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Selective representations of texture and motion in mouse higher 
visual areas

Yiyi Yu1, Jeffrey N. Stirman2, Christopher R. Dorsett2, Spencer L. Smith1,*

1.Dept. of Electrical & Computer Engineering, Center for BioEngineering, Neuroscience Research 
Institute, University of California Santa Barbara, Santa Barbara, CA, USA, 93106

2.Neuroscience Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 
USA, 27599

Summary

Mouse visual cortex contains interconnected higher visual areas, but their functional 

specializations are unclear. Here, we used a data-driven approach to examine representations of 

complex visual stimuli by L2/3 neurons across mouse higher visual areas, measured using large 

field-of-view two-photon calcium imaging. Using specialized stimuli, we found higher fidelity 

representations of texture in area LM, compared to area AL. Complementarily, we found higher 

fidelity representations of motion in area AL, compared to area LM. We also observed this 

segregation of information in response to naturalistic videos. Finally, we explored how receptive 

field models of visual cortical neurons could produce the segregated representations of texture 

and motion we observed. These selective representations could aid in behaviors such as visually 

guided navigation.

Blurb

Mouse vision evolved for complex natural stimuli, not simple gratings. Using naturalistic stimuli, 

large-scale calcium imaging, and a data driven approach, Yu et al. reveal how informative 

representations of motion and form are segregated to separate higher visual areas. They present 

modeling data for a potential mechanism of this segregation.
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Introduction

Visual systems evolved to extract behaviorally relevant information from complex natural 

scenes. Visual stimuli contain information about texture, motion, objects, and other features 

of the environment around the animal. These components of visual stimuli have unequal 

relevance across behaviors. For example, optic flow and parallax motion information can 

help guide navigation behavior, but object recognition is often invariant to motion.

In mice, axons from neurons in primary visual cortex (V1) extend out to an array of 

higher visual areas (HVAs), seven of which share a border with V1, and all of which 

have characteristic connectivity with other brain regions. Mouse visual cortical areas 

exhibit a level of hierarchical structure1, and form two subnetworks anatomically2,3 and 

developmentally4. HVAs receive functionally distinct afferents from V1 (ref. 5,6). At least 

nine HVAs exhibit retinotopic topology7–10 and neurons in HVAs have larger receptive 

fields than neurons in V1 (ref. 4,8,11). This organization and connectivity of mouse visual 

areas may have evolved to selectively propagate specific visual information to other brain 

regions5,6.

Gratings are classic visual stimuli for characterizing responses in visual cortical areas12–14. 

In mice, HVAs exhibit biases in their preferred spatial and temporal frequencies of gratings, 

but overall, their frequency passbands largely overlap5,15–17, and thus it can be challenging 

to determine how visual information is processed selectively in HVAs. Moreover, neural 

responses to more complex or naturalistic stimuli cannot be predicted from gratings. 

Even the neural responses to the superposition of two gratings, called plaid stimuli, are 

not well predicted by their component responses. Plaids can thus reveal cells that are 

selective to pattern motion, as opposed to the motion of the component gratings18, and 

plaids have been used to show that neurons in HVAs LM and RL contain pattern-selective 

neurons19. Similarly, responses to gratings cannot predict invariant object recognition, which 

is exhibited by neurons in some rodent HVAs20–23. Thus, stimuli beyond simple gratings can 

help reveal functional specializations of HVAs.

Naturalistic visual stimuli contain complex multi-scale spatial features with statistical 

dependencies that are lacking in simple gratings. Mice can distinguish photographs of 

natural scenes24, which contain these features, but the features are often nonuniform and 

sparse. Parametric texture stimuli provide a more spatially uniform stimulus for determining 

how complex statistical features are represented by neuronal circuitry25, and cortical area V2 

in primates is specialized for processing texture stimuli26.

Motion is another component of visual stimuli, and it can be represented with some 

independence from spatial components of naturalistic visual representations in the brain27. 

Texture and motion differentially contribute to neuronal activity in HVAs28. Representation 

of texture relies on the encoding of a combination of local spatial features26, while the 

representation of motion relies on computing integrated motion signals (e.g. opponent 

motion energy29). Thus, there is a potential computational rationale for expecting segregated 

representations of motion and texture.
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In this study, we determined whether L2/3 neurons in mouse HVAs exhibit biases in their 

representations of motion and texture. We used three classes of visual stimuli: drifting 

textures, random dot kinematograms, and naturalistic videos. We examined how the texture/

spatial and motion components of a naturalistic video are represented, and found that high 

fidelity representations of these stimulus features are segregated to different HVAs. We then 

characterized the encoding properties of HVA neurons using a Gabor filter-based receptive 

field model. The results from these experiments reveal functional segregations of mouse 

HVAs for texture/spatial and motion components of visual stimuli.

Results

Multi-area calcium imaging to distinguish tuning properties of HVAs

To survey the tuning properties of multiple visual cortical areas, we performed 

population calcium imaging of L2/3 neurons in V1 and four HVAs (lateromedial, LM; 

laterointermediate, LI; anterolateral, AL; posteromedial, PM) of awake mice using 

a multiplexing, large field-of-view two-photon microscope with subcellular resolution 

developed in-house30, and transgenic mice expressing the genetically encoded calcium 

indicator GCaMP6s31,32. We located V1 and HVAs of each mouse using retinotopic maps 

obtained by intrinsic signal optical imaging4,16 (Figure S1A). Borders of HVAs were 

reliably delineated in most cases, with the exception being some experiments where the 

AM (anteromedial, AM) and PM boundary was not clearly defined. In those cases, to be 

conservative, we consider the population to be pooled between AM and PM, but dominated 

by the latter, and thus referred to as “PM” or “AM/PM”. In cases where AM neurons were 

positively identified, we did not observe functional difference between putative AM and 

PM neurons. The large field-of-view imaging system allows us to carry out flexible high 

resolution recordings from up to four cortical visual areas simultaneously11,30 (Figure 1A 

and 1B). In the current study, most of the data were recorded in twin-region imaging mode, 

and two data sets were recorded in single region imaging mode. Neuropil corrected calcium 

signals were used to infer probable spike trains for each neuron (Figure S1B). The inferred 

spike train was accurate enough for computing spike-count-based statistical values11. During 

visual stimulation, the average and maximal firing rates inferred were similar across cortical 

areas, and were typically around 0.5 spikes/s average, and ranged up to 15-30 spikes/s 

maximal (Figure 1C), consistent with previously reported values from electrophysiology33.

We characterized the neuronal responses to three types of visual stimuli: scrolling textures 

(hereafter “texture stimuli”), random dot kinematograms (RDK), and a naturalistic video 

mimicking home cage navigation. Hundreds of neurons were recorded for V1, LM, AL and 

PM for all three stimuli, and LI were recorded for the texture stimuli (complete numbers 

are in Table S1). Neurons that exhibited reliable responses to a stimulus were included for 

further characterization (reliable neurons responded to > 50% of trials for RDK or texture 

stimuli; or exhibited trial-to-trial correlations > 0.08 with 0.5 s bins to naturalistic stimuli). 

These criteria resulted in 20 – 50% of all recorded neurons being included for further 

analysis (Table S1).
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Texture and RDK stimuli were best represented in separate HVAs

We tested the selectivity of neurons in V1, LM, LI, AL and PM to texture stimuli using a 

set of naturalistic textures that drifted in one of the four cardinal directions (Figure S2A). We 

generated four families of texture images based on parametric models of naturalistic texture 

patterns34. These stimuli allowed us to characterize the representation of both texture pattern 

information and drift direction information, and thus test the tolerance of a texture selective 

neuron to motion direction.

We observed reliable responses to drifting textures in V1, LM, LI, and PM. AL was less 

reliable in response to these stimuli (V1, LM, LI and PM have 33%~41% reliable neurons, 

while AL has 20% reliable neurons; p = 0.04 One-way ANOVA; Figure S2A and S2B). 

Texture informative neurons exhibited various selectivity patterns (Figure 2A). We measured 

neuronal selectivity to texture family, motions direction, or joint selectivity using mutual 

information analysis. Higher bit values for a neuron-stimulus parameter pair means that 

the activity from that neuron provides more information about that stimulus parameter (or 

combination of stimulus parameters). Overall, neurons in V1 and LI were more informative 

about the texture stimuli, followed by LM. By contrast, neurons in areas AL and PM were 

not informative about the texture stimuli (Figure 2B; p = 3.7 x 10−17; one-way ANOVA). 

To examine the tolerance of texture encoding neurons to the translational direction, we 

computed the mutual information between neuronal responses and texture families (refer to 

the statistical pattern of a texture image). LI was the most informative about texture family 

out of all tested visual areas, followed by V1 and LM (Figure S2C; p = 1.8 x 10−11; one-way 

ANOVA). Meanwhile, V1, LM and LI also carried more information about the motion 

direction of the texture stimuli, compared to areas AL and PM (Figure S2D; p = 1.2 x 10−7, 

one-way ANOVA). Examining the information encoding of individual neurons, we found an 

increasing fraction of neurons that jointly encoded texture family and texture drift direction 

along the putative ventral pathway (V1: 7%, LM: 8%, LI: 14%, AL: 2%, PM: 1%; p = 9 x 

10−12; one-way ANOVA; Figure 2C), suggesting increasing joint coding along the putative 

ventral visual hierarchy (V1 -> LM -> LI).

To further examine joint coding along the putative ventral hierarchy, we fit an encoder 

model to neurons that were significantly informative about the drift direction or the texture 

family (roughly half of the reliable neurons; Figure 2C). We decomposed the neuron 

model into the drifting direction component and the texture family component through 

SVD decomposition, and we quantified the number of drifting direction and the number of 

texture family one neuron was selective to in the SVD components (Figure S2E and S2F). 

Joint encoding neurons exhibited increasingly broader selectivity towards texture family and 

drifting directions along the putative ventral pathway (Figure S2G).

These results for texture encoding contrast with results for standard drifting gratings. For 

gratings, we found motion direction information to be encoded broadly, differing <10% 

among HVAs (Figure S2H), while texture motion information did not propagate to visual 

areas outside the putative ventral pathway, differing >200% among HVAs (Figure S2C and 

S2D). The drift speeds were similar (32 degrees/s for the textures and 40 degrees/s for the 

gratings), so it is unclear which spatial structural differences between these stimuli drove the 
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differences in encoding. Thus, we next examined responses to a stimulus with less spatial 

structure and greater focus on motion.

We examined the encoding of random dot kinematograms (RDK), which are salient white 

dots on a dark background with 40-90% motion coherence (remaining dots move in random 

directions (Figure 2D). The RDK stimuli elicited reliable responses (responses to >50% 

trials) in neurons in V1, LM, AL and PM. For this stimulus, reliable neurons were common 

in V1 and rarer in LM (p = 0.001; one-way ANOVA; Figure S3A and S3B). To characterize 

the direction selectivity of reliable neurons, we computed the mutual information between 

neuronal responses and the motion direction at each coherence level. V1 and AL have larger 

fractions of informative neurons than LM and PM (p = 2.3 x 10−15, one-way ANOVA; 

Figure 2E). On average, V1 and AL were more informative than LM and PM about the 

motion direction of the RDK at moderate-to-high coherence levels (>=70%; Figure S3C and 

S3D; p = 3.3 x 10−10, one-way ANOVA). At low coherence level (40%), the differences 

among HVAs became insignificant (Figure S3D).

To further characterize the direction selectivity of neurons, we fit an encoder model 

to neurons that were significantly informative about the RDK stimuli. Followed by 

decomposing the neuron model into the direction component and the coherence component 

through SVD decomposition (Figure S3E, and S3F; Methods). We then identified the 

preferred direction and the preferred coherence level in these SVD components for 

individual neurons. Interestingly, the direction preference of V1 biased to a downward 

motion, or horizontal flows (p = 8.6 x 10−8, one-way ANOVA). However, in AL, an RDK 

representing HVA, such bias was not obvious (p = 0.09; one-way ANOVA; Figure S3G). All 

tested areas were modulated by coherence, and the highest coherence was preferred by the 

majority of neurons (Figure S3G).

In summary, texture selective neurons were more abundant in V1, LM, LI, while RDK 

direction selectivity neurons were more abundant in V1 and AL. Thus, information about 

drifting textures and RDK motion are relatively segregated to distinct HVAs (Figure 2F).

Features of naturalistic videos were best represented in separate HVAs

To determine whether this segregation of texture and motion information among HVAs 

could be detected within a more complex stimulus, we characterized the neuronal 

representation of a 64-second-long naturalistic video (Figure 3A). The naturalistic video 

stimulus contained time-varying visual features such as contrast35,36, luminance, edge 

density37, difference of Gaussian (DOG) entropy38, and optic flow (OF) speed and 

direction39 (Methods; Figure S4A–D). Both edge density and DOG entropy capture spatial 

properties of a naturalistic video frame, while DOG entropy better supports texture family 

encoding (Figure S4E and S4F). Our results thus far suggested that activity in AL would 

be modulated by motion information (OF speed or direction) in the naturalistic video, and 

activity in LM would be modulated by texture information (DOG entropy) in the same 

video.

About 45% of V1 neurons and about 25% of LM, AL, and PM neurons responded to the 

naturalistic video reliably (trail-to-trial correlation > 0.08; Figure S5A). Neurons in the 
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four imaged visual areas exhibited diverse and highly selective responses to the naturalistic 

video. Individual neurons responded to ~ 3% of stimulus video frames, corresponding to 

a high lifetime sparseness (0.83 ± 0.09 (mean ± SD); Figure 3B). The dimensionality of 

the population responses of V1 was about three-to-ten-times higher than those of LM, AL 

and PM (Figure 3C). The average response of a cortical area neuron population converged 

with several hundreds of neurons (about 500 from V1, about 200 from HVAs; Figure S5B). 

Thus, the data set has sufficiently covered the neuronal responses of V1, LM, AL, and PM 

to support further analysis. To take a data-driven approach to understanding the diverse 

response patterns, we classified neurons using an unbiased clustering method (Gaussian 

mixture model, GMM; Methods). Neurons were partitioned into 25 tuning classes based 

on their responses to the naturalistic video, and 21 of these classes exhibited unique sparse 

response patterns, responding at specific time points of the naturalistic video (Figure S5C 

and S5D). All tuning classes were observed in V1 and HVAs, but their relative abundance 

varied by area (Figure S5E and S5F). V1 had a relatively more uniform distribution of 

tuning classes compared to HVAs (Figure S5E). The lower dimensionality and biased 

distribution of tuning classes of HVAs can indicate selective representations of visual 

features.

To examine how well visual features (Figure S4D) of the naturalistic video were represented 

in HVAs, we computed the linear regression between responses of individual neurons, 

or population-averaged activity, with time-varying visual features of the naturalistic video 

(Fig. 3D). We defined the modulation power of each feature as the variance of responses 

explained by the model (i.e, the r2 of a linear fit), and the modulation coefficients as 

the slope. The visual features were computed at multiple spatial scales (image filtered by 

Gaussian kernel with 1-25° full width at half maximum, FWHM), and qualitatively similar 

results were observed across a wide range of scales. Overall, the set of visual features 

explained 31% of the variance of the trial-averaged responses (with 0.5 s bins) of individual 

neurons across the visual areas. Representative results are obtained for edge density maps 

with a Gaussian kernel of 2.35° (FWHM), and DOG entropy maps with a Gaussian kernel 

of 11.75° (FWHM, inner kernel; the outer kernel is two-fold larger in FWHM) (Fig. 3D).

Regressing these visual features with individual neuronal responses revealed selective 

feature representations. AL neurons were more sensitive to the modulation by the OF speed 

entropy, while PM neurons were more sensitive to the modulation by contrast and edge 

density (Figure 4A). We further characterized the collective effects of biased distributions 

of tuning classes (from the GMM clustering analysis) among HVAs. Some tuning classes 

were more abundant in specific HVAs (relative to their abundance in V1), and we assessed 

their activity modulation by features in the naturalistic video. LM was enriched with neurons 

that correlated with DOG entropy (Figure 4B). As expected, AL and PM were enriched with 

tuning classes that correlate with the OF speed entropy feature, and the contrast and the edge 

density features, respectively (Figure 4B).

Together, these results indicate that motion information and spatial information are 

differentially represented among HVAs due to the distribution of tuning classes among them. 

Neurons in AL provided superior representations of motion features in a naturalistic video, 
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and neurons in LM and PM provided superior representations of texture and edge features, 

respectively, in the same naturalistic video (Figure 4C).

Gabor models exhibited biased feature representations

To this point, the evidence from the naturalistic stimuli indicates an enriched representation 

of spatial and motion features in LM, PM, and AL. We then questioned whether the 

feature enrichment in HVAs could be explained by receptive field (RF) structure. To 

model the receptive field structures of neurons, we employed a rich set of Gabor models, 

which are classic models for visual cortical neurons40,41. Gabor models were simulated 

using a base model of a linear-nonlinear (LNL) cascade with Gabor filter-based linear 

kernels (Figure 5A). The set of models included 2D Gabor models with single or multiple 

sub-units combined linearly or quadratically (Figure 5B), as multiple Gabor kernels are 

required for predicting V1 neuron responses in mice41 and generating tolerances to rotation, 

translation, and scale26,42. The set of models also included 3D Gabor kernels with or without 

untune normalization units (Figure 5B), as normalization is critical for capturing the diverse 

response profiles of V1 neurons to naturalistic stimuli43. For 2D Gabor filter-based models, 

we examined both linear and energy models. These are similar to models of complex 

cells in which input from multiple simple cells with similar orientation preferences but 

varying phases are integrated12. Other combinations were used as well (cross-orientation, 

cross-scale, etc.; Figure 5B). For 3D Gabor filter-based models, we also examined motion 

models (opponent motion energy29; Figure 5B). The simulations were performed with 

multiple spatial scales and, for 3D Gabor filter-based models, temporal scales and sampled 

uniformly in space.

We determined the feature extraction properties of the models by simulating responses to 

the texture and RDK stimuli and characterizing them (Figure S6). Neuron models varied in 

the encoding power of different types of stimuli or visual features. We noted that 2D Gabor 

models exhibited specific tuning to the texture family while remaining tolerant to motion 

directions, especially the cross-orientation and linear cross-position models (Figure S6A), 

which are the best models for texture family encoding. On the other hand, 3D Gabor models 

with normalization performed the best in encoding the motion direction in RDK stimuli 

(Figure S6B).

In response to the naturalistic videos, 2D Gabor models, especially linear cross-position 

and linear cross-orientation models, exhibited better sensitivity to the contrast, edge density, 

and the DOG entropy, while the 3D Gabor models with untuned normalization exhibited 

better sensitivity to the OF entropy (Figure 5C). These simulation results confirmed the 

apparent trade-off in representation fidelity for spatial features and motion features, with 

2D Gabor kernels performing better on the former, and 3D Gabor kernels with or without 

normalization, on the latter.

Gabor models reproduced specific feature representations of mouse visual cortex

Next, we determined the best Gabor model for neurons recorded in vivo to the naturalistic 

video stimuli. We fit individual neuronal responses with the Gabor-based models. One best 

model among the whole set, the “preferred” model, was selected for individual neurons. 
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Preferred models captured the greatest amount of PSTH variance of the in vivo neuronal 

responses (Figure 6A). In general, the preferred models explained 40 ± 17 % (mean ± SD) 

of the variance of the PSTH (no difference between visual areas, one-way ANOVA p = 

0.06).

V1 and HVAs varied in model preference. All classes were present in V1, but HVAs varied 

in the classes that were more or less frequently observed (Figure 6B). We found that 

LM was enriched with texture feature encoding models, such as 2D models with linear 

cross-orientation subunits, and linear cross-position subunits (Figure 6B). AL was enriched 

with, motion encoding models, such as 3D motion models with normalization (Figure 6B). 

In contrast, PM had an abundance of single-unit 2D models (spectral filters), which were 

sensitive to the contrast visual features (Figure 6B).

Using the preferred models that were enriched in each HVA, we reproduced the linear 

regression results between the features of the naturalistic video (Figure 3D) and the 

HVA-specific model responses (Figure 6C). In general, the model selection reflected the 

segregated representation of spatial and motion features by LM, AL, and PM. Overall, the 

Gabor model analysis revealed that LM, AL, and PM were enriched with different RF 

structures. LM had more 2D linear cross-orientation and linear cross-position RFs, as well as 

3D simple cells. AL had more 3D simple, complex, and motion cells, and received surround 

normalization input. PM had more 2D simple cells and 3D complex cells. These insights 

into the RF structure of neurons in HVAs provide clues into potential neural circuitry 

underlying the varying representations of features in naturalistic stimuli.

Discussion

The results revealed unique encoding properties of L2/3 neurons of V1 and multiple HVAs 

in representing textures, motion, and naturalistic videos. Our results show that neurons 

in LM provide high fidelity representations of spatial features such as DOG entropy and 

textures, but are poor at representing motion. By contrast, neurons in AL provide high 

fidelity representations of motion features, but are poor at representing spatial features. 

Neurons in PM provide high fidelity representations of some spatial features like edge 

density and contrast, but not DOG entropy or textures as areas LM do. Relatedly, LM, 

LI, and AL are all poor at representing edge density. These findings show that visual 

features are represented in segregated neuronal populations, implying trade-offs in encoding. 

To investigate potential trade-offs, we examined receptive field structures of neurons in 

HVAs that contributed to specialized feature representations. Indeed, we found that different 

receptive field models were required for reproducing the in vivo results in separate HVAs. 

These findings provide new insights into the neural circuitry that can generate distributed 

representations of visual stimuli in HVAs.

The rodent visual system evolved in response to the ecological niche mice found themselves 

in. We do not expect such a process to result in neural circuitry that performs neat, absolute 

segregations of information about visual scenes. Instead, we expect neural circuitry that 

supports adaptive behavior for the mouse’s ecological niche, such as visual mechanism for 

predator avoidance44,45. The principles of that circuitry are likely quite different from those 
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of any systematic, mathematically compact approach for parsing a visual scene in terms of 

known receptive field properties of visual cortical neurons. Thus, here we used a data-driven 

approach to gain a conservative foothold into complex visual scene processing in mice. We 

explored how segregated representations might emerge using a modeling approach based 

on known receptive field properties of visual cortical neurons, or at least popular models 

thereof. This analysis showed that linear combination of edges and motion energy model 

with normalization provided accurate accounts for distinguishing texture and motion stimuli.

The enrichment of specific representations of motion or texture in L2/3 of areas AL and 

LM respectively, could arise from specific connectivity from other brain regions (e.g., V1) 

that preserves selectivity that arose there5, or from converging input that results in enhanced 

selectivity (i.e., more invariant selectivity) for a visual feature12,41,46. We generally cannot 

distinguish those two possibilities with this data set. Dense feedback and feedforward 

connectivity between HVAs and V1 make it difficult to pinpoint where selectivity arises. 

However, area LI exhibited more complex selectivity than V1, so it appears as though 

preserved selectivity from V1 projecting to LI would be insufficient to produce such 

selectivity. Even then, we cannot rule out thresholding effects which could play a role in 

increasing apparent selectivity.

The dual-stream framework describes two subnetworks of visual circuitry, a ventral one for 

object recognition, and a dorsal one for motion and action27,47. In primates, the ventral 

stream— from V1, through V2, V3, and V4, to the inferior temporal lobe— develops 

selective activity for specific recognized objects, including faces. The dorsal stream— 

from V1, through V2, MT, MST and the parietal lobe— processes the spatial and motion 

information in visual scenes. Anatomically, cat and ferret have similar visual hierarchies 

as primates. Cat areas 17, 18 and 19 are analogous to the V1, V2, and V3 of primates; 

and area 21a and posterior medial lateral suprasylvian sulcus (PMLS) are analogous to 

primates’ V4 and MT respectively48–53. Robust representations of oriented gratings or edges 

are commonly found in V1, but how do representations change along the dorsal and ventral 

streams? Neurons in areas V2 and V4 can encode a combination of local features, such 

as multiple edges to detect curves and shapes37,42. Neurons in areas MT and MST can 

encode opponent motion energy29,54–56. However, conflicts and complexities have been 

identified for these apparently stream-segregated feature representations in primates57,58. 

Cats and ferrets may have cortical circuitry that is functionally analogous to V4 and MT in 

primates48,53,59, nevertheless our knowledge of intermediate-level feature representations in 

these animals is limited. Anatomical connectivity with downstream brain regions supports 

functional distinctions in mouse HVAs, between putative ventral and dorsal streams. For 

example, putative ventral areas are strongly connected to temporal and parahippocampal 

cortices, while putative dorsal areas are preferentially connected to parietal, motor and 

limbic areas3. However, there are also major differences. The cortical visual system of 

mice is distinct from primates, cats, and ferrets, which have a single V2 adjacent to V160. 

Instead, mice have more than seven HVAs that share a border with V18,60. These anatomical 

differences complicate the search for the dual stream homologies in mice, and motivate 

functional studies to elucidate the information processing in mouse HVAs27. The functional 

similarities between mouse LM and LI and macaque V2 and V4, and between mouse 

AL and macaque MT are perhaps superficial, but could also indicate that the dual stream 
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framework for visual pathways in primates could have an analog in mice3,61. Anatomical 

and receptive field mapping studies suggest that mouse LM and AL likely serve as the 

ventral and dorsal gateways in the mouse visual hierarchy4,8,62.

Our experimental results reveal segregations of visual encoding, or representations, among 

HVAs in mice. The modeling results demonstrate how classic models of visual cortex 

neuron receptive fields can entail reciprocal trade-offs for representing spatial features and 

motion features of visual stimuli, thus providing a potential functional substrate for this 

segregation. These insights show how mouse HVAs likely play distinct roles in visual 

behaviors, and may share similarities with the dual processing streams in primates.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Requests for additional information or resources related to the study 

should be directed to Spencer L. Smith (sls@ucsb.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Deconvolved spike data, and key functions for Gabor modeling and naturalistic 

video processing are available in: https://github.com/yuyiyi/HVA_tuning.git

• Code for calcium imaging processing is available in: https://github.com/yuyiyi/

CaSoma_Proc.git

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects—All animal procedures and experiments were approved by the Institutional 

Animal Care and Use Committee of the University of North Carolina at Chapel Hill or 

the University of California Santa Barbara and performed in accordance with the regulation 

of the US Department of Health and Human Services. Total of 34 GCaMP6s-expressing 

transgenic adult mice of both sexes were used in this study. Mice were 110 – 300 days 

old for data collection. GCaMP6s-expressing mice were induced by triple crossing of the 

following mouse lines: TITL-GCaMP6s (Allen Institute Ai94), Emx1-Cre (Jackson Labs 

#005628), and ROSA:LNL:tTA (Jackson Labs #011008)31. Mice were housed under a 12 h 

light / 12 h dark cycle, and experiments were performed during the dark cycle of mice.

METHOD DETAILS

Surgery—For cranial window implantation, mice were anesthetized with isoflurane (1.5 

– 1.8% in oxygen) and acepromazine (1.5 – 1.8 mg/kg body weight). Carprofen (5 mg/kg 

body weight) was administered prior to surgery. Body temperature was maintained using 

physically activated heat packs or homeothermic heat pads during surgery. Eyes were kept 

moist with ophthalmic ointment during surgery. The scalp overlaying the right visual cortex 
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was removed, and a custom steel headplate with a 5 mm diameter opening was mounted to 

the skull with cyanoacrylate glue (Oasis Medical) and dental acrylic (Lang Dental). A 4 mm 

diameter craniotomy was performed over the visual cortex and covered with a #1 thickness 

coverslip, which was secured with cyanoacrylate glue.

Intrinsic signal optical imaging (ISOI)—Prior to two-photon imaging, the locations 

of primary and higher visual areas were mapped using ISOI, as previously reported4,30,63. 

Pial vasculature images and intrinsic signal images were collected using a CCD camera 

(Teledyne DALSA 1M30) and a tandem lens macroscope. A 4.7 × 4.7 mm2 cortical 

area was imaged at 9.2 μm/pixel spatial resolution and at 30 Hz frame rate. The pial 

vasculature was illuminated and captured through green filters (550 ± 50 nm and 560 

± 5 nm, Edmund Optics). The ISO images were collected after focusing 600 μm down 

into the brain from the pial surface. The intrinsic signals were illuminated and captured 

through red filters (700 ± 38 nm, Chroma and 700 ± 5 nm, Edmund Optics). Custom ISOI 

instrumentation was adapted from Kalatsky and Stryker9. Custom acquisition software for 

ISOI imaging collection was adapted from David Ferster30. During ISOI, mice were 20 

cm from a flat monitor (60 × 34 cm2), which covered the visual field (110° x 75°) of the 

left eye. Mice were lightly anesthetized with isoflurane (0.5%) and acepromazine (1.5 – 3 

mg/kg). The body temperature was maintained at 37 °C using a custom electric heat pad30. 

Intrinsic signal responses to vertical and horizontal drifting bars were used to generate 

retinotopic maps for azimuth and elevation. The retinotopic maps were then used to locate 

V1 and HVAs (Figure S1A). Borders between these areas were drawn using features of the 

elevation and azimuth retinotopic maps, such as reversals, manually4,16. The vasculature 

map provided landmarks to identify visual areas in two-photon imaging.

In vivo two-photon imaging—Two-photon imaging was performed using a custom 

Trepan2p microscope controlled by custom LabView software30. Two regions were imaged 

simultaneously using temporal multiplexing30. Two-photon excitation light from an ultrafast 

Ti:Sapph laser tuned to 910 nm (MaiTai DeepSee; Newport Spectra-Physics) laser was split 

into two beams through polarization optics, and one path was delayed 6.25 ns relative to 

the other. The two beams were steered independently from each other using custom voice 

coil steering mirrors and tunable lenses. This way, the X, Y, Z plane of the two paths 

can be independently positioned anywhere in the full field (4.4 mm diameter). The two 

beams were raster scanned synchronously about their independently positioned centers by 

a 4 kHz resonant scanner and a linear scanner (Cambridge Technologies). Photons were 

detected (H7422P-40, Hamamatsu) and demultiplexed using fast electronics. For four-region 

scanning, the steering of the two beams was alternated every other frame.

In the current study, two-photon imaging of 500 x 500 μm2 was collected at 13.3 Hz for 

two-region imaging, or 6.67 Hz for large-field single path imaging (Table S1). We typically 

imaged neurons in V1 and one or more HVAs simultaneously. Up to 500 neurons (V1: 

129 ± 92; HVAs: 94 ± 72; mean ± SD) were recorded per imaging region (500 x 500 

μm2). Imaging was performed with typically <80 mW of 910 nm excitation lights out of 

the front of the objective (0.45 NA), including both multiplexed beams together. Mice were 

head-fixed about 11 cm from a flat monitor, with their left eye facing the monitor, during 
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imaging. The stimulus display monitor covered 70° x 45° the left visual field. Two-photon 

images were recorded from awake mice. During two-photon imaging, we monitored the 

pupil position and diameter using a custom-controlled CMOS camera (GigE, Omron) at 20 – 

25 fps. No additional illumination was used for pupil imaging.

Visual stimuli—Visual stimuli were displayed on a 60 Hz LCD monitor (9.2 x 15 cm2). 

All stimuli were displayed in full contrast.

The texture stimuli (Figure S2A) were generated by panning a window over a large 

synthesized naturalistic texture image at one of the cardinal directions at the speed of 32 

°/s. We generated the large texture image by matching the statistics of naturally occurring 

texture patterns34. The texture pattern families were: animal fur, mouse chow, rocks, and tree 

trunk. Each texture stimulus ran for 4 s and was interleaved by a 4 s gray screen.

The random dot kinematogram (RDK) stimuli contained a percentage (i.e., coherence) 

of white dots that move in the same direction (i.e., global motion direction) on a black 

background (Figure S3A). We presented the animal with RDK at three coherence levels 

(40%, 70%, and 90%) and four cardinal directions. The dot diameter was 3.8° and the dot 

speed was 48 °/s. White dots covered about 12.5% of the screen. The lifetime of individual 

dots were about 10 frames (1/6 s). These parameters were selected based on mouse behavior 

in a psychometric RDK task64. Each RDK stimulus ran for 3 – 7 s (responses in the first 3 

s were used for analysis) and interleaved with 3 s gray screen. The same RDK pattern was 

looped over trials.

Two naturalistic videos (Figure 3A) were taken by navigating a mouse home cage, with 

or without a mouse in the cage. Each video had a duration of 32 s and were presented 

with interleaved 8 s long periods with a gray screen. For the convenience of analysis, we 

concatenated the responses to the two videos (total 64 s).

QUANTIFICATION AND STATISTICAL ANALYSIS

Calcium imaging processing—Calcium imaging processing was carried out using 

custom MATLAB codes. Two-photon calcium imaging was motion corrected using Suite2p 

subpixel registration module65. Neuron ROIs and cellular calcium traces were extracted 

from imaging stacks using custom code adapted from Suit2p modules65 (https://github.com/

cortex-lab/Suite2P). Neuropil contamination was corrected by subtracting the common time 

series (1st principal component) of a spherical surrounding mask of each neuron from the 

cellular calcium traces15,66.

Neuropil contamination corrected calcium traces were then deconvolved using a Markov 

chain Monte Carlo (MCMC) methods67 (https://github.com/flatironinstitute/CalmAn-

MATLAB/tree/master/deconvolution; Figure S1B). For each calcium trace, we repeated 

the MCMC simulation for 400 times, and measured the reproducibility of MCMC spike 

train inference for each cell. We computed the Pearson correlation of the entire inferred 

spike train (tens of mins duration) binned at 13.3 fps. For all subsequent analysis, only 

cells with stable spike train inference results were included (correlations between MCMC 

simulations > 0.2). The number of neurons passed this criterion was defined as the total 
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number of neurons (Table S1). The MCMC quality control was defined empirically. For 

all following analysis, we randomly pick one simulation trial for each neuron. Randomly 

picking a different trial did not affect results quantitatively.

Neurons in V1 and HVAs exhibited similar instantaneous firing rates, defined as inverse of 

inter-spike-interval (Figure 1C). Maximal instantaneous firing rates were computed as the 

inverse of the minimal inter-spike-interval, while average instantaneous firing rates were 

computed as the inverse of the average inter-spike-interval for individual neurons.

Reproducibility and lifetime sparseness—The reproducibility of responses to 

naturalistic videos was defined as the trial-to-trial Pearson correlation between inferred 

spike trains of each neuron binned in 500 ms bins. The reproducibility of responses to 

texture stimuli and RDK were computed as the fraction of trials that a neuron fired to its 

preferred stimulus within a time window (4 s for texture stimuli and 3 s for RDK). These 

definitions were commonly used in previous studies46,68. Only reliably responsive neurons 

were included in the latter analysis (Pearson correlation > 0.08 to naturalistic video; fired 

on > 50% trials to the texture and RDK stimuli). The qualitative results were not acutely 

sensitive to the selection criteria.

The lifetime sparseness defines how often one neuron response to a particular stimulus was 

computed as (eq. 1)69:

S =
1 − 1

N ∗ (∑iri)
2

∑iri2

1 − 1
N

(eq. 1)

For lifetime sparseness, ri is trial-averaged response to ith stimulus and N is the length of 

the stimuli. The sparseness to naturalistic videos was computed using 500 ms bins. The 

qualitative results of reliability and sparseness were not acutely sensitive to the bin size.

Information analysis—Mutual information (MI) evaluates the information the neuronal 

response (r) has about certain aspects of the stimulus, and it is computed in units of bits. It 

was computed using the following equation.

MI(r, s) = ∑
r

∑
s

pr, s(r, s) ∗ log2
pr, s(r, s)

pr(r) ∗ ps(s) (eq. 2)

We computed the MI between neuron responses and the visual stimulus (s has 16 categories 

for texture stimuli, ps(s) = 1/16; s has 12 categories for RDK, ps(s) = 1/12). We also 

computed the MI between neuron responses and the texture family (s has 4 categories for 

texture stimuli, ps(s) = 1/4), and the MI between neuron responses and the moving directions 

(s has 4 categories for both texture stimuli and RDK, ps(s) = 1/4). The probability of neuron 

responses was computed from spike count distributions within a stimulus window (4 s for 
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texture stimulus and 3 s for RDK). Reliable RDK and texture reliable neurons (response to 

>50% of trials) were included for the MI analysis.

Informative neurons:  We defined threshold for informative neurons from shuffled data (> 

mean + 3 SD of MI of shuffled data). That is the spike count (pr,s(r, s)) of a neuron shuffled 

on each trial independently.

Tuning pattern of informative neurons—To estimate the tuning pattern of informative 

neurons, i.e., which texture pattern or motion direction one neuron responded to, or how 

many texture patterns one neuron responded to, we decomposed the neuronal responses 

into motion direction components, and texture family or RDK coherence components using 

singular value decomposition (SVD). To be more robust, instead of using trial-averaged 

response, we first estimated the neuronal responses by linearly regressing with a unit 

encoding space (Figure S2E and S3E). Lasso regularization was applied to minimize 

overfitting. The regularization hyper-parameters were selected by minimizing the cross-

validation error in predicting single trial neuronal responses. The linear regression model 

performance was measured by the Pearson correlation between the trial-averaged neuron 

response and the model. All informative neurons were well-fit by the model (Figure S2F and 

S3F).

We then characterized the SVD components of all informative neurons. The SVD vectors 

reflect the selectivity of a neuron. Absolute values close to one indicate a preferred stimulus 

while values close to zeros indicate a null stimulus. Some texture informative neurons 

were activated by multiple texture patterns or motion directions, which were identified 

as the components that have a >0.4 absolute SVD vector value (qualitative results hold 

with similar thresholds). We quantified the number of texture patterns and the number of 

motion directions one texture informative neuron was responsive to (Figure S2G). Also, we 

identified the preferred motion direction and coherence level for RDK informative neurons 

(Figure S3G).

Population response dimensionality—We measured the dimensionality of neuron 

populations with certain size through principal components analysis of trial-averaged 

response of neurons (spike trains were binned in 500 ms). We generated principal 

components of each population by the trial-averaged responses that were computed using 

randomly selected half of the trials (training data), and then used the first x number of 

principal components to recover the trial-averaged responses of the remaining half of the 

trials (testing data). The dimensionality was defined as the number of principal components 

that reproduced the testing data that minimize the mean squared error.

Gaussian mixture model—To characterize the tuning properties in an unbiased manner, 

neurons were clustered using a Gaussian mixture model70 (GMM) based on the trial-

averaged responses to the naturalistic video. Only reliably responsive neurons were included 

for GMM analysis (trial-to-trial Pearson correlation of the inferred spike trains > 0.08, after 

spike trains were binned in 500 ms bins). Neuronal responses of the whole population, 

pooled overall cortical areas, were first denoised and reduced in dimension by minimizing 

the prediction error of the trial-averaged response using principal component (PC) analysis. 
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45 PCs were kept for population responses to the naturalistic videos. We also tested a wide 

range of PCs (20 – 70) to see how this parameter affected clustering, and we found that 

the tuning group clustering was not acutely affected by the number of PCs used. Neurons 

collected from different visual areas and different animals were pooled together in training 

the GMM (3839 neurons). GMMs were trained using the MATLAB build function fitgmdist 
with a range of numbers of clusters. A model of 25 classes was selected based on the 

Bayesian information criterion (BIC). We also examined models with different numbers of 

classes (20, 30, 45, or 75), and found that the main results held regardless of the number of 

GMM classes. Neurons with similar response patterns were clustered into the same class. 

Figure S5C shows the response pattern of GMM classes to the naturalistic video. The size of 

the naturalistic video classes is shown in Figure S5D. To examine the reproducibility of the 

GMM classification, we performed GMM clustering on 10 random subsets of neurons (90% 

of all neurons). We found the center of the Gaussian profile of each class was consistent 

(Pearson correlation of class centers, 0. 74 +/− 0.12). About 65% of all neurons were 

correctly (based on the full data set) classified, while 72% of neurons in classes that are 

over-represented in HVAs were correctly classified. Among misclassifications, about 78% 

were due to confusion between the three untuned classes with tuned classes. Thus, most of 

the classes to come out of the GMM analysis appear to be reproducible, and are not sensitive 

to specific subsets of the data.

Visual features of the naturalistic video—We characterized various visual features of 

the naturalistic video (Supplementary Fig. 5).

Average luminance:  The average pixel value of each frame.

Global contrast:  The ratio between the standard deviation of pixel values in a frame, and 

the average luminance of that same frame.

Edge density:  The local edges were detected by a Canny edge detector71. The algorithm 

finds edges by the local intensity gradient and guarantees to keep the maximum edge in a 

neighborhood while suppressing non-maximum edges. We applied the Canny edge detector 

after Gaussian blurring of the original image at multiple scales (1°-10°). A binary edge map 

was generated as the result of edge detection (Figure S4A). The edge density was computed 

as the sum of positive pixels in the binary edge map of each frame.

Difference of Gaussian (DOG) entropy:  We characterized local luminance features 

following the difference of Gaussian filtering at multiple scales, and then computed the 

entropy of these features within a local neighborhood (Figure S4B).

Optical flow entropy:  We estimated the direction and speed of salient features (e.g., 

moving objects) using the Horn-Schunck method at multiple spatial scales. Then we 

computed the entropy of the OF direction and speed at each frame. Since the OF estimation 

relies on the saliency of visual features, the moving texture and RDK stimuli resulted in 

distinct OF entropies, with the latter being larger (Figure S5C).
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Visual features were computed either by average over space or by computing a spatial 

variance value (i.e., entropy). These measurements were inspired by the efficient coding 

theory72, which suggested that the neuron population coding is related to the abundance or 

the variance of visual features in the natural environment.

Discrimination of texture images by DOG features:  We computed the pairwise distance 

between texture images (Figure S4E) within the same class or from different classes (Figure 

S4F). The Euclidean distance was computed using DOG entropy (11.75° spatial filter size) 

or edge density (2.35° spatial filter size) feature maps. We then trained a support vector 

machine (SVM) classifier to discriminate texture images within and across classes, based 

on this pairwise distance (using the Matlab built-in function classify). We reported the 

cross-validation classification error rate (Figure S4F).

Modulation power of naturalistic features—A linear regression model was fit to 

the neuronal activity of individual neurons or average population response with individual 

features (Figure 4). These features are described above in the section (Visual features of 

the naturalistic video). We then evaluated a feature’s contribution in modulating the average 

population responses by the variance explained (r-squared) of each model (Figure 3D). 

Features were computed over multiple spatial scales. The spatial scales that best modulated 

(highest r-squared) the neuronal response was used for this analysis.

Neuronal activity of individual neurons or population average response were binning into 

50 ms bins (50 – 500 ms bins were tested and generated qualitatively similar results). To 

evaluate the functional contribution of over-represented classes of HVAs, we pooled neurons 

from over-represented tuning classes of one HVA (200 neurons per pool with permutation; 

50 – 200 pool size was tested and results hold), and we averaged activity over the pool, and 

then determined which features modulated activity the over-represented classes in an HVA 

(Figure 4B).

Gabor-based receptive field models—The neuron models used the structure of a 

linear-nonlinear (LNL) cascade. The spiking of model neurons was simulated following a 

nonhomogeneous Poisson process with a time varying Poisson rate. The rate was calculated 

by convolving visual stimuli with a linear kernel or a combination of linear kernels, 

followed by an exponential nonlinearity (Figure 5A). Linear kernels were modeled by 

2D (XY spatial) or 3D Gabor (XYT spatiotemporal) filters defined over a wide range 

of spatiotemporal frequencies and orientations. We simulated neurons with simple cells, 

complex cells and motion cells models29 (Figure 5B). The three differed in the linear 

components of the LNL cascade: simple cells (called linear model, or spectral model for 

the 2D Gabor kernels) used the linear response of a Gabor filter; complex cells (called 

energy model) used the sum of the squared responses from a quadrature pair of Gabor filters 

(90° phase shifted Gabor filter pairs); speed cells (called motion model) used the arithmetic 

difference between the energy responses from an opponent pair of complex cells. We also 

modeled neurons based on the cross product of the linear or energy responses from two 

2D Gabor filters. In particular, we simulated the following three combination models: 1. 

2D Gabor filters matched in spatial scale and location but tuned to different orientations 

(cross-orientation model); 2. 2D Gabor filters tuned to the same orientation and location 
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with different spatial scales (cross-scale model); 3. 2D Gabor filters with matched tuning 

properties but offset in visual space (cross-position model) (Figure 5B). In addition, we 

included a subtractive normalization before taking the nonlinearity in some models. A total 

of 13 Gabor model types were used (Figure 5B).

To examine feature encoding by these neuron model types, we performed 10 – 20 repeats 

of simulation for each neuron model to each stimulus. Either the simulated spike trains or 

peristimulus time histograms (PSTH) were used for characterizing the feature encoding. We 

analyzed the model responses in the same way as we had done for the mouse experimental 

data. We computed the mutual information between simulated neuron responses and texture 

stimuli or RDK stimuli, and characterized the selectivity of simulated neurons to texture 

families or RDK directions (Figure S6). Next, we examined the modulation of simulated 

population responses by visual features of the naturalistic video. Neuron models were 

located in the feature space by how much of the population response variance was explained 

by individual features (Figure 5C).

Fit neuron responses with Gabor-based models—We fit individual neuronal 

responses with models following a linear regression equation (eq. 3). The linear coefficients 

were optimized by minimizing the cross-validation error. We also tested a sigmoidal 

nonlinear fitting (eq. 4). Sigmoidal parameters were optimized through gradient descent. As 

sigmoidal nonlinearity did not significantly improve the modeling performance, we reported 

the results from the linear fitting.

neuron response = a ∗ x; (eq. 3)

neuron response = a
1 + exp( − b ∗ x + c) ; (eq. 4)

Where x is the simulated response and a – c are parameters for fitting. Neuron models were 

grouped into three categories: 2D Gabor models, 3D Gabor models, and 3D Gabor models 

with normalization. One model of each category, which minimizes the cross-validation 

error, was kept for each neuron. Then, we selected the one among the three that maximize 

the variance explained of the PSTH for each neuron (Figure 6A). HVAs varied in their 

preference of different model types (Figure 6B). We then examined the modulation power of 

naturalistic visual features of enriched neuron models.

Statistical analysis and data availability—P-values were generated by one-way 

ANOVA with Bonferroni multiple comparison if not otherwise stated. Detailed statistical 

values were provided in the figure legends. Boxplot whiskers indicate the full data range.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Texture stimuli are best represented in areas LM & LI, compared to areas AL 

& PM.

• Motion stimuli are best represented in area AL compared to areas LM & PM.

• Texture and motion components of naturalistic videos are similarly 

segregated.

• Receptive field models show trade-off for representations of motion versus 

texture.
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Figure 1. Multi-area calcium imaging of mouse visual cortex.
(A) Neuronal activity was imaged in multiple HVAs simultaneously using large field-of-

view, temporally multiplexed, two-photon calcium imaging. In an example experiment, layer 

2/3 excitatory neurons were imaged in V1, LM, AL, and PM simultaneously. Squares 

indicate the imaged regions, and projections of raw image stacks are shown below.

(B) Image stacks were analyzed to extract calcium dynamics from cell bodies, after neuropil 

subtraction. These traces were used to infer spike activity, as shown in raster plots below 

each trace.

(C) Statistics of inferred spiking were similar to those of prior reports, indicating accurate 

inference. The mean and maximal instantaneous firing rates of neurons in V1 and HVAs are 

similar (mean, 0.5 ± 0.5 spike/s; max, 7 ± 11 spike/s; p = 0.055 and p = 0.6).
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Figure 2. Segregated representations of textures and random dot kinematogram (RDK) motion 
in HVAs.
(A) Mice were shown texture stimuli, each of which was from one of four texture families, 

and drifted in one of four directions. Spike raster plots from two example neurons (10 trials 

shown for each) show that one neuron is selective for texture family, and the other is more 

selective for texture direction. The amount of mutual information (MI, in bits) for the two 

stimulus parameters (texture family and motion direction) are written below each raster, 

along with the overall or joint (family and direction) MI.
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(B) V1, LM, and LI provide higher MI for texture stimuli than AL or PM (p = 3.7 x 10−17). 

Error bars in inset indicate SE.

(C) Relation between information about the moving direction and information about the 

texture family carried by individual neuron per visual area. Each dot indicates one neuron. 

Blue line indicates the threshold of significant amount of information, which was defined 

by shuffled data (Mean + 3*SD). Lower right: summarize the fraction of neurons exhibit 

significant joint representation (red dots). Distribution generated by permutation.

(D) Mice were shown random dot kinematogram (RDK) motion stimuli, which drifted in 

one of four directions with up to 90% coherence (fraction of dots moving in the same 

direction). A raster for an example neuron (30 trials) shows that it fires during rightward 

motion, with 0.51 bits of MI for motion direction at 90% coherence.

(E) Cumulative distribution plot of information about the motion direction combining all 

coherence levels. Gray dashed line indicates the threshold for a significant amount of 

information, which was defined by shuffled data (mean + 3*SD). (inset) A boxplot of the 

fraction of informative neurons generated by permutation.

(F) These results indicate a segregation of visual stimulus representations: texture stimuli to 

LM, and RDK motion stimuli to AL.

(B, C, E) p-values generated by one-way ANOVA with Bonferroni correction.
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Figure 3. Parametric features of the naturalistic video stimulus.
(A) Five example neurons show reliable, yet diverse, spike responses during a naturalistic 

video stimulus.

(B) Neurons in all four tested areas exhibited similarly high response sparseness to the 

naturalistic video (one-way ANOVA, p = 0.8).

(C) Dimensionality of neuron population responses versus the number of neurons per visual 

cortical area (error bars indicate SE of permutation).

(D) Form and motion components of the naturalistic video were extracted using a bank 

of linear filters with various sizes and locations (left). This provided time-varying signals 

correlated with global, form, and motion features, such as contrast, difference-of-Gaussian 

(DOG) entropy, and speed entropy (middle). To provide an intuitive feel for these features, 

example naturalistic video frames with the corresponding DOG entropy maps, edge density 

maps, and optical flow speed maps are shown (also see Figure S4A–C).
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Figure 4. Segregated representations of spatial and motion features in naturalistic videos.
(A) The average modulation power (left) and the average modulation coefficients (right) 
of individual neuronal activity by visual features of the naturalistic video. The modulation 

power is characterized by the r-squared values (variance explained) of the linear regression.

(B) The time-varying features were weighted to best match the average neuronal activity 

of enriched classes for a cortical area (N = 200 with permutation; classes with red stars in 

Figure S5F). Areas LM was strongly modulated by DOG entropy. Area AL was strongly 

modulated by speed entropy. Area PM was modulated by contrast and edge density. The 

modulation coefficients were typically positive, but were negative for edge density. Thus, 

area PM is positively modulated by contrast, but negatively modulated by edge density. (p-

values are from one-way ANOVAs with the Bonferroni correction for multiple comparison).

(C) These results indicate that visual feature components are segregated among HVAs: 

texture features to LM, motion features to AL, and fine edge features to PM.
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Figure 5. Spatial and motion feature encoding by variants of Gabor filter-based models.
(A) The general architecture is a linear-nonlinear-Poisson (LNP) cascade neuron model. 

Neurons were simulated by various 2D and 3D Gabor-like linear kernels, with or without an 

untuned subtractive normalization.

(B) From the base LNP model, variations were derived, organized into three classes: 

2D Gabor-based, 3D Gabor-based without normalization, and 3D Gabor-based with 

normalization. Both linear and energy responses (akin to simple cells and complex cells) 

were computed from combinations of 2D Gabor filters. Linear, energy and motion responses 

(akin to simple cells, complex cells, and speed cells) were computed from 3D Gabor filters.

(C) These three classes of models varied in how much their activity was modulated by 

global, form, and motion features in naturalistic videos. The neuron models are plotted by 

their modulation in feature spaces. The location of a neuron model was defined by the 

modulation power (same as Figure 4).
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Figure 6. HVA-specific enrichment of Gabor model types.
(A) Data from example neurons are shown in raster plots (top) and PSTHs (bottom), along 

with the best fits (as PSTHs) from each of the three model classes: 2D Gabor, 3D Gabor, 

and 3D Gabor with normalization. The numbers near the model PSTHs indicate the variance 

explained by the best models for that example neuron. One best model was selected for each 

neuron for the analysis in the following panels.
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(B) For each Gabor model type and HVA, we computed how often that model was preferred 

for that HVA. Then, for each HVA, we normalized the model type fractions by the frequency 

for model types in V1.

(C) The modulation power (left) and the modulation coefficients (right) of the average 

responses of enriched model classes for HVAs (N = 50 with permutation; classes with stars 

in B).

(B, C) p-values from one-way ANOVAs to test the statistical difference among the three 

HVA areas.

Yu et al. Page 30

Curr Biol. Author manuscript; available in PMC 2023 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yu et al. Page 31

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Mouse: Emx1-cre; Ai94D (TITL-GCamp6s); 
ROSA-tTA

The Jackson Laboratory Strain: jax #005628, Jax #024104, Jax # 011008

Software and Algorithms

MATLAB R2015b, 2019b Mathworks https://www.mathworks.com/products/matlab.html

suite2p calcium imaging processing toolbox Pachitariu et al.65 https://github.com/cortex-lab/Suite2P

MCMC spike deconvolution toolbox Pnevmatikakis et al.67 https://github.com/flatironinstitute/CaImAn-MATLAB/tree/
master/deconvolution

Gabor modeling and naturalistic video processing This paper https://github.com/yuyiyi/HVA_tuning.git
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