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Abstract

One and Two Locus Likelihoods Under Complex Demography

by

John Arthur Kamm

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Yun S. Song, Chair

The coalescent is a random process that describes the genealogy relating a sample of
individuals, and provides a probability model that can be used for likelihood-based inference
on genetics data. For example, coalescent models may include recombination, natural selec-
tion, population size crashes and growth, and migrations, and thus can be used to learn the
strength of these biological and demographic forces. Unfortunately, computing the likelihood
of data remains a challenging problem in many of these coalescent models.

In this dissertation, I develop new equations and algorithms for computing coalescent
likelihoods at one or two loci, and apply them to inference problems in a composite likelihood
framework. I begin by developing an algorithm for the one-locus case, computing the site
frequency spectrum (the distribution of mutant allele counts) under complex demographic
histories with population size changes (including exponential growth), population splits,
population mergers, and admixture events. This method improves on the runtime and
numerical stability of previous approaches, and can successfully infer demographic histories
that would otherwise be too computationally challenging to consider. I then consider the two-
locus case, and derive a formula for the likelihood at a pair of sites under a variable population
size history; this formula scales to tens of individuals. In addition to this exact formula, I
also develop a highly efficient importance sampler to compute the same likelihood. I apply
these results to the problem of inferring recombination rates under variable population size.
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Chapter 1

Introduction

The coalescent (Kingman, 1982a,b,c) is a stochastic process commonly used to model data in
population genetics. Coalescent models may include selection, recombination, and complex
demographic history, and thus provide a framework for inferring these evolutionary forces.
Unfortunately, computing likelihoods under the coalescent is a difficult problem, especially
for large, modern genomic datasets.

If the full likelihood is intractable, one strategy is to use a composite likelihood method,
by computing likelihoods of small subsets of the data and combining these in some way.
Still, challenges remain in computing sampling probabilities at even 1 or 2 sites of the
genome, especially under complex demographic scenarios. At a single site, methods exist for
computing the sample frequency spectrum (SFS), or distribution of allele counts (Gutenkunst
et al., 2009; Chen, 2012); however, these methods have trouble scaling to a large number of
individuals or populations. At a pair of sites, there are no existing methods for computing
sampling probabilities under a changing population size.

In this dissertation, we address these issues with new formulas and algorithms. We
consider the one locus case in Chapters 2 and 3, and the two locus case in Chapter 4. In
Chapter 2, we introduce mathematical and computational results that improve the speed and
numerical stability of computing the SFS, but mostly focus on the case without admixture. In
Chapter 3, we focus on the case with admixture, generalizing some of the improvements from
Chapter 2. We also show how to compute expectations of a wide range of genealogical and
summary statistics, and we apply a composite likelihood to estimate a complex 6-population
history with admixture and exponential growth. In Chapter 4, we show how to compute the
two-locus sampling probability under a changing but piecewise constant population size. We
introduce two distinct methods, an exact formula and a highly efficient importance sampler.
We show how accounting for population size changes improves the inferred recombination
map under a two-locus composite likelihod.

This dissertation focuses on the neutral model without selection. In Chapter 5, we
conclude by considering some future directions and open problems, such as generalizing our
results to include natural selection.
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1.1 Preliminaries

We begin by reviewing the neutral coalescent at a single locus under a constant, panmictic
population size.

1.1.1 The coalescent

The simplest population genetics model is the one-locus, panmictic Wright-Fisher process.
In this model, a population consists of N individual alleles, and each generation is obtained
from the previous generation by sampling with replacement. That is, every individual allele
independently “chooses” its parent in the previous generation.

If we take a sample of size n at the present, the samples will be related by a rooted tree
or genealogy : tracing the samples backward in time through their ancestors, every time two
lineages find a common ancestor, the total number of ancestors will drop by 1, until there
is only a single root or most recent common ancestor left (with the time to most recent
common ancestor TMRCA <∞ almost surely).

If we let N → ∞, and scale time as 1
N

per generation, then the genealogy converges in
distribution to a stochastic process called the coalescent, defined as follows. At the present we
have n lineages. Going backwards in time, every pair of lineages coalesces (finds a common
ancestor) at rate 1, so that the waiting time until the next coalescent event is Exp(

(
m
2

)
)

when there are m ancestral lineages remaining. The resulting sample genealogy is a rooted,
ultrametric, binary tree.

In fact, this limit holds for other population models besides the Wright-Fisher process.
This justifies using the coalescent to model genealogies under more realistic mating models.
The main requirement is that the distribution of offspring per parent decays rapidly enough
(Cannings, 1974). More precisely, let νi be the number of offspring of the ith individual

at the present generation, let cN = E[ν1(ν1−1)]
N−1

, and dN = E[ν1(ν1−1)(ν1−2)]
(N−1)(N−2)

. If (ν1, . . . , νN) is

exchangeable, and cN → 0 and dN
cN
→ 0 as N →∞, then the sample genealogy converges in

distribution to the coalescent (scaling time so that each generation has length cN).

1.1.2 Sampling probability and frequency spectrum

Now suppose that mutations arise on the coalescent tree as a Poisson point process with rate
θ
2
. These mutations cause the samples to have different allelic types. For each allelic type k,

let nk be the number of copies of k in the sample, so
∑

k nk = n.
We are interested in computing the sampling probability P({nk}), which we review here

for three different cases: infinite alleles, finite alleles, and at an infinitessimal site.
In all three cases, it is useful to consider identity by descent (IBD), which can be modeled

by a Chinese restaurant process (Aldous, 1985; Durrett, 2008). Say 2 points on the coalescent
tree are IBD if the path between them contains no mutations. Consider when there were m
lineages in IBD with the present sample, for 0 ≤ m ≤ n−1. Imagine these as m “customers”
in a restaurant, each at a “table” corresponding to its allelic type. Going forward in time,
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eventually there are m+ 1 lineages in IBD with the sample; an (m+ 1)th customer walks in,
and is seated at a new table with probability θ

θ+m
, and at an existing table with j customers

with probability j
θ+m

. This is because, going backwards in time from the m+1 lineages, IBD

decreases due to mutation at rate θ(m+1)
2

, and decreases due to coalescence at rate m(m+1)
2

.

Infinite alleles

In this model, each mutation gives rise to a new allelic type. For a sample with K unique
alleles, label the observed alleles by a uniform permutation of 1, . . . , K, so

∑K
k=1 nk = n.

Then the Chinese restaurant process yields

P(n1, . . . , nK) =

(
n

n1, . . . , nK

)
θK
∏K

k=1(nk − 1)!

K!
∏n−1

m=0(θ +m)
=

θKn!

K!(θ)n↑
∏K

k=1 nk

with (a)b↑ =
∏b−1

i=0(a + i) the rising factorial. Note that Ewens’ sampling formula (Ewens,
1972) gives a similar probability, but ignores the allele labels, and so is equal up to a com-
binatorial factor.

Finite alleles

In this model, there are a finite number of alleles {1, . . . , K}, with allele j mutating to allele
k at rate θ

2
Pjk. In general there is no closed form solution for the sampling probability.

However, in the special case where Pjk = Pk doesn’t depend on j,

P(n1, . . . , nK) =

(
n

n1, . . . , nK

)∏
k(θPk)nk↑
(θ)n↑

which follows from noting the Chinese restaurant process yields a Dirichlet-multinomial
distribution, if a table has allele k with probability Pk.

Infinitessimal site

Typical DNA sequences are made up of a large number of positions or sites, each with a very
small mutation rate. This is approximated by the infinite sites model, where each individual
allele is composed of an infinite number of sites, each with an infinitesimally small mutation
rate, so that the total mutation rate over all sites is θtot

2
∈ (0,∞).

The sample frequency spectrum (SFS) ξk is the expected branch length with k leafs,
1 ≤ k < n. Since mutations hit the genealogy with rate θtot

2
, the expected number of sites

with k derived (mutant) alleles in the sample is θtot
2
ξk.

For the standard coalescent, ξk = 2
k
. To see this, consider a site with very small mutation

rate θ/2� 1. Let n0 be the number of copies with the oldest observed allele, and x = n−n0

the count of more recent alleles. From the Chinese restaurant process,

Pθ(x = k) =

(
n− 1

n− k − 1

)
(θ)k↑(n− k − 1)!

(θ + 1)n−1↑
=
θ

k
+O(θ2) (1.1)
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because n − k − 1 out of the last n − 1 customers sit at the first table. Returning to the
infinite sites scenario, we can obtain ξk by applying (1.1) at each site. In particular, we
consider L sites, each with mutation rate θtot

2L
, and send L → ∞ to obtain the infinite sites

model. Then the expected number of sites with k derived alleles is

θtot

2
ξk = lim

L→∞
LPθtot/L(x = k)

= lim
L→∞

L

(
θtot/L

k
+O

(
θ2

tot

L2

))
=
θtot

k

and so ξk = 2
k
.

Note the SFS is related to sampling probabilities in two ways. First, the sampling
probability of derived alleles given a mutation on the tree is

P(x = k | mutation) =
ξk∑n−1
j=1 ξj

=
1

kHn−1

with Hm =
∑m

i=m
1
i

the mth harmonic number. Secondly, from (1.1) and ξk = 2
k
, we

have Pθ(x = k) = θ
2
ξk + o(θ), i.e. ξk provides a first-order approximation to the sampling

probability under small mutation rate. In other words, the SFS is

ξk = 2
d

dθ
Pθ(x = k)

∣∣∣
θ=0

the derivative around θ
2

= 0, of the sampling probability for k derived copies and n − k
ancestral copies.

1.1.3 Moran model

The Moran model is a continuous-time population model with sample genealogies exactly
equal to the coalescent (Moran, 1958; Ethier and Kurtz, 1993; Donnelly and Kurtz, 1999).
We will make extensive use of this equivalence throughout the thesis.

The Moran model is a forward-in-time process, defined as follows. At each time there are
n individual alleles, which mutate at rate θ

2
, as before. In addition, copying events occur,

where an individual copies its allele onto some other individual, replacing the existing allele.
This happens at rate 1

2
for each pair of individuals and each direction of copying. The

coalescent is embedded within the Moran model because, tracing the ancestry of a sample
backwards in time, each copying event is like a coalescence, and coalescence occurs at rate 1
per pair of lineages.

Note the Moran model is usually scaled differently: in particular, the Moran model is
typically defined to have N lineages, with copying happening at rate 1

2N
instead of 1

2
. We

avoid this convention, so that we can directly apply the equivalence of the Moran model and
the coalescent, without having to first scale time by a factor of 1

N
.
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1.2 Overview

We now outline the remainder of this dissertation. Chapter 2 is based on a preprint by
Kamm, Terhorst, and Song (2015b), while Chapter 4 is based on a preprint by Kamm,
Spence, Chan, and Song (2015a).

1.2.1 Efficient computation of the multipopulation SFS

In Chapter 2, we consider computing the joint SFS for D sampled populations that may
change over time. The joint SFS is the expected D-dimensional histogram of derived allele
counts, per unit mutation rate. As before, we may equivalently define the SFS as an expected
branch length, or as the derivative of a sampling probability around θ

2
= 0 (Griffiths and

Tavaré, 1998).
There has been much interest in analyzing joint SFS data from multiple populations to

infer parameters of complex demographic histories, including variable population sizes, pop-
ulation split times, migration rates, admixture proportions, and so on. This requires accurate
computation of the SFS under a given demographic model. Although much methodological
progress has been made, existing methods suffer from numerical instability and high compu-
tational complexity when multiple populations are involved and the sample size is large. We
present new analytic formulas and algorithms that enable oaccurate, efficient computation of
the joint SFS for thousands of individuals sampled from hundreds of populations related by
a complex demographic model with arbitrary population size histories (including piecewise-
exponential growth). Through an empirical study we demonstrate the improvements to
numerical stability and computational complexity.

The main algorithm in Chapter 2 is based on a previous method that implicitly integrates
over coalescent trees (Chen, 2012), but with two innovations that substantially improve its
stability and speed:

1. We apply formulas from Polanski and Kimmel (2003) to efficiently and stably compute
certain terms, which we call the truncated SFS, and which correspond to the frequency
of mutations arising in each part of the demographic history.

2. We replace the coalescent within each population by an equivalent Moran model. This
yields a substantial speedup because the Moran model has fewer states to integrate
over than the coalescent.

Note that initially, we only apply the Moran model speedup to demographies without ad-
mixture. In the following Chapter 3, we generalize the Moran model speedup to handle
admixture as well.
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1.2.2 The Moran model for the SFS with admixture

In Chapter 3, we continue our discussion of the multipopulation SFS for complex demogra-
phy. In particular, we extend the Moran model speedup from Chapter 3 to handle discrete
admixture events. To do this, we construct a lookdown model of the multipopulation Moran
process (Donnelly and Kurtz, 1996), which is a version of the Moran model with a countably
infinite number of lineages. By embedding this lookdown model within the demographic
history, we are able to construct a more efficient algorithm for the SFS under admixture.
This algorithm is purely based on the Moran model, and does not use the coalescent directly.

In addition, we note that our algorithm can efficiently compute a number of linear sum-
mary statistics of the SFS. These statistics include E[TMRCA], E[Total Branch Length], and
other classical statistics from population genetics.

Finally, we examine the problem of inferring complex demographic history using the joint
SFS. We consider a composite likelihood approach, searching for the maximum composite
likelihood estimate using gradient descent and automatic differentiation. Using simulations,
we show that we can quickly and accurately infer a 6 population demography with 18 pa-
rameters, including admixture and exponential growth.

1.2.3 Two loci under changing population size

In Chapter 4, we turn our attention from the one-locus SFS to the sampling probability
at two linked sites. Two-locus sampling probabilities have played a central role in devising
an efficient composite likelihood method for estimating fine-scale recombination rates. Due
to mathematical and computational challenges, these sampling probabilities are typically
computed under the unrealistic assumption of a constant population size, and simulation
studies have shown that resulting recombination rate estimates can be severely biased in
certain cases of historical population size changes. To alleviate this problem, we develop two
distinct methods to compute the sampling probability for variable population size functions
that are piecewise constant. The first is a novel formula that can be evaluated by numerically
exponentiating a large but sparse matrix. The second method is importance sampling on
genealogies, based on a characterization of the optimal proposal distribution that extends
previous results to the variable-size setting. The resulting proposal distribution is highly
efficient, with an average effective sample size (ESS) of nearly 98% per sample. Using our
methods, we study how a sharp population bottleneck followed by rapid growth affects the
correlation between partially linked sites. Then, through an extensive simulation study, we
show that accounting for population size changes under such a demographic model leads
to statistically significant and in some cases dramatic improvements in recombination rate
estimation.
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Chapter 2

Truncated and multipopulation SFS

In this chapter, we present a method for computing the expected joint sample frequency
spectrum (SFS), a summary statistic on DNA sequences which lies at the core of a large
number of empirical investigations and inference procedures in population genetics (Wakeley
and Hey, 1997; Griffiths and Tavaré, 1998; Nielsen, 2000; Gutenkunst et al., 2009; Coventry
et al., 2010; Gazave et al., 2014; Gravel et al., 2011; Nelson et al., 2012; Excoffier et al.,
2013; Jenkins et al., 2014; Bhaskar et al., 2015). The joint SFS is of interest because it
maps complex demographic models involving population size changes, population splits,
migration, and admixture to a low-dimensional vector, thus providing a useful analytic tool
for performing inference when confronted with a large number of sampled DNA sequences.

We argue both theoretically and by simulation that existing methods in population genet-
ics cannot scale to the problem sizes encountered in modern genetic analyses. Our primary
contribution is a novel algorithm (and accompanying open-source software package) which
is several orders of magnitude faster (in the number of sampled individuals n) than existing
approaches. Moreover, by careful algorithmic design we are able to mitigate certain numer-
ical issues (e.g., underflow and catastrophic cancellation) that are commonly encountered
in our problem setting, but for which little work has been done previously. The combined
effect of these innovations is to permit the analysis of much larger data sets, which will lead
to improved inference in population genetics.

The rest of the chapter is organized as follows: In Section 2.1, we survey related work
and summarize our main results. Section 2.2 presents the theoretical results that lead to
the improved algorithm described in Section 2.3. Runtime and numerical accuracy results
are discussed in Section 2.4. Mathematical proofs of our theoretical results are deferred to
Section 2.5.

Software availability: The algorithms presented in this chapter are implemented in a
software package called momi (MOran Models for Inference), which is freely available at
https://github.com/jackkamm/momi.
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2.1 Background and summary

2.1.1 Existing work

Two approaches exist for computing the joint SFS (the multidimensional histogram of mutant
allele counts). One is based on the Wright-Fisher diffusion (Ewens, 2004), a stochastic process
which describes the frequency trajectory of a mutant allele segregating in a population as time
moves forward. The diffusion framework has the advantage of being applicable to arbitrary
demographic models, but its computational complexity grows exponentially with the number
of populations. Also, it requires numerically solving a system of partial differential equations,
which can be difficult in practice. For these reasons, current implementations (Gutenkunst
et al., 2009; Gravel et al., 2011; Lukić and Hey, 2012) of the diffusion approach are limited
to analyzing no more than four populations at once.

An alternative class of methods, which includes ours, relies on the coalescent, which is
dual to the Wright-Fisher diffusion. Using the coalescent, one computes the expected SFS
by integrating over all genealogies underlying the sample. This can be done either via Monte
Carlo or analytically. Monte Carlo integration (Nielsen, 2000) can effectively handle arbitrary
demographic histories with a large number of populations, and Excoffier et al. (2013) have
recently developed a useful implementation. However, when the number D of populations (or
demes) is moderate to large, most of the O(nD) SFS entries will be unobserved in simulations,
and thus the Monte Carlo integral may naively assign a probability of 0 to observed SNPs.
Monte Carlo computation of the expected SFS thus requires careful regularization techniques
to avoid degeneracy.

An alternative to the Monte Carlo approach is to compute the expected SFS exactly
via analytic integration over coalescent genealogies (Wakeley and Hey, 1997; Griffiths and
Tavaré, 1998). For a demography involving multiple populations, this can be done by a
dynamic program (Chen, 2012, 2013). This algorithm is more complicated and less general
than both the Monte Carlo and diffusion approaches: while it can handle population splits,
merges, size changes, and instantaneous gene flow, it is difficult to include continuous gene
flow between populations. However, it scales well to a large number D of populations, since
it only computes entries of the SFS that are observed in the data, and ignores the O(nD)
SFS entries that are not observed.

2.1.2 Summary of results

Unfortunately, existing coalescent-based algorithms (Wakeley and Hey, 1997; Chen, 2012,
2013) do not scale well to large sample size n, either in terms of running time or numerical
stability. These algorithms rely on large alternating sums that explode with n and exhibit
catastrophic cancellation. To circumvent these problems, we obtain new results for com-
puting the truncated SFS, a key quantity needed to compute the joint SFS for multiple
populations. For a fixed time τ , the truncated SFS gives the expected number of mutations
arising in the time interval [0, τ) that are found in k = 1, 2, . . . , n individuals sampled at
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time 0. We provide an algorithm for computing this quantity efficiently and in a numerically
stable manner.

For general demographic histories, the complexity of the dynamic program devised by
Chen (2012, 2013) is O(n5V +WL), where V is the number of populations (vertices) through-
out the history, L is the number of distinct SFS entries to be computed, and W is a term
that depends on n and the graph structure of the demography; in this chapter, we improve
this to O(n2V +WL). For the special case of a tree-shaped demography without migration
or admixture, Chen’s algorithm gives W = O(n4V ). By using the Moran model, we further
improve this to W = O((n2+nT )V ), where T is the number of matrix-vector multiplications
used to compute a certain matrix exponential (Section 2.3.2). Our Moran-based speedup
generalizes to non-tree demographies, but we leave this generalization to Chapter 3.

We show through an empirical study that our algorithm is not only orders of magnitude
faster, but also more numerically stable.

Lastly, we note that our algorithm relies on ideas similar to those found in Bryant et al.
(2012) and De Maio et al. (2013), but with a different focus. Those methods aim to compute
a “phylogenetic SFS”, in which mutations are allowed to be recurrent and time scales are
sufficiently long that population size can be assumed to be constant. In contrast, our method
considers an infinite sites model (Kimura, 1969) without recurrent mutation, and can handle
arbitrary population size change functions. These features make it more appropriate for use
in a population genetic setting.

2.2 Theoretical results on the truncated SFS

In this section we study the truncated sample frequency spectrum, which is the key object
needed to compute the joint SFS in our algorithm.

2.2.1 Notation for the coalescent and the SFS

We define the coalescent {Cnt }t≥0 on n leaves as the backward-in-time Markov jump process
whose value at time t is a partition of {1, . . . , n}, and at time t, each pairs of blocks in Cnt
merge with rate α(t). We also call 1

α(t)
the population size history function. We usually drop

the dependence on n, and write Ct = Cnt . We sometimes denote a dependence on n through
the probability Pn and the expectation En. So if Y (Cn) denotes a random variable of the
process Cn, we usually write En[Y ] instead of E[Y (Cn)].

A sample path of {Ct}t≥0 can be viewed as a rooted ultrametric binary tree with n leaves,
labeled 1, . . . , n, corresponding to sampled individuals. The tree extends backwards in time
and each branch represents a partition block of the process such that Ct corresponds to the
partition induced on {1, . . . , n} by cutting the tree at height t. To generate data, we drop
mutations on the tree at rate θ

2
. Let X ⊂ {1, . . . , n} be the subsample with at least one

mutation since the common ancestor.
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1 2 3 4 5
t = 0

t = τ

T τ5 (= T5)

T τ4 (= T4)

T τ3 (< T3)

Cτ = {{1, 2}, {3}, {4, 5}}, ACτ = 3

X τ = {1, 4, 5}

Figure 2.1: A sample path of the coalescent truncated at time τ . Star symbols denote
mutations, while X τ denotes the set of leaves under those mutations. T τk denotes the waiting
time in the interval [0, τ) while there are k lineages.

We define the sample frequency spectrum ξk, for 0 < k < n, as the first order Taylor
series coefficient of Pn(|X | = k) in the mutation rate,

Pn(|X | = k) =
θ

2
ξk + o(θ).

We will generally refer to ξk as the sample frequency spectrum (SFS). We also note two
alternative definitions of the SFS. First, ξk is the expected number of mutations with k
descendants when θ

2
= 1. Second, 1

( n
|K|)

ξ|K| is the expected length of the branch whose leaf

set is K ⊂ {1, . . . , n}. More specifically, let I denote the indicator function, and define
BK :=

∫∞
0

IK∈Ctdt. Then
1(
n
|K|

)ξ|K| = En[BK ].

The equivalence of these alternate definitions follows from previous results in Griffiths and
Tavaré (1998); Jenkins and Song (2011); Bhaskar et al. (2012).

We now consider truncating the coalescent with mutation at time τ , as illustrated in
Figure 2.1. Let X τ denote the set of leaves under mutations occurring in the time interval
[0, τ). We define the truncated SFS f τn(k) according to

Pn(|X τ | = k) =
θ

2
f τn(k) + o(θ),

where f τn(k) corresponds to the total expected length of all branches in the time interval [0, τ)
each of which subtends k leaves. Note that ξk ≡ f∞n (k). Using the truncated SFS f τn(k)
for each population appearing in a demographic history, where τ denotes the length of time
a particular population exists, it is possible to compute the joint SFS for multiple related
populations (Chen, 2012). In Section 2.3.1, we describe a dynamic program algorithm for
computing the joint SFS for multiple populations related by a complex demography, and the
way in which this algorithm uses the truncated SFS f τν (k).
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2.2.2 Previous work on the truncated SFS

The key challenge is to compute the truncated SFS f τn(k). The approach taken by Chen
(2012) to tackle this problem is as follows. Let ACt be the random variable which equals
the number of coalescent lineages at time t ancestral to the sample. This is a pure death
process which decreases by one each time a coalescence event occurs, until finally reaching
the absorbing state 1 when all individuals have found a common ancestor. More precisely,
ACt = |Ct| and the rate of transition from m to m − 1 is given by λCm,m−1(t) =

(
m
2

)
α(t). We

define a conditional version of the SFS via f τn(k | ACτ = m) according to

Pn(|X τ | = k | ACτ = m) =
θ

2
f τn(k | ACτ = m) + o(θ). (2.1)

Here, f τn(k | ACτ = m) is the total expected length of all branches each subtending k leaves
given that there are m ancestors at time τ .

Chen’s approach to computing the unconditional SFS f τν (k) is to use the decomposition

f τν (k) =
n−k+1∑
m=1

Pν(ACτ = m)f τν (k | ACτ = m). (2.2)

The first term in the summand, Pν(ACτ = m), can be computed in at least three ways: by
numerically exponentiating the rate matrix of AC, by computing an alternating sum with
O(ν) terms (Tavaré, 1984), or by solving a recursion described in Section 2.5.1. We note
that the recursion described in Section 2.5.1 has the advantage of computing all values of
Pν(ACτ = m), m ≤ ν ≤ n, in O(n2) time.

The second term f τν (k | ACτ = m) in the summand of (2.2) is computed in Chen (2012)
as

f τν (k | ACτ = m) =
ν∑

i=m

ipk,1ν,iEν [Ti | ACτ = m], (2.3)

where

pk,jν,i :=


(k−1
j−1)(

ν−k−1
i−j−1)

(ν−1
i−1)

, if k ≥ j > 0 and ν − k ≥ i− j > 0,

1, if j = k = 0 or i− j = ν − k = 0,

0, else,

is the transition probability of the Pólya urn model, starting with i − j white balls and j
black balls, and ending with ν − k white balls and k black balls (Johnson and Kotz, 1977),
and

Ti :=

∫ τ

0

IACt =idt
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is the length of time in [0, τ) where there are i ancestral lineages to the sample, as illustrated
in Figure 2.1. Chen (2012) provides a formula for the conditional expectation Eν [Ti | ACτ = m]
for the case of constant population size, which he later extends (Chen, 2013) to the case of an
exponentially growing population. However, these formulas involve a large alternating sum
with O(ν2) terms. Thus, computing Eν [Ti | ACτ = m] for every value of i,m, ν, as required
to compute {f τν (k)}k≤ν≤n with (2.2) and (2.3), takes O(n5) time with these formulas. In
addition, large alternating sums are numerically unstable due to catastrophic cancellation
(Higham, 2002), and so these formulas require the use of high-precision numerical libraries,
further increasing runtime.

2.2.3 An efficient, numerically stable algorithm for computing
the truncated SFS

Here, we present a numerically stable algorithm to compute {f τν (k) | 1 ≤ k ≤ ν ≤ n} in
O(n2) time instead of O(n5) time. Our approach utilizes the following two lemmas:

Lemma 1. The entry f τn(n) of the truncated SFS is given by

f τn(n) = τ −
n−1∑
k=1

k

n
f τn(k). (2.4)

Lemma 2. For all 1 ≤ k ≤ ν, the truncated SFS f τν (k) satisfies the linear recurrence

f τν (k) =
ν − k + 1

ν + 1
f τν+1(k) +

k + 1

ν + 1
f τν+1(k + 1). (2.5)

We prove Lemma 1 in Section 2.5.2. We note here that our proof also yields the identity
E[TMRCA] =

∑n−1
k=1

k
n
ξk, where TMRCA denotes the time to the most recent common ancestor

of the sample; to our knowledge, this formula is new. A proof of Lemma 2 is provided in
Section 2.5.3.

We now sketch our algorithm. For a given n, we show below that all values of f τn(k),
for 1 ≤ k < n, can be computed in O(n2) time. We then compute f τn(n) using Lemma 1 in
O(n) time. Finally, using f τn(k) for 1 ≤ k ≤ n as boundary conditions, Lemma 2 allows us
to compute all f τν (k), for ν = n− 1, n− 2, . . . , 2 and k = 1, . . . , ν, in O(n2) time.

We now describe how to compute the aforementioned terms f τn(k), for all k < n, in
O(n2) time. We first recall the result of Polanski and Kimmel (2003) which represents the
untruncated SFS ξk, for 1 ≤ k ≤ n− 1, as

ξk =
n∑

m=2

Wn,k,mcm, (2.6)
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where

cm := Em[Tm] =

∫ ∞
0

t

(
m

2

)
α(t) exp

[
−
(
m

2

)∫ t

0

α(x)dx

]
dt

=

∫ ∞
0

exp

[
−
(
m

2

)∫ t

0

α(x)dx

]
dt (2.7)

denotes the waiting time to the first coalescence for a sample of size m, and Wn,k,m are
universal constants that are efficiently computable using the following recursions (Polanski
and Kimmel, 2003):

Wn,k,2 =
6

n+ 1
,

Wn,k,3 = 30
(n− 2k)

(n+ 1)(n+ 2)
,

Wn,k,m+2 = −(1 +m)(3 + 2m)(n−m)

m(2m− 1)(n+m+ 1)
Wn,k,m +

(3 + 2m)(n− 2k)

m(n+m+ 1)
Wn,k,m+1,

(2.8)

for 2 ≤ m ≤ n− 2. The key observation is to note that, in a similar vein as (2.6), we have:

Lemma 3. The truncated SFS f τn(k), for 1 ≤ k ≤ n− 1, can be written as

f τn(k) =
n∑

m=2

Wn,k,mc
τ
m, (2.9)

where cτm is a truncated version of (2.7):

cτm := Em[T τm] =

∫ τ

0

exp

[
−
(
m

2

)∫ t

0

α(x)dx

]
dt. (2.10)

We prove Lemma 3 in Section 2.5.4. For piecewise-exponential α(t), cτm can be computed
explicitly using formulas from Bhaskar et al. (2015). Using (2.8), we can compute all values
of Wn,k,m, for 1 ≤ k ≤ n and 2 ≤ m ≤ n, in O(n2) time. Then, using (2.9), all values of
f τn(k), for 1 ≤ k ≤ n− 1 can be computed in O(n2) time.

Note that the above algorithm not only significantly improves computational complexity,
but also resolves numerical issues, since it allows us to avoid computing the expected times
Eν [Ti | ACτ = m], which are alternating sums of O(n2) terms and are numerically unstable to
evaluate for large values of n (say, n > 50).
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1 2 3 4 5
t = 0

t = τ

Kτ = {{1}, {2}, {3}, {4, 5}}

Figure 2.2: The coalescent with killing for the genealogy in Figure 2.1. Note that Kτ is a
marked partition, with the blocks killed by mutations in [0, τ) being specially marked.

2.2.4 An alternative formula for piecewise-constant
subpopulation sizes

For demographic scenarios with piecewise-constant subpopulation sizes, we present an alter-
native formula for computing the truncated SFS within a constant piece. This formula has
the same sample computational complexity as that described in the previous section.

Let Kt denote the coalescent with killing, a stochastic process that is closely related to
the Chinese restaurant process, Hoppe’s urn, and Ewens’ sampling formula (Aldous, 1985;
Hoppe, 1984). In particular, the coalescent with killing {Kt}t≥0 is a stochastic process whose
value at time t is a marked partition of {1, . . . , n}, where each partition block is marked
as “killed” or “unkilled”. We obtain the partition for Kt by dropping mutations onto the
coalescent tree as a Poisson point process with rate θ

2
, and then defining an equivalence

relation on {1, . . . , n}, where i ∼ j if and only if i, j have coalesced by time t and there are
no mutations on the branches between i and j (i.e., i and j are identical by descent). We
furthermore mark the equivalence classes (i.e. partition blocks) of Kt that are descended
from a mutation in [0, t) as “killed”. See Figure 2.2 for an illustration. The process Kτ can
also be obtained by running Hoppe’s urn, or equivalently the Chinese restaurant process,
forward in time (Durrett, 2008, Theorem 1.9).

Let AKt be the number of unkilled blocks in Kt, so that AKt is a pure death process with
transition rate λKi,i−1(t) =

(
i
2

)
α(t)+ iθ

2
(the rate of coalescence is the number of unkilled pairs(

i
2

)
α(t), and the rate of killing due to mutation is iθ

2
). Our next proposition gives a formula

for the truncated conditional sample frequency spectrum given AKτ , i.e., f τn(k | AKτ = m).

Proposition 1. Consider the constant population size history 1
α(t)

= 1
α

for t ∈ [0, τ), and
let m > 0 and 0 < k ≤ n−m. The joint probability that the number of derived mutants is k
and the number of unkilled ancestral lineages is m, when truncating at time τ , is given by

Pn(|X τ | = k,AKτ = m) =
θ

2
f τn(k | AKτ = m)P(ACτ = m) + o(θ),
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where

f τn(k | AKτ = m) =
2

αk

(
n−m
k

)(
n−1
k

) . (2.11)

We prove Proposition 1 in Section 2.5.5. Note that this equation does not hold for the
case k = n,m = 0, but fortunately we do not need to consider that case in what follows
below.

We can use Proposition 1 to stably and efficiently compute the terms f τν (k), for k ≤ ν ≤ n,
as follows. We first compute the case k < ν = n. Note that Pn(|X τ | = K) =

∑
m Pn(|X τ | =

K,AKτ = m). So for k < n, by Proposition 1

f τn(k) =
n∑

m=1

f τn(k | AKτ = m)Pn(ACτ = m)

=
n∑

m=1

2

αk

(
n−m
k

)(
n−1
k

) Pn(ACτ = m). (2.12)

The sum in (2.12) contains O(n) terms, so it costs O(n2) to compute f τn(k) for all k < n.
After this, we use Lemma 1 to compute f τn(n), and then use Lemma 2 to compute f τν (k) for
all 1 ≤ k ≤ ν < n. Since there are O(n2) such terms, this also takes O(n2) time.

2.3 The joint SFS for multiple populations

In this section we discuss an algorithm for computing the multi-population SFS (Wakeley
and Hey, 1997; Chen, 2012, 2013). We describe the algorithm in Section 2.3.1, and note how
the results from Section 2.2 improve the time complexity of this algorithm. In Section 2.3.2,
we focus on the special case of tree-shaped demographies, and introduce a further algorithmic
speedup by replacing the coalescent with a Moran model.

Let V be the number of subpopulations in the demographic history, n the total sample
size, and L the number of SFS entries to compute. Then the results from Section 2.2 improve
the computational complexity of the SFS from O(n5V +WL) to O(n2V +WL), where W is
a term that depends on the structure of the demographic history. In the special case of tree-
shaped demographies, the algorithm from Chen (2012) givesW = O(n4V ). The Moran-based
speedup from Section 2.3.2 improves this to W = O((n2 +nT )V ), with T being the number
of matrix-vector multiplications to compute a certain matrix exponential, as described in
Section 2.3.2. The complexity can be further improved to W = O((n log(n) + nT )V ) by
using the FFT to compute a convolution, but this speedup is numerically unstable; see
Section 2.3.2.

The Moran-based speedup can be generalized to non-tree demographies, but the nota-
tion, implementation, and analysis of computational complexity becomes substantially more
complicated. We thus leave its generalization to Chapter 3, and only describe the Moran
model for tree demographies here.
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v6 v7

v1

v2

v3 v4

v5

v1

v2

v3 v4

v5

v6 v7

Figure 2.3: A demographic history with a pulse migration event (left), and the corresponding
directed graph over the populations v1, . . . , v7.

2.3.1 A coalescent-based dynamic program

Suppose at the present we have D populations, and in the ith population we observe ni
alleles. For a single point mutation, let x = (x1, . . . , xD) denote the number of alleles that
are derived in each population. We wish to compute ξx, where θ

2
ξx is the expected number

of point mutations with derived counts x.
For demographic histories consisting of population size changes, population splits, pop-

ulation mergers, and pulse admixture events, Chen (2012) gave an algorithm to compute ξx
using the truncated SFS f τn(k) that we defined in Section 2.2.

We describe this algorithm to compute ξx. We start by representing the population
history as a directed acyclic graph (DAG), where each vertex v represents a subpopulation
(Figure 2.3). We draw a directed edge from v to v′ if there is gene flow from the bottom-most
part of v to the top-most part of v′, where “down” is the present and “up” is the ancient
past. Thus, the leaf vertices correspond to the subpopulations at the present. For a vertex v
in the population history graph, let τv ∈ (0,∞) denote the length of time the corresponding
population persists, and let αv : [0, τv) → R+ denote the inverse population size history of
v. So going backwards in time from the present, αv(t) gives the instantaneous rate at which
two particular lineages in v coalesce, after v has existed for time t. We use f vn(k) to denote
the truncated SFS for the coalescent embedded in v, i.e., f vn(k) = f τvn (k) for a coalescent
with coalescence rate αv(t). Then we have

ξx =
∑
v

∑
mv0 ,k

v
0

f vmv0(kv0)P(x | kv0 ,mv
0)P(mv

0) (2.13)

where mv
0 denotes the number of lineages at the bottom of v that are ancestral to the initial

sample, and kv0 denotes the number of these lineages with a derived allele.
In order to use (2.13), we must compute f vmv0(kv0) for every population v, and every value

of mv
0 and kv0 . If n is the total sample size and V the total number of vertices, then this
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takes O(n5V ) time using the formulas of Chen (2012). Our results from Section 2.2 improve
this to O(n2V ).

To use (2.13), we must also compute the terms P(x | kv0 ,mv
0)P(mv

0), for which Chen (2012)
constructs a dynamic program, starting at the leaf vertices and moving up the graph. This
dynamic program essentially consists of setting up a Bayesian graphical model with random
variables mv

0, k
v
0 and performing belief propagation, which can be done via the sum-product

algorithm (“tree-peeling”) if the population graph is a tree (Pearl, 1982; Felsenstein, 1981),
or via a junction tree algorithm if not (Lauritzen and Spiegelhalter, 1988).

The time complexity of the algorithm thus depends on the topological structure of the
population graph. In the special case where the demographic history is a binary tree, the
tree-peeling algorithm computes the values P(x | kv0 ,mv

0)P(mv
0) in O(n4V ) time, since the

vertex v has O(n2) possible states (kv0 ,m
v
0), so summing over the transitions between every

pair of states costs O(n4). Note that Chen (2012) mistakenly states that the computation
takes O(n3V ) time.

To summarize, let W be the time it takes to compute (2.13) after the terms f vm(k) have
been precomputed, and let L be the number of distinct entries x for which we wish to
compute ξx. Then our results from Section 2.2 improve the computational complexity from
O(n5V + WL) to O(n2V + WL). In the case of a binary tree the original algorithm of
Chen (2012) gives W = O(n4V ). In the following section, we further improve the runtime
to W = O((n2 + nT )V ) (where T will be the number of terms used when approximating a
certain matrix exponential).

2.3.2 A Moran-based dynamic program

Here, we describe a dynamic program that improves the computational complexity of com-
puting ξx for tree-shaped demographies. The main idea is to replace the backwards-in-time
coalescent with a forwards-in-time Moran model.

Algorithm description

We assume the D populations at the present are related by a binary rooted tree with D
leaves, where each leaf represents a population at the present, and at each internal vertex,
a parent population splits into two child populations. (Note that a non-binary tree can be
represented as a binary tree, with additional vertices of height 0).

Instead of working with the multi-population coalescent directly, we will consider a multi-
population Moran model, in which the coalescent is embedded (Moran, 1958). In particular,
let L(v) denote the leaf populations descended from the population v, and let nv =

∑
i∈L(v) ni

be the number of present-day alleles with ancestry in v. For each population v (except the
root), we construct a Moran model going forward in time, i.e. starting at τv and ending
at 0. The Moran model consists of nv lineages, each with either an ancestral or derived
allele. Going forward in time, every lineage copies itself onto every other lineage at rate
1
2
αv(t). Thus, the total rate of copying events is

(
nv
2

)
αv(t). Let µvt denote the number of
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derived alleles at time t in population v. Then the transition rate of µvt when µvt = x

is λx→x+1(t) = λx→x−1(t) = x(nv−x)
2

αv(t), since there are x(nv − x) pairs of lineages with
different alleles.

The coalescent is embedded within the Moran model, because if we trace the ancestry
of genetic material backwards in time in the Moran model, we obtain a genealogy with the
same distribution as under the coalescent (Durrett, 2008, Theorem 1.30). Thus, we can
obtain the expected number of mutations with derived counts x, by summing over which
population v the mutation occurred in:

ξx =
∑
v

nv∑
k=1

f vnv(k)P(x | µv0 = k). (2.14)

Let xv = {xi : i ∈ L(v)} denote the subsample of derived allele counts in the populations
descended from v. Similarly, let xcv = {xi : i /∈ L(v)}. Then for k ≥ 1,

P(x | µv0 = k) =

{
P(xv | µv0 = k), if xcv = 0,

0, if xcv 6= 0.
(2.15)

So it suffices to compute P(xv | µv0 = k) for all v and k. If v is the ith leaf population, then
P(xv | µv0 = k) = Ik=xi . On the other hand, if v is an interior vertex with children v1 and v2,
then

P(xv | µv0 = k) =

nv1∑
k1=0

(
nv1
k1

)(
nv2
k−k1

)(
nv
k

) P(xv1 | µv1τv1 = k1)P(xv2 | µv2τv2 = k − k1), (2.16)

where P(xvi | µviτvi ) can be computed from

P(xv | µvτv = k) =
nv∑
j=0

P(xv | µv0 = j)P(µv0 = j | µvτv = k). (2.17)

To compute the transition probability P(µv0 = j | µvτv = k), note that the transition rate

matrix of µvt can be written as Q(v)α(t), where Q(v) = (q
(v)
ij )0≤i,j≤nv is a (n + 1) × (n + 1)

matrix with

q
(v)
ij =


−i(nv − i), if i = j,
1
2
i(nv − i), if |j − i| = 1,

0, else,

so then the transition probability is given by the matrix exponential

P(µv0 = j | µvτv = k) = (eQ
(v)

∫ τv
0 αv(t)dt)k,j. (2.18)

Thus, the joint SFS ξx can be computed using (2.14) and (2.15), with P(xv | µv0 = k)
given by recursively computing (2.16), (2.17), and (2.18), in a depth-first search on the
population tree (i.e., Felsenstein’s tree-peeling algorithm, or the sum-product algorithm for
belief propagation).



CHAPTER 2. TRUNCATED AND MULTIPOPULATION SFS 19

Computational complexity of Moran approach

We now consider the computational complexity associated with (2.16) and (2.17) for each
vertex v. Letting `vt (k) = P(xv | µvt = k), (2.17) turns into

`vτv = e(Q
(v)

∫ τv
0 αv(t)dt)`v0, (2.19)

which can be efficiently computed using the method of Al-Mohy and Higham (2011). In
particular, letting A =

(
Q(v)

∫ τv
0
αv(t)dt

)
and integers m, s ≥ 1,

`vτv = eA`v0 =
(
es
−1A
)s
`v0 ≈

[m−1∑
i=0

1

i!
(s−1A)i

]s
`v0, (2.20)

with the approximation following from truncating the Taylor series of es
−1A. Setting

Bj =
[m−1∑
i=0

1

i!
(s−1A)i

]j
`v0 =

m−1∑
i=0

1

i!
(s−1A)iBj−1 =

m−1∑
i=0

1

i!
s−iA(Ai−1Bj−1),

we have that (2.20) is equal to Bs, and Bs is evaluated in T = ms matrix-vector multiplica-
tions, each of which costs O(nv) by the sparsity of A. Thus, computing (2.19) costs O(nvT ).
Both m, s (and thus T ) are automatically chosen to bound the error of (2.20).

We note a similar sparse matrix exponential was used by Bryant et al. (2012), but in
their context costs O(n2

vT ), since they use the coalescent instead of the Moran model.
Next, we consider (2.16). This sum has O(nv) terms, and must be solved for O(nv) values

of k, and thus costs O(n2
v) in total. We note this can be further improved to O(nv log(nv))

by using the FFT, as in Bryant et al. (2012). In particular, letting ˜̀v
t (k) =

(
nv
k

)
`vt (k), (2.16)

can be written as a convolution

˜̀v
0 = ˜̀v1

τv1
∗ ˜̀v2

τv2
, (2.21)

which can be computed in O(nv log(nv)) time via the fast Fourier transform (Cooley and
Tukey, 1965). However, taking the Fourier transform introduces cancellation errors, due to
multiplying and adding terms like e−ix, and we found that converting from ˜̀v

0 back to `v0 can
cause these errors to blow up, due to the combinatorial factors. We thus prefer to use the
naive O(n2

v) approach to compute the convolution.
The computational complexity associated with a single vertex v is thus O(n2

v + nvT ).
Therefore, computing the joint SFS entry ξx for L distinct values of x takes O((n2 +nT )V L)
time for a binary population tree with arbitrary population size functions and no migration.

2.4 Runtime and accuracy results

We implemented our formulas and algorithm in Python, using the Python packages numpy
and scipy. We also implemented the formulas from Chen (2012, 2013), and compared the
performance of the two algorithms on simulated data.
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We simulated datasets with n ∈ {2, 4, 8, . . . , 256} lineages and D ∈ {2, 4, 8, . . . , n} popu-
lations at present, each containing n

D lineages. For each value of n,D, we used the program
scrm (Staab et al., 2015) to generate 20 random datasets, each with a demographic history
that is a random binary tree.

In Figures 2.4 and 2.5, we compare the running time of the original algorithm of Chen
(2012, 2013) against our new algorithm that utilizes the formulas for f τn(k) presented in
Section 2.2 and our new Moran-based approach described in Section 2.3.2. We find our algo-
rithm to be orders of magnitude faster; the difference is especially pronounced as the number
n of lineages grows. Note that, due to the increased running time of Chen’s algorithm, we
did not finish running his method for n = 256 and D ≥ 32.

In Figure 2.6, we compare the accuracy of the two algorithms. The figure compares
the SFS entries returned by the two methods across a subset of the simulations depicted
in Figure 2.4. The line y = x is also plotted; points falling on the line depict the SFS
entries where both methods agreed. All negative return values represent numerical errors.
For n ≤ 64 the two methods generally agree, but for larger n Chen’s algorithm displays
considerable numerical instability, returning extremely large positive and negative numbers.
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Figure 2.4: Average computation time of the joint SFS. For each combination of the sample
size n and the number D of populations (with n

D samples per population), we generated
20 random datasets, each under a demographic history that is a random binary tree. The
expected joint SFS for the resulting segregating sites were then computed using our method
(momi) and that of Chen (2012). In the top row, we plot the average runtime per joint
SFS entry, and in the bottom row, the average amount of time needed to precompute the
truncated SFS for every subpopulation within each demographic history. Note the y-axis is
on a different scale for each row.
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Figure 2.5: This plot is similar to Figure 2.4, but with the axes on a log-log scale, so that
shorter runtimes are visible.
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Figure 2.6: Numerical stability of the two algorithms. The plot compares the numerical
values returned by our method (momi) and Chen’s method, for the simulations described in
Figure 2.4. The dashed red line represents the identity y = x. Note the axes were stretched
by the map z 7→ sign(z) log(1 + |z|) to adequately illustrate the observed range of numer-
ical values. The two methods agree for n ≤ 64, but Chen’s method displays considerable
numerical instability for larger n.
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2.5 Proofs

In this section, we provide proofs of the mathematical results presented in earlier sections.

2.5.1 A recursion for efficiently computing Pν(ACτ = m)

We describe how to compute Pν(ACτ = m), for all values of m ≤ ν ≤ n, in O(n2) time. First,
note that

Pν−1(ACτ = m)

= Pν(ACτ = m+ 1, {ν} ∈ Cτ ) + Pν(ACτ = m, {ν} /∈ Cτ )

=
(m+ 1)p1,1

ν,m+1(
ν
1

) Pν(ACτ = m+ 1) +

(
1−

mp1,1
ν,m(
ν
1

) )Pν(ACτ = m)

=
(m+ 1)(m)

ν(ν − 1)
Pν(ACτ = m+ 1) +

(
1− m(m− 1)

ν(ν − 1)

)
Pν(ACτ = m).

Rearranging, we get the recursion

Pν(ACτ = m) =
1

1− m(m−1)
ν(ν−1)

[
Pν−1(ACτ = m)− (m+ 1)(m)

ν(ν − 1)
Pν(ACτ = m+ 1)

]
(2.22)

with base cases

Pν(ACτ = ν) = e−(ν2)
∫ τ
0 α(t)dt.

So after solving
∫ τ

0
α(t)dt, we can use the recursion and memoization to solve for all of the

O(n2) terms Pν(ACτ = m) in O(n2) time. In particular, in the case of constant population
size, α(t) = α, the base case is given by

Pν(ACτ = ν) = e−(ν2)ατ ,

and in the case of an exponentially growing population size, α(t) = α(τ)eβ(τ−t), the base
case is given by

Pν(ACτ = ν) = e−(ν2)α(τ)(eβτ− 1
β

).

2.5.2 Proof of Lemma 1

Let TMRCA denote the time to the most recent common ancestor of the sample. We first
note that

f τn(n) = τ − En[TMRCA ∧ τ ],
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since the branch length subtending the whole sample is the time between τ and TMRCA.
Next, note that θ

2
En[TMRCA ∧ τ ] is equal to the number of polymorphic mutations in

[0, τ) where the individual “1” is derived. This is because, as we trace the ancestry of “1”
backwards in time, all mutations hitting the lineage below TMRCA are polymorphic, while
all mutations hitting above TMRCA are monomorphic.

The expected number of polymorphisms with “1” derived also equals θ
2

∑n−1
k=1

k
n
f τn(k),

since if a mutation has k derived leaves, the chance that “1” is in the derived set is k
n
. Thus,

En[TMRCA ∧ τ ] =
n−1∑
k=1

k

n
f τn(k),

which completes the proof.

2.5.3 Proof of Lemma 2

We first note that

Pn(X τ = {1, . . . , k})
= Pn+1(X τ = {1, . . . , k}) + Pn+1(X τ = {1, . . . , k, n+ 1}).

By exchangeability, we have Pn(X τ = K) = θ
2
fτn(|K|)
( n
|K|)

+ o(θ) for all K ⊆ {1, . . . , n}, so

1(
n
k

)f τn(k) =
1(
n+1
k

)f τn+1(k) +
1(
n+1
k+1

)f τn+1(k + 1).

Multiplying both sides by
(
n
k

)
gives

f τn(k) =
n− k + 1

n+ 1
f τn+1(k) +

k + 1

n+ 1
f τn+1(k + 1).

2.5.4 Proof of Lemma 3

Let α∗(t) denote the inverse population size history given by

α∗(t) =

{
α(t) if t < τ

∞ if t ≥ τ.

So the demographic history with population size 1
α∗(t)

agrees with the original history up to
time τ , at which point the population size drops to 0, and all lineages instantly coalesce into
a single lineage with probability 1.
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Let Tm,∗ denote the amount of time there are m ancestral lineages for the coalescent with
size history 1

α∗(t)
. Similarly, let ξ∗k denote the SFS under the size history 1

α∗(t)
. Then from

the result of Polanski and Kimmel (2003),

ξ∗k =
n∑

m=2

Wn,k,mEm[Tm,∗].

Note that for m > 1, we almost surely have Tm,∗ = T τm,∗, i.e. the intercoalescence time
equals its truncated version, since all lineages coalesce instantly at τ with probability 1.
Thus, Em[Tm,∗] = Em[T τm,∗]. Similarly, for k < n, ξ∗k = f ∗τn (k), i.e. the SFS equals the
truncated SFS, because the probability of a polymorphic mutation occurring in [τ,∞) is 0.

Finally, note that Em[T τm,∗] = Em[T τm] and f ∗τn (k) = f τn(k), because α(t) and α∗(t) are
identical on [0, τ).

2.5.5 Proof of Proposition 1

We start by showing that Pn(AKτ = m) = Pn(ACτ = m) + O(θ). Let Ti(K) =
∫ τ

0
IAKt =idt

denote the amount of time where K has i unkilled lineages. Let p denote the probability
density function. For (tn, . . . , tm) with

∑
ti = τ , we have

p(Tn(K) = tn, . . . , Tm(K) = tm)

= e−λ
K
m,m−1tm

n∏
i=m+1

λKi,i−1e
−λKi,i−1ti

= e−((m2 )α+mθ
2 )tm

n∏
i=m+1

((
i

2

)
α +

iθ

2

)
e−((i2)α+ iθ

2 )ti

= e−(m2 )αtm
n∏

i=m+1

(
i

2

)
αe−(i2)αti +O(θ)

= p(Tn = tn, . . . , Tm = tm) +O(θ),

and so

lim
θ→0

Pn(AKτ = m) = lim
θ→0

∫
∑
ti=τ

p(Tn(K) = tn, . . . , Tm(K) = tm)dt

=

∫
∑
ti=τ

p(Tn = tn, . . . , Tm = tm)dt

= Pn(ACτ = m).

where we can exchange the limit and the integral by the Bounded Convergence Theorem,
because p(Tn(K) = tn, . . . , Tm(K) = tm) ≤

∏n
i=m+1

((
i
2

)
α + i

2

)
for θ ≤ 1.
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Thus we have

Pn(|X τ | = k,AKτ = m) = Pn(|X τ | = k | AKτ = m)Pn(AKτ = m)

=

(
θ

2
f τn(k | AKτ = m) + o(θ)

)(
Pn(ACτ = m) +O(θ)

)
=

θ

2
f τn(k | AKτ = m)Pn(ACτ = m) + o(θ),

which proves the first part of the proposition.
We next solve for f τn(k | AKτ = m), the first order Taylor series coefficient for Pn(|X τ | =

k | AKτ = m) in the mutation rate θ
2
.

When there are i unkilled lineages, the probability that the next event is a killing event
is θ

α(i−1)+θ
= θ

α(i−1)
+o(θ). Given that the event is a killing, the chance that the killed lineage

has k leaf descendants is pk,1n,i . So summing over i, and dividing out the mutation rate θ
2
, we

get

f τn(k | AKτ = m) =
2

α

n−k+1∑
i=m+1

1

i− 1
pk,1n,i

=
2

α

n−k+1∑
i=m+1

1

i− 1

(
n−k−1
i−2

)(
n−1
i−1

)
=

2

α

n−k+1∑
i=m+1

1

i− 1

(n− k − 1)!(i− 1)!(n− i)!
(i− 2)!(n− k − i+ 1)!(n− 1)!

=
2(n− k − 1)!

α(n− 1)!

n−k+1∑
i=m+1

(n− i)!
(n− k − i+ 1)!

=
2(n− k − 1)!

α(n− 1)!

n−k−m∑
j=0

(j + k − 1)!

j!

=
2

αk
(
n−1
k

) n−k−m∑
j=0

(
j + k − 1

j

)

=
2

αk

(
n−m
k

)(
n−1
k

) ,
where we made the change of variables j = n − k − i + 1, and where the final line follows
from repeated application of the combinatorial identity

(
a
b

)
=
(
a−1
b

)
+
(
a−1
b−1

)
.

Alternative proof for f τn(k | AKτ = m) via the Chinese Restaurant Process

We sketch an alternative proof of the expression for f τn(k | AKτ = m), using the Chinese
Restaurant Process.
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Consider the coalescent with killing going forward in time (towards the present), and only
looking at it when the number of individuals increases. Then when there are i lineages, a new
mutation occurs with probability θ

αi+θ
= θ/α

i+θ/α
, and each lineage branches with probability

α
αi+θ

= 1
i+θ/α

. Thus, conditional on AKτ = m, the distribution on Kτ is given by a Chinese

Restaurant Process (Aldous, 1985), starting with m tables each with 1 person, and with new
tables founded with parameter θ/α.

Let (x)i↑ = x(x+ 1) · · · (x+ i−1) denote the rising factorial. If there is a single mutation
with k descendants, then there are

(
n−m
k

)
ways to pick which of the n − m events involve

mutant lineages. The probability of a particular such ordering is

θ

α

(1)k↑(m)n−k−m↑
(m+ θ/α)n−m↑

=
θ

α

(k − 1)!(n− k − 1)!/m!

(n− 1)!/m!
+ o(θ).

Summing over all
(
n−m
k

)
orderings, and dividing by θ

2
, yields

f τn(k | AKτ = m) =
2

α

(
n−m
k

)
(k − 1)!(n− k − 1)!/m!

(n− 1)!/m!
.



29

Chapter 3

A Moran model for the SFS with
admixture

In this chapter, we extend the multipopulation Moran model of Chapter 2 to include pulse
migrations between populations.

As before, we construct a graph G where each vertex v represents an historical subpopu-
lation. Due to admixture events, G is a DAG (directed acyclic graph). We embed a Moran
model within G, but due to admixture, it will be more convenient for us to use the lookdown
construction, a variant of the Moran model with a countably infinite number of lineages
(Donnelly and Kurtz, 1996; Donnelly et al., 1999). However, note that we will only keep
track of a finite number of lineages at a time, as we can implicitly integrate over the infinite
remaining lineages in the lookdown model.

In addition to the DAG G, we will also construct a tree T over the demographic events.
We call T an “event tree”. In Algorithm 1, we define a DP (dynamic program) over T , which
can be used to compute the SFS ξx (Theorem 1). In fact, T is essentially a junction tree of
G, and Algorithm 1 the junction tree algorithm from Bayesian graphical models (Lauritzen
and Spiegelhalter, 1988). However, our case is distinguished from the usual junction tree
algorithm, because the event tree T is rooted, and because we are not computing a likelihood
P(x), but instead the expected count ξx of mutations with x derived alleles.

In practice, we will also need the normalizing constant ‖ξ‖1 =
∑

x ξx, because the prob-
ability a mutation has configuration x is ξx

‖ξ‖1 . At first glance, computing ‖ξ‖1 requires

computing all O(nD) SFS entries ξx, but in Corollary 1 we show how Algorithm 1 can
compute ‖ξ‖1 in the same time as O(1) entries x. In fact, Algorithm 1 can compute a num-
ber of interesting quantities, including E[TMRCA], FST , and expectations of many summary
statistics of the SFS.

Finally, we will examine how well we can infer complicated demographic histories with
the SFS. We fit demographic histories by maximizing a composite likelihood, using gradient
descent and automatic differentiation. As an example, we consider a toy demography, loosely
based on human history, with 6 populations and 18 parameters, including pulse migrations
and exponential growth.
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We delay all proofs to Section 3.5.

3.1 Notation and background

µ8
0

µ4
0

µ1
0

µ5
0 µ6

0

µ2
0

µ3
0

µ7
0

(a) A demographic history with lookdown Moran model. µv0 is the number of derived
alleles (blue stars) at the bottom of population v. The observed configuration is x =
(µ1

0, µ
2
0, µ

3
0) = (1, 1, 0). The coalescent is in solid lines.

1

2 3

4

5 6 7

8

(b) The DAG G. Each vertex v corresponds
to a population, with a path from v to w iff
w has ancestry in v.

1

2
3

4,7

5,6

5,7

8

(c) The event tree T . Each internal v corre-
sponds to a join or split event, and is labeled
by a subset of contemporaneous populations.

Figure 3.1: Summary of important notation and data structures.

3.1.1 The Demographic DAG

As in the previous chapter, we represent the demographic history as a directed acyclic graph
G (Figure 3.1). The vertices of G are the populations of the demographic history. The leaf
vertices are the sampled populations, which we label as {1, . . . ,D}. For a population vertex
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v, 1
αv(t)

denotes the (scaled) population size at time t within v, with t = 0 the “bottom”

(most recent time) in v and t = τv the “top” (most ancient time).
We can view G as containing two kinds of events:

1. Split events: going backwards in time, a single population w splits into two parent
populations v1 and v2. A lineage in w passes through v1 with probability q1, and
through v2 with probability q2 = 1 − q1. G contains the directed edges v1 → w and
v2 → w.

2. Join events: going backwards in time, two populations w1 and w2 find a common
ancestor v. G contains the directed edges v → w1 and v → w2.

Other demographic events may be represented as split and join events. In particular, a
pulse migration is a population split immediately below a population join (for example, in
Figure 3.1, the pulse migration is represented as the split 2 → 5, 6 and the join 6, 3 → 7).
Likewise, k-ary join events, where w1, . . . , wk find a common parent v, can be viewed as a
sequence of k − 1 pairwise join events.

3.1.2 The event tree

We now define an “event tree” T on top of the DAG G, with each node v ∈ V (T ) a
demographic event identified with a set of populations, so that we write v = {v1, . . . , v|v|} ⊂
V (G). T is essentially a junction tree over G (Lauritzen and Spiegelhalter, 1988), except
that T is rooted, whereas junction trees are usually defined to be unrooted.

We illustrate an example of T in Figure 3.1. Note the junction tree of G is not generally
unique. We choose a particular tree by constructing T from bottom to top, processing the
events in the order of their time from the present:

1. (Leaf “event”) For each d ∈ {1, . . . ,D}, define the leaf “event” v := {d}.

2. (Split event) If v is a split event, where a child population w splits into parents v1, v2,
let w be the topmost event with w ∈ w. Then we set w as the sole child event of v,
and set v := w ∪ {v1, v2} \ {w}.

3. (Join event) If v is a join event, where child populations w1, w2 join into a parent
population v, then v may have 1 or 2 child events. In particular, let w1 be the
topmost event with w1 ∈ w1, and likewise for w2 (with w1 = w2 possibly). Then we
set w1,w2 as the children of v, and set v := w1 ∪w2 ∪ {v} \ {w1, w2}.

We denote the child events of v as CT (v). We denote the root of T by ρ = {ρ}, with ρ
the root ancestral population of G.



CHAPTER 3. A MORAN MODEL FOR THE SFS WITH ADMIXTURE 32

1 2 3 4 5

(a) The standard Moran model, with copying
in both directions.

1 2 3 4 5

(b) The lookdown Moran model, with copy-
ing in only one direction.

Figure 3.2: Standard and lookdown Moran models. The coalescent is in solid lines and
identical in both 3.2a and 3.2b. In fact, 3.2b is “coupled” to 3.2a, and was obtained by
swapping lineage positions above copying events going the “wrong” way.

3.1.3 Lookdown Moran model

Within G, we embed a lookdown construction (Donnelly and Kurtz, 1996; Donnelly et al.,
1999), a variant of the Moran model containing a countably infinite number of lineages, each
with a unique label in Z+. Going forward in time, alleles copy onto each other at rate αv(t)
per pair of lineages. However, copying only occurs in one direction, from lineages with lower
labels to lineages with higher labels. Contrast this with the standard Moran model, where
copying happens in both directions at rate αv(t)

2
. However, both versions of the Moran model

have sample genealogies distributed as the coalescent, and thus have equivalent sampling
probabilities (Figure 3.2).

We assign the (n1, . . . , nD) sampled lineages to the lowest labels {1, 2, . . . , ntot}, where
ntot ≡

∑
d nd, and assign the remaining unsampled lineages to labels {ntot + 1, ntot + 2, . . .}.

For population v ∈ V (G) and time t ∈ [0, τv] (with t = 0 the bottom and t = τv the top
of v), we denote the labeled alleles by Mv,t = (Mv,t,(1),Mv,t,(2), . . .) with Mv,t,(i) the ith
lowest label at v and its allele at time t. Note the labels at v may be random because of split
(admixture) events, where each labeled allele independently chooses its ancestral population.

Now let µv,mt =
∑m

i=1 I{Mv,t,(i) derived} denote the number of derived alleles among the first
m lineages at v, t. Let nv be the number of sampled alleles with potential ancestry in v. We
will only need to keep track of the first nv lineages in v, and thus set µvt = µv,nvt .

Intuitively, we only need to keep track of the first nv alleles because there are at most
nv labels ≤ ntot at v, and the data are conditionally independent of the higher labels due to
the lookdown property. Thus the lookdown model allows computational savings by keeping
track of only the nv lowest alleles at each v. For example, in Figure 3.1, notice how extra
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non-ancestral lineages appear due to the split event at vertex 2, but are then removed in the
join event at vertex 8.

For event v = (v1, . . . , vk) ∈ V (T ) and corresponding times t = (t1, . . . , tk), we define
Mv,t = (Mv1,t1 , . . . ,Mvk,tk) as the labeled alleles at v, t, and define µv

t = (µv1t1 , . . . , µ
vk
tk

) as
the derived allele counts at v, t.

3.1.4 SFS and likelihoods

Let x = (x1, . . . , xD) ∈ ZD+ be a configuration of counts in the leaf populations, and Bx the
total branch length in the sample genealogy with x descendants. The SFS ξx is defined by
ξx = E[Bx]. Equivalently, ξx is the expected number of mutations with derived allele counts
x, per unit mutation rate.

Our main result is a dynamic program that returns ξx, via computing an intermediate
“partial SFS” ξv

x , that we now define. For event v ∈ V (T ), let xv =
∑

d∈L(v) xded be the

subsample at L(v), the leaves of v (where ed is the unit vector with 1 at coordinate d). Now
cut the demography at τ v =

∑
v∈v τvev, the topmost times of v. Keeping the connected

component with v, let Bτv
xv

denote the branch length in this component with xv descendants
in the sample. Then we define

ξv
x = E[Bτv

xv
].

So ξv
x is the expected number of mutations, occurring below τ v, with sampled alleles xv, per

unit mutation rate. Our algorithm computes ξv
x for every event v ∈ V (T ), finally yielding

the desired SFS ξx = ξρx at the root.
To compute ξv

x , we will need to consider the likelihood that the allele counts at v give rise
to subsample xv at the leaves. We call this quantity a partial likelihood. More specifically,
for v ∈ V (T ) and times t =

∑
v∈v tvev, we define the partial likelihood as

`v,tµ,x = Pθ=0(xv | µv
t = µ)

the probability of xv given µv
t = µ and no additional mutation below t.

3.2 Theoretical Results

We now present a dynamic program (Algorithm 1) that can compute the SFS ξx (Theorem 1).
In fact, Algorithm 1 efficiently computes many linear statistics of the SFS (Corollary 1), such
as the total branch length

∑
x ξx and E[TMRCA].

3.2.1 Dynamic program for the SFS

In this subsection, we drop the dependence on x, so that

`v,tµ = `v,tµ,x

ξv = ξv
x .
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Algorithm 1 Dynamic program for SFS

1: procedure DP(`1, . . . , `D) . `d = [P(xd | µd0 = i)]0≤i≤nd ∈ Rnd+1

2: for events v in DepthFirstSearch(V (T )) do
3: if v = {d} is leaf then . `v,0 = [P(xv | µv

0 = µ)]µ∈∏v∈v{0,...,nv}

4: `v,0 ← `d

5: else if v is split event then
6: `v,0 ← (3.4), (3.3)
7: else if v is join event then
8: if |CT (v)| = 1 then . CT (v) the child events of v
9: `v,0 ← (3.5), (3.3)

10: else if |CT (v)| = 2 then
11: `v,0 ← (3.6), (3.3)
12: end if
13: end if . Computed the partial likelihood `v,0

14: ξv ← (3.1), (3.2) . ξv the partial SFS
15: end for
16: return ξρ . ρ the root event
17: end procedure

Algorithm 1 defines a dynamic program (DP) over `v,0µ , ξv, using equations (3.1), (3.2), (3.3),
(3.4), (3.5), (3.6) to be defined shortly. For appropriate inputs the DP computes the SFS:

Theorem 1. For polymorphic x = (x1, . . . , xD) 6= 0,n and leaf population d ∈ {1, . . . ,D},
let exd = (0, . . . , 1, . . . , 0) ∈ R(nd+1) have 1 at coordinate xd and 0 elsewhere. Then

ξx = DP(ex1 , . . . , exD).

We now present the formulas used by Algorithm 1, in a series of lemmas that also prove
Theorem 1. We start with a formula to compute ξv from `v,0µ and the partial SFS at the
child events CT (v).

Lemma 4. For v ∈ V (T ) and w =
⋃
CT (v) = {w ∈ V (G) | w ∈ w′,w′ ∈ CT (v)},

ξv = ξw +
∑
v∈v\w

nv∑
k=1

f vnv(k)`v,0kev
(3.1)

with f vnv(k) being the truncated SFS within population v (as given by (2.4) and (2.9), Chap-
ter 2), and with ξw given by

ξw =


∑

i 6=j ξ
wi
∏

d∈L(wj)
`
{d},0
0 , if CT (v) = {w1,w2},

ξw1 , if CT (v) = {w1},
0, if v is a leaf of T .

(3.2)
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Now we need formulas for computing the partial likelihood `v,0 at the bottom of v. These
will be given by (3.4), (3.5), (3.6), which will in turn depend on partial likelihoods `w,t at
child events w ∈ CT (v) and times t =

∑
w∈w\v τwew. The next formula allows us to obtain

`w,t from the previously computed likelihoods `w,0 at the bottom of w:

Lemma 5. Let v ∈ v ∈ V (T ), µ−v a configuration of alleles on v\{v}, and t−v a collection
of times on v \ {v}. Then for µ = kev + µ−v and t = τvev + t−v,

`v,tµ =
nv∑
j=0

[eQ
(nv)

∫ τv
0 αv(t)dt]kj`

v,t−v
jev+µ−v

(3.3)

where Q(n) ∈ R(n+1)×(n+1) is the transition matrix of the Moran model with n lineages and
constant α = 1; in particular, Q(n) = (q

(n)
ij )0≤i,j≤n and

q
(n)
ij =


−i(n− i), if i = j,
1
2
i(n− i), if |j − i| = 1,

0, else.

Finally, in the subsequent three lemmas, we present the formulas to compute `v,0 from
the partial likelihoods `w,t at the child events w ∈ CT (v).

Lemma 6. (Split event) Let v ∈ V (T ) be a split event, where a population w splits into
populations v1, v2 backwards in time, with each lineage of w moving into v1 with probability
q1, and into v2 with probability q2 = 1− q1.

Then v has a single child event w = v∪{w}\{v1, v2}. Let µ be a configuration of alleles
on v, and let µ1ev1 , µ2ev2 ,µ∩ be the subconfigurations on {v1}, {v2},v ∩w, respectively, so
µ = µ1ev1 + µ2ev2 + µ∩. Then

`v,0µ =
nw∑
µw=0

`w,τwew
µ∩+µwew

∑
m1,m2:

m1+m2=nw

(
nw
m1

)
qm1

1 qm2
2

∑
j1,j2:

j1+j2=µw

(
µ1
j1

)(
nv1−µ1
m1−j1

)(
nv1
m1

) (
µ2
j2

)(
nv2−µ2
m2−j2

)(
nv2
m2

) . (3.4)

Lemma 7. (Join event 1) Let v ∈ V (T ) be a join event with exactly 1 child event w. In
particular, v is formed when two populations w1, w2 ∈ w join into an ancestral population
v, so v = {v} ∪w \ {w1, w2}.

Let µ∩ be a fixed configuration of alleles on v ∩ w. Define yµ∩ ∈ Rnw1+nw2+1 and B ∈
R(nw1+nw2+1)×(nv+1) to be the 0-indexed arrays with entries

y
µ∩
i =

∑
j,k:

j+k=i

(
nw1
j

)(
nw2
k

)(
nw1+nw2

i

) `w,τw1ew1+τw2ew2
jew1+kew2+µ∩

,

Bi,j =

(
nv
j

)(
nw1+nw2−nv

i−j

)(
nw1+nw2

i

) .
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Then for µ = kev + µ∩, the partial likelihood is

`v,0µ = [B+yµ∩ ]k (3.5)

with B+ denoting the Moore-Penrose pseudoinverse of B.

Lemma 8. (Join event 2) Let v ∈ V (T ) be a join event with 2 distinct child events w1,w2.
In particular, v is formed when w1 ∈ w1 and w2 ∈ w2 join into an ancestral population v,
so v = {v} ∪w1 ∪w2 \ {w1, w2}.

Let µ be a configuration of alleles on v, and let µvev,µ−1,µ−2 be the subconfigurations
on {v},w1 \ {w1},w2 \ {w2}, respectively, so µ = µvev + µ−1 + µ−2. Then

`v,0µ =
∑
µ1,µ2:

µ1+µ2=µv

(
nw1
µ1

)(
nw2
µ2

)(
nv
µv

) `
w1,τw1ew1
µ1ew1+µ−1

`
w2,τw2ew2
µ2ew2+µ−2

. (3.6)

3.2.2 Normalizing constant and linear statistics

To compute the probability ξx
‖ξ‖1 of a mutation having configuration x, we need not just ξx,

but also the normalizing constant ‖ξ‖1 =
∑

x ξx the expected total branch length.

Computing ‖ξ‖1 directly is inefficient because of the O(
∏D

d=1 nd) possible entries x. In-
stead, we can use Algorithm 1 to compute ‖ξ‖1, and many more statistics of the SFS, in the
same time as O(1) entries x:

Corollary 1. For πd ∈ Rnd+1, d ∈ {1, . . . ,D}, the tensor dot product of the SFS ξ against
π1 ⊗ · · · ⊗ πD = [π1

x1
· · · πDxD ]x1,...,xD is

ξ � (π1 ⊗ · · · ⊗ πD) =
∑

x1,...,xD

ξx1,...,xDπ
1
x1
· · · πDxD

= DP(π1, . . . , πD)

−

(
D∏
d=1

πd0

)
DP(e0, . . . , e0)−

(
D∏
d=1

πdnd

)
DP(en1 , . . . , enD).

In particular, the total branch length ‖ξ‖1 is given by

‖ξ‖1 =
∑

x

ξx = ξ � (1⊗ · · · ⊗ 1)

= DP(1, . . . ,1)−DP(e0, . . . , e0)−DP(en1 , . . . , enD)

with 1 the vector with 1 at every coordinate.
Another interesting quantity that is efficiently computed by Corollary 1 is E[Tm

MRCA],
the time of most recent common ancestor for a subsample of size m = (m1, . . . ,mD). In
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particular, let d′ be any leaf population with md′ > 0, and for simplicity assume d′ is sampled
at the present (i.e. d′ is not archaic). Then letting (a)b↓ =

∏b−1
i=0(a− i),

E[Tm
MRCA] =

∑
x1,...,xD

ξx1,...,xD

(
xd′

nd′
−
D∏
d=1

(xd)md↓
(nd)md↓

)

= ξ �

(
1⊗ · · · ⊗

(
xd′

nd′

)
xd′∈{0,...,nd′}

⊗ · · · ⊗ 1

)

− ξ �

((
(x1)m1↓

(n1)m1↓

)
x1∈{0,...,n1}

⊗ · · · ⊗
(

(xD)mD↓
(nD)mD↓

)
xD∈{0,...,nD}

)
.

To see this, note that for a specific individual in d′, the mutations above the lineage but
below Tm

MRCA are exactly the mutations hitting the lineage (the first term) but not hitting
all of m (the second term).

In general, for rank-K tensor A ∈ R(n1+1)×···×(nD+1) with A =
∑K

k=1 a
(k)
1 ⊗ · · · ⊗ a

(k)
D ,

ξ � A =
∑

x

ξxAx =
K∑
k=1

ξ � (a
(k)
1 ⊗ · · · ⊗ a

(k)
D )

can be computed in O(K) calls of DP(π1, . . . , πD), by Corollary 1. We further note that
many statistics from population genetics contain terms like ξ �A, including FST (Holsinger
and Weir, 2009), the “abba-baba” D-statistic (Patterson et al., 2012), and many others (e.g.
Fay and Wu, 2000; Tajima, 1989), and there has been a longstanding interest in using linear
summary statistics of ξ to perform inference (Sainudiin et al., 2011; Durrett, 2008, Ch. 2).

3.3 Computational complexity

Computing ξx via Algorithm 1 involves keeping track of the partial likelihoods `v,0µ,x at each
event v. For a dataset with s unique values of x, the array of partial likelihoods for every
x,µ at v is `v,0 = (`v,0µ,x)µ,x a tensor with s

∏
v∈v(nv + 1) = O(s

∏
v∈v nv) = O(sn|v|) total

entries (where n =
∑D

d=1 nd). By contrast, the coalescent approach (Chen, 2012) requires
O(s

∏
v∈v n

2
v) = O(sn2|v|) likelihood entries per v since there are O(n2

v) states at each v (with
O(nv) states for the number of ancestors, and O(nv) states for the number of derived alle-
les). Another alternative, the diffusion approach as implemented in ∂a∂i (Gutenkunst et al.,
2009), numerically integrates the continuous population frequencies forward in time. In par-
ticular, if there are Dt populations at time t and the population frequency is discretized into
N pieces, then ∂a∂i has O(NDt) likelihood entries at t, with N � n typically. Furthermore,
note that Dt ≥ v for each v at t, since v is a subset of the populations at t.

We now consider the time cost of each operation in Algorithm 1. We start by consid-
ering the “universal constants” that depend only on nv, and not on the parameters of the
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demography. In particular, we compute the matrix exponential of (3.3) as eQ
(nv)

∫ τv
0 αv(t)dt =

UeΣ
∫ τv
0 αv(t)dtU−1 for eigenvalue decomposition Q(nv) = UΣU−1, and the pseudoinverse of

(3.5) as B+ = V Σ−1UT for SVD B = UΣV T . The eigenvalue decomposition and SVD each
cost O(n3

v) but are universal for all demographic parameters. Likewise, the innermost sum of
(3.4) is universal for all demographic parameters, but costs O(n5

w) to compute for all possible
values of µ1, µ2, µw,m1.

The middle sum of (3.4) is not a universal constant, since it depends on q1, q2, but for
a fixed demography can be precomputed for all values of µ1, µ2, µw, and then reused for
each SNP x; doing this costs O(n4

w). Similarly, the truncated SFS f vnv(k) in (3.1) can be
precomputed for each k, at a total cost of O(n2

v) (Chapter 2).
Ignoring these precomputation costs, the remaining operations cost O(s

∑
v∈V (T ) n

|v|+1),

since (3.3), (3.4), (3.5), (3.6) can be written to express `v,0µ,x as a sum of O(n) terms.

3.4 Application
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Figure 3.3: A demography loosely based on human history, with 6 leaf populations and
18 demographic parameters. Datasets were simulated with ms (Hudson, 2002), and the
parameters shown are in ms-scaled units. In particular, we simulated 10 datasets, with
nd = 2 for Neanderthal and Denisova, and nd = 10 for the remaining populations. Each
dataset consisted of 1000 independent loci with θ = 10, with on average 186505.9 SNPs, of
which 1516.3 were unique.

Let ξ̂x denote the observed SFS counts and θ
2

the mutation rate, so that E[ξ̂x] = θ
2
ξx. A

typical approach to demographic inference is to maximize the composite likelihood from the
Poisson random field approximation,

exp

(
−θ

2
‖ξ‖1

) ( θ
2
‖ξ‖1

)‖ξ̂‖1
‖ξ̂‖1!

∏
x

(
ξx
‖ξ‖1

)ξ̂x
. (3.7)
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Figure 3.4: For each of the 10 random datasets simulated from Figure 3.3, we chose random
initial parameters and searched for a local maximum of the composite likelihood (3.7) with a
single run of a conjugate gradient method. The inferred parameters (red boxplots) are very
accurate. The average running time of the parameter search (start to finish) was 13.3 hours
per dataset.

As an example, we consider a toy demograpy shown in Figure 3.3, with 6 sampled pop-
ulations and 18 parameters, including admixture events and exponential growth. We simu-
lated 10 random datasets, each with about 186000 SNPs, and used automatic differentiation
(Griewank and Corliss, 1991; Bhaskar et al., 2015) with a conjugate gradient method to
find a local maximum of the composite likelihood (3.7). The results were highly accurate
(Figure 3.4), with each dataset taking an average of 13 hours to complete.

3.5 Proofs

The following two lemmas will be useful for several of the proofs below:

Lemma 9. For v ∈ V (T ), the alleles of Mv,t within v ∈ v are exchangeable. That is,
the distribution of Mv,t is invariant to finite permutations of the labels within each v ∈ v.
Furthermore, the labels are independent of the alleles.

Proof. By construction, none of the lineages at v, t are ancestral to each other, i.e. the
labels of Mv,t are unique. Thus the sample genealogy of any finite subsample of Mv,t is
the coalescent, because going backwards in time, coalescence (copying) between each pair
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of lineages occurs at rate αw(s) at vertex w time s. The exchangeability of alleles, and
independence of alleles and labels, follows from the coalescent.

Lemma 10. Fix event v ∈ V (T ) and corresponding times t = {tv : v ∈ v}. For u ∈ v, let
I ⊂ {nu + 1, nu + 2, . . .} a (possibly random) collection of indices above nu, and let µu,Itu the
number of derived alleles in {Mu,tu,(i)}i∈I.

Then there is conditional independence xv ⊥ µu,Itu | µv
t .

Proof. Integrate over Mv,t,nv = {Mv,tv ,(i)}v∈v,1≤i≤nv the lowest {nv}v∈v labeled alleles and
Mu,tu,I = {Mu,tu,(i)}i∈I the labeled alleles at I:

P(xv | µv
t , µ

u,I
tu ) = E[P(xv | Mv,t,nv ,Mu,tu,I) | µv

t , µ
u,I
tu ]

= E[P(xv | Mv,t,nv) | µv
t , µ

u,I
tu ]

= E[P(xv | Mv,t,nv) | µv
t ]

= P(xv | µv
t )

with the second equality because higher lineages cannot copy to lower lineages (so xv ⊥
Mu,tu,I | Mv,t,nv), and the third equality because of the exchangeability and independence
from Lemma 9 (so given µv

t , the alleles of Mv,t,nv are ordered by a uniform permutation

independent of µu,Itu , and the labels of Mv,t,nv are independent of µv
t , µ

u,I
tu ).

3.5.1 Proof of Theorem 1

First note that for d ∈ {1, . . . ,D},

`{d},0 = [P(µd0 = xd | µd0 = i)]0≤i≤nd = exd .

Then by Lemmas 4,5,6,7,8 and the definition of Algorithm 1, DP(ex1 , . . . , exD) = ξρ = ξx.

3.5.2 Proof of Lemma 4

ξv is the expected number of mutations arising below τ v with sampled alleles xv, per unit
mutation rate. ξv can be decomposed into 2 parts: the expected number ξw arising below
w, τw, and the expected number arising within v \w. That is,

ξv = ξw +
∑
v∈v\w

nv∑
k=1

f vnv(k)`v,0kev

which proves the first part. For the second part, ξw is trivial for |CT (v)| < 2; otherwise, if
CT (v) = {w1,w2},

ξw =


ξw1 , if xw2 = 0,

ξw2 , if xw1 = 0,

0, else,
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and so

ξw =
∑
i 6=j

ξwiIxwj=0 =
∑
i 6=j

ξwi

∏
d∈L(wj)

Ixd=0 =
∑
i 6=j

ξwi

∏
d∈L(wj)

`
{d},0
0

when |CT (v)| = 2.

3.5.3 Proof of Lemma 5

Define a “quasi-lookdown” Moran model M∗, which is identical to M, except within the
nv lowest lineages of v, where we allow copying in both directions at rate αv(t)

2
(as in the

non-lookdown Moran model).
Let µ�v,t = {µw,s}(w,s)�(v,t) the partial sample path of the allele counts below v, t, where

(w, s) � (v, t) if either v is an ancestor of w, or v = w and s ≤ t component-wise. It will
suffice to show PM(µ�v,t) = PM∗(µ�v,t), because then for t = τvev + t−v,

`v,tkev+µ−v
=

nv∑
j=0

PM(µv
t−v = jev + µ−v | µv

t = kev + µ−v)`
v,t−v
jev+µ−v

=
nv∑
j=0

PM∗(µv
t−v = jev + µ−v | µv

t = kev + µ−v)`
v,t−v
jev+µ−v

=
nv∑
j=0

[
eM

(nv)
∫ τv
0 αv(t)dt

]
kj
`
v,t−v
jev+µ−v

as desired.
PM(µ�v,t) = PM∗(µ�v,t) follows from a coupling argument. LetM�v,t = {Mw,s}(w,s)�(v,t)

the partial sample path below v, t. We can map the partial sample paths of M∗
�v,t onto

those ofM�v,t as follows: moving from the bottom to the top of v, whenever a lower label is
copied over by a higher label, swap the labels of the lineages above the copying. Then the re-
labeled sample path has the same distribution as the lookdown construction, since the allele
with the higher label is always copied over, and the rate of copying between pairs of lineages
is αv(t). Since this relabeling also leaves µvt unchanged, we have PM(µ�v,t) = PM∗(µ�v,t).

3.5.4 Proof of Lemma 6

First note that xv = xw and

`v,0µ =
nw∑
µw=0

P(xw | µv
0 = µ,µwτwew = µ∩ + µwew)

×
∑
m1,m2:

m1+m2=nw

(
nw
m1

)
qm1

1 qm2
2

∑
j1,j2:

j1+j2=µw

(
µ1
j1

)(
nv1−µ1
m1−j1

)(
nv1
m1

) (
µ2
j2

)(
nv2−µ2
m2−j2

)(
nv2
m2

)
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by sampling nw alleles in w from nv1 , nv2 alleles in v1, v2, which are exchangeable by Lemma 9.
Next, consider the remaining nv1+nv2−nw alleles of v1, v2, and let I ⊂ {nw+1, nw+2, . . .}

be their indices in w. Then because µw,Iτw = µv10 + µv20 − µwτw almost surely and Lemma 10,

P(xw | µv
0,µ

w
τwew) = P(xw | µw,Iτw ,µ

w
τwew) = P(xw | µw

τwew)

and so P(xw | µv
0 = µ,µwτwew = µ∩ + µwew) = `w,τwew

µ∩+µwew .

3.5.5 Proof of Lemma 7

First note that

y
µ∩
i =

∑
j,k:

j+k=i

(
nw1
j

)(
nw2
k

)(
nw1+nw2

i

) `w,τw1ew1+τw2ew2
jew1+kew2+µ∩

=
∑
j,k:

j+k=i

P(µw
τw1ew1+τw2ew2

= jew1 + kew2 + µ∩ | µw1
τw1

+ µw2
τw2

= i,µv∩w
0 = µ∩)

× `w,τw1ew1+τw2ew2
jew1+kew2+µ∩

= P(xv | µw1
τw1

+ µw2
τw2

= i,µv∩w
0 = µ∩)

with the second equality following from exchangeability (Lemma 9) and the third equality
from xv = xw.

Next note that

P(xv | µw1
τw1

+ µw2
τw2

= i,µv∩w
0 = µ∩)

=
nv∑
j=0

P(µv
0 = jev + µ∩ | µw1

τw1
+ µw2

τw2
= i,µv∩w

0 = µ∩)

× P(xv | µv
0 = jev + µ∩, µ

w1
τw1

+ µw2
τw2

= i)

=
nv∑
j=0

(
nv
j

)(
nw1+nw2−nv

i−j

)(
nw1+nw2

i

) P(xv | µv
0 = jev + µ∩, µ

w1
τw1

+ µw2
τw2

= i)

with the second equality again due to exchangeability (Lemma 9).
Define I ⊂ {nv + 1, nv + 2, . . .} so that {1, . . . , nv} ∪ I are the indices in v of the first

nw1 , nw2 alleles in w1, w2. Then because µv,I0 = µw1
τw1

+µw2
τw2
−µv0 almost surely and Lemma 10,

P(xv | µv
0, µ

w1
τw1

+ µw2
τw2

) = P(xv, | µv
0, µ

v,I
0 ) = P(xv | µv

0)

and thus

y
µ∩
i =

nv∑
j=0

(
nv
j

)(
nw1+nw2−nv

i−j

)(
nw1+nw2

i

) `v,0jev+µ∩
=

nv∑
j=0

Bij`
v,0
jev+µ∩

so that for `′ = [`v,0jev+µ∩
]0≤j≤nv ∈ Rnv+1, we have yµ∩ = B`′ and therefore `′ = B+yµ∩ .
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3.5.6 Proof of Lemma 8

Notice that

`v,0µ−1+µ−2+µvev

=
∑
µ1,µ2:

µ1+µ2=µv

P(µw1
τw1ew1

= µ−1 + µ1ew1 ,µ
w2
τw2ew2

= µ−2 + µ2ew1 | µv
0 = µ−1 + µ−2 + µvev)

× `w1,τw1ew1
µ1ew1+µ−1

`
w2,τw2ew2
µ2ew2+µ−2

=
∑
µ1,µ2:

µ1+µ2=µv

(
nw1
µ1

)(
nw2
µ2

)(
nv
µv

) `
w1,τw1ew1
µ1ew1+µ−1

`
w2,τw2ew2
µ2ew2+µ−2

with the first equality from the Markov property of the Moran process, and the second
equality following from the exchangeability of the nv alleles at vertex v (Lemma 9).

3.5.7 Proof of Corollary 1

Below, we will prove DP(`1, . . . , `D) is a multilinear function of `1, . . . , `D. The result imme-
diately follows from this, because then

ξ � (π1 ⊗ · · · ⊗ πD) =
∑

x 6=0,n

ξxπ
1
x1
· · · πDxD

=
∑

x 6=0,n

DP(π1
x1

ex1 , . . . , π
D
xD

exD)

=DP(

n1∑
x1=0

π1
x1

ex1 , . . . ,

nD∑
xD=0

πDxDexD)

−DP(π1
0e0, . . . , π

D
0 e0)−DP(π1

n1
en1 , . . . , π

D
nD

enD)

=DP(π1, . . . , πD)−DP(π1
0e0, . . . , π

D
0 e0)−DP(π1

n1
en1 , . . . , π

D
nD

enD).

We now show DP(`1, . . . , `D) is a multilinear function of `1, . . . , `D. In particular, we note
that if event v has leaf populations L(v) = (d1, . . . , d|L(v)|), then `v,t and ξv are multilinear
functions of `d1 , . . . , `d|L(v)| . This is trivially true for a leaf v, t = {d},0, and otherwise is
true by induction, upon noting that (3.1), (3.2) (3.3), (3.4), (3.5), (3.6), express `v,t and ξv

as sums of multilinear functions of `d1 , . . . , `d|L(v)| . Therefore, the DP is multilinear because
it returns ξρ a multilinear function of `1, . . . , `D.
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Chapter 4

Two Linked Loci with Changing
Population Size

The coalescent with recombination (Griffiths and Marjoram, 1997) provides a basic popu-
lation genetic model for recombination. For a very small number of loci and a constant
population size, the likelihood (or sampling probability) can be computed via a recursion
(Golding, 1984; Ethier and Griffiths, 1990) or importance sampling (Fearnhead and Don-
nelly, 2001), allowing for maximum-likelihood and Bayesian estimates of recombination rates
(Fearnhead and Donnelly, 2001; Hudson, 2001; McVean et al., 2002; Fearnhead et al., 2004;
Fearnhead and Smith, 2005; Fearnhead, 2006).

Jenkins and Song (2009, 2010) recently introduced a new framework based on asymptotic
series (in inverse powers of the recombination rate ρ) to approximate the two-locus sampling
probability under a constant population size, and developed an algorithm for finding the
expansion to an arbitrary order (Jenkins and Song, 2012). They also proved that only a
finite number of terms in the expansion is needed to obtain the exact two-locus sampling
probability as an analytic function of ρ. Bhaskar and Song (2012) partially extended this
approach to an arbitrary number of loci and found closed-form formulas for the first two
terms in an asymptotic expansion of the multi-locus sampling distribution.

When there are more than a handful of loci, computing the exact sampling probability
becomes intractable. A popular and tractable alternative has been to construct composite
likelihoods by multiplying the two-locus likelihoods for pairs of SNPs; this pairwise composite
likelihood has been used to estimate fine-scale recombination rates in humans (The Inter-
national HapMap Consortium, 2007; 1000 Genomes Project Consortium, 2010), Drosophila
(Chan et al., 2012), chimpanzees (Auton et al., 2012), microbes (Johnson and Slatkin, 2009),
dogs (Auton et al., 2013), and more, and was used in the discovery of a DNA motif associ-
ated with recombination hotspots in some organisms, including humans (Myers et al., 2008),
subsequently identified as a binding site of the protein PRDM9 (Myers et al., 2010; Baudat
et al., 2010; Berg et al., 2010).

The pairwise composite likelihood was first suggested by Hudson (2001) for an infinite-
sites model. The software package LDhat (McVean et al., 2004; Auton and McVean, 2007)
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implemented the pairwise composite likelihood for a finite-sites model, and embedded it
within a Bayesian MCMC algorithm for inference. Chan et al. (2012) modified this algo-
rithm in their program LDhelmet to efficiently utilize aforementioned asymptotic formulas
for the sampling probability, among other improvements. The program LDhot (Myers et al.,
2005; Auton et al., 2014) uses the composite likelihood as a test statistic to detect recom-
bination hotspots, in conjunction with coalescent simulation to determine appropriate null
distributions.

Because of mathematical and computational challenges, LDhat, LDhelmet, and LDhot
all assume a constant population size model to compute the two-locus sampling probabil-
ities. This is an unrealistic assumption, and it would be desirable to account for known
demographic events, such as bottlenecks or population growth. Furthermore, Johnston and
Cutler (2012) observed that a sharp bottleneck, followed by rapid growth, can lead LDhat
to infer many spurious recombination hotspots, possibly due to the incorrect assumption of
a constant population size history.

In this chapter, we show how to compute the two-locus sampling probability under vari-
able population size histories that are piecewise constant. We develop two distinct methods
for this task. Both approaches rely heavily on the Moran model.

The first approach is an exact formula, introduced in Theorem 2, that involves expo-
nentiating sparse m-by-m matrices containing O(m) nonzero entries, where m = O(n6),
with n being the sample size. We derive this formula by constructing a modification of the
standard two-locus Moran process (which we call an “augmented Moran model”), in which
sample paths can be coupled with the two-locus coalescent, and by applying a reversibility
argument.

The second approach is a highly efficient importance sampler, based on an optimal pro-
posal distribution that we characterize in Theorem 3. Here, we directly use the standard
two-locus Moran model to approximate certain terms in the optimal proposal distribution.
Theorem 3 generalizes previous results for the constant size case, which have been used to
construct importance samplers for both the single-population, two-locus case (Fearnhead
and Donnelly, 2001) and for other time-homogeneous coalescent scenarios (Stephens and
Donnelly, 2000; De Iorio and Griffiths, 2004; Griffiths et al., 2008; Koskela et al., 2015). The
key ideas of Theorem 3 should similarly generalize to other contexts of importance sampling
a time-inhomogeneous coalescent.

The importance sampler has the disadvantage of being a Monte Carlo method. How-
ever, it has advantages in certain contexts. It is easily parallelizable, and techniques such
as bridge sampling (Meng and Wong, 1996; Fearnhead and Donnelly, 2001) could yield fur-
ther computational savings. The importance sampler yields a posterior sample of two-locus
ARGs, which may be used to obtain interesting genealogical information. In addition, the
importance sampler does not require the user to compute the sampling probability of every
possible two-locus dataset, in contrast to Theorem 2. This is useful if the user only needs to
consider a subset of potential datasets.

We examine the runtime and accuracy of our two approaches. We empirically show our
importance sampler to be extremely efficient, with an average effective sample size of almost
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98%. We then apply the exact algorithm to study the effect of a sharp population bottleneck
(followed by a rapid population expansion) on linkage disequilibrium, and note that the
expected r2, a statistic commonly used to detect linkage disequilibrium, has less power
under this demographic scenario. We also study to what extent using the correct two-locus
sampling probabilities in the composite likelihood, as opposed to assuming an unrealistic
constant population size history, improves the estimation of fine-scale recombination rates.

4.1 Background

Here we describe our notational convention, and review some key concepts regarding the
coalescent with recombination and the two-locus Moran model.

Note that the notation in this chapter differs substantially from the previous two chapters,
which dealt purely with the one-locus case, but included multiple populations. By contrast,
here we consider the sampling probabilities at two loci, but in just a single population.

4.1.1 Notation

Let θ
2

denote the mutation rate per locus per unit time, P = (Pij)i,j∈A the transition
probabilities between alleles given a mutation, and A the set of alleles. Let ρ

2
denote

the recombination rate per unit time. We consider a single panmictic population, with
piecewise-constant effective population sizes. In particular, we assume D pieces, with end-
points −∞ = t−D < t−D+1 < · · · < t−1 < t0 = 0, where 0 corresponds to the present and
t < 0 corresponds to a time in the past. The piece (td, td+1] is assumed to have scaled popu-
lation size 1

αd
. Going backwards in time, two lineages coalesce (find a common ancestor) at

rate αd within the interval (td, td−1].
We allow the haplotypes to have missing (unobserved) alleles at each locus, and use

∗ to denote such alleles. We denote each haplotype as having type a, b, or c, where a
haplotypes are only observed at the left locus, b haplotypes are only observed at the right
locus, and c haplotypes are observed at both loci. We use n = {nij, ni∗, n∗j}i,j∈A to denote
the configuration of an unordered collection of two-locus haplotypes, with nij corresponding
to the number of haplotypes with allele i at the first locus and allele j at the second locus,
and so on.

Suppose n has n(abc) = (n(a), n(b), n(c)) haplotypes of type a, b, c respectively. We define
the sampling probability Pt(n) to be the probability of sampling n at time t, given that we
observed n(a), n(b), n(c) haplotypes of type a, b, c, under the coalescent with recombination
(next subsection).

4.1.2 The ARG and the coalescent with recombination

The Ancestral Recombination Graph (ARG) is the multi-locus genealogy relating a sample
(Figure 4.1). The coalescent with recombination (Griffiths, 1991) gives the limiting distri-
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0

-1

-2

Figure 4.1: An ARG at two loci with n = 3. Coalescence is when two lineages find a common
parent. Recombination is when a lineage inherits from two parents. Mutations are shown as
stars.
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Table 4.1: Backward in time transition rates of n
(abc)
t = (n

(a)
t , n

(b)
t , n

(c)
t ) within time interval

(td, td+1] under the coalescent with recombination.

bution of the ARG under a wide class of population models, including the Wright-Fisher
model and the Moran model.

Let n
(c)
t be the number of lineages at time t that are ancestral to the observed present-

day sample at both loci. Similarly, let n
(a)
t and n

(b)
t be the number of lineages that are

ancestral at only the a or b locus, respectively. Under the coalescent with recombination,
n

(abc)
t = (n

(a)
t , n

(b)
t , n

(c)
t ) is a backwards in time Markov chain, where each c type lineage splits

(recombines) into one a and one b lineage at rate ρ
2
, and each pair of lineages coalesces at

rate αd within the time interval (td, td+1]. Table 4.1 gives the transition rates of n
(abc)
t .

After sampling the history of coalescence and recombination events {n(abc)
t }t≤0, we drop

mutations down at rate θ
2

per locus, with alleles mutating according to P, and the alleles of
the common ancestor assumed to be at the stationary distribution. This gives us a sample
path {nt}t≤0, where n0 is the observed sample at the present, and nt is the collection of
ancestral haplotypes at time t. Under this notation, the sampling probability at time t is
defined as

Pt(n) := P(nt = n | n(abc)
t = n(abc)). (4.1)
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Figure 4.2: Moran model at locus a (red dashes) and locus b (blue dashes), with mutations
(stars). The embedded ARG is shown in thin solid lines. Note the ARG has a simultaneous
recombination and coalescence, which has probability 0 under the coalescent.

4.1.3 Two-locus Moran model

We review the Moran model with recombination, as described by Ethier and Kurtz (1993);
Donnelly and Kurtz (1999). This process is directly used in the proposal distribution of our
importance sampler.

The Moran model with N lineages is a finite population model evolving forward in time.
In particular, let Mt denote a collection of N two-locus haplotypes at time t (with no missing
alleles). Then Mt is a Markov chain going forwards in time that changes due to mutation,
recombination, and copying events.

Let Λd
(N) denote the transition matrix of Mt within (td, td+1]. We describe the rates of

Λd
(N). For the mutation events, each allele mutates at rate θ

2
according to transition matrix

P. For the copying events, each lineage of Mt copies its haplotype onto each other lineage
at rate αd

2
within the time interval (td, td+1]. Finally, for recombination, each lineage of Mt

experiences a recombination event at rate ρ
2
, at which point it copies the left allele from

a uniformly chosen lineage of Mt, and independently copies the right allele from another
uniformly chosen lineage of Mt. See Figure 4.2 for illustration.

M−∞ is sampled by drawing from the stationary distribution λ−D(N) of Λ−D(N). The proba-
bility of Mt is then given by

[P(N)(Mt = M)]M = λ−D(N)

−1∏
d=−D+1

eΛd
(N)

[min(t,td+1)−min(t,td)], (4.2)

where [P(N)(Mt = M)]M and λ−D(N) are row vectors here. Let P(n |M) denote the probability
of sampling n by drawing haplotypes without replacement from M. Then the likelihood of
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observing n at time t under the Moran model is

P(N)
t (n) =

∑
M

P(N)(Mt = M)P(n |M). (4.3)

As N → ∞, P(N)
t (n) → Pt(n), i.e. the Moran likelihood converges to the likelihood of

the coalescent with recombination (Donnelly and Kurtz, 1999). However, for N < ∞, we

generally have P(N)
t (n) 6= Pt(n). This is because the embedded ARG within the two-locus

Moran model can have simultaneous recombination and coalescent events (Figure 4.2), which
has probability 0 under the coalescent. This contrasts with the 1-locus case: in the 1-locus
Moran model, the embedded genealogy has the exact same distribution as the coalescent,
for all N .

4.2 Theoretical Results

In this section, we describe our main theoretical results. All proofs are deferred to Section 4.5.

4.2.1 Augmented two-locus Moran model

To obtain our main theoretical result on sampling probability (see Theorem 2), we introduce
an “augmented two-locus Moran model”, denoted M̃∗

t . At a single locus, this process is
exactly the same as the usual Moran model Mt. However, at 2 loci, M̃∗

t has an embedded
ARG whose distribution agrees with the two-locus coalescent.

We define M̃∗
t in detail in Section 4.5.1. Briefly, the biggest difference between the

“original” and “augmented” Moran models is that all lineages in Mt are fully-specified c-
types, while M̃∗

t allows partially specified a- and b-types. To generate M̃∗
t , we start by going

backwards in time, dropping recombination events (c-types splitting into a- and b-types)
and “cross-coalescence” events (coalescence of (a, b)-pairs into c-types). After generating
these recombinations and cross-coalescences, we go forwards in time, dropping mutation and
copying events to obtain the sample n at the present. We illustrate this process in Figure 4.3.

Working with M̃∗
t directly is inconvenient, due to some events happening forwards-in-

time, and others happening backwards-in-time. We thus use a different Moran-like process
M̃t that is entirely forwards-in-time, with rates Λ̃d given in Section 4.2.2. While M̃t does
not have the same sampling probabilities as the coalescent, we use a reversibility argument
to relate its distribution to M̃∗

t , to derive Theorem 2.

4.2.2 A formula for the sampling probability

Let N = {n : n(abc) = (k, k, n−k), 0 ≤ k ≤ n} denote the collection of sample configurations
with n specified alleles at each locus. We refer to n as the size of n. For each interval
(td, td+1], let Λ̃d be a square matrix indexed byN , with entries given in Table 4.2. Let Γd be a
tridiagonal square matrix indexed by {0, 1, . . . , n}, with Γdm,m−1 = ρ

2
m, Γdm,m+1 = (n−m)2αd,
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(a) (b)

Figure 4.3: Augmented two-locus Moran model. (a) First, backwards in time, add recombi-
nations (c-type→ a-type and b-type) and “cross-coalescences” (a-type and b-type→ c-type).
(b) Next, forward in time, add copying and mutation events. The embedded ARG is shown
in thin solid lines.

m Λ̃d
n,m

n− ei∗ + ej∗ αdni∗(
1
2
nj∗ +

∑
k∈A njk) + θ

2
Pijni∗

n− e∗i + e∗j αdn∗i(
1
2
n∗j +

∑
k∈A nkj) + θ

2
Pijn∗i

n− eij + ekl
αd
2
nijnkl + θ

2
(δikPjl + δjlPik)nij

n− eij + ei∗ + e∗j
ρ
2
nij

n− ei∗ − e∗j + eij ni∗n∗jαd

n −αd
(
n(a)+n(b)+n(c)

2

)
− ρ

2
n(c) − θ

2

∑
i∈A
∑

j∈A∪{∗}(nij + nji)

Table 4.2: Nonzero entries of the rate matrix Λ̃d for the interval (td, td+1].

and Γdm,m = −Γdm,m−1 − Γdm,m+1. Then we have the following result, a proof of which is
provided in Section 4.5.1:

Theorem 2. Let (γd0 , . . . , γ
d
n) be the stationary distribution of Γd, and let the row vector

γ̃d be indexed by N , with γ̃dn = γdm if n has m lineages of type c. Denote the stationary
distribution of Λ̃d by the row vector λ̃d = (λdn)n∈N . Let � and ÷ denote component-wise
multiplication and division, and recursively define the row vector pd = (pdn)n∈N by

p−D+1 = λ̃−D ÷ γ̃−D

pd+1 =
[
(pd � γ̃d)eΛ̃d(td+1−td)

]
÷ γ̃d. (4.4)

Then, for n ∈ N , we have P0(n) = p0
n.

Note that Theorem 2 gives P0(n) for n ∈ N . This includes all fully specified n, i.e.
with n(abc) = (0, 0, n), and suffices for the application considered in Section 4.4.2. If neces-
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sary, P0(n) for partially specified n can be computed by summing over the fully specified
configurations and sampling without replacement.

For |A| = 2, Λ̃d is an O(n6) × O(n6) matrix, so naively computing the matrix multipli-
cation in Theorem 2 would cost O(n12) time. However, Λ̃d is sparse, with O(n6) nonzero
entries, allowing more efficient algorithms to compute Theorem 2 to numerical precision in
O(n6T ), where T is some finite number of matrix-vector multiplications. In Section 4.3.2,
we discuss the computational complexity in more detail, and also discuss how to numerically
compute the matrix exponential.

4.2.3 Importance sampling

We now describe an alternative method for computing P0(n) via importance sampling on
the sample paths n≤0 = {nt}t≤0.

Let the proposal distribution Q(n≤0) be a probability distribution on {n≤0 : n0 = n}
whose support contains that of P(n≤0 | n0 = n). Then we have

P0(n) =

∫
n≤0:n0=n

dP(n≤0)

dQ(n≤0)
dQ(n≤0),

and so, if n
(1)
≤0, . . . ,n

(K)
≤0 ∼ Q i.i.d., the sum

1

K

K∑
k=1

dP(n
(k)
≤0)

dQ(n
(k)
≤0)

(4.5)

converges almost surely to P0(n) as K → ∞ by the Law of Large Numbers. Hence, (4.5)
provides a Monte Carlo approximation to P0(n). The optimal proposal is the posterior
distribution Qopt(n≤0) = P(n≤0 | n0), for then (4.5) is exactly

1

K

K∑
k=1

dP(n
(k)
≤0)

dP(n
(k)
≤0 | n0)

=
1

K

K∑
k=1

dP(n
(k)
≤0)

dP(n
(k)
≤0)/P(n0)

= P(n0),

even for K = 1.
The following theorem, which we prove in Section 4.5.2, characterizes the optimal poste-

rior distribution Qopt(n≤0) = P(n≤0 | n0) for variable population size:

Theorem 3. The process {nt}t≤0 is a backward-in-time Markov chain with inhomogeneous
rates, whose rate matrix at time t is given by

q(t)
n,m =

{
φ

(t)
n,m

Pt(m)
Pt(n)

, if m 6= n,

φ
(t)
n,n − d

dt
logPt(n), if m = n,

where φ(t) = (φ
(t)
n,m) is a square matrix, indexed by configurations n, with entries given by

Table 4.3 and equal to

φ(t)
n,m =

d

ds

[
P(n

(abc)
t−s = m(abc) | n(abc)

t = n(abc))P(nt = n | nt−s = m, n
(abc)
t = n(abc))

]∣∣∣
s=0

.(4.6)
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m φ
(t)
n,m

n− ei∗ + ej∗
θ
2
Pji(nj∗ + 1)

n− e∗i + e∗j
θ
2
Pji(n∗j + 1)

n− eij + ekl
θ
2
(δikPlj + δjlPki)(nkl + 1)

n− eij + ei∗ + e∗j
ρ
2
n(c)(ni∗ + 1)(n∗j + 1)

n− eij αd
(
n(c)

2

)
(nij − 1)

n− ei∗ αd
[(
n(a)

2

)
(ni∗ − 1) + n(a)n(c)

∑
j nij

]
n− e∗i αd

[(
n(b)

2

)
(n∗i − 1) + n(b)n(c)

∑
j nji

]
n −αd

(
n
2

)
− ρ

2
n(c) − θ

2

∑
i(1− Pii)[ni∗ + n∗i +

∑
j(nij + nji)]

Table 4.3: Nonzero entries of the φ(t) matrix of Theorem 3, for t ∈ (td, td+1].

Theorem 3 generalizes previous results for the optimal proposal distribution in the con-
stant size case (Stephens and Donnelly, 2000; Fearnhead and Donnelly, 2001). In that case,

the conditional probability of the parent m of n is φn,m
P(m)
P(n)

. Note the constant size case is
time-homogeneous, so the dependence on t is dropped, and the waiting times between events
in the ARG are not sampled (i.e., only the embedded jump chain of n≤0 is sampled).

We construct our proposal distribution Q̂(n≤0) by approximating the optimal proposal
distribution Qopt(n≤0) = P(n≤0 | n0). We start by choosing a grid of points −∞ < τ1 <

τ2 < · · · < τJ = 0, then set Q̂ to be a backwards in time Markov chain, whose rates at
t ∈ (τj, τj+1) are the linear interpolation

q̂(t)
n,m =

τj+1 − t
τj+1 − τj

q̂(τj)
n,m +

t− τj
τj+1 − τj

q̂(τj+1)
n,m , (4.7)

with the rates at the grid points given by

q̂(τj)
n,m =

φ
(τj)
n,m

P̂τj (m)

P̂τj (n)
, if m 6= n,

−
∑

ν 6=n q̂
(τj)
n,ν , if m = n,

with P̂τj(n) an approximation to the likelihood Pτj(n). In particular, we set P̂τj(n) =

P(N)
τj (n), the likelihood for the standard (not augmented) two-locus Moran process, defined

in Section 4.1.3.
To sample from Q̂, we note that for configuration n at time t, the time S < t of the

next event has CDF P(S < s) = exp(
∫ t
S
q̂

(u)
n,ndu) for s < t. Thus, S can be sampled by

first sampling X ∼ Uniform(0, 1), and then solving for log(X) =
∫ t
S
q̂

(u)
n,ndu via the quadratic

formula (since q̂
(u)
n,n is piecewise linear; see (4.7)). Having sampled S, we can then sample the

next configuration m with probability −q̂(S)
n,m/q̂

(S)
n,n.

As detailed in Section 4.3.3, Q̂ is a highly efficient proposal distribution, yielding an
average effective sample size (ESS) of almost 98% per sample for the demography and ρ
values we considered.
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4.3 Runtime, Accuracy, and Efficiency Results

We now discuss the computational complexity and empirical runtime of our methods. In
doing so, we also develop some insight into the computational details of our algorithms. We
start by discussing how to efficiently multiply a vector against the exponential of a sparse
matrix. This technique is needed for both Theorem 2 and the importance sampler. We then
analyze the runtime of Theorem 2, and the runtime and effective sample size (ESS) of the
importance sampler.

4.3.1 Computing the action of a sparse matrix exponential

Both Theorem 2 and the importance sampler rely on “the action of the matrix exponential”
(Al-Mohy and Higham, 2011). Let A be a k × k matrix and v a 1× k row vector. We need
to compute expressions of the form veA. Naively, this kind of vector-matrix multiplication
costs O(k2). However, in our case A will be sparse, with k nonzero entries, allowing us to
more efficiently compute veA.

In particular, we use the algorithm of Al-Mohy and Higham (2011), as implemented in
the Python package scipy. For s ∈ Z+, define Tm(s−1A) =

∑m
i=0 (s−1A)i/i!, the truncated

Taylor series approximation of es
−1A. Then, we have

veA = v
(
es
−1A
)s
≈ v[Tm(s−1A)]s.

Now let bj = v[Tm(s−1A)]j, so Bj is a 1× k row vector. Then

bj = bj−1Tm(s−1A) =
m∑
i=0

bj−1
(s−1A)i

i!
,

with veA ≈ bs, and bs evaluated in T = ms vector-matrix multiplications, each costing
O(k) by the sparsity of A. Approximating veA thus costs O(T k) time. Both m, s are
chosen automatically to bound

‖∆A‖1

‖A‖1

≤ tolerance ≈ 1.1× 10−16,

with ∆A defined by [Tm(s−1A)]s = eA+∆A. To avoid numerical instability, m is also bounded
by m ≤ mmax = 55.

We note that bj ≈ ves
−1jA, and thus this algorithm approximates vetA along a grid of

points t ∈ {s−1, 2s−1, . . . , 1}. If vetA is needed for additional t ∈ J ⊂ (0, 1], then extra grid
points can be added, to compute {vetA}t∈J in T +m|J | vector-matrix multiplications.

4.3.2 Runtime of the exact algorithm in Theorem 2

We consider the time complexity of computing P0(n) via Theorem 2. Note that the formula
(4.4) simultaneously computes P0(n) for all configurations n ∈ N .
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(a) (b)

Part β̂
Total 5.9

Construct rates Λ̃d 5.6

Initial stationary λ̃−D 8.1

Actions (pd � γ̃d)eΛ̃d(td+1−td) 5.8

(c)

Figure 4.4: Runtime of Theorem 2 for θ = 0.008, ρ = 1.0, and the demography described
in (4.8). Includes total time, as well as times of subroutines, to construct the rate matrices

Λ̃d, to compute the initial stationary λ̃−D, and to compute the actions (pd� γ̃d)eΛ̃d(td+1−td).
Results were computed on a single core of a desktop computer (Mac Pro, c. early 2008)
containing 16 GB of RAM. (a) Runtime for n = 2, . . . , 25. For these n, constructing Λ̃d

dominates the runtime, and thus the total runtime looks like O(n6). (b) Same plot in log-log
scale. A linear slope β in log-log scale corresponds to a polynomial degree β in original scale
(log t = β log n + δ ⇔ t = Cnβ). (c) Fit slope β̂ to the last 10 points n = 16, . . . , 25 of

Figure 4.4b, via simple linear regression. Runtime is thus approximately Cnβ̂.
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For our analysis, we let A = {0, 1}, as is assumed by LDhat and the applications in
Section 4.4. We start by considering the dimensions of the vectors pd and matrices Λ̃d

for intervals (td, td+1]. The set of a, b, c haplotypes is H = {00, 01, 10, 11, 0∗, 1∗, ∗0, ∗1}, so
|H| = 8. Thus, there are O(n6) possible configurations n with n(a) = n(b) = n − n(c).
In particular, there are O(n6) ways to specify n00, n01, n10, n11, n0∗, n∗0, and then n1∗ =
n−

∑
i,j∈{0,1} nij − n0∗ and n∗1 = n−

∑
i,j∈{0,1} nij − n∗0 are determined. Thus, pd is a row

vector of dimension 1× O(n6), and Λ̃d is a square matrix of dimension O(n6)× O(n6), but
Λ̃d is sparse, with only O(n6) nonzero entries.

By using the algorithm of Section 4.3.1, we can compute pd+1 =
[
(pd� γ̃d)eΛ̃d(td+1−td)

]
÷

γ̃d from pd in O(Tdn6) time, where Td is the number of vector-matrix multiplications to

compute the action of eΛ̃d(td+1−td). We note that the stationary distribution (γd0 , . . . , γ
d
n) can

be computed in n+ 1 steps: Γd is the rate matrix of a simple random walk with n+ 1 states,

so γdi+1 = γdi
[Γd]i,i+1

[Γd]i+1,i
and

∑
i γ

d
i = 1.

Similarly, the initial value p−D+1 = λ̃−D÷γ̃−D can be computed via sparse vector-matrix
multiplications, using the technique of power iteration. For µ = 1

maxij [Λ̃−D]ij
and arbitrary

positive vector v(0) with ‖v(0)‖1 = 1, we have v(i) := v(0)(µΛ̃−D + I)i → λ̃−D as i → ∞.
In particular, we set the number of iterations, T−D, so that

∥∥log v(T−D) ÷ log v(T−D−1)
∥∥

1
<

1× 10−8, where log v(i) is the element-wise log of v(i).
To summarize, computing P0(n) for all O(n6) configurations n ∈ N of size n costs

O(n6TmaxD), with Tmax = max{T−D, . . . , T−1}. We caution that Tmax depends on n, {td}, {Λ̃d}.
Figure 4.4 shows the empirical runtime of Theorem 2 as a function of n. We used an

example demography withD = 3 epochs, consisting of a sharp population bottleneck followed
by a rapid expansion. Specifically, the population size history 1

α(t)
, in coalescent-scaled units,

is given by

1

α(t)
=


100, −0.5 < t ≤ 0,

0.1, −0.58 < t ≤ −0.5,

1, t ≤ −0.58.

(4.8)

We used θ = 0.008, ρ = 1.0, and n = 2, . . . , 25. For this range of n values, the runtime
appears to be ∼ n6. However, the most expensive part of the computation was simply
constructing the rate matrices {Λ̃d}, which we did with unoptimized Python code. By
contrast, we used external modules numpy and scipy to compute all matrix operations, and
these are heavily optimized.

Figure 4.4 was produced on a desktop computer (Mac Pro, c. early 2008) with 16 GB of
RAM, and we did not exceed any memory limitations for the values of n we tried (n ≤ 25).
The memory cost of Theorem 2 is O(n6), since Λ̃d has O(n6) nonzero entries. In Section 4.4.2,
we compute a lookup table for the same demography, with sample size n = 20 and 200 values
of ρ. This took approximately 9 hours on a server using 20 cores, or about 1.1 hours per ρ
on a single core.
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4.3.3 Performance of importance sampler

Here we study the performance of our importance sampling scheme. We start by examin-
ing the computational complexity per importance sample. We then examine the empirical
runtime and effective sample size for the example demography described in (4.8).

To construct our proposal distribution Q̂, we must first precompute the Moran likelihoods
P(N)(Mt) using (4.2) along a grid of points t ∈ {τ1, τ2, . . . , τJ}. Again assuming a model with

|A| = 2 as in LDhat, Mt can take on O(N3) possible states. The transition rate matrix Λ
(N)
d

thus has dimensions O(N3)×O(N3), but is sparse with O(N3) nonzero entries, and thus we
can efficiently compute the action of its exponential, as discussed in Section 4.3.1, resulting
in a cost of O(N3(T D + J)), with T being the number of vector-matrix multiplications
needed per epoch.

We compute P(N)
t (n) by subsampling from P(N)(Mt) as in (4.3), and thus set N = 2n,

since 2n is the maximum number of individuals in n (because each of the original n lineages
can recombine into two lineages). However, it is inefficient to use (4.3) directly to compute
an approximation P̂t(n) for every value of n. Instead, it is better to use the recursive formula
P̂t(n) =

∑
m P̂t(m)P(n |m), where the sum is over all configurations m obtained by adding

an additional sample to n.
This costs O(n8J) time and space, since there are J grid points and O(n8) possible

configurations of n. Then, assuming a reasonably efficient proposal, the expected cost to
draw K importance samples is O(nJK), since the expected number of coalescence, mutation,
and recombination events before reaching the marginal common ancestor at each locus is
O(n) (Griffiths, 1991). This approach thus takes O(n3T D + n8J + n4JK) expected time
to compute P0(n) for all O(n3) possible n. In practice, we only precomputed P̂t(n) for the
O(n4) fully specified n (without missing alleles), but computed and cached P̂t(n) as needed
for partially specified n (with missing alleles). The theoretical running time to compute the
full lookup table is still O(n3T D+n8J+n4JK), but in practice, many values of n are highly
unlikely and never encountered at each τj.

We examined the runtime of our importance sampler by computing P0(n) for the same
demographic history considered in the previous section, with θ = 0.008 and ρ = 1.0, for all
fully specified n with n = 20, drawing K = 200 genealogies per n. Using a single processor
on a server, computing P(N)

t (Mt) took 5.4 minutes with J = 43, while the additional pre-
computation took about 121.6 seconds. Sampling genealogies then took about 0.18 seconds
per genealogy (Figure 4.5a).

The number K of importance samples required to reach a desired level of accuracy is
typically measured with the effective sample size (ESS):

ESS =

(∑K
i=1wi

)2

∑K
i=1w

2
i

,

where wi denotes the importance weight of the ith sample. Note that ESS ≤ K always, with
equality only achieved if the wi have 0 variance.
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(a) (b)

(c)

Figure 4.5: Accuracy and runtime of importance sampling, on the demography described in
(4.8) with θ = 0.008 and ρ = 1.0, drawing 200 genealogies for each of the 275 fully-specified
configurations n with n = 20. Results were run on a server using a single core and about
60 GB of RAM. (a) Runtime for each n. The average time to sample 200 genealogies was
36.3 seconds, or 0.18 seconds per genealogy. (b) The ESS for each n. The average ESS was
195.2 after 200 draws. (c) Relative error of log P̂(n), for each n. The signed relative error is
Est−Truth

Truth
, with Truth computed via Theorem 2. The largest error ≈ 0.003 after 200 draws.
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The previous two-locus importance sampler of Fearnhead and Donnelly (2001), which
assumes a constant population size, achieves ESS anywhere between 0.05K and 0.5K, de-
pending on n, θ, ρ (result not shown). This importance sampler is based on a similar result as

Theorem 3, with optimal rates φn,m
P(m)
P(n)

. However, to approximate P(m)
P(n)

, previous approaches

did not use a Moran model, but followed the approach of Stephens and Donnelly (2000),
using an approximate “conditional sampling distribution” (CSD). We initially tried using
the CSD of Fearnhead and Donnelly (2001) and later generalizations to variable demography
(Sheehan et al., 2013; Steinrücken et al., 2015), but found that importance sampling failed
under population bottleneck scenarios, with the ESS repeatedly crashing to lower and lower
values. Previous attempts to perform importance sampling under variable demography (Ye
et al., 2013) have also encountered low ESS, though in the context of an infinite sites model
without recombination.

By contrast, our importance sampler, with Pt(m)
Pt(n)

approximated via a Moran model, is

extremely accurate: for the scenario in Figure 4.5, the average effective sample size (ESS)
was about 0.976K (Figure 4.5b), and is very close to the true likelihood computed from
Theorem 2 (Figure 4.5c), with the maximum relative error of log P̂(n) less than 0.3% after
K = 200 samples.

4.4 Application

Previous simulation studies (McVean et al., 2002; Chan et al., 2012) have shown that if the
demographic model is misspecified, composite-likelihood methods (which so far have assumed
a constant population size) can produce recombination rate estimates that are biased. Many
populations, including that of humans and D. melanogaster, have undergone bottlenecks
in the recent past (Gutenkunst et al., 2009; Choudhary and Singh, 1987), and it has been
argued (Johnston and Cutler, 2012) that such bottlenecks can severely affect recombination
rate estimation, and can cause the appearance of spurious recombination hotspots. In this
section, we examine to what extent correctly accounting for demography in the two-locus
likelihoods improves fine-scale recombination rate estimation.

We first examine how a population bottleneck followed by rapid growth affects the corre-
lation between partially linked sites. We then study how using the correct two-locus sampling
probabilities affects recombination rate estimation under such a demographic model.

Throughout this section, we consider the example population size history 1
α(t)

described in

(4.8). Under this model and n = 2, the expected time of common ancestor is E[TMRCA] ≈ 1.
We thus compare this demography against a constant size demography with coalescent-
scaled size of 1

α
≡ 1, as this is the population size that would be estimated using the pairwise

heterozygosity (Tajima, 1983).
In our example, we use a coalescent-scaled mutation rate of θ = 0.008 per base, which is

roughly the mutation rate of D. melanogaster (Chan et al., 2012). We use a mutation model
with two alleles, labeled “0” and “1”, which mutate to each other with the same rate θ.
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Figure 4.6: E[r2] for the bottleneck and constant demographies, as a function of ρ. Under
the bottleneck, even nearby sites are quite uncorrelated.

4.4.1 Linkage disequilibrium and two-locus likelihoods

Let xij =
nij
n

be the fraction of haplotype ij in the sample, and let x
(a)
i =

∑
j xij and

x
(b)
j =

∑
i xij. A commonly used measure of linkage disequilibrium is

E[r2] = E

( x11 − x(a)
1 x

(b)
1

x
(a)
0 x

(a)
1 x

(b)
0 x

(b)
1

)2
 ,

which corresponds to the expected square-correlation of a random allele at locus a with
a random allele at locus b. The measure r2 approximately follows a χ2

1-distribution and
can be used to test the statistical significance of linkage disequilibrium (Weir, 1996, p. 113).
Figure 4.6 compares E[r2] between the bottleneck model in (4.8) and the constant population
size model. Under the bottleneck, E[r2] is much lower for small ρ and decays more rapidly
as ρ → ∞. This implies that E[r2] has less power to detect linkage under the bottleneck
demography.

In Figure 4.7, we examine some specific P(n; ρ) as a function of ρ. We note that for
some configuration n, the likelihood curves can have qualitatively different shapes under
the bottleneck and constant demographies. To summarize the overall difference between the
sampling distribution for the constant population size model and that for the bottleneck
model, we show in Figure 4.8 the total variation (TV) distance between the two probability
distributions conditioned on having both sites segregating. TV is bounded from above by 1,
and so the sampling distributions are substantially different for all values of ρ.
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Figure 4.7: P(n; ρ) as a function of ρ, under the constant (red dotted) and bottleneck (black
dashed) demographies, for some specific n. Plots are labeled by (n00, n01, n10, n11). For
some n, logP(n; ρ) has a qualitatively different shape under the constant and bottleneck
demographies.

4.4.2 Fine-scale recombination rate estimation

For a sample of n haplotypes observed at L SNPs, let n[a, b] be the two-locus sample observed
at SNPs a, b ∈ {1, . . . , L}, and let ρ[a, b] be the recombination rate between SNPs a and b.
Let W denote some window size, so that we only compute sampling probabilities at sites
that are close enough, with |b− a| < W .

The programs LDhat (McVean et al., 2002, 2004; Auton and McVean, 2007), LDhot
(Myers et al., 2005; Auton et al., 2014), and LDhelmet (Chan et al., 2012) use the composite
likelihood

L̂(ρ) =
∏

a,b:b−a<W and a<b

P(n[a, b]; ρ[a, b]), (4.9)

to estimate the fine-scale recombination map ρ and to infer recombination hotspots. How-
ever, they assume a constant population size history to compute P(n; ρ). Using simula-
tions, Johnston and Cutler (2012) found that LDhat produces many spurious recombination
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Figure 4.8: Total variation (TV) distance between the sampling distribution of the constant
population size model and that of the bottleneck model conditioned on having both sites
segregating, as a function of ρ. The inset shows the computed values of TV in more detail
for smaller values of ρ.

hotspots when the true demographic history has an extreme bottleneck followed by rapid
growth.

One problem with (4.9) is that L̂(ρ) is sharply peaked compared to the true likelihood,
and thus prone to overfitting, as illustrated by the spurious hotspots found by Johnston
and Cutler (2012). The problem of overfitting remains regardless of whether the correct size
history 1

α(t)
is used. In order to get less noisy estimates of ρ, we modified LDhelmet to flatten

the composite likelihood, replacing (4.9) with

L̂(ρ) =

[ ∏
a,b:b−a<W and a<b

P(n[a, b];ρ[a, b])

] 1
W−1

, (4.10)

as done in Auton and McVean (2007). This corrects for the fact that each locus is contained
in W − 1 two-locus likelihoods. We found that using (4.10) in LDhelmet obviated the need
for tuning the block penalty parameter in the program.

Using LDhelmet modified with (4.10), we investigated whether using the two-locus likeli-
hood lookup table under the true demographic model improves the accuracy of the estimated
map ρ̂. We divided the recombination map for the X chromosome of Drosophila melanogaster
from Raleigh, NC inferred by Chan et al. (2012) into 22 non-overlapping 1Mb regions. For
each of these regions we simulated 5 datasets with 20 individuals using MaCS (Chen et al.,
2009). On each of these 110 datasets, we ran our modified version of LDhelmet using both
the true bottleneck model and the misspecified constant demographic model. In Figure 4.9,
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Figure 4.9: Posterior median ρ̂ inferred by LDhelmet, for a 1 Mb region simulated with
MaCS (Chen et al., 2009) under the bottleneck demography described in (4.8) and using
the recombination map (green) inferred by Chan et al. (2012) for a 1 Mb interior region
of D. melanogaster X chromosome. The map ρ̂bottleneck (black dashed) is the inferred re-
combination map when the two-locus likelihood lookup table is computed assuming the
true demographic model, while ρ̂constant (red dotted) is the map obtained when incorrectly
assuming a constant population size history.

we compare the estimated map, ρ̂, obtained using the correct lookup table and that obtained
using the lookup table of a misspecified model (constant population size). Table 4.4 and Fig-
ure 4.10 show the L2 error, and the correlation of the true map, ρ, and an estimated map,
ρ̂, at different scales. While the performance of LDhelmet varied significantly depending on
the underlying true recombination map, accounting for demography nearly always improved
the per-base L2 error, and improved the correlation at the fine scale and broader scales be-
tween the inferred and true maps in more than 70% of simulations. For some simulations,
the improvements in L2 error or correlation were dramatic. The improvement of all these
statistics was significant according to a Wilcoxon signed-rank test (p < 1× 10−6).
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||ρ̂−ρ||22
L

Ĉor1bp(ρ, ρ̂) Ĉor1kb(ρ, ρ̂) Ĉor10kb(ρ, ρ̂) Ĉor30kb(ρ, ρ̂)
ρ̂constant 0.000908 0.389 0.416 0.534 0.622
ρ̂bottleneck 0.000686 0.441 0.472 0.597 0.679
p-value 2.2× 10−16 3.32× 10−12 2.37× 10−12 1.56× 10−10 5.75× 10−7

Table 4.4: Accuracy of estimated recombination map ρ̂, when assuming a constant popu-
lation size and when accounting for the bottleneck. We simulated 110 datasets using 1Mb
regions of the inferred recombination map of the X chromosome of Drosophila melanogaster

computed by Chan et al. (2012).
||ρ−ρ̂||22

L
is the per-base L2 error. We also show the correla-

tion of ρ and ρ̂ at different scales, as in Wegmann et al. (2011). All statistics were computed

using only the middle 500Kb of each region to ameliorate edge effects. That is, ĈorB(ρ, ρ̂) is
the correlation of the true and estimated recombination rates over a physical distance of B
bases, evaluated at the positions 250 Kb, 250 Kb +B, 250 Kb + 2B, . . . , 750 Kb. The statis-
tics were computed for each dataset and then averaged over all 110 datasets. The p-values
are for the null hypothesis that accounting for the bottleneck does not improve accuracy,
under a Wilcoxon signed-rank test. The results are shown visually in Figure 4.10.

4.5 Proofs

For a stochastic process {Xt}t≤0, we denote its partial sample paths with the following
notation: Xs:t = {Xu : u ∈ (s, t]} and X≤s = X−∞:s.

4.5.1 Proof of Theorem 2

Define C∗t to be the number of c type lineages at time t, governed by the backward-in-time
Markov chain with rate matrix Γd in the time interval (td, td+1]. For s < t, the partial sample
path M̃∗

s:t of the augmented Moran process is generated by dropping down mutation and
copying events (as described below) onto the sample path C∗s:t of coalescence and recombina-
tion events, and then evolving M̃∗

s forward in time (Figure 4.3). We illustrate the conditional
independence structure of M̃∗

t and C∗t via a directed graphical model (Koller and Friedman,
2009) in Figure 4.11. Mutation and copying events in M̃∗

s:t occur as follows:

• Mutations hit each individual at rate θ
2

per locus. Alleles mutate according to transition
matrix P.

• The rate of copying events depends on the lineage type. Each pair of a types experiences
a copying event at rate αd, with the direction of copying chosen with probability 1

2
.

The rates are the same for every pair of b and every pair of c types. Each pair of a and
c types, as well as each pair of b and c types, also experience copying at rate αd, but the
direction of copying is always from the c type to the a or b type, and only happens at
one allele (left for a, right for b). No pair of a and b types experiences copying events.
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Figure 4.10: Visual comparison of the statistics in Table 4.4, over each of the 110 simulations.

For n with n(a) = n(b) = n− n(c), the sampling probability Pt(n) defined in (4.1) for the
coalescent with recombination satisfies

Pt(n) = P(M̃∗
t = n | C∗t = n(c)). (4.11)

To see why this is true, we trace the ancestry of M̃∗
t backwards in time (Figure 4.3b). When

tracing past a Moran copying event, where a lineage x copies onto a lineage y, the ancestry
of x and y coalesce: x becomes ancestral to all the haplotypes that traced their ancestry
through y, and the Moran lineage y ceases to be ancestral to the sample. This backwards
tracing induces an ARG on the lineages of M̃∗

t . (4.11) then follows from observing that the
coalescent with recombination gives the distribution of the induced ARG: moving backwards
in time, coalescence/copying events are encountered at rate αd per pair, and recombination
events at rate ρ

2
per lineage. Furthermore, the allele of the MRCA follows the stationary

distribution of P, and alleles mutate at rate θ
2

with transition matrix P.

Now, define Ct to be the foward-in-time Markov chain with rate matrix Γd in (td, td+1]
(whereas C∗t has the same rates but going backward-in-time). Let M̃t be the forward-in-time
Markov chain with conditional law

P(M̃≤0 | C≤0 = C) = P(M̃∗
≤0 | C∗≤0 = C). (4.12)
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Figure 4.11: Probabilistic graphical model for the processes C∗t and M̃∗
t , with −∞ < s <

t ≤ 0.

Then, M̃t has rate matrix Λ̃d in (td, td+1]. The value of M̃t at time t is a sample configuration
that changes due to the mutation and copying events described above, and the following two
additional events:

• Each c type individual experiences recombination at rate ρ
2
, at which point it splits into

an a and b type. Note this is similar to the coalescent with recombination, however here
recombination happens forward in time, while in the coalescent with recombination it
happens at rate ρ

2
going backwards in time.

• Each pair of a and b types coalesce into a single c type at rate αd. Again, this is
similar to the coalescent with recombination, but here the event happens forward in
time rather than backwards in time.

Using (4.11) and (4.12), we next observe

Ptd+1
(n) = P(M̃∗

td+1
= n | C∗td+1

= n(c))

=
∑
m

P(M̃∗
td

= m | C∗td = m(c))P(C∗td = m(c) | C∗td+1
= n(c))

× P(M̃∗
td+1

= n | C∗td+1
= n(c), C∗td = m(c), M̃∗

td
= m)

=
∑
m

Ptd(m)P(C∗td = m(c) | C∗td+1
= n(c))

× P(M̃td+1
= n | Ctd+1

= n(c), Ctd = m(c), M̃td = m). (4.13)

Note that in the second equality, we used the conditional independence of M̃∗
td

and C∗td+1

given C∗td , which follows from the graphical model of Figure 4.11 by setting s = td and
t = td+1.

Next, note that Γd is the transition matrix of a simple random walk with bounded state
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space and no absorbing states, and thus is reversible. Thus,

γdn(c)P(C∗td = m(c) | C∗td+1
= n(c)) = γdn(c)

(
eΓd(td+1−td)

)
n(c),m(c)

= γdm(c)

(
eΓd(td+1−td)

)
m(c),n(c)

= γdm(c)P(Ctd+1
= n(c) | Ctd = m(c)). (4.14)

Plugging (4.14) into (4.13) yields

Ptd+1
(n) =

∑
m

Ptd(m)
γ̃dm
γ̃dn

P(Ctd+1
= n(c) | Ctd = m(c))

× P(M̃td+1
= n | Ctd+1

= n(c), Ctd = m(c), M̃td = m)

=
∑
m

Ptd(m)
γ̃dm
γ̃dn

P(Ctd+1
= n(c), M̃td+1

= n | Ctd = m(c), M̃td = m)

=
∑
m

Ptd(m)
γ̃dm
γ̃dn

(
eΛ̃d(td+1−td)

)
m,n

.

which proves half of the desired result, i.e., pd+1 =
(

(pd � γ̃d)eΛ̃d(td+1−td)
)
÷ γ̃d, where

pd = [Ptd(n)]′n. To show the other half, that p−D+1 = λ̃−D ÷ γ̃−D, we simply note that for
all t ≤ t−D+1,

Pt(n)γ̃−Dn = P(M̃∗
t = n | C∗t = n(c))γ−D

n(c)

= P(M̃t = n | Ct = n(c))γ−D
n(c)

= P(M̃t = n)

= λ̃−Dn ,

where the second equality follows by reversibility of Γ−D, which implies P(C≤t | Ct) =
P(C∗≤t | C∗t ), and thus P(M̃≤t | Ct) = P(M̃∗

≤t | C∗t ).

4.5.2 Proof of Theorem 3

We first check that P(ns1 | ns2 ,ns3) = P(ns1 | ns2), for −∞ < s1 < s2 < s3 ≤ 0, and so nt is
a backwards in time Markov chain.

Recall that we generate n
(abc)
t as a backwards in time Markov chain, then generate nt

by dropping down mutations forward in time. The conditional independence structure of
ns1 ,ns2 ,ns3 is thus described by the directed graphical model (Koller and Friedman, 2009)
in Figure 4.12.

Doing moralization and variable elimination (Koller and Friedman, 2009) on Figure 4.12
results in the undirected graphical model in Figure 4.13. The graphical model of Figure 4.13
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Figure 4.12: Probabilistic graphical model for the coalescent with recombination and muta-
tion, with −∞ < s1 < s2 < s3 ≤ 0.

ns1 ns2

n
(abc)
s2

ns3

Figure 4.13: Undirected graphical model, after moralization and variable elimination on
Figure 4.12: we add edges to form cliques on the left and right sides of n

(abc)
s2 ,ns2 , and then

eliminate all the variables except the ones pictured here.

then implies

P(ns1 | ns2 ,ns3) =
∑
n
(abc)
s2

P(ns1 | ns2 , n(abc)
s2

)P(n(abc)
s2
| ns2 ,ns3)

= P(ns1 | ns2),

where the second equality follows because n
(abc)
s2 is a deterministic function of ns2 . Thus, nt

is a backwards in time Markov chain.
We next compute the backwards in time rates q

(t)
n,m for the Markov chain nt at time t.
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Starting from the definition of q
(t)
n,m,

q(t)
n,m =

d

ds
P(nt−s = m | nt = n)

∣∣∣
s=0

=
d

ds

P(nt−s = m,nt = n | n(abc)
t = n(abc))

P(nt = n | n(abc)
t = n(abc))

∣∣∣
s=0

=
1

Pt(n)

d

ds

[
P(n

(abc)
t−s = m(abc) | n(abc)

t = n(abc))

×P(nt = n | n(abc)
t = n(abc),nt−s = m)Pt−s(m)

]∣∣∣
s=0

=
1

Pt(n)

[
P(n

(abc)
t = m(abc) | n(abc)

t = n(abc))P(nt = n | n(abc)
t = n(abc),nt = m)

× d

ds
Pt−s(m)

∣∣∣
s=0

+ φ(t)
n,mPt(m)

]
=

{
φ

(t)
n,m

Pt(m)
Pt(n)

, if m 6= n,

φ
(t)
n,n − d

dt
logPt(n), if m = n,

where the penultimate equality follows from the product rule and the definition of φ(t) in
(4.6).

The specific entries of φ(t) listed in Table 4.3 can be obtained by applying the product rule
to (4.6), and noting that d

ds
P(n

(abc)
t−s | n

(abc)
t )|s=0 and d

ds
P(nt | n(abc)

t ,nt−s)|s=0 are, respectively,

the backwards in time rates of n
(abc)
t (as listed in Table 4.1), and the forward in time rates

for dropping mutations on nt.
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Chapter 5

Future directions

Computing the coalescent sampling probabilities at one or two loci, for a fully general model
of demography and selection, remains a challenging problem. In this dissertation, we made
mathematical and computational progress within the context of a variable demographic
history and a neutral model of selection. We now discuss some remaining open problems
and future directions.

• Can we add natural selection to our methods? The Moran model can be naturally
extended to include purifying selection (Durrett, 2008; Donnelly and Kurtz, 1999), but
this model is not exactly equal to the coalescent, except in the limit of an infinite
number of lineages. Thus, to include purifying selection, we must find new, finite
representations of the Moran model that exactly model the coalescent with selection.
Alternatively, we could simply use the existing Moran model with selection, but with
enough lineages so that the model is a good approximation to the coalescent.

• The effect of positive selection, in particular genetic “hitchhiking”, can be modeled
by Λ- and Ξ-coalescents, which are coalescent models with multiple simultanenous
mergers. Λ- and Ξ- coalescents also model the effects of large family sizes, where a
single individual is the parent of a large fraction of the population (for example, this
occurs in some marine species). It should be relatively straightforward to extend our
method for the multipopulation SFS to include Λ- and Ξ-coalescents, especially in light
of recent results by Spence, Kamm, and Song (2015).

• In Chapter 4, we computed the two locus sampling probability for a single population
with changing size. It would be interesting to extend this to multiple populations,
by combining these results with the methods of Chapters 2 and 3. However, the
computational complexity may become too large for practical application. Instead, it
would be much faster to use a multipopulation version of the standard 2-locus Moran
model, without augmenting it or using importance sampling to correct for its deviation
from the coalescent. The results of Chapter 4, in particular the high ESS, suggest that
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this should be reasonably accurate; furthermore, this approach would converge to the
correct coalescent likelihood as the number of lineages goes to infinity.

• So far, computing the SFS under continuous migration is only possible under a diffu-
sion (Gutenkunst et al., 2009) or Monte Carlo (Excoffier et al., 2013) approach. Can
we extend our dynamic program, in particular the results of Chapter 3, to include
continuous migration? It may be possible to do this by taking a continuous limit of
our formula for discrete admixture events.

• A crucial issue is identifiability, or when it is possible to distinguish between alternative
population histories. Specifically, if the sampling probability is exactly the same for two
demographic histories, then we cannot distinguish between the two, and the problem
of demographic inference is not identifiable. Identifiability conditions for the SFS have
been established for the size history of a single population (Bhaskar and Song, 2014),
but are lacking for multiple populations, and for the sampling probability at two loci.
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