relatively low levels 
such as diffuse-type gastric cancer [54].

Besides classification of cancer types, metab-
olomics is used to identify cancer stages as well. 
Understanding the clinical stages of cancers 
allows clinicians or surgeons to make righteous 
treatment decisions. For instance, prostate can-
cer is the second leading cause of cancer death in 
men worldwide [13]. According to the American 
Cancer Society, the 5-year relative survival rates 
of prostate cancer patients without and with 
metastasis are 80% and 30%, respectively, 
whereas the progression-free survival of patients 
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without metastasis was twice that of patients 
with metastasis [55–57]. Hence, it is necessary 
to develop biomarkers for the classification of 
prostate cancer stages. Sreekumar et  al. used 
GC-MS and LC-MS to analyze tissue, blood, 
and urine samples from 262 clinical subjects 
classified as prostate cancer and successfully dif-
ferentiated the benign prostate, clinically local-
ized prostate cancer, and metastatic prostate 
cancer. One key metabolite, sarcosine, was 
found to be highly increased when prostate can-
cer proceeds to the metastatic stage. This accords 
to a previous study that reported the increase of 
sarcosine in invasive prostate cancer cell lines 
such as VCap, DU145, 22RV1, and LNCap com-
pared to benign prostate epithelial cell lines, 
PeEC and RWPE. Notably, knockdown of a gly-
cine-producing-sarcosine enzyme, glycine-N-
methyltransferase, significantly abolished the 
malignant behaviors of prostate cancer. Taken 
together, the information gained via integrating 
clinical and in vitro metabolomics and molecular 
biology studies indicates that sarcosine plays an 
important role in the metastasis of prostate can-
cer cells and can be a potential metabolic bio-
marker for predicting metastasis. Meanwhile, 
the sarcosine metabolic pathway also holds 
potential as a new target for prostate cancer ther-
apy [58]. Recently, Eniu et al. also demonstrated 
an exemplary application of metabolomics to 
breast cancer staging. Free amino acids in sera, 
such as tyrosine, arginine, and alanine, were 
found to decrease in breast cancer patients, espe-
cially during the progression from stage II to 
stage III [59].

The application of metabolomics in prognos-
tic biomarker discovery has culminated in the 
finding of oncometabolites such as 
2- hydroxyglutarate (2-HG). Wang et  al. found 
that, in 234 cytogenetically normal AML patients, 
high level of serum 2-HG was associated with 
poor overall survival and event-free survival. 
These results suggest that serum 2-HG is a highly 
valuable prognostic biomarker for AML patients. 
Besides 2-HG, Chen et al. also found that highly 
active glycolysis was related to poor overall sur-
vival in AML patients. They performed metabo-

lomics analysis of the serum samples from 400 
AML patients and 446 healthy controls and iden-
tified six serum metabolite biomarkers including 
lactate, 2-oxoglutarate, pyruvate, 2-HG, glycerol- 
3- phosphate, and citrate. This panel of six bio-
markers could predict the prognostic outcome for 
AML patients [60]. Mathe et al. analyzed urine 
samples from 496 patients with lung cancers and 
536 healthy controls and found creatine riboside 
and N-acetylneuraminic acid were significantly 
elevated in lung cancer patients and associated 
with poor prognosis [61].

In addition to identifying cancer biomarkers 
for diagnosis, prognosis, tumor classification, 
and staging, metabolomics has great potential to 
deepen our understanding of cancer pathologic 
mechanisms and thus the discovery of potential 
therapeutic targets when used in conjugation 
with biochemical and genetic tools. Huang et al. 
applied metabolomics to profiling of small cell 
lung cancer (SCLC) cell lines and identified 
metabolic heterogeneity and subtype-selective 
vulnerabilities. Specifically, guanosine nucleo-
tides were found to increase in Achaete-scute 
homolog- 1 (ASCL1) low cells, along with the 
relatively high expression levels of guanosine 
synthetic enzymes including inosine monophos-
phate dehydrogenase-1 and 2 (IMPDH1 and 
IMPDH2). Inhibition of IMPDH1/2 thwarted the 
growth of SCLC cells with low ASCL1 expres-
sion in both in vitro and in vivo models. These 
results suggested that IMPDH is a potential ther-
apeutic target for low-ASCL1 expressing SCLC 
[62]. Wang et al. investigated the metabolomics 
profiles of the tumor-initiating cells (TICs) from 
primary NSCLC adenocarcinoma. An increased 
methionine cycle activity and high 
S-adenosylmethionine (SAM) consumption 
were observed in TICs accompanied with ele-
vated transmethylation driven by methionine 
adenosyltransferase II alpha (MAT2A) that is 
responsible for SAM synthesis. Consequently, 
pharmacological inhibition of MAT2A, which 
leads to the inhibited SAM production, influ-
enced the tumorigenicity of TICs, suggesting 
that MAT2A holds promise as a potential target 
for NSCLC therapy [63].
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2.2.2  Metabolomics in Cancer 
Chemotherapy

Metabolomics in predicting and evaluating indi-
vidual’s responses to drug treatment is also 
widely recognized. The complexity in genetic/
protein expressions dictates the need to treat 
patients with tailored therapy that can mostly 
benefit them. Drug resistance is one of the main 
reasons for the failure of cancer therapy [64]. It 
is reported that cancer cells that gain resistance 
to therapeutic interventions can remodel their 
metabolism to adapt and survive from drug treat-
ment [65]. Kominsky et  al. used NMR and 
GC-MS to assess the metabolic differences 
between chronic myelogenous leukemia (CML) 
cell lines with different sensitivities to imatinib. 
They found that, after imatinib treatment, sensi-
tive cells showed decreased glucose uptake and 
lactate production while resistant cells main-
tained the highly glycolytic metabolic pheno-
type. The relatively high glucose uptake and 
lactate production can thus be used as markers 
for early detection of imatinib resistance in CML 
cells [66]. Ruprecht et al. found that the lapatinib- 
resistant BT-474 cell line showed elevated level 
of metabolites in glycolysis and increased lactate 
production after lapatinib treatment compared to 
the lapatinib-sensitive BT474 cells [67]. 
Together, these results indicate that metabolo-
mics can be a forecasting method to distinguish 
patients’ sensitivity or resistance to drug inter-
vention [67].

Metabolomics have also been widely applied 
to profiling of the metabolic alterations after che-
motherapy and guide clinical medication therapy. 
Doxorubicin is the first-line drug in the treatment 
of breast cancer and has been applied to a wide 
range of chemotherapy [68, 69]. However, the 
relatively high dosage of doxorubicin in clinical 
application could lead to several serious side 
effects, including myelosuppression and cardio-
toxicity [70, 71]. Shao et al. used the breast can-
cer cell line MCF-7 and administered doxorubicin 
in a relatively low dosage to establish a metro-
nomic chemotherapy regimen and also in a rela-
tively high dosage to mimic the 
maximal-tolerated-dose chemotherapy model. 
Metabolomics and PCR arrays were used to dis-

tinguish the metabolic differences between the 
two dosing regimens. The integral omics data 
showed that glucose, amino acid, and nucleotide 
metabolisms were activated in the metronomic 
chemotherapy group and decreased in the 
maximal- tolerated-dose chemotherapy group. 
Pharmacological inhibition of the activated meta-
bolic pathway combined with metronomic che-
motherapy exacerbated apoptosis in MCF-7 
cells. However, such treatment had no effect on 
human mammary epithelial MCF-10A cells. 
These results suggest that disturbing breast can-
cer cell metabolism with metronomic chemother-
apy could selectively kill cancer cells and reduce 
side effects in normal cells [72].

Metabolomics has significantly facilitated 
cancer biomarker discovery due to its unique 
ability in comprehensively profiling metabolic 
phenotypes and pinpointing metabolic abnormal-
ities. However, the detected metabolic alterations 
must be linked to causal frameworks, which can 
then be translated into therapeutic targets for 
treatment or truly valuable biomarkers for clini-
cal applications. Nevertheless, this cannot be 
accomplished by metabolomics alone because 
the underlying metabolic mechanisms need to be 
answered by other means such as molecular biol-
ogy methodologies together with metabolomics.

3  Combined Metabolomics 
and Proteomics in Cancer 
Metabolic Target Discovery

Although metabolomics provides systematic and 
sensitive information regarding metabolic altera-
tions induced by cancer occurrence and progres-
sion, the causes of these alterations and the 
underlying mechanisms remain largely elusive. 
To this regard, proteomics is a complementary 
methodology that provides insights into the 
causes and outputs of the observed abnormal 
metabolism in cancers. Hence, the combined 
metabolomics and proteomics approach is 
increasingly being used to deepen the mechanis-
tic understanding of cancer metabolism and iden-
tify novel drug targets that modulate such 
processes.
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A representative use of the combined 
approaches was reported by Celiktas and co- 
authors. They applied metabolomics and pro-
teomics to investigating lung adenocarcinoma 
(LADC) with or without liver kinase B1 (LKB1) 
inactivation. LKB1 is a tumor suppressor and 
often inactivated in lung cancers, which confers 
invasive and metastatic properties of cancer cells. 
Based on quantitative proteomics, they identified 
carbamoyl phosphate synthetase 1 (CPS1) was 
elevated in LKB1-inactivated LADC cells com-
pared with LKB1-activated cells. Their metabo-
lomics analysis showed that metabolite 
intermediates involved in purine/pyrimidine and 
arginine metabolism pathways were downregu-
lated in CPS1 knockdown H1437 and H1944 
cells, indicating that the knockdown of CPS1 
could lead to cell growth inhibition. These results 
suggested that CPS1 is a promising therapeutic 
target for LADC patients carrying LKB1 muta-
tion [73].

Additionally, Cai et al. used a combined pro-
teomics/metabolomics approach to analyze tis-
sues from patients with gastric cardia cancer 
(GCC) compared to normal counterparts. They 
first found that enzymes involved in glycolysis, 
including fructose-1,6-diphosphate aldolase A 
(ALDOA), glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH), and enolase (ENO1) all 
increased while enzymes involved in TCA cycle, 
including pyruvate dehydrogenase B (PDHB), 
aconitate hydratase (ACO2), and fumarate hydra-
tase (FH), were downregulated in cancer tissues 
via quantitative proteomics. Then, they employed 
metabolomics tools and revealed that six inter-
mediates involved in glucose metabolism, includ-
ing fructose-6-phasphate, glyceraldehyde, and 
pyruvate, were increased during tumorigenesis. 
These results collectively show activated glycol-
ysis and impaired TCA cycle in GCC cells, 
whereas channeling the flux from glycolysis to 
TCA cycle can potentially inhibit growth and 
migration. Consequently, the inhibition of LDHA 
and overexpression of PDHB that modulate the 
metabolic flux are potential therapeutic targets 
for combating GCC [74].

By using a combined proteomics and metabo-
lomics approach, Dougan et al. found that peroxi-
dasin (PXDN) was elevated in prostate cancer 
tissues compared to normal tissues and related 
metabolic pathways. Silencing of PXDN led to 
decreased cell viability and increased apoptotic 
rate, and proteomics data showed that PXDN 
knockdown upregulated multiple proteins that 
are enriched in biological processes including 
oxidative stress, mitochondrial dysfunction, and 
gluconeogenesis. Meanwhile, metabolomic pro-
filing revealed increased metabolites in oxidative 
stress and decreased metabolites in nucleotide 
biosynthesis. Therefore, the integral omics data 
suggested that inhibiting PXDN exerts therapeu-
tic value through increased ROS and inhibited 
nucleotide synthesis [75].

Besides a handful of cases that successfully 
integrated these two powerful approaches in 
developing potential therapeutic targets [76, 77], 
the integral omics approach can also be used for 
monitoring cells’ responses to chemotherapy and 
developing anti-resistant therapy in cancer cells. 
For instance, Wu et  al. used metabolomics and 
proteomics to analyze the metabolism-associated 
molecular events in senescent and apoptotic cells 
after doxorubicin treatment. Based on metabolo-
mics, they found that several nucleotides, amino 
acids, and carbohydrates were elevated in senes-
cent cells while decreased in apoptotic cells. 
Meanwhile, the proteomics data showed enzymes 
involved in glycolysis, TCA cycle, pentose phos-
phate pathway, purine, and pyrimidine biosyn-
thesis were increased in senescent cells yet 
decreased in apoptotic cells, which in turn sup-
ported the metabolic alterations measured by 
metabolomics (Fig.  3). G6PD, a protein that is 
responsible for ROS elimination, was signifi-
cantly upregulated in senescent cells. The co- 
administration of G6PD inhibitor with Dox 
managed to induce apoptosis to cancer cells 
rather than senescence, indicating that senescent 
cells relied on G6PD to scavenge ROS and repair 
DNA damage. Therefore, G6PD may serve as a 
target for treating the chemotherapy-induced 
resistance [78].
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4  Novel Chemoproteomics- 
Based Approach for Direct 
Target Identification

Although proteomics can comprehensively 
record the protein expression changes in diseased 
states, the measured information is a readout of 
reprogramed metabolism-induced consequences 
rather than the direct causes of abnormal metabo-
lism. Therefore, studies have increasingly 
focused on mapping the direct binding proteome 
for endogenous functional metabolites in hope 
that novel functional proteins that exert the bio-
logical and pathological functions of altered 
metabolite abundances can be discovered as ther-
apeutic targets.

Chemoproteomics, an approach that was 
originally developed to elucidate the target pro-
teins for drugs, has been applied to target iden-
tification of endogenous metabolites. For 
instance, affinity- based protein profiling 
(AfBPP) is a leading-edge chemical proteomics 
method that develops probes based on the origi-
nal structure of targeted small molecules and 

modifies them with reactive group that allows 
attachment of the probes to its binding proteins. 
Fluorophore or other groups for affinity enrich-
ment were devised and incorporated into the 
probes, which makes subsequent visualization 
and enrichment for proteomics- based identifi-
cation accomplishable. Hulce et al. synthesized 
clickable photoreactive sterol probes in combi-
nation with quantitative proteomics and identi-
fied 265 cholesterol-binding proteins in HeLa 
cells. Among the identified proteins, seven pro-
teins have been known to bind to cholesterol 
[79]. In addition, Moraru et  al. synthesized a 
derivative of methylglyoxal (MGO) that carries 
a clickable group and identified fatty acid syn-
thase (FASN) as one of the targets of MGO 
based on AfBPP, imparting a novel druggable 
target for type 2 diabetes [80]. Furthermore, 
Qin et  al. devised a monosaccharide-based 
probe, 3,4,6-O-Ac3ManNAz, that competitively 
labels cysteines with itaconate and applied it to 
the competitive isotopic tandem orthogonal 
proteolysis- affinity-based protein profiling 
(isoTOP- ABPP). The isotope-ABPP does not 

Fig. 3 The combined approach of metabolomics and pro-
teomics was used to analyze the metabolism-associated 
molecular events in senescent and apoptotic cells after 
doxorubicin treatment. (a) A schematic workflow of the 
combined approach. (b) Heat map of changed metabolites 

involved in purine and pyrimidine biosynthesis pathway, 
pentose phosphate pathway, and tricarboxylic acid cycle. 
(c) Gene ontology analysis of proteomic data revealed dis-
turbed pathways in senescent and apoptotic cells
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necessitate the modification of metabolites. A 
total of 260 cysteine sites was found to be mod-
ified by itaconate in Raw 264.7 cells, which 
includes those in fructose-bisphosphate aldol-
ase (ALDOA), a key enzyme involved in gly-
colysis. Functional studies showed such 
modification by pronouncedly increased ita-
conate in macrophages in response to lipopoly-
saccharide-induced stimulus inhibited the 
catalytic activity of ALDOA and in turn blocked 
the glycolysis of macrophage. These results 
indicated an anti- inflammatory effect of itacon-
ate, which has translational implications for 
development of tumor immunotherapy based 
on macrophages [81].

Target identification using drug affinity 
responsive target stability (DARTS) is another 
widely used approach of target discovery for 
unmodified small molecules of interest. It was 
originally developed by Lomenick and co- 
authors. They reasoned that, once the small 
molecule binds to the target proteins, the inter-
actions would induce conformational change 
for the bound proteins and confer them greater 
protease- resistant stability. Therefore, proteins 
of enhanced stability upon ligand incubation 
are assigned as binding proteins, which can be 

readily visualized by staining after gel electro-
phoresis-based separation and identified by 
MS. Using this approach, Huang’s group iden-
tified ATP synthase subunit 5B (ATP5B) as a 
novel binding protein of α-ketoglutarate 
(α-KG). The binding of α-KG to ATP5B can 
inhibit the enzymatic activity, which subse-
quently decreases TOR signaling and allows 
the extended life span of C. elegans [82, 83]. 
Another application of DARTS is reported by 
Li and co-authors who aimed to study the target 
proteins for a microbial metabolite butyrate. 
They first employed DARTS to identify target 
proteins that can possibly explain the inhibitory 
effect of butyrate on colorectal cancer cells. A 
metabolic enzyme, pyruvate kinase M2 
(PKM2), was identified as the binding protein 
since butyrate can dose-responsively increased 
the stability of PKM2 against protease. This 
finding is validated by metabolomics data 
showing that pyruvate, the product of PKM2, 
accumulated after butyrate administration in 
colorectal cancer cells, suggesting that butyrate 
might direct bind to and activate PKM2. The 
biochemical assays also suggested that the acti-
vation of PKM2 by butyrate can inhibit the 
Warburg effect and subsequently suppress the 

Fig. 4 Target identification for butyrate via the DARTS- 
based proteomics approach and immunoblotting experi-
ments. (a) A schematic workflow. (b) SDS-PAGE analysis 
of pronase-digested cell lysate followed by Coomassie 

blue staining identified a butyrate-stabilized protein 
within the ~60 kDa gel band. (c) Abundance level changes 
of representative metabolites suggest modulated PKM2 
activity after the 24-h butyrate treatment
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proliferation of colorectal cancer cells. 
Collectively, this study established the first 
mechanistic link between PKM2-induced meta-
bolic remodeling and the anti-tumorigenic 
function of butyrate (Fig. 4) [84].

Besides the abovementioned approaches, 
CETSA (cellular therm mployed to identify pro-
teome-wide binding targets for endogenous 
metabolites such as 2′,3′-cGAMP in RAW 264.7 
cells [85], ATP in K562 cells [86], and arginine in 
T cells [5]. Noteworthy, proteins of distinct 
classes and cellular localizations spanning from 
membrane proteins, transcription factors to cyto-
sol proteins have all been assigned as targets of 
metabolites, revealing a complex metabolite-pro-
tein interaction network heretofore undiscovered 
[87]. Such information will help elucidate why 
the deregulated metabolic pathways lead to tumor 
occurrence, progression, and metastasis through 
discovering the functionality of the detected 
metabolite-protein interactions.

5  Conclusion

With the advancement of emerging MS tech-
nologies, metabolomics and proteomics have 
been increasingly used in the discovery of can-
cer biomarkers and therapeutic targets. The 
combination of metabolomics and proteomics 
technology can truly facilitate a better under-
standing of the pathological causes and biologi-
cal outcomes of the remodeled cancer 
metabolism. The integration of metabolomics, 
proteomics, genomics and reliable bioinformat-
ics tools for omics data analysis are expected to 
delineate a magnificent landscape of cancer 
metabolism and facilitate the proteome-wide 
identification of therapeutic targets to combat 
cancer.
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Ion Chromatography with Mass 
Spectrometry for Metabolomic 
Analysis

Eoon Hye Ji, Jason Lee, and Shen Hu

1  Principle of Ion 
Chromatography

Ion chromatography (IC) or ion-exchange chro-
matography (IEC) is a form of liquid chromatog-
raphy (LC) that allows the separation of ions and 
polar molecules based on their charge. Similar to 
other forms of LC, IC utilizes a separation col-
umn with a stationary phase, a pump that moves 
the mobile phase and analytes through the col-
umn, and a detector that measures the analytes 
and provides characteristic retention times for 
them. Prior to separation, the mobile phase is 
delivered to the system using a high-pressure 
pump to equilibrate the IC column. The sample is 
then injected and flows through the ion-exchange 
column where the ion-exchange separation 
occurs. Afterward, the analytes are eluted from 
the column, and the suppressor reduces the con-
ductivity of the eluent and increases the conduc-
tivity of the analytes so that they can be sensitively 
detected with the conductivity detector. Analytical 
IC is fully automated as the whole system is com-
puter/software controlled, including the sample 
injection and separation process, data acquisi-
tion, and data processing.

Generally speaking, the IEC process consists 
of four main steps. (1) Equilibration of the sta-
tionary phase: When the equilibrium is reached, 
the functional groups on the stationary phase are 
associated with exchangeable counterions. (2) 
Sample injection and wash: Target analytes are 
retained on the stationary phase via electrostatic 
interaction with charged functional groups after 
replacement of the weakly bound counterions. 
Nonionic sample components are poorly retained 
and washed out of the column. (3) Elution of 
retained analytes from the IEC column: This is 
often carried out by increasing the ionic strength 
or pH to suppress the interaction between the 
analytes and stationary phase. (4) Column regen-
eration: All strongly retained species are removed 
to restore the full capacity of the IEC column. 
This step is usually accomplished by changing 
the eluent pH or buffer composition.

Most charged or ionizable molecules can be 
separated by IC and the IC stationary phase is 
derivatized with functional groups which have 
oppositely charged counterions. There are two 
types of IC, cation exchange chromatography 
(CEC) and anion exchange chromatography 
(AEC), depending on the analytes’ surface 
charge. CEC retains positively charged cations 
because the stationary phase displays a nega-
tively charged functional group, whereas AEC 
retains anions using a positively charged func-
tional group. In other words, CEC is used when 
the analytes of interest are positively charged, 
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and the separation is based on the interaction 
between negatively charged stationary phase and 
positively charged analytes. On the contrary, a 
positively charged stationary phase is used in 
AEC for the separation of negatively charged 
analytes. To elute the retained analytes from the 
IC column, the concentration of the exchange-
able counterions, which competes with the ana-
lytes for binding, can be increased or the pH can 
be changed. A change in pH affects the charge on 
the particular analytes and, therefore, alters their 
binding to the stationary phase. The molecules 
then start eluting out based on their charges. 
Gradient elution may also be used, in which the 
concentration of counterions is gradually varied 
to separate the analytes. Additionally, step elu-
tion can be used in which the concentration of 
counterions is varied step by step.

2  Advantages of IC Separation

One of the primary advantages is only one inter-
action involved during the IC separation as 
opposed to other separation techniques. 
Therefore, IC may have higher matrix tolerance 
and allows selective analysis of ionic analytes 
from a complex biological sample. Another 
advantage of IC lies in its predictability of elution 
patterns based on the presence of charged groups 
on the analyte surface. For instance, when CEC is 
used, positively charged molecules will be eluted 
out last and the negative charged molecules will 
be eluted out first and vice versa. In addition, 
commercial IC columns are highly robust. It is 
inevitable that over time the injection of crude 
samples may result in contamination of chro-
matographic columns, especially with complex 
matrices. Due to high matrix tolerance, IC col-
umns can be cleaned, regenerated to restore chro-
matographic resolution with harsh chemical 
solutions such as KOH and/or H2SO4, followed 
by flush with mobile phase. Lastly, IC columns 
can be flexible with high or low capacity depend-
ing the analytical needs. The use of high capacity 
columns is necessary to meet the requirement for 
analysis of complex samples, which contains 
high concentrations of interfering molecules.

A main limitation of IC techniques is that they 
are restricted to the separation of ionizable mol-
ecules. However, with the use of weak cation and 
anion exchangers, the coverage of IC separation 
is quite comprehensive nowadays. In addition, 
CEC and AEC can be combined to achieve a 
more in-depth analysis of complex biological 
samples. Another limitation is that the eluent 
used in IC may not be compatible with mass 
spectrometry (MS). This problem can be resolved 
by using a suppressor [1]. For instance, a sup-
pressor device can be installed after the IC col-
umn outlet and before the detector to convert the 
eluent of high ionic strength (e.g., KOH) to water, 
which is then compatible with MS detection 
(Fig. 1).

3  Stationary Phase in IC

An anion exchanger used for IC separation refers 
to the stationary phase which features positively 
charged functional groups and attracts anions, 
whereas a cation exchanger is the stationary 
phase featuring negatively charged functional 
groups and attracting cations. A strong ion 
exchanger can tolerate a wide range of pH buffers 
and, once the column is equilibrated, does not 
lose the charge on its matrix. Weak ion exchang-
ers, however, can only maintain their charge 
within a certain range of pH buffers. If the pH of 
the buffer goes beyond the capacity range of a 
weak ion exchanger, the column may lose its 
charge distribution and the analytes of interest 
may not be retained on the column during IC 
separation. Despite the smaller pH range of weak 
ion exchangers, they are often used due to their 
high specificity toward certain analyte ions.

The stationary phase of IC columns may con-
tain functional groups such as weak/strong acids 
or weak/strong bases. There are also special col-
umns that use resins with zwitterionic and 
amphoteric ion exchangers, where positive and 
negative charges are located in close proximity. 
These ion exchangers exhibit alternative ion 
selectivity to standard anion and cation ion 
exchangers [2]. Table 1 lists commonly used ion 
exchangers in IC.  Quaternary ammonium (Q) 
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and quaternary aminoethyl (QAE) are strong 
anion exchangers whereas sulfopropyl (SP) and 
methyl sulfonate (S) are strong cation exchang-
ers. These exchangers can maintain their charge 
density over a wide pH range. Meanwhile, dieth-
ylaminoethyl (DEAE) and diethylaminopropyl 
(ANX) are weak anion exchangers while car-
boxymethyl (CM) is a weak cation exchanger. 
These weak ion exchangers maintain the charge 

density of the columns over a narrower pH range. 
Depending on the manufacturers, different resin 
media may be used for the attachment of func-
tional groups. For instance, Sephadex ion 
exchangers are produced by introducing func-
tional groups onto Sephadex, a cross-linked dex-
tran matrix. These groups are attached to glucose 
units in the matrix by stable ether linkages. 
Sepharose ion exchange media consist of 
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Separation 
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Conductivity 
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Electrolytic 
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Mass 
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Mixing tee

ESI
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Fig. 1 A schematic diagram of IC-MS instrument for 
metabolite analysis. Eluent generation allows the auto-
matic production of IC eluent, which eliminates the need 
to manually prepare an eluent from concentrated acid or 
base. The trap column is used to remove ionic contami-
nants from eluents continuously, without the need for 
offline chemical regeneration. The suppressor in IC is 
used to remove the eluent and sample counterions and 

replace them with regenerant ions, thereby converting the 
eluent to a low conductivity matrix prior to detection. In 
fact, the electrolytic suppressor operates continuously 
with a water source as a regenerant, which is compatible 
with MS detection. Organic desolvation solvent is deliv-
ered by using an auxiliary pump, combined with the IC 
eluent via a mixing tee, before entering the mass spec-
trometer via the electrospray ionization (ESI) interface

Table 1 Weak and strong ion exchangers used in IC separation

Resin Functional group
Ion exchanger 
type

Counter 
ionsa

pH 
range

DEAE 
Sepharose

Diethylaminoethyl-O-CH2CH2N+H(CH2CH3)2 Weak anion Cl− 2–9

ANX 
Sepharose

Diethylaminopropyl-O-CH2CHOHCH2N+H(CH2CH3)2 Weak anion Cl− 2–9

QAE 
Sephadex

Quaternary aminoethyl-O- 
CH2CH2N+(CH2CH3)2CH2CH(OH)CH3

Strong anion Cl− 2–10

Q Sepharose Quaternary ammonium-CH2N+(CH3)3 Strong anion Cl− 2–12

CM 
Sepharose

Carboxymethyl-O-CH2COO− Weak cation Na+ 6–10

SP Sepharose Sulfopropyl-CH2CH2CH2SO3
− Strong cation Na+ 4–13

S Sepharose Methyl sulfonate-O-CH2CHOHCH2OCH2CHOHCH2SO3
− Strong cation Na+ 2–12

aMany other counterions can be used as well to alter the selectivity for IC separation

Ion Chromatography with Mass Spectrometry for Metabolomic Analysis



152

 macroporous, beaded, cross-linked agarose to 
which the charged groups are attached. The 
Matrix Fractogel® media consist of synthetic 
methacrylate- based polymeric beads, providing 
excellent pressure stability resulting in high flow 
rates. Depending on the application, we can 
choose appropriate medium and medium particle 
size. The type of charged group determines the 
type and strength of the exchanger, while the 
total number and availability of the charged 
groups determine the capacity.

4  Mobile Phase in IC

Counterions used in IC separation may include 
Na+, K+, Li+, and H+ (cation exchange) and Cl−, 
CO3

2−, HCO3
−, CH3COO−, HCOO−, Br−, I−, 

SO4
2−, OH−, and CH3SO3

− (anion exchange). In 
certain applications, different counterions may 
improve and even alter the selectivity since they 
exhibit different elution strength, but it should be 
noted that using these ions may affect the binding 
capacity of the medium. Nature and concentra-
tion of the counterions and pH of the eluent are 
the most important factors affecting the elution 
characteristics of analytes. pH value of eluent can 
be controlled and adjusted carefully with buffer-
ing additives. The buffering compound should 
not interact with the ion exchanger because it 
may interfere with the elution. Anionic buffers 
such as phosphate or MOPS in CEC and cationic 
buffers such as ethanolamine, Tris, and tricine in 
AEC may be used. The eluent should be degassed 
every day to avoid air in the pumps and lower the 
noise in the detector. This can be performed by 
purging the eluent bottle with helium while stir-
ring the eluent solution with a stirring bar. In 
addition, the eluent is usually filtered through a 
0.45-μm filter made of chemically inert material 
such as polyvinylidene difluoride. This prolongs 
the lifetime of IC separation column and also 
protects the eluent pump.

Eluent generator allows the automatic produc-
tion of high purity IC eluents. This is made pos-
sible through precise control of the electric 
current applied to the electrolysis of water to gen-
erate hydroxide and hydronium ions. A pair of 

electrodes is positioned with an ion exchange 
membrane separating them; when a current is 
applied to the electrodes, electrolysis of water 
generates hydroxide at the cathode and hydro-
nium at the anode. The ion exchange membrane 
prevents the species from recombining into water 
and allows a counterion from the eluent generator 
to migrate across the membrane to form the elu-
ent. Eluent generation eliminates the need to 
manually prepare eluents from concentrated 
acids and bases. The only routine reagent needed 
is deionized water. Furthermore, since the instru-
ment pump seals and pistons only come in con-
tact with deionized water instead of acids and 
bases which can precipitate, overall pump main-
tenance is significantly reduced. KOH eluent (or 
NaOH/LiOH) can be generated in situ with this 
automatic eluent generator for AEC separation. 
The advantage of using these eluents produced 
from the eluent generator is that they are 
extremely stable so the retention times for ana-
lytes are highly reproducible [3, 4].

5  Detection Modes in IC

Conductivity detection is widely employed in IC 
for the measurement of inorganic ions and small 
organic compounds such as organic acids and 
amines [5]. It represents a sensitive and quite uni-
versal detection mode compared to UV/VIS 
detection. The sensor of the conductivity detector 
consists of two electrodes situated into a flow 
cell. When the eluted analyte ions move into the 
flow cell, the change in electric current is 
detected, with a constant voltage imposed 
between the two electrodes. Conductivity detec-
tion is highly susceptible to the effect of tempera-
ture fluctuations. A change of 1  °C in mobile 
phase temperature may cause a change of roughly 
2% in electric conductivity. Therefore, a constant 
temperature flow cell is required to avoid base-
line fluctuations of conductivity. The conductiv-
ity of IC eluent also has significant effect on the 
detection, as a high conductivity of an eluent pro-
duces a large baseline noise. When the eluent has 
low conductivity, a non-suppressor method can 
be applied, although the detection sensitivity is 
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relatively lower. However, if the eluent conduc-
tivity is high, it can be reduced after column sep-
aration by using a suppressor method, as 
previously discussed.

Fluorescence detection is highly sensitive and 
selective. However, there are not many analytes 
that inherently emit natural fluorescence. Certain 
analytes such as amino acids or organic amines 
may be derivatized with fluorescence reagent for 
fluorescence detection. Amperometry is an alter-
native detection mode to conductivity and UV/
VIS detection, which allows for highly sensitive 
detection of oxidizable or reducible compounds. 
Typical applications of amperometric detection 
include carbohydrates, anions (e.g., cyanide, sul-
fide, iodide, bromide), cations (e.g., metal ions, 
amines, aromatic amino acids), and other organic 
substances such as phenols, catecholamines, and 
vitamins.

Mass spectrometry (MS) is a highly sensitive 
and universal detection method that has been 
well coupled with IC for metabolite analysis. 
Combining IC with MS takes advantage of the 
strengths of both techniques. Electrospray ion-
ization (ESI) is typically used to couple IC with 
MS and introduce the eluted analytes into the 
mass spectrometer. By using IC with tandem MS 
followed by database searching against publicly 
accessible metabolite databases, it is now practi-
cal to quantify and identify a large number of 
metabolites from a metabolomic sample. As dis-
cussed earlier, since the IC eluent contains high- 
level cations or anions, it must be converted to 
MS-compatible matrix to allow for sensitive 
detection of metabolites. This is typically accom-
plished with the installation of an electrolytic 
eluent suppressor, after the IC column and before 
the detector, to convert the ionic eluent into water 
(e.g., convert KOH to water) so that the analytes 
can be detected with MS. Basically, the IC sup-
pressors are membrane-based devices which are 
designed to reduce the background conductivity 
of the eluent from the IC column. It can be used 
with a conductivity detector to act as a desalting 
device, thereby removing the interference result-
ing from the presence of ionic salts in the eluent 
and enhancing the detection sensitivity. Eluents 
using ionic gradients and containing organic sol-

vents can be suppressed satisfactorily using either 
chemical suppression with a micromembrane 
suppressor or electrolytic suppression using a 
self-regenerating suppressor. For IC-MS, the 
electrolytic suppressor is commonly used since it 
can employ water as the suppressor regenerant 
and is fully compatible with MS.  Because the 
flow through the suppressor is unobstructed, 
there is no dispersion and brand broadening that 
is sometimes observed with packed-bed suppres-
sion systems. After the suppressor converts the 
ionic eluent to water, the only requirement is to 
introduce an organic solvent using an auxiliary 
pump and a mixing tee before the eluent enters 
the electrospray ionization (ESI) source. The 
organic modifier assists desolvation in the ion 
source resulting in a significant increase in sensi-
tivity for the analytes (Fig. 1).

6  Application of IC-MS 
for Metabolomic Analysis

Compared to reversed-phase LC (RP-LC), very 
few applications demonstrated the use of IC for 
separation and analysis of metabolites. In earlier 
studies, IC was used for fractionating a complex 
metabolite sample prior to LC-MS analysis. For 
instance, strong cation exchange (SCX) LC was 
combined with hydrophilic interaction liquid 
chromatography (HILIC) to further enhance the 
separation of mostly polar, water-soluble metab-
olites extracted from E. coli and S. cerevisiae. 
Off-line SCX-LC fractions were re-separated 
with HILIC, followed by tandem MS analysis 
and identification. This off-line 2-D LC-MS/MS 
method allowed to detect a total of 141 extracted 
metabolite species [6]. The use of AEC and CEC 
also allowed to sub-fractionate the total steroid 
metabolome, including oxysterols, bile acids, 
and hormonal steroids, to accomplish a more in- 
depth analysis [7].

Reversed-phase LC (RPLC) and HILIC are 
two types of chromatography most commonly 
coupled with MS for metabolomic analysis [8–
10]. HILIC is complementary to RPLC and simi-
lar to normal-phase liquid chromatography 
(NPLC). However, the nonaqueous mobile phase 
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used in NPLC is replaced by an eluent containing 
organic solvent (e.g., acetonitrile), which means 
HILIC is well suited for online coupling with 
ESI-MS [9]. These chromatographic techniques 
are highly effective for the separation of hydro-
phobic and polar metabolites, respectively, but 
there are important classes of metabolites that are 
poorly resolved or retained using these stationary 
phases [11]. Burgess et al. demonstrated a capil-
lary flow IC-MS method for metabolomic analy-
sis and compared the technique to HILIC-MS. The 
capillary flow IC was shown to effectively sepa-
rate organic acids and sugar di- and triphosphates, 
many of which are poorly resolved with RPLC or 
HILIC. Limits of detection for these compounds 
ranged from 0.01 to 100 pmol on-column. This 
method was applied to a comparative analysis of 
energy metabolism in procyclic forms of the par-
asitic protozoan Trypanosoma brucei where cells 
were grown on glucose or proline as a carbon 
source. The capillary IC was found to be more 
effective than HILIC for detection of the organic 
acids that comprise glucose central metabolism 
and the tricarboxylic acid (TCA) cycle [11]. 
Kvitvang et al. also demonstrated a capillary IC 
(capIC)-negative ESI MS/MS method for quanti-
tative profiling of the phosphometabolome (e.g., 
sugar phosphates and nucleotides). The metabo-
lite separation was performed with AEC using 
potassium hydroxide solution as the eluting sol-
vent. The limits of detection (LODs) for these 
metabolites ranged from 1 to 100  nM, which 
equal to 5–500 fmol injected onto the column. 
Metabolite extracts of the human kidney HEK293 
cell line were spiked with standards to determine 
the concentration of each metabolite in the sam-
ples, and 44 metabolites were identified and 
quantified with this method [12]. Si-Hung et al. 
demonstrated a novel selective cleanup/enrich-
ment method based on metal oxide solid-phase 
extraction combined with IC-MS for the analysis 
of phosphorylated metabolites. Metal oxide- 
based enrichment materials were tested and opti-
mized for both the selective enrichment of 12 
phosphorylated compounds from the glycolysis 
and pentose phosphate pathways and the simulta-
neous removal of highly abundant matrix compo-
nents such as organic acids and sugars. The full 

analytical workflow exhibited a good recovery 
(>70%) for targeted phosphorylated compounds 
while many sugars, organic acids, and amino 
acids were removed. The use of isotopically 
labeled internal standards added to the samples 
prior to SPE enables accurate quantification of 
the metabolites as it compensates for errors intro-
duced during sample pretreatment and LC-MS 
analysis. This method appears to be effective and 
selective for the enrichment analysis of intracel-
lular phosphorylated metabolites [13].

A combination of two chromatographic sepa-
ration techniques is often used to enhance metab-
olite detection and achieve a more comprehensive 
metabolomic analysis. Soltow et al. demonstrated 
a dual chromatography-Fourier transform mass 
spectrometry (DC-FTMS) method for the study 
of exposome. For the DC-FTMS, sequential 
LC-FTMS analyses using RPLC(C18) and AEC 
were performed, with 10-min run time for each 
column with gradient elution. In comparison to 
analysis with the AEC column alone, addition of 
the second LC-FTMS analysis with the C18 col-
umn increased m/z feature detection by 23–36%, 
yielding a total number of metabolic features up 
to 7000 for individual samples. DC-FTMS thus 
provides improved capability for high- 
performance metabolic profiling of the exposome 
and maximizes the detection of metabolites char-
acteristics of diseases and environmental expo-
sures in personalized medicine and predictive 
health [14]. In a separate study, a mixed-mode 
HILIC/weak anion-exchange LC (HILIC/WAX) 
method coupled with ESI-MS/MS was demon-
strated for the determination of glyphosate and 
its major metabolite, aminomethylphosphonic 
acid (AMPA). The best results were obtained 
when the column was operated under mixed- 
mode HILIC/WAX elution conditions. An initial 
10-min washing step with acetonitrile/water 
(10:90, v/v) in HILIC mode was used to remove 
potentially interfering compounds, and then the 
analytes were eluted in WAX mode with acetoni-
trile/water containing 0.1 M ammonium hydrox-
ide under gradient elution for the ESI analysis in 
negative ion mode. The HILIC/WAX-ESI-MS 
method was an effective way to minimize and 
compensate for matrix effects and obtain 
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 satisfactory quantification of the metabolites 
[15]. Tharakan et al. demonstrated an integrated 
platform, which combines microfluidic chip and 
online SCX separation, for simultaneous metabo-
lomic and peptidomic profiling. The analysis was 
accomplished by liquid-liquid extraction of pep-
tides and metabolites from tissue samples, online 
strong cation exchange (SCX) separation, fol-
lowed by RPLC-MS analysis of peptides and 
metabolites individually. This easy-to-implement 
platform was applied to investigating the physio-
logical response to infection in the spleen, show-
ing that the spleen contains an abundance of 
hemoglobin-derived peptides, which do not 
appear to change in response to infection, and 
that there appears to be a large and variable meta-
bolic response to infection [16].

We have demonstrated a highly sensitive 
capIC-MS method for metabolic profiling of 
head and neck squamous cell carcinoma 
(HNSCC) cells. The capIC allowed an excellent 
separation of anionic polar metabolites, and the 
sensitivities increased by up to 100-fold com-
pared to RPLC or HILIC. The detection limits for 
a panel of standard metabolites were between 
0.04 and 0.5 nM (0.2 to 3.4 fmol) at a signal-to- 
noise ratio of 3. This method was applied to an 
untargeted metabolomic analysis of HNSCC 
cells and stemlike cancer cells, and isobaric 
metabolites such as 11 sugar monophosphates 
were well resolved. Differential metabolomic 
analysis identified significant changes in energy 
metabolism pathways such as glycolysis and tri-
carboxylic acid cycle between cancer stem cells 
and non-stem cancer cells (Fig.  2). Our study 
indicates that capIC-MS is a powerful metabolo-
mics tool by providing enhanced separation, 
reproducibility, and sensitivity for analysis of 
polar metabolites [3]. Using a similar platform, 
we profiled the salivary metabolites in eight 
patients with gout, 15 patients with hyperuricae-
mia (HUA), and 15 healthy individuals. Forty- 
nine salivary metabolites were found to be 
significantly changed between gout patient and 
healthy control groups, and 26 salivary metabo-
lites were significantly different between gout 
and HUA patient groups. Three metabolite bio-
markers, uric acid, oxalic acid, and l- homocysteic 

acid (HCA), were selected for validation with 
enzymatic assays in the saliva samples of 30 
patients with gout, 30 patients with HUA, and 30 
healthy control subjects. Salivary uric acid and 
oxalic acid levels were found to be significantly 
higher in gout patients than healthy controls, 
whereas salivary HCA level was significantly 
higher in gout patients than both HUA patients 
and healthy controls. Our study has demonstrated 
a new application of IC-MS for the discovery of 
novel metabolite biomarkers in gout. The vali-
dated biomarkers may be used for noninvasive, 
diagnostic, and prognostic applications in gout 
[17].

In a separate study, we developed a targeted 
metabolomics method based on IC-MS and sta-
ble isotope-labeled internal standards, for quanti-
tative analysis of metabolites in a specific 
metabolic pathway in cancer cells. Our method 
offers great technical advantages for metabolite 
analysis, including exquisite sensitivity, high 
speed and reproducibility, and wide dynamic 
range. We have used this method to quantify 
pyruvate and TCA cycle metabolites in HNSCC 
cells and discover distinct metabolic phenotypes 
between high and low invasive head and neck 
cancer cells and between CSCs and non-SCCs 
[4]. Figure  3 presents the IC-MS quantitative 
analysis of pyruvate and five TCA cycle interme-
diates between highly invasive UM1 and 
UMSCC5 and low invasive UM2 and UMSCC6 
cancer cells. The expression levels of these 
metabolites were found to be exceptionally 
higher in the UMSCC5 cancer cell line, which 
displays exuberant metabolism, than the other 
three cancer cell lines. Petucci et al. developed an 
IC-MS method for targeted metabolomic analy-
sis of 28 organic acids (OAs). The polar nature of 
these OAs poses a challenge to their measure-
ment with widely used analytical methods. The 
main advantage of IC is that it separated highly 
polar OAs that cannot be adequately retained by 
RPLC. The IC-MS method was used to quantify 
polar OAs in quadriceps muscle from sedentary 
mice compared to fatigued mice subjected to 
either a low intensity, long duration or high inten-
sity, short duration forced treadmill regimen. 
Among the OAs examined, significant  differences 
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were detected for hippuric acid, malic acid, 
fumaric acid, and 2-ketoglutaric acid between the 
sedentary and fatigued mice [18].

Schwaiger et  al. developed an IC-MS 
method for simultaneous targeted and nontar-
geted metabolite profiling of cancer cells, 
which is based on AEC for metabolite separa-
tion and the use of isotope-labeled internal 
standards for metabolite quantitation. A list of 
45 metabolite standards, including nucleotides 
and organic acids, were well separated and 
quantified with the uniformly 13C-labeled 
Pichia pastoris extracts as internal standards. 

Limits of detection in the low nanomolar range 
and linear dynamic ranges over 4 orders of 
magnitude were obtained. Experiments on 
drug-sensitive versus resistant SW480 cancer 
cells showed the feasibility of merging analyti-
cal tasks into one analytical run and revealed 
significant differences in distinct metabolic 
phenotypes between the two cell types. 
Comparing fingerprinting with and without 
internal standard proved that the presence of 
the 13C-labeled internal standards required for 
absolute quantification was not detrimental to 
nontargeted data evaluation [19].

Fig. 2 CapIC-MS analysis revealed differential changes 
in metabolites of the glycolytic pathway between head 
and neck cancer stem cells and non-stem cancer cells. 

Every sample was analyzed in triplicates. p p-value, R 
fold change. (Reproduced with permission from Wang 
et al. [3])
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Casal et al. demonstrated a CEC method with 
parallel ICP-MS and ESI-MS detection for the 
study of the metabolomic pattern of selenium in 
selenium-rich yeast. Ammonium formate gradi-
ent in 20% methanol was used as the mobile 
phase and optimized to obtain efficient separa-
tion and sensitive detection. Twenty-seven 
Se-containing metabolites observed in the CEC- 
ICP MS chromatogram were identified by 
ESI-MS based on the Se isotopic pattern, the 
accurate molecular mass, and the multistage frag-
mentation patterns. The method, for the first time, 
allowed the correlation of the differences 
observed in CEC-ICP MS analysis of Se-rich 
yeast samples with the identity of the eluted com-
pounds determined by CEC-ESI MS [20].

7  Conclusion

Separation science plays an important role in 
metabolomics, especially when the separation 
techniques are coupled with MS for a comprehen-
sive profiling analysis of metabolites. In the past 
decade, RPLC-MS, HILIC-MS, gas chromatogra-
phy- MS (GC-MS), and capillary electrophoresis-
 MS (CE-MS) have been well demonstrated for 
metabolomic applications [21–24]. However, 
none of these methods can individually achieve an 
in-depth, comprehensive metabolome analysis. 
RPLC is the most commonly used separation 
technique for metabolomics, but ionic and very 
polar metabolites may not be retained on RPLC 
column. HILIC has emerged as an alternative to 

Fig. 3 Quantitative analysis of six targeted metabolites in 
head and neck cancer cells by IC-MS with isotope-labeled 
internal standards. The production of these metabolites in 
UM5 cancer cells is significantly higher than other cell 

lines. Inserted are the cultures of all four cell lines. Equal 
number of cells was initially plated and cultured for the 
same amount of time. (Reproduced with permission from 
Hu et al. [4])
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RPLC and shows promise in separating polar 
metabolites. However, a limitation of HILIC lies 
in the sensitivity loss caused by high background 
interference to MS measurement. Compared to 
these separation methods, IC has a great advan-
tage for the analysis of ionic and very polar 
metabolites such as organic acids and sugar phos-
phates. Due to the use of suppressor method to 
convert eluent to water, IC-MS has demonstrated 
a significantly higher sensitivity than HILIC and 
RPLC for the detection of anionic metabolites in 
cancer cells. This method is also highly reproduc-
ible and quantitative and has wide dynamic range 
for metabolite analysis [3, 4].
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Quantitative Analysis 
of Oncometabolite 
2-Hydroxyglutarate

Bi-Feng Yuan

1  Introduction

The dysregulation of cellular metabolism is con-
sidered as an emerging hallmark of cancers [1]. 
The alterations of endogenous cellular metabo-
lites that are related to cancer-associated meta-
bolic reprogramming have profound impact on 
gene expression, cellular differentiation, and 
tumor microenvironment [2, 3]. One of the exam-
ples is 2-hydxyglutarate (2HG), a recently identi-
fied oncometabolite [4–6].

Gain-of-function mutations of isocitrate dehy-
drogenase 1 and 2 (IDH1/2) were demonstrated 
to induce the production and accumulation of 
2HG. Mutations of IDH1/2 widely occur in gli-
oma [7–11], acute myeloid leukemia [12–15], 
chondrosarcoma [16, 17], breast cancer [18], 
renal cancer [19], biliary cancer [20–23], and 
giant cell tumor of bone [24]. Normal IDH1/2 are 
important metabolic enzymes that catalyze the 
oxidative decarboxylation of isocitrate to gener-
ate α-ketoglutarate (α-KG) [25]. Due to the struc-
tural similarity between 2HG and α-KG, 2HG 
has been reported to be a competitor of α-KG and 
the increased level of 2HG inhibits multiple 
α-KG-dependent dioxygenases, including 
approximate 30 histone demethylases and 3 Tet 

(ten-eleven translocation) proteins [26]. These 
enzymes are closely linked to diverse cellular 
processes such as adaptation to hypoxia [27, 28], 
histone demethylation, and DNA modification 
[29]. Therefore, the mutations of IDH1/2 are 
believed to transform cells through modulating 
the behavior of these specific α-KG-dependent 
enzymes [5].

2HG carries an asymmetric carbon atom in its 
carbon backbone and therefore occurs in two dis-
tinct enantiomers, D-2-hydroxyglutarate 
(D-2HG) and L-2-hydroxyglutarate (L-2HG) 
(Fig.  1) [30]. It is important to note that both 
D-2HG and L-2HG enantiomers are found in 
human body [30]. Although D-2HG and L-2HG 
are similar in their physical and chemical proper-
ties, they are different in biochemical properties 
[30]. Each enantiomer is produced and metabo-
lized in independent biochemical pathway and 
catalyzed by different enzymes [31]. Cancer- 
associated IDH1/2 mutants typically convert 
α-KG to D-2HG (Fig.  2) [7, 32]. The accumu-
lated, excessive D-2HG contributes to elevated 
risk of malignant tumors due to the inhibition of 
α-KG-dependent dioxygenases that are critical 
for regulating the metabolic and epigenetic state 
of cells (Fig.  2) [33–37]. Increased amount of 
D-2HG may also cause contractile dysfunction in 
the heart [38]. L-2HG accumulates in response to 
cellular reductive stressors like hypoxia [39] and 
activation of hypoxia-inducible factors [28]. 
Recently, it was reported L-2HG may also act as 
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a metabolic signal that coordinates glycolytic 
flux with epigenetic modifications [40]. In addi-
tion, a specific increase of L-2HG was shown to 
exert similar inhibitory effect as D-2HG on 
α-KG-dependent dioxygenases in clear cell renal 
cell carcinoma (Fig. 2) [19]. Therefore, the accu-
rate diagnosis of 2HG-related diseases relies on 
determining the configuration of the enantiomers, 
D-2HG or L-2HG, in patients [41, 42]. It is 
important to investigate the roles of each enantio-
mer independently in human metabolism and dis-
eases such as malignant tumors.

Routine analytical methods for 2HG include 
gas chromatography-mass spectrometry (GC- 
MS), liquid chromatography-mass spectrometry 
(LC-MS), and magnetic resonance spectroscopy 
(MRS). However, these methods typically are not 
able to differentiate the enantiomers of D-2HG 
and L-2HG, and as a consequence the sum of the 
two oncometabolites is measured [43, 44]. To 
address this issue, new methods for determina-
tion of these enantiomers have been developed. 
These analytical strategies for D-2HG and 
L-2HG mainly include: (1) the use of chiral chro-

matography medium to facilitate chromato-
graphic separation of enantiomers prior to 
spectroscopic or mass spectrometric analysis; (2) 
the use of chiral derivatization reagents to con-
vert the mixture of enantiomers to diastereomers 
with differential physical and chemical proper-
ties that can improve their chromatographic sepa-
ration; (3) enzymatic assays using enzymes 
specific for one enantiomeric species or the other. 
Herein we summarize and discuss the established 
methods for analysis of total 2HG as well as the 
determination of the enantiomers of D-2HG and 
L-2HG (Fig. 3).

2  Methods for Quantitative 
Analysis of 2HG

2.1  LC-MS-Based Detection 
of 2HG

LC-MS has been frequently used for the analysis 
of 2HG [8, 45–50]. Since the enantiomers of 
D-2HG and L-2HG cannot be effectively sepa-
rated in normal reversed-phase or hydrophilic 
interaction LC medium, the measured 2HG gen-
erally is the sum of D-2HG and L-2HG.  Park 
et  al. [51] recently introduced an analytical 
method by LC-time-of-flight secondary ion mass 
spectrometry (LC-TOF-SIMS) for sensitive 
detection of total 2HG in cancer cells. With this 
method, 2HG was detectable in 4  ×  103 cancer Fig. 1 Chemical structures of D-2HG and L-2HG
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Fig. 2 Somatic mutations in IDH1/2 contribute to the 
pathogenesis of cancer via the production of D-2HG from 
α-KG.  Enzymatic reduction of α-KG during hypoxia 
induces the generation of L-2HG by lactate dehydroge-
nase A (LDHA), with additional contributions from 

malate dehydrogenase 1 and 2 (MDH1/2). Elevated 
D-2HG and L-2HG can act as competitive inhibitors of 
α-KG-dependent enzymes, including Jumonji family his-
tone lysine demethylases and Tet family proteins, which 
can regulate the epigenetic state of cells
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cells. Due to high sensitivity by LC-TOF-SIMS, 
this method may be applicable to 2HG analysis in 
chemical screening for drug candidates.

2.2  Chiral LC-MS-Based Detection 
of D-2HG and L-2HG

Considering that D-2HG and L-2HG enantio-
mers have identical physical and chemical prop-
erties, separation of the enantiomers is 
challenging. One strategy has been developed to 
separate and quantify D-2HG and L-2HG by uti-
lizing chiral column combined with MS analysis 
[52–54]. The enantiomers of D-2HG and L-2HG 
were satisfactorily separated with baseline reso-
lution. The method is simple, selective, and rapid, 
although chiral columns are generally expensive. 
In addition, the detection sensitivity of the 
method is low due to the poor ionization effi-
ciency of 2HG in MS.

2.3  Chiral Derivatization 
with LC-MS for the Detection 
of D-2HG and L-2HG

To differentiate the enantiomers of D-2HG and 
L-2HG, Struys et  al. [55] developed a chiral 
derivatization strategy by using diacetyl-L- 
tartaric anhydride (DATAN) to obtain diastereo-
mers, which were then separated on C18 column 
and detected by MS (Fig. 4). The use of DATAN 
as a chiral derivatization reagent allowed good 

separation resolution of the formed diastereo-
mers of D-2HG and L-2HG. The detection limit 
was 20 pmol for a sample volume of 20 μL. The 
method was applied to analysis of urinary D-2HG 
and L-2HG.  Recently, Pickard et  al. [56] used 
this method to investigate the intracerebral distri-
bution of D-2HG in mice brain tumors, and they 
found that D-2HG exited in glioma cells and was 
present in the interstitial fluid compartment at 
micromolar concentrations, indicating that inhi-
bition of D-2HG may represent a new strategy to 
improve tumor immunotherapy. Due to the good 
performance for the separation of D-2HG and 
L-2HG by LC upon DATAN derivatization, this 
chiral derivatization strategy has been widely 
used for the determination of these two enantio-
mers [7, 17, 19, 27, 39, 57].

More recently, we developed a new method by 
using chiral derivatization combined with LC-MS 
analysis for highly sensitive determination of 
D-2HG and L-2HG enantiomers. In this strategy, 
N-(p-toluenesulfonyl)-L-phenylalanyl chloride 
(TSPC) was used for highly efficient labeling of 
D-2HG and L-2HG under mild reaction condi-
tions (Fig.  5a, b). The results showed that the 
retention behavior of TSPC-labeled D-2HG and 
L-2HG enantiomers was greatly improved and 
they can be well separated in the subsequent 
LC-MS analysis (Fig.  5c). Moreover, TSPC 
derivatization greatly enhanced the detection sen-
sitivities of D-2HG and L-2HG by 291 and 346 
folds, respectively, due to the introduction of eas-
ily ionizable group from TSPC.  Upon TSPC 
derivatization, the limits of detection (LODs) of 
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Fig. 3 Summary of the established methods for analysis of total 2HG as well as the determination of the enantiomers 
of D-2HG and L-2HG
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D-2HG and L-2HG could reach 1.2 fmol and 1.0 
fmol, respectively. Using this method, we 
achieved a simultaneous quantification of D-2HG 
and L-2HG in human urines from patients with 
type 2 diabetes mellitus, lung cancer, colorectal 
cancer, nasopharyngeal carcinoma, as well as in 
human clear cell renal cell carcinoma tissues.

2.4  GC-MS-Based Detection 
of 2HG

GC-MS has often been used for the analysis total 
2HG [15, 18, 32, 43, 58–61]. Sahm et  al. [58] 
described a method to detect total 2HG levels in 
archived, formalin-fixed paraffin-embedded 
(FFPE) tumor specimens by stable isotope dilu-
tion with GC-MS. Samples were derivatized with 
N-methyl-N-(trimethylsilyl)heptafluorobutyr-
amide (MSHFBA) for 1 h at 60 °C and analyzed 
in the selective ion-monitoring mode with elec-
tron impact ionization. Gas chromatographic 
separation was achieved on a capillary column 
using helium as a carrier gas. Successful detec-
tion of 2HG in FFPE specimens allows routinely 
processed tissue accessible for research on 2HG 
accumulation and may enable studies on correla-
tion of 2HG levels with clinicopathological data.

2.5  Chiral GC-MS-Based Detection 
of D-2HG and L-2HG

Neves et al. [62] developed a method for separa-
tion of D-2HG and L-2HG by using chiral sta-
tionary phase in GC. The esterification of D-2HG 
and L-2HG was achieved at room temperature by 
reaction with appropriate alkyl chloroformates, 

and separation of the D-2HG and L-2HG deriva-
tives was realized by chiral GC-MS. In the study, 
fused silica capillaries coated with a chiral silox-
ane copolymer, 1(R)-trans-N-N′-1,2- cyclohexyle
nebisbenzamideoligodimethyl- siloxane, or with 
a commercial cyclodextrin were used for separa-
tion of the enantiomers. In addition, heptakis(2,3- 
di- O-methyl-6-O-tert-butyldimethylsilyl)-β- 
cyclodextrin was used as a chiral stationary phase 
in GC-MS for separation and detection of D-2HG 
and L-2HG [63]. These methods showed highly 
efficient separation and qualitative determination 
of D-2HG and L-2HG. However, the preparation 
of chiral stationary phase for GC-MS generally is 
time-consuming, which limits the wide use of 
this method.

2.6  Chiral Derivatization 
with GC-MS for the Detection 
of D-2HG and L-2HG

Chiral derivatization of D-2HG and L-2HG by 
D-2-butanol and acetic anhydride to form their 
corresponding di-R-butyl-O-acetyl derivatives 
was demonstrated for GC separation of D-2HG 
and L-2HG [64, 65]. These derivatives can be 
well separated and analyzed by GC-MS.  This 
derivatization strategy was later frequently used 
for quantitative determination of D-2HG and 
L-2HG in various studies [40, 66, 67]. Kim et al. 
[68] also achieved enantiomeric separation of 
D-2HG and L-2HG after their conversion to 
O-trifluoroacetyl-(−)-menthyl derivatives fol-
lowed by GC-MS analysis. With this method, 
D-2HG and L-2HG from urine samples were dis-
tinctly identified and quantified.

Fig. 4 Derivatization of 2HG using DATAN
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2.7  DESI-MS-Based Detection 
of 2HG

Using desorption electrospray ionization (DESI) 
MS, Santagata et al. [69] directly detected total 
2HG from tissue sections of surgically resected 

gliomas under ambient conditions without com-
plex tissue preparation. With DESI-MS, the 
authors identified IDH1 mutant tumors with high 
sensitivity and specificity, which allows rapid 
molecular characterization and may provide 
diagnostic, prognostic, and predictive 

Fig. 5 Determination of D-2HG and L-2HG by chiral 
TSPC derivatization with LC-MS detection. (a) 
Derivatization of D/L-2HG by TSPC. (b) Product ions 
spectrum of TSPC labeled L-2HG. (c) The extracted ion 

chromatograms of D-2HG and L-2HG before and after 
TSPC labeling. (Reprinted with permission from Sci Rep, 
2015, 5, 15217)
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 information. Imaging tissue sections with 
DESI-MS showed that the 2HG signal over-
lapped with areas of tumor and correlated with 
tumor content, which thereby indicated tumor 
margins. This study demonstrated that measuring 
2HG in tumor tissues with precise spatial distri-
bution under ambient conditions may provide a 
new approach for intraoperative surgical decision 
making.

2.8  Magnetic Resonance 
Spectroscopy (MRS)-Based 
Detection of D-2HG

In vivo magnetic resonance spectroscopy (MRS) 
has the ability to noninvasively and nondestruc-
tively detect IDH mutations by measuring the 
endogenous D-2HG [70, 71]. The increased con-
tent of D-2HG in IDH1 mutant tumors can be 
readily detected by in vivo MRS. The detection 
threshold of in vivo MRS generally is approxi-
mate 1  mM, which makes D-2HG measurable 
only in situations where D-2HG accumulates due 
to IDH1 mutations [70]. On the contrary, D-2HG 
is not expected to be detectable in tumors without 
IDH1 mutations or in healthy tissues. Detection 
of D-2HG with in  vivo 1H MRS was demon-
strated in glioma patients [72, 73]. Andronesi 
et  al. [72] reported the detection of D-2HG in 
mutant IDH1 glioma in vivo using 2D correlation 
spectroscopy (COSY) and J-difference spectros-
copy. Choi et  al. [73] detected and quantified 
D-2HG levels using spectral editing at long echo 
times and J-difference spectroscopy. In their 
study, the authors were able to correctly identify 
all patients that have IDH mutations by noninva-
sively measuring D-2HG.

Although the level of D-2HG is high enough 
in most tumors to be measured by in vivo MRS, 
there may be certain tumors in which the levels of 
D-2HG are below 1  mM detection threshold. 
Meanwhile, the presence of other abundant 
metabolites with similar chemical structures to 
D-2HG makes the detection challenging. 
Additionally, in vivo MRS cannot assess the car-
bon sources for D-2HG. Hyperpolarized mag-
netic resonance imaging (HP-MRI) is an imaging 

technique that relies on the spectral resolution of 
13C magnetic resonance spectroscopy with 
enhanced sensitivity of >10,000-fold [74]. 
Recently, Salamanca-Cardona et  al. [75] 
exploited the rapid metabolism of glutamine to 
2HG and presented in vivo imaging of 2HG via 
HP-MRI using hyperpolarized [1-13C] glutamine 
as the imaging probe. With this approach, they 
demonstrated that glutamine can be a primary 
source for 2HG production in vivo.

Ex vivo MRS measurement of intact biopsies 
can reach higher sensitivity of 0.1–0.01 mM and 
may be used as an alternative analytical method 
to detect D-2HG [76]. In addition, detection of 
D-2HG in mutant IDH1 glioma can be further 
confirmed by ex  vivo high-resolution magic 
angle spinning (HRMAS) analysis [77, 78]. 
However, the limitation of ex  vivo MRS mea-
surements is the need of a biopsy, which in some 
case might not be easily obtained.

2.9  Enzymatic Assay–Based 
Detection of D-2HG

Deimling group reported an enzymatic assay for 
the detection of D-2HG in tumor tissues, urine/
serum samples, cultured cells, and culture super-
natants [79, 80]. This assay is based on the con-
version of D-2HG to α-KG in the presence of 
(D)-2-hydroxyglutarate dehydrogenase (HGDH) 
and nicotinamide adenine dinucleotide (NAD+) 
(Fig. 6). Determination of D-2HG concentration 
is based on the detection of stoichiometrically 
generated NADH from NAD+ (Fig. 6). The quan-
tification limit of the enzymatic assay for D-2HG 
is 0.44 μM in tumor tissue and 2.77 μM in serum, 
which enables the detection of basal D-2HG lev-
els in human tumor tissues and serum even with-
out IDH mutations. With this method, the levels 
of D-2HG in frozen and paraffin-embedded 
tumor tissues containing IDH mutations or in 
serum from acute myeloid leukemia patients with 
IDH mutations were found to be significantly 
higher. The enzymatic assay is considerably less 
expensive and can be performed on 96-well 
microtiter plates, which is favorable for the detec-
tion of large numbers of clinical samples.
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3  Conclusions

2HG may serve as valuable indicator for tumors 
with IDH mutations since 2HG is produced as an 
error product of normal metabolism and gener-
ally present at trace levels in cells without IDH 
mutations. Almost all of the tumors with IDH 
mutations have increased levels of D-2HG by 
several orders of magnitude. Hence, quantifica-
tion of the oncometabolite 2HG may be used to 
monitor and evaluate the formation and malig-
nant progression of tumors. Furthermore, 2HG 
levels could also be used to quantify and predict 
the efficacy of drugs targeting mutant IDH1.

Although it is widely recognized that accumu-
lation of the oncometabolite D-2HG leads to can-
cer initiation, recently D-2HG has also been 
demonstrated to have antitumor effects in a sub-
set of tumors by increasing global N6- 
methyladenosine RNA modification [81]. The 
study suggested that 2HG holds therapeutic 
potential in treating IDH wild-type cancers. 
Therefore, the biological functions of 2HG may 
be more complex than we anticipated. While 
many questions remain regarding the roles of 
2HG in tumorigenesis as well as in antitumor 
effects, in-depth investigations are certainly war-
ranted to uncover new mechanism of 2HG in can-
cer diseases.
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Methods of Lipidomic Analysis: 
Extraction, Derivatization, 
Separation, and Identification 
of Lipids
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Xin Lv, Fang Wei, and Hong Chen

1  Sample Collection 
and Extraction

1.1  Sample Collection

The first step in lipidomics studies involves the col-
lection of analytical samples from plants, animals, 
or microbes. These samples can be solid in nature 
(e.g., tissues [1], cells [2], solid fecal material [3], 
seeds [4], leaves [5], or root hairs [6]) or comprise 
highly complex fluids (e.g., plasma [7, 8], serum 
[9], urine [10], synovial fluid [11], milk [12], or oils 
[13]). A typical procedure begins when samples are 
frozen quickly in liquid nitrogen before they are 
stored at very low temperatures (e.g., −80 °C). This 
initial step helps to inhibit enzymatic activity and 
reduce the rate of oxidation, peroxidation, and 
hydrolytic degradation of lipids containing unsatu-
rated bonds [14]. To ensure that the profile of the 
extracted lipids is a good representative of the 
entire sample, the next step of the protocol involves 
sample homogenization, and then appropriate 
extraction buffers are used to extract lipids from the 

homogenate. In contrast, with the focus solely on 
optimizing the extraction efficiencies of lipid 
classes of interest using different solvent systems, 
the sample preparation protocol for fluids tends to 
be more straightforward. Following lipid extrac-
tion, the stability of lipid species in the extraction 
solvent is also an important consideration, particu-
larly if the samples are subjected to multiple freeze-
thaw cycles. As described above, lipid molecules 
containing unsaturated double bonds may be sub-
jected to oxidation and are also susceptible to 
hydrolysis in the presence of water. To minimize 
the breakdown of unsaturated bonds on these mol-
ecules, aliquots of lipid extracts into smaller vol-
umes can be considered, which will reduce the 
number of freeze-thaw cycles.

1.2  Sample Extraction

In general, the application of lipidomics requires 
sample extraction methods that are highly effi-
cient, reproducible, and able to cover a wide 
range of analytes with different polarities. The 
extraction protocol also needs to take into account 
that a limited amount of sample may be available 
for lipidomic analysis. With the goal of improv-
ing overall lipid coverage, liquid–liquid extrac-
tion (LLE), solid-phase extraction (SPE), 
solid-phase microextraction (SPME), and other 
emerging techniques have been applied to lipid 
extraction.
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1.2.1  Liquid–Liquid Extraction (LLE)
LLE is the most predominant extraction tech-
nique for lipids. In order to achieve exhaustive 
and comprehensive extraction of key lipid 
classes, LLE involves the use of two immiscible 
organic solvents – most commonly a mixture of 
chloroform and methanol with water, introduced 
more than 70 years ago by Folch et al. [15] (chlo-
roform/methanol/water ratio 8:4:3 v/v/v) and 
subsequently modified by Bligh and Dyer [16] 
(chloroform/methanol/water ratio 1:2:0.8 v/v/v). 
Most lipidomics studies still rely on these general 
extraction procedures, often in modified ver-
sions. Due to its lower toxicity, dichloromethane 
has been used as a substitute for chloroform [17].

The high chance of contamination of the sam-
ples is a pitfall of two-phase extraction method, 
because of the need of retrieving lipids from the 
lower chloroform-rich layer. In 2008, Matyash 
et al. [18] demonstrated a new sample extraction 
procedure employing methyl tert-butyl ether 
(MTBE). The method involves addition of MeOH 
and MTBE (1.5:5, v/v) to the sample and phase 
separation is induced by adding water. Compared 
to conventional two-phase chloroform- containing 
solvent systems, this extraction method utilizes 
the low density of the lipid-containing organic 
phase to form the upper layer during phase sepa-
ration. This greatly simplified sample collection 
and minimized dripping losses. Furthermore, 
compared to chloroform, MTBE is nontoxic and 
noncarcinogenic, which reduces potential health 
risks for exposed personnel. While the method 
has the advantage over conventional chloroform- 
containing solvents, unsatisfactory recovery for 
more polar lipid classes has been observed [19].

One-phase lipid extraction has recently been 
demonstrated, which is an “all-in-one-tube” 
approach eliminating the need for phase separa-
tion. This is achieved by using solvents such as 
butanol/methanol (3:1, v/v) [20] or MMC solvent 
mixture (MeOH/MTBE/CHCl3, 1.33:1:1, v/v/v) 
[21] to denature proteins that are later removed 
by centrifugation. With an untargeted lipidomics 
approach, Andres et al. [21] explored the differ-
ences/similarities between the most commonly 
used two-phase extraction methods (Folch, Bligh 
and Dyer, and MTBE) and one-phase extraction 

method based on the MMC solvent mixture. The 
four extraction methods were evaluated and thor-
oughly compared against a pooled extract that 
qualitatively and quantitatively represents the 
average of the combined extracts. The results 
showed that the lipid profile obtained with the 
MMC system displayed the highest similarity to 
the pooled extract, indicating that it was most 
representative of the lipidome in the original 
sample. Furthermore, it had better extraction effi-
ciencies for moderate and highly polar lipid spe-
cies in comparison with the Folch, Bligh and 
Dyer, and MTBE extraction systems.

1.2.2  Solid-Phase Extraction (SPE)
While LLE represents a somewhat universal 
extraction method in lipidomic analysis, SPE 
could well enrich lipids of extremely low endog-
enous abundance via minimizing background 
matrix and ensure satisfactory detection upon 
mass spectrometric (MS) analysis. SPE is a well- 
established sample preparation method, which 
utilizes a solid (stationary) phase and a liquid 
(mobile) phase to capture selectively specific 
classes of molecules with similar properties [22]. 
Selective retention of specific molecules of inter-
est on the solid phase can be achieved through the 
differential interaction of analytes between the 
two phases.

The most commonly used SPE-column chem-
istries for lipid extraction include normal-phase 
silica, reversed-phase (C8 and C18), and ion- 
exchange columns (packed with aminopropyl) 
[23]. Silica and aminopropyl columns are often 
used for separation and sub-fractionation of neu-
tral and polar lipids, which can be achieved by 
changing the eluent solvents [24, 25], while C8 
and C18 columns have been used to isolate PC, 
cerebrosides, gangliosides, and fatty acids from 
polar compounds in water based samples [26]. 
HybridSPE phospholipid (HybridSPE-PL, 
zirconia- coated silica stationary phase) has been 
successfully used to remove PL interferences of 
biological samples based on the Lewis acid-base 
interaction between zirconia and the phosphate 
moiety of PLs. Therefore, HybridSPE-PL is also 
an ideal choice for the isolation and enrichment 
of all kinds of PLs from complex biological sam-
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ples. HybridSPE-PL instead of LLE was used to 
rapidly enrich and recover PL molecular species 
from human plasma by Wei et al [8].

1.2.3  Solid-Phase Microextraction 
(SPME)

SPME has also been introduced as a rapid 
equilibrium- based sample preparation technique, 
for which a small amount of extraction phase is 
coated, typically on a solid support, and then 
used to remove a small portion of analyte from 
the sample. This technique is commonly used in 
conjunction with gas chromatography (GC) or 
GC-MS analysis, as the headspace available in a 
SPME cartridge enables the enrichment of vola-
tile analytes typically monitored by GC.

SPME has been used successfully together 
with GC-MS for the extraction of fatty acids and 
fatty acid esters from solid samples, such as lung 
tissue [27] and hair [28], and biofluids, such as 
sputum [29]. This approach can be useful when 
the sample amount is very limited (e.g., synovial 
fluid or cyst fluid) or when targeted compounds 
of interest are expressed at low concentrations. 
Due to the small sample sizes and extraction vol-
umes required for SPME, sample cleanup tends 
to be highly efficient, resulting in fewer matrix 
effects, such as ion suppression or enhancement, 
in subsequent MS-based analysis [30].

1.2.4  Emerging Techniques for Lipid 
Extraction

In addition to these established lipid extraction 
techniques, there are alternative methods, which 
may have shorter extraction time and lower sol-
vent requirements. These techniques include 
supercritical fluid extraction (SFE) and 
ultrasound- assisted extraction (UAE), which are 
more commonly used for the extraction of metab-
olites from biological samples such as plant and 
food materials.

The principle of SFE is based on an increase 
in solvation power of a supercritical fluid when 
its pressure and temperature are raised above 
critical values. This increase in solvation power, 
coupled with the relatively low viscosity and high 
diffusivity of such fluids, allows to extract and 
separate effectively different compound classes 

(including oils, fats, and vitamins) in a sample 
[31]. SFE has been used for lipid extraction in 
plant, animal tissues [32], and, more interest-
ingly, dried human-plasma spot samples [33]. 
Uchikata et  al. [33] compared the extraction of 
PLs by SFE with a traditional LLE method (Bligh 
and Dyer) and concluded that SFE was more 
effective, as it resulted in higher levels of selected 
PL species, including PC, lysoPC, PE, and SM.

UAE) is an efficient and reproducible extrac-
tion technique. It helps improve the yield and 
quality of the lipid extract and does not raise the 
temperature of the system. This makes it attrac-
tive to extraction of heat-unstable lipids. In addi-
tion, UAE can be combined with conventional 
LLE methods to improve the extraction efficiency 
of lipid species present in biological samples. For 
example, Liu et  al. successfully developed a 
combined UAE and LLE protocol for human 
serum samples, which led to a 5–60% increase in 
the levels of fatty acids compared to the conven-
tional LLE method [34]. A similar approach was 
adopted by Pizarro et  al. [35] for human blood 
plasma samples, of which the use of MTBE with 
UAE resulted in the detection of 30% more lipid 
species when compared to a conventional MTBE- 
based LLE method. The MTBE-UAE technique 
also showed high reproducibility, with relative 
standard deviation values of less than 6% and 
lipid-component recoveries of more than 70%.

2  Derivatization

2.1  Advantages of Derivatization

Many trace level compounds in complex matri-
ces which have essential biological functions 
cannot be well detected by MS-based methods, 
especially if they are difficult to ionize or to frag-
ment. Derivatization is a specific chemical reac-
tion, which aims to modify the structure of the 
target compounds and, as a consequence, the 
chemical and physical properties. The advan-
tages of combining derivatization with MS 
 analysis include: (1) improvement of selectivity 
and sensitivity [36, 37], (2) enhancement of ion-
ization efficiency [8], (3) improvement of struc-
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tural elucidation [38], (4) increase accuracy for 
quantification [1], and (5) facilitation of isomer 
separation [39].

2.2  Lipid Analysis After 
Derivatization

Certain lipids, including fatty acyls, glyceride 
(GLs), glycerophospholipids (GPs), sphingolip-
ids (SPs), sulfatides (STs), phenolic lipids, sac-
charolipids, and polyketides, contain functional 
groups, such as carbonyl, hydroxyl (alcohol or 
phenol), and amine group, and they are suitable 
for introducing a fragmentable moiety by chemi-
cal derivatization. There are challenges when 
performing derivatization reaction, including for-
mation of by-products, nonquantitative reaction, 
requirement for harsh reaction conditions, long 
reaction time, and product degradation. To 
achieve an effective derivatization-based MS 
analysis, the derivatization reaction should be 
fast, efficient, and specific and form relatively 
stable products.

Fatty acids (FAs), a basic element of all lipids, 
contain at least one carboxyl group and a long 
aliphatic chain. Yang et al. developed a LC-MS 
method for the identification and quantification 
of FAs through derivatization with 2-bromo- 1-
methylpyridinium iodide and 3-carbinol-1-meth-
ylpyridinium iodide, forming 
3-acyloxymethyl-1-methylpyridinium iodide 
(AMMP) [40]. This derivatization reaction 
attached a quaternary amine to analytes and 
enabled electrospray ionization (ESI)-MS analy-
sis with the positive ionization mode. Detection 
sensitivity was generally 2500-fold higher than in 
the negative mode of ionization used for under-
ivatized FAs. The main derivatives for FAs and 
modified FAs are quaternary amine derivatives 
[41, 42], tertiary amine derivatives [43], 
piperazine- pyrimidine derivatives [44], benzofu-
ran derivatives [45], and other derivatives [46] for 
enhancing the assay sensitivity or accuracy of 
quantification. Kloos D et al. [47] reviewed the 
most recent trends in analysis of FAs by chroma-
tography and MS employing derivatization tech-
niques. Derivatization has also been applied to 

analysis of PLs [1, 8], glyceride [48, 49], and ste-
roids [50, 51]. In addition, there are a number of 
derivatization strategies for determining the loca-
tion of double bonds in lipids, such as derivatiza-
tion of C=C bond with acetone [52], 
N-(4-aminomethylphenyl)-pyridinium [53], 
ozonolysis [54], ozone-induced dissociation, or 
olefin cross-metathesis [53].

3  Chromatographic Methods

3.1  Thin-Layer Chromatography 
(TLC)

TLC is not commonly applied for lipidomic anal-
ysis but shows great potential for the separation 
of lipids by class. The separated analyte species 
can be acquired from the spots on the TLC plate 
and extracted with chloroform and methanol. The 
lipids can then be analyzed by matrix-assisted 
laser desorption/ionization (MALDI)-MS, 
ESI-MS, or GC-MS. TLC-MALDI-MS has been 
demonstrated for analysis of PLs in bronchoal-
veolar lavage (BAL) fluids, and the study showed 
a prospective for direct MALDI-MS measure-
ments on the TLC plates in the mass spectrome-
ter [55].

3.2  GC Separation of Lipids

Because of their nonvolatile property, the use of 
GC for direct analysis of global lipids is impos-
sible. Most early methods relied on hydrolysis of 
PLs by phospholipase C to diacylglycerols, 
which is followed by methyl transesterification, 
producing fatty acid methyl esters that are subse-
quently analyzed by GC [56].

The first application of GC for FAs can be 
traced back to the 1950s [57]. There are two 
methods available to quantify FAs. The first 
method is through simple peak integration. It 
may provide uncertain results if peaks are not 
fully recognized, which is often the case for 
 molecules with similar structures, such as PLs 
that may only distinguish by a single double bond 
[58]. The second method is to use a flame ioniza-
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tion detector (FID), which combusts the sample 
into fragments that are ionized by an electrode. 
The charged ions will flow to the electrode in the 
detector, yielding a current. FID is a very sensi-
tive detector; however the disadvantage of using 
FID is that it destroys the sample [59].

3.3  LC Separation of Lipids

LC separates different classes of analytes accord-
ing to their physicochemical properties. 
Reversed-phase LC (RPLC), normal-phase LC 
(NPLC), and hydrophilic interaction LC (HILIC) 
are commonly used for lipidomic analysis. The 
mechanism of action by RPLC for lipids lies in 
the basic of lipophilicity, which is regulated by 
the carbon chain length and the number of double 
bonds. Thus, lipid species containing longer acyl 
chains are eluted from the column later than 
shorter chain lipids, and saturated acyl structures 
are eluted later than polyunsaturated analogs. 
However, NPLC and HILIC typically separated 
lipid species based on their hydrophilicity. 
Therefore, lipids are separated according to their 
representative polar head group classes [60]. 
Other LC methods used for lipid separation 
include nonaqueous RPLC [61], silver-ion RPLC 
[62], chiral LC [63], and supercritical fluid chro-
matography (SFC) [64].

3.3.1  RPLC
RPLC utilizes a mobile phase that is more polar 
than the stationary phase, which permits complex 
lipidomes to be separated prior to MS analysis. 
The lipids are separated based on lipophilicity 
owing to the combined chain length and number 
of double bonds present in the fatty acid side 
chains [65].

Due to the hydrophobic property of lipids, the 
most common separation method for LC-MS- 
based lipidomics is RPLC with a C18 column. 
Lipids are adsorbed to the stationary phase and 
eluted based on the relative affinity, and the gra-
dient allows for controlled elution of lipids over a 
wide range of polarities [66]. The mobile phase 
composition can be changed throughout the sepa-
ration process, increasing the hydrophobicity of 

mobile phase and hence increasing the elution 
effect. By contrast, greater separation of lipid 
classes can be achieved if the mobile phase com-
position is held constant [67]. However, this ame-
lioration in separation is only available for a 
narrow range of polarities and can result in long 
retention times.

3.3.2  NPLC and HILIC
Compared to RPLC, NPLC and HILIC utilize 
polar stationary phases, therefore more strongly 
retaining polar analytes. Retention of lipid classes 
on a RP column is influenced by acyl and alkyl 
chain length and desaturation; however, the 
retention on HILIC columns largely relies on the 
polarity of the lipid head groups [68, 69]. This 
allows efficient separation of lipid classes, which 
is not observed with RPLC.

In fact, HILIC and RPLC are highly orthogo-
nal, leading to different elution profiling [70]. As 
neither method is capable of fully analyzing all 
lipid compounds in complex matrix, it is possible 
to couple the two modes of separation using two- 
dimensional LC (2D-LC). In this configuration, 
the co-eluting lipid species from the first- 
dimensional RPLC are loaded onto the second- 
dimensional HILIC for further separation [71]. 
However, challenges exist in the development of 
2D-LC systems. First, the mobile phase composi-
tion for HILIC has a high elution strength in 
RP.  Second, it is difficult to have the second 
dimension keep up with the sampling frequency 
of the first dimension. To overcome some of these 
challenges, trapping columns have been placed 
between the first and second dimensions to retain 
analytes while the second dimension is resolved. 
Alternatively, widely different column sizes and 
flow rates may be used between the first and sec-
ond dimensions, generally requiring mobile 
phase splitters to reduce flow rate into the ion 
source [71].

3.3.3  SFC
Recently, SFC has emerged as a viable alterna-
tive to LC for lipidomic analysis [72]. The most 
common supercritical fluid used in SFC is CO2 as 
it is cheap and easy to achieve and has a low 
polarity, similar to hexane. The requirement to 
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use mobile phase modifiers, such as methanol, to 
adjust polarity is important [73]. SFC has been 
demonstrated for fast separations of lipid classes 
[74]. Supercritical fluid has higher diffusivity and 
lower viscosity than a common liquid, thereby 
facilitating higher-throughput analysis as com-
pared with LC [75]. In addition, supercritical 
CO2 used as a mobile phase has almost the same 
polarity as hexane, and its polarity can be adjusted 
by adding a modifier such as methanol. These 
advantages make SFC eminently suitable for 
simultaneous analysis of lipids with a wide range 
of polarities. Studies have reported a higher 
detection sensitivity for carotenoids in SFC than 
LC, and structural isomers were successfully 
separated using SFC but not resolved by LC [64, 
76].

4  MS Analysis of Lipids

4.1  Ionization Methods

The ionization mode used in MS detection plays 
an important role in lipidomic analysis. One ion-
ization method may not work for all types of lipid 
classes, since some lipids are better ionized with 
one ionization mode while other lipids are ion-
ized more evidently with another mode [77, 78]. 
Ionization efficiency can be enhanced by the 
additives present in the mobile phase leading to 
the formation of different type of adducts. ESI in 
positive mode (ESI+) is the most common mode 
in LC-MS because it can effectively ionize a 
wide range of lipids, while negative ionization 
mode (ESI−) provides superior results for certain 
lipid classes, such as PI, PS, and PA [79]. 
Atmospheric pressure chemical ionization 
(APCI) has been applied to lipidomic analysis 
and is preferred for more nonpolar lipids (e.g., 
triacylglycerols).

When using RPLC for lipid separation, 53% 
of the studies were performed with both ESI+ 
and ESI− modes and 38% with ESI+ mode only, 
while 45% of NPLC/HILIC studies were per-
formed with both ionization modes and 41% with 
ESI− only [80]. The reason for these differences 
lies in that NPLC/HILIC methods are often used 

for analysis of PLs, in which ESI– allows effec-
tive ionization of these lipids, while RPLC well 
separates the lipids that can be effectively ionized 
with ESI (+), such as cholesteryl esters.

4.2  MS Detection

After lipid compounds are ionized and enter a 
mass spectrometer, the ions are then measured 
with a mass analyzer. Depending on the type of 
mass spectrometer, ions can be filtered by m/z 
using a quadrupole, accelerated along a flight 
path to measure their m/z, or orbited around an 
electrode to measure m/z ratios [81]. Quadrupole 
mass analyzers often act as mass filters by only 
allowing ions within a small m/z window to pass 
through and by contrast, time-of-flight, Orbitrap, 
and cyclotron-based mass analyzers acquire a 
mass spectrum in a single scan [82, 83]. Time-of- 
flight mass analyzers measure the time of flight 
of an ion in the flight tube, which is then con-
verted to the m/z. Orbitrap, same as cyclotron 
mass analyzers, traps ions in an orbital motion. 
The image current from the trapped ions is 
detected and converted to a mass spectrum using 
the Fourier transform of the frequency signal 
[84]. These mass analyzers differ significantly in 
terms of mass resolution [81]. Compared to 
quadrupole and time-of-flight mass analyzers, 
Orbitrap and cyclotron mass analyzers in general 
have higher resolution and therefore superior 
resolving power [85]. However, due to the nar-
row peak widths generated with UHPLC and the 
long scan times for high-resolution mass spectra, 
operating these instruments at the highest mass 
resolution is only commonly used by direct infu-
sion [86, 87].

In tandem MS (MS/MS) , two or more mass 
analyzers, e.g., triple quadrupole, quadrupole 
time-of-flight, and linear ion trap-Orbitrap, are 
coupled together using an additional reaction 
step to increase their abilities to analyze and 
identify biomolecules. In these configurations, 
quadrupoles can form mass filters or collision 
cells, whereby ions undergo collision-induced 
dissociation with an inert gas, causing fragmenta-
tion of the molecules [80]. Fragmentation can 
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also be accomplished within an ion trap which 
can supply complementary fragment ions to 
quadrupole-based fragmentation [88]. Ions enter-
ing the mass spectrometer from the ion source are 
referred to as precursor ions, while ions produced 
following fragmentation are referred to as prod-
uct ions and fragmentation products can provide 
structural information about the precursor ions.

5  Quality Control

During large-scale lipidomics studies, drifts in 
LC peak shape and retention time may happen 
due to sample residue or column aging, and sig-
nal intensity attenuation may occur in direct infu-
sion MS due to the contamination of ion source 
components of the mass analyzer. It appears dif-
ficult to maintain repeatability and stability dur-
ing large dataset acquisition over the time. A 
potential solution is to utilize a standard quality 
control sample (QC sample) for real-time moni-
toring the stability of the MS system [89]. This is 
due to the following reasons: First, the analytical 
platform needs to be tested with QC sample to 
ensure that data are reproducible before vital 
samples are analyzed. Observed peak drift or sig-
nal attenuation prior to analyzing vital samples is 
not acceptable [90]. Second, QC samples analy-
sis can be used as a quality assurance (QA) tool 
[91]. Third, data produced from QC samples can 
be used to correct signals between analytical runs 
and mine in-depth information within the data 
from different analytical batches [92]. Finally, 
standards are required for normalization if using 
community QC samples [93].

The matrix composition of QC samples should 
be theoretically similar to that of experimental 
samples. Four types of QC samples are com-
monly used: (i) internal standards (ISs) were 
often employed to evaluate the stability of the 
instrument in the past. However, the limited num-
ber of available ISs was not enough to estimate 
all the lipid features [94]; (ii) batch QC was 
formed from the small aliquots of each sample to 
be studied in a batch; (iii) pooled QC was pre-
pared independent by pooling the related samples 
from laboratory’s bank [95]; this type of QC, 

together with batch QC, is easily prepared and 
can monitor each lipid features to minimize the 
variations of intra- and inter-batch. Luo [94] 
compared the differences between the two QC 
samples; no significant differences were 
observed. However, pooled QC samples are more 
suitable to monitor the data of long-term lipido-
mics study to increase their comparability; (iv) 
Standard Reference Material (SRM) may be 
available as a QC sample in lipidomics studies. 
For instance, the “SRM 1950 Metabolites in 
Frozen Human Plasma” is intended primarily for 
validation of methods for determining metabo-
lites such as fatty acids, hormones, and amino 
acids in human plasma and similar materials 
[96]. It may be used for data comparisons among 
different laboratories.

Regarding how to use QC samples in the ana-
lytical runs during lipidomic profiling analysis, 
the following setup may be considered: (i) before 
analysis of actual sequence of samples, five and 
ten QC samples are recommended to be run in 
order to equilibrate the shotgun-MS and LC-MS 
system, respectively [97]; (ii) the injection fre-
quency of QC samples has been assessed in rela-
tion to the accuracy and robustness during signal 
correction process, 3–25 injections of samples 
between each QC injection were reported [98, 
99]. Kamleh [95] evaluated the effect of the 
injection frequency of QC samples, and the sig-
nal drift correction procedure always represented 
better for the most frequency of injections. 
Considering the balance between the analysis 
time and the quality of the data acquisition, at 
least one QC sample should be injected for every 
ten sample injections; (iii) the NIST SRM 1950 
should be injected during the analytical sequence 
if there is a need to compare the experimental 
data between laboratories [100]; (iv) in order to 
monitor possible sample contamination (e.g., 
contamination caused by extraction) and check 
the quality of mobile phases, every series of 
sample analysis are supposed to contain blank 
samples [95]; (v) randomizing the sample 
sequence is vital to ensure that there is no corre-
lation among extraneous factors (e.g., prepara-
tion or analysis order) and no bias from the 
analyst [96, 101].
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6  Data Processing and Analysis

6.1  Spectral Data Processing

Spectral data processing for MS-based lipidomic 
analysis may include spectral filtering, peak 
detection, alignment, and baseline correction. 
For peak picking from the features of the chro-
matographic data, a variety of algorithms [102–
104] have been proposed. A widely recognized 
method is to cut the LC/MS data into slices a 
fraction of a mass unit (0.1 m/z) wide and then 
operate on those individual slices in the chro-
matographic time domain. The peak detection 
algorithm thus handles low-resolution, high- 
resolution, and centroided data in a flexible and 
robust manner.

According to Brown and colleagues [77], 
most of the methods [105–107] commonly used 
for retention time alignment are based, in some 
manner, on the correlation between spectra. Since 
the retention times in lipidomic analysis are well 
constrained within individual classes by the 
observed retention times of internal standards, 
species of interest are bracketed by the standards 
in time. This information is often used to effec-
tively time-shift spectra within the time-m/z 
domain of each class without complex spectral 
computations. The required alignment shifts can 
then be chosen to maximize the correlation of 
time-lag-shifted spectrum against one arbitrarily 
chosen sample from that session of MS analysis.

The correction of the background contribution 
to the peak intensities of a mass spectrum is 
important for peak detection and accurate quanti-
fication of each analyte, particularly when the 
species is at low abundance. Accurate baseline 
correction could reduce the complications faced 
by uncertainty about the intercept of the standard 
calibration curve in LC-MS analysis and thus 
remove reliance on any latent subtraction of noise 
through the intercept term. Most of identification 
and noise reduction are typically based on filter-
ing or smoothing functions of LC-MS data analy-
sis tools. However, applying such kind of filtering 
tools, which implies a model of the noise and/or 
the peak shapes present in the original data, may 
lead to distortion of peak identification. According 

to the study by Smith et al. [105], group methods 
from LC/MS data, background subtraction may 
add more noise than it eliminates. Instead, the 
problem can be reduced to simply finding the 
appropriate retention time window boundaries 
for a given m/z.

6.2  Annotation of Lipid Species

Two metabolomic databases, Metlin [108] and 
HMDB (human metabolome database) [109], are 
commonly used for database search to identify 
metabolites including lipids. High-resolution 
LC-MS, combined with database searching, has 
been used for lipidomic profiling of human and 
animal model samples [110]. Derivatization and 
stable isotope labeling are usually used for the 
analysis of fatty acids of lipid species in LC-MS- 
based lipidomic analysis [111]. For instance, 
fatty acids can be derivatized with 2-bromo- 1-
methylpyridinium iodide and 3-carbinol-1-meth-
ylpyridinium iodide, forming 
3-acyloxymethyl-1-methylpyridinium iodide 
(AMMP). AMMP derivatives have unique tan-
dem mass spectra characterized by common ions 
at m/z 107.0, 124.0, and 178.0, and individual 
fatty acids also display unique fingerprint regions 
that allowed the identification of their carbon 
skeleton number, number of double bonds, and 
double bond position.

6.3  Bioinformatics Tools 
for Lipidomic Data Processing

To simplify the work of processing complex 
LC-MS data, software tools have been developed 
to perform multiple data processing steps, includ-
ing spectral filtering, peak detection, alignment, 
normalization, and exploratory data analysis and 
visualization. Here we briefly discuss several 
software tools that are commonly used in 
 lipidomic analysis. MZmine mainly focuses on 
LC-MS data analysis [106]. The functionality 
includes the identification of peaks using online 
databases, MSn data support, improved isotope 
pattern support, scatter plot visualization, and a 
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new method for peak list alignment based on the 
random sample consensus algorithm. The current 
version of MZmine 2 is suitable for processing 
large batches of data and has been applied to both 
targeted and nontargeted lipidomic analyses. 
OpenMS 2.0 is an updated version of cross-plat-
form software [112], which provides a set of 185 
tools and ready-made workflows for common 
MS data processing tasks. It also provides imple-
mentations to address the most common tasks in 
quantitative proteomics and metabolomics, 
including quantification, identification, and visu-
alization, as well as algorithms for isotopic 
deconvolution, chromatographic peak picking, 
and so on. The only challenge is to build your 
custom workflows which can be time-consum-
ing. XCMS2 allows to automatically search MS/
MS data against high- quality experimental MS/
MS data from known metabolites contained in a 
reference library [113]. It features the same func-
tions such as peak picking, peak alignment, and 
statistical analysis of features but with the added 
capability of automatic searching of MS/MS 
spectra against the METLIN database. MS-DIAL 
is a data processing pipeline for untargeted lipi-
domics applicable to either data-independent or 
data-dependent fragmentation methods [114]. 
Identification is achieved through analyses of 
retention time, mass accuracy, and isotope ratio 
along with MS/MS similarity matching to librar-
ies from publicly available databases. Other soft-
ware tools for shotgun lipidomics data analysis 
include LipidXplorer [115], LipidProfiler [116], 
AMDMS-SL [117], and so on. These software 
packages are very useful for identifying and 
quantifying individual lipid species from the data 
obtained with MS-based lipidomic analysis.

6.4  Biostatistical Analysis 
and Data Visualization

After qualitative and quantitative results are 
obtained from analysis of lipidomic data, the next 
step is to perform statistical analysis of the data to 
determine significant lipid species and reveal the 
biological interpretation. In a simplest setting, the 
descriptive data analysis can be carried out with 

statistical methods such as two-sample Student’s 
t-test, Wilcoxon test, Wilcoxon signed- rank test, 
and Mann-Whitney U test. Analysis variance 
(ANOVA) may be used to compare the means of 
two or more groups assuming that sampled popu-
lation are normally distributed. Correlational anal-
ysis can be performed to determine the degree of 
relationship between two variables, which is mea-
sured using a correlation coefficient. Statistical 
methods are also in place for analysis of multivari-
ate data. Principal component analysis (PCA) is a 
useful statistical technique for multivariate analy-
sis of correlated variables. It is mostly used as a 
tool in exploratory data analysis and for making 
predictive models. Hierarchical clustering analysis 
(HCA) is widely used for multivariate data analy-
sis, displaying cluster analysis results with heat 
maps. Partial least square-based discriminant anal-
ysis (PLS-DA) is a widely used, supervised clas-
sification algorithm when dimensionality 
reduction is needed, and discrimination is sought 
in multivariate analysis. Multivariate analysis of 
variance (MANOVA) is a statistical test procedure 
for comparing multivariate (population) means of 
several groups, which uses the variance/covari-
ance between variables in testing the statistical 
significance of the mean differences. Many of the 
abovementioned tools are available from commer-
cial software (e.g., SAS, NCSS, IBM SPSS, 
SIMCA-P). Graphic display is often used for data 
visualization and presentation in lipidomic analy-
sis. Many software tools such as MetaboAnalyst 
2.0, Prism, Origin, and R package can be useful 
for graphic display of lipidomic data.
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1  Introduction

Metabolomics is an analytical toolbox to profile 
the whole low-molecular-weight metabolites in a 
biological system, such as cells, tissues, urine, 
serum, and plasma. Metabolomic analysis is a 
promising omics approach to not only investigat-
ing the altered metabolic regulation in cancer 
cells but also identifying biomarkers for early 
cancer detection and prediction of treatment 
response in cancer patients. Untargeted metabo-
lomics can be performed to gain a comprehensive 
metabolite profile of a biological sample. 
Targeted metabolomics may also be applied to 
quantitative analysis of preselected metabolites 
and related metabolic pathway. The goal of a 
metabolomics study is to obtain an answer to a 
specific biological or clinical question [1]. While 
genomic and proteomic analyses may not tell the 
whole story of what might be happening in a cell, 
metabolic profiling can give an instantaneous 
snapshot of the physiology of that cell. To accom-
plish a comprehensive metabolomic analysis of 
complex biological samples, there is a high 
demand for the analytical techniques used in 
metabolomics due to the large variations in phys-
icochemistry properties and expression levels of 

metabolites. Currently, advanced analytical tech-
niques, such as NMR spectroscopy, gas chroma-
tography with mass spectrometry (GC-MS), and 
liquid chromatography with mass spectrometry 
(LC-MS), have become well-established tools for 
metabolomics studies [2, 3]. A comprehensive 
overview of the possibilities of these techniques 
for metabolomics studies can be found in recent 
reviews [3, 4]. Despite significant developments 
in LC column technology and methodology, such 
as hydrophilic interaction liquid chromatogra-
phy, the selective and efficient analysis of highly 
polar and charged metabolites is still 
challenging.

Capillary electrophoresis (CE) is a powerful 
separation technique but still underused for com-
plex sample analysis. CE-MS has shown consid-
erable potential for profiling of polar ionogenic 
compounds in metabolomics. However, relatively 
speaking, there have been not many papers pub-
lished on CE-MS-based metabolomic analysis. 
Hyphenation of CE with MS is generally per-
formed via a sheath-liquid interface. However, 
the electrophoretic effluent is significantly diluted 
in this configuration, thereby limiting the utility 
of this method for highly sensitive metabolomic 
analysis. Moreover, in this setup the intrinsically 
low-flow property of CE is not effectively uti-
lized in combination with electrospray ionization 
(ESI). In this chapter, we will discuss the CE-MS 
fundamentals, methodologies and interfacing, as 
well as its applications in cancer metabolomics.
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2  Capillary Electrophoresis 
with Mass Spectrometry

2.1  Separation Modes of Capillary 
Electrophoresis

CE is a general term for a range of separation 
techniques based on different separation princi-
ples, including capillary zone electrophoresis 
(CZE), micellar electrokinetic capillary chroma-
tography (MECC or MEKC), nonaqueous capil-
lary electrophoresis (NACE), capillary gel 
electrophoresis (CGE), capillary isoelectric 
focusing (CIEF), capillary electrochromatogra-
phy (CEC), and capillary isotachophoresis 
(CITP). Depending on the complexity of the 
sample and the nature of the present analytes, 
each of these techniques will provide various 
advantages for the separation and detection of 
different substances.

2.1.1  Capillary Zone Electrophoresis
CZE is a main separation mode used with MS 
because volatile buffers can be employed. It sep-
arates the analytes first in CZE based on their 
charge-to-size ratios and then in the MS on the 
basis of their mass-to-charge ratio (m/z). Prior to 
analysis, CE running buffer is flushed through the 
capillary by pressure. Afterward, the sample is 
injected and high voltage is applied for the sepa-
ration (Fig. 1). Since CE separates analytes based 
on the differences in charge-to-size ratio, rela-

tively small and highly charged analytes have 
high electrophoretic mobility, whereas relatively 
large and poorly charged compounds exhibit low 
electrophoretic mobility. Obviously, neutral com-
pounds will not be separated because their 
charge-to-size ratio is zero. The CZE-MS method 
used for global metabolomic profiling in biologi-
cal samples was demonstrated by Soga et al. [5]. 
The coupling to MS is important in untargeted 
metabolomic analysis although it limits the buf-
fer additives to those that can be made volatile 
[6].

2.1.2  Micellar Electrokinetic 
Chromatography

The classic CZE method is not suited for the sep-
aration of neutral molecules, which migrate 
toward the detector with the same velocity as the 
EOF (Fig. 1). MEKC is a commonly used elec-
trophoretic technique developed in the early 
1990s that extended the applicability of CE to 
analysis of neutral analytes. It is based on the dif-
ferential partitioning of an analyte between the 
two-phase system: the mobile aqueous phase and 
micellar pseudostationary phase. In MEKC, sur-
factants are added to the buffer solution in con-
centration above their critical micellar 
concentrations; consequently micelles are 
formed. These micelles have a nonpolar inside, 
and a polar (or charged) surface, and undergo 
electrophoretic migration like any other charged 
particle under high electric field. Analytes are 

Fig. 1 The principle of capillary zone electrophoresis 
(CZE). Sample is injected into the separation capillary (a) 
and the analytes are electrophoretically separated by the 

applied high voltage. The velocity of migration of an ana-
lyte in CE also depends on the rate of electroosmotic flow 
(EOF) of the background electrolytes (BGE) (c)
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partitioned between the micelles and the buffer 
solution, dependable on the affinity to the 
micelles, and separated with the applied high 
voltage [7].

2.1.3  Nonaqueous Capillary 
Electrophoresis

With NACE, analytes that are insoluble in water 
are separated, mainly depending on the use of 
organic solvents. The viscosity and dielectric 
constants of organic solvents affect both ion 
mobility of analytes and the rate of EOF. Recently, 
NACE was applied as a multiplexed separation 
platform for analysis of more than 20 nonesteri-
fied fatty acids in human serum or plasma sam-
ples [8]. Following a simple methyl-tert-butyl 
ether extraction, seven serum extracts were ana-
lyzed directly by multisegment injection-NACE-
 MS within a single run (<4  min/sample) under 
negative ion mode detection that incorporates 
stringent measures for quality control, including 
batch correction adjustment. Overall, excellent 
technical variance (RSD  =  10%) and mutually 
agreed results for the measurement of the fatty 
acids in 50 serum samples were achieved by 
MSI-NACE-MS and GC/MS within the same 
laboratory (mean bias = 24%, n = 600).

2.1.4  Capillary Gel Electrophoresis
CGE is carried out with using a gel matrix inside 
the capillary for size-based separation of biomol-
ecules. Small molecules migrate faster than large 
molecules under the CGE separation mode. 
Therefore, CGE is frequently employed for sepa-
ration of proteins and DNA fragments.

2.1.5  Capillary Isoelectric Focusing
When a pH gradient is formed across the separa-
tion capillary, and a high voltage is applied from 
low pH region (positive) to high pH (negative), 
analytes would migrate to the pH value that 
equals their pI value. At lower pH, the analytes 
are positively charged, whereas at higher pH the 
analytes are negatively charged. In this separa-
tion mode, all the analytes are separated accord-
ing to their pI. CIEF is commonly used to separate 
proteins, particularly useful for resolving protein 
isoforms.

2.1.6  Capillary 
Electrochromatography

With CEC separation, a capillary is packed with 
silica-based particles as a stationary phase. When 
high voltage is applied across the capillary, the 
buffer starts to migrate due to the present 
EOF. Similar to HPLC, the analytes are separated 
based on their interaction with the stationary 
phase. The difference between HPLC and CEC is 
that HPLC utilizes a high-pressure pump to 
mobilize the mobile phase whereas, in CEC, a 
high voltage is applied to drive the EOF. CEC is 
capable of separating both neutral and charged 
molecules. However, CEC has bubble formation 
issue caused by Joule heating during experi-
ments, which may lead to column dryout and cur-
rent disruption. Therefore, pressure-assisted CEC 
(pCEC), with EOF combined with supplemental 
pressurized flow as its driving force, has been 
used to overcome this problem. pCEC has been 
demonstrated for metabolomic profiling of urine 
samples from lung cancer patients and healthy 
controls [9].

2.1.7  Capillary Isotachophoresis
A discontinuous buffer system is used in CITP. 
The sample is introduced between a zone of fast 
leading electrolyte (LE) and a zone of slow ter-
minating electrolytes (TE). The analytes of inter-
est have intermediate ionic mobility between LE 
and TE.  Under the high voltage applied, a low 
electrical field is formed in the LE zone whereas 
a high electrical field is formed in the TE zone. If 
an analyte is situated in the TE zone, it will be 
under a higher electric field, giving it a higher 
speed. Meanwhile, if an analyte is situated in the 
LE zone, it would be under a lower electric field 
and migrate slower; the result is that the analytes 
are focused at the LE/TE interface. For this rea-
son, CITP is often used to concentrate large- 
volume injections, and low concentration samples 
are strongly concentrated into very narrow zones.

It was reported that the integration of 
transient- isotachophoresis (t-ITP) as an in-capil-
lary preconcentration procedure with sheathless 
CE-MS resulted in subnanomolar limits of 
detection for metabolites, and more than 1300 
metabolic features were detected in urine. 
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Compared to the classical CE-MS approaches, 
the integration of t-ITP combined with the use of 
a sheathless interface provides up to 2 orders of 
magnitude sensitivity improvement [10]. It was 
also reported that the use of t-ITP and pH-medi-
ated stacking, coupled with FT-ICR MS, 
improved the overall detection of cationic 
metabolites in bacterium [11].

2.2  CE Interface with MS

ESI is a commonly used ionization mode in 
CE-MS.  ESI enables molecules in the liquid 
phase to be converted directly into ions in the gas 
phase. It can be easily adapted for online cou-
pling of MS with CE.  CE separates mostly 
charged compounds and ESI is appropriate for 
ionization of polar and ionic compounds. The 
interface to MS is a little more complicated in CE 
than in HPLC owing to a low flow rate of the 
effluent from the capillary and incompatible elec-
trolytes used in the running buffer. Most com-
mercial LC-MS systems can be adapted for 
CE-MS with modification in the interface.

2.2.1  Sheath-Flow Interface
A CE-ESI-MS system has to complete the elec-
trical circuit for analyte separation while simul-
taneously providing an electrical potential to the 
spray tip. This is generally accomplished using 
a sheath-flow or sheathless interface [12, 13]. 
Sheath-flow interfaces have been popular since 
the early years of CE-MS applications. In this 
configuration, the separation capillary is inserted 
coaxially into a stainless-steel tube with a 
slightly larger diameter, and a sheath liquid is 
mixed with the BGE at the capillary outlet. The 
nebulizing gas is supplied via a third coaxial 
tube, and this assists with stable spray formation 
and desolvation [14]. Dovichi’s group devel-
oped a highly robust electrokinetically pumped 
sheath-flow nanospray interface for coupling 
CZE with MS, which has been commercialized 
by the Agent Technologies (Fig. 2). They dem-
onstrated the system for high-throughput pro-
teomic analysis, and 27,000 peptide and nearly 
4400 protein identifications were achieved with 

single-shot CZE-MS [15–18]. A mixture of an 
aqueous volatile acid (formic acid or acetic 
acid) and an organic solvent (methanol, propa-
nol, or acetonitrile) is often used as the sheath 
liquid. The sheath liquid composition and flow 
rate and the nebulizing gas flow rate, therefore, 
need to be optimized to create a stable electro-
spray and maintain separation efficiency and 
detection sensitivity [19, 20]. Sarver et al. modi-
fied the sheath-flow nanospray interface devel-
oped by Dovichi’s group [21] in order to perform 
ESI in negative ionization mode [22]. They 
obtained stable spray conditions by using 
10 mM ammonium acetate in 70% methanol as 
sheath liquid and coating of the emitter with 
3-aminopropyltrimethoxysilane to reverse the 
EOF in the used glass emitter. However, recent 
calculations and measurements indicate that the 
EOF is not the driving force in this type of inter-
face and rather the sheath liquid is important to 
obtain stable spray conditions [23].

Fang et al. designed a nano-flow sheath liquid 
interface with an extendable tip, featuring a so- 
called surface flow [24]. The separation capillary 
with a 20 μm id is chemically etched to reduce 
the od to 30 μm and is introduced into a tapered 
sheath flow capillary made of glass with 35 μm id 
and 40 μm od (Fig.  3). After optimization, the 
separation capillary protrudes by approximately 
200 μm from the outer capillary and serves as the 
electrospray emitter. The sheath liquid is driven 
by a syringe pump and flows on the surface of the 
separation capillary and mixes with the separa-
tion effluent inside the Taylor cone with a volume 
of 4  pL, under a flow rate of 200  nL/min. 
Extension of the tip showed improved sensitivity 
when compared to the assembly with retracted 
tip. The interface was applied to the analysis of a 
peptide mixture, showing good repeatability for 
peak intensity and spray stability. While this 
interface might offer great sensitivity due to its 
small dimensions with minimum dead volume 
and low sheath liquid flows, it might be difficult 
to manufacture.

2.2.2  Sheathless Interface
Sheathless interface benefits from the absence of 
additional liquid diluting the capillary effluent by 
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spraying the BGE directly, resulting in high 
 ionization efficiency. However, the lack of sup-
porting liquid can compromise separation and 
electrospray conditions, since pH value, EOF, 
capillary coating, organic solvent, or inlet pres-
sure need to be considered to achieve an effective 
spray. CE-MS with commercial sheathless inter-
faces have been demonstrated for metabolic pro-
filing of glioblastoma cells and colon and stomach 
cancer tissues [25, 26].

2.3  Capillary Coating

In CE-MS, capillary coatings are used to prevent 
analyte adsorption and to provide appropriate 
conditions for CE-MS interfacing. It can enhance 
the performance and stability of a CE-MS sys-
tem, producing accurate and reproducible ana-
lytical results. Table  1 shows different types of 
capillary coatings and their advantages/disadvan-
tages. Depending the charge states of the coating 

Fig. 2 (a) Pictorial representation of Agilent coaxial 
sheath-liquid CE-MS interface: a, nebulizing gas, b, 
sheath liquid, c, CE-capillary with BGE, d, stainless steel 
spray needle 0.4 mm i.d., 0.5 mm o.d., e, outer tube, f, 
ground connection. (b) Engineered sketch of the coaxial 

sheath-liquid CE-MS interface (graphics courtesy from 
the Agilent Technologies). (c) Electrokinetically pumped 
sheath-flow nanospray interface developed by Dovichi’s 
group (https://dovichilab.weebly.com/). Reproduced with 
permission [21]

Fig. 3 Image (a) and schematic diagram (b) of the extendable sheath-flow interface. The inset in (a) shows the image 
of the whole interface. Reproduced with permission [24]
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materials, the EOF direction may be modulated, 
either enhanced, reduced, or neutralized (Fig. 4).

2.4  Sample Preparation in CE-MS- 
Based Metabolomic Analysis

Preparation of uniform samples for CE-MS- 
based metabolomic analysis is a critical issue that 
remains to be addressed. Maruyama et  al. pre-
sented an easy protocol for extracting aqueous 
metabolites from cultured adherent cells for 
metabolomic analysis using CE-MS [27]. 
Aqueous metabolites from cultured cells are ana-
lyzed by culturing and washing cells, treating 
cells with methanol, extracting metabolites, and 
removing proteins and macromolecules with spin 
columns for CE-MS analysis. Representative 
results using lung cancer cell lines treated with 

diamide, an oxidative reagent, illustrate the 
clearly observable metabolic shift of cells under 
oxidative stress. This protocol would be espe-
cially valuable to students and investigators 
involved in metabolomics research, who are new 
to harvesting metabolites from cell lines for anal-
ysis by CE-MS.

3  Applications of CE-MS 
in Cancer Metabolomics

Numerous studies have demonstrated that 
CE-MS is powerful approach for cancer metabo-
lome analysis toward the identification of targets 
for clinical and therapeutic applications. For 
instance, metabolomes of colon or stomach can-
cer tissues obtained from 16 colon or 12 stomach 
cancer patients were profiled with CE-MS [28]. 
Quantification of 94 metabolites in colon cancer 
tissues and 95 metabolites in stomach cancer tis-
sues involved in glycolysis, the pentose phos-
phate pathway, the TCA and urea cycles, and 
amino acid and nucleotide metabolisms resulted 
in the identification of several cancer-specific 
metabolic traits. Extremely low glucose and high 
lactate and glycolytic intermediate concentra-
tions were found in both colon and stomach 
tumor tissues, which indicated enhanced glycoly-
sis and thus confirmed the Warburg effect. 
Significant accumulation of all amino acids 
except glutamine in the tumors implied autopha-
gic degradation of proteins and active glutamine 
breakdown for energy production, i.e., glutami-
nolysis. In addition, significant organ-specific 
differences were found in the levels of TCA cycle 
intermediates, which reflected the dependency of 
each tissue on aerobic respiration according to 
oxygen availability. A similar research was 
accomplished by Chen et  al. [29] by using 
CE-MS for metabolomic analysis of urine sam-
ple from colorectal cancer patients and healthy 
adults. The results indicated that the urine metab-
olomes of colorectal cancer patients had signifi-
cant alterations when compared to those of 
normal controls, and there were also differences 
in the metabolomes between early stage and 
advanced colorectal cancer patients. Compared 

Table 1 Capillary coatings used in CE

Coating type Advantages Disadvantages
Covalent High reusability 

(in the order of 
months)

Complex 
synthesis 
procedures

No further 
additives in the 
background 
buffer are 
required

Lower 
reproducibility

Dynamic Higher 
repeatability and 
reproducibility

Require the 
presence of 
reagents in the 
background 
buffer

Faster and 
simpler 
preparation and 
optimization

Possible 
compatibility 
problems with 
the detection 
system
Possible 
background 
buffer heating

Semipermanent Faster and 
simpler 
preparation, 
optimization, 
and regeneration

Low reusability 
(in the order of a 
few runs)

No further 
additives in the 
background 
buffer are 
required

X. Xu



195

with the control group, the levels of isoleucine, 
valine, arginine, lactate acid, and leucine signifi-
cantly increased, but those of histidine, methio-
nine, serine, aspartic acid, citric acid, succinate, 
and malic acid significantly decreased in urine 
samples from colorectal cancer. The levels of iso-
leucine and valine were lower in the urine sam-
ples of patients with advanced colorectal cancer 
than those in early stage colorectal cancer. 
Further validation of these urinary markers may 
lead to a noninvasive method for the early diag-
nosis of colorectal cancer.

Wu et al. introduced a pCEC method coupled 
with Q-TOF-MS for metabolomic analysis 
(Fig. 5) [9]. Three interfaces were compared in 
this study and a sheathless interface was selected, 
and the method was applied to lung cancer 
metabolomic analysis under the optimized condi-
tions. The hyphenated pCEC-Q-TOF-MS system 
was investigated with mixed standards and 
pooled urine samples to evaluate its precision, 
repeatability, linearity, sensitivity, and selectivity. 

Multivariate data analysis was subsequently per-
formed and used to distinguish lung cancer 
patients from healthy controls successfully. In a 
similar approach, Hirayama et  al. fabricated a 
sheathless interface by making a small crack 
approximately 2 cm from the end of a capillary 
column and then covering the crack with a dialy-
sis membrane to prevent metabolite loss during 
separation. CE-MS with the sheathless interface 
was applied for nontargeted metabolome analysis 
of human cancer cells and the number of peaks 
detected was about 2.5 times higher than the stan-
dard coaxial sheath liquid interface [30].

The incidence and recurrence rate of bladder 
cancer is high, especially in developed countries; 
however, current methods for diagnosis are limited 
to detecting high-grade tumors using often invasive 
methods. By using LC-MS and CE-MS, Alberice 
et al. revealed a total of 27 metabolites that were 
significantly different among different patient 
groups, some of which were specific to the stage/
grade of cancer or tumor recurrence. The identified 
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Fig. 4 Schematic representation of the modulation of 
EOF by capillary coating. (a) EOF in an untreated capil-
lary. (b) EOF enhancement by formation of a highly nega-

tively charged coating. (c) EOF suppression by formation 
of a neutral coating. (d) EOF inversion by formation of a 
positively charged coating [7]
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potential biomarkers were betaine, cysteine, histi-
dine, tyrosine, carnosine, decanoylcarnitine, and 
uric acid, where the former four were associated 
with high risk and the latter three with low risk. 
Potential biomarkers associated with recurrence 
were Nɛ, Nɛ, Nɛ-trimethyllysine, 
N-acetyltryptophan, dopaquinone, leucine, and 
hypoxanthine, where the former two coincided with 
high risk and the latter three with low risk [31].

In general, metabolomic analyses lead to the 
detection of the total amount of all covered 
metabolites. This is currently a major limitation 
with respect to metabolites showing high turn-
over rates, but no changes in their concentration. 
A stable isotope tracing CE-MS metabolomic 
approach was developed by Zeng et al., to cover 
both polar metabolites and isotopologues in a 
nontargeted way [32]. An in-house developed 
software enables high-throughput processing of 
complex multidimensional data. The method was 
used for analyzing [U-13C]-glucose exposed 
prostate cancer and non-cancer cells. This 
CE-MS-based analytical methodology comple-
ments polar metabolite profiles through isotopo-
logue labeling patterns, thereby improving not 
only the metabolomic coverage but also the 
understanding of metabolism.

Schönemeier et  al. reported possible bio-
markers in saliva to distinguish between pan-
creatic cancer and chronic pancreatitis [33]. 
Salivary samples were collected from patients 
with pancreatic cancer (PC, n = 39), those with 
chronic pancreatitis (CP, n = 14), and healthy 
controls (C, n  =  26). Polyamines, such as 
spermine, N1-acetylspermidine, and 
N1-acetylspermine, showed a significant dif-
ference between patients with PC and healthy 
controls, and the combination of four metabo-
lites including N1-acetylspermidine showed 
high accuracy in discriminating PC from the 
other two groups. These data show the poten-
tial of using salivary biomarkers for screening 
test of PC.

A sheathless CE-MS method has been 
developed to anionic metabolomic profiling of 
glioblastoma cells [26]. The BGE, i.e., 10% 
acetic acid (pH 2.2), previously used for cat-
ionic metabolic profiling was assessed for 
anionic metabolic profiling by using MS 
detection in negative ion mode. For test com-
pounds, RSDs for migration times and peak 
areas were below 2 and 11%, respectively, and 
plate numbers ranged from 60,000 to 40,0000. 
Critical metabolites with low or no retention 
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Waste

Injector

Sample loop
Pump A

Pump B
Micromixer Column

Sheath Gas

ESI Steel Needle
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(-4.5kV)

Splitting Cross
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Fig. 5 Schematic overview of pCEC coupled to 
QTOF-MS.  Chromatographic separation was performed 
on a reversed-phase column of 25  cm (25  cm was 

packed)  ×  150  μm id packed with 5  μm C18 particles 
using a TriSep-2100 pCEC system. (Reproduced from [9] 
with permission)
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on reversed-phase LC were efficiently sepa-
rated and analyzed by the sheathless CE-MS 
method. An injection volume of only circa 
20  nL resulted in LODs between 10 and 
200 nM (corresponding to an amount of 0.4–4 
fmol), which was an at least tenfold improve-

ment as compared to LODs obtained by con-
ventional CE-MS approaches for these 
analytes. The method can also be used for cat-
ionic metabolic profiling studies by only 
switching the MS detection and separation 
voltage polarity (Table 2).

Table 2 A partial list of CE-MS applications in cancer metabolomics

Analytes Sample matrix BGE Sample pretreatment
MS 
analyzer Refs.

Cationic 
metabolites

Urines from 
patients 
diagnosed of 
lung cancer

Binary solvents of A 
(0.1% FA in 2% ACN, 
v/v) and B (1% FA in 
ACN-methanol-water 
49:49:2, v/v/v) were used 
in gradient elution

Mixed into chlorophenylalanine, 
vortexed for 1 min, and then 
centrifuged

TOF [9]

Cationic 
metabolites

Colorectal 
cancer cells

10% acetic acid (pH 2.2) Homogenization, centrifugation TOF [34]

Cationic 
metabolites

Colon cancer 
cells

1 M formic acid (pH 1.8) Ultrafiltration, methanol 
precipitation, and two SPE 
procedures evaluated

TOF [35]

Cationic 
metabolites

Colon cancer 
cells

1 M formic acid (pH 1.8) Methanol purification; cytosolic 
fraction centrifugated with 3 kDa 
filter

TOF [36]

Cationic and 
anionic 
metabolites

Colon and 
stomach cancer 
tissues

For cation, 1 mol/L 
formic acid; for anion, 
cationic-polymer-coated 
SMILE(+) capillary 
(Nacalai Tesque) filled 
with 50 mmol/L 
ammonium acetate 
solution (pH 8.5)

TOF [28]

Cationic 
metabolites

Urine from 
patients 
diagnosed of 
urothelial 
bladder cancer

0.8 ml L − 1 formic acid 
(pH 1.9) and 10% 
methanol (v/v)

Diluted with Milli-Q water 
(1/5 v/v), centrifuged, and 
transferred to vials for analysis

TOF [31]

Cationic and 
anionic 
metabolites

Prostate cancer 
and non-cancer 
cells

For cation, 1 mol/L 
formic acid; for anion, 
ammonium acetate 
solution (50 mmol/L; 
pH 8.5)

Centrifugally filtered TOF [32]

Anionic 
metabolites

Glioblastoma 
cell line extracts

10% acetic acid (pH 2.2) Ultrafiltration TOF [26]

Cationic and 
anionic 
metabolites

Saliva of 
pancreatic cancer

For cation, 1 mol/L 
formic acid; for anion, 
ammonium acetate 
solution (50 mmol/L; 
pH 8.5)

Centrifuged, add 2 mM of 
methionine sulfone, 
2-[N-morpholino]-ethanesulfonic 
acid (MES), D-Camphol-10- 
sulfonic acid, sodium salt, 
3-aminopyrrolidine, and trimesate

TOF [33]

Cationic and 
anionic 
metabolites

Saliva and tissue 
of oral cancer

For cation, 1 mol/L 
formic acid; for anion, 
ammonium acetate 
solution (50 mmol/L; 
pH 8.5)

Saliva: the same as tissue. 
Homogenized, centrifuged, and 
filtered

TOF [37]
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4  Conclusion and Perspective

Over the past decade, the applicability of CE-MS 
for targeted and nontargeted cancer metabolo-
mics studies was well demonstrated. CE-MS rep-
resents a high efficiency microscale separation 
and identification platform for profiling of polar/
ionic metabolites that is ideal for volume- 
restricted biological specimens with minimal 
sample workup. Compared to other analytical 
techniques employed for metabolomics studies, 
the application of CE-MS in this field remains 
rather limited, which might be due to the issues 
with concentration sensitivity and reproducibility 
However, significant progress has been made in 
the development of robust interfaces for coupling 
CE with MS over the past decade. In this context, 
the sheathless porous tip sprayer and the flow- 
through microvial interface offered new perspec-
tives for highly sensitive metabolic profiling of 
biological samples [38–42], as both interfaces 
allowed to perform CE-MS analyses at low flow 
rate conditions. Moreover, the use of in-capillary 
preconcentration techniques, such as dynamic 
pH junction and transient isotachophoresis, could 
improve the concentration sensitivity of CE-MS 
for metabolomic analysis as they allowed the 
injection of large sample volumes. 
Chromatographic preconcentration techniques, 
using SPE, can also be used for improving the 
concentration sensitivity.

In order to increase the applicability of 
CE-MS for (clinical) metabolomics studies, the 
utility of CE-MS needs to be demonstrated for 
the analysis of large cohorts of samples. In this 
regard, reproducibility of migration times and 
peak areas is of utmost importance for a reliable 
comparison of metabolic profiles and to observe 
small changes in large sample cohorts. A prom-
ising approach to achieve reproducible CE-MS 
methods for metabolomic profiling of body flu-
ids is the use of non- covalently coated capillar-
ies. Small-volume sample consumption is 
another important aspect of CE-MS.  Scaling 
down LC-MS approaches is still a challenging 
process, while CE, on the other hand, is a 
“nanoscale technique” by its nature. Therefore, 
the analysis of volume-limited samples remains 

to be an important advantage of CE-MS in the 
field of metabolomics. In fact, CE-MS has great 
potential for metabolomic analysis of individual 
cells [43]. To improve the sensitivity of CE-MS 
for single cell metabolomic analysis, an efficient 
ionization emitter, named as a “nanoCESI” emit-
ter, was recently demonstrated, which had a thin-
walled (∼10  μm) and tapered (5–10  μm) end. 
The thin conductive wall enabled sheathless ion-
ization and minimized the flow rate of ionizing 
sample, and the tapered end efficiently ionized 
analytes via ESI, providing up to 3.5-fold 
increase in sensitivity compared with a conven-
tional sheathless emitter. CE-MS with such 
nanoCESI emitter achieved a limit of detection 
of 170  pM (850  zmol). Meanwhile, a sample 
enrichment method, large-volume dual precon-
centration by isotachophoresis and stacking 
(LDIS), was combined with nanoCESI to achieve 
up to 800-fold increase of sensitivity in total 
when compared to normal sheathless CE-MS. By 
using this method for metabolome analyses of 
single HeLa cells, 20 amino acids were success-
fully quantified and 40 metabolites were identi-
fied with quadrupole-time-of-flight MS [44]. 
Such CE-MS-based system may have great 
potential to study the heterogeneity of cancer 
cell metabolism and cancer microenvironment.
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1  Introduction

Cancer is a disease when abnormal cells rapidly 
grow and divide in an uncontrolled way and even-
tually invade or spread into other tissues/organs of 
the body. According to the World Health 
Organization (WHO) reports, cancer has becom-
ing the second leading cause of death globally, 
causing about 9.6 million deaths in 2018 and the 
number will increase by 70% over the next 
20 years. Lung, prostate, colorectal, stomach, and 
liver cancers are the most common types of can-
cer in men, while breast, colorectal, lung, cervix, 
and thyroid cancers are the most common among 
women (https://www.who.int/cancer/en/). Despite 

the advances in surgery, radiotherapy, chemother-
apy, and immunotherapy, the survival rates for 
many solid malignancies have not significantly 
improved because many patients were diagnosed 
at late stage. Therefore, early diagnosis and cor-
rect staging of cancer diseases are critical for 
treatment decision making and therefore reducing 
the mortality rate of cancer patients. Although 
cancer is traditionally considered as a genetic dis-
ease, many cancer biologists now believe it is a 
metabolic disorder. In 1920, Otto Heinrich 
Warburg unveiled a link between cancer and cell 
metabolism [1]. It was found, under aerobic con-
ditions, tumor tissues metabolize approximately 
tenfold more glucose to lactate in a given time 
than normal tissues, a phenomenon known as the 
“Warburg effect” (Fig. 1) [2]. Since then, a vast 
number of investigations have been focused on 
elucidating the cancer metabolism and under-
standing the  metabolic reprogramming in cancer 
cells at different progression stages.
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Metabolomics, one of the omics disciplines in 
systems biology, is the global analysis and iden-
tification of endogenous small-molecule bio-
chemicals (metabolites) within a biologic 
system. Metabolomic analysis of biofluids [3–5], 
tissues [6–9], and cell line models [10–12] can 
yield insights into the impact caused by diseases, 
aging [13], or external stimuli [14–18]. The two 
leading analytical technologies for metabolo-
mics are mass spectrometry (MS) and nuclear 
magnetic resonance spectroscopy (NMR). As 
one of the mainstream metabolomic platforms, 
NMR is widely used in metabolomic analysis to 
identify and quantify metabolites because of its 
ability for quantification and nondestructive 
measurement of a variety of structurally differ-
ent metabolites. Since in  vivo NMR can be 
applied in high field NMR spectrometers, NMR 

analyses have a proven track record of translat-
ing in vitro findings into in vivo clinical applica-
tions. Moreover, NMR is highly reproducible, 
quantitative over a wide dynamic range, 
unmatched for determining unknown structures, 
and require minimal sample preparation in com-
parison with MS.

Since the first fully transistorized NMR instru-
ment was constructed in 1960s by German physi-
cist Gunther Laukien, NMR has been continually 
advanced and applied to cancer research. In 2015, 
1H high-resolution magic angle spinning NMR 
(1H HRMAS NMR) spectroscopy was used to 
analyze the metabolic profiles of intact breast 
tumor tissues in comparison with intact non- 
tumor breast tissues obtained from patients, and 
the results revealed phosphocholine as a bio-
marker of breast cancer malignant transformation 

Fig. 1 The Warburg effect in cancer cells [2], reproduced 
with permission. As shown in this diagram, the Warburg 
effect is mainly induced by mitochondrial dysfunction. 
NADPH, nicotinamide adenine dinucleotide phosphate; 
ROS, reactive oxygen species; UCPs, uncoupling pro-

teins; PEP, phosphoenolpyruvate; GLUTs, glucose trans-
porters; HK, hexokinase; G6P, glucose 6 phosphate; 
MCTs, monocarboxylate transporters; PPP, pentose phos-
phate pathway; PFK1, phosphofructokinase-1; LDHA/B, 
lactate dehydrogenase A/B
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[19]. Similarly, 1H-NMR-based metabolomic 
approach was used to profile fecal metabolites of 
68 colorectal cancer (CRC) patients (stage I/
II = 20, stage III = 25, and stage IV = 23) and 32 
healthy controls (HC). Statistical results based on 
orthogonal partial least squares-discriminant 
analysis (OPLS-DA) indicated that each stage of 
CRC could be clearly distinguished from HC 
based on their NMR-based metabolomic profiles 
[20]. In 2016, typical NMR methods such as 
homonuclear total correlations spectroscopy (1H- 
1H TOCSY) and heteronuclear single quantum 
coherence spectroscopy (1H-13C HSQC) were 
used to confirm chemical shift assignment of 
serum metabolite signatures in lung cancer 
patients, and the metabolite profiles reflected the 
temporal discrimination between patient samples 
before, during, and after receiving therapy [21]. 
In addition, urinary 1H NMR metabolomic signa-
tures were found to serve as a suitable and nonin-
vasive tool for prostate cancer detection [22]. 
According to these studies, appropriate NMR 
methods should be selected to optimize the 
metabolomic analysis of respective samples from 
different types of cancers.

Although MS-based approaches are more 
commonly used in metabolomic studies, MS and 
NMR offer unique strengths and can be used syn-

ergistically for a more comprehensive metabolo-
mic analysis [23]. Despite its relatively lower 
sensitivity, NMR spectroscopy offers several 
unparalleled advantages over MS [24, 25]. NMR 
provides a practical means for identifying and 
quantifying relatively abundant compounds pres-
ent in biological fluids, cells, and tissues without 
the need for elaborate sample preparation or frac-
tionation. NMR can analyze the compounds that 
are difficult to ionize or require derivatization in 
MS analysis and is currently the primary method 
for determining the structure of an unknown 
compound. In addition, NMR allows to measure 
isotopic distributions in metabolites. By means of 
stable isotopic labeling, NMR can be used to elu-
cidate the kinetics and mechanisms of metabolite 
conversion and to explore the localization of met-
abolic pathways. Finally, site-specific NMR 
imaging and spectroscopy provide an important 
method for metabolomics studies in vivo.

2  NMR-Based Metabolomic 
Approach

Figure 2 shows an overview of NMR-based 
metabolomic analysis workflow. The main steps 
in NMR-based metabolomic analysis are experi-

Fig. 2 The basic workflow of NMR-based metabolomics
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mental design, NMR sample collection and prep-
aration, spectra acquisition and processing, 
metabolite identification and statistical data anal-
ysis, and data interpretation including a search for 
biomarkers or pathways associated with a specific 
disease. Since multiple options exist for each step 
in the workflow, it is essential to choose appropri-
ate protocol for each metabolomic analysis in 
order to obtain most robust and valid results.

2.1  Experimental Design 
and Sample Collection

The ultimate goal of most metabolomic analysis 
in cancer research is to discover cancer-specific 
diagnostic, prognostic, or predictive biomarkers. 
Metabolomics approaches can be categorized as 
either targeted or untargeted. Untargeted metabo-
lomics studies, as a hypothesis generation strat-
egy, aim to profile the greatest number of 
metabolites and trace both known and unknown 
metabolic changes [26, 27]. Targeted approaches 
focus on one or more metabolites of known or 
interest, in order to investigate specific metabolic 
pathways or to validate identified biomarkers 
[28, 29]. The combination of targeted and untar-
geted analyses can also be applied to obtaining a 
more comprehensive and accurate metabolome 
profiling. For instance, Tian et  al. analyzed the 
global metabolomic signatures of human CRC 
and thyroid nodule tissues using 1H NMR spec-
troscopy and the fatty acid compositions of these 
tissues using targeted GC-FID/MS in order to 
explore the full potential of metabolomic signa-
tures for diagnosis and prognosis [30, 31].

Sample collection is critical for a metabolo-
mic study. NMR-based cancer metabolomic 
analysis has been performed on a variety of bio-
logical samples including urine [32], blood [33], 
feces [20], tissues [31], saliva [34], cerebrospinal 
fluid [35], prostatic secretion [36], follicular fluid 
[37], bronchoalveolar lavage fluid [38], exhaled 
breath condensate [39], synovial fluid [40], and 
cancer cell lines [41–43]. A well- designed metab-
olomics study needs to control multiple co-
founding factors such as gender, age, diet, fasting 
state, and lifestyle, which may introduce varia-
tions or possibly systematic bias into the results. 

Moreover, the collection and storage of samples 
should have minimal or no effect on the metabo-
lome of the sample being studied. Notably, these 
biological samples, especially tissues, should be 
rapidly quenched when the metabolic pathways 
with a high metabolic flux in cancer cells are 
studied (e.g., the glycol tic and TCA pathways).

2.2  Sample Preparation and Data 
Acquisition

Sample preparation for a metabolomic experi-
ment depends on the study goals. Urine and 
blood are typical biofluids used for cancer clini-
cal metabolomics studies [44–47]. For metabo-
lite profiling of serum or plasma samples, how to 
alleviate the interference from the massive 
amount of serum/plasma proteins is a major chal-
lenge. Traditionally, a water-presaturated Carr-
Purcell-Meiboom-Gill (CPMG) pulse sequence 
by adjusting the spin-spin relaxation delays (2nτ 
~100 ms) is used for macromolecule signal sup-
pression in blood samples [47–49]. Recent stud-
ies suggested a new protein precipitation 
approach for blood metabolite quantitation using 
1H NMR analysis and enabled the identification 
of 67 blood metabolites, of which ~ one third are 
new compared with those reported previously 
[50]. For the urine samples, the pH and concen-
trations of cations such as Ca2+ and Mg2+ have a 
strong impact on the chemical shifts of metabo-
lites. Jiang et al. recommended a robust method 
of urine sample preparation for NMR- based 
metabolomic analysis taking into consideration 
for the effects of pH, di-cations, and sample dilu-
tion [51]. High-resolution 1H NMR analysis of 
tissue extracts has been widely used to profile 
metabolites in tumors [52–54]. However, differ-
ent extraction or purification of samples may 
introduce chemical modifications. Recently, 1H 
HRMAS NMR, a technology for analyzing a 
small amount of intact tissue samples (~15 mg) 
and avoiding any sample extraction procedures, 
has been extensively applied to cancer tissue 
metabolomic analysis [27, 30, 31].

NMR signals of metabolites can be obtained 
by different NMR pulse sequences. The majority 
of NMR-based metabolomics analyses are con-
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ducted using two 1D pulse sequences, Nuclear 
Overhauser Enhancement Spectroscopy 
(NOESY) and CPMG.1D NOESY with presatu-
ration, which have been applied to biological 
samples including blood [50], urine [51], feces 
[55], cells [43], and tissues [31], due to its ability 
to greatly suppress the water peak without inten-
sity losses for most of the other peaks. As men-
tioned above, CPMG with presaturation by 
adjusting the spin- spin relaxation delays is usu-
ally used to remove the broad protein signals for 
blood samples [47–49]. Correspondingly, the 
diffusion-edited spectra have been applied to 
acquire the information from macromolecules 
such as lipids, lipoproteins, and long-chain fatty 
acids according to their diffusion coefficient [56, 
57]. Furthermore, the stable isotope tracer meth-
ods, such as 13C NMR [58], 15N NMR [59], and 
31P NMR [60], have also been widely applied to 
track metabolic flux analysis in cancer research.

2.3  Metabolite Assignment 
and Data Analysis

Metabolite assignment is another crucial step in 
metabolomics study. A great deal of useful 
information can be derived from 1D 1H NMR 
spectra including chemical shifts, spin-spin cou-
pling, the half bandwidth, and the signal intensi-
ties. However, too many overlapping peaks 
represent a major problem for 1H NMR analysis 
of biological samples due to its narrow spectral 
width. To overcome the signal overlap, 2D NMR 
methods have been developed to improve 
metabolite assignment based on the atomic con-
nectivity. Among them, 2D 1H J-resolved NMR 
spectroscopy (JRES), 1H-1H correlation spec-
troscopy (COSY), 1H-1H total correlation spec-
troscopy (TOCSY), 1H-13C heteronuclear single 
quantum correlation (HSQC), and 1H-13C het-
eronuclear multiple bond correlation (HMBC) 
experiments are commonly applied to metabo-
lite identification [61, 62]. Various databases 
including the Human Metabolome Database 
(HMDB) [63], the Madison Metabolomics 
Consortium Database (MMCD) [64], the 
Biological Magnetic Resonance Bank (BMRB) 

[65], and the Birmingham Metabolite Library 
(BML) [66] provide thousands of standard 
NMR spectra of endogenous metabolites as ref-
erences. Moreover, some commercial software 
packages, such as the Chenomx NMR Suite, 
also offer library database [67].

The data processing steps for NMR spectra 
are as follows: phase correction, baseline correc-
tion, peak alignment, chemical shift calibration, 
binning, data normalization, and scaling [68]. 
After spectra and data preprocessing, the multi-
variate data analysis is performed to extract vari-
ables that may be informative about the metabolic 
differences between groups. Principal compo-
nent analysis (PCA), an unsupervised method, is 
initially applied to show intergroup differences 
and the possible presence of outliers [69]. 
Subsequently, supervised data analysis methods 
including projection to latent structure discrimi-
nant analysis (PLS-DA) and orthogonal projec-
tion to latent structure discriminant analysis 
(OPLS-DA) are used for further data mining in 
the search for biomarkers [70]. Recently, Duan 
et al. developed a useful high-throughput analy-
sis method based on multiple univariate data 
(MUDA) to extract statistically significant find-
ings on metabolites [71, 72], which is particu-
larly useful when only limited variables 
(metabolites) are significant. Moreover, receiver 
operating characteristic (ROC) curve analysis has 
often been applied to evaluating the sensitivity, 
specificity, and accuracy of a diagnostic test (e.g., 
a panel of metabolite biomarkers), particularly in 
cancer studies [30, 31].

2.4  Interpretation and Validation

Data visualization is a new challenge for analy-
sis of omics data, particularly metabolomics 
data. Software tools, including R package [73], 
MATLAB [48, 55], and MetaboAnalyst [74, 75], 
are available for comprehensive  NMR- based 
metabolomic data analysis, interpretation, and 
integration with other omics data. In 1993, 
Merchant et  al. developed a correlation coeffi-
cient loading plot generated from the OPLS-DA 
models, which were color-coded with the 
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Pearson linear correlation coefficients of vari-
ables using an in house-written script with 
MATLAB. In these loading plots, the warm-col-
ored variables meant more significant contribu-
tions to intergroup differentiations than 
cool-colored ones [60].

Once potential diagnostic or prognostic bio-
markers are identified, the target needs to be vali-
dated: (i) Validation should include repeating the 
same findings among at least one independent 
cohort of samples. (ii) Validation could also be 
performed with cell line or animal models or on 
human samples to achieve full mechanistic 
understanding of the disease and the altered met-
abolic pathways. (iii) In certain cases, validation 
studies could be performed using stable isotope 
tracer method to verify the metabolic flux through 
specific metabolic pathways. For example, 
13C-labeled glucose have been evaluated in can-
cer cell lines including liver cancer [76], colorec-
tal cancer [77], and breast cancer [78] to monitor 
glucose pathways during interventions.

3  NMR-Based Cancer 
Metabolomics

The metabolic characteristics of cancer cells 
refer to the alterations in cellular metabolism and 
related pathways when compared to normal cells. 
Typical alterations in cancer cells include: (i) 
deregulated uptake of glucose and amino acids, 
(ii) use of opportunistic modes of nutrient acqui-
sition, (iii) use of glycolysis/TCA cycle interme-
diates for biosynthesis and NADPH production, 
(iv) increased demand for nitrogen, (v) altera-
tions in metabolite-driven gene regulation, and 
(vi) metabolic interactions with the microenvi-
ronment [79]. Accumulating evidence suggests 
that the metabolic reprogramming characteristics 
can be used as a clinical tool for cancer diagnos-
tics, prognostics, and intervention monitoring 
[30, 31, 47, 72]. Here, an overview of NMR- 
based cancer metabolomics applications is pre-
sented according to the biological matrices used 
for metabolomic analysis (Figs. 3 and 4).
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Fig. 3 Representative 600  MHz 1H NMR spectra of (a) 
serum, (b) urine, and (c) stool originating from the same 
CRC cancer patient. Identities: 1, butyrate; 2, isoleucine; 3, 
leucine; 4, valine; 5, lactate; 6, threonine; 7, alanine; 8, 
lysine; 9, arginine; 10, acetate; 11, glutamate; 12, methio-
nine; 13, glutamine; 14, aspartate; 15, propionate; 16, cho-
line; 17, phosphocholine (PC); 18, glycerophosphocholine 
(GPC); 19, taurine; 20, glycine; 21, α-ketoisovalerate; 22, 

trimethylamine (TMA); 23, creatine; 24, creatinine; 25, 
tyrosine; 26, phenylalanine; 27, histidine; 28, uracil; 29, 
succinate; 30, formate; 31, pyruvate; 32, adenine; 33, ino-
sine; 34, glucose; 35, galactose; 36, fucose; 37, citrate; 38, 
dimethylamine (DMA); 39, trimethylamine-N-oxide 
(TMAO); 40, 3- hydroxybutyrate; 41, hippurate; 42, 
indoxyl sulfate; 43, phenylacetylglycine
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3.1  Biofluids

Blood and urine are typical biofluids used in  
cancer metabolomic analysis due to simple  
and noninvasive sample collection. NMR-based 
metabolomic analysis of blood samples has been 
successfully applied to identifying metabolite sig-
natures associated with cancer risk, detection, and 
prognosis in various cancer studies including lung 
cancer [80–82], CRC [83, 84], breast cancer [85], 
pancreatic cancer [86], thyroid cancer [87], pros-
tate cancer [88], and head and neck cancer [89]. 
For example, Rocha et al. summarized a systemic 
serum metabolic signatures for lung cancer includ-
ing enhanced glycolysis, glutaminolysis, and glu-

coneogenesis, together with suppressed TCA 
cycle and reduced lipid catabolism, which were 
presented at initial disease stages and could be 
related to known cancer biochemical hallmarks 
[81]. Fan et al. used [U-13C]-glucose as a tracer for 
13C isotopomer-based metabolomic analysis of 
lung cancer by NMR and gas chromatography-
mass spectrometry (GC-MS). The results revealed 
accelerated glycolysis and altered capacity of the 
TCA cycle and anaplerotic pyruvate carboxylation 
pathways in tumor tissues [90].

Due to its nature of noninvasiveness, low cost, 
and minimal time demand, measurement of uri-
nary biomarkers using NMR has been demon-
strated for the detection of cancers of urological 
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Fig. 4 Representative 600 MHz 1H spectra of intact thy-
roid tissue (T) and tissue aqueous extracts (E) originating 
from healthy adjacent thyroid tissue (T1, E1), benign thy-
roid lesion (T2, E2), and malignant thyroid lesion (T3, 
E3). Identities: 1, lipid; 2, isoleucine; 3, leucine; 4, valine; 
5, lactate; 6, threonine; 7, alanine; 8, lysine; 9, arginine; 
10, acetate; 11, glutamate; 12, methionine; 13, glutamine; 
14, aspartate; 15, glutathione (GSH); 16, choline; 17, 

phosphocholine (PC); 18, glycerophosphocholine (GPC); 
19, taurine; 20, scyllo-inositol; 21, myo-inositol; 22, gly-
cine; 23, phosphoethanolamine (PE); 24, inosine; 25, 
tyrosine; 26, phenylalanine; 27, histidine; 28, fumarate; 
29, uracil; 30, guanosine; 31, hypoxanthine; 32, xanthine; 
33, formate; 34, acetamide; 35, succinate; 36, citrate; 37, 
uridine; 38, U1. (Reproduced with permission from Yuan 
Tian 2015 [30])

NMR-Based Metabolomics in Cancer Research



208

system including kidney [91], prostate [92], and 
bladder [93, 94] and non-urological cancers 
including colon [32], breast [85], thyroid [87], 
ovary [95], lung [85], liver [96], and pancreas [53]. 
Srivastava et al. demonstrated that urinary taurine 
is a potential biomarker of bladder cancer by using 
1H NMR spectroscopy [97]. It is noteworthy that 
the alterations of certain urinary metabolites, the 
products of mammalian- microbial “co-metabo-
lites” such as hippurate, indoxyl sulfate, and phen-
ylacetylglycine, might be associated with the 
modulation of activity or population of intestinal 
bacteria [48, 98]. Lee et al. identified 25 urinary 
metabolites involved in amino acid metabolism, 
especially aromatic or sulfur amino acids, and bio-
active nutrients, such as isoflavone and riboflavin, 
which were significantly related to the activities of 
gut microflora by comparing pseudo germ-free 
rats to conventionally raised rats [99]. In this 
regard, focusing on those potential urinary bio-
markers would lead to a better understanding of 
host and bacterial processes aiding in the develop-
ment of therapeutic treatment for cancers.

3.2  Stool Samples

Metabolomic analysis of stool samples has been 
applied to a wide range of diseases, especially for 
CRC cancer [100, 20, 101]. In one of the first 
fecal metabolomic studies of CRC, Bezabeh 
et al. analyzed the metabolomes of stool samples 
from 500 CRC patients using 1H NMR coupled 
with statistical classification strategy and demon-
strated that 1H NMR-based stool metabolomic 
analysis has the potential to be used as an effec-
tive screening tool in aiding diagnosis for CRC 
[100]. Lin et al. used 1H NMR-based metabolo-
mics to analyze fecal metabolites from CRC 
patients and identified distinct metabolites 
involved in the disruption of normal bacterial 
ecology, malabsorption of nutrients, and 
increased glycolysis and glutaminolysis [20]. 
The fecal metabolic profiles of healthy controls 
can be distinguished from CRC patients, even in 
the early stage (stage I/II), highlighting the poten-
tial utility of NMR-based fecal metabolomic fin-
gerprints as predictors for early diagnosis of CRC 
[20]. Notably, stool metabolomic analysis could 
provide a wide array of information that reflects 

the gut microbial and host co-metabolism. 
Studying the metabolomes of the host and micro-
biome is of increasing interest in the field of gas-
trointestinal cancer research with metabolomics 
and high-throughput sequencing approaches 
such as 16S rRNA gene sequencing and metage-
nomics [101–103].

3.3  Cell Line Models

A metabolomic study of cell line models is valu-
able for system-level analysis and biological sys-
tem modeling. With perturbation of gene 
expression, such as metabolic enzymes, we can 
perform differential metabolomic analysis to 
reveal the global alterations in metabolites and 
related metabolic pathways. Cellular sample har-
vesting and processing is critical for harnessing 
high-quality metabolomic analysis results. From 
cell culture to NMR tubes, many important sam-
ple preparation steps, such as culture medium 
washing, cell scraping, quenching in liquid nitro-
gen, cell lysis, and dual phase extraction proce-
dure of metabolites are required [104].

Nittoli et  al. studied the effects of alpha- 
zearalenol (α-zol) on the metabolomic profiles of 
an estrogen-positive breast cancer cell line, 
MCF-7, and estrogen-negative breast cancer cell 
line, MDA-MB-231. They evaluated cell cycle 
progression, levels of reactive oxygen species 
(ROS), and metabolomic profiling of MCF-7 and 
MDA-MB-231 cells before and after 72-h treat-
ment using 1H-NMR techniques. The results 
showed that α-zol was able to increase the protein 
biosynthesis as well as lipid metabolism in 
MCF-7 cells and, hence, to induce estrogen- 
positive breast cancer progression [105]. Ilaria 
et  al. reported the analysis of the endo- 
metabolomes of human colon cancer cells 
(HCT116) by NMR and investigated DNA 
G-quadruplex ligands as novel anticancer drugs. 
The study demonstrated an optimized protocol 
for NMR-based metabolomic analysis of adher-
ent mammalian cell lines and its application to 
validate anticancer treatment [106]. The study of 
cell lines by NMR-based metabolomics repre-
sents a powerful tool for understanding how local 
metabolism and biochemical pathways are influ-
enced by external or internal stimuli.
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3.4  Cancer Tissues

Cancer tissue metabolomics is a useful tool for 
studying the abnormal metabolism of human 
malignancies including CRC [31], thyroid cancer 
[30], liver cancer [27], breast cancer [85], pros-
tate cancer [107], bone cancer [108], gastric can-
cer [109], brain cancer [109], and lung cancer 
[52]. There are different methods for metabolite 
determination in cancer tissues by NMR.  The 
main ones include in  vivo magnetic resonance 
spectroscopy, liquid high-resolution proton NMR 
spectroscopy, and high-resolution magic angle 
spinning (HRMAS 1H-NMR). Each of the above 
methods has its own advantages and disadvan-
tages and complements each other. The combined 
use of these methods allows a more comprehen-
sive understanding of the various physiological 
and biochemical pathways involved in cancer ini-
tiation and progression.

Schmahl et al. systematically analyzed NMR- 
based metabolic profiles of urine, serum, feces, 
and pancreatic tissues from mice with pancreatic 
tumors and identified the potential biomarkers 
including decreased 3-indoxylsulfate, benzoate, 
and citrate in urine; decreased glucose, choline, 
and lactate in blood; and decreased phenylala-
nine and benzoate and increased acetoin in fecal 
extracts [53]. Recently, HRMAS 1H-NMR anal-
ysis of intact tissue metabolic profiles ex  vivo 
has shown great potential for cancer research 
due to the nondestructive nature of this tech-
nique [27, 30, 31]. Tian et  al. analyzed the 
metabolomic signatures of 50 human CRC tis-
sues and their adjacent noninvolved tissues 
(ANIT) using HRMAS 1H-NMR spectroscopy 
and demonstrated that tissue metabolic pheno-
types not only discriminated CRC from ANIT 
but also distinguished low-grade tumors (stages 
I–II) from high-grade ones (stages III–IV) with 
high sensitivity and specificity [31]. Moreover, 
Tian et  al. used 1H NMR to analyze the meta-
bolic profiles of thyroid tissues and their extracts 
from thyroid lesion patients. The findings 
showed that thyroid lesions are accompanied 
with disturbances of multiple metabolic path-
ways, including alterations in energy metabo-
lism (glycolysis, lipid, and TCA cycle), protein 
turnover, nucleotide biosynthesis, as well as 
phosphatidylcholine biosynthesis [30].

4  Challenge and Innovation

NMR-based metabolomics has shown its 
strengths and played an important role in cancer 
research. However, several aspects of NMR- 
based metabolomic analysis remain to be 
improved, including sample preparation, data 
processing and analysis, and detection sensitiv-
ity. Innovative methods are being developed to 
address these challenges to achieve a more com-
prehensive metabolomic analysis.

4.1  Sample Preparation

Conventional NMR sample tubes have certain 
limitation for metabolomic analysis of trace 
amounts of samples, as these tubes are generally 
5 mm in diameter and their sample size require-
ment is at least 500 μl. For small volume of clini-
cal samples, NMR detection may not be feasible 
while diluted samples might not reach the NMR 
detection limit. Even if a nuclear magnetic tube 
with diameters of 3 and 1.7 mm is used, the cost 
is high, and sample recovery and NMR tube 
cleaning are difficult. In addition, for samples 
with high salt concentration or viscosity, the use 
of existing conventional nuclear magnetic tubes 
directly affects NMR signal collection, affecting 
the accuracy of NMR analysis. Therefore, a vari-
ety of NMR tubes were developed and dedicated 
to microscale samples to ensure NMR analysis of 
biological samples without sample dilution [110].

4.2  High-Resolution Microcoil 
NMR

For scarce samples of natural products, impuri-
ties or degradants of pharmaceuticals, or disease 
tissues, conventional 5 mm probes are not well 
suited for the task of acquiring NMR data [111]. 
The use of microcoil probes is an effective means 
to increase NMR sensitivity of particularly mass 
or volume-limited samples. Based on the princi-
ple of reciprocity, described by Hoult and 
Richards [112], it has been shown that the sensi-
tivity of an NMR coil is inversely proportional to 
its diameter for a constant length-to-diameter 
ratio [113]. As shown in Eq.  1 [114], ω0 is the 
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Larmor frequency, B1 is the magnitude of the 
oscillation magnetic field produced by the radio 
frequency pulse per unit of current i, Vs is the 
sample volume, and Vnoise is the noise of the 
receiver coil and associated circuits. The term 
B1/i is referred to as the quality of an NMR probe.

 
S N

B

i
V

V

s

/ =η
ω0

2 1

noise  
(1)

For a solenoidal coil, the term B1/i from Eq. 1 
can also be defined as below:

 

B

i

n

d h d

1 0

2
1

=
+[ ]
µ

/
 

(2)

As shown in Eq. 2, μ0 is the permeability of 
free space, n is the number of turns in the solenoid 
coil, h is the coil length, and d is the coil diameter. 
From Eq. 2 [115], it can be concluded that, for a 
constant h/d ratio, the coil sensitivity increases as 
diameter decreases. This is the fundamental prem-
ise that has driven the development of solenoidal 
microcoil NMR probes for improving sensitivity 
in measurements of mass or volume-limited sam-
ples, which indicates that when the detection coli 
is sufficiently miniaturized, the sample volume 
can even be reduced to nanoliters.

Another improvement in the signal-to-noise 
ratio (S/N) level has been achieved by cooling the 
coil, producing cryogenic coils. As shown in 
Eqs. 3 and 4 [116], the most important factor in 
determining the S/N or the sensitivity of an NMR 
experiment in an NMR probe, insofar as the hard-

ware itself is concerned, is the coil temperature, 
Tc [111]. Temperature control is a major contrib-
utor to Vnoise reduction. These equations show the 
inversely proportional relationship of sensitivity 
and temperature.
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The parameters and experimental results are 
summarized for different probes in Table 1 [117]. 
For a conventional room temperature (RT) probe, 
a 3 mm probe will result in a 40% increase in mass 
sensitivity compared with a 5  mm conventional 
probe, while a 1.7  mm microcoil probe demon-
strates a twofold increased sensitivity over a 5 mm 
probe and a 1 mm probe by fourfold increased sen-
sitivity. In addition, a 5  mm cryoprobe shows a 
fivefold enhancement over its conventional coun-
terpart and a 1.7 mm cryoprobe shows a mass sen-
sitivity almost 20-fold higher than a 5  mm RT 
probe. The development of microcoil and cryo-
probes will significantly promote the applications 
of NMR-based metabolomics [111].

4.3  LC with NMR

Improved NMR detection efficiency on a small 
amount of sample can be achieved by the 
online combination of liquid separation tech-
niques with NMR.  For example, solid-phase 
extraction (SPE), capillary electrophoresis 
(CE), liquid chromatography (LC), and capil-

Table 1 Comparison of the detection sensitivity of various probes [117]

Probe typea

Total  
volumeb (mL)

Relative  
volume (%)

Typical  
SNRc at 500 MHz

Scaled SNRd  
SNR/vol.

Relative  
SNR (%)

5.0 mm RT 0.55 100.0 900 900.0 100.0
3.0 mm RT 0.19 34.5 430 1244.7 138.3
1.7 mm RT 0.03 5.4 100 1833.3 203.7
1.0 mm 0.005 0.9 34 3740.0 415.5
5.0 mm cryo 0.55 100.0 4500 4500.0 500.0
1.7 mm cryo 0.035 6.4 900 14142.9 1571.4

aRT room temperature
bTotal volume refers to the optimal filling volume of samples
cSNR values shown are typical performances of such probes and do not represent specifications
dScaled SNR represents the mass sensitivity of a probe
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lary electrochromatography (CEC) can be 
combined for metabolomic analysis of small 
amounts of samples. In fact, LC-NMR origi-
nated in the 1980s [118], but LC-NMR is far 
less popular than LC-MS.  LC-NMR requires 
to overcome two major difficulties. First is the 
low detection sensitivity of NMR and the sec-
ond is that LC elution solvent causes serious 
interference in NMR detection. A schematic 
diagram of an LC-NMR system is shown in 
Fig. 5 [119]. After decades of development of 
NMR instruments and experimental methods, 
higher field strength NMR instruments have 
emerged, with more advanced NMR probes 
designed, and more sophisticated pulse 
sequence technology developed. These 
advances have largely solved the problems of 
low detection sensitivity and solvent compati-
bility with detection in LC-NMR, which has 
led to the rapid increase in LC-NMR applica-
tions. LC-NMR can be used for the identifica-
tion of drug metabolites, including polar or 

unstable metabolites. Spraul et al. lyophilized 
the urine samples of an experimenter taking 
the anti- inflammatory drug ibuprofen and then 
identified its metabolites using HPLC-NMR 
[120]. Later, the same method has been used 
to analyze the second- stage metabolites of 
ibuprofen in animal urine. Akira et  al. have 
used LC-NMR to identify a tauric acid metab-
olite in a hereditary hypertensive rat and found 
that this hypotensive-related taurine metabo-
lite was more abundant in the urine of heredi-
tary hypertensive rats than normal rats [121].

4.4  Optimization of Data Processing

Despite the fact that high field strength and 
microcoil probes are effective to improve NMR 
analysis, data processing is also critical for obtain-
ing meaningful results with NRM-based metabolo-
mic analysis. In NMR spectra, baseline correction 
is used to remove low-frequency artifacts or altera-

Fig. 5 Instrument configuration for analytical LC-NMR analysis
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tions caused by experimental and instrumental 
variation [122–124]. After baseline correction, the 
application of high-frequency filters may be neces-
sary to remove electronic noise present in the data 
that is generated by the measurement equipment 
[125]. In 2013, Bin Jiang et al. developed an effec-
tive approach for simultaneous noise and artifact 
suppression in NMR spectroscopy [126]. This is 

called NASR (noise and artifact suppression using 
resampling), based on resampling, a category of 
statistical learning methods that uses subsets to 
derive robust estimates of statistical parameters 
[127]. NASR is an effective approach for suppress-
ing both noise and nonuniform sampling artifacts 
and for enhancing the S/N ratio in 1D and 2D-NMR 
spectroscopy [126] (Fig. 6).

Fig. 6 NASR processing procedure (Reprinted with per-
missions from [126]. Copyright (2013) American 
Chemical Society). Taking the conventional sampled 
NMR experiment for example, an original spectrum is 
obtained by fast Fourier transformation (FFT) on the raw 
time domain data. Then the obvious strong signal peaks 
are removed from the original spectrum, and saved as an 
individual file aside, to prevent inducing strong artifacts in 
the testing spectra. By inverse fast Fourier transformation 
(IFFT), the sheared spectrum is transformed into time 
domain, called sheared time domain data. The sheared 

time domain data should have the same size with the raw 
time domain data before FFT, to prevent information loss 
caused by IFFT. A series of sub-datasets are generated by 
randomly picking 50–65% data points from the sheared 
time domain data and replacing the missing ones with 
zero or compensating them using a gridding algorithm 
[132, 133]. Once the sub- datasets are generated, they are 
transformed into frequency domain by FFT to obtain a 
series of testing spectra. All testing spectra must have the 
same size with the original spectrum
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In addition, NMR spectra of biofluids contain 
many background signals that could be noisy and 
overlapped, due to the existence of hundreds of 
metabolites [128]. Under these circumstances, 
the identification and quantification of certain 
metabolites is a complicated task. Therefore, pre-
cise data processing and statistical analysis are 
required to obtain useful and reliable information 
from these metabolic profiles. Nowadays, there 
are many software programs available for statisti-
cal analysis of the metabolomic NMR datasets. 
In 2009, MetaboAnalyst was first released, which 
is a very popular interface for processing NMR 
data [75]. The same authors also developed 
another data analysis software called 
MetaboMiner to identify metabolites in 2D-NMR 
spectra [129]. In 2011, MetaboLab was devel-
oped to facilitate NMR data processing by pro-
viding automated algorithms for the processing a 
series of spectra in a reproducible fashion [130]. 
In addition, MetaboHunter is a Web server appli-
cation aimed at identifying metabolites in 
1H-NMR spectra in an automated manner [131]. 
These powerful analytical tools have greatly pro-
moted the applications of NMR-based 
metabolomics.

5  Conclusion

In comparison with MS, conventional NMR 
suffers from relatively low sensitivity. 
However, the new advances, including high 
field instruments, microcoil and cryoprobes, 
LC-NMR, and data analysis tools, have been 
made to improve NMR sensitivity for metabo-
lomic analysis. NMR is user independent, 
highly reproducible, nonselective, and nonde-
structive and allows to analyze metabolite 
structure, concentration, and even metabolic 
flux, particularly the identification and quan-
tification of unknown metabolites. Owing to 
the complexity of biological and clinical sam-
ples, a combination of NMR and MS may be 
required for a more comprehensive metabolo-
mic analysis, facilitating our in-depth under-
standing of the metabolic reprogramming in 
cancers.
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Regulation of Glycolysis in Head 
and Neck Cancer

Sibi Raj, Ashok Kumar, and Dhruv Kumar

1  Introduction

Head and neck squamous cell carcinoma 
(HNSCC) is currently the sixth leading cancer 
worldwide [1]. Most head and neck cancers arise 
in the epithelial cells of the oral cavity, larynx, 
oropharynx, and hypopharynx mainly associated 
with the lifestyle risk factors like alcohol and 
tobacco [2, 3]. Several strains of human papil-
loma virus are also known to induce HNSCCs in 
human population [4]. Metabolic reprogramming 
in HNSCC, specifically glucose metabolism, is a 
key feature in oncogenesis [5]. A classic example 
of metabolic reprogramming in cancer cells was 
explained by Otto Warburg in the 1920s with the 
term aerobic glycolysis [6]. Majority of cancer 
cells depend on high rate of glycolysis because of 
impaired mitochondria for their survival and 
growth [7]. The mitochondrial damage and 
hypoxia condition in cancer cells lead to activa-
tion of glycolytic genes such as glucose trans-
porter-1 and hexokinase-II which alter the normal 
cellular metabolism [8, 9]. Under normal condi-

tions cells undergo aerobic glycolysis and pro-
duce two adenosine triphosphates (ATPs), and 
the end-product of glycolysis, pyruvate, is uti-
lized in mitochondrial respiration (OXPHO) to 
produce 36 ATPs [10, 11]. While the HNSCCs 
exposed to hypoxia increase the import of glu-
cose from the tumor microenvironment so that 
the cancer cells could maintain a balance of 
energy and aggressively perform glycolysis, it 
generates less ATPs than OXPHOS [12].

The conversion of glucose into pyruvate by 
various glycolytic enzymes in HNSCC helps the 
cancer cells to meet major cellular needs by build-
ing intermediates for anabolic reactions, such as 
the formation of fatty acids, amino acids, and 
nucleotides. In glycolysis, the key reactions cata-
lyzed by the enzymes hexokinase, phosphofructo-
kinase, and pyruvate kinase are majorly 
upregulated in cancer cells, leading to the genera-
tion of intermediate metabolites for the biosyn-
thetic pathways such as pentose phosphate 
pathway, serine biosynthesis, glutaminolysis, and 
glyceraldyhyde-3phosphate pathway for the pro-
duction of amino acids, nucleotides, and lipids for 
the growth and survival of cancer cells [13, 14].

Several mutations in genes such as EGFR, 
NOTCH, PI3K, PTEN, and Akt have been com-
monly reported in HNSCC.  Mutations in these 
pathway create abnormal metabolic and mito-
genic signaling in HNSCC [15]. Tweardy et  al. 
reported that EGFR is most commonly 
 overexpressed and mutated in HNSCC, and 91% 
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of HNSCC have increased levels of transforming 
growth factor-α (TGF-α), an EGFR ligand [16]. 
EGFR-VIII, a constitutively active mutant, 
increased cell movement and invasion. Activated 
EGFR leads to activation of several downstream 
signaling pathways which include RAS/RAF/
MEK (MAPK), PI3K/Akt, and JAK/STAT-3 
[17]. Studies by Makinoshima et al. showed that 
EGFR signaling induces increased glucose 
metabolism by producing metabolites in glycoly-
sis pathway and pentose phosphate pathway 
(PPP) by regulating glucose transport via GLUT3 
expression [18]. Mutation in p53 gene is one of 
the first detected and highly found in 50–80% 
cases of HNSCC.  P53 controls the cellular 
metabolism by regulating glycolysis and mito-
chondrial respiration by transcriptional regula-
tion of its downstream gene TP53-induced 
glycolysis regulator (TIGAR) [19]. TP53 muta-
tion is found in high rates in HNSCC and is asso-
ciated with the increased use of tobacco and 
alcohol leading to increased risk of progression 
to cancer [20, 21]. Studies by Agrawal et al. [22] 
showed from whole-exome sequencing that 
NOTCH 1 gene as the second most mutated gene 
in HNSCC [22]. Recent studies have shown that 
60–70% of HNSCC patients have aberrant 
NOTCH pathway. Hyper-activated Notch signal-
ing upregulates glycolysis by the activation of the 
PI3K/Akt serine/threonine kinase pathway, 
whereas hypo-activated NOTCH signaling weak-
ens the mitochondrial activity and induces gly-
colysis in a p53-dependent manner [23]. Genetic 
aberrations in PI3K are most common in 
HNSCC. The PI3K/Akt pathway is a growth fac-
tor signaling network which can regulate tumor 
cell metabolism [24]. Dysregulated PI3K/Akt 
pathway enhances the glucose catabolism via the 
localization of hexokinase to the mitochondrial 
membrane and activating citrate lyase, a major 
enzyme required for fatty acid synthesis. Elstrom 
et  al. reported that activated Akt targets certain 
downstream targets such as mTOR which affects 
the cell survival and proliferation and cytoskele-
tal organization in HNSCC [25].

Mutations in Ras gene have been found in 
4–5% of HNSCC cases [22]. Phosphorylation of 

Ras gene leads to the activation of downstream 
signaling factors like MEK and ERK which tar-
get genes that are responsible for cell growth and 
survival [26]. It can also activate the PI3K signal-
ing cascade.

Seiwert et  al. [27] reported that MET and 
HGF are overexpressed in 80% of HNSCC cases 
[27]. MET overexpression in HNSCC leads to 
enhanced cell motility, angiogenesis, and inva-
sion/metastases [28, 29]. Kumar et al. [5] reported 
that c-Met/HGF signaling induces metabolic 
alterations in HNSCC cells via the cross signal-
ing through stromal cells such as CAFs [5].

STAT-3 is reported to be constitutively acti-
vated in HNSCC. STAT-3 pathway triggers the 
cellular proliferation and suppresses apoptosis 
in HNSCC [30]. Phosphorylation of JAKs can 
occur directly by receptor tyrosine kinases 
(RTKs) such as EGFR subsequently activating 
RAS and PI3K pathways. JAK/STAT pathway 
promotes cell growth and survival, angiogene-
sis, and suppression of immune supervision. 
STAT proteins are important factors that medi-
ate EGFR signaling which can trigger increased 
glycolysis in cancer cells via upregulation of 
key enzymatic factors involved in glycolysis 
[31].

Over the past few decades there has been 
growing interest in tumor microenvironment and 
to know its role in tumor progression. The mutual 
signaling between tumor and stroma has been 
reported in several cancers and is known to facili-
tate tumor metabolism, growth invasion, and 
resistance [32].

Currently treatment of HNSCC is typically 
determined in a multifaceted way, with the histo-
logical subtype, subsite, staging information, 
patient fitness, baseline swallow, and airway 
function guiding management decisions. Patients 
with early stage diseases are treated with surgery 
or radiotherapy based on primary tumor subtype 
with 70–90% cure rate.

Understanding the oncogenic factors that lead 
to metabolic alterations in HNSCC would pave a 
novel way for HNSCC treatment by targeting the 
key factors involved in glycolysis and other met-
abolic pathways.
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2  Glucose Metabolism 
in HNSCC

Since Otto Warburg in the 1920s demonstrated 
that cancer cells are exceptionally glycolytic when 
compared to normal cells, it has been clear that the 
metabolism in cancer cells differ from that of nor-
mal cells [33]. This phenomenon was later known 
as aerobic glycolysis or Warburg effect (Fig.  1). 
Tumor cells undergo a metabolic shift from mito-
chondrial oxidation to glycolysis generating two 
molecules of pyruvate [34]. Pyruvate generated is 
converted to lactate by the enzyme lactate dehy-
drogenase A (LDH-A). Fantin et al. [35] reported 
that the NAD+ generated through the transforma-
tion of pyruvate to lactate helps in maintaining the 
glycolytic flux in cancer cells [35].

The possible reasons why cancer cells highly 
depend on glycolysis is: (1) ATP generation 
through glycolysis is much faster than OXPHOS; 
(2) increased glycolytic flux produce enough 
intermediates for the biosynthesis of amino acids, 
nucleic acids, lipid bilayers, and fatty acids for the 

cell growth; and (3) NADPH produced by pentose 
phosphate pathway (PPP) maintains glutathione 
levels in cells, emerging in the resistance of can-
cer cells to chemotherapeutic molecules [36].

The advantageous use of glycolysis by cancer 
cells involves defects in mitochondria, adaptation 
to hypoxic tumor microenvironment, and abnor-
mal signaling and expression of enzymes. The 
known key players that are involved in glucose 
metabolism in HNSCC are GLUT-1, HK-II, HIF- 
1, MCTs, TKTL-1, PKM2, and PFKFB [37].

2.1  Hypoxia Inducible Factor-1

Hypoxia inducible factor-1 (HIF-1) is a transcrip-
tion factor that responds to decreased oxygen 
availability in cancer cells (hypoxia) [38]. It is a 
dimer made up of alpha and beta subunit. At nor-
moxic conditions, the alpha subunit of HIF is 
hydroxylated at conserved prolyl residues by 
HIF-prolyl hydroxylases and subsequently is 
ubiquitinated by the VHL E3 ubiquitin ligase [9]. 
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Fig. 1 Glycolysis in normal and cancer cells. Normal 
cells metabolize glucose to pyruvate followed by mito-
chondrial oxidation of pyruvate to CO2 through the TCA 
cycle and the oxidative phosphorylation process, generat-
ing 36 ATPs per glucose. O2 is essential as it is required as 
the final acceptor of electrons. When O2 is limited, pyru-

vate is metabolized to lactate. Cancer cells metabolize 
most glucose to lactate despite the availability of O2 (the 
Warburg effect), forwarding glucose metabolites from 
energy production to anabolic process to accelerate cell 
proliferation, at the expense of generating only two ATPs 
per glucose
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Due to uncontrolled proliferation of cancer cells, 
hypoxic conditions are developed leading to the 
activation of HIF-1 alpha which upregulates sev-
eral genes that include glycolytic enzymes such 
as hexokinase, phosphoglycerate kinase, lactate 
dehydrogenase A (LDH-A), and glucose trans-
porters (GLUT-1, GLUT-3) [39].

Activation of HIF-1  in tumor cells can pro-
mote the uptake of glucose by overexpression of 
the glycolytic enzymes such as HK-II, glucose 
transporters, and LDH-A, resulting in increased 
glycolysis in tumor cells [40].

2.2  Glucose Transporter-1

Glucose is taken inside the cells with the help of 
solute transporters GLUTs. GLUT-1 is encoded 
by SLC2A1 gene which facilitates the transport 
of glucose across the plasma membrane of mam-
malian cells [41]. Kunkel et  al. showed that 
uncontrolled proliferation of tumor cells leads to 
hypoxic condition in HNSCC leading to activa-
tion of GLUT transporters [42]. Overexpression 
of GLUT-1 and GLUT-3 is affiliated with many 
cancers including head and neck cancer. Increased 
expression of GLUT-1 was reported in HNSCC 
with high uptake of FDG indicating increased 
high rate of glycolysis [42].

2.3  Hexokinase-II

The primary enzyme in glucose metabolism is 
hexokinase-II (HK-II) which catalyzes the 
reaction of glucose phosphorylation to glucose- 
6- phosphate. Phosphorylation of glucose by the 
enzyme HK-II is one of the rate limiting steps 
in glycolysis which is upregulated in HNSCC 
[43, 44]. Recent study from Yao et al. [45] with 
Limonin showed that suppression of HK-II 
activity led to inhibition of tumor glycolysis in 
hepatocellular carcinoma, demonstrating that 
glycolysis inhibition was attributed to the 
decrease of HK-II activity [45]. These studies 
demonstrate that HK-II plays a key role in 
tumor progression by elevating glycolysis in 
cancer cells.

2.4  Lactate Dehydrogenase A

Lactate dehydrogenase A regulates glycolysis by 
catalyzing the final step of anaerobic glycolysis, 
that is, conversion of pyruvate to lactate, along 
with oxidation of NADH to NAD+ [46, 47]. LDH 
consists of five active isoenzymes which are tet-
rametric metabolic enzymes made of two sub-
units M and H encoded by Ldh-A and Ldh-B, 
respectively, in human tissue. In cancer cells, 
NAD+ released is utilized to sustain the glyco-
lytic flux to different pathways [35, 48].

2.5  Pyruvate Kinase M2

The third committed step of glucose metabolism 
is the conversion of phosphoenol pyruvate (PEP) 
to pyruvate by enzyme pyruvate kinase (PK). 
Cancer cells utilize diverse mechanisms to ele-
vate the flux of glucose in glycolysis except the 
last step [49]. Last step is commonly attenuated 
in cancer cells. Attenuation is mainly achieved by 
using PKM2 to catalyze the reaction which is a 
low affinity isoform of pyruvate kinase. There are 
mainly four isoforms of pyruvate kinase in mam-
malian cells which are PKM1, PKM2, PKR, and 
PKL [49]. The attenuation of this catalytic reac-
tion averts metabolites into branching pathways 
such as the pentose phosphate pathway and ser-
ine biosynthesis pathway to produce metabolic 
intermediates to elevate the anabolic reactions 
required for cell growth and proliferation [50].

2.6  Monocarboxylate Transports

The glycolytic pathway is mostly upregulated in 
most cancer cells which results in the production 
of excess lactic acid (acidic) in the tumor micro-
environment. Monocarboxylate transports 
(MCT) secrete the lactate outside the tumor 
microenvironment and prevent highly acidic 
environment [51]. In cancer cells MCT-1 acts as 
a unidirectional lactate transporter while MCT-4 
is a bidirectional transporter [52]. Ullah MS et al. 
[53] has reported that MCT-4 is overexpressed in 
most of the cancer cells with high glycolytic 
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activity [53]. MCTs play an important task in the 
metabolic stability of the tumor microenviron-
ment; they are responsible for the maintenance of 
glycolytic and acid-resistant phenotypes thus 
granting the malignant behavior of cancer cells 
[54]. MCTs manage high rate of glycolysis by 
facilitating lactate export and are also involved in 
pH regulation via co-transport of protons.

3  Signaling Pathways 
in HNSCC Glucose 
Metabolism

Mammalian cells start cell growth by entering 
cell cycle which requires receptor-mediated sig-
nal transduction initiated by extracellular growth 
factors. The beginning of cell growth and divi-
sion initiates a metabolic requirement for suffi-
cient carbon, nitrogen, and free energy for the 
synthesis of new proteins, lipids, and nucleic 
acids required by a proliferating cell. Aerobic 
glycolysis in tumor cells is regulated by abnor-
mal signaling pathways, including PI3K/Akt, 
EGFR, NOTCH, and c-Met.

3.1  Akt Signaling

Amornphimoltham et  al. reported that Akt is 
overexpressed in 60% cases of HNSCC with ele-
vated rate of glycolysis [55]. Akt signaling 
employs immediate influence on glycolysis in 
cancer cells by various mechanisms. Akt has 
been reported to localize GLUT-1 to the plasma 
membrane and regulate hexokinase expression 
and mitochondrial expression [56]. Akt indirectly 
activates the enzyme phosphofructokinase-1 
(PFK-1), which is the one of the rate controlling 
enzymes in glycolysis pathway. It activates 
PFK-1 by administering phosphorylating phos-
phofructokinase- 2 (PFK-2), which ends in the 
production of fructose-2,6-bisphosphate 
(F-1,6P2), the most powerful allosteric activator 
of PFK-1 [57]. These findings were supported by 

the activity of Akt correlated with the increase in 
glycolysis in glioblastoma cells, concluding that 
Akt plays a major role in upregulation of glycoly-
sis in cancer cells [58].

3.2  EGFR Signaling

Epidermal growth factor receptor (EGFR) is a 
transmembrane cell surface receptor that 
belongs to the human epidermal growth factor 
receptor family of tyrosine kinases. Increased 
expression of EGFR occurs in more than 90% of 
HNSCC [59]. EGFR VIII is the most common 
mutation seen in 42% of HNSCC cases. 
Activation of EGFR induces translocation of 
PKM2 into the nucleus through the EGFR/Erk-
1/2 pathway. Erk-2 which is present in the 
downstream of EGFR phosphorylates PKM-2 at 
ser-37, which in turn is localized to the nucleus. 
The nuclear PKM-2 contributes to the Warburg 
effect in cancer cells [60]. PKM-2 upregulates 
the glycolytic genes GLUT-1 and LDH-A. 
Studies by Babic et  al. revealed that in brain 
cancer, activated EGFRVIII mutation results in 
enhanced glycolysis by promoting glycolytic 
gene expression [61].

3.3  HIF-1 Signaling

Hypoxia-induced factor-1 (HIF) is a transcription 
factor, having two subunits HIF-1α and HIF-1β. 
HIF-1α is an oxygen sensitive subunit and acti-
vated under hypoxia conditions [9]. Under nor-
moxic conditions HIF-1α is negatively regulated 
by von Hippel-Lindauprotein (pVHL), a tumor 
suppressor protein resulting in subsequent degra-
dation of HIF-1α by ubiquitination [62].

In cancer cells due to rapid proliferation there 
is lack of oxygen availability in the cell environ-
ment which subsequently activates HIF-1α, 
which results in the activation of glycolytic genes 
like GLUT-1 and hexokinase-II mediating high 
levels of glucose metabolism in cancer cells [39].
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3.4  NOTCH Signaling

Mammals possess four different notch recep-
tors, NOTCH-1, NOTCH-2, NOTCH-3, and 
NOTCH- 4, which are single transmembrane 
domain receptors consisting of an extracellular 
domain (NECD), transmembrane domain 
(TD), and an intracellular domain (NICD) 
[63]. NOTCH-1 is the second most mutated 
gene found in 10–15% of HNSCC tumors [64]. 
The effect of NOTCH signaling on hepatocytic 
glycolysis has been reported to be majorly 
arbitrated via synergy of NICD with transcrip-
tion factor forkhead box protein O1 (FOXO1) 
[65]. FOXO1 consequently activates the tran-
scription of the catalytic subunit of glucose-
6-phosphatase and phosphoenol pyruvate 
carboxy kinase, a rate- limiting enzyme 
involved in glycolysis. Elevated NOTCH sig-
naling leads to increased glycolytic phenotype 
via PI3K/Akt signaling pathway in several 
types of cancer cells [23].

3.5  JAK/STAT Signaling

Janus kinases (JKs) belong to a family of non- 
receptor tyrosine kinases which gets activated 
by several cytokine bound receptors. Cytokine 
receptors do not contain intrinsic tyrosine kinase 
activity but is activated by transphosphorylation 
through constantly bound JAK molecules. 
Activation of cytokine receptors phosphorylates 
and dimerizes the STAT proteins and translo-
cates them to the nucleus where they act as tran-
scription factors. Ras-MAPK and PI3K-Akt 
pathways are also activated by JAKs. Increased 
levels of STAT-3 are found to be associated  
with patients having tobacco-induced 
HNSCC.  Increased STAT-3 levels have been 
reported in HNSCC tumors which are attributed 
to increase in Ras and EGFR signaling. STAT-3 
activation in tumor cells support cell survival 
and growth, angiogenesis, and suppression of 
immune system.

3.6  Hepatocyte Growth Factor/c- 
Met Signaling

Hepatocyte growth factor (HGF) is a protein 
secreted by mesenchymal stem cells that stimulates 
cell growth, cell motility, and morphogenesis 
through its receptor c-Met [66]. In HNSCC, HGF 
is mainly secreted by the cancer-associated fibro-
blasts in the microenvironment. c-Met is a receptor 
tyrosine kinase encoded by the proto- oncogene 
MET located on the long arm of chromosome 7 at 
position 7q31.2 [67]. Overexpression of c-Met pro-
tein is the mostly seen alteration in about 90% of 
the HNSCC cases. Knowles et al. had reported that 
in HNSCC the abnormal c-Met signaling contrib-
utes to the tumor progression and promotes the 
metastasis of HNSCC tumor cells to distant organs 
[28]. Studies by Kumar et al. revealed that HGF/c-
Met axis prompts the morphogenesis of epithelial 
cells via EMT [68]. HGF activation by c-Met 
results in reduced E-cadherin expression in 
HNSCC cells which leads to the translocation of 
the protein to the cytoplasm and reduced expres-
sion is associated with distant metastasis and recur-
rent disease [69]. The HGF/c-Met pathway induces 
cell invasion and migration via multiple mecha-
nisms among which is increased expression of 
matrix metalloproteinases (MMP) in HNSCC. 
MMPs are proteases that are accountable for the 
degradation and remodeling of extracellular matrix. 
In HNSCC cancer cell lines exposed to HGF stim-
ulate increased expression of MMP-2 and MMP-9, 
resulting in the degradation of extracellular matrix 
and increased invasion [70]. Lui et al. had reported 
that HGF/c-Met signaling promotes tumor pro-
gression and cell survival by TP53-induced gly-
colysis and apoptosis regulator (TIGAR) [71]. 
Targeted inhibition of c-Met led to significant 
decrease in the expression of TIGAR in nasopha-
ryngeal cells subsequently declining the intracel-
lular nicotinamide adenine dinucleotide phosphate 
(NADPH) levels necessary for escaping apoptosis 
[71]. Lui et al. reported that increased expression of 
TIGAR in HNSCC cells eliminated the growth 
inhibitory effects of c-Met inhibitors [71].
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4  Role of Tumor 
Microenvironment in HNSCC 
Metabolism

Over the last few decades there has been an 
increase in interest over tumor microenviron-
ment studies as there have been findings that 
tumor microenvironment plays an important 
role in tumor progression, aggressivity, and 
metastasis process [72]. Tumor microenviron-
ment is the environment around the tumor that 
includes blood vessels, immune cells, fibroblast, 
signaling molecules, and extracellular matrix 
(ECM) [73]. Spill et  al. reported that cancer 
cells majorly affect the tumor microenvironment 
by releasing extracellular signals, promoting 
tumor angiogenesis, tumor metastasis affecting 
the growth, and evolution of cancer cells [74]. In 
HNSCC, cancer- associated fibroblasts (CAF) 
are abundant in the stroma and are critical to 
tumor metabolism [75, 5].

Studies from Curry et al. indicate that epithe-
lial cancer cells derive nutrients from CAFs by 
maintaining a coupled metabolism. Cancer cells 
activate glycolysis in nearby stroma and utilize 
the by-products such as lactate and pyruvate as 
energy source [76].

Studies from Knowles et al. have reported that 
CAFs secrete hepatocyte growth factor which 
binds and activates c-Met tyrosine kinase recep-
tor on HNSCC cells triggering tumor cell prolif-
eration, invasion, and metastasis [28]. HNSCC 
cells modulate the microenvironment CAFs by 
secreting basic fibroblast growth factor (bFGF), 
which binds to fibroblast growth factor receptor 
(FGFR) expressed on various cell surfaces that 
mediate cell proliferation and migration [77]. 
Hitosugi et  al. reported that FGFR activation 
upregulates mitochondrial pyruvate dehydroge-
nase kinase-1 (PDK-1) and promotes the cellular 
metabolism [78]. CAFs and HNSCC cells cross 
regulates cellular metabolism via c-Met/HGF 
signaling. Studies from Kumar et al. showed that 
HGF secreted by CAFs regulates HNSCC metab-
olism and HNSCC cells secrete bFGF and lactate 
to regulate CAF proliferation and mitochondrial 
OXPHOS [5]. Also, bFGF stimulation in CAFs 
leads to increased transcription of p53 inducible 

regulator of glycolysis and apoptosis (TIGAR) in 
CAFs enhancing the mitochondrial OXPHOS 
[5]. Understanding the cross pathway signaling 
between tumor and tumor microenvironment, 
which modulates the tumor metabolism leading 
to tumor progression, can lead to new therapeutic 
targets for efficient treatment of HNSCC.

5  Therapeutic Interventions 
for Targeting HNSCC 
Metabolism

Currently there are very limited treatment options 
available for head and neck cancer due to poor 
prognosis and recurrence of the disease. HNSCC 
is commonly treated via surgery, radiotherapy, 
chemotherapy, or combination of these 
approaches [79]. As far, only epidermal growth 
factor receptor inhibitors have been approved for 
HNSCC and several other therapies are under 
clinical trial (Table 1). Bonner et al. for the first 
time had reported a positive effect with the anti- 
EGFR antibody Cetixumab combined with radio-
therapy in primarily advanced head and neck 
cancer patients [80]. Silybin (SIL) is a GLUT 
inhibitor which induces G1 cell cycle arrest, 
inhibits EGFR, and suppresses angiogenesis 
[81]. A phase I trial was done with prostate can-
cer patients [82]. Lonidamide, a derivate of 
indazole- 3-carboxylic acid, is an inhibitor of 
hexokinase, and also binds to adenine nucleotide 
translocator leading to tumor cell death via apop-
tosis [83]. 2-Deoxy glucose (2DG), an analog of 
glucose, acts as a competitive inhibitor for 
glucose- 6-phosphate isomerase. 2DG is phos-
phorylated by hexokinase and accumulated 
inside the cells inhibiting glycolysis [84]. 
Dichloroacetate is a pyruvate kinase inhibitor. 
Whitehouse et al. provided evidence that dichlo-
roacetate is an inhibitor of pyruvate kinase and 
results in in vivo inactivation of pyruvate dehy-
drogenase kinase and pyruvate oxidation [85]. 
VLX-600 an electron transport chain inhibitor 
drug together with dichloroacetate has shown 
significant anticancer effect in HNSCC murine 
models [86]. Dichloroacetate inhibits the produc-
tion and transport of lactate and has also been 
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tested for metabolic therapy [87]. A combination 
of this drug with cisplatin and radiation is under 
clinical trial stage III–IV for HNSCC. Therapies 
that are in development include panitumumab an 
IgG2 monoclonal antibody that functions to pre-
vent ligand binding [88]. Nivolumab is another 
drug which is under phase II clinical trial in com-
bination with chemoradiation for locally 
advanced cancer [89]. Buparlisib, an PI3K inhib-
itor, is being studied in combination with cetux-
imab in metastatic disease and in patients with 
platinum- and cetuximab-refractory disease as 
monotherapy [90]. Everolimus and temsirolimus 
are mTOR inhibitors that are also being studied 
to disrupt PI3K pathway signaling [91, 92].

6  Conclusion and Future 
Prospective

Reprogramming of metabolic pathways is an 
important hallmark in cancer development, 
which allows cancer cells to grow continuously, 
even under stress conditions such as hypoxia, 
where nutrients and oxygen are poor. Several 
key factors play important role in metabolic reg-
ulation in HNSCC such as the regulatory 
enzymes in glycolysis HK-II, PKM-2, and 
LDHA and other genes such as GLUT-1, MCT, 
and HIF-1. Also, aberrant signaling pathways 
such as PI3K/Akt, EGFR, JAK/STAT, and HGF/

c-Met have been associated with HNSCC. Tumor 
microenvironment has been reported to play a 
major role in HNSCC metabolic reprogram-
ming. A large portion of HNSCC tumor contains 
tumor-associated fibroblasts. Cross signaling 
between tumor and stroma has been shown to 
facilitate tumor growth and invasion in HNSCC 
cells. Despite recent advances in cancer treat-
ment, current therapies for HNSCC are associ-
ated with poor survival and high morbidity. 
Innovative therapeutic strategies are needed for 
improved treatment of this disease. 
Understanding the metabolic factors supporting 
tumor progression and invasion might pave a 
new path for developing novel inhibitors for the 
cancer treatment.

Tumor cell metabolism is being intensively 
studied as a novel area for the discovery of new 
biomarkers and therapeutic interventions. New 
metabolic targets is continuously being identified 
in different types of tumors. Altogether, there is 
convincing evidence that HNSCC requires ele-
vated rate of glucose uptake and conversion for 
cell survival and progression. This appears to 
make HNSCC susceptible to targeted therapies 
employing inhibitors to glycolytic genes or 
enzymes. Understanding of increased glycolysis 
and related secondary energetic pathways such as 
glutaminolysis, pentose phosphate pathway, and 
serine biosynthetic pathway will lead to new tar-
gets to be inhibited for disease treatment. 

Table 1 Drugs targeting cancer metabolism under clinical trials

Drug Target Status Clinical trial no.
Silybin GLUT I NCT03440164
Lonidamine HK III NCT00435448
2- Deoxyglucose G6P isomerase I NCT00633087
TLN-232 PKM2 dimers II NCT00735332
Dichloroacetate PDK II NCT01111097
AZD-3965 MCT1 I NCT01791595
CPI-613 Pyruvate dehydrogenase I NCT03699319
Gossypol LDH-A II NCT00540722
Galloflavin LDH-A Pre-clinical studies
Daunorubicin GLUT-1 I NCT02914977
Cisplatin ± Cetuximab EGFR III NCT00004865
Carboplalin ± 5-FU ± Panitumumab EGFR II NCT00122460
Dacominitinib Tyrosine kinase III NCT01858389
Gefitinib Tyrosine kinase II NCT00049543
Erlotinib Tyrosine kinase II NCT02013206
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Meanwhile, due to the role of tumor 
 microenvironment in the disease progression and 
invasion, a better understanding of how the tumor 
microenvironment affects HNSCC progression 
via metabolic alterations might also provide new 
insight for the cancer therapy.
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Fatty Acid Metabolism and Cancer

Zhenning Jin, Yang D. Chai, and Shen Hu

1  Fatty Acid Metabolism

Metabolism is a fundamental process for all cellu-
lar functions [1]. Cancer cells can alter the meta-
bolic pathways for glucose, glutamine, and fatty 
acids to meet cellular energy demand. In the 1920s, 
Otto Heinrich Warburg made an important obser-
vation that cancer cells appeared to have enhanced 
utilization of glucose for energy production through 
aerobic glycolysis. In contrast, normal cells favor 
energy production through mitochondrial oxidative 
phosphorylation [2]. Meanwhile, glutamine is an 
abundant nonessential amino acid, and it is critical 
for adenosine triphosphate (ATP) production 
through glutamine-driven oxidative phosphoryla-
tion [3]. In normal cells, glutamine provides the 
carbon sources for synthesis of acetyl-CoA and 
citrate necessary in anabolic processes of cell pro-
liferation [4]. In proliferating cancer cells, upregu-
lation of glutamine metabolism in response to 
lower intracellular citrate has been linked to dys-
regulation of tricarboxylic acid (TCA) cycle and 
lipogenesis to fulfill energy requirement [1, 5]. 
Glucose, glutamine, and other substrates are pre-
cursors for the production of cytosolic acetyl-
CoA.  Acetyl-CoA in turn donates two-carbon 
molecules for fatty acid synthesis [6]. Due to their 

ability for metabolic reprogramming, cancer cells 
often display upregulated de novo lipogenesis. 
Whereas, most nonmalignant counterparts prefer-
entially acquire fatty acids from exogenous sources 
[7]. Historically, studies have been focused on 
understanding the glucose and glutamine metabo-
lism in cancer cells, while few ones investigated the 
role of fatty acid metabolism in cancer cells. In this 
chapter, we aim to provide a short overview of the 
known fatty acid mechanisms in cancer cells.

Fatty acid is comprised of a carboxyl terminal 
group with long chains of hydrocarbons that can 
be either saturated or unsaturated. Both fatty acid 
synthesis and fatty acid oxidation are important 
components in fatty acid metabolism [8]. 
Depending on cell types or conditions, fatty acid 
synthesis may favor exogenous synthesis or de 
novo synthesis. De novo fatty acid synthesis pri-
marily relies on two key rate-limiting enzymes, 
acetyl-CoA carboxylase (ACC) and fatty acid 
synthase (FASN). ACC can carboxylate acetyl-
CoA into malonyl-CoA, while FASN converts 
acetyl-CoA and malonyl-CoA into long-chain 
fatty acids such as 16-carbon palmitate (Fig. 1) 
[9, 10]. In fatty acid oxidation, the rate-limiting 
enzyme carnitine palmitoyltransferase I (CPT1) 
catalyzes the reaction of acyl-CoA and carnitine 
to form acyl-carnitine and transports the product 
from the cytosol into the mitochondrial matrix 
[11]. β-oxidation of fatty acid consists of a cycli-
cal series of reactions in the mitochondria through 
shortening of the fatty acid chains to generate 
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nicotinamide adenine dinucleotide (NADH), fla-
vin adenine dinucleotide (FADH2), and acetyl-
CoA [12]. The collection of NADH and FADH2 
further contributes to the production of ATP in 
the electron transport chain of mitochondrial 
inner membrane. Fatty acid metabolism allows 
cells to utilize fatty acids to form cellular mem-
branes, store lipids, and signal with adjacent cells 
to proliferate and survive. Understanding the 
mechanisms of fatty acid metabolism and its 
related pathways may lead to potential targets for 
therapeutic intervention in human cancers.

2  Fatty Acid Synthesis 
in Cancer

Fatty acid synthesis refers to the creation of fatty 
acids from acetyl-CoA and nicotinamide adenine 
dinucleotide phosphate (NADPH) through the 
action of FASN enzymes. Proliferating cancer 

cells require a constant supply of lipids for mem-
brane biogenesis and protein modification [13]. 
In certain tumor types, significantly enhanced 
fatty acid synthesis was observed, whereas nor-
mal cells depend on exogenous lipogenesis for 
growth and proliferation. In fact, increased de 
novo fatty acid synthesis activity has been recog-
nized as a novel metabolic target for therapeutic 
intervention in human cancers. However, the 
pathogenesis of de novo fatty acid synthesis in 
cancer remains largely elusive.

2.1  Regulation of Fatty Acid 
Synthesis in Cancer

As an important rate-limiting enzyme for the for-
mation of fatty acids, FASN can be regulated at 
the transcriptional, translational, and the post-
translational levels. FASN expression has been 
shown to be upregulated in various cancer types 

Fig. 1 Fatty acid synthesis pathway. This pathway func-
tions in both cancers and lipogenic tissue such as liver. 
Extra glucose goes through TCA cycle to produce citrate 
for fatty acid synthesis. ACC carboxylates acetyl-CoA 
into malonyl-CoA, while FASN converts malonyl-CoA 
into long-chain fatty acids, such as palmitate.  Malonyl-
CoA can also inhibit CPT1, preventing the oxidation of 

the synthesized palmitoyl-CoA. CPT1 and CPT2 are two 
mitochondrial enzymes regulating fatty acid oxidation 
(β-oxidation). CPT1 locates at the outer membrane of 
mitochondria, while CPT2 locates at the inner membrane 
of mitochondria. ACC acetyl-CoA carboxylase, FASN 
fatty acid synthase, ACS fatty acid-CoA ligase, CPT1 car-
nitine palmitoyltransferase I, CPT2 carnitine palmitoyl-
transferase II. Modified with permission [10]
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such as breast and prostate cancer [14, 15]. 
Endogenous growth factors and steroid hormones 
can activate phosphatidylinositol-3-kinase 
(PI3K), protein kinase B (Akt), and mitogen-acti-
vated protein kinase (MAPK) signaling cascade 
through binding interaction with estrogen recep-
tor (ER), androgen receptor (AR), progesterone 
receptor (PR), epidermal growth factor receptor 
(EGFR), or human epithelial growth factor recep-
tor 2 (HER2) to activate sterol regulatory ele-
ment-binding protein 1c (SREBP-1c), which 
further promotes translational upregulation of 
FASN and ACC [9, 16]. Mammalian targets of 
rapamycin (mTOR), p53 family proteins, and 
lipogenesis-related nuclear protein (SPOT14) 
transcription factors were found to be overex-
pressed in breast tumors and are responsible for 
upregulation of FASN [17–19]. Under hypoxic 
and low pH conditions, isopeptidase ubiquitin-
specific protease-2a (USP2a) helps stabilize 
stress-induced FASN protein and was also found 
to be upregulated in prostate cancers [20, 21]. 
The binding of FASN to HER2 is important to 
promote tumor growth, survival, and drug resis-
tance [22]. The findings support the idea that 
tumor-related FASN overexpression may be reg-
ulated at translational and transcriptional levels 
and it serves as a potential therapeutic target of 
cancer [9].

2.2  Targeting Fatty Acid Synthesis 
in Cancer

Increased demand of fatty acids for cancer cell 
survival and proliferation suggests that it might 
be an anticancer strategy to reduce fatty acids in 
cancer cells by suppressing fatty acid bioavail-
ability. Several methodologies may be feasible 
for the suppression of fatty acid bioavailability, 
for example, blocking fatty acid synthesis, 
increasing fatty acid degradation by oxidation, 
converting fatty acids for storage, and limiting 
fatty acids release from storage [8]. These 
approaches may take effect independently or 
combined to limit bioavailability of fatty acids.

Citrate is a critical intermediate that can be 
converted to bioactivate fatty acids through the 

action of several metabolic enzymes, including 
ATP citrate lyase (ACLY), fatty acid synthase 
(FASN), acetyl-CoA synthetase (ACS, aka, ace-
tate-CoA ligase), and acetyl-CoA carboxylase 
(ACC). ACLY links the metabolism of carbohy-
drates, which yield citrate as an intermediate, and 
the production of acetyl-CoA, which is a precur-
sor for the synthesis of fatty acids. The enzyme is 
responsible for generating cytosolic acetyl-CoA 
in many tissue types and involved in multiple 
biosynthetic pathways such as lipogenesis, cho-
lesterogenesis, and histones acetylation [23]. 
Downregulation of ACLY in human adenocarci-
noma cells and murine lymphoid cells showed 
suppression in tumor growth, suggesting ACLY 
may serve as a potential therapeutic target for 
limiting fatty acid synthesis [24, 25]. The main 
function of FASN is to catalyze the synthesis of a 
long-chain saturated fatty acid (e.g., palmitate, 
C16:0) from acetyl-CoA and malonyl-CoA, in 
the presence of NADPH. FASN has been reported 
as a novel therapeutic target, since certain types 
of cancer cells depend on FASN-mediated de 
novo fatty acid synthesis for proliferation and 
survival [8]. Inhibition of FASN induces cell 
death due to toxic effect of malonyl-CoA accu-
mulation [26].

ACC plays an essential role in regulating fatty 
acid synthesis because ACC converts acetyl-CoA 
into malonyl-CoA, which is a required substrate 
for the biosynthesis of fatty acids. AMP-
dependent protein kinase (AMPK) triggers the 
phosphorylation of ACC and therefore inactivates 
the enzyme whereas protein phosphatase 2A 
dephosphorylates ACC, activating the enzyme to 
produce malonyl-CoA, which is a building block 
for new fatty acids. In fact, ACC may function 
either as lipogenic (ACC1 isoform) or oxidative 
(ACC2 isoform) in mammals. ACC1 is found in 
the cytoplasm of all cells but is enriched in lipo-
genic tissue, such as adipose tissue and lactating 
mammary glands, where fatty acid synthesis is 
important. However, ACC2 is relatively overex-
pressed in oxidative tissues, such as the skeletal 
muscle and the heart tissues. ACC1 and ACC2 
are both highly expressed in the liver where both 
fatty acid oxidation and synthesis are important. 
The differences in tissue distribution indicate that 
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ACC1 maintains regulation of fatty acid synthe-
sis whereas ACC2 mainly regulates fatty acid 
oxidation. Knockdown of ACCs can effectively 
induce apoptosis in certain types of cancer cells. 
Silencing of the ACC1 resulted in a significant 
inhibition of cell proliferation and induction of 
caspase-mediated apoptosis of highly lipogenic 
LNCaP prostate cancer cells. In nonmalignant 
cells with low lipogenic activity, no cytotoxic 
effects of knockdown of ACC1 were observed. 
Similar results were also found when knocking 
down FASN in the prostate cancer cells and non-
malignant cells. These findings indicate that 
accumulation of malonyl-CoA is not a prerequi-
site for cytotoxicity induced by inhibition of 
tumor-associated lipogenesis in prostate cancer 
cells and suggest that in addition to FASN, ACC1 
is a potential target for cancer intervention. In 
another study of breast cancer cells, silencing of 
either ACC1 or FASN in cancer cells results in a 
major decrease in palmitic acid synthesis. 
Depletion of the cellular pool of palmitic acid is 
associated with induction of apoptosis concomi-
tant with the formation of reactive oxygen spe-
cies (ROS) and mitochondrial impairment. 
Furthermore, supplementation of the culture 
medium with palmitate or with the antioxidant 
vitamin E resulted in the complete rescue of cells 
from both ACC1 and FASN knockdown-induced 
apoptosis. Finally, human mammary epithelial 
cells are resistant to RNAi knockdown against 
either ACC1 or FASN.  These data confirm the 
importance of lipogenesis in cancer cell survival 
and indicate that this pathway represents a key 
target for antineoplastic therapy that, however, 
might require specific dietary recommendation 
for full efficacy [27, 28].

Studies also suggested that malonyl-CoA was 
a potential mediator of cytotoxicity induced by 
FASN inhibition in human breast cancer cells and 
xenografts, which seems contradicting with the 
finding discussed above. FASN inhibitors were 
found to induce a rapid increase in intracellular 
malonyl-CoA to severalfold above control levels, 
whereas 5-(tetradecyloxy)-2-furoic acid (TOFA) 
reduced intracellular malonyl-CoA by 60%. 
Simultaneous exposure of breast cancer cells to 
TOFA and an FASN inhibitor resulted in signifi-

cantly reduced cytotoxicity and apoptosis. 
Subcutaneous xenografts of MCF7 breast cancer 
cells in nude mice treated with FASN inhibitor 
showed fatty acid synthesis inhibition, apoptosis, 
and inhibition of tumor growth to less than 1/8 of 
control volumes, without comparable toxicity in 
normal tissues. The data suggest that malonyl-
CoA is a crucial regulatory metabolic intermedi-
ate in cellular energy metabolism, and inhibition 
of FASN may serve as a potential approach to 
cancer treatment [26].

Malonyl-CoA decarboxylase (MCD) regu-
lates the levels of cellular malonyl-CoA through 
the decarboxylation of malonyl-CoA to acetyl-
CoA. Malonyl-CoA is both a substrate for fatty 
acid synthesis and an inhibitor of fatty acid oxi-
dation acting as a metabolic switch between ana-
bolic fatty acid synthesis and catabolic fatty acid 
oxidation. Inhibition of MCD expression and 
activity was found to reduce ATP levels and 
cause toxicity to MCF7 breast cancer cells, but 
not to human fibroblasts. MCD inhibitor also 
increased cellular malonyl-CoA levels and 
caused cytotoxicity to a number of human breast 
cancer cell lines in vitro. These results indicate 
that MCD knockdown induced cytotoxicity is 
likely mediated through malonyl-CoA metabo-
lism and MCD is a potential target for cancer 
therapeutics [29].

Acetyl-CoA synthetase (ACS, aka, acetate-
CoA ligase) is an enzyme involved in metabolism 
of acetate. It is a ligase that catalyzes the forma-
tion of acetyl-CoA from acetate and coenzyme A 
(CoA). Once acetyl-CoA is formed it can be used 
in the TCA cycle in aerobic respiration to pro-
duce energy and electron carriers. This is an 
alternate route of starting the cycle, as the more 
common way is producing acetyl-CoA from 
pyruvate through pyruvate dehydrogenase. As 
mentioned earlier, acetyl-CoA is a critical pre-
cursor for fatty acid synthesis. Therefore, a com-
mon function of ACS is to produce acetyl-CoA 
for this purpose. A functional genomics study 
revealed that the activity of acetyl-CoA synthe-
tase 2 (ACSS2) contributes to cancer cell growth 
under low oxygen and lipid-depleted conditions. 
ACSS2 exhibited copy-number gain in human 
breast tumors, and ACSS2 expression correlated 
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with the disease progression. ACSS2 expression 
was upregulated under metabolically stressed 
conditions, and knockdown of ACSS2 reduced 
the growth of tumor xenografts. Comparative 
metabolomic and lipidomic analyses demon-
strated that acetate was used as a nutritional 
source by cancer cells in an ACSS2-dependent 
manner, and supplied a significant fraction of the 
carbon within the fatty acid and phospholipid 
pools. These results demonstrated a critical role 
for acetate consumption in the production of lipid 
biomass within the harsh tumor microenviron-
ment [30].

As a key metabolic intermediate, acetyl-CoA 
may play an important role in transcriptional 
regulation. In fact, histone acetylation is highly 
sensitive to the availability of acetyl-CoA.  It is 
an obligate cofactor for histone acetyltransfer-
ases (HATs), and the abundance of the nucleo-
cytosolic acetyl-CoA may have a direct impact 
on the enzymatic activity of HATs [31]. In glio-
blastoma cells, changes in acetyl-CoA abun-
dance were found to trigger site-specific 
regulation of histone H3 Lys27 acetylation 
(H3K27ac). Genes involved in integrin signaling 
and cell adhesion were identified as acetyl-CoA-
responsive, and ACLY-dependent acetyl-CoA 
production promoted cell migration and adhe-
sion to the extracellular matrix. Mechanistically, 
the transcription factor NFAT1 (nuclear factor of 
activated T cells 1) was found to mediate acetyl-
CoA-dependent gene regulation and cell adhe-
sion. This study has established that the important 
role of acetyl-CoA in transcriptional regulation 
of the cell adhesion gene expression in glioblas-
toma cells through the impact of H3K27ac and 
Ca2+–NFAT signaling [32].

Recently, a quantitative analysis of acetate 
metabolism revealed that ACSS2 fulfills distinct 
functions depending on its cellular location. 
Exogenous acetate uptake was controlled by 
expression of both ACSS2, which supports lipo-
genesis, and the mitochondrial ACSS1. 
Interestingly, oxygen and serum limitation 
increased nuclear localization of ACSS2, and 
nuclear ACSS2 recaptured acetate released from 
histone deacetylation for recycling by histone 
acetyltransferases. This study provided evidence 

for limited equilibration between nuclear and 
cytosolic acetyl-CoA and demonstrates that 
ACSS2 retains acetate to maintain histone acety-
lation [33].

The long-chain fatty acyl-CoA synthetase 
(ACSL, aka., long-chain fatty acyl-CoA ligase) is 
an enzyme of the ligase family that activates the 
oxidation of complex fatty acids and catalyzes 
the formation of fatty acyl-CoA.  Long-chain 
acyl-CoAs are substrates for most pathways that 
use fatty acids for energy production or for the 
synthesis of complex lipids like phospholipids, 
cholesteryl esters, ceramide, and triglyceride. 
Acyl-CoAs are also substrates for β-oxidation in 
peroxisomes and mitochondria and for 
ω-oxidation in the endoplasmic reticulum. In 
addition to these metabolic functions, acyl-CoAs 
are required for posttranslational protein acyla-
tion, and regulation of enzymes, ion channels, 
membrane potential, protein trafficking, and tran-
scription, as well as cellular budding and fusion. 
Because most acyl-CoA may be bound to acyl-
CoA-binding protein (ACBP), the functional 
acyl-CoA unit might be bound, rather than free, 
acyl-CoA [34]. Mammals have five ACSL iso-
forms (ACSL1, ACSL3, ACSL4, ACSL5, and 
ACSL6). These isoforms may be differentially 
upregulated in specific cancer types, and chemi-
cal inhibition of ACSL by inhibitors such as 
Triacsin C (inhibitor of ACSL1, ACSL3, and 
ACSL4 but not ACSL5 or ACSL6) preferentially 
induces apoptotic cell death in certain cancer 
types such as lung, colon, and brain cancer cells. 
Therefore, when considering treatment through 
inactivation of ACSL, it is important to note that 
different drugs have different isoform specifici-
ties, so they may have differential effects, as the 
various isoforms have different tissue specifici-
ties, responses to nutritional state, and preferred 
substrates [8].

Sterol regulatory element binding proteins 
(SREBPs) are a family of transcription factors 
that regulate lipid homeostasis by controlling the 
expression of a range of enzymes required for 
endogenous cholesterol, fatty acid, triacylglyc-
erol, and phospholipid synthesis. The three 
SREBP isoforms, SREBP-1a, SREBP-1c, and 
SREBP-2, have different roles in lipid synthesis. 
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SREBP-1c is involved in fatty acid synthesis and 
insulin-induced glucose metabolism (particularly 
in lipogenesis), whereas SREBP-2 is relatively 
specific to cholesterol synthesis. The SREBP-1a 
isoform seems to be implicated in both pathways 
[35]. EGFR mutations are frequent in glioblas-
toma. Studies of glioblastomas from patients 
treated with the EGFR inhibitor lapatinib revealed 
that EGFR induced the cleavage and nuclear 
translocation of SREBP-1. This response was 
mediated by Akt; however, clinical data from 
rapamycin-treated patients showed that SREBP-1 
activation was independent of the mammalian 
target of rapamycin complex 1, possibly explain-
ing rapamycin’s poor efficacy in the treatment of 
such tumors. Glioblastomas without constitu-
tively active EGFR signaling were resistant to 
inhibition of fatty acid synthesis, whereas intro-
duction of a constitutively active mutant form of 
EGFR, EGFRvIII, sensitized tumor xenografts in 
mice to cell death. These results identify a new 
EGFR-mediated pro-survival metabolic pathway 
and suggest new therapeutic approaches to treat-
ing EGFR-activated glioblastomas [36].

3  Fatty Acid Oxidation 
in Cancer

Fatty acid oxidation (aka, β-oxidation) is the cata-
bolic process by which fatty acid molecules are 
broken down in the mitochondria to generate ace-
tyl-CoA, NADH, and FADH2. It is composed of a 
cyclical series of reactions that result in the short-
ening of fatty acids (two carbons per cycle) and 
that generate in each round NADH, FADH2, and 
acetyl-CoA, until the last cycle when two acetyl-
CoA molecules are originated from the catabolism 
of a four carbon fatty acid. NADH and FADH2 
function as two co-enzymes used in the electron 
transport chain (ETC) to produce ATP whereas 
acetyl-CoA enters the TCA cycle to produce 
citrate. Citrate may leave the mitochondria and 
enter the cytoplasm to engage NADPH-producing 
reactions (Fig. 2). Fatty acid oxidation is carried 
out in energy-demanding tissues (such as the heart 
and skeletal muscle) and in the liver as a central 
organ for nutrient supply and conversion [37].

CPT1 is a mitochondrial enzyme responsible 
for the formation of acyl-carnitines by catalyzing 
the transfer of the acyl group of a long-chain fatty 
acyl-CoA to carnitine. The product is often pal-
mitoylcarnitine, but other fatty acids may also be 
substrates. The carnitine palmitoyltransferase 
system is an essential step in the beta-oxidation 
of long-chain fatty acids, and CPT1 is the first 
component and rate-limiting step of the carnitine 
palmitoyltransferase system [11]. The acylcarni-
tine translocase then shuttles the acylcarnitine 
across the inner mitochondrial membrane where 
it is converted back into palmitoyl-CoA.  Three 
isoforms of CPT1 are currently known: CPT1A 
(the liver isoform), CPT1B (the muscle isoform), 
and CPT1C (the brain isoform) [38]. CPT1C was 
identified as a potential oncogene, as the fre-
quently upregulated CPT1C expression promotes 
fatty acid oxidation, ATP production, and tumor 
growth. AMPK can induce CPT1C expression to 
protect cancer cells from apoptosis under glucose 
and oxygen-deprived microenvironment [39].

Carnitine palmitoyltransferase II (CPT2) cata-
lyzes the formation of palmitoyl-CoA from pal-
mitoylcarnitine imported into the mitochondrial 
inner membrane via the acylcarnitine translocase. 
The catalytic core of the CPT2 enzyme contains 
three important binding sites that recognize struc-
tural aspects of CoA, palmitoyl, and carnitine. 
Defects in this gene are associated with mitochon-
drial long-chain fatty acid oxidation disorders. In 
obesity-driven and nonalcoholic steatohepatitis 
(NASH)-driven hepatocellular carcinoma (HCC), 
the extensive accumulation of acylcarnitine spe-
cies was seen in HCC tissues and the sera of HCC 
patients, which could be attributed to the down-
regulation of CPT2. CPT2 downregulation 
induced the suppression of fatty acid oxidation, 
and CPT2 knockdown in HCC cells resulted in 
their resistance to lipotoxicity by inhibiting the 
Src-mediated JNK activation. Additionally, 
oleoylcarnitine enhanced sphere formation by 
HCC cells via STAT3 activation, suggesting that 
acylcarnitine accumulation was a surrogate 
marker of CPT2 downregulation and directly con-
tributed to hepatocarcinogenesis. These results 
indicate that in obesity-driven and NASH-driven 
HCC, metabolic reprogramming mediated by the 
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downregulation of CPT2 enables HCC cells to 
escape lipotoxicity and promotes hepatocarcino-
genesis [40]. Based on the data from the GEO and 
TCGA databases, we found that the expression 
level of CPT2 was significantly downregulated in 
head and neck squamous cell carcinoma (HNSCC) 
tumor tissues, in comparison with the normal con-
trols, and the patients with high CPT2 expression 
had better overall survival rate than those with 
low CPT2 expression. In addition, knockdown of 
CPT2 significantly promoted the proliferation, 
migration, and invasion capability of HNSCC 

cells. On the other hand, overexpression of 
CPT2 in HNSCC cells significantly impaired the 
cell proliferation, migration, and invasion ability 
in HNSCC cells [41].

Fatty acid oxidation is one of the major 
sources of ATP production. In addition to ATP, 
fatty acid oxidation is involved in production of 
cytosolic NADPH, which is the reduced form of 
NADP+. However, there are other alternative or 
redundant routes to replenish cytosolic NADPH 
including the pentose phosphate pathway and the 
conversion of malate to pyruvate catalyzed by 
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(Reprinted with permission [37])
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malic enzyme [37, 42]. NAPDH has two main 
functions, counteract oxidative stress through 
redox reactions and serve as a co-enzyme for 
anabolic building block necessary for cell growth 
and proliferation [43]. As a reducing agent, 
NADPH is required for anabolic reactions, such 
as lipid and nucleic acid synthesis.

Under metabolic stress, fatty acid oxidation 
can maintain sustained intracellular ATP and 
NADPH levels [44]. Overcoming metabolic 
stress is a critical step for solid tumor growth. A 
key signaling pathway involved in metabolic 
adaptation is the liver kinase B1 (LKB1)–AMP-
activated protein kinase (AMPK) pathway. 
Energy stress conditions that decrease intracellu-
lar ATP levels below a certain level promote 
AMPK activation by LKB1, and LKB1-deficient 
or AMPK-deficient cells are resistant to onco-
genic transformation and tumorigenesis. 
However, studies have demonstrated that AMPK 
activation, during energy stress, prolongs cell 
survival by redox regulation. Under these condi-
tions, NADPH generation by the pentose phos-
phate pathway is impaired, but AMPK induces 
alternative routes to maintain NADPH and inhibit 
cell death. The inhibition of the acetyl-CoA car-
boxylases ACC1 and ACC2 by AMPK maintains 
NADPH levels by decreasing NADPH consump-
tion in fatty acid synthesis and increasing 
NADPH generation by means of fatty acid oxida-
tion. Knockdown of either ACC1 or ACC2 com-
pensates for AMPK activation and facilitates 
anchorage-independent growth and solid tumor 
formation in  vivo, whereas the activation of 
ACC1 or ACC2 attenuates these processes. These 
results suggest that AMPK, in addition to its 
function in ATP homeostasis, has a key function 
in NADPH maintenance, which is critical for 
cancer cell survival under energy stress condi-
tions, such as glucose limitations, anchorage-
independent growth, and solid tumor formation 
in vivo [44].

Normal differentiated cells rely primarily on 
mitochondrial oxidative phosphorylation to pro-
duce ATP to maintain their viability and func-
tions by using three major bioenergetic fuels, 
glucose, glutamine, and fatty acids. Many cancer 
cells, however, rely on aerobic glycolysis or ele-

vated glutaminolysis for their growth and sur-
vival. In fact, fatty acids are important 
bioenergetic fuel used for growth and survival of 
cancer cells. Studies demonstrated that inhibition 
of fatty acid oxidation in glioblastoma cells by 
etomoxir, a carnitine palmitoyltransferase 1 
inhibitor, could impair the levels of intracellular 
NADPH, increase ROS, and markedly reduce 
cellular ATP levels and viability. In the presence 
of ROS scavenger tiron, however, ATP depletion 
is prevented without restoring fatty acid oxida-
tion. These results indicate that mitochondrial 
fatty acid oxidation provide NADPH for defense 
against oxidative stress and prevent ATP loss and 
cell death [45].

The relevance of fatty acid oxidation for tumor 
cell survival is related to the loss of attachment 
(LOA) to the extracellular matrix (ECM) [11]. 
Solid tumor cells can undergo LOA and present 
with decreased glucose uptake and catabolic 
activity. They sense compensation demand by 
increasing the ROS levels to promote tumor 
growth and malignant transformation [37, 46]. 
LOA of mammary epithelial cells from ECM was 
found to cause an ATP deficiency owing to the 
loss of glucose transport, and the ATP deficiency 
could be rescued by antioxidant treatment with-
out rescue of glucose uptake. This rescue was 
dependent on stimulation of fatty acid oxidation, 
which is inhibited by detachment-induced 
ROS. This study provided evidence of an increase 
in ROS in matrix-deprived cells in the luminal 
space of mammary acini, and the discovery that 
antioxidants facilitate the survival of these cells 
and enhance anchorage-independent colony for-
mation. The findings show both the importance 
of matrix attachment in regulating metabolic 
activity and a mechanism for cell survival in 
altered matrix environments by antioxidant resto-
ration of ATP generation [47].

Lipogenesis and fatty acid oxidation are mutu-
ally exclusive processes coordinated by the level 
of malonyl-CoA. Malonyl-CoA, an intermediate 
of fatty acid synthesis, acts as an allosteric inhibi-
tor of CPT1, presumably preventing fatty acid 
oxidation from occurring simultaneously with 
active lipogenesis [42]. Decreased activity of 
ACC, the enzyme that catalyzes the formation of 
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malonyl-CoA from acetyl-CoA, would cause a 
decreased cellular level of malonyl-CoA.  The 
decreased malonyl-CoA levels in turn prevent 
inhibition of CPT1 and may cause an ultimate 
increase in fatty acid oxidation.

Diffuse large B-cell lymphomas (DLBCLs) 
are a genetically heterogeneous group of tumors 
and the most common non-Hodgkin lymphomas 
in adults. Based on DNA microarray analysis of 
gene expression, DLBCL can be grouped as three 
discrete subsets: the “B cell receptor/prolifera-
tion (BCR-DLBCL)” displaying upregulation of 
genes encoding BCR signaling components, the 
“OxPhos-DLBCL” significantly enriched in 
genes involved in mitochondrial oxidative phos-
phorylation (OxPhos), and the host response 
(HR) tumors largely characterized by a brisk host 
inflammatory infiltrate [48]. The OxPhos-
DLBCL subset is actually insensitive to inhibi-
tion of BCR survival signaling. Studies showed 
that, compared with BCR-DLBCLs, OxPhos-
DLBCLs display enhanced mitochondrial energy 
transduction, greater incorporation of nutrient-
derived carbons into the TCA cycle, and increased 
glutathione levels. Moreover, perturbation of the 
fatty acid oxidation and glutathione synthesis 
proved selectively toxic to this tumor subset. This 
study clearly demonstrated the heterogeneity of 
DLBCL metabolic programs and provided evi-
dence for distinct metabolic fingerprints and 
associated survival mechanisms in DLBCL, 
which may have therapeutic implications [48].

Promyelocytic leukemia protein (PML) is a 
tumor suppressor required for the assembly of a 
number of nuclear structures, called PML-
nuclear bodies, which form among the chromatin 
of the cell nucleus. PML mutation or loss, and the 
subsequent dysregulation of these processes, has 
been implicated in a variety of cancers. Studies 
have identified that PML–peroxisome prolifera-
tor-activated receptor δ (PPAR-δ)–fatty acid oxi-
dation pathway is required for the maintenance of 
hematopoietic stem cells (HSCs). Loss of 
PPAR-δ or inhibition of mitochondrial fatty acid 
oxidation induced loss of HSC maintenance, 
whereas treatment with PPAR-δ agonists 
improved HSC maintenance. PML exerts its 
essential role in HSC maintenance through regu-

lation of PPAR signaling and fatty acid oxidation. 
Mechanistically, the PML–PPAR-δ–fatty acid 
oxidation pathway controls the asymmetric divi-
sion of HSCs. Deletion of Ppard or Pml as well as 
inhibition of fatty acid oxidation resulted in the 
symmetric commitment of HSC daughter cells, 
whereas PPAR-δ activation increased asymmet-
ric cell division. These findings identified a meta-
bolic switch for the control of HSC cell fate with 
potential therapeutic implications [49].

Recently, a fatty acid oxidation-dependent 
metabolic shift was found to regulate the activity 
of hippocampal neural stem/progenitor cells 
(NSPCs). Quiescent NSPCs showed high levels 
of CPT1A-dependent fatty acid oxidation, which 
was downregulated in proliferating NSPCs. 
Pharmacological inhibition and conditional dele-
tion of CPT1A in vitro and in vivo led to altered 
NSPC behavior, showing that CPT1A-dependent 
fatty acid oxidation was required for stem cell 
maintenance and proper neurogenesis. 
Interestingly, manipulation of malonyl-CoA, the 
metabolite that regulates levels of fatty acid oxi-
dation, was sufficient to induce exit from quies-
cence and to enhance NSPC proliferation. These 
findings demonstrated an important regulatory 
role of fatty acid oxidation in governing adult 
neural stem cell behavior and activity [50].

4  Clinical Perspective

Since de novo fatty acid biosynthesis is significantly 
enhanced in various types of cancer tissues, it 
appears to be a promising antineoplastic strategy to 
inhibit the enzymes that control the fatty acid syn-
thesis in cancer cells. Over the years, a number of 
fatty acid synthesis inhibitors have been developed 
for preclinical and clinical studies, including but not 
limited to TOFA and Soraphen A (ACC inhibitors), 
Triacscin C (ACSL inhibitor), C75 (4-methylene-
2-octyl-5-oxotetrahydrofuran-3-carboxylic acid, 
FASN inhibitor), and Fatostatin (SREBP inhibitor) 
[51, 52]. Meanwhile, tumor cells also depend on 
fatty acid oxidation for extra energy source. There 
has been growing attention to target the rate-limit-
ing enzyme CPT1 of the fatty acid oxidation for 
therapeutic intervention. Perhexiline is a CPT1 
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inhibitor approved for clinical use as an anti-anginal 
drug in Australia and Asia and currently in clinical 
trials in the USA [37]. Recently, Perhexiline has 
been combined with diphenyleneiodonium, an oxi-
dative phosphorylation (OXPHOS) inhibitor, to 
prevent myeloma tumor xenograft progression [53]. 
Ranolazine, an inhibitor of the terminal enzyme in 
fatty acid oxidation, 3-ketoacyl CoA, is an FDA 
approved piperazine derivative with anti-anginal 
and potential antineoplastic activities. Ranolazine 
was found to inhibit breast cancer cell invasion, leu-
kemia cell proliferation, and lung colonization 
potential [54, 55]. Testing of these compounds, as 
well as those inhibitors of fatty acid synthesis, may 
lead to a potential effective anticancer treatment 
[37, 51]. Inhibition of rate-limiting enzymes respon-
sible for fatty acid metabolism may involve a com-
plex network of signaling cascade that can direct the 
fate of cellular activity toward survival or pro-
gramed cell death. Due to cancer cell’s ability to 
metabolic adaption, inhibition of individual enzyme 
of fatty acid metabolism may not be sufficient as 
cancer cells are known to rewire alternative meta-
bolic pathways in order to survive [56]. Therefore, a 
systems approach targeting two or more enzymes of 
fatty acid metabolism may be needed for a more 
effective cancer treatment.
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1  Hypoxic Response

Oxygen is directly involved in a wide range of 
physiological pathways essential for maintaining 
and promoting homeostasis such as injury 
response and blood pressure adaptation [2], as 
well as in pathological processes such as inflam-
mation [3] and tumor formation. A key to under-
standing such regulations could be accomplished 
through elucidating the molecular mechanisms 
by which cells respond and adapt to insufficiency 
in oxygen supply, a phenomenon known as 
hypoxic response. Although hypoxia is charac-
terized by suppression in both ATP and protein 

production as mechanisms to reserve energy, 
interestingly, there is an abundance of a wide 
spectrum of genes during the low oxygen status 
[4, 5]; these genes are referred to as hypoxia- 
responsive genes. It was reported that 2% of the 
entire human genome is involved in hypoxia 
response via interaction with what is known as 
hypoxia-inducible factors (HIFs), both in a direct 
and an indirect fashion [6]. Activation of the 
hypoxia-responsive genes serves to protect cells 
from the harmful ramifications of oxygen defi-
ciency such as ischemia, particularly that many 
metabolic and energy-related pathways are con-
trolled by these genes [7, 8]. In addition, hypoxia- 
responsive genes were found to be heavily 
involved in the embryonic development. For 
instance, the deletion of HIF-1α in a mouse 
embryo leads to death at day 10 [9, 10]. 
Altogether, hypoxic response is responsible for 
the activation of a global network of genes that 
through diverse mechanisms aim to maintain tis-
sue integrity and promote cell survival [6, 11, 
12]. Once activated, HIF transcription factors 
binds to specific DNA sequences unique to their 
target genes. These DNA regions are called 
hypoxia-response elements (HREs) [13–16]. 
Many factors could determine the potential bind-
ing between HIFs and HRE, including HIF-1 
protein concentration, oxygen tension, availabil-
ity of cofactors, and posttranslational protein 
modifications [17, 18].
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2  Hypoxia-Inducible Factor

Hypoxia-inducible factors (HIFs) are members 
of a family of transcription factors that are 
involved in the adaptive responses to hypoxia. 
Structurally, all HIFs are composed of an alpha 
and a beta subunit with both subunits belong to 
the family of basic-helix-loop-helix PAS (Per- 
Ahr/ ARNT-Sim) family of transcription factors. 
The three HIF members are named HIF-1, HIF-2, 
and HIF-3. Both HIF-1 and HIF-2 are heavily 
involved in the response to hypoxia through their 
transcriptional activities, whereas the role of 
HIF-3  in this context remains ill-defined [19]. 
This family is characterized by its conserved 
domains for both DNA binding and target speci-
ficity [20]. Many characteristics such as heterodi-
merization, hypoxia-mediated stabilization, and 
transcriptional activity are shared among all three 
isoforms [21–24].

HIF-1 transcription factor is a heterodimer 
consisting of two subunits: an oxygen-labile 
alpha subunit (HIF-1α) and a stable, 
constitutively- expressed, oxygen-independent 
beta subunit (HIF-1β). In hypoxia, HIF-1α is the 
primary responder, and so, its stability is of 
greater impact when compared to ARNT [25–
29]. Nevertheless, ARNT was shown to be 
required for the HIF1 overall activity such as 
binding to other bHLH proteins [30–33].

Structurally, HIF-1α contains two transactiva-
tional domains (TADs), the N-terminal (N-TAD) 
and the C-terminal (C-TAD), that drive the func-
tional interaction with RNA polymerase. TADs 
also are the sites where the interaction with coact-
ivators is established, a process that has an indis-
pensable role in HIF-1α transcriptional activity. 
Furthermore, TADs are the domains where post-
translational modifications take place [17, 25, 34, 
35]. Interestingly, upon hypoxia- mediated HIF1 
activation, only its protein levels increase, while 
mRNA expression remains unchanged. This 
observation highlights the direct proportional 
relation between oxygen concentration and pro-
tein translation and stability [25, 36]. Lastly, the 
oxygen-dependent degradation domain (ODD 
domain) serves as an oxygen sensor site where 
oxygen-dependent interactions take place [37].

HIF-2 proteins have had many names, such as 
endothelial PAS protein 1 (EPAS1), HIF-related 
factor (HRF), HIF-1α-like factor (HLF), and 
member of PAS family 2 (MOP2) [21–24]. On 
the level of the protein’s primary structure, 
HIF-2α is very similar to HIF-1α with almost half 
the amino acids being identical between the two. 
In particular, the two proteins are sharing 70% 
and 83% homology in their PAS and bHLH 
domains, respectively. Moreover, both isoforms 
are subjected to the same regulatory mechanism 
owing to the presence of two critical proline resi-
dues in their ODD domains [38–40]. Moreover, 
both HIF-1α and HIF-2α contain N-TAD and 
C-TAD, while HIF-1β contains only C-TAD 
(Fig. 1).

HIF-2 expression was thought initially to be 
exclusive to vascular endothelial cells, specifi-
cally in embryonic tissues [35, 42, 43]. Later, 
HIF-2 protein expression was confirmed in sev-
eral adult hypoxic tissues [42]. In cancer tissues, 
HIF-2 expression was also reported to be upregu-
lated, suggesting a potential role in cancer angio-
genesis [44] especially with the protein’s 
preference for vascular and stromal tissues [43, 
45]. As such, higher levels of HIF-1 are observed 
in tumor epithelial cells when compared with 
HIF-2, whereas the opposite is true in macro-
phages and endothelial cells [46]. In cancer, 
HIF-2 expression was shown to be directly pro-
portional to the pathological staging of a number 
of solid cancers such as non-Hodgkin lymphoma 
[45, 47] and bladder cancer [43]. One explana-
tion for such correlation is that the presence of 
HIF-2-positive macrophage populations in can-
cer tissues is beneficial to the tumor microenvi-
ronment (TME), therefore inversely affecting 
patient’s survival. Another explanation is related 
to the role played by HIF-2 in promoting cancer 
angiogenesis and vascularization [45], since 
VEGF, the master angiogenic protein, co-reside 
in stromal tissues as well [48]. Many studies have 
confirmed the correlation between the HIF-2 and 
VEGF proteins [43, 49–52].

Noteworthy, many studies reported a contra-
dicting role of HIF-2α in cancer. For example, 
loss of HIF-2α in KRAS lung tumor increased 
tumor aggressive behavior [53], whereas overex-

N. Elzakra and Y. Kim



245

pression and stabilization of HIF-2α protein in an 
identical tumor model promoted tumor angiogen-
esis and invasion by increasing the expression of 
VEGF and SNAIL [54], respectively. The obser-
vation that opposite HIF-2α expression profiles 
mediated tumor growth in the same tumor con-
text, albeit by different mechanisms, suggests 
that effective targeting of HIF-2α subunit in can-
cer treatment may be complicated.

The third isoform is referred to as HIF-3 [55], 
and although it shares a significant structural simi-
larity with the other two isoforms, it is reported 
that its main function is to inhibit HIF pathway 
[56]. On the other hand, other studies showed that 
HIF-3 has a dual action of both stimulating and 
suppressing other HIF members. Therefore, the 
role of HIF-3 in hypoxic and cancer tissues in par-
ticular is yet to be elucidated [57–60].

HIF β protein was first discovered in the neu-
ral tissues where involvement with neural devel-
opment was assumed [61]. It is also known as the 

aryl hydrocarbon receptor nuclear translocator 
(ARNT) [16, 62, 63]. There are two forms of 
ARNT termed ARNT1 and ARNT2 [64, 65] with 
both forms are capable of forming a heterodimer 
with the HIF α isoforms, an interaction crucial 
for HRE binding and subsequent downstream 
effector gene activation [65]. Currently, HIF-1α, 
HIF-2α, and ARNT1 are viewed as the key mol-
ecules involved in HIF pathway in response to 
hypoxia, especially in tumor tissues, while the 
function of both HIF-3α and ARNT2 is still under 
investigation. In this review, we will focus on the 
functional role of HIF-1α in driving hypoxia 
response in human cancer.

2.1  Discovery of HIF-1

HIF-1 was initially viewed as an essential and 
exclusive key element in the human erythropoie-
tin (EPO) gene in response to oxygen insuffi-

Fig. 1 Schematic of the structure of three HIFα and two 
HIFβ isoforms. NLS, nuclear localization signal; bHLH, 
basic helix-loop-helix domain; PAS, per-arnt-sim domain 
subdivided into PAS A and PAS B; ODD, oxygen- 
dependent degradation domain; TAD, transactivation 

domain. HIF-1α and HIF-2α have two distinct TADs, in 
the C- (C-TAD) and N- (N-TAD) terminal domains. The 
PAS and bHLH domains are dedicated to dimerization 
and recognition of target DNA sequences. (Reprinted with 
permission from [41])
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ciency in renal tissues [66]. At that time, the 
concept of direct oxygen sensing, which cells can 
independently and directly sense and respond to 
changes in oxygen level, was still developing. 
Subsequently, the novel discovery that the func-
tion of HIF-1 is not EPO gene-restricted and that 
it regulates other genes is considered a milestone 
in the field of direct oxygen sensing. HIF-1 was 
later purified [14], and shortly, the protein mole-
cule was further characterized [62].

Afterward, a wide spectrum of HIF-1 target 
genes and microRNAs (miRNAs) that were 
involved in hypoxic response were identified on 
both genetic and protein levels [67]. Both HIF-1 
target gene’s activation and suppression were 
characterized as being tissue-specific [68]. 
Moreover, HIF-1-mediated activation of gene 
transcription may be in both direct and indirect 
fashion [6]. For instance, by activating miRNAs 
[67] and gene-suppressors such as DEC1/Stra13 
[69], HIF-1 is indirectly silencing certain down-
stream effector genes. Key biological pathways 
such as proliferation, energy metabolism, inva-
sion, and metastasis were found to be driven by 
HIF-1 downstream effector genes [70, 71] 
(Fig. 2), suggesting the important role of HIF-1-
mediated pathways in cancer development and 
progression.

2.2  Regulation of HIF-1α

It was reported that many oncogenes activate 
HIF-1α pathway mainly via phosphorylation cas-
cades through upregulating the transcription and 
translation of HIF-1α mRNA and protein, respec-
tively, and independently of oxygen levels [72]. 
Similarly, growth factors and cytokines such as 
epidermal and fibroblast growth factors and 
insulin- like growth factor could activate HIF-1α 
through the same phosphorylation mechanism 
[73–76]. This phosphorylation cascade could 
promote HIF-1α expression via several path-
ways. One example is the PI3K/Akt/mTOR- 
mediated HIF-1α pathway activation as seen in 
many solid tumors such as in colon [77], prostate 
[78], and breast cancer [76]. Another mechanism 
is by enhancing the p300-HIF-1α-C-TAD activa-

tion complex [79] and favoring HIF-1α nuclear 
translocation as seen via MAPK-mediated phos-
phorylation [80]. MAPK-mediated phosphoryla-
tion also promotes HIF-1α transcriptional activity 
by blocking its nuclear export in an CRM1- 
dependent fashion [80]. HIF-1α pathway can also 
be activated by growth factors via ERK- 
dependent signaling [17]. In addition, vasoactive 
cytokines may promote HIF-1α transcriptional 
activity through diacylglycerol-sensitive protein 
kinase C [81]. Altogether, upregulation of HIF-1α 
exerted by growth factors and local hormones can 
overcome its oxygen-dependent degradation [76, 
77].

Other kinases such as casein kinase 1 (CK1) 
were also reported to be involved in HIF-1α 
phosphorylation [82]. Moreover, it was reported 
that the phosphorylation status of HIF-1α is 
linked to the protein’s ability to repair DNA dam-
age and reverse chromosomal instability, two 
characteristics that are extremely important in 
driving tumor progression and aggressiveness. 
For instance, dephosphorylation of HIF1α 
directly leads to repression of NBS1, a DNA mis-
match repair gene [83].

In addition to the kinase signaling pathways, 
loss of function of the gene suppressor von 
Hippel-Lindau (VHL) results in activation of 
HIF-1α protein due to the associated lack of 
protein- degradation suppression [84]. A dysregu-
lation of key carbohydrate metabolic intermedi-
ates was also shown to contribute to HIF-1α 
regulation independently to oxygen levels. For 
instance, α-ketoglutarate (α-KG) functions as a 
cofactor for PDH and FIH-1 (factor inhibiting 
HIF-1) hydroxylates [85] and is therefore directly 
involved in HIF-1α regulation.

Posttranslational modifications other than 
phosphorylation are also critical for HIF-1α pro-
tein activity. For instance, hydroxylation of 
HIF-1α protein by prolyl hydroxylase is viewed 
as the main regulatory mechanism that guards 
against HIF-1α protein activation in normoxic 
conditions. HIF hydroxylases exist in two forms: 
HIF-prolyl hydroxylase, also known as prolyl 
hydroxylase domain (PHD) proteins, and HIF- 
asparaginyl hydroxylase, also known as FIH-1 
(factor inhibiting HIF-1) [86].
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There are three closely-related isoforms of 
the PHD protein known as PHD1, PHD2, and 
PHD3, where PHD2 is considered the most crit-
ical under normoxic conditions [87]. PHD 
enzymes function by hydroxylation of two pro-
lyl segments of HIF-1α protein, where oxygen 
concentration is an imperative determinant for 
the reaction initiation [34, 88–90]. This interac-
tion takes place at the ODD domain where the 
two propyl residues reside. Once hydroxylated, 
HIF-1α develops a strong binding affinity for a 
part of an E3 ubiquitin ligase complex VHL pro-
tein leading to HIF-1α protein degradation by a 
proteasome. The reversal of this oxygen-depen-
dent degradation process results in an observed 
increase in HIF-1α protein levels associated 
with hypoxia.

A second hydroxylation event targets the 
asparaginyl residue at the C-TAD of HIF-1α pro-
tein by FIH-1. FIH-1 reaction depends exclu-
sively on oxygen availability in the ambient 
environment [86]. This reaction changes HIF-1α 
protein’s physical properties, such as its water 
affinity, hindering the interaction between the 
hydroxylated C-TAD and its coactivators p300/
CREB binding protein (CBP) [91, 92]. This reac-
tion will result in C-TAD domain blockage and 
ultimately HIF-1α transactivation activity inhibi-
tion, but not stability, in an oxygen-dependent 
reversible fashion (Fig. 3).

Redox sensors are equally important to oxy-
gen sensors in the regulation of HIF-1α-mediated 
hypoxic response. An example is the SIRT1- 
mediated acetylation process, which is another 
critical posttranslational modification of HIF-1α. 
SIRT1 deacetylates HIF-1α by targeting the 
lysine amino acid leading to the blocking of 
p300-recruitment and eventually HIF-1α inacti-
vation [94].

2.3  HIF-1α Stability

Although oxygen tension is considered the main 
factor governing HIF-1α protein stability during 
hypoxia through the hydroxylation events dis-
cussed earlier, mitochondria can also act as a sta-
bilizer of HIF-1α proteins via increased 
production of reactive oxygen species (ROS) 
[95–97]. ROS might play a role in protein stabili-
zation mainly through the inactivation of PHD 
leading to HIF-1α accumulation [98]. Lastly, 
reports on nitric oxide (NO) effect on HIF are 
contradictory, with some advocating for HIF-1α 
stabilization [99–102], whereas others demon-
strating an opposite effect on HIF-1α activity 
[103–105]. Once the protein is stabilized, nuclear 
translocated, and dimerized with ARNT, hypoxia- 
responsive genes are activated through HIF-1α 
binding to a characteristic consensus sequence 
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5′-(A/G) CGTG-3 termed HRE [106] located in 
the upstream region of hypoxia-inducible genes 
[15, 107, 108].

3  HIF-1α and Metabolic 
Reprogramming

A shift from glucose metabolism coupled with 
mitochondrial oxidative to anabolic respiration, 
known as the Warburg effect, is a hallmark of 
hypoxia. This metabolic shift takes place 
through the upregulation of oxygen-indepen-
dent metabolic pathways, such as glycolysis and 
downregulation of the oxygen-dependent path-
ways such as mitochondrial respiration [109]. 
For instance, overexpression of key glycolytic 
enzymes such as the rate-limiting enzyme phos-
phofructokinase [110] and the glycolytic flux 
regulatory enzymes, 6- phosphofructo-2-kinase 
and fructose- 2,6- bisphosphate, is HIF-1α-
mediated in hypoxia [37–40]. Other enzymes 
such as glucose transporter protein1 (GLUT1) 

and GLUT3 that are involved in glucose traf-
ficking processes are also the targets of HIF-1α 
in hypoxia [111, 112]. Noteworthy, there is a 
positive correlation among cancer pathological 
staging, GLUT3 and HIF-1α expression and 
activity levels, a measure that might serve as a 
prognostic tool [112]. HIF-1α activation also 
upregulates key enzymes that inhibit acetyl-
coenzyme A (acetyl-CoA) production from glu-
cose, therefore inhibiting oxidative 
phosphorylation. There are two isoforms of the 
enzyme pyruvate dehydrogenase kinase (PDK) 
known as PDK1 and PDK3 that directly inhibit 
acetyl-CoA production and entering into the 
TCA cycle leading to the shutdown of the oxi-
dative phosphorylation associated with hypoxia. 
Another approach for cells to shift away from 
oxidative metabolism is through the activation 
of mitochondrial autophagy by protein BCL2/
adenovirus E1B 19-kDa interacting protein 3 
(BNIP3) [113]. BNIP3 functions by activating 
lactose dehydrogenase A (LDHA) enzyme that 
converts pyruvate to lactate, therefore promot-
ing the anaerobic respiration.
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Fig. 3 HIF-1 signaling cascade. Synthesis and constitu-
tive expression of HIF-1α by a cascade involving a series 
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major differences among the hypoxic and normoxic sig-
naling and sequence of events are also depicted clearly in 

the flowchart. Normoxia leads to HIF-1α protein degrada-
tion whereas hypoxia leads to HIF-1α-regulated target 
gene expression. The downstream sequence of events 
leading to tumorigenesis is also portrayed (Modified with 
permission from [93])
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Similarly, PDK1 and PDK3 were also found 
to play a role in mitochondrial autophagy [114–
116]. In addition, miRNA targets of HIF-1α were 
found to directly favor the metabolic shift through 
inhibiting genes that are critical for the mito-
chondria oxidation machinery and independently 
of the metabolic enzymes [117]. For instance, 
miR-210 activation [118] inhibits the iron-sulfur 
cluster assembly enzyme ISCU, which is essen-
tial for the mitochondrial electron transport com-
plex I activity [119, 120]. Noteworthy, due to the 
scarcity of acetyl-CoA in response to hypoxia, 
tissues with a high proliferation rate such as can-
cer will utilize glutamine, instead of glucose, to 
generate α-ketoglutarate essential for fatty acid 
synthesis [121, 122]. Glutamine utilization as the 
main source of energy for such high-energy- 
demanding cells acts as another repelling force 
for the pyruvate away from the TCA cycle [121, 
122]. HIF-1α-mediated fatty acid metabolism 
dysregulation in cancer hypoxic tissues was asso-
ciated with poor survival in many solid tumors 
such as renal cancer [123]. The high-glycolytic- 
flux signature in hypoxia serves a unique benefit 
for cancer tissues, other than solely energy bene-
fit, and that is providing precursors of the pyrimi-
dine/purine pathway needed for DNA synthesis 
for cell proliferation [124]. For example, it was 
reported that glucose utilization is directly pro-
portional to increased cancer tissue mass and 
invasion property [125], suggesting a critical role 
played by glucose metabolism in tumorigenesis.

HIF-1α significantly contributes to the acidic 
environment of cancer tissues through the activa-
tion of plasma membrane proteins [126] such as 
monocarboxylate transporter 4 (MCT4), encoded 
by SLC16A3 gene, through controlling lactic 
acid transport [127]. Another membranous pro-
tein named sodium-hydrogen exchanger 1 
(NHE1) that is encoded by the SLC9A gene reg-
ulates the pH of the environment through protons 
pumping [128], and the same mechanism is 
adopted by carbonic anhydrase 9 (CA9) [129]. In 
fact, the intracellular alkalinization and extracel-
lular acidification enhance cellular proliferation 
and invasion [130].

An interesting aspect of HIF-1α regulation 
lies in its activation loop with pyruvate kinase 

M2 (PKM2) enzyme. PKM2 is a glycolytic 
enzyme that may play an important role in cancer 
progression [131] by promoting glycolysis as 
well as acting as a coactivator for HIF-1α [132]. 
HIF-1α also activates the transcription of PKM2 
leading to the activation of key oncogenes such 
as STAT3 and its downstream genes, which fur-
ther enhances the progression of cancer [133].

4  Hypoxia and Cancer

Tumor hypoxia is an example of a chronic, patho-
physiological condition, in which response is 
insufficient to completely reverse the hypoxic 
insult [134]. Hypoxia in cancer could be defined 
on the basis of oxygen and energy levels present 
in tumors. For instance, a concomitant decrease 
in both oxygen partial pressure and ATP level 
occurs in a fibrosarcoma model [135]. A key 
player in cancer hypoxia dynamics is the hypoxia- 
induced vascular endothelial growth factor 
(VEGF). Due to the constant hypoxic insult that 
cancer tissues are exposed to, VEGF-mediated 
new blood vessel formation to overcome the oxy-
gen deficiency is slow and disordered. This con-
tinuous cycle of defective blood vessel 
architecture and the activation of hypoxia- 
mediated pathways is a hallmark for tumor 
microenvironment (TME) [136] as well as its 
aggressive phenotype [137]. Many solid tumors 
such as breast and lung, among others, respond to 
the decrease in oxygen tension by upregulation of 
HIF-1α [138–140]. Correlation between hypoxia 
and tumor malignant transformation had also 
been observed [141–143].

5  HIF-1α and Immune Cells 
in Cancer

Many solid tumors are characterized by hypoxia 
[144] and tumor-associated macrophage (TAM) 
infiltration [145]. For example, in breast cancer, 
HIF-1α knockout in TAM caused overstimulation 
of nitrous oxide (NO) [145, 146], a phenomenon 
that can put T lymphocytes into anergy status. 
Hypoxia can also increase the expression of the 
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immune checkpoint programmed death-ligand 1 
(PD-L1) on macrophages, dendritic cells, and 
tumor cells in an HIF-1α-dependent fashion lead-
ing to the suppression of effector T-lymphocyte 
recruitment and activation [147]. Another mecha-
nism that HIF-1α can dampen the antitumor 
effect of immunity through is the upregulation of 
regulatory T lymphocytes [148].

6  Role of HIF-1α in Key Cancer 
Pathways

6.1  Cell Adhesion

Adhesion molecules play a significant role in 
cancer initiation and progression through pro-
moting its interaction with both intracellular and 
extracellular environment [149]. HIF-1α is 
directly involved in the regulation of key adhe-
sion molecules such as β1 integrins and α5β3 and 
α5β5 expression [150–152]. E-cadherin is also 
regulated by HIF-1α via its direct regulation of 
TCF3, ZFHX1A, and ZFHX1B [153] and up-
regulation of Snail [154] which inhibits 
E-cadherin gene expression.

6.2  Cell Proliferation

One of the defining characteristics of cancer cells 
is their uncontrollable proliferation coupled with 
impairment of cell death pathways and signals 
awing to overexpression of survival and growth 
factors; such changes enable cancer cells to adapt 
to nutritional deprivation or to escape their unfa-
vorable environment. For instance, hypoxia stim-
ulation of VEGF transcription, via the HIF 
pathway, was shown to be strongly associated 
with cellular proliferation and metastasis in 
tumors [155]. Additionally, the expression of 
hypoxia-mediated telomerase reverse transcrip-
tase (TERT) promotes tumor cells’ immortal 
phenotype [156]. Simultaneously, hypoxia- 
induced downregulation of membranous integ-
rins was reported to facilitate tumor cell 
detachment and new tumor growth [157]. A 
recent study of ARK5 expression in colon cancer 

showed that it was upregulated in a HIF-1α- 
dependent manner and that ARK5 serves an 
important player in cancer proliferation and 
migration under hypoxic stress [158]; similar 
effects were also reported in other solid cancers 
[159–161].

6.3  Metastasis and Invasion

Hypoxia can activate epithelial-to-mesenchymal 
transition (EMT) via HIF-1α in various types of 
solid tumors [162–164]. HIF-1α can directly or 
indirectly regulate key EMT regulators, includ-
ing TWIST, Snail, carbonic anhydrase IX 
(CAIX), and GLUT-1 [165–168]. These mole-
cules then trans-activate EMT-related genes, 
including vimentin, E-cadherin and N-cadherin, 
to facilitate the progression of the EMT [169, 
170]. Matrix metalloproteinase MMP2 and 
MMP9 have also been reported to be regulated 
by HIF-1α. The impact of hypoxia-induced 
MMP-9 expression is extremely central for cel-
lular migration [171, 172]. Besides, two major 
components of the fibrinolysis system and thus 
metastasis, named urokinase-type plasminogen 
activator receptor (uPAR) and plasminogen acti-
vator inhibitor-1 (PAI-1), have also been shown 
to be targets of HIF-1α [173, 174]. TWIST, 
another essential transcription factor that is 
involved in hypoxia-mediated EMT and tumor 
metastasis, is directly regulated by HIF-1α [165]. 
Other significant HIF-1α target genes directly 
involved in cancer metastasis are CXC chemo-
kine receptor-4 (CXCR4), c-Met and CC chemo-
kine receptor 7 (CCR7) [175–177], lysyl oxidase 
(LOX) [6, 178], fibronectin, cathepsin D, and 
urokinase plasminogen activator [11]. HIF-1α 
also  promotes cell invasion through the upregu-
lation of key invasion-promoting genes such as 
the autocrine motility factor [179], vimentin, and 
the receptor tyrosine kinase c-Met [175]. 
Meanwhile, the stromal-derived factor-1, kera-
tins 14, 18, and 19, the cytokine receptor 
CXCR4P [180, 181], caveolin-1 (CAV1) [182], 
uPAR, MMP2, cathepsin D, and fibronectin 1, 
among others, are transcriptionally upregulated 
by HIF-1α [183].
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6.4  Angiogenesis

Angiogenesis plays an essential role in tumori-
genesis. HIF-1α can stimulate an angiogenic 
response by activating a number of growth factor- 
encoding genes, including VEGF, angiopoietin1 
(ANGPT1) and ANGPT2, placental growth fac-
tor (PGF), calcitonin receptor-like receptor 
(CRLR) [184], and platelet-derived growth factor 
B (PDGFB) [68, 185]. HIF-1α deletion was 
reported to be associated with abnormal vascula-
ture [186]. On the other hand, a recent report on 
pancreatic tumor revealed an alternative mecha-
nism by which cancer cells could maintain angio-
genesis in an HIF1α-independent manner [187]. 
Noteworthy, SUMO-specific protease 1 (SENP1), 
a HIF-1α target enzyme, is of great importance 
for HIF-1α stabilization in hypoxia. This positive 
feedback loop is significant for VEGF activation 
and angiogenesis [188, 189].

6.5  Apoptosis

Although programmed cell death can be directly 
triggered by deficiency in oxygen levels in both 
normal and cancer tissues [190], with accompa-
nying DNA damage [191], the direct effect of 
HIF pathway on apoptosis is reported to range 
from apposing cell death [192] to promoting 
apoptosis [193]. One explanation for this varia-
tion in HIF pathway response might be related to 
the degree for hypoxia and the variation in oxy-
gen tension [194]. A second factor for such fluc-
tuation is the presence of several apoptosis-related 
proteins, such as cyclin D1, p21, and p27 that are 
targeted by HIF-1α upon activation, and that 
apoptosis response depends on the expression 
profiles of these apoptotic molecules [195]. 
Lastly, the initial energy level of hypoxic tissues 
is inevitably a key factor in the apoptosis path-
way [196].

Other factors such as the mitochondrial mem-
brane integrity could also trigger an apoptotic 
response through activating key apoptotic media-
tors, such as caspase 9, independently of HIF-1α 
pathway [197]. Wild-type tumor-suppressor gene 
p53 also plays a critical role in hypoxia-induced 

apoptosis through caspase 9 and Apaf-1 down-
stream effector [198, 199]. Other key apoptotic 
molecules such as BNIP3, a member of the Bcl-2 
family [200], and Noxa which is a p53- downstream 
protein that could sense ROS levels [201] have 
also been identified as targets of HIF-1α.

7  Clinical Significance 
and HIF-1α Inhibitors 
for Cancer Therapy

HIF-1α expression levels were positively corre-
lated with tumor progression in a variety of solid 
tumors such as glioma and breast cancer, where 
HIF-1α correlates with tumor pathological grade 
and invasion in the former [202], and overall poor 
survival rate in the later [203, 204]. HIF-1α is 
used as a prognostic marker for different treat-
ment modalities in a variety of solid tumors 
[205–207].

The combination of HIF-1α expression with 
oncogenes or tumor suppressor genes is viewed 
as another powerful prognostic factor. For 
instance, in ovarian cancer, the coexistence of 
mutant p53 expression and HIF-1 overexpression 
was associated with a poor survival rate [208] 
and resistance to chemotherapy mainly due to 
p53-mediated activation of RAS signaling that 
leads to apoptosis impairment [209]. Recently, a 
correlation between HIF-1α and the tumor sup-
pressor NEDD4L levels in gastric cancer has 
been proposed as a prognostic marker [210]. In 
addition, HIF-1α upregulation combined with the 
antiapoptotic protein Bcl-2 downregulation in 
esophageal cancer is associated with treatment 
failure [211].

HIF-1α inhibition provides an innovative 
approach for modifying tumor niche with 
promising clinical results. Unfortunately, and 
awing to the complex network of genes that are 
regulated by HIF-1α as well as the multilayered 
HIF-1α regulation mechanisms, it is challeng-
ing to develop a specific HIF-1α inhibitor with 
a high specificity [212]. Another factor that 
might tremendously affect the drug discovery 
process is accuracy and sensitivity of the 
screening methods. Currently, there are several 
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anti-HIF-1α molecules that are classified 
according to their target site into direct and 
indirect inhibitors. Direct inhibitors refer to 
molecules that target the transcriptional activity 
of HIF-1α, whereas indirect inhibitors are mol-
ecules that target HIF-1α transcription and 
translation on the mRNA and protein levels, 
respectively [213]. HIF-1α inhibitors are also 
classified according to the targeted stage of 
HIF-1α ranging from the mRNA transcription 
to protein degradation [214]. In conclusion, the 
continuous search for the specific HIF-1α 
inhibitor with fewer side effects and better 
patient tolerance and survival rate is still ongo-
ing. Noteworthy, combination therapy with 
other target molecules such as antiangiogenic 
drugs is showing promising results in animal 
model studies [215, 216]. A comprehensive 
understanding of the structure, molecular biol-
ogy, and regulatory machinery of HIF-1α 
domains will undoubtedly aid in the develop-
ment of specific HIF-1α inhibitors.

8  Conclusion

It has been nearly three decades since the novel 
discovery of HIF-1α as a master regulator of 
hypoxic response as well as its implication in 
cancer progression and survival in many solid 
tumors. Since then, HIF-1α was regarded as a 
significant and promising target in anticancer 
therapy. A great deal of research in this area as 
well as the development of HIF-1α inhibitors 
have clearly translated such impact. 
Unfortunately, none of these therapies were 
proven to be precisely and exclusively targeting 
cancer, leading to undesirable side effects. 
Indeed, the involvement of HIF-1α in many 
aspects of physiological pathways seems to be 
the main obstacle for perfectly targeting it. 
Therefore, future research may emphasize more 
on unfolding all the genes and proteins involved 
in the HIF-1α pathway, elucidating the molecular 
mechanisms that regulate other HIF members, 
and finally aim to discover and target a novel 
cancer-specific molecule from the HIF-1α down-
stream effectors expanding pool.
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1  Introduction

Glioma is the most common neoplasm of the cen-
tral nervous system. Based on the classification 
system defined by the World Health Organization 
(WHO), gliomas have been divided into I–IV 
grades according to the degrees of malignancy. 
Glioblastoma (grade IV) is the most refractory 
and common brain malignancy that accounts for 
56.6% of gliomas with an incidence rate of 3.21 
per 100,000 population [1]. It is noteworthy that 
the incidence of glioblastoma increases with age. 
The highest incidence is found in individuals 
aged 75–84, which is 44.47 per 100,000 popula-
tion. At present, the therapeutic treatment of this 
disease is not optimistic. Most patients are prone 
to recurrence after treatment, and the average sur-
vival time of glioblastoma is only about one year 
[2]. Therefore, glioma is a lethal disease that 
causes huge burden on individuals, families, and 
the society. It is urgent to upgrade therapeutic 
strategies and discover new targeted drugs for 
this devastating disease [3].

Altered cellular metabolism is an important 
characteristics of gliomas, especially glioblas-

toma multiforme (GBM). The activities of GBM 
cells in glycolysis, TCA cycle, pentose phosphate 
pathway, and amino acid metabolism are differ-
ent from those in benign or low-grade gliomas. 
For instance, the metabolic requirement of 
growth and proliferation of GBM cells is higher 
than that of normal cells, and cells must maintain 
sufficient energy to support the metabolic needs 
of growth and proliferation. On the one hand, 
glucose is metabolized to pyruvate through gly-
colysis without oxygen limitation, and pyruvate 
then enters the cycle of tricarboxylic acid (TCA) 
in mitochondria to synthesize high-yield ATP by 
oxidative phosphorylation. On the other hand, in 
most malignant cells, even if there is enough oxy-
gen, lactic acid is produced by glycolysis and fer-
mentation to enhance the flux [4]. In recent years, 
breakthroughs have been made in this field 
regarding the metabolisms of glioblastoma. In 
the second part of this book chapter, we will dis-
cuss the recent advances in altered metabolic 
pathways in glioma.

Metabolites are closely related to physiolog-
ical changes within individual phenotypes and 
direct indicators of many physiological and 
biochemical reactions or changes in enzyme 
activities. Metabolomics can directly detect the 
physiological and biochemical reactions of all 
small molecule metabolites present in a biolog-
ical system, such as cells, tissues, and body flu-
ids (e.g., cerebrospinal fluid, plasma, urine, and 
saliva). In the process of tumorigenesis, some 
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specific metabolic processes are altered, lead-
ing to significant metabolomic changes and 
metabolic reprogramming. By using metabolo-
mics technology to detect these changes in the 
tumorigenic process, we may discover metabo-
lite biomarkers for early diagnose/prognosis or 
predict the progression of tumors. At present, 
the commonly used methods of metabolomics 
mainly include nuclear magnetic resonance 
spectroscopy (NMR) and mass spectrometry 
(MS). NMR spectroscopy has emerged as a 
high-throughput and useful technique for quali-
tative and quantitative metabolomics analysis 
[5]. It is a fast, nondestructive, nonselective and 
highly reproducible technology that requires 
minimal sample preparation and provides 
highly informative structural information. 
Traditionally, NMR has been used to elucidate 
metabolic tracers by determining their struc-
tures using in  vivo and in  vitro 13C 
NMR.  Alternatively, a two-dimensional NMR 
spectrum obtained using a large number of 
increments in the indirect dimension can pro-
vide 13C- 13C scalar coupling information, which 
can be used to determine the exact positional 
atoms of the label [6]. 13C NMR has been suc-
cessfully applied to studying the tumor metabo-
lism of primary GBM and IDH mutant gliomas 
by infusion of 13C-labeled nutrients (glucose, 
acetate, and glutamine) [7, 8]. Compared to 
NMR, high- throughput LC-MS technique may 
be the best method for analyzing metabolites at 
low concentrations. Both LC-MS and NMR 
methods can be used to explore characteristic 
metabolites of gliomas in plasma and brain 
biopsies. Furthermore, studies of key metabolic 
pathways, such as cysteine   metabolism, GSH 
synthesis, and lipid metabolism, in brain tumors 
may help distinguish glioma grades and develop 
new clinical intervention strategies. In the third 
part of this book chapter, we will discuss recent 
metabolomic applications in glioma, which 
have provided new molecular insights into the 
pathogenesis of the disease and demonstrated a 
promising strategy to identify new metabolite 
biomarkers for the disease diagnosis/prognosis 
and treatment efficacy.

2  Recent Advances 
in Metabolic Pathways 
of Glioma

At present, classical metabolic pathways such as 
TCA cycle, glycolysis, and arachidonic acid (AA)/
inflammation pathway have been well studied in 
glioma. TCA cycle is the ultimate metabolic path-
way of the three major nutrients, carbohydrates, 
lipids, and amino acids, and it is also the pivot of 
carbohydrates, lipids, and amino acids metabo-
lism. Studies have shown that the glycolysis rate 
of cancer cells increases despite the presence of 
enough oxygen, while their dependence on oxida-
tive phosphorylation decreases. Besides, hista-
mine may interact with receptors in glioma cells, 
followed by increased AA metabolism and prosta-
glandin levels in these cells. Thus, the abnormal 
metabolism of AA and its metabolites may be 
related to the occurrence of cancer [9]. 
Nevertheless, in recent years, attention has been 
paid to the understanding of new metabolic altera-
tions in glioma cells. A number of novel metabolic 
pathways have been discovered and studied.

2.1  IDH1/2 Gene Mutation

2.1.1  IDH1/2 Mutation and Glioma
Metabolic disturbances are thought to play a criti-
cal role in the advancement of tumors. In recent 
years, various degrees of isocitrate dehydrogenase 
gene (IDH) mutations have been found in multiple 
tumors, including acute myeloid leukemia (AML), 
chondrosarcoma, intrahepatic cholangiocarci-
noma (ICC), paraganglioma, colorectal cancer 
(CRC), prostate cancer, lung cancer, thyroid carci-
noma, and melanoma [10]. IDH mutation is con-
sidered to alter the mode of cell metabolism and 
may be related to the occurrence and development 
of tumors. In 2008, Parsons et  al. discovered 
IDH1/2 gene mutations in patients with malignant 
glioblastoma [11]. The WHO subsequently classi-
fied glioma into IDH mutant and IDH wild types. 
This is the first time that molecular typing is used 
as the gold standard for glioma diagnosis, and it 
has epoch-making significance.
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IDH is a crucial rate-limiting enzyme in the 
TCA cycle. It catalyzes the oxidative decarboxyl-
ation of isocitrate, producing alpha-ketoglutarate 
(α-KG) and CO2. This process provides energy 
and precursors for cell metabolism. At present, 
three IDH isoforms encoded by different genes 
have been found in human body, namely IDH1, 
IDH2, and IDH3. IDH1 is present in cytosol and 
peroxisome, while IDH2 and IDH3 are present in 
mitochondria [12]. NADP-dependent IDH1 and 
IDH2 have considerable sequence similarity 
(70%) and nearly identical protein conformation 
[13], while IDH3 has a unique sequence and is an 
NAD-dependent enzyme [14]. IDH3 plays a 
decisive role in energy production. To the best of 
our knowledge, there have been no report of 
tumor-associated mutations in the IDH3 gene. 
Hence, IDH3 gene is not discussed in this chap-
ter. Recently, abounding studies have found that 
the mutation of IDH1/2 gene frequently occurred 
in low-grade gliomas, secondary glioblastomas 
(84.6%), anaplastic astrocytomas (69.2%), and 
anaplastic oligodendrogliomas (86.1%). 
However, they are rare in primary glioblastoma 
(5.0%). The most common mutation is the R132H 
IDH1 mutation (90%). The single arginine at the 
enzyme activity site is replaced by other amino 
acids (the most common one is histidine), which 
results in the loss of the original wild-type bio-
logical function of IDH, followed by the acquisi-
tion of new enzymes activities. Then α-KG 
produced during energy metabolism is reduced to 
2-hydroxyglutaric acid (2-HG), a carcinogenic 
metabolite [11, 15]. However, it is ambiguous 
how these enzymatic changes contribute to 
tumorigenesis. Next, we discuss how IDH1/2 
mutations alter glioma metabolism and how these 
changes may contribute to tumor formation in 
glioma.

2.1.2  IDH1/2 Mutation and 2-HG
After mutation of IDH 1/2, mutant IDH competes 
with wild IDH for substrates. On the one hand, 
the activity of wild-type IDH is inhibited or even 
lost. On the other hand, the production efficiency 
of α-KG decreases after mutation of IDH, and the 
generated α-KG is reduced to 2-HG under the 
action of new catalytic enzyme. Consequently, 

2-HG expression is significantly increased in 
cancer cells. In clinic, the elevation of 2-HG can 
be detected in the serum of IDH mutated glioma. 
Moreover, 2-HG can be used as a biomarker for 
clinical detection because the level of 2-HG in 
normal tissues is very low [10]. In view of the 
important role of 2-HG in tumors, the mechanism 
of 2-HG-induced glioma has attracted wide atten-
tion in recent years (Fig. 1) [10].

Normally, cells metabolize to produce α-KG, 
which is combined with a variety of dioxygen-
ases to participate in many important life activi-
ties, including collagen synthesis, DNA repair, 
and hypoxia. However, the level of 2-HG 
increases after IDH mutation. It is noteworthy 
that the molecular structure of 2-HG is very simi-
lar to that of α-KG. Therefore, 2-HG can compe-
tently bind to α-KG-dependent dioxygenase and 
inhibit the activity of enzyme, which is mani-
fested by the increased expression of hypoxia- 
induced factor-1α (HIF-1α) [16]. HIF-1α can 
induce the expression of glycolysis-related 
enzymes, such as glucose transporter 1 (Glut 1) 
and hexokinase 2 (HK 2) [16, 17], thus turning 
cells into glycolysis process. For instance, prolyl 
hydroxylase (PHD) is a member of the dioxygen-
ases family. Chowdhury et  al. found that 2-HG 
could inhibit the activity of PHD in  vitro, fol-
lowed by the accumulation of HIF-1α in cells. 
Then the expression of downstream target genes 
of HIF-1α and a variety of signal pathways 
related to cell differentiation were activated, 
which ultimately promoted the formation of 
tumors [18].

In addition, high levels of 2-HG also inhibit 
DNA demethylase. Ten-eleven translocation 
(TET) family can demethylate DNA by catalyz-
ing 5-methylcytosine (5-mc) hydroxylation [19]. 
TET 2 is the main enzyme of TET family. Many 
studies have shown that 2-HG can inhibit TET2- 
catalyzed 5-mc hydroxylation and DNA demeth-
ylation [20]. In other words, 2-HG can lead to 
DNA hypermethylation. In addition, 2-HG also 
inhibits histone demethylase. Xu et al. found that 
2-HG could compete with α-KG, thus inhibiting 
the activity of histone demethylase containing 
JmjC domain and showed that histone methyla-
tion markers were upregulated and DNA meth-
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Fig. 1 Potential therapeutic strategies for malignancies 
that harbor IDH1 or IDH2 mutations. A number of phar-
macological inhibitors have been developed to directly 
inhibit the neomorphic activity of mutant IDH enzymes in 
an effort to reduce D2HG production and elicit differentia-
tion of malignant progenitor cells. Alternatively, inhibitors 
of enzymes involved in glutaminolysis, including gluta-
mate dehydrogenases and glutaminase, have been shown 
to preferentially inhibit the growth of leukemia and glioma 
cells with IDH mutations. Similarly, NAMPT inhibitors 
are proposed to exploit the observation that NAPRT1-

mediated conversion of nicotinic acid to NAD+ is defec-
tive in IDH-mutant gliomas (indicated by an X in the 
figure). Hypomethylating agents such as azacytidine and 
decitibine may also promote differentiation of IDH- mutant 
cells, which exhibit a hypermethylation phenotype that is 
associated with an inhibition of differentiation. 
Co-occurring driver alterations, such as MYCN amplifica-
tion, may be targeted in IDH-mutant tumors using avail-
able targeted therapies (e.g., JQ1 for n-Myc overexpression) 
in a tumor-specific manner. *Indicates pan-mutant IDH 
inhibitor. Reprinted with permission [10]
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ylation finally occurred [21, 22]. It is noteworthy 
that histone methylation and DNA methylation 
interact, and the disorder of histone and DNA 
methylation induced by 2-HG inhibited normal 
cell differentiation. It promoted the pathological 
self-renewal of stem cell-like cells, thus trans-
forming them into cancer cells.

2.1.3  Metabolomic Alterations in IDH 
Mutant Cells

Metabolomics studies of IDH1/2 mutant cells 
revealed changes in the synthetic pathways of 
glutamine, fatty acids, and citrate [23]. Reitman 
et al. analyzed >200 metabolites in IDH1/2-mut 
oligodendroglioma cells and revealed the changes 
of amino acids, glutathione metabolites, choline 
derivatives, and intermediate products of TCA 
cycle [15]. These changes mimicked the altera-
tions found in cells treated with 2-HG. N-acetyl- 
aspartyl-glutamic acid (NAAG) was a dipeptide 
commonly found in the brain, which was reduced 
by 50-fold in cells expressing IDH1-mut and by 
8.3-fold in cells expressing IDH2-mut. A similar 
reduction in NAAG was detected in the tissues of 
IDH-mut glioma. Acetyl-CoA (CoA), produced 
by citrate in the cytoplasm, has been shown to 
regulate acetylation of cytoplasmic proteins. 
IDH-mut tumors exhibit disturbed acetyl-CoA 
metabolism and decreased cytosolic acetyl-CoA 
concentration, which may result in altered acety-
lation and activity of many oncogenic proteins 
[24]. IDH1-mut cells shared a variety of meta-
bolic changes with 2-HG-treated cells, indicating 
that the production of metabolites was responsi-
ble for the observed metabolic effects. IDH1 
activity was also an important factor in metabolic 
adaptation, supporting the maintenance of inva-
sive growth of primary GBM despite difficult 
metabolic conditions [25].

Besides, IDH1-mut cells produce NADPH, 
which is involved in lipid metabolism [26]. 
Studies showed that IDH1/2 participated in pro-
tection against oxidative stress by producing 
molecules with strong reducing properties such 
as NADPH and α-KG [27, 28]. Those molecules 
can prevent DNA damage through their interac-
tion with glutathione and thioredoxin production 
systems [29]. The response driven by IDH1 was 

the main source of NADPH in the human brain, 
producing up to 65% of brain NADPH [30]. 
IDH1/2 were also involved in glutamine metabo-
lism under hypoxia and electron transport chain 
changes [31]. In addition, Studies revealed that 
IDH1/2 mutation induced a homologous recom-
bination (HR) defect that renders tumor cells 
exquisitely sensitive to poly (ADP-ribose) poly-
merase (PARP) inhibitors [32]. These metabolic 
changes provided clues to the pathogenesis of 
tumors associated with IDH gene mutations. 
Table 1 summarizes the metabolomic alterations 
in IDH1/2 mutant cells or 2-HG treated cells.

2.2  Other Metabolic Pathways 
in Glioma

2.2.1  Amino Acid Metabolism
Amino acids are important metabolites in organ-
isms, and metabolic dysregulation of amino acids 
is a new marker of cancer [34]. Tumor cells 
absorb amino acids from extracellular environ-
ment as carbon and nitrogen sources for protein 
and nucleotide synthesis [35]. Amino acids 
ingested from tumor microenvironment also con-
tribute to carbon metabolism and redox mainte-
nance [36, 37]. Tumor cells can also regulate 
amino acid uptake by regulating the level or 
activity of specific amino acid transporters [38]. 
At present, the molecular mechanism of amino 
acid transporters regulating cancer is still unclear. 
Below we briefly discuss newly discovered 
abnormalities in amino acid metabolism path-
ways in gliomas (Fig. 2) [39].

The first metabolic change observed in tumors 
is increased glycolysis, which is also known as 
the Warburg effect, even if there is sufficient oxy-
gen supply. In recent years, the importance of 
mitochondria and the utilization of oxidizable 
substrates such as glutamine in the survival and 
proliferation of cancer cells have been clearly 
demonstrated [40]. Neurons in normal physio-
logical state metabolize glutamine to glutamic 
acid and then wrap it into synaptic vesicles for 
future release. The glutamic acid-glutamine cycle 
maintains a low extracellular level of glutathione. 
Disruption of the glutamate-glutamine cycle can 
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provide neoplastic GBM cells access to gluta-
mine. Cancer cells need glutamine to drive mito-
chondrial metabolism because the cost of 
converting glucose to lactic acid is mitochondrial 
oxidation. In addition to providing carbon for 
TCA cyclic synthesis, glutamine can also provide 
a-ketoglutarate to support amino acid catabolism. 
Glutamine is a direct nitrogen donor for nucleo-
tide biosynthesis and is related to redox balance. 
Therefore, disruption of the glutamate-glutamine 
cycle can provide neoplastic GBM cells access to 
glutamine [41].

It was found that tryptophan and methionine 
were abnormally metabolized in glioma cells com-
pared with normal astrocytes. GBM cells depend 
on methionine to proliferate and survive, as well as 
the maintenance of the S-adenosylmethionine 
(SAM): S-adenosylhomocysteine (SAH) ratio. 
When abnormal methionine metabolism occurs, 
the ratio is changed, which alters the total methyla-
tion of DNA, RNA, and protein, and ultimately 

activates carcinogenic kinases [42]. Similarly, 
abnormal tryptophan metabolism/indoleamine 
2,3-dioxygenase (IDO1) signal is an important 
metabolic node in GBM. It was found that trypto-
phan level in GBM cells increased significantly, 
and tryptophan was converted to kynurenine 
instead of serotonin catalyzed by IDO enzyme. 
Kynurenine can activate aromatic hydrocarbon 
receptors and ultimately immunosuppressive 
agents, which makes multiple cancer cells escape 
the immune response and promote the formation of 
tumors [43].

In recent years, cysteine metabolism, as a new 
metabolic pathway of glioblastoma, has also 
attracted wide attention. Normally, cysteine is 
used to produce glutathione, which has an anti-
oxidant effect. The abnormal metabolic pathway 
results in the accumulation of cysteine sulfinic 
acid (CSA) in cells. CSA is one of the major 
metabolites that differentiate glioblastoma from 
low-grade glioma. The level of CSA is highly 

Table 1 Levels of metabolites altered by IDH1/2 mutations in glioma

Sample
Detected signature metabolites

ReferencesIncreased Decreased
IDH1 
mutant 
cells

2-Hydroxyglutarate, 5,6-dihydrouracil, 
acetoacetate, glutamate, glutathione, 
isoleucine, lactate, maleate, oxaloacetate, 
oxypurinol, succinate, taurine, threonine, 
tyramine, valine, xanthine, glycine, serine, 
sparagine, tyrosine, tryptophan, 
methionine, glycerol-phosphates, 
glycerophosphocholine, 4-methyl-2- 
oxopentanoate and 
3-methyl-2-oxopentanoate

Acetate, atrial natriuretic peptide, alanine, 
betaine, creatine, glycine, leucine, 
N-Acetylglycine, NAD+, trimethylamine 
N-oxide, ribulose-5-phosphate, glucose-6- 
phosphate, aspartate, glutamate, N-acetyl- 
aspartyl-glutamate, fumarate, malate, 
α-ketoglutarate, N-acetyl-aspartate, citrate, 
cis-aconitate, isobutyrylcarnitine, 
isovalerylylcarnitine, 2-methylbutyroylcarnitine 
and choline phosphate

[15, 33]

IDH2 
mutant 
cells

2-Hydroxyglutarate, 5,6-dihydrouracil, 
acetate, acetoacetate, betaine, 
N-Acetylglycine, NAD+, trimethylamine 
N-oxide, ribulose-5-phosphate, glycine, 
serine, threonine, asparagine, tyrosine, 
tryptophan, methionine, glycerol- 
phosphates, leucine, isoleucine, valine, 
4-methyl-2-oxopentanoate and 
3-methyl-2-oxopentanoate

ANP, alanine, glutamate, glutathione, glycine, 
lactate, maleate, oxaloacetate, oxypurinol, 
succinate, threonine, tyramine, xanthine, 
citrate, α-ketoglutarate, aspartate, N-acetyl- 
aspartyl-glutamate, cis-aconitate, fumarate, and 
malate, isobutyrylcarnitine, 
isovalerylylcarnitine, 
2-methylbutyroylcarnitine, choline phosphate 
and glycerophosphocholine

[15, 33]

Cells 
treated 
with 
2-HG

2-Hydroxyglutarate, glycine, serine, 
threonine, asparagine, phenylalanine, 
tyrosine, tryptophan, methionine, 
glutamate, α-ketoglutarate, leucine, 
isoleucine, and valine, 4-methyl-2- 
oxopentanoate, 3-methyl-2-oxopentanoate 
and glycerophosphocholine

Aspartate, N-acetyl-aspartyl-glutamate, 
isobutyrylcarnitine, isovalerylylcarnitine, 
2-methylbutyroylcarnitine and choline 
phosphate

[15]
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consistent with the expression of cysteine dioxy-
genase 1 (CDO1), a biosynthetic enzyme, in 
tumors. CAS also has the ability to inhibit oxida-
tive phosphorylation of glioblastoma cells, and 
the weakening of oxidative phosphorylation is a 
common metabolic phenotype in carcinogenesis. 
It has been confirmed that the attenuation of oxi-
dative phosphorylation induced by CSA is attrib-
uted to the inhibition of pyruvate dehydrogenase, 
a regulatory enzyme, and abnormal cysteine 
metabolism contributes to the growth of invasive 
high-grade glioma [44].

Studies found that cysteine-glutamate trans-
porter (XCT) encoded by SLC7A11 gene is 
highly expressed in glioblastoma. XCT, together 
with its binding partner CD98 (SLC3A2), forms 
the amino acid transport system XC

− (SXC). 
Cystine uptake was carried out through the 

XC-transporter system, and the main function of 
SXC is to convert cysteine (oxidative dimeriza-
tion form of cysteine) into glutamic acid, which 
promotes tumor growth. Exchange of glutamate 
during this process also provides a survival 
advantage for glioma, leading to excitatory death 
of neurons near the tumor [45–47].

Taurine is an essential amino acid in human 
body. Hypotaurine, an oxidation product of tau-
rine, can promote the occurrence and develop-
ment of glioma, and hypotaurine is positively 
correlated with malignant degree of glioma. 
Many studies have found that taurine is reduced 
in plasma of glioma patients. Molecular biology 
results showed that hypotaurine could 
 competitively inhibit the activity of proline 
hydroxylase 2, leading to nondegradation of 
HIF-1α, and then trigger the expression of tumor-

Fig. 2 Major metabolomic pathways involved in brain 
tumor metabolism. The highlighted boxes represent the 
metabolic pathways that may be significantly altered in 
malignant brain tumors. The accumulation of oncome-
tabolite 2-HG resulted from IDH1/2 mutation also con-
tributes to malignancy. ADP adenosine diphosphate, AMP 

adenosine monophosphate, ATP adenosine triphosphate, 
dADP deoxyadenosine diphosphate, dAMP deoxy-
adenosine monophosphate, dATP deoxyadenosine tri-
phosphate, CoA coenzyme A, GAR glycinamide 
ribonucleotide, IDH isocitrate dehydrogenase, UDP uri-
dine diphosphate. Reprinted with permission [39]
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related genes. A large number of cell and animal 
model experiments have confirmed that hypotau-
rine is another newly discovered metabolite with 
carcinogenic characteristics. Taurine and hypo-
taurine metabolic pathway will be an important 
research direction in the pathogenesis of glioma 
in the future [48, 49].

2.2.2  Nucleotide Metabolism
Brain tumor initiation cell (BTICs), also known 
as tumor stem cell, hijacks the high affinity glu-
cose uptake of normal neurons to maintain energy 
requirements. Studies have found that BTIC acti-
vates de novo purine synthesis to maintain self- 
renewal, proliferation, and tumorigenesis [50]. 
Therefore, the increase of purine synthesis 
in vivo may be related to the tumorigenesis, and 
metabolites of purine synthesis pathway have 
received extensive attention, such as inosine 
5′-monophosphate (IMP), adenosine 5′-mono-
phosphate (AMP), adenine and guanine. It is 
worth noting that differentiated glioma cells are 
not affected by the targeting effect of purine bio-
synthetase, indicating selective dependence on 
BTIC. Purine synthesis begins with ribonuclease 
5-phosphate (R5P). BTICs upregulated the 
enzymes involved in purine synthesis and effec-
tively introduced glucose-derived R5P into the 
production of alkaline purine nucleotides. After 
glucose influx, the carbon flow in BTICs was 
used to maintain the purine synthesis, which was 
maintained by the core transcription factor myc. 
Therefore, the levels of IMP, AMP, and GMP in 
BTICs increased. In addition, by combining pro-
teomics with intracellular metabolomics, it was 
found that PTDOH activates Cad through mToR 
signaling pathway independent of Akt, thereby 
acutely regulating the production of pyrimidine 
metabolites. The disorder of purine and pyrimi-
dine metabolism was considered as one of the 
important factors for the occurrence and develop-
ment of glioma [51].

2.2.3  Lipid Metabolism
Lipid metabolism reprogramming is a new meta-
bolic feature of malignant tumors. The accumula-
tion of lipid droplets (LD) during the progression 
of human glioma suggests that lipid metabolism 

is impaired, and the aberrant lipid metabolism is 
observed in glioma. The number of LDs seems to 
be closely related to the degree of malignancy. It 
was also found that the key enzyme, sterol 
O-acyltransferase 1 (SOAT1), which controls 
cholesterol esterification and LD formation, is 
highly expressed in tumors of GBM patients and 
associated with the prevalence of LD.  Besides, 
the decrease of choline level in glioma patients 
may cause disorder of lipid metabolism. 
Phosphatidylcholine synthesized from glycerol 
diester and activated choline is one of the main 
components of cell membrane phospholipids. 
Therefore, the choline level may reflect the 
degree of cell damage and immunity and indicate 
abnormal metabolism in glioma patients. 
Determining the vulnerability of lipid changes in 
cancer cells provides a new opportunity to treat 
cancer [52, 53].

3  Metabolomic Analysis 
of Glioma

3.1  Cerebrospinal Fluids

Cerebrospinal fluid (CSF) represents an attrac-
tive source for monitoring glioma progression 
because the tissues of CNS are bathed by CSF, 
and CSF is readily accessible and less invasive 
compared with traditional pathology [54]. The 
CSF metabolic alterations are considered as one 
of the key biomarkers for glioma progression. 
Due to the availability of high-throughput ana-
lytical technologies, metabolomic analysis of 
CSFs from glioma patients has the potential to 
monitor glioma progression and the response to 
therapy [39].

Metabolomic analysis of CSFs have revealed 
many signature metabolites associated with the 
development and progression of glioma. Some of 
these metabolites also vary among the gliomas of 
different grades. Studies have reported that the 
levels of citric and isocitric acid in CSFs were 
remarkably increased in GBM versus the grades 
I–III gliomas, and the levels of lactic and 
2- aminopimelic acids were relatively higher in 
GBM than the grades I–II gliomas [55, 56]. The 
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report showed that changes in a large number of 
metabolites in CSFs were associated with the 
presence of an IDH1 mutation, including acetyl-
carnitine and shikimate, D-2-HG, malic acid, ala-
nine, glutamate, lactate, phosphocholine, 
1-methyl tryptophan, 1-methyl-histidine, argi-
nine, asparagine, N-acetylputrescine, succinic 
acid semialdehyde, malonate, betaine aldehyde, 
and pantothenic acid. The levels of D-2-HG, 
malic acid, succinic acid, alanine, lactic acid, and 
aminohexanedioic acid were increased, while the 
levels of glutamic acid, acetylcarnitine, and shi-
kimic acid were decreased significantly in IDH 
mutant gliomas [57–59].

3.2  Plasma and Serum

There has been an increasing interest of using 
blood metabolite biomarkers for cancer diagnos-
tics and prognostics. Compared with tumor tis-
sue, plasma is a matrix rich in metabolites, which 
can be easily obtained by the minimally invasive 
sampling. Therefore, plasma metabolomic analy-
sis may be more suitable than actual glioma tis-
sues for biomarker discovery, especially when it 
is difficult to harness normal brain tissues for 
comparison. Through the metabolomic analysis 
of high-grade and low-grade gliomas, 18 metabo-
lites were found to be significantly different, and 
five metabolites, namely uracil, arginine, lactic 
acid, cysteine, and ornithine, were significantly 
different between patients with high-grade gli-
oma and low-grade glioma. Ascorbate and alda-
rate metabolites were associated with high-grade 
glioma, while glycolysis/gluconeogenesis/pyru-
vate, eicosanoid, and glutamate metabolites were 
related to lower-grade disease [60].

In addition, lower levels of arginine were 
observed in high-grade glioma when compared to 
low-grade glioma, suggesting greater arginine 
dependence of the high-grade glioma. Two argi-
nine/proline metabolic pathway intermediates, 
2-oxoarginine, which is a guanidino metabolite of 
arginine, and argininate, which is the conjugate 
base of arginine, were substantially lower in men 
years in advance, especially nine or more years, of 
being diagnosed with glioma when compared with 

healthy controls (without diagnosis of glioma). In 
fact, studies have indicated that arginine/proline 
metabolites are involved in tumorigenesis (includ-
ing glioblastoma), exogenous arginine is required 
for tumor growth, and arginine deprivation leads to 
impairment of glioma cell motility, invasiveness, 
and adhesion [61–64]. Tumor cells have a high 
demand for arginine. However, a subset of glio-
blastomas has a defect in the arginine biosynthetic 
pathway due to epigenetic silencing of the rate-
limiting enzyme argininosuccinate synthetase 
(ASS1). The metabolism of amino acids such as 
citrulline, arginine, alanine, and glycine were sig-
nificantly altered between the two subtypes of 
ASS1 positive and ASS1 negative GBMs [65]. 
Metabolomics profiling in plasma samples from 
glioma patients also correlated with tumor pheno-
types. Uridine and guanine were found to be sig-
nificantly different between patients with GBM 
and non-GBM, and six metabolites, 
N-acetylputrescine, trimethylamine- N-oxide 
(TMAO), nicotinate (niacin), arginine, glucos-
amine, and methionine, were found to be associ-
ated with IDH mutation. Those six significant 
metabolites separated IDH1 mutation positive 
from negative glioma patients with 94.4% accu-
racy. Within arginine and proline metabolism, lev-
els of intermediate metabolites in creatine pathway 
were all significantly lower in IDH mutation posi-
tive than in IDH mutation negative patients, sug-
gesting an increased activity of creatine pathway 
in IDH mutation positive tumors [66].

Serum metabolomic analysis of GBM patient 
during the initial phase of radiotherapy revealed 
that 68 metabolites were lowered in concentra-
tion following treatment while 16 metabolites 
were elevated in concentration. All detected and 
identified amino acids and fatty acids together 
with myo-inositol, creatinine, and urea were 
among the metabolites that decreased in concen-
tration after treatment, while citric acid was 
among the metabolites that increased in 
 concentration [67]. Another serum study also 
found that cysteine levels in GBM patients were 
higher than those in oligodendroglioma patients, 
while lysine and 2-oxisohexanoic acid were more 
abundant in the sera of oligodendroglioma 
patients [39].
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3.3  Glioma Tissues

For cancer research, metabolomic analysis of 
tumor tissues possesses a unique advantage that it 
can gain more direct insight into disease-specific 
pathogenesis. Owing to the fact that precancer-
ous tissue is not easily acquired from patients, 
pair-wise metabolomics analysis of malignant 
and corresponding normal brain tissues was per-
formed relatively scarcely. C6 cell lines were the 
rat origin glioma cells, and, genetically, C6 
glioma- bearing rats were good models for glioma 
studies [68]. A recent study found that nine 
metabolites increased in the rat tumor tissues 
[69]. Among them, hypotaurine was the only 
metabolite enriched in the malignant tissues as 
what had been reported in the metabolomics 
analysis of human tissues. Except hypotaurine, 
the other eight metabolites were not found to be 
different in human glioma tissue metabolomic 
analysis. It was reported that hypotaurine 
increased the stability of HIF-1α in human gli-
oma cells in vitro, and hypotaurine was reported 
as a competitive inhibitor of PHD2 [48]. Besides, 
4-aminobutyric acid (GABA), an important 
inhibitory neurotransmitter, was found at low 
level in tumors of high-grade glioma patients, 
while it can be detected in normal brain. Another 
neurotransmitter, glutamate, is the substrate of 
GABA and participates in energy supply. The 
level of glutamate was found to be higher in gli-
oma when compared with normal brain [70].

Although there are relatively few paired 
metabolomic analyses of malignant and corre-
sponding normal brain tissues, 12 distinct meta-
bolic features were found by comparing the 
metabolic characteristics of GBM and oligoden-
droglioma tissues. In high-grade gliomas, blood- 
brain barrier defects may occur. Therefore, the 
level of mannitol, a molecule that normally may 
not be able to cross the blood brain barrier, was 
found to be higher in high-grade glioma. 
2-Hydroxyglutaric acid, GABA, creatinine, 
glycerol- 2-phosphoric acid, glycerol-3- 
phosphoric acid, libitol, and inositol were higher 
in oligodendroglioma than those in GBM. 
Creatinine, a decomposition product of creatine 
phosphate, converts ADP into ATP. Metabonomic 

analysis revealed that creatinine level in GBM 
tumors was lower than that in oligodendrogli-
oma. Glycerol-3-phosphoric acid is the skeleton 
of triglycerides and glycerol phosphatides. It also 
participates in the oxidation cycle of fatty acids 
and produces NADH. Glycerol-3-phosphate lev-
els in GBM were lower than those in oligoden-
droglioma [70]. Table 2 summarizes some of the 
significantly altered metabolites identified by 
metabolomic analysis of CSF, serum/plasma, and 
glioma tissues.

4  Application of Metabolomics 
in Glioma

4.1  Diagnosis of Glioma

Considering the high fatality rate of glioma, early 
diagnosis is the key to patients’ survival and posi-
tive prognosis. However, due to the variable clin-
ical manifestations of glioma and the lack of 
reliable screening tools, glioma remains difficult 
to diagnose. Therefore, an accurate, effective, 
and noninvasive technique of early diagnosis is 
needed to improve the prognosis of glioma 
patients. Metabolomics studies of some key met-
abolic pathways in brain tumors, such as cysteine 
metabolism and lipid metabolism, can identify 
potential biomarkers, which may help to classify 
gliomas and develop new clinical diagnostic 
strategies. Given that the published results of 
metabolomic analysis, different gliomas display 
different metabolites in cerebrospinal fluid 
(CSF), tumor tissue, serum, and plasma, which 
may be of diagnostic value in GBM [39].

In addition, IDH mutation is an early event of 
glioma, which is closely related to the classifica-
tion of glioma and can be used as one of the 
markers of diagnosis and classification. This 
marker not only makes the diagnosis of glioma 
more timely and comprehensive but also has sig-
nificance for further study of the pathogenesis 
and biological characteristics of glioma. In addi-
tion, the important biochemical indicator of 
mutations in IDH1 and IDH2 were abnormal 
elevation of 2-HG level. Therefore, the appropri-
ate range of 2-HG reference value can be used as 
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Table 2 Signature metabolites detected in gliomas by metabolomics

Sample
Detected signature metabolites

ReferencesIncreased Decreased
Plasma sample of 
gliomas patients vs 
healthy volunteers

Creatinine, histidine, citric acid, very 
low density lipoprotein (VLDL), low 
density lipoprotein (LDL), 
unsaturated lipid, and pyruvate

Taurine, isoleucine, leucine, valine, 
lactate, alanine, glycoprotein, 
glutamate, citrate, creatine, 
myo-inositol, choline, tyrosine, 
phenylalanine, 1-methylhistidine, 
α-glucose, and β-glucose

[71]

Plasma sample of 
high-grade glioma 
patients vs low-grade 
glioma patients

Lactate, uridine, and uracil Arginine [66]

Plasma samples of 
glioma patients 
(Mut-IDH vs WT-IDH)

Sarcosine Guanidoacetic, N-acetyl putrescine, 
acid, creatine, creatinine, and 
trimethylamine-N-oxide

[66]

Serum samples from 
GBM patients vs 
healthy volunteers

α-Tocopherol, γ-tocopherol, 
erythritol, MI, erythronic acid, 
2-keto-L-gluconic acid, cysteine, 
hypoxantine, vitronectin, and 
aconitate

Xanthine, secondary bile acids 
glycocholenate sulfate, 3β-hydroxy- 
5-cholenoic acid, xenobiotic methyl, 
4-hydroxybenzoate sulfate, sex 
steroid 5alpha-pregnan-3beta, 
20beta-diol monosulfate, cofactor/
vitamin, and oxalate (ethanedioate)

[60, 72, 
73]

Serum samples from 
glioma patients vs 
healthy volunteers

Serum acylcarnitines 
stearoylcarnitine, margaroylcarnitine, 
eicosenoylcarnitine, 1-methylurate, 
1-methylxanthine, paraxanthine, 
theobromine, 5-acetylamino-6- 
amino-3-methyluracil, theophylline, 
and 7-methylxanthine

Amino acids 2-oxoarginine, 
cysteine, argininate, alpha- 
ketoglutarate, lipid 
chenodeoxycholate, N-acetyl 
tyrosine, N-acetyl phenylalanine, 
phenyl lactate and tyrosine, N-acetyl 
kynurenine, N-acetyl tryptophan, 
and xanthurenate

[60]

Serum samples from 
GBM vs 
oligodendrogliomas

Cysteine Lysine and 2-oxoisocaproic acid [70]

GBM cells and GBM 
tissues vs normal 
human astrocytes

Tryptophan, methionine, kynurenine, 
5-methylthioadenosine, glutamate, 
and mannitol

4-Aminobutyric acid (GABA) [42]

Tissue samples from 
GBM vs 
oligodendrogliomas

Mannitol, phenylalanine and choline 2-Hydroxyglutaric acid, 
4-aminobutyric acid (GABA), 
creatinine, glycerol-2-phosphate, 
glycerol-3-phosphate, ribitol, 
myo-inositol, creatinine, and 
cysteine sulfinic acid

[60, 70, 
74]

CSF samples from 
GBM vs 
oligodendrogliomas

Citric acid, isocitric acid, lactic acid, 
and 2-aminopimelic acid

Indole, indoleacrylic acid, 
anthranilic acid, histidine, Pyruvate, 
oxaloacetic acid, and myo-inositol

[54, 55]

CSF samples of glioma 
patients (Mut-IDH vs 
WT-IDH)

Citric acid, isocitric acid, lactic acid, 
succinate, malic acid, phosphoenol 
pyruvate, amino adipic acid, and 
D-2-HG

Pyruvate, oxaloacetic acid, and 
alanine

[55, 57, 
58]

CSF samples of glioma 
patients vs healthy 
volunteers

Glycine, serine threonine, alanine, 
aspartate, glutamate, acetylcarnitine, 
and shikimate

[57]

Cells from grades I–III 
gliomas (Mut-IDH vs 
WT-IDH)

Lactate/choline, 2-hydroxyglutarate, 
and glycerophosphocholine

Fumarate, malate, glutamate, lactate, 
phosphocholine, glutathione, 
glutamine, and myo-inositol

[59, 75]
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a sensitive and specific predictor. Metabolomics 
is more closely related to physiology than genom-
ics and proteomics. Cancer diseases cause the 
changes of pathophysiological processes and 
metabolites. By using metabolomics technology 
for a comprehensive analysis of metabolites in 
body fluids or tumor tissues, we may find sensi-
tive and specific biomarkers that will provide a 
better method for diagnosis of glioma [76].

4.2  Prognosis of Glioma

In clinical practice, the survival rates of patients 
with glioblastoma and low-grade glioma are quite 
different. Biomarkers are needed for a more reli-
able prognosis of gliomas. Majos et al. used meta-
bonomic analysis to detect glioma metabolites 
and pointed out the possibility of using metabolic 
characteristics for prognosis [77]. In GBM, the 
metabolic characteristics of tumor samples from 
patients who survived longer (>3  years) after 
diagnosis were compared with those of patients 
who died less than 4 months after diagnosis. The 
results showed that glycerol- 3- phosphate, inosi-
tol, libitol, and fructose increased with the prolon-
gation of survival time. High levels of glycine, 
aminopropanedioic acid, and most likely unknown 
sterols are associated with short-term survival 
[70]. Metabonomic analysis of metabolites in 
serum samples showed that inositol and hexadec-
anoic acid were associated with longer survival 
time [78, 79]. In high- grade gliomas, high level of 
glycine was detected and associated with poor 
prognosis [80]. Besides, a recent study has found 
that mutations in IDH1/2 were associated with a 
good prognosis in patients with glioma (espe-
cially GBM) [81]. The proliferation and migra-
tion ability of glioma cells expressing mutant 
IDH1 R132H is weakened, and the survival time 
of transplanted mice is longer [82].

4.3  Treatment of Glioma

The administration with temozolomide (TMZ), a 
DNA alkylating agent of the imidazotetrazine 
class, alongside adjuvant radiation after surgical 

resection is currently the standard regimen to 
treat GBM patients. However, the median sur-
vival remains 12–15 months because of limited 
surgical treatment and TMZ-related inherent and 
acquired resistance [83]. Hence, it is urgently that 
current therapies are upgraded in order to increase 
patient survival. Metabolomic analysis is a sensi-
tive and effective approach for monitoring phe-
notypic changes and verifying pathways that are 
disturbed when glioma occurs. It certainly can 
help to identify critical pathways that can be tar-
geted for fighting against glioma drug resistance 
[39]. Studies have showed that the radioresis-
tance of glioma cells could in part be due to the 
deregulation of the PI3K/mTOR pathway [84]. 
Hence, inhibition of the PI3K/mTOR pathway 
makes adult and pediatric glioma cells more sen-
sitive to radiation [85], and a dual blockade of 
IGFR1 and PDGFR or mTOR and AKT could be 
used along with traditional treatment to improve 
patient survival [86, 87]. Furthermore, applica-
tion of metabolomics may be used to monitor and 
assess the therapeutic response to treatment, and 
to form follow-up treatment plans. In other 
words, the application of metabonomics may 
help achieve personalized treatment [88, 89].

5  Conclusion and Future 
Prospective

Tumor initiation and development is a complex 
process triggered by multiple factors. Elucidation 
of the complex mechanisms of tumorigenesis 
remains the key to effective prevention and treat-
ment of cancer diseases. Numerous evidences 
have recently shown that tumor is a metabolic dis-
ease, and anticancer therapy targeting at tumor 
metabolism could be a valuable treatment 
approach. Based on this notion, the research direc-
tion of glioma has been partially adjusted, and 
nutrition and metabolic regulation-based therapies 
have become one of the main battlefields of glio-
mas treatment. Many signature metabolites have 
been discovered in glioma, such as 2-HG, fumaric 
acid, succinic acid, sarcosine, glycine, glutamine, 
aspartic acid, choline, serine, glucose, lactic acid, 
and polyamines, which suggest many metabolic 
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pathways (e.g., glycolysis, TCA, glutaminolysis, 
pentose phosphate pathway, fatty acid metabo-
lism, amino acid metabolism) may be dysregu-
lated in this disease. Due to their high metabolic 
adaptability when facing any stress injury, cancer 
cells may rewire alternative metabolite pathways 
in order to survive and proliferate. Therefore, a 
systematic therapy should be used to target multi-
ple metabolic pathways in cancer cells. It is note-
worthy that the findings detailed in this chapter are 
mainly attributed to the increased applications of 
metabolomics. With additional improvement of 
related technologies, metabolomics will become a 
powerful tool to discover truly meaningful bio-
markers for new clinical applications in malignant 
gliomas. Metabolomic studies of gliomas will also 
facilitate a better understanding of the molecular 
targets/pathways and the development of new 
therapeutic treatments in this devastating disease.
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1  Introduction

1.1  Oral/Head and Neck Cancer

Oral/head and neck cancer is the sixth most com-
mon malignant tumors in the world. Statistical 
data have shown that the annual cost of treating 
oral and head and neck tumors in the United 
States amounts to $3.2 billion, and there are more 
than 500,000 new cases of oral/head and neck 
squamous cell carcinoma (OSCC/HNSCC) 
worldwide every year [1]. In the United States, 
40,000 new cases and 7890 deaths are reported 
annually [2]. HNSCC may occur in the oral cav-
ity, oropharynx, hypopharynx, larynx, nasophar-
ynx, and other mucosal areas. Continuous 
exposure to tobacco, tobacco products, and alco-
hol stimulation is known to increase the risk of 
HNSCC. Over the past decade, with the steady 
increase of oropharyngeal squamous cell carci-
noma (OPSCC), the incidence of laryngeal and 
hypopharyngeal cancer has declined, and the dis-
tribution of primary sites has changed. This 
change is associated with reduced smoking and 
alcohol consumption in the population and 
increased exposure to high-risk carcinogenic 

human papillomavirus (HPV) [3]. The clinical 
manifestations vary with the location of the dis-
ease. However, most of the HNSCC patients were 
diagnosed in advanced stages, and more than 
40% of the patients had regional lymph node 
involvement [4]. This contributes to a high mor-
tality rate for HNSCC, and the 5-year survival 
rate from diagnosis can be as high as 45%. Late-
stage visits are mostly due to lack of national 
cancer screening program and public awareness. 
If early diagnosis and treatment intervention are 
implemented, the survival rate of HNSCC 
patients can reach 80–90% [5].

1.1.1  Symptoms
The most common signs and symptoms associ-
ated with oral/head and neck cancer are oral pain, 
nonunion of oral wounds, persistent pain, oral 
mass or plaque (white or red lesion), pain around 
teeth, hoarseness, foreign body sensation in phar-
ynx, sore throat, and neck mass [6]. Because of 
the special location of oral/head and neck cancer, 
breathing, diet, speech, and appearance problems 
often occur. Monitoring these specific signs and 
symptoms can improve the accuracy of diagnosis 
and prognosis.

1.1.2  Diagnosis
For first-time visit patients, local endoscopy, and 
imaging of the corresponding sites are needed. 
Ultrasound is used to determine the extent of the 
lesion. The gold standard for the diagnosis of 
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OSCC/HNSCC is still based on pathological 
biopsy, and pathology can determine the degree 
of tumor differentiation. Risk stratification of the 
disease is carried out according to the condition 
of auxiliary examination. Staging is important for 
the prognosis and treatment of OSCC/
HNSCC.  TNM staging remains to be the most 
widely used staging system in OSCC/
HNSCC.  Differentiation is another common 
component of diagnosis, because it describes the 
degree of abnormality between cancer and nor-
mal cells. X-ray technologies such as computed 
tomography (CT), magnetic resonance imaging 
(MRI), and positron emission tomography (PET) 
can be used to determine the location, size, and 
presence of suspected tumor masses and metasta-
ses. Laboratory tests can be performed on tissue 
biopsies and body fluids such as blood, saliva, 
and urine. Detection with specific tumor markers 
may help to provide cancer-specific information, 
which is the main focus of recent individualized 
diagnosis and treatment.

1.1.3  Treatment
At present, surgery, radiotherapy, chemotherapy, 
targeted therapy, and immunotherapy constitute a 
comprehensive treatment system for oral/head 
and neck tumors. According to the TNM stage 
and the degree of differentiation of the tumors, 
treatment options are selected. Early diseases 
(stage I and II) are usually treated only by surgery 
or radiotherapy. Locally advanced diseases (stage 
III and IVA/B), which make up more than 50% of 
all cases, can be treated with a combined preop-
erative induction chemotherapy and surgery, 
whereas metastatic diseases may be treated with 
targeted immunotherapy. The treatment of locally 
recurrent disease depends on the site of recur-
rence, tumor burden, and previous treatment and 
may include salvage surgery or adjuvant therapy. 
With the development of new treatment technol-
ogy, tailored therapy has been gradually applied 
to treat head and neck cancer patients.

Local surgical treatment can be selected for 
early-stage patients. The primary lesion can be 
resected to obtain negative margin and preserve 
all or part of the organ function. Traditional open 
surgery or minimally invasive surgery, such as 
transoral robotic surgery (TOR) or laser surgery, 

is selected according to the anatomical structure 
and tumor location [7]. The experience of the sur-
geon should be considered, and the adjuvant 
treatment should be combined for the pathologi-
cal condition. For the treatment of locally 
advanced diseases, radiotherapy (RT) is used as 
an adjuvant treatment of surgery or concurrent 
chemotherapy. According to the treatment time 
and adjuvant therapy, the radiation dose varies 
from 60  Gy to 70  Gy [8]. However, when the 
dose exceeded 55 Gy, the risk of long-term toxic-
ity of radiotherapy to salivary glands and pharyn-
geal constrictors increased [9]. Recently, the 
application of intensity-modulated radiation ther-
apy (IMRT) can help with salivary gland preser-
vation, reduce dry mouth, and improve the quality 
of life of patients.

Chemotherapy is also the choice of treatment 
for advanced patients. In patients at advanced 
stages whose tumors are not resectable, induction 
chemotherapy can be used to control tumors, and 
patients with high risk of recurrence and metasta-
sis can also benefit from chemotherapy. Meta-
analysis of chemotherapy for head and neck 
cancer shows that the absolute benefit rate of che-
motherapy for 2  years is 7%, and the absolute 
benefit rate for 5 years is 8%, and the risk ratio is 
0.81 (95% CI, 0.76–0.88; P < 0.0001) [10]. Five 
years of long-term follow-up showed that 
OPSCC, patients under 65 years of age, and those 
receiving intensive radiation therapy at the same 
time were the main beneficiaries.

Targeted treatment has been mainly focused 
on mutated genes and related signal pathway 
genes in HNSCC.  Based on comprehensive 
genomic characterization of somatic genomic 
alterations in HNSCC, HPV-associated tumors 
were dominated by helical domain mutations of 
the oncogene PIK3CA, novel alterations involv-
ing loss of TRAF3, and amplification of the cell 
cycle gene E2F1. Smoking-related HNSCCs 
demonstrated near universal loss-of-function 
TP53 mutations and CDKN2A inactivation with 
frequent copy number alterations. A subgroup of 
oral cavity tumors with favorable clinical out-
comes displayed infrequent copy number altera-
tions in conjunction with activating mutations of 
HRAS or PIK3CA, coupled with inactivating 
mutations of CASP8, NOTCH1, and TP53. 
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Laryngeal tumors contained loss-of-function 
alterations of the chromatin modifier NSD1, 
WNT pathway genes AJUBA and FAT1, and acti-
vation of oxidative stress factor NFE2L2 [11, 
12]. The therapeutic effects of drugs targeting 
NOTCH1, HER2, MET, EGFR, and WNT/beta-
catenin pathways were also studied [13]. So far, 
however, there is limited progress in targeted 
therapies for OSCC/HNSCC. The response rate 
of available single-dose targeted therapy ranges 
from 10% to 15%, and the clinical efficacy is not 
ideal [14]. Nevertheless, recent studies have 
shown immunotherapies are potentially effective 
for HNSCC treatment. Anti-PD1/PD-L1 agents 
may be combined with conventional therapeutics 
to improve treatment results [15].

1.2  Metabolomics

Metabolomics refers to large-scale, systemic 
study of small molecules, commonly known as 
metabolites, within cells, biofluids, tissues, or 
organisms. Collectively, these small molecules 
and their interactions within a biological system 
are known as the metabolome. The concept of 
metabolomics was defined 20  years ago by 
Nicholson and Fiehn et al. [16, 17]. Compared to 
genomics and proteomics, metabolomics has its 
own characteristics. The small changes of gene 
and protein expression are amplified at the level 
of metabolites, and the changes of metabolites 
may reflect the phenotype of an organism more 
directly than those alterations at gene/protein lev-
els. From this point of view, the study of metabo-
lomics may have higher sensitivity and accuracy 
when characterizing a phenotype [18, 19].

Metabolomic analysis in cancer research is 
usually performed on body fluids (e.g., plasma, 
serum, saliva, urine, ascites and bile, etc.), cul-
tured cells, and tissues. Pretreatment of biologi-
cal samples is a critical step in metabolomic 
analysis because the removal of impurities and 
interfering substances may significantly affect 
the identification and quantification of metabo-
lites in the sample. Organic solvents such as 
methanol, acetonitrile, and chloroform are com-
monly used to extract metabolites from biologi-
cal samples. In addition to the organic solvents, 

solid-phase microextraction (SPME) may be 
used for enrichment of metabolites from biologi-
cal samples for metabolomic analysis [20].

Nuclear magnetic resonance (NMR) spectros-
copy is a commonly used analytical technique for 
metabolomic analysis [21, 22]. Sample pretreat-
ment for NMR is simple and the cost of analysis is 
low. However, NMR has relatively low sensitivity 
and narrow dynamic range, causing problem with 
metabolite quantification. High-resolution NMR 
may help solve the problem of low sensitivity. 
Somashekar et al. successfully distinguished nor-
mal and HNSCC tissues using high-resolution 
magic angle spinning nuclear magnetic resonance 
(HR-MAS NMR) spectroscopy [23].

Compared to NMR spectroscopy, mass spec-
trometry (MS) has higher sensitivity, and its 
resolving power can be improved by combining 
MS with separation techniques, such as gas chro-
matography (GC), liquid chromatography (LC), 
and capillary electrophoresis (CE) [24]. GC-MS is 
suitable for the separation and identification of 
volatile compounds, while LC-MS fits for the 
analysis of low volatile or nonvolatile metabolites. 
CE-MS, on the other hand, can be effective for 
analysis of polar or ionic compounds [25]. The 
method has the advantages of small sample vol-
ume, fast speed, low mass detection limit, and 
high-resolution separation. Busch et  al. cross-
compared GC-MS, LC-MS, and CE-MS platforms 
for metabolomic analysis. Using 91 known metab-
olites covering glycolysis, pentose phosphate 
pathway, the tricarboxylic acid (TCA) cycle, redox 
metabolism, amino acids, and nucleotides to test 
the three different platforms, they found that 
LC-MS offers a better performance for metabolo-
mic analysis than other single platforms because it 
is suitable for all strong polar, weak polar, and 
nonpolar compounds. LC-MS provides the best 
combination of both versatility and robustness, 
and if a second platform can be used, it is best 
complemented by GC-MS.  They also suggested 
that internal standards, such as 13C-labeled bio-
mass extracts, are mandatory for quantitative 
metabolomics with any methods [26].

Data analysis represents a critical component in 
metabolomics. An integrated data analysis process 
may include a number of steps, such as data denois-
ing and processing, peak alignment, metabolite 
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identification (database searching), data normaliza-
tion, metabolite quantification, classification and 
discriminant analysis, pathway analysis, and ulti-
mately linking to biological significance. Both 
identified metabolites (known identities) and 
unknown metabolic features can be used for clas-
sification of phenotypes. A core technology for 
such analysis is pattern recognition tools, including 
unsupervised learning methods such as principal 
component analysis (PCA), nonlinear mapping, 
cluster analysis, and supervised learning methods 
such as independent modeling classification, par-
tial least squares, and artificial neural network.

1.3  Application of Metabolomics 
in Cancer Research

Understanding cancer metabolism requires sys-
tematic application of MS or NMR-based analyti-
cal techniques for a comprehensive analysis of 
metabolites in biological samples from healthy 
and diseased tissues. Metabolomics has emerged 
as a powerful platform to assess metabolomic 
anomalies in cancer cells or body fluid samples 
(e.g., serum, urine, or saliva) of patients. Currently, 
metabolomics is being used to discover metabo-
lite biomarkers that may aid in patients’ diagnosis 
or prognosis in the clinic, to better understand the 
complex mechanisms underlying metabolic 
reprogramming in cancer cells, and to discover 
novel metabolic pathways and target genes 
involved in carcinogenesis or cancer progression 
that could be used for therapeutic interventions. 
Applications of metabolomics are also emerging 
in areas such as tumor staging and assessment of 
treatment efficacy [27].

2  Body Fluid Metabolomics 
in OSCC/HNSCC

2.1  Saliva Metabolomics

Saliva is a complex body fluid secreted by 
parotid, submandibular, sublingual, and minor 
glands. It is a clear, slightly acidic (pH 6.0–7.0) 
liquid composed of water (99%), protein (0.3%), 
inorganic (0.2%), and organic compounds. The 

most abundant proteins in saliva include amylase, 
cystatin, lactoferrin, mucin, lysozyme, transfer-
rin, and various secretarial immunoglobulins. 
Sodium, potassium, calcium, magnesium, and 
chlorides, as well as carbonates and bicarbonates, 
are the most common inorganic substances in 
saliva, whereas organic compounds mainly 
include metabolites, hormones, and growth fac-
tors (e.g., epidermal growth factor and vascular 
endothelial growth factor) [28–31]. Human saliva 
is an attractive body fluid for disease diagnosis 
and prognosis because saliva testing is simple, 
safe, low cost, and noninvasive [28, 29]. Salivary 
protein biomarkers have been demonstrated for 
detection of multiple human diseases including 
oral cancer, Sjögren’s syndrome, systemic lupus 
erythematosus (SLE), and burning mouth syn-
drome (BMS) [32–37]. Recently, salivary metab-
olite biomarkers have been developed for gout, a 
metabolic disease, using a metabolomic approach 
based on capillary ion chromatography with mass 
spectrometry. A panel of three metabolite bio-
markers, uric acid, oxalic acid, and l-homocys-
teic acid, were successfully validated among gout 
and hyperuricemia patients with enzymatic 
assays and may have potential applications in the 
disease diagnosis and prognosis [38]. Another 
reason for salivary diagnostics is that there is effi-
cient substance exchange between saliva and cir-
culation system by active transport and active or 
passive diffusion. Circulation biomarkers may be 
well present in saliva for disease diagnosis and 
prognosis. In addition, the protein levels in saliva 
are lower than those in plasma or serum, and the 
possibility of nonspecific interference for metab-
olite analysis is much lower. Saliva metabolomic 
analysis may be effective to develop metabolite 
biomarkers for local diseases such as oral/head 
and neck cancer, Sjögren’s syndrome, and BMS 
or even systemic conditions such as lung/gastric 
cancers, metabolic diseases (e.g., gout and diabe-
tes), and autoimmune diseases (e.g., rheumatoid 
arthritis and SLE).

Sample collection and processing are impor-
tant aspects of saliva metabolomic analysis. 
Saliva can be collected in different ways as 
needed. For example, unstimulated saliva is usu-
ally collected by passive flow to calibration tubes 
or pre-weighed vials to measure the flow rate per 
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unit time. When volumetric measurements are 
not required, saliva may be collected with cotton 
swabs, gauze, or filter strips and then washed, 
centrifuged, or sucked directly from the mouth 
with a plastic suction tube. When large amounts 
of saliva are needed for analysis, stimulated 
saliva can be collected for metabolomic analysis. 
These aspects may directly or indirectly interfere 
with data quality and ultimately biological inter-
pretation. Samples should be collected as soon as 
possible and stored in deep freezer (80  °C). If 
possible, the freezing and thawing cycles should 
be minimized.

In 2008, Yan et al. demonstrated that LC-MS 
profiles of salivary metabolites with hierarchical 
principal component analysis (HPCA) could be 
used to build a diagnostic model to discriminate 
OSCC, oral lichen planus (OLP), and oral leuko-
plakia (OLK). HPCA combined with kernel 
fisher discriminant analysis achieved high accu-
racy in diagnosis of test samples, suggesting that 
salivary metabolomic profiles may be used for 
early detection of oral cancer and precancer [39]. 
Using CE-MS-based metabolomic analysis of 
saliva samples from oral cancer patients, 
Sugimoto et al. identified a number of candidate 
metabolite biomarkers for oral cancer, including 
polyamine, ornithine, and putrescine. Potential 
metabolite biomarkers were also found in whole 
saliva of patients with pancreatic or breast cancer 
[40]. Similar CE-MS-based metabolomic 
approach was also applied to investigate the 
effect of timing of sample collection on salivary 
metabolite biomarker discovery [41], identify a 
set of 17 potential salivary metabolite biomarkers 
for OSCC screening [42], and develop a set of 25 
potential salivary biomarkers for Japanese OSCC 
patients, including choline, p-hydroxyphenylace-
tic acid, and 2-hydroxy-4-methylvaleric acid 
(P < 0.001); valine, 3-phenyllactic acid, leucine, 
hexanoic acid, octanoic acid, terephthalic acid, 
γ-butyrobetaine, and 3-(4-hydroxyphenyl)propi-
onic acid (P < 0.01); and isoleucine, tryptophan, 
3-phenylpropionic acid, 2-hydroxyvaleric acid, 
butyric acid, cadaverine, 2-oxoisovaleric acid, 
N6,N6,N6-trimethyllysine, taurine, glycolic acid, 
3-hydroxybutyric acid, heptanoic acid, alanine, 
and urea [43]. Wei et  al. profiled the salivary 
metabolites from 37 OSCC patients, 32 OLK 

patients, and 34 healthy subjects using UPLC 
with quadrupole/time-of-flight mass spectrome-
try (qTOF MS). A panel of five salivary metabo-
lites including γ-aminobutyric acid, 
phenylalanine, valine, n-eicosanoic acid, and lac-
tic acid were selected to build prediction models, 
and valine, lactic acid, and phenylalanine in com-
bination yielded satisfactory sensitivity, specific-
ity, and positive predictive value in distinguishing 
OSCC from the controls or OLK [44]. Wang 
et al. adopted an integrated separation approach 
of RPLC and hydrophilic interaction chromatog-
raphy combined with TOF MS for saliva metabo-
lomic analysis. Using this approach, they 
identified 14 (eight upregulated and six down-
regulated) potential salivary metabolite biomark-
ers for OSCC. Receiver operating characteristic 
(ROC) analysis indicated that five salivary bio-
markers (propionylcholine, N-acetyl-L-
phenylalanine, sphinganine, phytosphingosine, 
and S-carboxymethyl-L-cysteine) in combina-
tion yielded high accuracy, sensitivity, and speci-
ficity in distinguishing early stage of OSCC from 
the control [45]. Using NMR and LC-MS/
MS-based metabolomic analyses of 159 OSCCs 
and 35 normal controls, Lohavanichbutr et  al. 
discovered four metabolites, glycine, proline, 
citrulline, and ornithine, were associated with 
early-stage OCC in both discovery and validation 
sets [46]. Shigeyama et al. demonstrated zeolite-
based thin-film microextraction coupled with 
GC-MS for profiling of volatile organic com-
pounds (VOCs) in human saliva samples of 
OSCC patients and found 27 VOCs depicted sig-
nificant differences between OSCC and healthy 
control groups. Among them, 12 salivary VOCs 
that were characteristic of OSCC patients were 
identified for pattern recognition analyses to 
detect oral cancer [47]. In addition, NMR spec-
troscopy has been used to identify significantly 
altered saliva metabolites in patients with 
HNSCC or parotid gland tumors [48, 49]. Finally, 
saliva metabolomic analysis has been applied to 
discovery of salivary metabolite biomarkers for 
breast and pancreatic cancers [50–53]. 
Particularly, the CE-MS-based metabolomic 
analysis revealed elevated levels of polyamines 
such as spermine, N1-acetylspermidine, and N1-
acetylspermine in the saliva samples of pancre-
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atic cancer patients. The combination of four 
metabolites including N1-acetylspermidine 
showed high accuracy in discriminating pancre-
atic cancer from chronic pancreatitis and healthy 
control [53].

2.2  Serum Metabolomics

Serum metabolomics has been applied to the dis-
covery of signature metabolite biomarkers for 
clinical applications in OSCC/HNSCC.  NMR-
based metabolomic analysis showed that the 
patients with OSCC had a distinct signature of 
altered energy metabolism in blood serum, 
including altered lipolysis (an accumulation of 
ketone bodies), a distorted Krebs cycle, and 
amino acid catabolism [54], as well as abnormal 
choline metabolism (downregulation of choline 
with concomitant upregulation of its breakdown 
product in the form of trimethylamine N-oxide) 
[55]. Similar approach was used to identify four 
biomarkers (glutamine, propionate, acetone, and 
choline) to differentiate OSCCs from healthy 
controls and four biomarkers (glutamine, ace-
tone, acetate, and choline) to discriminate OLK 
cases from OSCCs with considerable sensitivity 
and specificity [56], as well as metabolite signa-
tures (lipid metabolism, amino acid metabolism, 
glycolysis, ketogenesis, TCA cycle, and energy 
metabolism) for esophageal squamous cell carci-
noma (ESCC) [57, 58] and thyroid disease [59]. 
Recently, NMR-based metabolomic analysis fol-
lowed by PCA and partial least squares discrimi-
nate analysis (PLS-DA) was used to compare the 
serum metabolomic alterations after two differ-
ent surgeries in the patients with papillary thyroid 
carcinoma (PTC). Compared to unilateral thy-
roidectomy, total thyroidectomy reversed some 
highly increased metabolite levels (e.g., taurine 
and betaine). More significant variations in 
abnormal metabolites were noted after total thy-
roidectomy than after unilateral thyroidectomy 
(e.g., alanine, choline, hippurate, and formic 
acid). This information suggests that the choice 
of surgical method for PTC patients should be 
based not only on the tumor condition but also on 
the potential consequences of metabolic varia-

tions. Total thyroidectomy reversed some 
increased metabolite levels but led to accumula-
tion of some other metabolites due to the loss of 
thyroid function; thus, metabolic disturbances 
caused by thyroid hormone deficiency should be 
prevented in advance [60]. Serum metabolomic 
analysis has also been demonstrated for real-time 
monitoring of treatment-induced toxicity and 
cachexia in HNSCC patients and serve as a 
method for early detection of high-risk patients. 
By using NMR-based metabolomic analysis of 
170 HNSCC patients undergoing radio-/chemo-
radiotherapy (RT/CHRT) followed by PCA and 
orthogonal partial least squares discriminant 
analysis (OPLS-DA), Boguszewicz et al. detected 
a group of distinct outliers corresponding to 
ketone bodies (3-hydroxybutyrate, acetone, and 
acetoacetate), which are useful to identify the 
individuals at high risk of weight loss. Particularly, 
3-hydroxybutyrate is a relatively sensitive marker 
that allows earlier identification of the patients at 
higher risk of > 10% weight loss. These findings 
indicate that metabolic alterations, characteristic 
for malnutrition or cachexia, can be detected at 
the beginning of the treatment, making it possible 
to monitor the patients with a higher risk of 
weight loss [61].

MS-based serum metabolomic analysis has 
been used to discover potential metabolite bio-
markers, including 1-palmitoyl-sn-glycero-
3-phosphocholine,  1-o-hexadecyl-2-acetyl-sn-
glycero-3-phosphocholine,  and  12-dipalmitoyl-
sn-glycero-3-phosphocholine,   for  laryngeal 
cancer. These metabolites are mainly involved in 
phospholipids catabolism, linoleic acid metabo-
lism, α-linoleic acid metabolism, and arachidonic 
acid metabolism [62]. Significant upregulation of 
estradiol-17-beta-3-sulfate, L-carnitine, 
5-methylthioadenosine (MTA), 8-hydroxyade-
nine, 2-methylcitric acid, putrescine, and estrone-
3-sulfate was found in OLKs and OSCCs versus 
normal controls, whereas significant upregula-
tion of 5,6-dihydrouridine, 4-hydroxypenbutolol 
glucuronide, 8-hydroxyadenine, and putrescine 
was evident in OSCCs versus OLKs [63]. A total 
of 37 serum metabolite signatures were discov-
ered by using GC-TOF MS with PCA and 
OPLS-DA analyses for distant metastasis in 
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PTC.  These potential biomarkers are related to 
amino acid, lipid, glucose, vitamin metabolism, 
and diet/gut microbiota interaction. Pathway 
analysis showed “alanine, aspartate and gluta-
mate metabolism” and “inositol phosphate 
metabolism” were the most relevant pathways 
[64]. Lastly, serum metabolomic analysis has 
revealed significantly altered phosphatidylcho-
line metabolism in ESCC [65] and led to the dis-
covery of prognostic biomarker, d-mannose, in 
esophageal adenocarcinoma [66], as well as 
potential metabolite biomarkers, including 
valine, γ-aminobutyric acid, and pyrrole-2-car-
boxylic acid, for lymph node metastasis in ESCC 
[67].

2.3  Urine Metabolomics

Urine metabolomic analysis has led to potential 
metabolite biomarkers, including d-pantothenic 
acid, palmitic acid, myristic acid, oleamide, 
sphinganine, and phytosphingosine, for laryngeal 
cancer. These metabolites may play roles in 
sphingolipid metabolism, fatty acid biosynthesis, 
fatty acid elongation in mitochondria, pantothe-
nate and coenzyme A biosynthesis, beta-alanine 
metabolism, and fatty acid metabolism and, as a 
combination, reached a high ROC value, sensitiv-
ity, and specificity to distinguish laryngeal cancer 
from healthy controls [68]. Urinary metabolomic 
analysis has also been used to identify potential 
metabolite biomarkers for thyroid diseases [59] 
and ESCC [69]. The results showed that ESCC 
patients had altered acylcarnitines, amino acids, 
nucleosides, and steroid derivative levels when 
compared to healthy controls.

Standardized protocols are critical to generate 
highly robust and reproducible metabolomics 
data for cancer metabolite biomarker discovery. 
Previous reports have detailed the procedures for 
large-scale metabolic profiling of serum and 
plasma samples using GC-MS or LC-MS [70], 
global urinary metabolomic analysis with 
GC-MS or LC-MS [71, 72], and NMR-based 
metabolomic profiling of urine, plasma, serum, 
and tissue extracts [73]. These well-prepared pro-
tocols may allow a meaningful comparison and 

cross-validation of metabolomic analysis results 
and metabolite biomarker discovery/validation 
among different research laboratories.

3  Metabolomic Analysis 
of OSCC/HNSCC Cell Lines 
and Tissues

A new platform coupling capillary ion chroma-
tography (CIC) with Orbitrap MS has been dem-
onstrated for metabolomic analysis of HNSCC 
cells. CIC allowed an excellent separation of 
anionic polar metabolites, including isomeric 
metabolites, and the sensitivities increased by up 
to 100-fold compared to RPLC.  The detection 
limits for a panel of standard metabolites were 
between 0.04 and 0.5  nmol/L (0.2–3.4  fmol). 
This platform was applied to differential metabo-
lomic analysis of highly and low invasive HNSCC 
cells as well as cancer stem cells (CSCs) and 
non-stem cancer cells (non-CSCs); a single 
metabolomic analysis could quantify more than 
4000 metabolites [74]. Using similar platform 
combined with stable isotope-labeled internal 
standards, Hu et  al. demonstrated a targeted 
metabolomics approach to quantitative analysis 
of metabolites in a specific metabolic pathway in 
HNSCC cells. This methodology acquires both 
targeted and global metabolomic data in a same 
analytical run, and the use of stable isotope-
labeled standards facilitates accurate quantitation 
of targeted metabolites in large-scale metabolo-
mics analysis. Their findings suggest that the 
metabolic phenotypes are distinct between high 
and low invasive head and neck cancer cells and 
between CSCs and non-SCCs [75].

By using a lipidomic approach, Zhao et  al. 
revealed a consistent elevation of glycosphingo-
lipids and particularly the accumulation of gan-
gliosides in HNSCC cells. Repression of this 
same class of lipids was observed upon genetic 
correction of fanconi anemia (FA) patient-derived 
HNSCC cells. Functional studies demonstrated 
that ganglioside upregulation was required for 
HNSCC cell invasion driven by FA pathway loss 
and inhibition of glycosphingolipid biosynthesis 
attenuated the invasive characteristics of 
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FA-deficient HNSCC cells [76]. Tan et  al. con-
ducted a combined metabolomic/proteomic study 
and demonstrated that fatty acid oxidation (FAO) 
was active in radiation-resistant nasopharyngeal 
cancer (NPC) cells, and the rate-limiting enzyme 
of FAO, carnitine palmitoyl transferase 1 A 
(CPT1A), was consistently upregulated in these 
cells. The protein level of CPT1A was signifi-
cantly associated with poor overall survival of 
NPC patients following radiotherapy, and inhibi-
tion of CPT1A re-sensitized NPC cells to radia-
tion therapy by activating mitochondrial 
apoptosis both in vitro and in vivo. These find-
ings suggest that targeting CPT1A could be a 
beneficial approach to improving the therapeutic 
effects of radiotherapy in NPC patients [77]. 
Cystine-glutamate antiporter (xCT) present in 
CD44 variant (CD44v)-expressing cancer cells 
contributes to the resistance to oxidative stress 
and cancer therapy through promoting glutathi-
one (GSH)-mediated antioxidant defense. xCT 
and glutamine transporter ASCT2 were found to 
be correlated with undifferentiation and dimin-
ished along with cell differentiation in 
HNSCC.  The cytotoxicity of the xCT inhibitor 
sulfasalazine relied on ASCT2-dependent gluta-
mine uptake and glutamate dehydrogenase 
(GLUD)-mediated α-ketoglutarate (α-KG) pro-
duction. Metabolome analysis revealed that sul-
fasalazine treatment triggered the increase of 
glutamate-derived tricarboxylic acid cycle inter-
mediate α-KG, in addition to the decrease of cys-
teine and GSH content. Furthermore, ablation of 
GLUD markedly reduced the sulfasalazine cyto-
toxicity in CD44v-expressing stemlike HNSCC 
cells. These findings establish a rationale for the 
use of glutamine metabolism (glutaminolysis)-
related genes, including ASCT2 and GLUD, as 
biomarkers to predict the efficacy of xCT-tar-
geted therapy for HNSCC tumors [78]. 
Comparative metabolomic analysis of radiosen-
sitive and radioresistant cell lines also led to 
interesting findings about the intracellular metab-
olisms. Both UM-SCC-74B and UM-SCC-74A 
were established from the same cancer patient. 
However, UM-SCC-74B is clearly more radiore-
sistant than UM-SCC-74A. LC-MS-based meta-
bolic profiling demonstrated significant 

differences in the nicotinic acid and nicotinamide 
metabolism and purine metabolism between the 
two cell lines before irradiation. In the more 
radiosensitive UM-SCC-74A cells, the most sig-
nificant alterations after irradiation were linked 
to tryptophan metabolism. In the more radioresis-
tant UM-SCC-74B cells, the major alterations 
after irradiation were connected to nicotinic acid 
and nicotinamide metabolism, purine metabo-
lism, the methionine cycle as well as the serine, 
and glycine metabolism. The data suggest that 
the more radioresistant cell line UM-SCC-74B 
altered the metabolism to control redox status, 
manage DNA-repair, and change DNA methyla-
tion after irradiation. This provides new insights 
on the mechanisms of radiation response, which 
may aid future identification of biomarkers asso-
ciated with radioresistance of HNSCC cells [79].

Sandulache et  al. investigated glucose and 
glutamine dependence and sensitivity to meta-
bolic inhibitors of a panel of 15 HNSCC cell 
lines and used LC-MS-based metabolomic analy-
sis combined with individual measurements of 
reducing potential, adenosine triphosphate, and 
lactate production to characterize cellular meta-
bolic phenotypes. Their results indicated that 
HNSCC energy and reducing potential levels 
closely mirrored extracellular glucose concentra-
tions. Glucose starvation induced cell death 
despite the activation of secondary energetic 
pathways. Conversely, glutamine was not 
required for HNSCC survival and did not serve as 
a significant source of energy. 2-Deoxyglucose 
(2-DG) and its fluorinated derivative decreased 
glycolytic and Krebs cycle activity, cellular 
energy, and reducing potential and inhibited 
HNSCC cell proliferation. 2-DG effects were 
potentiated by the addition of metformin, but not 
by inhibitors of the pentose phosphate pathway 
or glutaminolysis. Despite dependence on glu-
cose catabolism, the authors identified a subset of 
cell lines with relative resistance to starvation and 
found that the presence of wild-type p53 can par-
tially protect tumor cells from glucose starvation. 
Based on these findings, they concluded that 
HNSC cells are dependent on glucose, not gluta-
mine, for energy production and survival, provid-
ing a rationale for treatment strategies that target 
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glucose catabolism. However, antimetabolic 
strategies may need to be tailored to the tumor 
background, more specifically, p53 status [80].

In addition, metabolome analysis showed that 
nuclear factor erythroid 2-related factor 2 (Nrf2) 
strongly promoted metabolic reprogramming to 
glutathione metabolism, which synthesizes the 
essential fuels for cancer progression in 
ESCC.  Furthermore, metabolome analysis of 
ESCC tissue specimens confirmed that samples 
displaying high Nrf2 expression promoted gluta-
thione synthesis. Metabolic reprogramming to 
glutathione metabolism, and ROS detoxification 
by activation of Nrf2, enhanced cancer progres-
sion and led to a poor clinical outcome in ESCC 
patients [81]. In addition, hyperactive Nrf2 was 
found to cause metabolic reprogramming and 
upregulation of metabolic genes in the mouse 
esophagus. One of the glycolytic enzymes pyru-
vate kinase M2 was not only differentially upreg-
ulated, but also glycosylated and oligomerized, 
resulting in increased ATP biosynthesis. Blocking 
glycolysis inhibited cell proliferation and may 
therefore have therapeutically beneficial effects 
on Nrf2-expressing ESCC in humans [82]. 
Recently, a spatially resolved metabolomics 
approach was demonstrated to discover tumor-
associated metabolites and metabolic enzymes 
directly in their native state in ESCC tissues by 
using airflow-assisted desorption electrospray 
ionization mass spectrometry imaging 
(AFADESI-MSI). This in situ metabolomics 
analysis provided insights into the understanding 
of ESCC metabolic reprogramming, particularly 
the ESCC-associated metabolic pathways, 
including proline biosynthesis, glutamine metab-
olism, uridine metabolism, histidine metabolism, 
fatty acid biosynthesis, and polyamine biosyn-
thesis [83].

A main application of tissue metabolomic 
analysis is to discover metabolite biomarkers for 
oral/head and neck cancer. Since thyroid gland 
produces hormones that control the speed of 
body metabolism, there has been a growing inter-
est in metabolomics studies of PTC. A number of 
studies have reported new signature metabolites 
in PTC, which include acetate, taurine, and suc-
cinic acid (upregulated in malignant versus 

benign tumor); choline, phosphocholine, myo-
inositol, and scyllo-inositol (downregulated in 
malignant versus benign tumor); citrate, glucose, 
fructose, galactose, mannose, 2-keto-D-gluconic 
acid, arachidonic acid, malonic acid, and rham-
nose (downregulated in PTC versus normal thy-
roid tissue); and lactic acid, inosine, cholesterol, 
and hydroxyproline (upregulated in PTC versus 
normal thyroid tissues) [84–90]. However, a 
recent metabolomic study of 1540 serum-plasma 
matched samples and 114 tissues from healthy 
volunteers, benign thyroid nodule (BTN), and 
PTC patients enrolled from six independent cen-
ters concluded that BTN and PTC showed no sig-
nificant differences but rather overlap in 
circulating metabolic signatures. Six metabolite 
biomarkers, namely, myo-inositol, α-N-
phenylacetyl-L-glutamine, proline betaine, 
L-glutamic acid, LysoPC(18:0), and 
LysoPC(18:1), were highly accurate for differen-
tial diagnosis of healthy controls versus thyroid 
nodules (BTN + PTC) [91]. Nevertheless, these 
published studies revealed abnormalities of 
energy metabolism (glycolysis, lipid, and TCA 
cycle), nucleotide/phosphatidylcholine biosyn-
thesis, amino acid metabolism, one carbon 
metabolism and tryptophan metabolism, purine/
pyrimidine metabolism, and taurine/hypotaurine 
metabolism [87, 89].

CE-MS analysis of OSCC and adjacent normal 
tissues for the metabolome profiles, including the 
Embden-Meyerhof-Parnas pathway (EMPP), the 
pentose phosphate pathway, TCA cycle, and 
amino acids, revealed an increased glucose con-
sumption and lactate production in OSCC tissues. 
The decrease of glucose along with the decrease 
of the downstream intermediates in the EMPP 
implied that incorporated glucose was mainly 
consumed for biosynthesis. Glutamine consump-
tion with the increase of the intermediates in the 
last half of the TCA indicated the involvement of 
glutaminolysis, in which glutamine was converted 
to lactate via the last half of the TCA.  These 
observations suggest that the Warburg effect, 
which stems from the combined enhancement of 
glucose consumption and glutaminolysis, exists 
in OSCC [92]. A combined LC-MS and GC-MS 
analysis of HNSCC and adjacent normal tissues 
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revealed a set of upregulated metabolites, includ-
ing 2-hydroxyglutarate (2-HG) and 3-GMP in 
HNSCCs. Meanwhile, metabolomic analysis of 
the oral washes from HNSCC patients (presurgi-
cal) and healthy controls identified elevated levels 
of beta-alanine, alpha-hydroxyisovalerate, trypto-
phan, and hexanoylcarnitine in HNSCCs (range 
7.8–12.2-fold). Among the identified metabolite 
signatures, acylcarnitine and 2HG may have 
potential as noninvasive biomarkers for HNSCC 
[93]. Similarly, a GC-MS analysis of preneoplas-
tic and neoplastic lesions of oral cavity revealed a 
number of metabolite signatures that could distin-
guish among oral cancer, precancerous, and con-
trol group samples. The aminoacyl-tRNA 
biosynthesis, cyanoamino acid metabolism, and 
glycine, serine, and threonine biosynthesis were 
significantly dysregulated pathways found in oral 
cancer and precancer. Downregulated amino acid 
levels might be the result of enhanced energy 
metabolism or upregulation of the appropriate 
biosynthetic pathways and required cell prolifera-
tion in cancer tissues [94].

Although it is well known that cancer cells use 
alternate energetic pathways, the metabolic path-
ways underlying the energy production in CSCs 
remain largely unknown. Kamarajan et al. charac-
terized the metabolic characteristics of HNSCC 
and head and neck CSCs using a combination of 
UPLC-MS/MS, GC-MS, and in  vitro/in vivo 
models [95]. They identified metabolite bio-
marker panels that distinguish head and neck can-
cer from healthy controls and confirmed 
involvement of glutamate and glutaminolysis. 
Glutaminase, which catalyzes glutamate forma-
tion from glutamine, and aldehyde dehydroge-
nase (ALDH), a stemness marker, were highly 
expressed in primary and metastatic HNSCC tis-
sues, tumorspheres, and CSC when compared to 
controls. Exogenous glutamine induced stemness 
via glutaminase, whereas inhibiting glutaminase 
suppressed stemness in  vitro and tumorigenesis 
in  vivo. It was found head and neck CSC 
(CD44(hi)/ALDH(hi)) exhibited higher glutamin-
ase, glutamate, and sphere levels than CD44(lo)/
ALDH(lo) cells. Glutaminase drove transcrip-
tional and translational ALDH expression, and 
glutamine could direct CD44(lo)/ALDH(lo) cells 

toward stemness. These findings suggest that glu-
taminolysis regulates tumorigenesis and CSC 
metabolism via ALDH, and glutamate is an 
important biomarker of cancer metabolism whose 
regulation via glutaminase works in concert with 
ALDH to mediate cancer stemness [95].

4  Conclusion

Despite the rapid advancement of MS- and NMR-
based metabolomics technologies, the metabolo-
mics studies of oral/head and neck cancer remain 
in its infancy. Although metabolomic analyses of 
body fluid and tissue samples from OSCC/
HNSCC patients have identified many potential 
metabolite biomarkers, there seem to be contra-
dicting results in the published studies and the 
identified metabolite biomarkers are certainly 
warranted for further validation with large patient 
populations. The metabolic mechanisms underly-
ing the cancer cell proliferation, invasion and 
metastasis, sustained angiogenesis, and evasion 
of apoptosis in OSCC/HNSCC remain largely 
unknown. Metabolomics can facilitate our under-
standing the metabolic reprogramming and asso-
ciated metabolic pathways during HNSCC/
OSCC carcinogenesis and progression. It will not 
only lead to the discovery of highly sensitive and 
specific metabolite biomarkers for clinical appli-
cations (e.g., early diagnosis, prognosis, and 
treatment efficacy), but may also reveal meta-
bolic target genes for therapeutic interventions in 
oral/head and neck cancer.
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1  Introduction

1.1  Metabolomics

Cellular metabolism broadly includes all the pro-
cesses involved in the production of energy from 
the nutrients absorbed by a cell from the environ-
ment. All the products and intermediates that are 
generated during the synthesis and utilization of 
the nutrients could be collectively referred to as 
metabolites. The expression levels of cellular 
metabolites have significant effect on gene 
expression, gene regulation and pathway interac-
tions, ultimately resulting in a meaningful physi-
ological phenotype. Metabolomics is an emerging 
field of study that measures all the metabolites 
within a biological sample (metabolome) [1]. 
This comprehensive profiling of metabolites in a 
biological sample such as tissues or body fluids 
provides in-depth understanding of the system’s 
response to environmental or genetic stress and 
underlying metabolic mechanisms which may 
discover metabolite biomarkers for clinical appli-
cations in human diseases.

Nuclear magnetic resonance (1H NMR) spec-
troscopy and mass spectrometry (MS) are the pri-

mary analytical techniques combined with 
multivariate statistical methods used to character-
ize a metabolome and identify major metabolite 
changes. NMR spectroscopy does not rely on 
separation of the analytes while MS requires pre- 
separation of the analytes commonly by gas chro-
matography (GC) or high-performance liquid 
chromatography (HPLC). Capillary electropho-
resis coupled mass spectrometry (CE-MS) also 
shows great promise for metabolomic analysis  
[2], due to CE has a higher separation efficiency 
than HPLC and can separate a wider range of 
metabolite classes than GC. In the era of person-
alized medicine, metabolomics is expected to 
become a routine approach to monitoring a 
patient’s health [3]. The measurement of metabo-
lomics profiles benefits our understanding of the 
relationship between individual’s disease state 
and molecular mechanisms by monitoring dis-
ease development, progression and treatment 
efficacies from both pharmaceutical and surgical 
interventions. Periodic screening of metabolite 
profiles allows to detect any phenotypic changes 
over a patient’s lifetime, thereby monitoring the 
overall health status [1].

Over the years, we have witnessed numerous 
genetic underpinnings found in relation to the 
unique hallmarks of cancer cells, which provide 
crucial insight of the signalling pathways under-
lying the cancer diseases. The first two hallmarks 
lie in that cancer cells are insensitive to anti- 
growth signals and self-sufficiently produce 
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growth signals and other factors for sustained 
angiogenesis needed for cell function and sur-
vival. The next two hallmarks are the ability of 
cancer cells to circumvent senescence and gain 
self-renewability. Lastly, tissue invasion and 
metastasis are the most fatal characteristics of 
cancer [4]. All these physiological changes must 
need a vast reprogramming of the cancer cell 
metabolism to provide enough cellular energy 
required to adapt constantly changing and often 
hostile systemic conditions. The ability of mea-
suring these metabolic alterations at high- 
throughput and systemic level could facilitate 
more in-depth understanding of cancer metabo-
lisms. Meanwhile, the identified signature metab-
olites and related pathways/genes may serve as 
biomarkers for cancer diagnosis, prognosis and 
treatment efficacy or molecular targets for thera-
peutic interventions [5, 6].

1.2  Gastric Cancer

Gastric cancer develops when the cancer cells 
formed in the lining of the stomach. 
Approximately 90% of all gastric neoplasms are 
adenocarcinomas which originate from the 
glands of the gastric mucosa. Tumours occurring 
at oesophagogastric junction (EGJ) may be diffi-
cult to distinguish as either a gastric or an oesoph-
ageal primary, especially because of increased 
incidence of adenocarcinoma in the oesophagus. 
Gastric cancer is the fourth most common cancer 
worldwide with the highest incidence rates in 
Asia, Eastern Europe and South America regions 
[7]. This malignant tumour easily metastasizes to 
other solid organs within the abdomen, as well as 
to extra-abdominal sites. Trends in survival rates 
from the 1970s to now have not shown great 
improvement. The survival rates for gastric can-
cer are among the worst of any solid tumours, 
because early stomach cancer causes few symp-
toms; the disease is usually advanced with 
involvement of regional nodes when the diagno-
sis is made which reduces survival considerably. 
In this regard, it is critical to develop molecular 
biomarkers for early detection and screening of 
gastric cancer [8].

There are many risk factors involved in the 
development of gastric cancer; important ones 
are the Helicobacter pylori (H. pylori) infection, 
genetic factors, dietary factors, and lifestyle fac-
tors which are strongly linked to gastric cancer 
[9]. H. pylori infection has demonstrated its 
oncogenicity through its direct epigenetic effects 
on gastric epithelial cells and indirect inflamma-
tory response on the gastric mucosa (Fig. 1) [10]. 
Gastric adenocarcinoma can be classified into 
histologic subtypes as adenocarcinoma, papillary 
adenocarcinoma, tubular adenocarcinoma, muci-
nous adenocarcinoma, signet ring cell carcinoma, 
adenosquamous carcinoma, squamous cell carci-
noma, small cell carcinoma and undifferentiated 
carcinoma or classified as intestinal, diffuse and 
mixed type [11]. Clinical staging is crucial to 
institute definitive treatment when diagnosed 
with gastric cancer. Based on evidence from 
physical examination, radiologic imaging, endos-
copy, biopsy, laboratory and histological find-
ings, correct staging of the cancer will determine 
its prognosis with appropriate treatment modali-
ties. The evaluation of altered metabolism in gas-
tric cancer could provide additional guidance on 
cancer patients’ diagnosis, staging, treatment 
decision making and prognosis. Some of the 
altered metabolisms in gastric cancer is summa-
rized in (Fig. 2) [12].

2  Recent Advances in Gastric 
Cancer Metabolism

2.1  Glucose Metabolism

The metabolism of glucose in gastric cancer cells 
is augmented differently from that of normal gas-
tric epithelium. There is an upregulation of aero-
bic glycolysis (a.k.a., Warburg effect) in gastric 
cancer to meet increased demands of cell prolif-
eration, as evidenced by significantly higher lev-
els of lactate in urine and tissue samples of gastric 
cancer patients. The accumulated lactic acid pro-
vides an acidic microenvironment that exacer-
bates the decomposition of extracellular matrix 
by proteolytic activity [13]. Also, this microenvi-
ronment is conducive for formation of blood ves-
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Fig. 1 Involvement of H. pylori infection in development 
and progression of gastric cancer. H. pylori and its several 
virulence factors, such as CagA, interact with gastric epi-
thelial cells to induce chronic inflammation, mucosal 
damage and multiple alterations in gene expression and 
genetic/epigenetic changes, eventually leading to gastric 

carcinogenesis. Abbreviations: ROS, reactive oxygen spe-
cies; RNS, reactive nitrogen species; COX-2, cyclooxy-
genase- 2; VacA, vacuolating cytotoxin A; LPS, 
lipopolysaccharide; CpG island, areas of cytosine and 
guanine repeats (Reprinted with permission from [10])

Fig. 2 Altered metabolism observed in gastric cancer. An 
overview of the metabolic pathways mediating upregula-
tion of glycolysis and mitochondrial dysfunction in gas-

tric cancer. Abbreviations: mtDNA, mitochondrial DNA; 
OXPHOS, oxidative phosphorylation; PKM2, pyruvate 
kinase M2 (Reprinted with permission from [12])
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sels providing abundant supply of nutrients to 
cancer cells, leading tumour invasion and metas-
tasis. There is strong inverse correlation between 
tumour-derived lactate and cytotoxic T-cell/NK 
cell function. It also deters the differentiation of 
monocytes to dendritic cells eventually resulting 
in escape of cancer cells from immunogenic 
response [14].

There is considerable depletion of glucose in 
gastric cancers when compared with the healthy 
controls. In gastric cancer tissues, studies have 
indicated the overexpression of glucose trans-
porters and type II hexokinase which can cause 
decreased glucose level in combination to the 
Warburg effect [15, 16]. The activity of fructose- 
6- phosphokinase (6-FPK), the enzyme involved 
in the rate-limiting step of glycolysis, signifi-
cantly increases in gastric cancer tissues, result-
ing in low glucose levels, as it regulates the 
output of glucose [17]. Moreover, there is cumu-
lative evidence linking the overexpression of 
pyruvate kinase and lactate dehydrogenase with 
rapid tumour proliferation and poor prognosis, 
while in vitro studies also suggest that the down-
regulation of both enzymes impair tumour inva-
sion [17–19].

The contributions of these mechanistic altera-
tions in aerobic glycolysis are crucial for under-
standing the gastric carcinogenesis and 
progression (Fig. 3) [20]. Any intervention with 
the glycolytic switch in cancer cells may provide 
a new and promising therapeutic strategy for 
hampering further oncogenic transformation in 
gastric cancer.

2.2  Amino Acid Metabolism

Amino acids are building blocks required for cel-
lular protein biosynthesis and cytoskeleton for-
mation, while elevated levels of amino acids in 
microenvironment are contributing factors in car-
cinogenesis. The amino acids related to tricar-
boxylic citric acid (TCA) cycle represent an 
alternative energy source of cancer cell prolifera-
tion. The rapid proliferation rate is directly cor-
related with elevated glycine, and interfering 
glycine uptake and its biosynthesis impaired the 

proliferation in gastric cancer [21]. In addition, 
higher levels of proline in tumour tissues cause 
the overexpression of MMPs which degrades 
extracellular matrix (ECM) and degradation of 
collagen catalysed by proline dehydrogenase 
(PRODH) [22]. It activated autophagic degrada-
tion of intracellular proteins leading to accumula-
tion of amino acids in tumour tissues when 
compared to normal controls.

The functional role of glutamine to control the 
master regulator of protein translation mTORC1 
required for anabolic growth of cancer cells 
makes it essential for cancer cell survival [23]. 
The reprogramming of glutamine metabolism 
affects the proliferation via the metabolic 
responses regulated by oncogenic transcription 
factor c-MYC [24]. Also, it is the nitrogen donor 
for the de novo synthesis of both nucleotides and 
several key metabolic enzymes (Fig.  4). Serine 
also participates in the de novo synthesis of 
nucleotides by serving one carbon unit. The ser-
ine biosynthesis pathway is involved in overex-
pression of phosphoglycerate dehydrogenase 
(PHGDH) that controls the flow of intermediates 
originated from glycolysis [25]. Tryptophan and 
its downstream metabolites (kynurenine, kyn-
urenic acid, anthranilic acid, nicotinic acid) are 
related to the pathogenesis and prognosis of gas-
tric cancer. Kynurenine pathway is catalysed by 
indoleamine- 2,3-dioxygenase (IDO), and higher 
IDO expression plays an immunosuppressive 
role inhibiting T-cell-mediated cytotoxicity and 
favouring gastric cancer cell proliferation. 
3-Hydroxyanthanilie acid also has suppressive 
effects on inflammation and immune response 
[26].

2.3  Lipid Metabolism

In gastric cancer, there is noticeable increased 
rate of lipogenesis and the upregulation of mito-
chondrial fatty acid β-oxidation utilizing the fatty 
acids to meet the demand of cell membrane syn-
thesis, mainly for lipid raft and lipid-modified 
signalling molecules [27]. The intensive fatty 
acid degradation via β-oxidation causes signifi-
cantly larger build-ups of fatty acids such as 
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hexadecenoic acid, docosahexaenoic acid, 
 heptanoic acid and especially β-hydroxybutyrate, 
in cancer tissues, while elevated octadecanoic 
acid is found in blood of gastric cancer patients 
[28]. The enhanced fatty acid β-oxidation pro-
duces more ATP and acetyl coenzyme-A acceler-
ating the rate of citric acid oxidation, an important 
metabolic reprogramming in serving as the 
energy source in early stages. This increased pro-
duction of polyunsaturated fatty acids is also 
associated with tumour cell proliferation, apopto-
sis and angiogenesis [29]. The upregulation of 
lipid peroxides can be detected by the elevated 
levels of azelaic acid, which is the end product of 
linoleic acid undergone peroxide decomposition, 
in blood [26]. The overall accelerated lipid 

metabolism thus might explain the severe weight 
loss observed in patients with late stages of gas-
tric cancer.

The increased demands for fatty acids needed 
by proliferating tumour cells are largely depen-
dent on de novo synthesis. The cancer cells thus 
synthesize a large fraction of their membrane lip-
ids rather than acquiring them from extracellular 
sources. The fatty acid synthase (FAS) enzyme 
catalyses the synthesis of palmitate from acetyl- 
CoA or malonyl-CoA in the presence of NADPH 
as a redox equivalent during de novo lipogenesis. 
FAS is indeed upregulated in gastric cancer, and 
the increased FAS expression has been linked to 
tumour proliferation, chemoresistance and poorer 
prognosis [30].

Glucose
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Fig. 3 Alterations in mechanism of aerobic glycolysis in gastric cancer. An outline of glucose metabolism in gastric 
cancer shows the interplay between glucose and the other three metabolic pathways (Reprinted with permission from 
[20])
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2.4  Nucleotide Metabolism

Cancer progression is frequently dependent on 
nucleotide synthesis and metabolism which are 
significantly upregulated to supply the energy 
demands during rapid cancer cell proliferation. 
The accumulation of uric acid or urate, the end 
products of nucleotide catabolism, is found in 
gastric cancer patients [31]. The various purine 
compounds show different levels such as hypo-
xanthine and guanosine are increased while there 
is decrease in uridine levels [26]. Though ATP 
and GTP are associated with energy metabolism 
with nucleotides, the cancer cells use small por-
tion of glucose for oxidative phosphorylation or 
fumarate respiration to generate energy under 
special conditions of glucose deprivation and 

severe hypoxia in microenvironment instead of 
fortifying more ATP to advance its growth com-
pared to their normal counterparts. This can 
explain why there is no significant difference 
found in nucleotide phosphate levels (ATP, ADP, 
GTP and GDP), total adenylate and energy 
charge between gastric cancer and normal tissues 
[32].

2.5  Other Metabolisms in Gastric 
Cancer

Increased levels of five TCA intermediates, 
α-ketoglutaric acid, malic acid, fumarate, succi-
nate and citric acid, have been noted in gastric 
cancer [28, 29, 33]. The cancer cells may still use 
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Fig. 4 Role of glutamine metabolism in gastric cancer. This figure depicts how the elevated level of glutamine is incor-
porated in satisfying the increased energy demands in gastric cancer cells (Reprinted with permission from [34])
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anaerobic glycolysis and possibly fumarate 
 respiration, which explains the accumulation of 
fumarate and succinate. Some elevated amino 
acids, such as glutamine [34], threonine, phenyl-
alanine, tyrosine, valine, cysteine or proline, can 
also be converted into these TCA intermediates 
to generate energy [26, 35]. In addition, citric 
acid is often elevated and used for the de novo 
fatty acid synthesis [28, 29, 33, 36].

The levels of creatinine, a waste product of 
muscle metabolism, were found to be signifi-
cantly increased in the urine samples of gastric 
cancer patients who exhibited lower total body 
skeletal mass (cachectic patients) [37]. The gas-
tric flora might produce metabolites to affect the 
cancer cell metabolism. Changes in metabolites 
in gastric cancer such as butanoic acid, mannitol 
and p-cresol, which are commonly thought of 
artificial substances, could be derived from gas-
tric microbiome [38]. Therefore, metabolomics 
of gastric microbiome and its interactions with 
cancer cells can be important to understand the 
metabolic reprogramming in gastric cancer.

3  Metabolomic Analysis 
of Gastric Cancer

3.1  Diagnosis

Early diagnosis can tremendously change the 
outcome of cancer treatment, but conventional 
cancer biomarkers and diagnostic techniques fall 
short of providing satisfactory early detection. 
There were 18 metabolites distinctly detected 
between the malignant tissues and adjacent non- 
malignant tissues of gastric mucosa with ROC 
(receiver operating characteristics) value of 
0.9629 [39]. Also, there is an obvious distinction 
in serum metabolic profiles of gastrointestinal 
cancers including oesophageal, gastric and 
colorectal when compared to healthy individuals. 
There are changes in the levels of 
3- hydroxypropionic acid and pyruvic acid to suf-
ficiently segregate gastric cancer from oesopha-
geal and colorectal cancer. It also shows high 
sensitivity (84.6 and 70.0%) and specificity (71.4 
and 90.9%) when compared with current serum 

biomarkers such as CA19-9 and CEA [40]. The 
diagnostic potential of serum metabolomic pro-
files between gastric cancer and non-cancer 
groups has been well demonstrated and even in 
different pathological subtypes of gastric cancer 
has different metabolic signatures in early stage 
of gastric carcinogenesis. Intestinal-type adeno-
carcinoma of gastric cancer is known to precede 
by a sequence of gastric lesions known as 
Correa’s cascade [11]. Studies have observed the 
relative difference in plasma metabolomic pro-
files (e.g. threonate, glutamate and azelaic acid) 
between diffuse-type gastric cancer patients and 
those with Correa’s cascade [31].

A recent study demonstrated that 14 out of 17 
metabolites altered in urine sample of gastric 
cancer patients showed a better diagnostic value 
than classic blood biomarkers. A set of amino 
acid, L-alanine, L-isoleucine, L-serine, 
L-threonine, L-proline and L-methionine formed 
a characteristic biosignature for discrimination of 
gastric cancer patients from healthy control pop-
ulation [41]. Another study also indicated that 
gastric cancer patients had a unique urine meta-
bolic profile in contrast to healthy subjects, espe-
cially 2-hydroxyisobutyrate, 3-indoxylsulfate 
and alanine, producing an ROC value of 0.95 
[37].

3.2  Prognosis

Most gastric cancer cases are detected in late stages 
when the cancer cells have already metastasized 
resulting in poor clinical outcomes. There are no 
currently available molecular markers for predict-
ing metastasis and prognosis of gastric cancer. 
Thus, it is important to identify signature metabo-
lite biomarkers for prognostic applications in gas-
tric cancer [41]. Another metabolomics study 
compared the urinary metabolomes between xeno-
graft mice (transplanted with human gastric cancer 
cell line SGC-7901) with metastasis and those 
without metastasis. The results indicated that ala-
nine, butanoic acid, glycerol, L-threonic acid and 
L-proline were significantly decreased whereas 
butanedioic acid and myo-inositol were signifi-
cantly increased in in metastasis group when com-
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pared to  non- metastasis group [42]. Furthermore, 
metabolomic analysis of gastric cancer tissues 
revealed that L-cysteine, hypoxanthine and 
L-tyrosine were significantly upregulated whereas 
phenanthrenol and butanoic acid were significantly 
downregulated in invasive tumours versus non- 
invasive tumours. These metabolite biomarkers 
could differentiate invasive from non-invasive gas-
tric cancers with ROC value of 0.969 [39].

Metabolomic analysis of mouse model xeno-
grafts identified a number of differentially 
expressed metabolites between metastasis and 
non-metastasis groups. Among these metabo-
lites, proline was the most upregulated tissue 
metabolite in the metastasis group, which was 
2.45-fold higher than that in non-metastasis 
group. Glutamine was the most downregulated 
tissue metabolite in the metastasis group, which 
was 1.71-fold lower than that in the non- 
metastasis group. The lactic acid, L-alanine, 
L-valine, leucine, malic acid, L-aspartic acid, ser-
ine, phosphoserine, dimethylglycine, glycine, 
L-glutamic acid, L-lysine, myo-inositol, pro-
panedioic acid, docosanoic acid, octadecanoic 
acid, arginine, pyrrolidine and pyrimidine were 
significantly upregulated, while the glucose, suc-
cinate, L-isoleucine, L-methionine, propan-
amide, L-threonic acid and butanedioic acid were 
remarkably downregulated in the metastasis 
group compared to the non-metastasis group. 
According to this animal model study, the main 
metabolic pathways associated with metastasis of 
gastric cancer included glycolysis (lactic acid, 
alkaline), serine metabolism (serine, phosphoser-
ine), proline metabolism (proline), TCA cycle 
(succinate, malic acid), fatty acid metabolism 
(docosanoic acid and octadecanoic acid) and 
methylation (glycine) [43]. Also, studies revealed 
that gastric cancer patients with higher levels of 
proline, p-cresol and 4-hydroxybenzoic acid had 
worse prognosis, and the p-cresol concentrations 
closely correlated with gastric cancer stage, 
which progressively increased with the late 
stages [41]. The elevated proline may serve as a 
promising prognostic biomarker for gastric can-
cer as accumulation of proline in tumour tissues 
because of the degradation of collagen. 
Upregulation of proline also causes the overex-

pression of MMPs, degrading ECM and enhanc-
ing tumour invasion and metastasis [44].

3.3  Treatment

Treatment efficacy regulates the balance between 
maximizing the therapeutic response and minimiz-
ing adverse effects of a novel treatment of cancer. 
The prediction of treatment efficacy (e.g. chemo-
sensitivity) is a challenging problem in the manage-
ment of cancer. Previous studies have suggested 
that metabolomic analysis of human xenograft 
model of gastric cancer may provide an effective 
approach to chemosensitivity prediction. BALB/
c-nu/nu mice were transplanted with MKN-45 cell 
line to establish the xenograft model, and then the 
mice were randomized into treatment group (cispla-
tin and 5-fluorouracil) (5-FU) and control group 
(0.9% sodium chloride). Metabolomic analysis of 
mouse plasma samples after treatment revealed a 
series of endogenous metabolites, including 1-acyl- 
lysophosphatidycholines, polyunsaturated fatty 
acids and their derivatives, as potential indicators of 
chemosensitivity [45]. The PRODH was identified 
as a potential biomarker for measuring intracellular 
dynamic responses to 5-FU. As there is upregula-
tion of PRODH expression after 5-FU administra-
tion, which further catalyses the biosynthesis of 
glutamate from proline, the treatment reduced the 
level of proline but increased the level of glutamate 
dramatically [46]. The FAS enzyme implicated in 
lipogenesis is also a potential target in antineoplas-
tic therapy [30]. Similarly, 1-acyl-lysophosphati-
dylcholine regulates the activity of enzymes like 
phospholipase A2 (PLA2), which catalyses the pro-
duction of arachidonic acid that is likely to promote 
cell cycle arrest and apoptosis dependent on 
ceramide pathway, and lysophosphatidylcholine 
acetyltransferases, which catalyses the phospho-
lipid synthesis linked to tumour cell proliferation. 
Thus, 1-acyl- lysophosphatidylcholine and related 
polyunsaturated fatty acid might serve as targets for 
evaluating gastric cancer chemosensitivity [47].

The investigation of adriamycin (ADR) treat-
ment for gastric adenocarcinoma revealed 
increased levels of trimethylamine oxide, hippu-
rate and taurine in the urine samples of ADR- 
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treated patient group compared to untreated patient 
group. These metabolic alterations trigger apopto-
sis in gastric cancer cells via ADR-induced geno-
toxic stress, attributing to the pharmacological 
effect of ADR [48]. In addition, lactate dehydroge-
nase A (LDH-A) and pyruvate dehydrogenase B 
(PDH-B) may serve as therapeutic targets in gas-
tric cancer treatment. The downregulation of 
LDH-A and overexpression of PDH-B inhibits 
cell growth and migration as there is dysregulation 
of pyruvate efflux into the Krebs cycle rather than 
the glycolysis process in gastric cancer [49].

4  Conclusion and Future 
Perspective

Although gastric cancer is one of the most com-
mon malignancies worldwide, its pathogenesis 
and molecular mechanisms remain largely 
unknown [50]. Metabolomics represents a power-
ful tool to study the altered metabolisms in gastric 
cancer. It not only allows a comprehensive analy-
sis of metabolites and related metabolic pathways 
in cancer cells but also can study the interactions 
between cancer cells and tumour microenviron-
ment as well as between tumour cells and gastric 
microbiome [38]. Metabolomic studies of gastric 
cancer have harnessed potential metabolite bio-
markers for the disease diagnosis, prognosis and 
treatment efficacy and also demonstrated meta-
bolic pathways/target genes for potential therapeu-
tic interventions. With the improvement of 
metabolomics technology, data analysis tools and 
study design [51], we can envision that metabolo-
mics will significantly enhance our understanding 
of the carcinogenesis and progression process of 
gastric cancer and may eventually facilitate a tai-
lored management of gastric cancer patients.
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