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Significance

 This paper presents a light-field 
tomographic fluorescence 
lifetime imaging microscopy 
(LIFT-FLIM) technique capable of 
producing three-dimensional 
(3D) lifetime images in a highly 
data-efficient manner. In contrast 
to current FLIM technologies, 
LIFT-FLIM drastically reduces the 
required number of scanning 
steps to capture the same 3D 
image, leading to an accelerated 
volumetric frame rate. LIFT-FLIM 
exhibits immense promise across 
a range of biomedical 
applications, including label-free 
cancer imaging and high-
throughput, high-content 
phenotypic screening.
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Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging technique that 
enables the visualization of biological samples at the molecular level by measuring the 
fluorescence decay rate of fluorescent probes. This provides critical information about 
molecular interactions, environmental changes, and localization within biological sys-
tems. However, creating high- resolution lifetime maps using conventional FLIM systems 
can be challenging, as it often requires extensive scanning that can significantly lengthen 
acquisition times. This issue is further compounded in three- dimensional (3D) imaging 
because it demands additional scanning along the depth axis. To tackle this challenge, 
we developed a computational imaging technique called light- field tomographic FLIM 
(LIFT- FLIM). Our approach allows for the acquisition of volumetric fluorescence 
lifetime images in a highly data- efficient manner, significantly reducing the number 
of scanning steps required compared to conventional point- scanning or line- scanning 
FLIM imagers. Moreover, LIFT- FLIM enables the measurement of high- dimensional 
data using low- dimensional detectors, which are typically low cost and feature a higher 
temporal bandwidth. We demonstrated LIFT- FLIM using a linear single- photon ava-
lanche diode array on various biological systems, showcasing unparalleled single- photon 
detection sensitivity. Additionally, we expanded the functionality of our method to 
spectral FLIM and demonstrated its application in high- content multiplexed imaging 
of lung organoids. LIFT- FLIM has the potential to open up broad avenues in both basic 
and translational biomedical research.

fluorescence lifetime imaging microscopy | 3D imaging | light field imaging

 Fluorescence lifetime imaging microscopy (FLIM) ( 1 ,  2 ) has been extensively employed in 
a wide spectrum of biomedical applications, ranging from single-cell studies ( 3   – 5 ) to med
ical diagnosis ( 6   – 8 ). Rather than imaging the time-integrated fluorescent signals, FLIM 
measures the time-lapse fluorescent decay. Because the lifetime of a fluorophore is dependent 
on its molecular environment but not on its concentration, FLIM enables a more quanti
tative study of molecular effects inside living organisms compared with  conventional 
intensity-based approaches.

 The FLIM techniques are generally stratified into two categories: frequency-domain 
FLIM and time-domain FLIM. Frequency-domain FLIM utilizes frequency-modulated 
light to illuminate the sample, inducing fluorescence that oscillates at the same frequency 
but with a reduced modulation depth and a phase shift due to the noninstantaneous 
fluorescence decay ( 9 ). To extract the phase shift and modulation depth from the fluores
cence signals, frequency-domain FLIM modulates the gain of the camera at the same or 
slightly different frequency as the excitation light ( 10     – 13 ). The fluorescence lifetime can 
then be derived from the measured signals by comparing them to a reference fluorophore 
with a known lifetime. In contrast, time-domain FLIM illuminates the sample with pulsed 
laser excitation, followed by measuring the fluorescent decay in sequential time channels 
using an ultrafast detector or detector array. Due to the direct measurement of the fluo
rescence decay, time-domain FLIM provides more detailed information about decay 
dynamics than its frequency-domain counterpart. This characteristic becomes especially 
beneficial when imaging intricate fluorophores exhibiting multiple decay components.

 To acquire a two-dimensional (2D) lifetime map, most time-domain FLIM systems 
scan the sample both in the spatial ( 14 ,  15 ) and temporal domain ( 16 ,  17 ). The spatial 
and lifetime resolution of the resulting map is determined by the number of scanning 
steps used in the respective domain. To acquire high-resolution images, conventional 
time-domain FLIM systems require extensive scanning, which can result in prolonged 
acquisition times. And this problem becomes more pronounced in three-dimensional 
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(3D) imaging, as it mandates additional scanning along the 
depth axis.

 The use of single-photon avalanche diode (SPAD) arrays in 
time-domain FLIM provides a solution to this long-standing prob
lem by enabling parallel measurement of fluorescence decays at 
multiple image pixels. Moreover, SPAD arrays offer considerably 
greater sensitivity than conventional gated cameras, making them 
an excellent choice for low-light imaging applications. A SPAD 
imager can operate in either time-gated mode or time-correlated 
single-photon counting (TCSPC) mode, with TCSPC being the 
preferred detection method for its higher precision, faster speed, 
and greater sensitivity. However, the native fill factor of 2D SPAD 
arrays operating in the TCSPC mode is generally low (<10%) ( 18 ) 
due to the physical limitations posed by the inclusion of intricate 
timing electronics for each pixel. Although the addition of micro
lenses can recover some of the fill factor loss, this method is effective 
only for collimated impinging light. In contrast, a linear SPAD 
array offers a significantly higher fill factor close to 50% ( 19 ), which 
results in a substantially increased light throughput. Moreover, the 
fabrication cost of a linear SPAD array is much lower than its 2D 
counterpart, making it more accessible for general labs. Nonetheless, 
when it comes to high-resolution imaging of a 2D or 3D scene 
using a linear SPAD array system, the challenge is much like that 
of point-scanning FLIM—the conventional approach involves 
scanning the entire field of view or volume using a vast number of 
steps, which can result in a protracted imaging duration.

 To tackle the aforementioned challenges and streamline the 
acquisition of 3D FLIM data using a linear SPAD array, we devised 
a computational imaging technique called light-field tomographic 
fluorescence lifetime imaging microscopy (LIFT-FLIM). Our 
approach has been only recently made possible by an emerging 
technique, light-field tomography (LIFT) ( 20 ,  21 ), which is highly 
efficient in acquiring light-field data for 3D imaging. Sharing its 

roots with light-field photography ( 22   – 24 ), LIFT acquires mul
tiple views of a 3D object and determines depth information 
through disparity analysis. However, rather than directly capturing 
2D perspective images, LIFT measures only the en-face projections 
of the image, thereby transforming 2D perspective images into 
lines. This allows us to map high-dimensional optical information 
to a low-dimensional space through pure optical operations. 
In LIFT-FLIM, we take advantage of this transformation by 
directly capturing 1D projection images using a linear SPAD array, 
allowing for 3D fluorescence lifetime imaging with exceptional 
single-photon sensitivity.

 Aside from its 3D imaging capability, LIFT also possesses inher
ent compatibility with spectral imaging ( 25 ). Capitalizing on this 
feature, we showcased the system’s versatility by extending its 
functionality to include spectral FLIM (sFLIM). We achieved this 
by dispersing the 1D projection images utilizing a diffraction grat
ing and then feeding the resulting image into a time-gated camera 
for precise lifetime measurement. This allows for the simultaneous 
acquisition of 3D FLIM images at multiple wavelengths, making 
our system a versatile tool for analyzing both lifetime and spectral 
information. We demonstrated LIFT-FLIM and LIFT-sFLIM  
on various biological systems, highlighting their potential for 
high-content multiplexed imaging. 

Results

Operating Principle and Characterization. The basic principle of 
LIFT- FLIM is illustrated in Fig. 1A. The core idea is to transform 
and map 3D image information to a 1D linear sensor through a 
series of optical operations. A dynamic steering mirror positioned 
at the image plane tilts the incident 3D scene, producing a 
perspective view. This perspective image is then rotated using a 
Dove prism and optically integrated along the horizontal axis with 

Fig. 1.   Optical setup and image formation models. Image formation model of LIFT- FLIM (A) and LIFT- sFLIM (B). (C) System schematics. SPAD, single- photon 
avalanche diode; TCSPC, time- correlated single- photon counting.



PNAS  2024  Vol. 121  No. 40 e2402556121 https://doi.org/10.1073/pnas.2402556121 3 of 12

a cylindrical lens. The resulting image is an en- face projection 
of the perspective view along the orientation set by the Dove 
prism. This transformed line image can be directly measured by 
a linear SPAD camera (Fig. 1A) or further spectrally dispersed 
and measured by a time- gated camera (Fig. 1B). Measurements 
are repeated at different steering mirror and Dove prism rotation 
angles. The schematic of the LIFT- FLIM system is shown in 
Fig.  1C, where the sample is excited using a wide- field epi- 
illumination configuration. A comprehensive description of the 
experimental setup is provided in the Methods section.

 To reconstruct the 3D image, conventional light-field cameras 
require the acquisition of a comprehensive set of spatial and angular 
information of a light field, resulting in a significant data load. 
However, our previous work demonstrated that this acquisition 
method is inefficient and generates a substantial amount of redun
dant data ( 21 ), which can be reduced by distributing a nonlocal 
image acquisition process, such as en-face projection measurement, 
into different views. Moreover, this allows for the measurement of 
a high-dimensional light field using low-dimensional detectors, 
which are typically low-cost and feature a higher temporal band
width. In LIFT-FLIM, we leverage this advantage and capture only 
en-face 1D projection images at each scanned subpupil location. 
Furthermore, we can create an arbitrarily shaped off-focus point 
spread function (PSF) by strategically shuffling the orientation 
angles of our projection measurements across various views in a 
programmed manner (SI Appendix, Supplementary Note S2  ).

 We formulate the image formation of LIFT-FLIM using a lin
ear model. For a given perspective image  P�(u, v)     at view  k    
(  k = 1, 2, . . . ,K     ), the projection measurement along angle  �    is

   [1] f�
k
(y) = TR

�Pk ,   

 where  Pk    has a size of  N 2    (  u = 1, 2, . . . ,N ;v = 1, 2, . . . ,N     is the 
image dimension in pixels),  T    is the en-face projection operator, 
and  R�    is the image rotation operator, which describes the function 
of the dove prism rotated at  �∕2    . The number of spatial pixels in 
the 1D projection image is  N (y = 1, 2, . . . ,N )   .

 Rather than capturing a complete set of  N     projection angles at 
each view, we acquire only a subset of  nk    projection angles at view 
 k    . This process can be explicitly written as

    [2]

 

f =

⎡⎢⎢⎢⎢⎣

A1 ⋯ 0

⋮ A2 ⋮

0 ⋱ 0

0 ⋯ Ak

⎤⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

P1

P2

⋮

PK

⎤⎥⎥⎥⎥⎦
+ �,

   

 Here,  f     is a stack of projection measurements (also referred to 
as a sinogram), and it has a dimension of  N ×N�    , where 
 N� =

∑K
1
nk    .  Ak = TRk = T

[
R
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�k,nk

]
    is a com

bined function of en-face projection and image rotation operators 
on perspective image  Pk    .  �    denotes the measurement noise. Because 
the images from different views capture the same scene, they share a 
common underlying content (SI Appendix, Supplementary Note S1  ),  
with only a depth-dependent disparity between any two subaper
ture images, as shown in SI Appendix, Fig. S1 . Therefore, the cor
relation between subaperture images can be modeled by digitally 
propagating the light field, i.e.,  the subaperture image  Pk    at view 
 k    can be related to a depth-dependent vectorized image  h(d )    
through an invertible shearing operator  Bk    as  Pk = Bk(d )h(d )    , 
where  Bk    is also a function of depth  d     (SI Appendix, Supplementary 
Note S1  ). Accordingly, we transform Eq.  2   to

   [3]
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  The overall image forward operator  F(d )    becomes a function 
of depth  d     , which is essential for recovering image  h(d )    with var
ious focal settings. Noteworthily, although individual  Pk    is meas
ured at only a subset of projection angles, the underlying image 
 h(d )    is measured on a complete angular basis, as  F(d )    concatenates 
image rotation operators across all views.

 For direct fluorescence lifetime measurement using a linear 
SPAD array with TCSPC ( Fig. 1B  ), the image formation model 
is a time-lapse version of Eq.  3  , which can be expressed as

   [4] f(t ) = F(d )h(d , t ) + �(t ),   
 where  f(t )    is a time-lapse sinogram constructed by the projection 
measurements at the time bin  t    of a TCSPC temporal histogram.

 For spectral FLIM measurement using a gated ultrafast camera 
( Fig. 1C  ), the image forward model is a function of both time  t    
and wavelength  �   :

   [5]
 
f(t , �) = F(d )h(d , t , �) + �(t , �),

   
 where  f(t , �)    is a spectrally resolved, time-lapse sinogram con
structed by the projection measurements at the gated time  t    and 
wavelength  �   .

 The image reconstruction of LIFT-FLIM and -sFLIM involves 
solving the inverse problems of Eqs.  4   and  5  , respectively. Like 
standard computed tomography, this can be accomplished through 
simple inverse Radon transform or more advanced optimization 
algorithms like a Fast Iterative Shrinkage-Thresholding Algorithm 
(FISTA) ( 26 ,  27 ). We depict the workflow for processing the 
light-field data, such as image refocusing, extending the depth of 
field, and rendering a 3D image in Methods .

 It is noteworthy that LIFT-FLIM acquires data in a compressed 
manner, reducing the number of projections required for image 
reconstruction. To reconstruct an image with high fidelity, the object 
must be sparse in specific domains. We analyzed the LIFT-FLIM 
image reconstruction fidelity in various conditions (Discussion ).

 Akin to conventional light-field cameras, LIFT-FLIM and 
-sFLIM divide the aperture to extract the depth information. 
Therefore, they have a reduced lateral resolution (~1.8 μm) com
pared with the native diffraction-limited resolution of the objec
tive lens (SI Appendix, Fig. S2 ). To improve the quality of the 
reconstructed images, we developed a deep-learning-based image 
enhancement neural network ( 28   – 30 ) ( Fig. 2 ). The input to the 
neural network consists of reconstructed LIFT depth images, a 
diffraction-limited reference image captured at the depth zero, 
and digital propagation matrices (DPMs), which represent the 
axial distance from the reference image plane to the target plane 
on a per-pixel basis ( 31 ). The neural network then uses a 
PixelCNN++ architecture ( 32 ) to generate high-resolution outputs 
at corresponding depths. With DPMs, the neural network effec
tively enhances the image quality by reducing out-of-focus blur 
and refocusing artifacts usually observed in images captured by 
light-field cameras with limited angular sampling rates.        

http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
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 Further details about the network can be found in SI Appendix, 
 Supplementary Note S10  . The axial resolution, determined by the 
NA of the objective lens and the number of views acquired, was 
measured to be ~3.0 μm for point objects (SI Appendix, Fig. S2 ). 
The temporal resolutions of LIFT-FLIM and -sFLIM depend on 
the characteristics of the image sensor. For example, using a linear 
SPAD array provides a temporal resolution of 50 ps with TCSPC 
( 33 ), whereas using a gated ultrafast camera yields a temporal 
resolution of 70 ps.  

LIFT- FLIM of Mixed Fluorescent Beads. We validated the 3D 
lifetime imaging performance of LIFT- FLIM on fluorescent 
beads. We mixed three types of fluorescent beads with lifetimes 
of 1.5 ns, 3.4 ns, and 4.0 ns, respectively, in an agarose gel. We 
simultaneously excited the beads using a filtered supercontinuum 
laser and imaged the fluorescence using LIFT- FLIM with a linear 
SPAD array. Moreover, we captured the ground- truth intensity 
images (Fig. 3A) at depths from - 8 µm to 8 µm using a reference 
camera by mechanically scanning the microscope’s focus.

 To compare LIFT-FLIM images with the ground-truth images 
obtained, we summed the signals at all time bins in the TCSPC 
temporal histogram and reconstructed the time-integrated images 
at the corresponding depths ( Fig. 3B  ). The resulting images exhibit 
a high degree of similarity to the ground-truth images, demon
strating the system’s numerical refocusing capability. We further 

generated the time-lapse LIFT-FLIM images and computed the 
average lifetime at each image pixel using monoexponential curve 
fitting ( Fig. 3C  ). Three representative fluorescence decays recon
structed at beads’ locations are shown in  Fig. 3D  . The derived 
fluorescence lifetimes are consistent with the beads’ specifications. 
Furthermore, we generated a histogram of the lifetimes of all pixels 
at depth zero ( Fig. 3E  ). This histogram displays three distinct 
peaks that correspond to the lifetimes of three different types of 
fluorescence beads. This observation supports the reliability and 
accuracy of our lifetime measurement.  

LIFT- FLIM of a Mouse Kidney Tissue Section. We tested 
LIFT- FLIM on a standard biological sample (a mouse kidney 
section, FluoCells™ Prepared Slide from ThermoFisher) and 
demonstrated its capability in lifetime unmixing. The sample 
was stained with Alexa Fluor 488 wheat germ agglutinin (WGA) 
for labeling cell membrane and Alexa Fluor 568 phalloidin for 
labeling filamentous actin (F- actin). These two fluorophores have 
distinct but close fluorescence lifetimes (Alexa Fluor 488, 2.6 ns 
vs. Alexa Fluor 568, 2.9 ns). The fluorescence intensity image 
captured at the focal plane by the reference camera is shown in 
Fig. 4A. The refocused LIFT- FLIM fluorescence lifetime images 
at representative depths are displayed in Fig. 4B. Fig. 4C shows 
the fluorescence decay curves measured at two fluorophore 
locations, and Fig. 4D shows the histogram of all pixels’ lifetimes 

Fig. 2.   Deep- learning- based image enhancement neural network. The network consists of two down-  and up- sampling streams. Each stream has five ResNet 
blocks in both down- sampling and up- sampling paths. Each ResNet block contains four ResNet layers, and each ResNet layer has two 3 × 3 convolutional layers 
and one 1 × 1 convolutional layer, as indicated in the bottom right panel. Strided convolutional layers were added between the two adjacent ResNet blocks to 
halve the spatial dimensions in the down- sampling path, and conversely transposed strided convolutional layers were utilized to implement up- sampling in the 
up- sampling path. The spatial dimensions of the ResNet blocks in the sampling streams from left to right are 256 × 256, 128 × 128, 64 × 64, 32 × 32, 16 × 16,  
32 × 32, 64 × 64, 128 × 128, and 256 × 256. The central 16 × 16 ResNet blocks are shared by the down-  and up- sampling streams. Skip connections connect each 
ResNet block in the down- sampling path with its counterpart block in the up- sampling path. The inputs to the network include LIFT refocused depth image stack 
using filtered back projection from depth −z

0
 to depth z

0
 , reference image captured at depth zero, and a DPM stack. The output is a high- resolution image stack 

at the corresponding depths. DPM: digital propagation matrix. �
1
, �

2
 : activation functions. Conv2d: convolution 2D.

http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
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at depth zero, where the two peaks indicate the two underlying 
lifetime components.

 Next, we applied an unsupervised phasor approach ( 34 ,  35 ) to 
the fluorescence lifetime data and calculated the probability of 
each pixel belonging to a specific lifetime component cluster. 
 Fig. 4E   displays the phasor plot for the fluorescence lifetime image 
at depth zero, with each data point color-coded to represent its 
corresponding probability and overlaid with probability contour 
lines. We then classified the image pixels in the time-integrated 
LIFT-FLIM image based on this probability and unmixed the 
fluorophores into pseudocolored channels.  Fig. 4F   shows a repre
sentative unmixed image at depth zero (red channel, phalloidin; 
green channel, WGA). Repeating this procedure for all depths 
yields a 3D unmixed image, as shown in  Fig. 4G  .  

LIFT- FLIM of a Human Lung Cancer Pathology Slide. We demon
strated LIFT- FLIM in autofluorescence imaging of an unstained 
human lung cancer pathology slide. Previous studies show that 
FLIM can access tumor metabolism by imaging endogenous 
chromophores such as NAD(P)H and FAD, enabling its application 
in cancer diagnosis and intraoperative surgical guidance (36, 37). 
Particularly in pathological imaging, FLIM holds great promise 
as an alternative approach for label- free detection of tissue lesions 
(8, 9, 38). However, conventional FLIM microscopes with a high 
collecting NA suffer from a shallow depth of field. When imaging 
a panoramic FOV through multiple captures and stitching, the 

system must mechanically adjust its focus at each position to correct 
for potential focal drift that can occur during extensive scanning, 
complicating the imaging procedure. Here, we show that, by using 
numerical refocusing, LIFT- FLIM enables an extended depth of 
field and allows for capturing an all- in- focus image without the 
need for accounting for the focal drift.

 We excited the sample at 450 nm and collected the autofluores
cence in the range of 490 to 700 nm. The primary endogenous 
fluorophore that accounts for the fluorescence emission at this 
wavelength is flavin adenine dinucleotide (FAD). To image a large 
FOV, we scanned the sample and stitched the images. The resultant 
fluorescence intensity image captured by the reference camera is 
shown in  Fig. 5A  , where certain parts of the FOV are blurred due 
to the focal drift. In contrast, LIFT-FLIM can numerically correct 
for this defocus error in postprocessing and form an all-in-focus 
image, as shown in  Fig. 5B  . For quantitative comparison, we plot
ted signal intensities along a dashed line in  Fig. 5 A - B   and show 
the results in  Fig. 5C  . The image features appear to have much 
sharper edges in LIFT-FLIM compared to those captured by the 
reference camera (~36% reduction in full -width at half maxi
mum). Next, we computed the lifetimes for the stitched all-in-focus 
LIFT image and presented a lifetime map in  Fig. 5D  . A zoom-in 
area ( Fig. 5E  ) shows a significant level of lifetime heterogeneity. To 
correlate this observation to the tissue state, we stained an adjacent 
slide from the same tissue sample using standard hematoxylin and 
eosin (H&E) and imaged it under a wide-field microscope. After 

Fig. 3.   LIFT- FLIM of mixed fluorescent beads. (A) Reference intensity images at depths of −8 µm, −4 µm, 0 µm, 4 µm, and 8 µm. (B) Time- integrated LIFT- 
FLIM images at the corresponding depths. The refocusing to continuous depths is visualized in Movie S1. (C) Lifetime images at the corresponding depths.  
(D) Fluorescence decay curves at representative beads’ locations. (E) Histogram of pixel lifetimes at depth zero (Scale bar, 20 µm.) Data acquisition time: 18 s. 
Total number of projection angles: 45.

http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
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the histological image was obtained, a pathologist reviewed it to 
identify the boundary between the tumor and normal tissue, as 
illustrated in  Fig. 5F  . Comparing the average pixel lifetimes above 
(1.9 ± 0.3 ns) and below (2.6 ± 0.4 ns) the annotated boundary 
( Fig. 5F  ) reveals a significant difference ( Fig. 5G  ). The observed 
reduction in autofluorescence lifetimes in the tumor areas com
pared to that in the normal tissue is consistent with previous reports 
( 39   – 41 ) and may indicate a shift toward glycolysis and cancer 
metabolism ( 42 ). To classify the tissue based on the lifetime, we 
again applied an unsupervised phasor approach ( 34 ,  35 ) to the 
fluorescence lifetime data. The resultant phasor plot and classified 
tissue map are shown in  Fig. 5 H  and I  , respectively (red channel, 
tumor; green channel, normal tissue).          

LIFT- sFLIM of Lung Organoids. We demonstrated LIFT- sFLIM 
in 3D multiplex imaging of lung organoids. Organoids, 3D 
multicellular stem- cell- derived constructs that mimic in vivo tissue, 
have gained growing interest for modeling tissue development and 
disease (43–45). Particularly, organoids hold great promise for 
high- content phenotypic screening because they recapitulate many 
aspects of parent tissues and can be derived from patient material, 
rendering them ideal model systems for personalized medicine and 
drug discovery (46–50).

 One primary challenge for high-content phenotypic screening of 
organoids is extraction of multivariate information from organoids 
labeled with multiple biomarkers ( 51   – 53 ). Here, we show that, by 
acquiring both the spectral and lifetime information, LIFT-sFLIM 
provides a powerful solution to overcome this challenge. We cultured 
lung alveolar organoids with different combinations of primary 
healthy human lung fibroblasts and epithelial cells grown on alginate 
scaffolds that mimic the alveolar microarchitecture ( 54 ). We used 

the antibodies tabulated in SI Appendix, Table S2  and labeled epi
thelial–mesenchymal transition by α smooth muscle actin (α-sma) 
expression, ECM deposition by collagen (collagen I) expression, cell 
apoptosis by SMAD signaling pathway (smad3), and cellular senes
cence by P16INK4A  (p16) expression.

 The  Fig. 6A   depicts the fluorescence emission decay curves and 
spectra of the four fluorophores that were utilized in the secondary 
antibodies. While the fluorophores AF 532, 546, and 568 have 
close fluorescence lifetimes, their spectral emission peaks are well 
separated. On the other hand, AF 546 and AF 555 exhibit signif
icant spectral overlaps but differ in fluorescence lifetimes. The 
combination of four fluorophores used in this study presents a 
challenge for conventional imaging techniques. Specifically, nei
ther FLIM nor spectral imaging alone can simultaneously capture 
and distinguish all four fluorophores. This limitation underscores 
the need for innovative imaging approaches, such as LIFT-sFLIM, 
which can integrate both spectral and temporal information to 
enable reliable separation and quantification of multiple fluoro
phores in complex biological samples.        

 Using LIFT-sFLIM, we acquired a five-dimensional (5D) data
set (  x, y, z, t , �     ) (  x, y, z     , spatial coordinates;  t     , fluorescence decay 
time;  �     , wavelength).  Fig. 6B   shows the LIFT-sFLIM recon
structed intensity image at depth zero. The wavelength-integrated 
lifetime image and time-integrated wavelength image at depth 
zero are shown in  Fig. 6 C  and D  , respectively. To unmix the 
fluorophores, we applied a spectral-lifetime phasor approach to 
the 5D dataset. The resultant color-coded phasor plots in the 
lifetime and spectral domains are shown in  Fig. 6 E  and F  , respec
tively. Consistent with the spectral and lifetime data presented in 
 Fig. 6A  , our analysis revealed two distinct clusters in the lifetime 
phasor plot and three distinct clusters in the spectral phasor plot. 

Fig. 4.   LIFT- FLIM of a mouse kidney tissue section. (A) Reference intensity image at depth zero. (B) Reconstructed lifetime images at depths of −8 µm, −4 µm, 
0 µm, 4 µm, and 8 µm. The refocusing to continuous depths is visualized in Movie S2. (C) Fluorescence decay curves at two representative fluorophore locations. 
(D) Histogram of pixel lifetimes at depth zero. (E) Phasor plot. The data points were pseudocolored based on their probability of belonging to a specific cluster 
(red, phalloidin; green, WGA). The probability contour lines ranging from outer to inner space correspond to values of 0.1, 0.3, 0.5, 0.7, and 0.9. (F) Unmixed 
fluorophore image at depth zero. Red channel, phalloidin. Green channel, WGA. (G) 3D visualization of unmixed fluorophores’ distribution. Visualization from 
other perspective angles is provided in Movie S3. Scale bars in all figures: 20 µm. Data acquisition time: 36 s. Total number of projection angles: 90.

http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
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By combining spectral and temporal information, we separated 
the fluorophores into four color-coded channels. Representative 
images at depth zero are shown in  Fig. 6G  . By repeating this pro
cedure at all depths, we generated a 3D color-coded image that 
depicts the distribution of each fluorophore in the organoid, as 
shown in  Fig. 6H  .   

Discussion

 Using LIFT-FLIM for 3D lifetime imaging offers a crucial benefit 
of reducing the number of scanning steps required compared to 
traditional point- or line-scanning time-domain FLIM techniques. 
To produce a 3D image of  Nx ×Ny ×Nz    voxels, a FLIM system 
that uses point- or line-scanning requires a total of  Nx ×Ny ×Nz    
or  Ny ×Nz    (if line scans are done along the y  axis) scanning steps, 
respectively. Here,  Nx    ,  Ny    , and  Nz    denote the number of spatial 
samplings in a 3D space. For simplicity, we consider  Nx = Ny = N    . 
In contrast, because LIFT-FLIM distributes projection measure
ments into different views, it demands only  N�    scanning steps, 
where  N�    is a total number of projection angles. Therefore, LIFT-
FLIM reduces the scanning steps required by a factor of 

 N 2 ×Nz∕N�    or  N ×Nz∕N�    compared to point- or line-scanning 
systems.

 For noncompressive measurement, we set  N�     equal to  N .     
Additionally, as demonstrated in SI Appendix, Supplementary Note S4  , 
our findings indicate that, in the light-field imaging, the effective 
number of depth samplings,  Nz    , equals the number of angular 
samplings,  K     . As a result, the scanning reduction factor is either 
 N × K     or  K     when compared to point- or line-scanning systems. 
With our current  N     and  K     values set at 180 and 15, respectively, 
the resulting scanning reduction factors are 2,700 and 15 in com
parison to point- or line-scanning systems.

 Alternatively, like sparse-view computed tomography ( 55 ), we 
can choose an  N�    less than  N     for compressive measurement. We 
define a compression ratio (CR) as

   [6] CR = N ∕N� .   
 In the compressive imaging framework, the number of meas

urements required to reconstruct the image can be substantially 
reduced. However, the image reconstruction fidelity depends on 
the CR and the sparsity of the image. Generally, the image must 
be compressible, so it can be sparsely represented on a certain 

Fig. 5.   LIFT- FLIM of a human lung cancer pathology slide. (A) Left panel: Stitched reference intensity image. Right panel: Zoom- in image of the circled area in 
the Left panel. The image is blurred due to focal drift during extensive scanning. (B) Left panel: Stitched all- in- focus time- integrated LIFT- FLIm image. Right panel: 
Zoom- in image of the circled area in the Left panel. (C) Intensity profiles of dashed lines in A and B. (D) Stitched all- in- focus lifetime image. The lifetime image 
is masked with an intensity threshold (E) Zoom- in image of the circled area in D. (F) Hematoxylin and eosin (H&E)- stained image from an adjacent tissue slice. 
The tumor/normal tissue boundary was identified by a pathologist and annotated with a white dashed line. (G) Average pixel lifetimes in the tumor and normal 
tissues areas in E. The SD is shown as error bars. (H) Phasor plot. The data points were pseudocolored based on its probability belonging to a specific cluster 
(Red, tumor; Green, normal). The probability contour lines ranging from outer to inner space correspond to values of 0.1, 0.3, 0.5, 0.7, and 0.9. (I) Classified 
tissue map. Red channel, tumor; green channel, normal. Scale bars in all figures: 100 µm. The data acquisition takes 36 s for each scanned FOV. Total number 
of projection angles for each scanned FOV: 90.

http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
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basis. Under this condition, a basis-pursuit method reconstructs 
the image by finding its sparse representation.

 To quantify the dependence of the reconstructed image quality 
on the CR, we adopted the peak signal-to-noise ratio (PSNR) and 
structural similarity index measure (SSIM) as evaluation metrics. 
We varied the CR by increasing  N�    and calculated the correspond
ing PSNRs and SSIMs. SI Appendix, Fig. S3  illustrates reconstruc
tions of sparse and complex objects at different CR values. In 
general, reducing the CR improves both PSNR and SSIM in the 
reconstructed image. Additionally, our findings suggest that the 
quality of the reconstructed image is highly dependent on the CR 
for complex objects, like the lung tumor image displayed in 
 SI Appendix, Fig. S3C  . In such cases, a lower CR value, less than 
4.5, is necessary to achieve high-quality image reconstruction 
(SSIM ≥ 0.9). Conversely, when imaging a sparse object, such as 
an USAF resolution target, a CR of 9 is sufficient to recover a 
high-quality image. Therefore, by adjusting  N�    , LIFT-FLIM can 
tailor the CR to the complexity of a sample, resulting in effective 
measurements for a given object.

 The Imaging speed of LIFT-FLIM is determined by the total 
number of projections  N�    acquired and the time duration at each 
projection. For LIFT-FLIM using a linear SPAD array, the dura
tion at each projection includes both the pixel exposure time and 
temporal histogram readout time. For LIFT-sFLIM using a gated 
ultrafast camera, the duration at each projection equals the prod
uct of the number of time gates and the camera frame time. 
Importantly, when imaging simple objects, the system can be 
operated in the compressive measurement mode, where a reduced 
 N�    can be acquired to accelerate the imaging speed without com
promising the image quality (SI Appendix, Figs. S3 and S15 ).

 The spatial resolution of LIFT-FLIM is fundamentally limited by 
optical diffraction when performing noncompressive measurements. 

Due to the division of the aperture, LIFT-FLIM has a lateral reso
lution of  �f ∕D    , where  �    is the wavelength,  f     is the focal length of 
the objective lens, and  D    is the subaperture diameter associated with 
a perspective image. Given  K     views,  D = D0∕

√
K     , where  D0    is the 

original aperture of the objective lens. Therefore, the lateral resolution 
is  
√
K     times greater than the native resolution of the objective lens. 

Although this is a common issue encountered by all light-field cam
eras, we can mitigate it by acquiring fewer views and increasing the 
subaperture size to enhance the resolution at the expense of reduced 
depth accuracy. On the other hand, when performing compressive 
measurements, the spatial resolution of LIFT-FLIM is practically 
limited by the CR. While a higher CR is favored in terms of imaging 
speed, it deteriorates the reconstructed image quality and resolution 
for complex objects. Hence, selecting an appropriate CR value for a 
given object involves striking a balance between imaging speed and 
resolution.

 LIFT-FLIM images can be reconstructed and analyzed in real 
time. For instance, when processing uncompressed measurement 
data, a simple inverse Radon transform takes about 0.13 s per time 
bin on an Nvidia RTX3080Ti GPU with CUDA. Subsequently, 
deep learning enhancement and phasor analysis require 0.079 and 
0.024 s, respectively. Parallel computing reduces the total post
processing time to less than 0.3 s.

 The light throughout of LIFT-FLIM depends on the subap
erture size of a perspective image, the ratio of projection line 
image width to the detector pixel’s size, and the fill factor of the 
image sensor. As detailed in SI Appendix, Supplementary Note S3  , 
the LIFT-FLIM is built on an unfocused light-field imaging 
configuration, where the projection line width at the image sen
sor equals to the subaperture diameter,  D    , multiplying with a 
pupil demagnification ratio,  r    . Given the pixel pitch,  p    , and fill 

Fig. 6.   LIFT- FLIM of lung organoids. (A) Fluorescence decay curves (Left panel) and emission spectra (Right panel) of the fluorophores used. (B–D) Reconstructed 
LIFT- sFLIM (B) intensity image, (C) wavelength- integrated lifetime image, and (D) time- integrated wavelength image at depth zero. (E) Lifetime phasor plot. The 
data points were pseudocolored based on its probability belonging to a specific cluster (red, sma, collagen, p16; green: smad3). The probability contour lines 
ranging from outer to inner space correspond to values of 0.2, 0.35, 0.65, and 0.95. (F) Spectral phasor plot. The data points were pseudocolored based on its 
probability belonging to a specific cluster (magenta: collagen, smad3; yellow: sma; green, p16). The probability contour lines ranging from outer to inner space 
in the magenta and yellow clusters correspond to values of 0.45, 0.65, and 0.85, while the contour lines in the green cluster correspond to values of 0.25, 0.45, 
0.65, and 0.85. (G) Unmixed component images at depth zero. (H) 3D visualization of unmixed fluorophores’ distribution in the organoid. Visualization from other 
perspective angles is provided in Movie S4. Scale bar: 100 µm in all figures. Data acquisition time: 23 s. Total number of projection angles: 90.

http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
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factor,  �    , the percentage of light measured by the image sensor 
pixel is

   [7] �FLIM =
D

D0

×
p�

Dr
=

p�

D0r
.   

 Here,  D∕D0    describes the light loss due to the view selection 
during pupil scanning, where  D0    is the original aperture of the 
objective lens. Therefore, a lower pupil demagnification ratio 
(i.e.,  a shorter focal length of the cylindrical lens in  Fig. 1A  ) can 
lead to a higher system light throughput. In our current system, 
due to use of only off-the-shelf optics and a SPAD array, we have 
 r    equal to 0.1, resulting in an overall light throughput of 0.01. 
To further enhance the system performance, one possible 
approach is to utilize custom optics that feature a lower pupil 
demagnification ratio,  r    , together with a rectangularly shaped 
SPAD pixel that has a longer pixel pitch,  p    , in the direction of 
the projection line width. Alternatively, instead of scanning the 
pupil to choose the views, it is possible to simultaneously capture 
all perspective images by employing an array of dove prisms with 
different orientations, as we have previously demonstrated ( 25 ). 
However, this setup necessitates the use of multiple linear SPAD 
arrays, each of which measures a projection line image in a syn
chronized fashion.

 On the other hand, for LIFT-sFLIM using a gated ultrafast 
camera, the light throughput is determined by the subaperture 
size of a perspective image, the diffraction efficiency of the grating, 
 �    , and quantum efficiency of the gated ultrafast camera,  �   .

   [8] � sFLIM =
D

D0

× � × �.   

 Since  D∕D0 = 1∕
√
K      , where  K      is the total number of views 

acquired, Eq.  8   can be rewritten as  � sFILM = ��∕
√
K .     Hence, 

reducing the number of angular samplings can boost the light 
throughput, but this comes at the cost of decreased depth accuracy. 
Noteworthily, here the pupil magnification ratio,  r     , has no effect 
on the light throughput. Rather, it governs the spectral resolution 
of the system like in a conventional pushbroom imaging spec
trometer ( 56 ,  57 ).

 To investigate how the number of photons received at a pixel 
affects the quality of the reconstructed image, we conducted sim
ulations under a shot-noise-limited condition. Provided that the 
pixel with the maximum count in the image collects  M     photons, 
the corresponding shot noise is  

√
M     photons. We introduced 

photon noise to all pixels in the projection images and recon
structed the images with various values of  M     , while maintaining 
a constant number of projections across all data points in the plot. 
 SI Appendix, Fig. S4  presents the reconstruction results of a 
Shepp-Logan phantom under different  M     values. The results indi
cate that a larger  M     (i.e.,  more photons) can lead to a higher 
PSNR. For high-quality image reconstruction with a criterion of 
PSNR ≥ 20 dB ( 58   – 60 ),  M     must be greater than 64 photons.

 A fundamental limit for LIFT-FLIM’s acquisition speed is the 
SPAD sensor’s dead time, during which the sensor does not 
respond to subsequent photons after the initial photon counting 
event ( 61 ). When the photon rate is high, photons arriving within 
the sensor’s dead time are discarded, causing the lifetime decay 
curve to appear shorter—a phenomenon known as the “pile-up 
effect.” To mitigate this issue and prevent counting loss, we control 
the excitation intensity at the sample, setting the average photon 
counting rate at each scanned position to a small fraction (< 10%) 
of the photodetector’s maximum photon counting rate (the inverse 
of its dead time).

 Additionally, the compressed measurement reduces the total 
number of acquisitions, thereby lowering the light dosage to the 
sample. This is particularly beneficial for 3D imaging, where con
ventional point-scanning systems require additional scanning 
along the depth axis. Moreover, wide-field illumination helps 
reduce phototoxicity. Previous literature suggests that phototox
icity exhibits a nonlinear dependence on laser peak power ( 62 ). 
By maintaining the same total light dosage, phototoxicity in live 
cells can be minimized by lowering the peak power and increasing 
the exposure time ( 63 ).

 Finally, although LIFT-FLIM offers efficient 3D lifetime image 
acquisition, it lacks intrinsic optical sectioning like confocal or light 
sheet microscopes (SI Appendix, Supplementary Note S5  ). Although 
3D deconvolution can possibly remove out-of-focus light, this pro
cess is sensitive to the signal to noise ratio and persistent shot noise 
can degrade in-focus image contrast. Neural networks with DPM 
provide an improved 3D imaging quality but require high-fidelity 
training dataset. Another solution could be combining LIFT-FLIM 
with structured illumination like light sheets; however, this approach 
would entail the need for depth scanning, consequently elongating 
the overall acquisition timeframe. We demonstrated the enhanced 
optical sectioning capabilities of our method compared to conven
tional wide-field imaging by utilizing 3D image reconstruction 
algorithms. However, this improvement comes at the expense of 
increased computational burden due to the iterative reconstruction 
process (SI Appendix, Supplementary Note S9   and SI Appendix, 
Figs. S16–S20 ).

 Capitalizing on its rapid 3D lifetime acquisition capabilities, 
LIFT-FLIM can find many applications in biomedical sciences. 
One specific area is high-throughput label-free metabolic imaging 
of organoids, where FLIM has a unique advantage in examining 
endogenous metabolic biomarkers like NAD(P)H and FAD. 
However, the current FLIM techniques stumble in high-throughput 
screening due to their slow acquisition speed. LIFT-FLIM can 
potentially address this challenge by offering a rapid means to 
evaluate the organoid metabolism in 3D. The technological 
advancement it affords can expedite endeavors like drug discovery 
and personalized medicine across diverse fields.

 To sum up, we have created a highly data-efficient 3D FLIM 
technique that relies on LIFT and extended its capabilities to 3D 
sFLIM. We believe that LIFT-FLIM and -sFLIM will find broad 
applications in high-throughput and high-content imaging of 
biological cells and tissues, opening up broad avenues for both 
fundamental and translational biomedical research.  

Methods

Experimental Setup. In a LIFT- FLIM and - sFLIM system, we used an epifluo-
rescence microscope (IX83, Olympus) as the front- end optics and excited the 
sample with a pulsed laser source (SuperK FIANIUM, FIU- 15, NKT Photonics, for 
LIFT- FLIM; SIRIUS GR- 2, Spark Laser, for LIFT- sFLIM). The emitted fluorescence is 
collected by a microscope objective lens (UPLXAPO60XO, Olympus; UPLXAPO20X, 
Olympus), and an intermediate fluorescence image is formed at the side image 
port of the microscope.

To split the light, we employed a beam splitter (BSX16, Thorlabs), which trans-
mits 10% of the light to a reference camera (CS2100M- USB, Thorlabs) and reflects 
90% of the light to the LIFT- FLIM camera. We placed a steering mirror (MR- 15- 30, 
Optotune) at the intermediate image plane to shift the pupil image.

The fluorescence is then directed through a 4f system, which consists of two 
lenses (ACT508- 250- A and AC254- 150- A, Thorlabs) with a focal length of 250 mm 
and 150 mm, respectively. To rotate the perspective image, we mounted a Dove 
prism (PS990M, Thorlabs) on a motorized rotation stage (PRM1Z8, Thorlabs) and 
positioned the assembly at the Fourier plane of the 4f system. We also positioned 
a cylindrical lens (LJ1095L1- A, Thorlabs, invariant axis along the y- axis) 131 mm 
after the second lens in the 4f system, which generates a 1D en- face projection 

http://www.pnas.org/lookup/doi/10.1073/pnas.2402556121#supplementary-materials
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of a perspective image along the y- axis. To locate the projection line image, we 
identified the line with the smallest width. Additionally, we compensated for the 
focal shift and spherical aberration introduced by the cylindrical lens by defocusing.

The subsequent system is split into two arms, namely the LIFT- FLIM and LIFT- 
sFLIM arms. The former employs a linear SPAD array (33), while the latter utilizes 
a 2D ultrafast time- gated camera (High rate image intensifier, LaVision). To switch 
the light path between the two arms, we placed a flip mirror (TRF90, Thorlabs; 
PF10- 03- G01, Thorlabs) at the line image plane.

When the mirror is positioned at 1, the fluorescence is directed toward the LIFT- 
FLIM subsystem through a camera lens (YN100mm F2, YONGNUO) and directly 
measured by the linear SPAD camera. The linear SPAD camera comprises 256 
effective CMOS SPAD pixels with a pitch of 26.2 µm. Operating in the TCPSC 
mode, the SPAD camera provides a temporal resolution of 50 picoseconds (33). 
It is connected to a FPGA (Spartan 6, Xilinx) with 64 time- to- digital converters 
(TDCs) and histogram engines, enabling it to process up to 8.5 giga- photons 
per second. By rotating the dove prisms in a set of angles at assigned views, we 
sequentially acquired the 1D en- face projections and constructed a sinogram.

In position 2 of the flip mirror, the emitted fluorescence is directed to the LIFT- 
sFLIM subsystem. The line image is relayed to the image sensor plane by a pair 
of camera lenses (YN100mm F2, YONGNUO). To disperse the line image along 
the x- axis, we positioned a transmission diffraction grating (GT50- 03, Thorlabs) 
at the Fourier plane of the relay system. The resultant dispersed projection image 
is then sampled in time by an ultrafast time gate and further relayed to a 2D 
camera (CS2100M- USB, Thorlabs) by a camera lens (YN100mm F2, YONGNUO). 
By varying the delay between the time gate and the laser reference signal, we 
acquired a series of time- resolved dispersed projection images. To synchronize 
the steering mirror, the dove prism rotation stage, the camera, and the laser, 
we employed a digital delay generator (DG645, Stanford Research Systems). To 
maximize information content for image reconstruction, we chose the dove prism 
rotation angles from a set of angles that are evenly spaced in the range of [0, 90°].

To tune the illumination wavelength from the supercontinuum laser, we built 
a wavelength- selecting module (SI Appendix, Fig. S5) using a digital micromirror 
device (DMD). The collimated white laser beam is first dispersed by a transmis-
sion diffraction grating (GT50- 03, Thorlabs) and line focused onto the surface of 
the DMD (DLP LightCrafter 6500, Texas Instruments) through a cylindrical lens 
(LJ1125L1- A, Thorlabs). The broadband illumination has a line dispersion of 54.4 
nm/mm on the DMD surface. The DMD has 1920 × 1080 micromirrors, each of 
which can be individually tilted ±12° relative to the norm. Each column of the 
DMD corresponds to a different wavelength with a 0.4 nm/column wavelength 
resolution. By adjusting the mirror pattern, we can select any desired illumination 
wavelengths. The laser light of selected wavelengths is then spatially recombined 
by another identical set of cylindrical lens and diffraction grating and directed 
toward the LIFT- FLIM subsystem.

When imaging the mixed fluorescence beads and mouse kidney tissue sec-
tion, we used multiband excitation with two different wavelengths (488 nm and 
561 nm) and separated fluorescence from excitation using the combination of 
a multiband dichroic mirror (ZT405/488/551/647rpc, Chroma) and a multiband 
emission filter (ZET405/488/561/647 m, Chroma). For imaging the human lung 
cancer pathology slide, we used 450 nm laser excitation, a 495 nm dichroic mirror 
(T495lpxr, Chroma), and a long- pass emission filter (ET500lp, Chroma). In the case 
of lung organoids, we used 532 nm laser excitation, a 532 nm dichroic mirror 
(ZT532rdc, Chroma), and a long pass emission filter (ET542lp, Chroma). The laser 
fluence at the sample focal plane was approximately 9.9 × 10−7 J/cm2, 1.1 × 10−7 
J/cm2, and 2.9 × 10−3 J/cm2 for the mouse kidney section, lung cancer pathology 
slide, and lung organoid imaging experiments, respectively. These laser fluences 
were well below the cell damage threshold of 4 J/cm2 (64, 65).

Image Reconstruction. To obtain an image of a monochromatic scene at a 
specific time point and depth from the measurement described by Eq. 3, we 
iteratively solve an optimization problem:

 [9]argmin‖ f − F (d)h(d)‖2
2
+ �‖�(h(d)‖1,

where ‖. ‖2  denotes the l2  norm, ‖ ⋅ ‖1  denotes the l1  norm, and �( ⋅ )  is a data 
regularization term. �  is a hyperparameter that balances the data fidelity and reg-
ularization term. In the framework of regularization by denoising (66), �( ⋅ )  is not 
explicitly specified, and the regularization can be implemented by image denois-
ing methods such as block- matching and 3D filtering (BM3D), total variation 

denoisers (67), or a neural network. Besides the iterative method (26, 27),  
inverse Radon transformation (55) is an alternative approach that could have 
been used for image reconstruction with lower computational cost. We adopted 
the neural network approach because of its fast speed and state- of- the- art 
performance.

We note that when using a neural network to reconstruct the image from the 
compressed measurement, it is crucial to carefully train the network to avoid 
data- dependent priors. In our experiments, we trained the neural network using 
samples with visual appearance resembling those of the test subjects. A mis-
match between the training and test dataset can result in hallucinations and 
other artifacts.

Refocusing and Extending the Depth of Field. A light field acquired by con-
ventional light- field cameras can be parameterized by the aperture plane (u, v) 
and the image plane (x, y) . Indexing view k as (uk , vk ) , the image Pk (x, y) observed 
from view k can be related to a reference image feature kernel h(x, y) by

 [10]pk
(
x, y

)
= h(x − suk , y − svk ),

where s is a depth- dependent shearing parameter (SI Appendix, Supplementary 
Note S1). In conventional light- field imaging, refocusing is performed by shifting 
and adding the subaperture images (68). Unlike conventional light- field cameras, 
LIFT- FLIM first rotates a perspective image, followed by transforming the rotated 
image into a line. Therefore, the depth- dependent shearing must be performed 
parallel to the projection axis.

For subaperture (uk , vk ) at the projection angle of � , the shearing of 1D sub-
aperture projection is given by

 [11]s ⋅ uk ⋅ sin� − s ⋅ vk ⋅ cos�.

For numerical refocusing, we applied the correspondent shearing factor to 
each projection image and updated sinogram for reconstructing the depth image 
(SI Appendix, Supplementary Note S1).

Extending the depth of field can be achieved through a similar approach to 
conventional light- field imaging, which involves refocusing onto different depths, 
extracting the sharpest feature for each pixel, and assembling an all- in- focus 
image (69).

System Calibration and Resolution.
Steering Mirror Calibration. To ensure that the scanning range of subaper-
tures fully utilizes the entire aperture of the objective lens, we calibrated the 
steering mirror’s horizontal and vertical tilt angles. Additionally, to optimize the 
light throughput of each subaperture, we employed a rectangular iris instead 
of a round one at the aperture stop. The rectangular shape reduces the gaps 
between adjacent scanned pupil positions and allows more light to pass through 
a subaperture.
Projection Center Calibration. To calibrate the central position of each projection 
line image at the sensor plane, we imaged a pinhole (P10D, Thorlabs) positioned 
at the center of the FOV on the sample stage. We captured images of the pinhole 
at every projection angle � and view k and directly localized the center of each 
line image as y (�,k)

p0
 (SI Appendix, Supplementary Note S1). Subsequently, we 

extracted the projection data based on the center location to form a sinogram.
Spectrum Calibration and Resolution. To calibrate the spectral response, we 
positioned a pinhole (P10D, Thorlabs) at the sample stage and illuminated it 
with monochromatic light at varied wavelengths. The resulting pixel locations of 
the projections were recorded and fitted with a linear polynomial, as illustrated 
in SI Appendix, Fig. S7A. The slope of the line determines the spectral sampling 
of the system, which was calculated to be 0.14 nm. The spectral resolution is 
defined as the full width at half maximum (FWHM) of the spectral response. A 1 
nm bandpass filter (FL532- 1, Thorlabs) was used to limit the source wavelength 
for this measurement, and the raw spectral response is displayed in SI Appendix, 
Fig. S7B, where the FWHM was approximately 9.2 nm. However, this width was 
a convolution of the geometrical image of the pinhole on the camera (approxi-
mately 7 pixels), the bandwidth of the light source (approximately 7 pixels), and 
the system spectral resolution. The width of a convoluted function (in pixels) can 
be computed as (69)

 [12]w
(
f1 ∗ f2 ∗ f3

)
= w

(
f1
)
+ w

(
f2
)
+ w

(
f3
)
− 2,
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where w denotes the width of the function, ∗ denotes the convolution operator, 
and fi ( i = 1, 2, 3 ) denotes the individual function in a discrete form. Based on this 
equation, the width of the spectral resolution on the camera was estimated to be 
48 pixels. Given a 0.14 nm spectral sampling, the spectral resolution is 6.6 nm.
Spatial Resolution and Field of View (FOV). To quantify the spatial resolution, we 
imaged a fluorescence bead with a diameter of 4 μm (F8858, Thermo Fisher), and 
the raw reconstruction results are presented in SI Appendix, Fig. S2 A–D, where the 
lateral and axial full width at half maximum (FWHM) are approximately 4.6 μm 
and 5.7 μm, respectively. However, the lateral FWHM width was a convolution of 
the geometric image of the bead on the camera (around 4 pixels) and the system 
lateral resolution. The width of a convoluted function can be calculated as (70)

 [13]w
(
f1 ∗ f2

)
= w

(
f1
)
+ w

(
f2
)
− 1,

where w denotes the width of the function, ∗ denotes the convolution operator, and 
fi ( i = 1, 2 ) denotes the individual function in a discrete form. Using this formula, 
the width of the lateral resolution on the camera was calculated to be 2 pixels. 
Given a 0.9 μm spatial sampling (camera pixel pitch of 26.2 μm divided by sys-
tem magnification ratio of 29), the lateral resolution was estimated to be 1.8 μm. 
Similarly, for axial FWHM, the width was a convolution of the bead size and the 
system lateral resolution. As a result, the axial resolution was estimated to be 3 μm.

We also imaged a group of bars from a USAF resolution target (Group 7 element 
3 to 6) along both horizontal and vertical directions and plotted the intensities along 
the dashed line. The image visibility, defined as 

(
Imax− Imin

)
∕(Imax + Imin) , where I  

is the intensity, was calculated for each group of bars using the peaks and valleys of 
the intensity. With a visibility threshold of 0.2, the spatial resolution of the bars was 
determined to be 2.2 µm along both vertical and horizontal directions, indicating an 
isotropic resolution. The FOV of our system was measured to be 227 µm × 143 µm 
when using a 60x microscope objective lens (UPLXAPO60XO, Olympus).

Depth Calibration. To calibrate the depth, we utilized a fluorescence bead 
(C16509, Thermo Fisher) and translated it along the depth axis from - 16 μm 
to 16 μm with a 2 μm step. At each depth, we captured an image and then per-
formed digital refocusing by adjusting the shearing parameter, as described in 
Methods: Refocusing and extending the depth of field. The goal was to identify 
the shearing parameter that would bring each image into the sharpest focus, 
which was determined by maximizing a focus measure (e.g., sum of modified 
Laplacian) for each pixel in the image (20). The best focus shearing parameter 
at each physical depth was then recorded. The resultant shearing parameter to 
depth curve was fitted with linear models. With this calibration curve, we can 
digitally refocus a 3D object to a specific depth using the correspondent shearing 
parameter. To validate the accuracy of our shearing parameters, we imaged 3D 
fluorescence beads in an agarose gel and compared LIFT refocusing against the 
ground- truth depth images captured by a reference camera, as shown in Fig. 3.

Camera Registration. To register the LIFT- FLIM and - sFLIM image with the ref-
erence camera, we imaged a 7 by 13 grid pattern. We then extracted the point 
locations from the reconstructed LIFT- FLIM and - sFLIM images and the reference 
image and calculated the homography matrix to establish a pixel- to- pixel corre-
spondence between the two cameras. The reprojection error using the homog-
raphy is less than one pixel, ensuring an accurate registration. This homography 
matrix is then used to register the LIFT- FLIM and - sFLIM images with reference 
images for deep learning reconstruction.

Image Stitching. We used a feature- based image stitching algorithm to create a 
panorama view of the human lung cancer pathology slide from multiple scanned 
FOVs with overlapping regions. This process involved detecting and matching image 
features, estimating the geometric transformation between images, and computing 
the transformation mapped each image onto the panorama. In the process of detect-
ing and matching image features, we identified a minimum of four matching points 
between consecutive images. This was accomplished either manually or through 
feature detection algorithms. Subsequently, using these matched points, we cal-
culated the affine transformation matrix for each pair of successive images. For the 
panorama construction, we designated the initially captured image as the starting 
point and subsequently aligned and overlaid the other images onto this base to 
achieve the panoramic view. Moreover, to correct the artifacts in the stitched image 
caused by connecting the individual images, we applied an intensity averaging 
technique to the neighboring pixels at the artifact coordinates.

Ground Truth Lung Organoid Imaging using a Confocal Fluorescence 
Microscope. To show the ground truth locations of individual biomarkers in 
our lung organoid experiment, we cultured another four sets of lung organoids 
under the same condition and labeled them with individual fluorophores. We 
then imaged the organoids using a standard confocal fluorescence microscope 
(Zeiss LSM 880 Confocal). SI Appendix, Fig. S9 presents the color- coded images, 
which display a similar appearance to our LIFT- sFLIM results.

Sample Preparation.
Mixed fluorescent beads. To create a mixed fluorescent bead sample, we embed-
ded three types of fluorescent beads (F8858, C16509, F8831, Thermo Fisher) into 
agarose gels. First, we diluted the bead suspensions and sonicated them. Then, 
we pipetted 10uL of the 4um bead suspension (∼5.7 × 107 beads/mL), 10μL of 
the 6 μm bead suspension (∼1.7 × 107 beads/mL), and 10uL of the 10 μm bead 
suspension (∼3.6 × 106 beads/mL) into 10 mL of PBS (10010023, Thermo Fisher) 
for each type of bead. We mixed 100 µL of the diluted 4 µm bead solution, 100 µL 
of the diluted 6 µm bead solution, and 100 µL of the diluted 10 µm bead solution 
to create the final mixed beads solution, which contained approximately 1.9 × 
104 4 µm beads/mL, 5.6 × 103 6 µm beads/mL, and 1.2 × 103 10 µm beads/mL.

We prepared the agarose gel by making a 1% [weight/volume] solution of 
low melting point agarose (A6013, Sigma- Aldrich) in PBS, heating it until it com-
pletely dissolved, and cooling it down to approximately 40 °C. We added 2.5 µL 
of the mixed beads solution to 400 µL of the agarose solution. After sonication, 
we added a 50 µL drop of the mixture onto a glass bottom dish (P35G- 1.5- 14- C, 
Mattek) and allowed it to solidify for a few minutes. Finally, we imaged the ~1 mm 
thick gel, which contained immobilized fluorescent beads, using the methods 
described in the main text.
Distal lung organoid preparation. We used a hydrostatic droplet generator to 
fabricate alginate microbead scaffolds with an average diameter of 100 µm, which 
mimics the size of pulmonary alveoli. After generating the microbeads, we coated 
them with collagen I (354249, Corning) and dopamine (H8502, Sigma) in a 
two- step process to functionalize them for cell culture. The detailed protocol for 
alginate bead generation and functionalization can be found in (54).

Human primary adult normal lung fibroblasts were isolated from distal lung tis-
sue from a deidentified healthy donor (65- y- old, male, Caucasian, nonsmoker, non-
alcoholic) procured from the International Institute for the Advancement of Medicine 
(IIAM). Human lung tissue was procured under the UCLA- approved IRB protocol 
#16- 000742. The fibroblast (crawled out population) and epithelial (MACS sorted 
EpCAM+ population) were isolated from the distal tissue and used in this study.

To develop the 3D model, we used a high aspect ratio vessel (HARV) bioreactor 
vessel (model: RCCS- 4H; Synthecon, Houston, Texas) of 2 mL volume and added 
0.5 mL of functionalized microbeads and 1.5 mL of media containing a total of 
1 million cells (epithelial:fibroblast = 1:1). The vessel was screwed into the biore-
actor base and rotated for 48 h to allow optimum cell- bead adherence. After 48 h, 
the cell- coated bead solution was aliquoted 100µL per well in a glass- bottom 96- 
well plate (P96- 1.5H- N, Cellvis), and the plate was briefly centrifuged (1,000 g ×  
2 min) to settle the cells/ beads at the bottom of the plate. An additional 150µL 
media was added to each well. The plate was then kept inside an incubator (37 °C, 
5%CO2, 95%RH) and monitored for the formation of self- organized 3D structures. 
Within the next 72 h, the fully formed 3D coculture organoids with microalveolar 
structures were observed in each well.

Data, Materials, and Software Availability. Raw image and codes have been 
deposited in github (https://github.com/iOpticsLab/LIFT-FLIM) (71).
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