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Abstract

Statistical Problems in DNA Microarray Data Analysis

by

Nancy Naichao Wang

Doctor of Philosophy in Biostatistics

and the Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Terence P. Speed, Chair

DNA microarrays are powerful tools for functional genomics studies. Each array contains
thousands of microscopic spots of DNA oligonucleotides with specific sequences, which can
hybridize with their complementary DNA sequences. Thus each microarray experiment
consists of parallel assays about thousands of genomic fragments. This thesis concerns some
statistical issues in the analysis of DNA microarray data.

One common usage of DNA microarrays is to monitor the dynamic levels of gene expres-
sion in response to a stimulus. This is often achieved through a time course experiment, in
which RNA samples are extracted at various time points after exposing the organism to the
stimulus. A particularly interesting type of time course experiments involve replicated series
of longitudinal samples. In 2006, Tai and Speed proposed a multivariate empirical Bayes
model for analyzing this type of data. The MB-statistic derived from this model was shown
useful for ranking the genes according to changes in their temporal expression profiles. In the
first part of this thesis, we propose an empirical Bayes false discovery rate (FDR)-controlling
procedure for multiple hypothesis testing using the MB-statistic. A null distribution is
obtained using the parametric bootstrap. Critical values are determined according to the
empirical Bayes FDR procedure. This method was compared, through simulations, to the
frequentist FDR procedure, which requires a theoretical null distribution for calculating the
nominal p-values. Although our method is slightly anti-conservative, it is more robust to the
variability in the estimates of the hyperparameters, when the degree of moderation is small.

Another common usage of DNA microarrays is to detect genomic locations that are as-
sociated with DNA-binding proteins. This is often achieved through ChIP-chip experiments
that combine chromatin immunoprecipitation with the microarray technology. Traditional
DNA microarrays designed for gene expression studies contain only a few probes for each
gene. A special type of DNA microarrays, called tiling arrays, are often used in ChIP-chip
experiments. They typically contain probes that are placed densely along the chromosomes
to cover either the entire genome or contigs of the genome. A couple of challenges in the
analysis of ChIP-chip tiling array data have not been met satisfactorily in the literature.
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When large scale genomic studies are carried over a long period of time, tiling arrays with
different probe designs are often used for practical reasons. The first challenge is the inte-
gration of replicate experiments performed using different tiling array designs. When the
biological process of interest involves a large protein complex, the investigators often per-
form ChIP-chip experiments on each component DNA-binding protein individually. DNA
targets that are shared by the individual proteins are thought to be the localization sites
of the protein complex. The second challenge is the joint analysis of multiple DNA-binding
proteins, aimed at identifying their shared targets. In the second part of this thesis, we pro-
pose a nonhomogeneous hidden Markov model (HMM) for addressing these two challenges.
The nonhomogeneous time axis represents the genomic positions of the probes. The hidden
states represent the binding statuses of the proteins. The state-conditional emission distribu-
tions of the tiling array data are protein-specific and design-specific. We derived a modified
Baum-Welch algorithm for fitting the model parameters. We also developed a procedure that
converts the probe level summaries into peaks, which represent the putative binding sites,
based on both signal strength and peak shape. To compare our method with existing meth-
ods, we curated a set of positive and negative genomic regions from a C. elegans dataset,
and performed some receiver operating characteristics (ROC) analyses. When applied to
each experiment separately, our method performs similarly as the three best existing meth-
ods. When applied to the combined data set, which consists of tiling arrays with different
probe designs, our method shows a drastic improvement in performance. A generalization
of the nonhomogeneous HMM enables the joint analysis of the ChIP-chip data of multiple
proteins. We present an application of this method to identify the shared localization sites
of two DNA-binding proteins, under two different conditions.
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Chapter 1

Introduction and outline

1.1 Overview of DNA Microarrays

Ever since the discovery of the double helix in 1953, scientists and amateurs alike have
been marveled at the vast genetic information encoded by DNA. The Human Genome Project
was launched in 1990 to dissect the genetic makeup of the human species. Although a com-
plete draft of the human genome was release in 2003, a long journey still lies ahead before the
mystery of the genetic code can be unraveled. A relatively new field of biology called “func-
tional genomics” aims at making use of the data produced by genome sequencing projects to
better understand gene functions. An important technology that enables research in func-
tional genomics is the DNA microarray technology. According to the American Heritage
Science Dictionary (2005), a DNA microarray is “a small solid support, usually a membrane
or glass slide, on which sequences of DNA are fixed in an orderly arrangement. DNA mi-
croarrays are used for rapid surveys of the expression of many genes simultaneously, as the
sequences contained on a single microarray can number in the thousands.” Figure 1.1 illus-
trates the basic principle of DNA microarrays. It relies on the affinity of single stranded
nucleic acids to bind, or hybridize, with their complementary sequences. A piece of single
stranded DNA that matches with a unique segment of the genome is called a probe. Thou-
sands of probes are attached to the surface of a chip in a rectangular grid, with one spot
representing a specific sequence. The sample of interest, which could be either DNA or RNA,
is converted into single strands of fluorescently labeled target DNA. After mixing on the chip,
each piece of target DNA pairs up with its complementary probe, and the corresponding spot
is detected by a fluorescence scanner. What distinguishes DNA microarrays from traditional
molecular biology techniques is that thousands of assays can be carried out simultaneously.

Different types of DNA microarrays are produced using different fabrication methods.
One class of fabrication methods involve the synthesis of DNA probes as the first step, and
the attachment of probes on the solid surface as the second step. The cDNA microarrays
pioneered by Pat Brown’s group [57] are produced using polymerase chain reaction (PCR)
in the first step and a robot-controlled printer in the second step. Some other related
technologies use ink-jet like printers to spray chemically synthesized oligonucleotide probes
on the microarrays. One example is the Agilent custom microarrays. Another class of
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fabrication methods involve the synthesis of DNA oligonucleotides directly on the microarray
using photo-activated chemistry. In each cycle, sites that will have the next base added
are deprotected by UV light, and coupling of the next nucleotide (A, T, C or G) follows
immediately. Affymetrix uses a physical photolithographic mask to ensure that only specific
sites are activated by UV light in each cycle. Roche NimbleGen builds its arrays using
the Maskless Array Synthesizer technology. A Digital Micromirror Device creates “virtual
masks” that reflect the desired pattern of UV light to be projected on the microarray slide.
They ensure that UV activation occurs at the precise locations where the next nucleotide is
to be coupled.

Aside from the fabrication methods, DNA microarrays can be categorized based on the
number of channels in the fluorescence detection system. An Affymetrix microarray is al-
most always hybridized with a single sample labeled by one fluorescent dye. A NimbleGen
microarray is often hybridized with two samples simultaneously, also known as competitive
hybridization. The two samples are labeled separately with two different dyes. Often, one of
the two samples contains the treatment of interest and the other one is the control sample.
The log ratios of fluorescent intensities between treatment and control represent the relative
abundances of the RNA or DNA sequences in the samples. Agilent and cDNA microar-
rays are also platforms for two-color assays. In the literature, “single-channel” refers to the
one-color assay system and “two-channel” refers to the two-color assay system.

DNA microarrays have wide applications in functional genomics. These include gene
expression profiling, comparative genomic hybridization, chromatin immunoprecipitation on
chip (ChIP-chip), SNP detection, alternative splicing detection and fusion genes detection
etc. Regardless of the application type, common statistical issues in DNA microarray data
analysis include image analysis, accounting for the effects of background noise, normalization
of the intensity ratios, and quality controls. These topics have been reviewed by Smyth et
al. [59] and Bolstad et al. [9, 7]. This thesis is concerned with the statistical problems in
two types of DNA microarray applications. The first type is gene expression profiling in time
course experiments. The second type is the determination of protein binding sites through
ChIP-chip experiments. Data analysis issues unique to these two types of DNA microarray
applications are discussed in the following two sections.

1.2 Gene expression time course analysis

Gene expression refers to the process by which the genetic code is used to synthesize a
functional gene product, which is often a protein. A copy of the genomic DNA is made in the
form of messenger RNA (mRNA) in a process called transcription. The mRNA transcript
directs the formation of polypeptides (proteins) in a process called translation. There is often
a positive correlation between the amount of mRNA transcribed in the first step and the
amount of proteins produced in the final step. Transcriptional regulation refers to the molec-
ular mechanisms that control the number of copies of mRNA made for a particular gene, or
a set of genes. Whenever a biological system, i.e. a cell or an organism, experiences a change
in the environment, it responds with transcriptional regulation that results in changes to the
expression levels of certain genes. Thus the gene expression profile of a biological system is
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dynamic. DNA microarrays are powerful tools for gene expression profiling, because mRNA
levels of thousands of genes can be measured simultaneously. To study transcriptional regu-
lation, biologists often collect mRNA samples at various time points following the induction
of a stimulus. Gene expression profiles are then constructed for the different time points
using DNA microarrays. We refer to this type of studies as microarray time course experi-
ments. Data analysis methods for microarray time courses have been reviewed extensively
elsewhere. [1, 66].

A time course can be either “periodic” or “developmental” depending on the temporal
pattern. Periodic time courses are characterized by temporal profiles that follow regular
patterns, such as cell cycles [61] and circadian rhythms. Developmental time courses are
characterized by aperiodic processes, such as natural growth, response to a treatment, or re-
sponse to an infection [45]. The temporal profiles in developmental time courses tend to have
arbitrary patterns. Time course experiments may be categorized as either “longitudinal” or
“cross-sectional” depending on the sampling scheme. In longitudinal experiments, samples
are collected from the same experimental unit repeatedly. For example, blood samples may
be drawn from the same individual at different time points during the course of an infection.
In cross-sectional experiments, each sample is collected from a different experimental unit.
When a time course experiment is performed using a batch of cell cultures, the experimental
unit may be a plate of cells. At each time point, one plate is removed from the batch for
RNA extraction. Thus each sample comes from a different experimental unit. We are partic-
ularly interested in the analysis of developmental microarray time courses with longitudinal
replications. This type of experiments often have small numbers of time points and small
numbers of replicates.

Gene expression profiling studies often aim at identifying sets of genes that are differ-
entially expressed under one or more conditions. In time course experiments, “differential
expression” has special meanings. If the experiment is carried out under one condition, the
aim is to determine which genes have non-constant expression levels across the time points.
This situation is referred as the one-sample problem. If two or more conditions are involved,
“differential expression” means the temporal profiles of the given gene are different under the
different conditions. This situation is referred as the multi-sample problem. For example,
a gene that exhibits increasing levels of expression under the wild type condition may be
expressed at a constant level under the mutant condition. This gene would be considered dif-
ferentially expressed, because its temporal profiles are different under the two conditions. A
common approach for analyzing short time courses is to treat time as a factor in F-tests. This
approach ignores any autocorrelations that may exist in the longitudinal samples. Another
approach is to consider the temporal profile of each gene as a multivariate vector. However,
estimation of the covariance matrix is difficult due to the small number of replicates. Tai
and Speed developed multivariate empirical Bayes (MB-) statistics for ranking genes based
on “differential expression,” in both the one-sample and the multi-sample problems [67, 68].
The multivariate Gaussian model is used to capture the correlations between gene expres-
sion measurements at the different time points. The empirical Bayes approach addresses the
small-sample challenge with moderation of the covariance matrix.

Biologists are often unsatisfied with ranking alone, and would like to make significance
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statements about differentially expressed genes. The selection of significant genes based
on the MB-statistic is a multiple hypothesis testing problem. A comprehensive review of
multiple testing procedures for microarray data can be found in a recently published book
by Dudoit and van der Laan [23]. For each gene on the microarray, a null hypothesis is
tested using the MB-statistic. Since the microarray contains thousands of genes, thousands of
hypotheses are tested simultaneously. Any decision about gene selection may incur two types
of errors. Type I errors refer to the rejection of true null hypotheses, i.e. false positives. Type
II errors refer to the failure to reject false null hypotheses, i.e. false negatives. The “power”
of the test is defined as one minus the false negative rate. The goal is to minimize the Type
II error rate subject to a constraint on the Type I error rate. There are numerous definitions
of Type I error rates. One group of Type I error rates are based on the distribution of the
number of Type I errors. These include the family-wise error rate (FWER), the generalized
family-wise error rate (gFWER), the per-comparison error rate (PCER), the per-family error
rate (PFER), the median-based per-family error rate (mPFER), and the quantile number
of false positives (QNFP). Another group of Type I error rates are based on the proportion
of Type I errors among the rejected hypotheses. These include the false discovery rate
(FDR), the proportion of expected false positives (PEFP), the quantile proportion of false
positives (QPFP). Because of the popularity of the false discovery rate among the biologists,
we propose in this thesis an FDR-controlling procedure for multiple testing using the MB-
statistic.

1.3 ChIP-chip and tiling arrays

Traditional DNA microarrays designed for gene expression studies often contain only a
few probes for each gene. A special type of DNA microarrays, called tiling arrays, contain
probes that are placed densely along the chromosomal coordinates. They are generally
designed to cover either the entire genome or contigs of the genome. Tiling array designs
may differ in probe lengths and the spacing between adjacent probes. Affymetrix uses 25-
mer probes, and offer 6 million features on each chip. Agilent and NimbleGen use longer
oligonucleotides with fewer features on each chip. The genome may be tiled with either
partially overlapping probes, or non-overlapping probes with small gaps in between the
neighbors. The most common usage of tiling arrays is to determine the genomic locations
of DNA binding sites for a particular protein, through chromatin immunoprecipitation on
chip (ChIP-chip) experiments. This type of experiments often involve 5 steps. In the first
step, DNA-binding proteins are cross-linked to the DNA that they are associated with in
vivo, by applying formaldehyde to the cells. In the second step, the cells are lysed and
the DNA is fragmented into pieces of roughly 500 base pairs by sonication. In the third
step, the DNA-protein complex is precipitated out of the cell lysate using an antibody that
specifically binds to the protein of interest. Serial washes are often performed to remove some
non-specific materials pulled down by immunoprecipitation. In the fourth step, the cross-
links in the purified DNA-protein complex are reversed to release the DNA fragments. In
the fifth step, the purified DNA fragments are labeled with a fluorescent dye and hybridized
to a tiling array. The input material obtained from Step 2 is often analyzed in parallel.
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If single-channel arrays are used, then the immunoprecipitated (IP) sample and the input
sample are hybridized to two different chips separately. If two-channel arrays are used, then
the immunoprecipitated sample and the input sample are labeled with two different dyes and
co-hybridized to the same chip. The fluorescence intensity log ratios of IP over input are used
to quantify the enrichment of DNA fragments associated with the protein. The investigator
may also perform some control experiments using non-specific immunoglobulin G (IgG) in
lieu of the antibody specific to the protein of interest. The IgG control experiments help
the investigator identify genomic fragments that are prone to non-specific binding in the
immunoprecipitation step. Reviews of the ChIP-chip technology can be found in Buck and
Lieb [12], Mockler and Ecker [47] and Bulyk [13].

A few different methods have been used for normalizing tiling array data. Model-based
Analysis of Tiling arrays (MAT) was proposed by Johnson et al. [37] to remove the probe
effects due to the sequence and the genome copy number of the 25-mer on Affymetrix ar-
rays. Model-based Analysis for 2-Color arrays (MA2C) was proposed by Song et al. [60]
to normalize the probe level log ratios based on the GC-content of the probe sequences.
Quantile normalization was originally developed by Bolstad et al. [8] for normalizing probe
level intensities across multiple gene expression microarrays. It has been accepted widely as
the preferred normalization method for tiling array data [69, 42, 34].

A distinguishing characteristic of tiling arrays is the sequential order among the probes.
Analysis methods developed for the traditional gene expression microarrays often assume
independence among the genes. Although this is not entirely true, the independence as-
sumption is often applicable because the probes are mapped to genomic locations that are
far part from each other. Tiling arrays, on the other hand, contain probes that are mapped
to nearby genomic locations in a sequential order, such that the independence assumption
is completely violated. So the analysis of tiling array data requires a different perspective.
Whereas gene expression profiling aims at finding differentially expressed genes, ChIP-chip
analysis aims at detecting chromosomal fragments enriched in the immunoprecipitated sam-
ple, which are putative targets of the DNA-binding protein. When the probe level log ratios
of fluorescence intensities are plotted against their chromosomal positions, a binding target
has the characteristic shape of a triangular peak. The signals are the strongest at the cen-
ter of the peak, and taper off near the ends. The peak position corresponds to the center
of the putative binding event. Thus computational methods aim at detecting the peaks in
ChIP-chip tiling array data.

The most common approach to peak detection scans the genome with a sliding window.
This approach generally involves three steps. In the first step, the signal of each probe is
standardized into a test statistic. In the second step, a smoothed score is computed for each
probe position, using the test statistics of the probes that lie within the sliding window cen-
tered at this position. In the third step, neighboring windows with high scores are joined into
peaks according to some criteria. One of the earliest ChIP-chip analysis methods, developed
by Cawley et al. in 2004 [14], takes the sliding window approach. It applies the Wilcoxon
rank-sum test to the probe intensity differences in each sliding window, to compute a p-value
of enrichment of IP over control. Then, a threshold is applied to the p-values to identify the
positions of interest, which are eventually joined into peaks. This method is implemented
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in the Affymetrix Tiling Array Software (TAS). TileMap by Ji et al. [35] is another sliding
window method designed for Affymetrix data. It standardizes the probe-level data using an
empirical Bayes test statistic that resembles the Student-t. The smoothed score is a moving
average of the t-like statistics. An updated version of TileMap was introduced recently as
the internal peak caller in CisGenome, which is an integrated software system for analyzing
ChIP-chip and ChIP-seq data [34]. The two versions of TileMap offer different options for
FDR computation. The old version of TileMap estimates FDRs based on an unbalanced
mixture subtraction (UMS) method, which compares the data distributions of the paired
IP and input control experiments. The new version of TileMap estimates FDRs based on
the left tail in the histogram of the moving average statistics, also known as the symmetric
null method. TiMAT, developed by Bourgon and Speed [42], introduced the symmetric null
method for estimating the FDR of window score cutoffs. This method assumes that the
background window score distribution is symmetric about its mean. Thus values less than
the observed mode of the genome-wide window scores are used to estimate the null distribu-
tion. Each window score is assigned a p-value according to the symmetric null distribution.
Subsequently, the p-values are converted into FDRs using the method due to Storey [62].
MAT by Johnson et al. [37] and MA2C by Song et al. [60] apply the sliding window approach
to peak detection, after model-based standardization of the probe level data. MAT uses the
trimmed mean of all the probe t values in the window as the smoothed score. MA2C offers
a few options for computing the smoothed score: median, pseudo-median, median polish, or
trimmed mean of the probes in the window. The default option is the median of the probe
level normalized log ratios in the window. Tilescope by Zhang et al. [69] also takes the
sliding window approach to peak detection. The smoothed window score used there is either
a p-value calculated by the Wilcoxon signed-rank test, or the pseudo-median (the one-sample
Hodges-Lehmann estimator) of the log ratios within the window. ChIPOTle by Buck et al.
[11] and ACME by Scacheri et al. [56] are two other sliding window peak callers developed
for NimbleGen tiling arrays. ChIPOTle computes a moving average of the log ratios within
each window, and assigns a p-value using either a Gaussian or a permutation-based null
distribution. ACME uses χ2 analysis to determine if any given window contains a higher
than expected number of probes with log ratios above the user-defined threshold.

Hidden Markov models have been proposed previously for the analysis of tiling array
data. TileMap provides the option of computing smoothed scores of the t-like statistics
based on an HMM [35]. Each probe has a hidden hybridization state: 1 if the probe is IP-
enriched; 0 otherwise. The two states have stationary probabilities π0 and π1 = 1 − π0. For
each pair of adjacent probes, the transition probabilities between the hidden states depend
on the distance between the center positions of the probes. If the distance is greater than
the parameter d0, then the Markov chain is reset and the stationary probabilities are used
as the transition probabilities. If the distance is less than or equal to the parameter d0,
then the transition matrix is used. Notice that probe spacings of all lengths less than or
equal to the parameter d0 are treated in the same way. This implies the assumption that the
transition probabilities are constant for steps of all sizes, which is only a crude approximation.
The state-conditional emission distributions are estimated using the UMS method, which
aims at recovering different components of a mixture distribution. The parameter d0 is
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estimated based on the average length of the IP fragments. The transition probabilities are
estimated based on the typical length of hybridizations in base pairs. The smoothed score
is the posterior probability of the IP-enriched state, obtained using the forward-backward
algorithm. Li et al. [41] also proposed a two-state hidden Markov model for analyzing
ChIP-chip data. This method has two main distinctions from TileMap: 1) the emission
distributions are assumed to be Gaussian; 2) the log odds of the IP-enriched state against
the non-enriched state is used as the smoothed score, instead of the posterior probability
of the IP-enriched state. Du et al. [20] proposed to incorporate external knowledge, such
as gene annotation or experimental validations, into the analysis of ChIP-chip experiments
using a hidden Markov model.

Besides the sliding windows and the HMMs, a few other approaches have been used in
the analysis of ChIP-chip data. Keles [38], Gottardo et al. [31] and Sun et al. [64] proposed
mixture models for the ChIP-chip data generation process. Zheng et al. [70] proposed to
model DNA fragmentation by the Poisson point process, and concluded that the peak shape
of single binding events should be triangular on the log transformed scale. They developed
a peak detection method called MPeak that incorporates the shape information by fitting a
double regression model. Qi et al. [52] and Reiss et al. [55] proposed deconvolution methods
for resolving multiple nearby binding events. Whereas Qi et al. use a Bayesian graphical
model, Reiss et al. use Kernel regression. Other methods that are frequently used in the
scientific community include TAMALPAIS by Bieda et al. [6] and the permutation method
by Lucas et al. [43] that is implemented in NimbleScan.

More than half of the previously developed methods can analyze only one ChIP-chip
experiment at a time. Although some methods can incorporate replicate data, they all require
the same design of tiling arrays being used in all experiments. However, when a large scale
genomic study is carried over a long period of time (i.e. 3+ years), the investigators may be
forced to use tiling arrays with different probe designs, due to practical considerations. Thus
there is a compelling need to address the unmet challenge of integrating replicate data with
different tiling array designs. Another challenge that has not been addressed satisfactorily
in the literature is the identification of binding sites shared by two or more DNA-binding
proteins. This is a consequence of the fact all of the existing methods were developed for
analyzing one protein at a time. The current practice is to cross-list the peaks called for
the individual proteins. Because it requires making judgmental decisions at various steps,
there is no standard protocol for cross-listing the peaks of individual proteins. Clearly, the
field needs a method that enables the joint analysis of multiple proteins. In this thesis, we
propose a nonhomogeneous hidden Markov Model to address these two challenges: 1) the
integration of ChIP-chip data from different tiling array designs, 2) the joint analysis of two
or more DNA-binding proteins.

1.4 Outline of the thesis

Chapter 2 describes an FDR-controlling procedure for analyzing replicated microarray
time course data with the multivariate empirical Bayes statistic. Following a brief introduc-
tion on the background of the study, the multivariate empirical Bayes model for microarray
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time course data is reviewed. We derive the distribution of the moderated Hotelling T 2 statis-
tic, and establish its relationship to the F-distribution. Two FDR-controlling procedures are
proposed under either the frequentist framework or the empirical Bayes framework. The
two FDR procedures are compared under various conditions through simulations. We then
present an application of the FDR procedures to a real data set. Both the simulation results
and the analysis of real data suggest that the empirical Bayes FDR-controlling procedure is
more robust to the variability of hyperparameter estimation, and is a more powerful method
when the sample size is small.

Chapter 3 describes a nonhomogeneous Hidden Markov Model for integrating ChIP-chip
data from multiple tiling array designs. After a brief introduction on the scientific context
that motivated our study, we present a nonhomogeneous hidden Markov model for analyzing
one protein at a time. This model integrates different tiling array designs at the single
base pair level, thus preserves the highest possible resolution in the merged data set. We
derive a modified Baum-Welch algorithm for fitting this nonhomogeneous HMM. We also
present some simulation results confirming that the algorithm is well-behaved under the
settings relevant to our study. We then describe a procedure that converts candidate probes
into peaks that represent putative binding sites. Finally, we present some ROC analyses
comparing our method to the existing methods, using a set of positive and negative regions
pre-defined by visual inspection. When applied to single experiments, our method performs
similarly as the best existing methods for analyzing NimbleGen tiling array data. When
applied to the combined data set, which consists of replicate experiments performed on
different tiling array designs, our method shows a drastic improvement in performance.

Chapter 4 describes a peak-detection method for the joint analysis of ChIP-chip data from
multiple DNA binding proteins. This method is based on a generalization of the nonhomo-
geneous Hidden Markov Model presented in Chapter 3. One assumption of the multi-protein
model is that each protein emits observations independently of the other proteins, condi-
tional on the hidden states. We present some simulation results verifying the applicability
of this assumption. We then describe a procedure for fitting the nonhomogeneous HMM for
multiple proteins. Simulations of the two-protein model confirm that the algorithm performs
well in identifying the joint binding sites of different proteins. Another ROC analysis shows
that our joint analysis method out-performs the current practice of cross-listing the individ-
ual peak calls. Finally, we discuss some practical issues in the application of our method to
real data, and present some solutions.
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Chapter 2

An FDR-controlling procedure for

analyzing replicated microarray time

course data with the multivariate

empirical Bayes statistic

2.1 Motivation

Microarray time course experiments provide a powerful tool for monitoring the dynamic
expression levels of virtually the entire genome simultaneously. A time course can be either
“periodic” or “developmental” depending on the temporal pattern. Periodic time courses are
characterized by temporal profiles that follow regular patterns, such as cell cycles [61] and
circadian rhythms. Developmental time courses are characterized by aperiodic processes,
such as natural growth, response to a treatment, or response to an infection [45]. The tem-
poral profiles in developmental time courses tend to have arbitrary patterns. The replication
of time course experiments can be categorized as either “longitudinal” or “cross-sectional”
depending on the sampling scheme. In longitudinal experiments, the mRNA samples col-
lected at different time points are extracted from the same biological unit, such that the
expression measurements are correlated. In cross-sectional experiments, the mRNA samples
are extracted from different units at different time points. This chapter is concerned with
the analysis of developmental microarray time courses with longitudinal replications. Two
major sources of challenges are the small number of time points (4-10) and the few number
of replicates (6 or less).

In 2006, Tai and Speed [67] proposed a multivariate empirical Bayes model for devel-
opmental, longitudinal replicated microarray time course data. To rank genes in the order
of interest, they derived the one-sample and two-sample MB-statistics, which reduce to the
moderated Hotelling T 2 statistics when the sample size is the same for all genes. They later
extended this model to the multi-sample situation [68]. The one-, two- or multi- samples refer
to the number of biological conditions being investigated. The null hypothesis for the one-
sample problem states that the expected temporal profile is constant. The null hypothesis
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for the multi-sample problem states that the expected temporal profiles under the different
conditions are the same. Biologists are often unsatisfied with ranking alone. They would
like to select for a set of differentially expressed genes, while keeping the false discovery
rate (FDR) within a pre-specified level. We propose an empirical Bayes FDR-controlling
procedure for hypothesis testing with the MB-statistics. Since in most microarray studies,
the same layout of features applies to all the chips used in an experiment, the sample size is
usually the same for all genes. Hence, we devote our attention to the moderated Hotelling T 2

statistics. Moreover, we use the one-sample problem to illustrate the fundamental principles,
which are readily generalizable to the multi-sample problem.

The organization of this chapter is as follows. We begin with a brief review of the
multivariate empirical Bayes model for replicated time course data. We then introduce two
procedures for controlling the false discovery rate, one being a frequentist approach and
the other being an empirical Bayes approach. Following this, we present some simulation
results showing the effects of sample size and moderation on the two FDR procedures. After
comparing the performances of the two FDR procedures in different scenarios, we present an
application of the FDR procedures to a real data set. Finally, we conclude by summarizing
our findings and making recommendations.

2.2 The multivariate empirical Bayes statistic

We adopt the notation used in Tai and Speed (2006). Suppose there are n independent,
replicated time series measurements of mRNA expression levels for each gene. Let k denote
the number of time points at which the measurements are taken, and let g index the genes.
The replicated time series, Xg1, . . . ,Xgn, are modeled as an i.i.d. samples of size n drawn
from the k-variate Gaussian distribution. The gene-specific mean and covariance parameters
are µg and Σg. The objective is to test the null hypothesis Hg that µg = µ0 against the
alternative hypothesis Kg that µg 6= µ0. When the microarray data are normalized log-ratios
from two-color arrays, or when they are differences of paired experiments, we can assume
that µ0 = 0. Since the same model is applied to every gene on the microarray, we will drop
the subscript g in expressions representing an arbitrary single gene. Let I denote a Bernoulli
random variable with success probability p, 0 < p < 1, that indicates the status of the gene.

I =

{
1 if K is true;
0 if H is true.

The multivariate hierarchical Bayesian model states the following. The gene-specific
covariance matrix Σ is generated from an inverse-Wishart distribution, with ν degrees of
freedom and scale matrix νΛ:

Σ ∼ Inv-Wishartν((νΛ)−1),

where ν > 0 and νΛ > 0. The prior mean of Σ is Λ for all genes. Given Σ, the multivariate
normal priors for the gene-specific mean parameter µ are generated as follows:

{
µ|Σ ∼ N(0, η−1Σ) if I = 1,
µ|Σ ≡ µ0 if I = 0,
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where η > 0 is the scale parameter. For the one-sample or paired two-sample problem,
µ0 = 0. The true status I of the gene is unobserved. Given µ and Σ, the observed data
(X1, . . . ,Xn) come from the multivariate normal distribution N(µ,Σ), with the mean pa-
rameter µ dependent on I.

This Bayesian model leads to a moderated estimate of the covariance matrix that is
shrunken towards the prior mean. The amount of shrinkage is determined by the parameter
ν. Tai and Speed [67] derived the moderated Hotelling T 2 statistic, denoted by T̃ 2, from a

likelihood ratio test. A large value of T̃ 2 provides evidence against the null hypothesis. Let
S denote the sample covariance matrix, and let S̃ denote the inverse of the posterior mean
of the precision matrix given S, namely

S =
1

n − 1

n∑

i=1

(Xi − X̄)(Xi − X̄)′,

S̃ = [E(Σ−1|S)]−1 =
(n − 1)S + νΛ

n + ν − 1
.

The one-sample moderated Hotelling T 2 statistic is:

T̃ 2 = n(X̄ − µ0)
′S̃−1(X̄ − µ0),

= nX̄′S̃−1X̄ when µ0 = 0.

It can be shown that the moderated Hotelling T 2 statistic is equivalent to the conventional
Hotelling T 2 statistic with augmented degrees of freedom (see Section 2.2.1). Under the null

hypothesis, T̃ 2 is proportional to an F -statistic:

(n + ν − k)

k(n + ν − 1)
T̃ 2 ∼ F(k, n + ν − k),

where F(a, b) denotes the F -distribution with a and b degrees of freedom.

2.2.1 Distribution of the moderated Hotelling T 2 statistic

Claim

In the one-sample (or paired two-sample) problem, the moderated Hotelling T 2 statistic is
distributed as the conventional Hotelling T 2 statistic with (n+ν−k−1) degrees of freedom.

Proof

Let S denote the sample covariance matrix, and let t̃ denote the moderated multivariate
t-statistic:

t̃ = n
1

2 S̃− 1

2 X̄.

Then T̃ 2 can be re-written as:

T̃ 2 = t̃′t̃.
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Following the derivation in Tai & Speed [67], we obtained

P (t̃|S, I = 0) = π− 1

2
k(n + ν − 1)−

1

2
k Γ[1

2
(n + ν)]

Γ[1
2
(n + ν − k)]

[
1 +

t̃′t̃

(n + ν − 1)

]− 1

2
(n+ν)

.

This expression can be rewritten as:

P (t̃|I = 0) =
Γ[1

2
(n + ν)]

(n + ν − k)
1

2
kπ

1

2
kΓ[1

2
(n + ν − k)]

(
n + ν − 1

n + ν − k

)− 1

2
k

[
1 +

1

(n + ν − k)

(
n + ν − 1

n + ν − k

)−1

t̃′t̃

]− 1

2
(n+ν)

.

According to the definition in [32], t̃ is distributed as multivariate t with parameters:

d.f. = (n + ν − k),

Σ =

(
n + ν − 1

n + ν − k

)
Ik.

Thus t̃ can be constructed as the following:

t̃ =

(
x

n + ν − k

)− 1

2

y,

where x is distributed as Chi-squared with (n + ν − k) degrees of freedom; y is distributed
as k-dimensional multivariate normal with mean zero and covariance Σ = (n+ν−1

n+ν−k
)Ik.

The moderated Hotelling T 2 statistic can be re-written as:

T̃ 2 = t̃′t̃ = (n + ν − k)x−1y′y,

(n + ν − k)

(n + ν − 1)
T̃ 2 = (n + ν − k)x−1y′Σ−1y,

(n + ν − k)

k(n + ν − 1)
T̃ 2 =

(n + ν − k)

k

z

x
,

where z = y′Σ−1y is distributed as Chi-squared with k degrees of freedom [48]. Standard
calculations lead to the following conclusion.

(n + ν − k)

k(n + ν − 1)
T̃ 2 ∼ F(k, n + ν − k),

T̃ 2 ∼ T 2(k, n + ν − 1).
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2.3 Frequentist FDR-controlling procedure

The false discovery rate (FDR) was introduced by Benjamini and Hochberg in 1995 [3].
In comparison to FWER-controlling methods, FDR-controlling methods are more powerful.
The advantage of FDR increases with the number of non-null hypotheses and the total
number of tests. Because many microarray studies are fishing expeditions, a conservative
control of Type I errors is often less important than power. Thus the false discovery rate
is a very popular Type I error rate among the biologists in the microarray field. For this
reason, we aim at developing an FDR-controlling procedure for hypothesis testing using the
moderated Hotelling T 2 statistic.

FDR is defined as the expected value of the proportion of false positives incurred by
applying a given rejection rule. Let R denote the rejection rule of choice.

FDR(R) , E

[
number true nulls rejected by R

total number of rejected hypotheses

]

The FDR-controlling procedure originally proposed by Benjamini and Hochberg is re-
viewed briefly. Let Hg denote the null hypothesis associated with gene g, for g = 1, ..., N .
Let Pg denote the nominal p-value of gene g, obtained according to the null distribution of
the test statistic. Let P(1) ≤ P(2) ≤ . . . ≤ P(N) be the ordered p-values. For an arbitrary
level α ∈ (0, 1), find the largest index iα that satisfies the following.

iα = arg max
i

{
P(i) ≤

i

N
α

}

For independent test statistics, the following rejection rule controls the FDR at level α.

Rα = {reject all Hg with Pg ≤ P(iα)}

Smyth [58] proposed an FDR-controlling procedure for the one-dimensional moderated
t-statistics as follows. First, convert the test statistics into nominal p-values according to the
theoretical null distribution. Then, apply the FDR-controlling procedure described above to
adjust for genome-wide multiple testing. This approach can be emulated for the T̃ 2 statistics.
We refer to it as the frequentist FDR-controlling procedure. Please note that specification of
the null distribution requires estimates of the hyperparameters. Thus the frequentist FDR
procedure may be sensitive to hyperparameter estimation errors.

2.4 Empirical Bayes FDR-controlling procedure

An empirical Bayes FDR procedure proposed by Efron et al. [26] has the flexibility that
a theoretical null distribution is not required. Instead, the null distribution is estimated
empirically through either permutations or resampling. We briefly review the empirical
Bayes FDR procedure below.

In the Bayesian framework, the false discovery rate is defined as the posterior probability
that a hypothesis is truly null, given its observed test statistic exceeds the critical value. Let
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p0 denote the prior proportion of null hypotheses, and let F0(y) denote the null distribution
of the test statistics evaluated at the critical value y. The Bayesian definition is written as
the following,

Fdr(y) , P (Ig = 0|Yg ≥ y) = p0
1 − F0(y)

1 − F (y)
.

Let F̂ (y) = |{Yg ≤ y}|/n denote the ordinary empirical cdf of the test statistic evaluated

at y. In our case, the test statistic is the moderated Hotelling T 2 statistic, Yg = T̃ 2
g . The

choice of the empirical null distribution F̂0(y) is crucial to the success of this procedure. The
empirical Bayes estimate of FDR is the proportion of test statistics exceeding the critical
value in the empirical null distribution, divided by that in the overall empirical distribution.

F̂ dr(y) ≈ p̃0
{proportion of Yg ≥ y in F̂0}

{proportion of Yg ≥ y in F̂}
,

where p̃0 is an upper-bound for the prior probability of H .
The rejection rule is chosen according to the minimum test statistic, for which the FDR

is controlled at the level α. In microarray studies, gene g is considered non-null if Yg ≥ yα

and
yα = min

y

{
F̂ dr(y) ≤ α

}
.

In order to compute the empirical Bayes false discovery rates, we need to estimate the
null distribution of the moderated Hotelling T 2 statistics. Because longitudinal time course
data consist of dependent samples, permutation-based methods are inappropriate for this
purpose. Dudoit, van der Laan and Pollard proposed the null shift and scale-transformed
test statistics null distribution, which can be estimated using the non-parametric bootstrap
[21, 22, 51]. This choice of the null distribution provides asymptotic control of the FDR when
the step-up procedure due to Benjamini and Hochberg is applied. However, a challenge in
our application is that longitudinal time course data typically contain very few replicates.
In order to achieve the asymptotic results, we need a sufficient pool of replicated time series
from which many bootstrap resamples can be drawn. When the original data set contains
only a few replicates, the number of unique bootstrap resamples that could be drawn is
very limited. Therefore, we decided to estimate the null distribution using the parametric
bootstrap. By taking this approach, we assume that the genes on the microarray generate
observations independently of each other. Although it is known that genes may function in
clusters, the independence assumption is applicable for the majority of cases.

The first step of the parametric bootstrap procedure is to estimate the Gaussian param-
eters from the real data. Under the null hypothesis, the gene-specific mean µg is the vector
of zeros for all genes. The gene-specific covariance matrix is estimated as:

Sg =
1

n

n∑

i=1

XgiX
′
gi.
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The moderated sample covariance matrix is computed by plugging-in the estimated hyper-
parameters:

S̃g = [E(Σ−1
g |Sg)]

−1 =
(n − 1)Sg + ν̂Λ̂

n − 1 + ν̂
.

Because the Bayes estimator for Σg is more efficient than the conventional sample covariance,

S̃g is preferable over Sg in the microarray setting with small sample sizes.
In the second step, bootstrap samples of gene expression data are generated by simulating

from the Gaussian distribution specified by the estimated parameters. The bth bootstrap
sample of expression data for gene g is simulated from:

Xb
g ∼ N(0, S̃g) for b = 1, . . . , B.

Finally, a vector of moderated Hotelling T 2 statistics are computed for each bootstrap
sample using the timecourse package [67], available from the Bioconductor. The estimated
null distribution is constructed by pooling all the bootstrap test statistics. We typically
use B = 20 iterations to obtain a bootstrap estimate of the test statistics null distribution.
The large number N of genes ensures that the bootstrap distribution converges quickly with
small B. In the simulation experiments to be described later, we used N = 10000 and did
not observe any noticeable changes with larger values of B.

2.5 Comparisons of the FDR procedures through sim-

ulations

In the frequentist framework, the null distribution is specified by the number of time
points k, the sample size n, and the prior degrees of freedom ν. In the empirical Bayes
framework, the bootstrap null distribution is also influenced by n and ν. This is because
n affects the estimation of the sample covariance matrix, and ν affects how the moderated
sample covariance matrix is weighted towards Λ. Thus the two FDR procedures are both
influenced by the parameters n and ν. We performed simulation experiments to investigate
the effects of varying these parameters, while holding the other parameters fixed.

Microarray data were simulated according to the multivariate hierarchical Bayesian model
described in Section 2.2. The parameters that were fixed in each simulation include k = 6, η =
0.25, µ0 = 0, and Λ given below. The matrix Λ was obtained by making some modifications
to the matrix used by Tai & Speed (2006) [67] in their simulation study.

Λ =




0.1500 0.0250 0.005 0.003 0.0015 0.0005
0.0250 0.1400 0.025 0.005 0.0030 0.0015
0.0050 0.0250 0.085 0.025 0.0050 0.0030
0.0030 0.0050 0.025 0.100 0.0250 0.0050
0.0015 0.0030 0.005 0.025 0.1150 0.0250
0.0005 0.0015 0.003 0.005 0.0250 0.0950




.

To investigate the effects of sample size, we fixed the value of ν at 12 and varied the value of
n. To investigate the effects of the prior degrees of freedom, we fixed the value of n at 6, and
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varied the value of ν. For each chosen set of parameters, we simulated two data sets with
different values of p, the proportion of non-null genes. The total number of genes was fixed at
10,000 for both data sets. In the first data set, p was set to zero; in the second data set, p was
set to 10%. These two data sets will be referred as the “observed” data sets in the succeeding
discussion about the simulations. The moderated Hotelling T 2 statistics were computed for
each data set. We also recorded the estimates of the prior degrees of freedom, obtained by
running the hyperparameter estimation program provided in the timecourse package. We
then applied each of the two FDR procedures to estimate the false discovery rates incurred
at various cutoffs of the moderated Hotelling T 2 statistics.

2.5.1 Effects of sample size

Figure 2.1 compares the F-transformed distributions of the following: 1) the observed

T̃ 2 statistics with the hyperparameters estimated from the data, 2) the observed T̃ 2 statis-

tics with the true hyperparameters plugged-in, 3) the bootstrap null T̃ 2 statistics with the

hyperparameters estimated from the data, 4) the bootstrap null T̃ 2 statistics with the true
hyperparameters plugged-in, 5) the F-distribution according to the true value of ν. Keep
in mind that each bootstrap distribution was obtained by pooling 20 bootstrap samples,
with each sample having the same size as the observed data set. Notice that in the case
of 100% null genes, the distribution of the observed T̃ 2 statistics, computed with the true
hyperparameters, coincided with the theoretical null distribution, as expected. Figure 2.2
displays the quantile-quantile plots of the observed distribution against either the bootstrap
null distribution or the theoretical null distribution. The top two panels represent the situ-
ation with 100% null genes. The bottom two panels represent the situation with 90% null
genes.

The discrepancy between the bootstrap null distribution and the theoretical null distri-
bution is worth mentioning. This was primarily due to the small sample size (i.e. the number
of replicated time series). We found that the minimum sample size n required for either of
the two FDR procedures to work properly is the dimension k of the multivariate Gaussian
vectors. The examples shown in Figures 2.1 & 2.2 represent the small sample size scenario,
with n = k = 6. The bootstrap null distribution biased toward the low-range values. As the
sample size increased, the bias was reduced. A sample size of n = 5k was sufficient for the
bootstrap null distribution to converge to its theoretical counterpart, as shown in Figure 2.3.

To make the two FDR procedures comparable [25], we took the most conservative choice
of the prior probability, p̃0 = 1. Figure 2.4 compares the results of the two FDR procedures,
when applied to the data set simulated with 90% null genes. The horizontal axis of each plot
represents critical values of T̃ 2 after scaling to the F-distribution by a constant. The vertical
axis represents the false discovery rates incurred by applying various critical values of the
test statistic. Figure 2.4(a) illustrates the situation with a small sample size, n = k. Figure
2.4(b) illustrates the situation with a large sample size, n = 5k. The true FDR is plotted as
a function of the critical values, in dashed black lines. The frequentist procedure (blue) was
excessively conservative, because the hyperparameter ν was under-estimated, leading to a
misspecified theoretical null distribution. The empirical Bayes procedure (red) was slightly
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Figure 2.1: Distributions of the F-transformed T̃ 2 in small samples. The dimension of the
multivariate normal is k = 6 and the sample size is n = 6. The true prior degrees of freedom
used to simulate the data is ν = 12. The estimate obtained from the simulated data set is
ν̂ = 7. (a) 100% null genes; (b) 90% null genes.
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Figure 2.2: QQ-plots of the bootstrap null distribution vs. the observed (mixture) distri-
bution and the theoretical null distribution. The dimension of the multivariate normal is
k = 6 and the sample size is n = 6. (a) Bootstrap null versus observed, 100% null genes. (b)
Bootstrap null versus theoretical, 100% null genes. (c) Bootstrap null versus observed, 90%
null genes. (d) Bootstrap null versus theoretical, 90% null genes.
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Figure 2.3: Distributions of the F-transformed T̃ 2 in large samples. The dimension of the
multivariate normal is k = 6 and the sample size is n = 30. The true prior degrees of freedom
used to simulate the data is ν = 12. The estimate obtained from the simulated data set is
ν̂ = 7. (a) 100% null genes; (b) 90% null genes.
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anti-conservative, because the bootstrap null distribution had a downward bias when the
sample size was small. Both the frequentist and the empirical Bayes FDR procedures had
improved performances when the sample size was increased.

2.5.2 Effects of moderation

Moderation plays important roles in the FDR procedures for two reasons. The first
reason is that it affects both the theoretical and the empirical null distributions, as mentioned
earlier. The second reason is related to the assumption of gene-wise independence. Both
the empirical Bayes and the frequentist FDR-controlling procedures assume that the gene-
specific test statistics are independent. Since moderation induces dependencies among the
test statistics, it is important to investigate the effects of moderation on the FDR procedures.
Recall that the amount of moderation is determined by the prior degrees of freedom ν. We
performed some simulations with extreme values of ν, while holding all the other parameters
fixed. Figures 2.5 and 2.6 compare the distributions of the F-transformed T̃ 2-statistics under
different scenarios. In both figures, the left panels represent the small moderation scenario
and the right panels represent the large moderation scenario. The only difference between
these two figures is that, whereas the hyperparameters were estimated from the data in
Figure 2.5, the known true hyperparameters were plugged-in to compute T̃ 2 in Figure 2.6.

When ν was set to the low-end value of 6, estimates of the hyperparameters were far
from the truth. The observed distribution was strikingly different from the theoretical null
distribution, but matched closely with the empirical null distribution (see Figure 2.5). When
we controlled for the errors in hyperparameter estimation by plugging in the true value, the
discrepancy between the observed and the theoretical null distributions was resolved (see
Figure 2.6). Of course, in reality we never know the true hyperparameters. Therefore, it
is important to be cautious about the variability of hyperparameter estimation. When ν
was set to the high-end value of 60, the observed distribution of T̃ 2 matched quite well with
the theoretical null distribution. The right-hand sides of Figures 2.5 & 2.6 appear similar,
because hyperparameter estimation was fairly reliable when ν was large.

Figure 2.7 compares the two FDR-controlling procedures, in situations with varying
amounts of moderation. When the degree of moderation was small (ν = 6), the empiri-
cal Bayes method was preferable because the theoretical null distribution of the moderated
Hotelling T 2 statistics was invalid. When the degree of moderation was large (ν = 60), the
frequentist method was preferable because hyperparameter estimation was quite reliable.
The empirical Bayes method was slightly anti-conservative, because of the small sample bias
in the bootstrap estimate of the null distribution.

2.6 Application to real data

The ability of the plant Arabidopsis thaliana to acquire resistance against pathogens
depends on the production of salicylic acid. Around 14 days after infection by the powdery
mildew Golovinomyces orontii, mutant plants that are defective for making salicylic acid
develop some grayish white powdery blotches on their leaves and stems. On the other
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Figure 2.4: Comparison of FDR procedures applied to the moderated Hotelling T 2 statistics.
The dimension of the multivariate normal is k = 6. (a) sample size n = 6; (b) sample size
n = 30.
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Figure 2.5: Effects of moderation on the distribution of the moderated Hotelling T 2 statis-
tics. Each condition was examined by simulating two data sets. For each data set, the
hyperparameters were estimated and the T̃ 2 statistics were computed using the timecourse
package. The dimension of the multivariate normal is k = 6 and the sample size is n = 6.
(a) true ν = 6, estimate ν̂ = 1, 100% null genes. (b) true ν = 60, estimate ν̂ = 53, 100%
null genes. (c) true ν = 6, estimate ν̂ = 1, 90% null genes. (d) true ν = 60, estimate ν̂ = 61,
90% null genes.
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Figure 2.6: Effects of moderation on the distribution of the moderated Hotelling T 2 statistics.
The known true hyperparameters were plugged-in. The dimension of the multivariate normal
is k = 6 and the sample size is n = 6. (a) true ν = 6, 100% null genes. (b) true ν = 60,
100% null genes. (c) true ν = 6, 90% null genes. (d) true ν = 60, 90% null genes.
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Figure 2.7: Effects of moderation on the FDR-controlling procedures for the moderated
Hotelling T 2 statistics. The dimension of the multivariate normal is k = 6 and the sample
size is n = 6. (a) true ν = 6; (b) true ν = 60.
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hand, wild type plants that produce normal levels of salicylic acid remain healthy. Mary
Wildermuth’s group was interested in identifying genes whose expression profiles are different
in these two types of plants. They performed a microarray time course study consisting of
6 time-points and 4 longitudinal replicates. The wild type and mutant samples were paired
at each collection point [15]. This problem can be formulated as testing the null hypothesis
that the paired differences, between gene expression measurements in the mutant and wild
type plants, are expected to be the 6 × 1 vector of zeros. After some quality controls
and preprocessing, the microarray data were converted into normalized log ratios of the
fluorescence intensities for the mutant versus wild type samples. We performed a paired
two-sample longitudinal analysis using the timecourse package. Visual examination of the
time series plots and the knowledge of particular genes suggested that the top 870 genes have
changed patterns of expression between the wild type and mutant plants [65].

A challenge in the analysis of this data set is that the sample size (4 replicates) is smaller
than the dimension (6 time-points). Neither of the two FDR procedures produces satisfactory
results in this situation. So we decided to circumvent the problem by splitting the data into
two subsets. The full data set contained time points taken at 0, 0.25, 1, 3, 5, 7 hours post-
infection. The 0, 1, 5 hr time points were assigned to Subset A; the 0.25, 3, 7 hr time points
were assigned to Subset B. This arrangement aimed at capturing the long-range changes in
the gene expression profiles.

We used simulations to benchmark the comparison of the two FDR procedures. Multivari-
ate Gaussian data were simulated using parameters that were estimated from the real data.
Because the hyperparameters η and ν tend to be under-estimated, we chose input parame-
ters such that the final estimates from the simulated data matched well with the estimates
from the real data. Table 2.1 summarizes the parameters used in the simulations. Figure
2.8 shows the distributions of the F-transformed moderated Hotelling T 2 statistics computed
from the two subsets individually, for either the real data (left panels) or the simulated data
(right panels). The heavier tails in the left panels suggest that the multivariate Gaussian
model does not provide a perfect fit for the real data. However, this model is still useful for
identifying the genes with changed expression profiles. Figure 2.9 compares the two FDR-
controlling procedures, when applied to each subset individually. These figures illustrate
that, under the conditions which emulate the A. thaliana data set, the frequentist procedure
is too conservative. Although the empirical Bayes procedure is slightly anti-conservative, it
yields FDR estimates that are much closer to the true false discovery rates.

Results from analyzing the individual subsets can be combined using an Intersection-
Union-Test (IUT). The IUT is useful when the null hypothesis set can be expressed as a
union of two sets, and the alternative hypothesis set is the intersection of their complement
sets. The overall null hypothesis can be rejected only if each of the individual null hypotheses
can be rejected. If each individual test has level-α, then the overall IUT also has level-α
[5, 4]. For the A. thaliana data set, the overall null hypothesis states that the gene expression
profile is unchanged, with respect to either Subset A or Subset B. The alternative hypothesis
states that the gene expression profile is changed, with respect to both Subset A and Subset
B. In other words, both the vector consisting of the 0, 1, 5 hour time-points, and the vector
consisting of the 0.25, 3, 7 hour time-points are non-zero. This is more stringent than the
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(d) simulated data subset B (0.25, 3, 7hr)
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Figure 2.8: Distribution of the F-transformed moderated Hotelling T 2 statistics for the two
subsets of the real data, and simulations based on the parameters estimated from the real
data. The dimension of the multivariate normal is k = 3 and the sample size is n = 4 in each
subset. Top panels: Subset A contains the 0, 1, 5 hours time points. Bottom panels: Subset
B contains the 0.25, 3, 7 hours time points. Left panels: real data. Right panels: simulated
data.



28

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) real data subset A (0, 1, 5hr)

critical values of F−transformed moderated T2

F
D

R
 / 

p−
va

lu
e

Empirical Bayes
Benjamini−Hochberg
Raw p−value

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) simulated data subset A (0, 1, 5hr)

critical values of F−transformed moderated T2

F
D

R
 / 

p−
va

lu
e

Empirical Bayes
Benjamini−Hochberg
Raw p−value
true FDR

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) real data subset B (0.25, 3, 7hr)

critical values of F−transformed moderated T2

F
D

R
 / 

p−
va

lu
e

Empirical Bayes
Benjamini−Hochberg
Raw p−value

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) simulated data subset B (0.25, 3, 7hr)

critical values of F−transformed moderated T2

F
D

R
 / 

p−
va

lu
e

Empirical Bayes
Benjamini−Hochberg
Raw p−value
true FDR

Figure 2.9: Comparison of the two FDR procedures applied to the moderated Hotelling T 2

statistics computed from the individual subsets. The dimension of the multivariate normal
is k = 3 and the sample size is n = 4 in each subset. Top panels: Subset A contains the 0,
1, 5 hours time points. Bottom panels: Subset B contains the 0.25, 3, 7 hours time points.
Left panels: real data. Right panels: simulated data.



29Hyperparameters p1 η ν Λ

Input for Simulating Subset A 0.10 0.34 7.2 0.025 0.000 -0.003
0.000 0.029 0.000
-0.003 0.000 0.036

Estimates from Simulated Subset A 0.02 0.08 5.2 0.030 0.000 -0.003
0.000 0.037 0.000
-0.003 0.000 0.045

Estimates from Real Subset A 0.02 0.09 5.2 0.025 0.000 -0.003
0.000 0.029 0.000
-0.003 0.000 0.036

Input for Simulating Subset B 0.10 0.28 6.8 0.037 0.002 0.002
0.002 0.023 0.004
0.002 0.004 0.035

Estimates from Simulated Subset B 0.02 0.07 5.0 0.051 0.002 0.002
0.002 0.032 0.005
0.002 0.005 0.047

Estimates from Real Subset B 002 0.07 4.8 0.037 0.002 0.002
0.002 0.023 0.004
0.002 0.004 0.035

Table 2.1: Hyperparameters used in the simulations aimed at emulating the setting of the
real data.

alternative hypothesis for analyzing the full data set, which states that the vector consisting
of all 6 time-points is non-zero.

The frequentist approach for controlling the FDR of the genome-wide IUTs involves the
following steps. First, convert the F-transformed moderated Hotelling T 2 statistics into
nominal p-values, based on the theoretical null distributions F(3, 6.2) and F(3, 5.8) for Sub-
sets A and B, respectively. Second, determine the p-value of the IUT for each gene, by
selecting the larger of the two p-values from either Subset A or Subset B. Third, apply the
Benjamini-Hochberg FDR-controlling procedure to the IUT p-values, to adjust for genome-
wide multiple testing. At the 5% level, the frequentist FDR procedure selected 936 genes,
whose expression profiles changed in both Subset A and Subset B. Among these genes, 665
were also found in the top 870 genes obtained from analyzing the full time course.

The empirical Bayes FDR procedure for the genome-wide IUTs involves comparing the
observed test statistics to an empirical null distribution. For each gene, the test statistic is
the minimum of the F-transformed moderated Hotelling T 2 statistics, computed from either
Subset A or Subset B alone. The empirical null distribution can be constructed by pooling
together the bootstrap null statistics, obtained from resampling both Subset A and Subset B
individually. We used 20 iterations of bootstrap resampling for each subset. This empirical
estimate covers the true null distribution at the right-tail, because the test statistic is a
minimum. Thus the level of the IUTs is conserved with this choice of the empirical null
distribution. The method described in Section 2.4 is applied subsequently. At the 5% level,
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the empirical Bayes FDR procedure selected 1017 genes, whose expression profiles changed
in both Subset A and Subset B. Among these genes, 689 were also found in the top 870 genes
obtained from analyzing the full time course.

The gene sets selected by the two different FDR procedures overlapped by 698 genes.
Nonexpressor of pathogenesis-related genes 1 (NPR1) regulates systemic acquired resistance
(SAR) in A. thaliana, and is induced after treatment with salicylic acid. This gene, along
with 3 other genes related to NPR1, were among the overlapped set of 698 genes. The
temporal expression profile of NPR1 is shown in Figure 2.10. The vertical axis represents
the differences between expression measurements in the mutant and wild type plants. The
horizontal axis represents days post-infection. Shown at the top of the plot is the rank
according to the moderated Hotelling T 2 statistics obtained from the full time course. Figure
2.11 shows the temporal expression profiles of four genes that were selected by the empirical
Bayes IUT, but not by the frequentist IUT. These genes appear to have non-zero expression
patterns across time, regardless of their ranks according to the full time course. Figure 2.12
shows the temporal expression profiles of four genes that were selected by the frequentist
IUT, but not by the empirical Bayes IUT. These genes were chosen from the top of the list
ranked by the analysis of the full time course. Despite their high ranks, the temporal profiles
of these genes do not appear to have any striking patterns other than random fluctuations.
These results suggest that the empirical Bayes FDR-controlling procedure is more powerful
for identifying genes with changed patterns of expression in the A. thaliana data set.

2.7 Summary of results

We investigated two FDR-controlling procedures for multiple-testing with the moderated
Hotelling T 2 statistics. The frequentist approach relies on a theoretical null distribution,
whereas the empirical Bayes approach relies on an empirical estimate of the null distribution.
A recent simulation study by Bradley Efron [24] demonstrated that the theoretical null
distribution may be far from reality, in the presence of high correlations among the statistics.
This is an argument in support of the empirical null distribution.

We proposed an empirical Bayes FDR procedure for multiple testing using the moderated
Hotelling T 2 statistic. The null distribution is estimated using the parametric bootstrap. The
bootstrap distribution has a downward bias when the sample size is small, but converges to
the theoretical null distribution when the sample size is sufficiently large, n = 5k. The small
sample bias in the empirical null distribution leads to slightly anti-conservative estimates of
the false discovery rates.

Another key factor that affects the performances of the FDR procedures is the amount
of moderation. We simulated some data with varying prior degrees of freedom ν, to in-
vestigate the effects of moderation. When ν is small, hyperparameter estimation is prone
to large errors. In such situations, the theoretical null distribution of T̃ 2 is invalid, thus
the frequentist FDR procedure fails. However, the parametric bootstrap remains to be an
adequate estimator for the true null distribution. When ν is large, hyperparameter estima-
tion is reliable, thus the frequentist FDR procedure is optimal. Hence the frequentist FDR
procedure is highly sensitive to hyperparameter estimation errors, which may be disastrous
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Figure 2.10: Temporal expression profile of Nonexpressor of pathogenesis-related genes 1
(NPR1). Shown at the top of this plot is the rank of the moderated Hotelling T 2 statistic
obtained from the analysis of the full data set, containing 6 time points. Each curve represents
an independent longitudinal replicate of the time course, indexed by 11 to 14.
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Figure 2.11: Temporal expression profiles of 4 genes that were selected by the empirical
Bayes IUT, but not by the frequentist IUT, at 5% FDR. Shown at the top of each plot is
the rank of the moderated Hotelling T 2 statistic obtained from the analysis of the full data
set, containing 6 time points. Each curve represents an independent longitudinal replicate
of the time course, indexed by 11 to 14.
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Figure 2.12: Temporal expression profiles of 4 genes that were selected by the frequentist
IUT, but not by the empirical Bayes IUT, at 5% FDR. Shown at the top of each plot is the
rank of the moderated Hotelling T 2 statistic obtained from the analysis of the full data set,
containing 6 time points. Each curve represents an independent longitudinal replicate of the
time course, indexed by 11 to 14.
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when the true value of ν is small. The empirical Bayes FDR procedure, albeit its slightly
anti-conservative nature in small samples, is more broadly useful because of its robustness.

The two FDR-controlling procedures are feasible only when the sample size n (the number
of replicates) is at least as large as the dimension k (the number of time points). In real
microarray experiments, the number of replicates is often limited. This problem can be
circumvented by splitting the full time course into subsets of fewer time-points. Results from
analyzing the individual subsets can be combined using intersection-union tests (IUTs). The
FDR-controlling procedures can be adapted for the IUTs, as discussed in Section 2.6. An
application to the A. thaliana data demonstrated that the empirical Bayes FDR procedure
is more powerful for identifying genes with changed patterns of expression.
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Chapter 3

A nonhomogeneous hidden Markov

model for integrating ChIP-chip data

from multiple tiling array designs

3.1 Motivation

A key step in the regulation of gene expression is the localization of DNA binding proteins
to specific sites on the chromosomes. Biologists often perform ChIP-chip experiments to
identify the chromosomal targets of these DNA binding proteins. Barbara Meyer’s group at
UC Berkeley is interested in a process called “dosage compensation” that ensures a balanced
expression of sex-linked genes. In most higher organisms, the female individual carries two
copies of the X-chromosome, whereas the male individual carries only one. If left unregulated,
the female individual would express twice the amount of X-linked gene products as the male
individual, leading to some serious consequences. Different species have evolved different
mechanisms of ensuring that equal levels of X-linked gene products are expressed in the two
genders. In mammals one copy of the female X-chromosome is completely inactivated, in
the form of Barr bodies. The Caenorhabditis elegans genome contains five autosomes and
one sex chromosome. The female-equivalent worms are called hermaphrodites, because they
can self-fertilize. Whereas the hermaphrodite worms carry two copies of the X-chromosome
(XX), the male worms carry only one copy (XO). The hermaphrodites reduce the expression
of X-linked genes by one-half, through a process called dosage compensation. This process
involves the binding of a protein complex, called the dosage compensation complex (DCC),
to both copies of Chromosome X in the hermaphrodites. A review of this subject can be
found in WormBook [46].

The Meyer group is interested in understanding how the dosage compensation complex
regulates the expression of X-linked genes. Thus they performed some ChIP-chip experiment
to identify the DNA binding targets of this protein complex, using the two-color NimbleGen
tiling arrays. Due to the scale and duration of this project, the experiments were performed
using three different designs of tiling arrays, as listed in Table 3.1. All of the “replicates” in
this study are biological replicates, i.e. the RNA samples were obtained from independent



36Design Label Description
1 WS170-50 WS170 genome release, isothermal probes,

tiled at roughly every 50 base pairs
2 WS180-40-norep WS180 genome release, masked out repeat regions,

tiled at roughly every 40 base pairs
3 WS180-50 WS180 genome release, isothermal probes,

tiled at roughly every 50 base pairs

Table 3.1: Summary of tiling array designs

Condition Protein Design 1 Design 2 Design 3 Total # “rep”
wild type Dpy-27 1 1 1 3
wild type Sdc-3 0 1 2 3
wild type IgG control 0 0 2 2

smo-1 mutant Dpy-27 1 1 1 3
smo-1 mutant Sdc-3 0 2 0 2
smo-1 mutant IgG control 0 0 1 1

Table 3.2: Summary of ChIP-chip experiments

chromatin immunoprecipitation experiments.
Dpy-27 is a chromosome condensation protein homolog that regulates dosage compen-

sation through association with Chromosome X [16]. Sdc-3 is a protein that coordinately
controls both sex determination and dosage compensation. It contains two zinc finger do-
mains that are required for association with the hermaphrodite X-chromosomes. Other
components of the DCC, including Dpy-27, are required for the synthesis, stability and lo-
calization of Sdc-3 to the X-chromosome [18]. Both Dpy-27 and Sdc-3 were analyzed by
ChIP-chip experiments under two different conditions. In wild type worms, the DCC is as-
sembled properly, thus Dpy-27 and Sdc-3 bind jointly to Chromosome X to mediate dosage
compensation. There is some unpublished evidence that the assembly of the DCC requires
a type of histone-modification called sumoylation. Thus the DNA-binding profiles of Dpy-27
and Sdc-3 are likely to change in mutant worms with the smo-1 gene knocked-out. A sum-
mary of the experiments is given in the Table 3.2. This chapter is devoted to the analysis
of a single protein at a time. The next chapter is devoted to the joint analysis of multiple
proteins. A separate analysis of the IgG control data will be discussed in Section 4.6.3.

When replicate ChIP-chip experiments are performed on tiling arrays with different probe
designs, integration of the data is a challenge. None of the existing methods for analyzing
ChIP-chip data address this challenge. One obvious way of integrating the different tiling
array designs is to create a pseudo-design by breaking the genome into contiguous bins.
Each bin should be large enough to cover at least a few probes from the original design.
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Design 1 

Design 2 

Design 3 

Merged 

Figure 3.1: Data integration approach

The original data can be transformed by taking weighted averages of the probes mapped to
each bin in the pseudo-design. Then, the conventional methods for ChIP-chip analysis can
be applied to the binned data. However, a major drawback of this approach is the loss of
resolution. Ideally, the different designs should be integrated while preserving the highest
resolution in the original data. Figure 3.1 illustrates our approach to the data integration
problem. Probes from the different designs are mapped onto a merged design at the single-
base resolution. As a convention, the center position of each probe is used for this mapping.
The origin of each probe is indicated in this figure by the color of the vertical strip. We
developed a nonhomogeneous hidden Markov model to realize the single-base level of data
integration.

3.2 Nonhomogeneous hidden Markov model for one

protein

Hidden Markov models (HMMs) have been used extensively in genomics for over a decade.
Array CGH studies that aim at identifying segments of chromosomal copy-number aberra-
tions often take the HMM approach to data analysis [29, 44]. A few transcription factor
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Figure 3.2: Nonhomogeneous hidden Markov model

mapping studies also incorporated HMMs in the analysis of tiling array data [41, 35, 20].
The most common type of HMM assumes that the intervals between adjacent observations
are equidistant, a property known as “time homogeneous.” In order to achieve data integra-
tion at the single-base level, we need a model that can accommodate intervals of variable
lengths. Thus we propose a nonhomogeneous version of the hidden Markov model stated
as follows. At each base position along the genome, the binding state of a particular pro-
tein is binary (0=unbound, 1=bound). Transitions between the states follow an unobserved
Markov chain. At some (but not all) base positions, observations are emitted according to
some Gaussian distributions, conditional on the hidden states. The emission distributions
are protein-specific and design-specific.

Figure 3.2 illustrates some notation that is necessary for specifying the model. Let tk, for
k ∈ {1, ..., T}, denote the genomic positions, in base pairs, at which observations exist. The
initial position t0 = 0 is unobserved in general. Let ∆k = tk+1 − tk denote the number of
single-base steps (i.e. base pairs) between adjacent observations. Let x(tk) ∈ {0, 1} denote
the hidden state at position tk. Let y(tk) denote the observation at position tk. Multiple
observations occurring at the same position are treated as conditionally independent.
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y(tk)|x(tk) = 0 ∼ N (µ0, σ
2
0)

y(tk)|x(tk) = 1 ∼ N (µ1, σ
2
1)

Transitions between the states are dictated by a Markov chain. Let π denote the vector of
initial probabilities. Let A denote the one-step transition matrix, with entries aij . The size
of A is 2 × 2. Write a(n; i, j) for entries of the n-step transition matrix. The ultimate goal
of fitting this model is to infer about the hidden states at all observed positions. In order to
do so, we need to estimate the parameters µ0, σ

2
0, µ1, σ

2
1, π,A.

3.2.1 Approximation of the transition matrix

Since the transition matrix is often concentrated along the diagonal, we can make the
following approximation. Let Q denote the difference between A and the identity matrix. If
n is small, then we can approximate the matrix exponential linearly.

A = I + Q

An ≈ I + nQ

The algorithm for estimating the transition matrix will be described later in this section.
Let us fast forward and write down the estimated one-step transition matrix Â obtained
by applying this algorithm to the wild type Dpy27 data for a 1 MB region of Chromosome
X. The majority of the gaps between adjacent probes are less than 40 base pairs, after
integration of the different array designs. The following equations demonstrate that the
linear approximation holds sufficiently for n ≤ 40.

Â =

(
0.9996 0.0004
0.0021 0.9979

)

Q̂ = Â − I =

(
−0.0004 0.0004
0.0021 −0.0021

)

40Q̂ =

(
−0.0175 0.0176
0.0835 −0.0835

)

I + 40Q̂ =

(
0.9824 0.0176
0.0835 0.9165

)

Â40 =

(
0.9829 0.0171
0.0814 0.9186

)
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3.2.2 Modified forward-backward algorithm

We provide the forward-backward algorithm for the nonhomogeneous HMM, without
writing out its derivation. The only distinction from the conventional forward-backward
algorithm is that the one-step transition probabilities are replaced by the ∆k-step transition
probabilities.

The forward variable is defined as:

α(x(tk)) = p(y(t1), ..., y(tk), x(tk)).

For the nonhomogeneous case, its recursion equations are given below.

α(x(t1)) = πp(y(t1)|x(t1))

α(x(tk+1)) =
∑

x(tk)

α(x(tk))a(∆k; x(tk), x(tk+1))p(y(tk+1)|x(tk+1))

The backward variable is defined as:

β(x(tk)) = p(y(tk+1), ..., y(tT )|x(tk)).

For the nonhomogeneous case, its recursion equations are given below.

β(x(tT )) = 1

β(x(tk−1)) =
∑

x(tk)

β(x(tk))a(∆k−1; x(tk−1), x(tk))p(y(tk)|x(tk))

The gamma variable is defined as the posterior probability: γ(x(tk)) = p(x(tk)|y). It can
be obtained from the forward and backward variables.

γ(x(tk)) =
α(x(tk))β(x(tk))∑

x(tk) α(x(tk))β(x(tk))

To estimate the transition matrix, we also need the co-occurrence probabilities:

ξ(x(tk), x(tk+1)) = p(x(tk), x(tk+1)|y).

For the nonhomogeneous case, their recursion equations are given below.

ξ(x(tk), x(tk+1)) =
α(x(tk))a(∆k; x(tk), x(tk+1))β(x(tk+1)p(y(tk+1)|x(tk+1))∑

x(tk) α(x(tk))β(x(tk))

3.2.3 Modified Baum-Welch algorithm

The Baum-Welch algorithm [2] is often used for estimating the parameters in hidden
Markov models. A review by Rabiner provides a derivation of this algorithm for the homoge-
neous HMM [53]. Our nonhomogeneous model requires some modifications to this algorithm.
We summarize below the modified Baum-Welch update equations for the nonhomogeneous
HMM. A detailed derivation will be presented later in this subsection.
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• Initial distribution:

π̂i =

∑T−1
k=1 γ(x(tk) = i))

T − 1

• Transition probabilities:

âij =
1

λi

T−1∑

k=1

ξ(x(tk) = i, x(tk+1) = j)

âii =1 −
∑

j:j 6=i

âij

λ̂i =

T−1∑

k=1

[
∆k

1 + ∆k(âii − 1)

]
ξ(x(tk) = i, x(tk+1) = i)

where âii is estimated from the previous iteration.

• Emission distribution means:

µ̂i =

∑T−1
k=1 γ(x(tk) = i)y(tk)∑T

k=1 γ(x(tk) = i)

• Emission distribution variances:

σ̂2
i =

∑T−1
k=1 γ(x(tk) = i)[y(tk) − µ̂i]

2

∑T
k=1 γ(x(tk) = i)

We now derive the Baum-Welch update equations for the nonhomogeneous HMM. The
Baum-Welch algorithm is an expectation-maximization (EM) algorithm, which aims at find-
ing the maximum likelihood estimates of the parameters in the HMM. Let θ denote the vector
of parameters, including the emission parameters, the stationary probabilities and the one-
step transition matrix. The complete data consist of the hidden states and the observations
at positions tk for k ∈ {1, ..., T}. We would like to maximize the likelihood of the parameter
given the observed data: L(θ|y). But this is very hard, because the sampling density of y is a
marginal density. EM is an iterative method that alternates between an expectation (E) step
and a maximization (M) step. Let the superscript (r) index the iterations. In the E-step,
compute the expectation of the complete log likelihood, with respect to the unobserved data,
conditional on the observed data y and the current parameter estimate θ(r). In the M-step,
choose an updated parameter estimate θ(r+1) to maximize the conditional expectation of the
complete log likelihood. An EM update never decreases L(θ|y), thus convergence to a local
maximum is guaranteed [19].

We now derive the update equations for the nonhomogeneous HMM. The complete like-
lihood function for this model is:

L(θ|x,y) = π(x(t0))

T−1∏

k=0

a(∆k; x(tk), x(tk+1))p(y(tk+1)|x(tk+1)).
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After taking the logarithm, we obtain:

log L = log π(x(t0)) +
T−1∑

k=0

log a(∆k; x(tk), x(tk+1)) +
T−1∑

k=0

log p(y(tk+1)|x(tk+1)).

In the E-step, we compute the expectation of the complete log likelihood conditional
on the observed data. This can be written as the sum of the conditional expectations of
the individual terms in the complete log likelihood function. The parameters are fixed at
the values of the current estimates. The superscript (r), indicating the iteration number, is
dropped to simplify the notations. Because t0 is unobserved in general, we can drop it from
the last two terms.

E[log π(x(t0))|y] =
∑

i

γ(x(t0) = i) log π(x(t0) = i)

E

[
T−1∑

k=0

log a(∆k; x(tk), x(tk+1))|y

]
=

T

T − 1
E

[
T−1∑

k=1

log a(∆k; x(tk), x(tk+1))|y

]

=
T

T − 1

T−1∑

k=1

{∑

i

∑

j

ξ(x(tk) = i, x(tk+1) = j) log a(∆k; i, j))

}

E

[
T−1∑

k=0

log p(y(tk+1)|x(tk+1))|y

]
=

T

T − 1
E

[
T−1∑

k=1

log p(y(tk+1)|x(tk+1))|y

]

=
T

T − 1

T−1∑

k=1

{∑

i

γ(x(tk+1) = i) log p(y(tk+1)|x(tk+1) = i)

}

In the M-step, we choose θ(r+1) to maximize the conditional expectation of the complete
log likelihood. Since all of the terms in this function are non-negative, maximizing each term
individually achieves maximization of the sum.

1. Initial Distribution of the Markov chain

Maximization of E[log π(x(t0))|y] with respect to πi, and subject to the constraints:

∑

i

π(i) = 1

yields the estimates of the initial probabilities:

π̂i = γ(x(t0) = i).
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However, since t0 is not observed, there is no fixed value for γ(x(t0) = i). Thus we take
the expectation of γ(x(t0) = i) over all the observations to obtain:

π̂i =

∑T−1
k=1 γ(x(tk) = i)

T − 1
.

2. One-step Transition Matrix

Maximization of E[
∑T−1

k=1 log a(∆k; x(tk), x(tk+1))|y] with respect to aij, subject to the
constraints:

∑

j

aij = 1

yields the updates for the transition probabilities. Let λi denote the Lagrange multi-
pliers for the constraints:

−
∑

i

λi

(∑

j

aij − 1

)
.

Recall the notation Q = A − I. For small Q, An ≈ I + nQ. Thus,

a(∆k; i, j) =

{
∆kaij if i 6= j;
1 + ∆k(aii − 1) if i = j.

The goal is to maximize:

T−1∑

k=1

[∑

i

∑

j

ξ(x(tk) = i, x(tk+1) = j) log a(∆k; i, j)

]
−
∑

i

λi

(∑

j

aij − 1

)

=
T−1∑

k=1

[∑

i

∑

j:i6=j

ξ(x(tk) = i, x(tk+1) = j) log(∆kaij)

]

+

T−1∑

k=1

[∑

i

ξ(x(tk) = i, x(tk+1) = i) log(1 + ∆k(aii − 1))

]

−
∑

i

λi

(∑

j

aij − 1

)

To obtain the MLEs of aij , set the partial derivatives to zero, while considering the
cases of i 6= j and i = j separately. For the cases of i 6= j,
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∂

∂aij
:

T−1∑

k=1

[∑

i

∑

j

ξ(x(tk) = i, x(tk+1) = j)
∆k

∆kaij

]
− λi = 0;

∴ âij =
1

λi

T−1∑

k=1

ξ(x(tk) = i, x(tk+1) = j).

For the cases of i = j,

∂

∂aii
:

T−1∑

k=1

[∑

i

ξ(x(tk) = i, x(tk+1) = i)
∆k

1 + ∆k(aii − 1)

]
− λi = 0;

∴ λ̂i =

T−1∑

k=1

ξ(x(tk) = i, x(tk+1) = i)
∆k

1 + ∆k(âii − 1)
,

where âii is estimated from the previous iteration.

The estimates of aii can be obtained from the probability constraints, as given below.

âii = 1 −
∑

j:i6=j

âij

The conventional homogeneous HMM corresponds to the special case of ∆k = 1 for
k ∈ {1, ..., T}. The estimate of aii in this special case is derived below.

∆k

1 + ∆k(aii − 1)
=

1

aii
;

∴ âii =
1

λi

T−1∑

k=1

ξ(x(tk) = i, x(tk+1) = i).

The expression for λ̂i can be further simplified, starting from the constraints
∑

j aij = 1.

∑

j

aij =
∑

j:i6=j

1

λi

T−1∑

k=1

ξ(x(tk) = i, x(tk+1) = j) +
1

λi

T−1∑

k=1

ξ(x(tk) = i, x(tk+1) = i);

1 =
1

λi

∑

j

T−1∑

k=1

ξ(x(tk) = i, x(tk+1) = j);

∴ λ̂i =

T−1∑

k=1

∑

j

ξ(x(tk) = i, x(tk+1) = j) =

T−1∑

k=1

γ(x(tk) = i).
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This expression agrees with the result of the homogeneous case described by Rabiner
[53].

3. Emission Parameters

Maximization of E[
∑T−1

k=1 log p(y(tk+1)|x(tk+1))|y] with respect to (µi, σ
2
i ) yields the

estimates of the emission parameters. Assuming σ2
i is constant and non-zero, differen-

tiation with respect to µi leads to the following equation.

T−1∑

k=1

γ(x(tk) = i)
y(tk) − µi

σ2
i

= 0

Thus,

µ̂i =

∑T−1
k=1 γ(x(tk) = i)y(tk)∑T

k=1 γ(x(tk) = i)
.

Differentiation with respect to σi leads to the following equation.

σi

T−1∑

k=1

γ(x(tk) = i)

{
[y(tk) − µ̂i]

2

σ2
i

− 1

}

Thus,

σ̂2
i =

∑T−1
k=1 γ(x(tk) = i)[y(tk) − µ̂i]

2

∑T
k=1 γ(x(tk) = i)

.

Notice that µ̂i and σ̂2
i are simply weighted versions of the sample mean and the sample

variance, respectively. The weighting depends on the posterior probabilities of the hidden
states at the observed base positions.

3.2.4 Initialization of the parameter estimates

The Baum-Welch algorithm requires reasonable estimates of the parameters as the initial
values. A rather long-winded approach is to create a set of binned data by converting the
different tiling array designs into a common pseudo-design. Then, the initial estimates could
be obtained by running a conventional peak-calling algorithm on the binned data. In practice,
we found that the following procedure leads to reasonable initial values, and requires minimal
computation.

1. Estimate µ1 and σ2
1 using observations in the 90th to 100th percentile of the each

experiment. Estimate µ0 and σ2
0 using the remaining observations. If two or more

replicate experiments were performed using the same tiling array design, then the
estimates obtained from the different replicates are averaged.



46

2. Assign each position to either State 0 or State 1, depending on whether the observation
exceeds the 90th percentile of all the observations collected using same tiling array
design.

3. Estimate the initial probabilities based on the abundance of each state.

π̂1 =
number of positions assigned to State 1

total number of positions in the integrated data set

4. Consider all the positions assigned to State 1. If the gap between two neighboring
positions is within 50 bases, then the two positions are joined together in the same
interval. Thus a set of State 1 intervals are obtained. Similarly, obtain a set of State
0 intervals by joining neighboring positions that are assigned to State 0.

5. Estimate the transitions probabilities of the two-state HMM as follows.

â11 = 1 −
1

average length of the State 1 intervals

â00 = 1 −
1

average length of the State 0 intervals

3.3 Simulation study for one protein

A two-state nonhomogeneous HMM is used to model the ChIP-chip data of a single
protein. At any given chromosomal position, the hidden states are either bound or unbound
to DNA. The algorithm for fitting this model, described in Section 3.2, involves a linear
approximation of the one-step transition matrix. We did a simulation study to check the
conditions under which the algorithm performs sufficiently. The goal of the simulations
was not to validate the assumptions of the nonhomogeneous HMM. Instead, the goal of the
simulations was to examine how the linear approximation might affect inferences about the
hidden states. Thus we used the classification rate for each state as the ultimate metric for
assessing the performance of our algorithm.

We selected a 1 MB region on Chromosome X for the simulation study. The chromosomal
coordinates of the probes in this region were recorded for the three tiling array designs. These
coordinates dictate where the observations are emitted. The hidden states of the protein were
generated for every base position in this region, according to a Markov chain. The length of
the Markov chain is 1 million bases. Following the notations introduced in Section 3.2, let π
and A denote the initial probabilities and the one-step transition matrix of the Markov chain,
respectively. Tiling array data were simulated according to the state-conditional Gaussian
distributions. Let µ0 and σ2

0 denote the mean and variance parameters for emissions in the
unbound state. These parameters have fixed values for all probes in the unbound state. Let
µ1 and σ2

1 denote the mean and variance parameters for emissions in the bound state. To
simulate peaks of variable lengths, a different value of the mean parameter µ1 was chosen
for each peak. The variance parameter σ2

1 was fixed at the same value for all peaks. Let µ∗
1

denote another parameter with a fixed value. To determine the emission parameters at each
position, the following rules were applied.
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1. If the state of the current position is 0 (unbound), then use the emission parameters
µ0 and σ2

0.

2. If the state of the previous position is 0 (unbound), but the state of the current position
is 1 (bound), then choose a new value for the mean parameter of the new peak.

µ1 ∼ Uniform(µ∗
1 − 0.5 × σ1, µ

∗
1 + 0.5 × σ1)

Notice that the expected value of µ1 is µ∗
1. Choose the variance parameter σ2

1 , which
has a fixed value for all peaks.

3. If the state of the previous position is 1 (bound), and the state of the current position is
1 (bound), then continue to generate observations using the same emission parameters
as those used for the previous position.

The values of µ0, σ2
0 , µ∗

1 and σ2
1 depend on the tiling array design. The probe design also

dictates whether an observation is emitted at any particular base position. To emulate the
setting of the wild type Dpy-27 data, we generated 3 replicates in each simulated data set,
with one replicate coming from each design. Under this setting, we simulated 100 data sets
using the following parameters. These parameters were obtained by fitting the nonhomo-
geneous HMM to the wild type Dpy-27 data for the selected 1 MB region on Chromosome
X.

• Emission Parameters for Design 1

µ0 = 0.124 σ0 = 0.152

µ1 = 0.657 σ1 = 0.195

• Emission Parameters for Design 2

µ0 = 0.170 σ0 = 0.128

µ1 = 0.675 σ1 = 0.178

• Emission Parameters for Design 3

µ0 = 0.053 σ0 = 0.121

µ1 = 0.357 σ1 = 0.161

• Markov Chain Parameters

π = (0.82, 0.18); A =

(
0.9993 0.0007
0.0032 0.9968

)
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Each simulated data set was analyzed using the algorithm described in Section 3.2. The
parameter estimates obtained from the 100 simulations are summarized as boxplots in Figures
3.3 to 3.7. In each panel of these figures, the true parameter value is represented by a red
horizontal line. The inner-quartile range of the 100 parameter estimates is represented by a
box, with a thick line drawn at the median. The whiskers extend to the extreme values of the
parameter estimates. The black dashed lines represent Mean +/− 2 SDs of the parameter
estimates. The variability of the parameter estimates results from simulation errors. Figures
3.3 to 3.5 show the emission parameters for each tiling array design separately. The estimates
of µ0, µ1 and σ0 fluctuate around their true values, as expected. The estimates of σ1 are
consistently larger than the true value of σ1. This is because the simulation model is slightly
more complex than the assumptions of the nonhomogeneous HMM. To generate peaks of
variable heights, a different value of µ1 was chosen randomly for each peak to simulate the
tiling array data. Whereas a mixture of Gaussians was generated in the simulations, the
nonhomogeneous HMM assumes only a single Gaussian distribution for the bound state.
Thus the estimates of σ1 were inflated. Figure 3.6 shows the initial distribution of the
hidden states. The estimates of π0 and π1 fluctuate around their true values. Figure 3.7
shows the transition probabilities of the hidden Markov chain. There appears to be a bias
in the estimation of the transition matrix, which deserves a closer examination.

Our algorithm uses a linear approximation of the matrix exponential, described in 3.2.1, to
achieve a closed-form solution for the maximum likelihood estimate of the transition matrix.
This approximation works better for smaller step sizes than larger step sizes. If the bias in
the estimation of the transition matrix was due to errors in the linear approximation, then we
should see a reduction in the bias when smaller step sizes are used in the simulations. Thus
we repeated the simulations with progressively smaller spacing between the probes. Since the
purpose is to investigate the effects of step sizes, we used a hypothetical design with uniform
spacing between the probes in the next set of simulation experiments. Each simulated data
set contained only one set of observations, instead of 3 replicates. For the first experiment,
we set the spacing between adjacent probes to 20 bp. For the second experiment, we set the
spacing to 10 bp. For the third experiment, we set the spacing to 2 bp. The computational
complexity of the forward-backward algorithm is linear in the number of observations. In
order to keep the running time within reasonable limits, we varied the length of the Markov
chain to achieve the same number (50,000) of observations in each experiment. Figure 3.8
shows the results of the first experiment, with observations emitted at every 20 base pairs.
Figure 3.9 shows the results of the second experiment, with observations emitted at every 10
base pairs. Figure 3.10 shows the results of the third experiment, with observations emitted
at every other base pair. Indeed, the bias in the estimates was progressively reduced when
we decreased the step sizes between the adjacent observations. The careful reader may also
notice a progressive increase in the variance. This was merely a side-effect of simulating
shorter Markov chains in the experiments with more densely placed probes. Since shorter
chains contain fewer events of transitions, the transition probabilities estimated from shorter
chains have higher variances.

Given that our algorithm produces slightly-biased estimates of the transition matrix, we
then looked at how the bias might affect our inferences about the hidden states. For each
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Figure 3.3: Emission Parameters (Design 1): 100 simulations of tiling array data were gener-
ated according to the chromosomal coordinates of the probes in a 1 MB region of Chromosome
X. Each simulated data set contained one array of each design, summing up to 3“replicates”.
Estimates of the emission parameters for Design 1 are summarized as boxplots. In each
panel, the true parameter value is represented by a red horizontal line. The inner-quartile
range of the 100 parameter estimates is represented by a box, with a thick line drawn at the
median. The whiskers extend to the extreme values of the estimates. The black dashed lines
represent Mean +/− 2 SDs of the estimates.
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Figure 3.4: Emission Parameters (Design 2): 100 simulations of tiling array data were gener-
ated according to the chromosomal coordinates of the probes in a 1 MB region of Chromosome
X. Each simulated data set contained one array of each design, summing up to 3“replicates”.
Estimates of the emission parameters for Design 2 are summarized as boxplots. In each
panel, the true parameter value is represented by a red horizontal line. The inner-quartile
range of the 100 parameter estimates is represented by a box, with a thick line drawn at the
median. The whiskers extend to the extreme values of the estimates. The black dashed lines
represent Mean +/− 2 SDs of the estimates.
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Figure 3.5: Emission Parameters (Design 3): 100 simulations of tiling array data were gener-
ated according to the chromosomal coordinates of the probes in a 1 MB region of Chromosome
X. Each simulated data set contained one array of each design, summing up to 3“replicates”.
Estimates of the emission parameters for Design 3 are summarized as boxplots. In each
panel, the true parameter value is represented by a red horizontal line. The inner-quartile
range of the 100 parameter estimates is represented by a box, with a thick line drawn at the
median. The whiskers extend to the extreme values of the estimates. The black dashed lines
represent Mean +/− 2 SDs of the estimates.
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Figure 3.6: Stationary Distribution: 100 simulations of tiling array data were generated
according to the chromosomal coordinates of the probes in a 1 MB region of Chromosome X.
Each simulated data set contained 3 replicates, with one from each design. Estimates of the
initial probabilities are summarized as boxplots. In each panel, the true parameter value is
represented by a red horizontal line. The inner-quartile range of the 100 parameter estimates
is represented by a box, with a thick line drawn at the median. The whiskers extend to the
extreme values of the parameter estimates. The black dashed lines represent Mean +/− 2
SDs of the parameter estimates.
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Figure 3.7: Transition Matrix (variable ∆k): 100 simulations of tiling array data were gener-
ated according to the chromosomal coordinates of the probes in a 1 MB region of Chromosome
X. Each simulated data set contained one array of each design, summing up to 3“replicates”.
Estimates of the transition probabilities are summarized as boxplots. In each panel, the true
parameter value is represented by a red horizontal line. The inner-quartile range of the 100
parameter estimates is represented by a box, with a thick line drawn at the median. The
whiskers extend to the extreme values of the estimates. The black dashed lines represent
Mean +/− 2 SDs of the estimates.
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Figure 3.8: Transition Matrix (∆k = 20): 100 simulations of tiling array data were generated
according to a hypothetical design with probes placed at every 20 base pairs. Each simulated
data set contained one array. Estimates of the transition probabilities are summarized as
boxplots. In each panel, the true parameter value is represented by a red horizontal line.
The inner-quartile range of the 100 parameter estimates is represented by a box, with a
thick line drawn at the median. The whiskers extend to the extreme values of the parameter
estimates. The black dashed lines represent Mean +/− 2 SDs of the parameter estimates.
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Figure 3.9: Transition Matrix (∆k = 10): 100 simulations of tiling array data were generated
according to a hypothetical design with probes placed at every 10 base pairs. Each simulated
data set contained one array. Estimates of the transition probabilities are summarized as
boxplots. In each panel, the true parameter value is represented by a red horizontal line.
The inner-quartile range of the 100 parameter estimates is represented by a box, with a
thick line drawn at the median. The whiskers extend to the extreme values of the parameter
estimates. The black dashed lines represent Mean +/− 2 SDs of the parameter estimates.
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Figure 3.10: Transition Matrix (∆k = 2): 100 simulations of tiling array data were generated
according to a hypothetical design with probes placed at every other base pair. Each simu-
lated data set contained one array. Estimates of the transition probabilities are summarized
as boxplots. In each panel, the true parameter value is represented by a red horizontal line.
The inner-quartile range of the 100 parameter estimates is represented by a box, with a
thick line drawn at the median. The whiskers extend to the extreme values of the parameter
estimates. The black dashed lines represent Mean +/− 2 SDs of the parameter estimates.
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simulated data set, we compared the true hidden states with the inferred states from our
algorithm. For each simulated data set, we tabulated the number of correctly inferred posi-
tions and the number of incorrectly inferred positions in a confusion matrix. To account for
differences in the state prevalences, we reported each entry as a percentage of the number of
observations in each true state. To summarize across 100 simulations, we drew one boxplot
for each entry in the confusion matrix. A good algorithm should lead to confusion matrices
with the diagonal entries close to 100%, and the off-diagonal entries nearly zero. Figure
3.11 shows the results of the experiment with observations emitted at the same chromosomal
coordinates as the real data. Figure 3.12 shows the results of the experiment with observa-
tions emitted at every 20 base pairs. Figure 3.13 shows the results of the experiment with
observations emitted at every 10 base pairs. Figure 3.14 shows the results of the experiment
with observations emitted at every other base pair. As the spacing between the observations
was decreased, the error rates also decreased. These results suggest that the errors in state
inferences are associated with the bias in the estimation of the transition matrix. Under the
setting of the real data, the error rates were below 2% in all of the 100 simulations. Thus
we conclude that the nominal bias in the estimation of the transition matrix is tolerable.

3.4 From candidate probes to binding peaks

The ultimate goal of a ChIP-chip analysis is to identify chromosomal regions that are
directly targeted by DNA binding proteins. When the probe level signals are plotted against
their chromosomal positions, a binding target should exhibit the characteristic shape of a
triangular peak. The signals are the strongest at the center of the peak, and taper off near the
ends. Although the nonhomogeneous hidden Markov Model provides a way to estimate the
probability that a probe lies within a bound region, it is insufficient to conclude the analysis
at the probe level. In order to draw inferences about the binding sites, some postprocessing
of the probe level information is required. A number of the existing methods including TAS,
TiMAT and MA2C take the following approach. First, the candidate probes are identified
by applying a threshold to the probe level summary statistics. Then, the candidate probes
are joined into intervals according to some criteria. A couple of parameters called max gap
and min run modulate the formation of the intervals. Enriched probe positions separated
by a distance of up to max gap are joined together to form an interval. Any interval with
a length of less than min run is rejected. The remaining intervals are called peaks by the
other methods. We adopted the following criteria for joining probes into intervals, but we
refrain from calling the intervals peaks at this point.

1. A probe is considered as a candidate probe if its posterior probability of being in the
bound state is at least 0.8.

2. The maximum gap allowed between adjacent candidate probes within any interval is
300 bp.

3. The minimum length required for any interval 500 bp.
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Figure 3.11: Confusion Matrix (variable ∆k): 100 simulations of tiling array data were
generated according to the chromosomal coordinates of the probes in a 1 MB region of
Chromosome X. Each simulated data set contained one array of each design, summing up
to 3 “replicates”. The inferred states of the observed positions were compared against the
true states. A confusion matrix was tabulated for each simulated data set, and its entries
were normalized into percentages of the true states. Each panel summarizes one entry in
the confusion matrix across 100 simulations. The inner-quartile range is delineated by the
borders of the box, with a thick line drawn at the median. The whiskers extend to the
extreme values. The black dashed lines represent Mean +/− 2 SDs.
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Figure 3.12: Confusion Matrix (∆k = 20): 100 simulations of tiling array data were generated
according to a hypothetical design with probes placed at every 20 base pairs. Each simulated
data set contained one array. The inferred states of the observed positions were compared
against the true states. A confusion matrix was tabulated for each simulated data set, and
its entries were normalized into percentages of the true states. Each panel summarizes one
entry in the confusion matrix across 100 simulations. The inner-quartile range is delineated
by the borders of the box, with a thick line drawn at the median. The whiskers extend to
the extreme values. The black dashed lines represent Mean +/− 2 SDs.
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Figure 3.13: Confusion Matrix (∆k = 10): 100 simulations of tiling array data were generated
according to a hypothetical design with probes placed at every 10 base pairs. Each simulated
data set contained one array. The inferred states of the observed positions were compared
against the true states. A confusion matrix was tabulated for each simulated data set, and
its entries were normalized into percentages of the true states. Each panel summarizes one
entry in the confusion matrix across 100 simulations. The inner-quartile range is delineated
by the borders of the box, with a thick line drawn at the median. The whiskers extend to
the extreme values. The black dashed lines represent Mean +/− 2 SDs.
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Figure 3.14: Confusion Matrix (∆k = 2): 100 simulations of tiling array data were gener-
ated according to a hypothetical design with probes placed at every other base pair. Each
simulated data set contained one array. The inferred states of the observed positions were
compared against the true states. A confusion matrix was tabulated for each simulated data
set, and its entries were normalized into percentages of the true states. Each panel summa-
rizes one entry in the confusion matrix across 100 simulations. The inner-quartile range is
delineated by the borders of the box, with a thick line drawn at the median. The whiskers
extend to the extreme values. The black dashed lines represent Mean +/− 2 SDs.
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Figure 3.15: An ideal symmetric triangular peak.

4. The minimum density of probes within any interval is 1 probe per 100 bp.

The last criterion was added to avoid calling peaks in regions that have very sparse
observations. Visual inspection of the data on a genome browser reveals that, while some
intervals appear to be real binding sites, others are likely to be false positives. For example,
taller peaks are more likely to be real than shorter ones, because signal strength is related
to binding affinity. Peaks with the characteristic triangular shape are more likely to be
real than regions that exhibit the rectangular shape. Figures 3.15 and 3.16 illustrate the
distinction between triangular and rectangular “peaks”. Rectangular intervals occur as the
result of promiscuous associations between the protein complex and various DNA segments
during chromatin immunoprecipitation. This phenomenon is particularly prevalent in the
DCC experiments, because the dosage compensation complex is both large and abundant.
Moreover, not every real binding site has the ideal shape of a symmetric triangle. Sometimes,
the peak may be off-centered with a long tail. In other cases, two or more nearby binding
sites may be merged into a multi-modal peak. Figure 3.17 illustrates these types of peaks,
which are also very likely to contain real binding sites. Clearly, there is a need to rank the
intervals according to the properties of real binding sites. Intervals that pass a filter on the
ranking criterion can then be called peaks, which represent the putative binding sites.
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Figure 3.16: A false positive rectangular interval.
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Figure 3.17: Non-ideal peaks. The first peak has the shape of an asymmetric triangle. The
second peak is the product of multiple nearby binding sites being merged together. Both
peaks are probably real binding sites.
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Among the existing ChIP-chip analysis methods, the only one that uses the shape infor-
mation is MPeak by Zheng et al. [70]. This method begins by identifying local maximum
probes in the data. It then fits a truncated triangle shape regression model within a window
centered at each local maximum probe. The slope of the left and right legs of the trian-
gle are represented by two separate coefficients, which are allowed to be different for each
peak. The start and end positions of the window can be chosen from a range of values, so
a number of models are fitted using different combinations of these values. The model that
has the smallest residual variance determines the best fitted start and end positions of the
peak centered at this probe. This process of fitting truncated triangles is repeated for the
neighbors of the local maximum probe. Among the local maximum probe and its neighbors,
the probe with the smallest residual variance is chosen to identify the best-fitted triangle.
MPeak was developed for a promoter study involving the ChIP-chip of some transcription
factors and RNA polymerase II [40]. The truncated triangle model was suitable because this
type of data generally have well separated peaks. However, the dosage compensation protein
complex binds to the X-chromosome in a much higher density, to achieve a chromosome-wide
attenuation of gene expression. So the ChIP-chip data of the dosage compensation proteins
contain a substantial number of merged peaks, as seen in Figure 3.17. This special feature
of the DCC data makes it difficult to separate the real peaks from the false positives solely
based on the shape of isolated triangles. Thus we needed a more flexible method for ranking
the peaks.

In order to develop a method that separates the real binding sites from the experimental
artifacts, a set of pre-defined positives and negatives is required. Since the true binding sites
are unknown, we curated a set of “standards” through visual inspection of the tiling array
data on a genome browser. For the wild type data, 300 positions were selected randomly from
Chromosome X and 600 positions were selected randomly from the other five autosomes. For
the mutant data, 900 positions were selected randomly from the entire genome. We manually
inspected the 10 kb window centered at each selected position, and recorded the start and
end positions of any positive or negative regions. A positive region has two distinctive
characteristics: 1) most of the probes in the region have higher signals than the surrounding;
2) the shape of the region resembles either a single triangle or a few merged triangles. A
negative region also has some high signal probes, but the shape of the region does not
exhibit any peak-like features. The probes in a negative region could be of either similar
heights or variable heights. In either case, the distribution of the high signal probes is fairly
random. False positive peaks are often observed in the repetitive regions of the genome,
which generally have high affinities for non-specific binding. Figure 3.18 shows one such
example.

Table 3.3 summarizes the number of standard regions curated for each data set. The
term “Joint” refers to the shared DNA binding sites of Dpy-27 and Sdc-3. The standard
“Joint” regions were defined by visual inspection of the tiling array data. In Chapter 4, we
will describe a generalization of the nonhomogeneous HMM that enables the joint analysis
of multiple proteins. The “Joint” peaks were obtained by running this algorithm on the
Dpy-27 and Sdc-3 data simultaneously. The number of curated regions is small, relative to
the number of positions we had examined. This is because the 10 kb windows surrounding a



66

WS170-50 

WS180-40-norep 

WS180-50 

Figure 3.18: A repetitive region that has a false positive interval due to non-specific binding.
The middle track has missing data in this region, because the repetitive regions were masked
out on Design 2.



67Data sets No. Positives No. Negatives
wild type Dpy-27 201 225
wild type Sdc-3 225 221
wild type Joint 187 192
mutant Dpy-27 198 303
mutant Sdc-3 328 286
mutant Joint 305 279

Table 3.3: Curated sets of positive and negative regions

large fraction of the positions did not contain any consistent signals that could be classified
as either positives or negatives. Among the 900 positions selected for wild type data, roughly
400 did not have any signals in their vicinities, and about 20 positions were surrounded by
some irregular signals that could not be classified. Among the 900 positions selected for
mutant data, roughly 350 did not have any signals in their vicinities, and about 80 positions
were surrounded by some irregular signals that could not be classified. Each set of curated
standards was randomly split into two halves. The first half was designated as the training
set and the second half was designated as the testing set. We used the training set exclusively
in the development of a ranking and filtering procedure. The testing set was reserved for
comparing our peak-calling method with some other existing methods, to be described in
the next section.

Our ranking procedure involves the following three steps.

1. Compute a measure of signal strength called peak height.

2. Compute a measure of shape called non-uniformity.

3. Define the final score as a linear combination of peak height and non-uniformity.

For each interval, consider the probes whose signals are in the top quartile of all the
probes within the interval. Let H denote the average height of these top quartile probes.
Then, consider the probes which fall within either the 250 bp window upstream of the start
position or the 250 bp window downstream of the end position. Let B denote the average
height of these background probes. The peak height measure is defined as:

peak height = H − B.

Each interval is partitioned into 5 contiguous segments. Let Ni denote the number of
probes in the i-th segment, for i = 1, ..., 5. Let Xi denote the number of probes in the i-th
segment that are greater than the median of all the probes within the interval. For a false
positive interval, the high signal probes are randomly distributed along the chromosomal
coordinate. So the expected value of Xi

Ni

is 1
2
. The non-uniformity measure is defined as:
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non-uniformity =

5∑

i=1

|
Xi

Ni
− 0.5|.

Since each interval results from the integrative analysis of replicate experiments, let us
take a moment to discuss how the replicates are handled. For each experiment, we computed
the density of probes within a given interval. If the density is at least one probe per 100
bp, then we computed the peak height and non-uniformity measures using the log ratio
data for this experiment. The overall peak height and non-uniformity measures for the
interval were obtained by averaging the measures computed for the individual experiments.
When processing the joint peaks of different proteins, the same approach was taken with the
experiments of different proteins treated as if they were replicates.

In general, peaks that represent real binding sites should have strong signals and non-
rectangular shapes. So the final score could be a linear combination of peak height and
non-uniformity, in which both coefficients are positive. To determine the coefficients, we
performed a principal component analysis on these two measures. Figure 3.19 shows scatter
plots of all the intervals along the two principal components. The left-hand column represents
the wild type condition. The right-hand column represents the smo-1 mutant condition. The
top row shows the results of analyzing Dpy-27 alone. The center row shows the results of
analyzing Sdc-3 alone. The bottom row shows the results of analyzing Dpy-27 and Sdc-3
jointly. In each panel, intervals that overlap with the curated positive regions in the training
set are shown in red; intervals that overlap with the curated negative regions in the training
set are shown in green. The separation of positive and negative intervals is much better for
the wild type data than the mutant data. This is because the mutant data are plagued with
far more noise. The smo-1 Sdc-3 data set is the worst of all cases, because it contains only
two replicate experiments, both of which were performed using the tiling array Design 2.
The average length of probes in Design 2 is about 40 bp, as opposed to 50 for the other two
designs. The repeat masking of Design 2 led to many gaps in the tiling array data. Our
goal is to develop a ranking procedure that is generally applicable to future experiments,
provided they have decent quality. To avoid compromising the performance of our ranking
procedure by including poor quality data, we decided to choose the coefficients purely based
on the wild type data. The same coefficients were then used to compute the peak scores for
the smo-1 mutant condition.

In each of the wild type scatter plots (Figure 3.19, panels a-c), the best separation of the
positive and negative peaks appears to be a line that forms a 45◦ angle with the x-axis. The
y-intercept of the line is arbitrary, as it depends on the trade-off between false positives and
false negatives. The optimal scoring function is perpendicular to the line of best separation.
Thus we can estimate the coefficients of peak height and non-uniformity by setting (PC1 −
PC2) equal to an arbitrary constant. The coefficients obtained from each plot separately are
listed below.

• wild type Dpy-27: Score = 1.36 × peak height + 0.40 × non-uniformity

• wild type Sdc-3: Score = 1.38 × peak height + 0.30 × non-uniformity
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(b) wild type Sdc3 peaks

PC1 =  0.54 * peak height + 0.84 * non−uniformityP
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(c) wild type Joint peaks

PC1 =  0.61 * peak height + 0.8 * non−uniformityP
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(d) smo−1 mutant Dpy27 peaks

PC1 =  0.27 * peak height + 0.96 * non−uniformityP
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(e) smo−1 mutant Sdc3 peaks

PC1 =  0.55 * peak height + 0.83 * non−uniformityP
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(f) smo−1 mutant Joint peaks

PC1 =  0.44 * peak height + 0.9 * non−uniformityP
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Figure 3.19: Scatter plots of all peaks along the first two principal components. Peaks that
overlap with the curated positive regions in the training set are colored in red. Peaks that
overlap with the curated negative regions in the training set are colored in green.
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• wild type Joint: Score = 1.41 × peak height + 0.19 × non-uniformity

The goal is to find a scoring function that works sufficiently well in general, rather than
optimizing for any particular experiment. So we took averages of the coefficient estimates
across the three data sets and rounded to the first decimal places. In practice, the precise
values of these coefficients are not critical. The final scoring function is given below.

Score = 1.4 × peak height + 0.3 × non-uniformity

We then performed a receiver operating characteristic (ROC) analysis of the ranking
procedure. For each data set, a peak that overlaped with any of the curated positive regions
in the training set was defined as a positive peak; a peak that overlaped with any of the
curated negative regions in the training set was defined as a negative peak. At any given
threshold, false positive and false negative rates were calculated according to the following
definitions.

true positive rate =
number of positive intervals that pass the threshold

total number of positive intervals

false positive rate =
number of negative intervals that pass the threshold

total number of negative intervals

Figure 3.20 shows the plots of sensitivity (true positive rate) vs. specificity (1 - false
positive rate) obtained by filtering the intervals at various thresholds of the peak scores.
The left-hand column represents the wild type condition. The right-hand column represents
the smo-1 mutant condition. The top row shows the results of analyzing Dpy-27 alone. The
center row shows the results of analyzing Sdc-3 alone. The bottom row shows the results of
analyzing Dpy-27 and Sdc-3 jointly. As discussed earlier, the smo-1 Sdc-3 data set has the
most noise, thus the highest error rates. In general, the joint analysis of two proteins has
improved performance over the separate analyses of single proteins. Please note that these
sensitivity and specificity measures only reflect the performance of filtering by peak scores,
but not the nonhomogeneous HMM that leads to the candidate probes. The entire package
of probe level analysis by nonhomogeneous HMM and postprocessing of the peaks will be
evaluated in the next section.

3.5 Comparisons with existing methods for ChIP-chip

data analysis

A systematic evaluation of the ChIP-chip technology using spike-in DNA samples was
reported in 2008 [36]. In this study, a pool of 100 randomly selected cloned genomic DNA
sequences were mixed at various concentrations, and spiked into a commercial preparation
of human genomic DNA. One spike-in mixture was prepared at a high concentration for
direct labeling and hybridization to tiling arrays. Another spike-in mixture was prepared at
a low concentration, and required DNA amplification before hybridization to tiling arrays.



71

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Filtering of wild type Dpy27 peaks

Specificity (1 − false positive rate)

S
en

si
tiv

ity
 (

tr
ue

 p
os

iti
ve

 r
at

e)

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Filtering of wild type Sdc3 peaks

Specificity (1 − false positive rate)

S
en

si
tiv

ity
 (

tr
ue

 p
os

iti
ve

 r
at

e)

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Filtering of wild type Joint peaks

Specificity (1 − false positive rate)

S
en

si
tiv

ity
 (

tr
ue

 p
os

iti
ve

 r
at

e)

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Filtering of smo−1 mutant Dpy27 peaks

Specificity (1 − false positive rate)

S
en

si
tiv

ity
 (

tr
ue

 p
os

iti
ve

 r
at

e)

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Filtering of smo−1 mutant Sdc3 peaks

Specificity (1 − false positive rate)

S
en

si
tiv

ity
 (

tr
ue

 p
os

iti
ve

 r
at

e)

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Filtering of smo−1 mutant Joint peaks

Specificity (1 − false positive rate)

S
en

si
tiv

ity
 (

tr
ue

 p
os

iti
ve

 r
at

e)

Figure 3.20: ROC analysis of the peak filtering procedure for various data sets. True positive
and false positive rates are defined in terms of the intervals that overlap with the curated
positive and negative regions in the training set.
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The two mixtures were distributed to 8 independent research groups, all of which were blind
to the true spike-in regions. Each laboratory hybridized the spike-in DNA samples to one
of four different types of tiling arrays: Affymetrix, Agilent, NimbleGen, and a PCR tiling
array. The tiling array data were analyzed using 13 different algorithms, and the results
were reported as rank-ordered lists of predicted spike-in regions. The authors used an ROC-
like curve analysis to compare the different peak-calling algorithms for each type of tiling
arrays. In the case of NimbleGen tiling arrays, TAMALPAIS [6] was the best algorithm
for analyzing both the concentrated sample and the diluted sample. The runner-ups were
NimbleGen’s peak-calling algorithm [43] for the concentrated sample, and MA2C [60] for
the diluted sample. We decided to compare our method with these three “best” existing
peak-calling algorithms for analyzing NimbleGen tiling arrays.

3.5.1 Review of the three best existing methods

TAMALPAIS begins by applying a percentile threshold on the log ratios of IP versus input
for each array. For a given threshold (i.e. 95th percentile or 98th percentile), each probe
position is recoded as either 0 (below the threshold) or 1 (above the threshold). Positions
that have missing data due to repeat masking are recoded as X. The result is a sequence of
0’s and 1’s, intercepted with X’s that are ignored in the analysis. Real binding sites should
be represented by long runs of 1’s. However, short runs of 1’s may occur simply by chance.
Let n denote the length of the sequence, which is about 2 million probes for the C. elegans
tiling arrays. Let p denote the probability of getting a 1 at each position, which depends on
the percentile threshold. Let Rn denote the length of the longest consecutive run of 1’s that
occurs by chance. Erdös and Rényi [28] proved that

Rn

log(n)
→

1

log(1/p)
.

Gordon, Schilling and Waterman [30] proved that

mean(Rn) = log1/p(n) +
0.577

θ
−

1

2
+ r1(n)

and

variance(Rn) =
π2

6θ2
+

1

12
+ r2(n)

where 0.577 is the Euler-Mascheroni constant, θ = ln(1/p), and r1(n) and r2(n) are negligible
for large n.

For each observed run of 1’s of length W , TAMALPAIS computes a z-score according to

z =
W − mean(Rn)√

variance(Rn)
.

Under the extreme-value distribution, the p-value of observing W is

P (Z > z) = 1 − exp[−exp(−1.2825z − 0.577)].
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TAMALPAIS reports the results of this algorithm using 4 different combinations of the
percentile threshold and the p-value cutoff, leading to 4 levels of stringency named as L1-L4.
L1 uses the 98th percentile with p-value < 0.0001; L2 uses the 95th percentile with p-value <
0.0001; L3 uses the 98th percentile with p-value < 0.05; L4 uses the 95th percentile with p-
value < 0.05 [6]. TAMALPAIS is known to be fairly conservative. Because we are interested
in comparing the receiver operating characteristics of various algorithms, it is important that
we start with the most inclusive list of peaks calls from each algorithm. So we chose to use
the L4 output from TAMALPAIS in the ROC analysis.

The peak-calling algorithm implemented in NimbleGen’s analysis software, called Nim-
bleScan, is based on a paper by Lucas et al. in 2007 [43]. A sliding window of user defined
width is moved across the data track of each experiment. If the log ratio of a probe exceeds
the probe-height cutoff, then this probe is a potential peak probe. If the number of potential
peak probes in the window is equal to or greater than the user defined in-window-number
cutoff, then a peak is recognized. As the sliding window moves along the data track, the
length of a recognized peak can be extended. This peak detection procedure is repeated
with decreasing values of the probe-height cutoff. A parameter called p is used to represent
the probe-height cutoff, with larger values meaning higher stringency. Under the default
settings, peak detection is done 76 times, starting with p = 90, decreasing p by 1 in each
step, and finishing with p = 15. A peak that is recognized in the first scan is assigned to
the category of p = 90. A peak that is not recognized in the first scan, but emerges in
the second scan is assigned to the category of p = 89. Thus the peaks can be ranked by
stringency according to the parameter p. FDRs are calculated by applying the same peak
detection procedure to permuted data that simulate background noise. For a given value
of p, the ratio of the average number of peaks recognized across 20 permuted data tracks
to the number of peaks recognized in the original data is considered as the FDR. For the
50-mer tiling arrays used in Lucas et al., the authors found a window size of 625 bp to be
optimal. So we chose a window size of 600 bp to analyze the C. elegans tiling arrays with
NimbleScan. The in-window-number cutoff is allowed to be different depending on whether
there are probes in the window that are below the probe-height cutoff. When the window
includes probes that are below the probe-height cutoff, we set the in-window-number cutoff
to 6 probes. When all the probes in the window are above the probe-height cutoff, we set
the in-window-number cutoff to 3 probes.

MA2C preprocesses the hybridization intensities of each array using a GC-specific nor-
malization. Probes are assigned to different bins depending on their GC-contents. Within
each GC-bin, probes are standardized using the same set of estimates for the means and
variances of the background intensities, as well as the covariance between the two channels.
The parameters can be estimated robustly using a two-dimensional generalization of Tukey’s
bi-weight estimation. Each probe is summarized by a normalized and correlation weighted
log ratio, which is then rescaled globally to ensure that the normalized score has variance 1.
Peak detection is based on the sliding window approach. An MA2C score is computed for
a window of user defined length, centered at each probe position. The program provides a
number of options for computing this window-level MA2C score. The default option is to use
the median of the normalized probe scores within each window. Windows with MA2C scores
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exceeding a certain threshold are then joined into peaks. The threshold for the MA2C scores
can be determined using either the p-value approach or the FDR approach. The p-values are
assigned based on the normal probability distribution. The FDR is estimated empirically as
follows. For a given cutoff value M , peaks with MA2C scores greater than M are considered
as positive MA2C score peaks; peaks with MA2C scores less than −M are considered as
negative MA2C score peaks. FDR is estimated as

FDR =
number of negative MA2Cscore peaks

number of positive MA2Cscore peaks
.

The authors of MA2C applied their method to another set of C. elegans ChIP-chip
experiments of Dpy-27 and Sdc-3 [27]. They used a window size of 600 bp, with the MA2C
score cutoffs based on p-values of 10−4 and 10−5 [60]. We also adopted the window size of
600 bp when running MA2C on the Meyer Lab data. Since we were interested in analyzing
the receiver operating characteristics of MA2C, we lowered the MA2C score cutoff to p-value
< 10−3, to obtain a more inclusive list of peaks.

3.5.2 Results of comparisons by ROC

TAMALPAIS and NimbleScan were designed to analyze one experiment at a time. Al-
though previous studies had tried various ways of combining the peak calls from replicate
experiments, they all involved making arbitrary decisions at various steps. MA2C provides
the option of averaging the probe level scores from replicate experiments before peak detec-
tion. However, this requires the same tiling array design to be used in all of the replicate
experiments. Since our study involves replicate experiments performed on tiling arrays with
different designs, the replicate analysis option provided in MA2C cannot be utilized. Thus
we decided to perform the ROC analysis of these three existing methods at the level of sin-
gle experiments. The testing set of curated standards, which was described in the Section
3.4, was used as the benchmark. For a given method, 100 different sets of peak calls were
produced by thresholding the peaks scores at different values. A curated positive region that
overlaped with any of the called peaks was considered a positive hit. A curated negative
region that overlaped with any of the called peaks was considered a negative hit. Sensitivity
and specificity were calculated according to the following definitions.

sensitivity =
number of positive hits

number of curated positive regions
.

specificity = 1 −
number of negative hits

number of curated negative regions
.

Figures 3.21-3.24 show the ROC curves for four different peak calling algorithms when
applied to each experiment separately. Since the nonhomogeneous HMM is proposed specif-
ically for the integration of tiling array designs, we also ran this method on the combined
dataset of all replicates for each protein. The combined analysis of replicated data by non-
homogeneous HMM is represented by solid red curves. The single experiment version of our
method is represented by dashed red curves. TAMALPAIS is represented by dashed green
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curves; NimbleScan is represented by dashed cyan curves; MA2C is represented by dashed
blue curves. In each figure, different replicates of the same protein are plotted in different
rows, with the experiment IDs shown in the legends. The right-hand side panels are zoomed-
in versions of the left-hand side panels. When applied to each experiment separately, our
method performed similarly as the best existing methods. When the replicate experiments
were combined, our method performed with pronounced improvements.

Please note that the sensitivity and specificity values shown in the ROC curves are only
meant to be comparative. Since we do not know the true binding sites of these dosage
compensation proteins, we cannot make any statements about the absolute sensitivities and
specificities of any particular method. The curated sets of positive and negative regions
were selected for the purpose of comparing different methods, when we don’t know the
truth. Sensitivity and specificity defined in terms of these curated standards would invariably
depend on the overall difficulty of classifying these regions. For example, when there is a
good signal to noise ratio in the raw data, the human curator may be able to select more weak
positive peaks by visual inspection, as in the case of the wild type data. However, when the
quality of the raw data is poor, the human curator may refrain from making judgement calls
about borderline cases, as in the case of the mutant data. When the curated set of standards
contains more borderline cases, the overall sensitivities and specificities of all the methods
would appear lower. At the same time, we would also expect to see a better separation of the
different methods by ROC analysis. On the other hand, when the curated set of standards
contains fewer borderline cases, all of the different methods would appear to perform better.
But these sensitivity and specificity values should not be interpreted as absolute, and can
only be used for making comparisons within the same data set. The differences between the
wild type and mutant ROC results can be explained by this phenomenon.

Table 3.4 summarizes the number of peaks called by each method, when specificity is
controlled at 90% or above. In most cases, the peak counts of our method are similar to the
peak counts of the best existing methods. However, our method called fewer peaks for smo-1
Dpy-27 when applied to each replicate separately. We looked through the regions that were
called smo-1 Dpy-27 peaks by the other methods but not ours, and found the majority of
them to be in one of two categories. In the first category, the peaks have very weak signals.
When each replicate experiment was analyzed separately, our method considered the weak
signals insignificant. When the replicates are combined, our method recognized the peaks
due to the consistency of the weak signals. A couple of examples are shown in Figures 3.25
and 3.26. In the second category, the peaks have strong signals. But they were filtered out
because of their roughly rectangular shapes. A couple of examples are shown in Figures
3.27 and 3.28. These results suggest that the nonhomogeneous HMM does not perform
worse than the best existing methods, when applied to each experiment separately. The
advantage of the nonhomogeneous HMM is its capacity for integrating replicate experiments
performed using tiling arrays with different probe designs. Indeed, the combined analysis by
nonhomogeneous HMM is far more powerful than the existing methods.
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Figure 3.21: ROC curves for wild type Dpy-27. Each experiment was analyzed separately
by: HMM (red, dashed), TAMALPAIS (green, dashed), NimbleScan (cyan, dashed), MA2C
(blue, dashed). The combined set of 3 replicates was analyzed by HMM (red, solid). Right-
hand side panels are zoomed in versions of left-hand side panels.
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Figure 3.22: ROC curves for wild type Sdc-3. Each experiment was analyzed separately
by: HMM (red, dashed), TAMALPAIS (green, dashed), NimbleScan (cyan, dashed), MA2C
(blue, dashed). The combined set of 3 replicates was analyzed by HMM (red, solid). Right-
hand side panels are zoomed in versions of left-hand side panels.



78

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC for detection of smoDpy27 peaks

Specificity (1 − false positive rate)

S
en

si
tiv

ity
 (

tr
ue

 p
os

iti
ve

 r
at

e)

nonhomogeneous HMM combined
nonhomogeneous HMM 10208902
TAMALPAIS 10208902
NimbleScan 10208902
MA2C 10208902

0.80 0.85 0.90 0.95 1.00

0.
80

0.
85

0.
90

0.
95

1.
00

ROC for detection of smoDpy27 peaks

Specificity (1 − false positive rate)

S
en

si
tiv

ity
 (

tr
ue

 p
os

iti
ve

 r
at

e)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC for detection of smoDpy27 peaks

Specificity (1 − false positive rate)

S
en

si
tiv

ity
 (

tr
ue

 p
os

iti
ve

 r
at

e)

nonhomogeneous HMM combined
nonhomogeneous HMM 11890001
TAMALPAIS 11890001
NimbleScan 11890001
MA2C 11890001

0.80 0.85 0.90 0.95 1.00

0.
80

0.
85

0.
90

0.
95

1.
00

ROC for detection of smoDpy27 peaks

Specificity (1 − false positive rate)

S
en

si
tiv

ity
 (

tr
ue

 p
os

iti
ve

 r
at

e)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC for detection of smoDpy27 peaks

Specificity (1 − false positive rate)

S
en

si
tiv

ity
 (

tr
ue

 p
os

iti
ve

 r
at

e)

nonhomogeneous HMM combined
nonhomogeneous HMM BP19
TAMALPAIS BP19
NimbleScan BP19
MA2C BP19

0.80 0.85 0.90 0.95 1.00

0.
80

0.
85

0.
90

0.
95

1.
00

ROC for detection of smoDpy27 peaks

Specificity (1 − false positive rate)

S
en

si
tiv

ity
 (

tr
ue

 p
os

iti
ve

 r
at

e)

Figure 3.23: ROC curves for smo-1 mutant Dpy-27. Each experiment was analyzed sepa-
rately by: HMM (red, dashed), TAMALPAIS (green, dashed), NimbleScan (cyan, dashed),
MA2C (blue, dashed). The combined set of 3 replicates was analyzed by HMM (red, solid).
Right-hand side panels are zoomed in versions of left-hand side panels.
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Figure 3.24: ROC curves for smo-1 mutant Sdc-3. Each experiment was analyzed separately
by: HMM (red, dashed), TAMALPAIS (green, dashed), NimbleScan (cyan, dashed), MA2C
(blue, dashed). The combined set of 2 replicates was analyzed by HMM (red, solid). Right-
hand side panels are zoomed in versions of left-hand side panels.
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Figure 3.25: Weak peaks that were called by the other methods but not by the nonhomo-
geneous HMM, when applied to each replicate separately. Yellow intervals represent peaks
called by the combined version of the nonhomogeneous HMM. Red intervals represent peaks
called by the single experiment version of the nonhomogeneous HMM. Here, red intervals are
missing because the single experiment analysis did not recognize any peaks. But the com-
bined analysis recognized a peak. Green intervals represent peaks called by TAMALPAIS.
Cyan intervals represent peaks called by NimbleScan. Blue intervals represent peaks called
by MA2C.
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Figure 3.26: Weak peaks that were called by the other methods but not by the nonhomo-
geneous HMM, when applied to each replicate separately. Yellow intervals represent peaks
called by the combined version of the nonhomogeneous HMM. Red intervals represent peaks
called by the single experiment version of the nonhomogeneous HMM. Here, red intervals are
missing because the single experiment analysis did not recognize any peaks. But the com-
bined analysis recognized a peak. Green intervals represent peaks called by TAMALPAIS.
Cyan intervals represent peaks called by NimbleScan. Blue intervals represent peaks called
by MA2C.
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Figure 3.27: Peaks that were called by the other methods but not by our method due
to postprocessing. Yellow intervals represent peaks called by the combined version of the
nonhomogeneous HMM. Red intervals represent peaks called by the single experiment version
of the nonhomogeneous HMM. Green intervals represent peaks called by TAMALPAIS. Cyan
intervals represent peaks called by NimbleScan. Blue intervals represent peaks called by
MA2C. The intervals in the region between 1,172,000 and 1,176,000 were filtered out by our
method due to their roughly rectangular shapes.
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Figure 3.28: Peaks that were called by the other methods but not by our method due
to postprocessing. Yellow intervals represent peaks called by the combined version of the
nonhomogeneous HMM. Red intervals represent peaks called by the single experiment version
of the nonhomogeneous HMM. Green intervals represent peaks called by TAMALPAIS. Cyan
intervals represent peaks called by NimbleScan. Blue intervals represent peaks called by
MA2C. The intervals in the region between 2,712,500 and 2,716,500 were filtered out by our
method due to their roughly rectangular shapes.



84

Experiments nh HMM TAMALPAIS NimbleScan MA2C
wild type Dpy-27 combined 1559 – – –
wild type Dpy-27 10214102 1327 1052 1605 1052
wild type Dpy-27 11896401 1380 1406 1473 1006

wild type Dpy-27 BP11 1308 294 1479 565
wild type Sdc-3 combined 2518 – – –
wild type Sdc-3 10213802 1485 1727 1950 1636
wild type Sdc-3 10331202 1504 1657 1755 1253

wild type Sdc-3 BP12 1964 623 1776 1438
smo-1 Dpy-27 combined 2555 – – –
smo-1 Dpy-27 10208902 1822 2330 2576 1953
smo-1 Dpy-27 11890001 1038 2166 2527 2385

smo-1 Dpy-27 BP19 2407 3070 3351 2694
smo-1 Sdc-3 combined 3611 – – –

smo-1 Sdc-3 BP14 3118 4051 4231 3340
smo-1 Sdc-3 BP16 3249 4540 4420 3393

Table 3.4: Summary of peak calls by various methods
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Chapter 4

A peak-detection method for the joint

analysis of ChIP-chip data from

multiple DNA binding proteins

4.1 Motivation

Many processes in gene regulation are carried out by multiple-protein complexes. A well-
known example is the Chromatin Structure Remodeling Complex (RSC), which contains 17
subunits. Recently, an increasing number of such examples have been found in histone mod-
ifications [63]. The mammalian MLL3/4 Set1-H3K4 methyltransferase complex coordinates
the removal of a repressive methyl mark with the formation of an activating methyl mark
on histone H3. The Polycomb group (PcG) of transcriptional silencing complexes consist of
three separate protein complexes (PRC1, PRC2 and PhoRC) that assemble on chromatin
and coordinate H2A lysine 119 ubiquitination and H3 lysine methylation. The recruitment
of these protein complexes to DNA is hierarchical. The process that motivated our study is
dosage compensation. In mammals and flies, dosage compensation is associated with specific
histone post-translational modifications and histone variants replacements. A recent study
reported a new implication of histone modification in C. elegans dosage compensation [50].
Barbara Meyer’s group is interested in the genome wide localization of the dosage compen-
sation complex (DCC) under various conditions. They performed ChIP-chip experiments in
both wild type worms and mutant worms that are deficient for histone sumoylation. Compo-
nents of the DCC that they investigated include Dpy-27, a condensin homolog, and Sdc-3, a
zinc-finger protein. Replicate experiments were performed using NimbleGen two-color tiling
arrays with three different designs. Table 3.2 provides a summary of the ChIP-chip exper-
iments. The main goal of these experiments is to identify chromosomal regions that are
jointly bound by Dpy-27 and Sdc-3, which constitute the DCC binding targets.

The existing methods for ChIP-chip data analysis are designed to analyze only one protein
at a time. Ad-hoc approaches have been taken when there is a need to integrate information
about two or more proteins. When all of the tiling arrays have the same probe design, the
probe level summary statistics can be averaged, and the single-protein analysis methods can
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be applied to the averages. Alternatively, each experiment can be analyzed separately, and
the peaks calls from individual experiments can be cross-listed to obtain the jointly bound
sites. However, none of these approaches are satisfying either in theory or in practice. With
more and more ChIP-chip studies of protein complexes underway in the scientific community,
there is a compelling need for an algorithm that enables the joint analysis of two or more
proteins. In this chapter, we describe a generalization of the nonhomogeneous HMM that
enables the joint analysis of multiple proteins.

4.2 Conditional independence of the observations

Since the experiments were performed independently, it is reasonable to assume that the
observations of different proteins are independent conditional on the hidden states. This
assumption reduces the dimensionality of the parameter space dramatically. However, this
assumption needs to be validated by checking for potential correlations between the proteins.

It is well known that the design of the probes can affect the signals on microarrays. Thus
it is worthwhile to consider the correlations separately for each design of tiling arrays. Figure
4.1 shows some scatter-plots of the data collected using tiling array Design 2, for a 1 MB
region on Chromosome X. Figure 4.2 shows some scatter-plots of the data collected using
Design 3, for the same chromosomal region. In each panel, the wild type Dpy-27 data are
plotted along the horizontal axis, and the wild type Sdc-3 data are plotted along the vertical
axis. Because the correlations are part of the state-dependent emission parameters, the data
points were stratified by the states. Ideally, we would like to stratify the data points by the
true hidden states. Since the true hidden states were not available, we decided to use the
inferred states. Details of the hidden state inference method will be discussed in the next
section. The focus of this section is to establish the premises for building the method. The
inferred states are color-coded as follows. State 00 (not bound by either protein) is colored
in black; State 01 (bound by Sdc-3 but not bound by Dpy-27) is colored in red; State 10
(bound by Dpy-27 but not bound by Sdc-3) is colored in green; State 11 (jointly bound by
Dpy-27 and Sdc-3) is colored in blue. The correlations are nearly zero in States 00, 01 and
01. However, the correlations in State 11 are 0.71 for Design 2 and 0.62 for Design 3.

Although correlations exist in the jointly bound state, it may still be advantageous to
ignore the correlations to make the inference problem feasible in general. To explore this
possibility, we simulated some bivariate Gaussian data as follows. A Markov chain was
generated along every base position in the same 1 MB region of Chromosome X, according
to the initial distribution π and the transition matrix P.

π = (0.772, 0.035, 0.058, 0.135)

P =




0.9988 0.0006 0.0004 0.0003
0.0126 0.9857 0.0007 0.0010
0.0048 0.0005 0.9929 0.0018
0.0017 0.0002 0.0007 0.9974




A total of two datasets were generated according to each tiling array design, with one
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Figure 4.1: Correlation plots for tiling arrays of Design 2. Wild type data for a pair of ChIP-
chip experiments are stratified by the inferred states in the two-protein model. Each data
point represents a probe on tiling array Design 2. There appears to be a positive correlation
between Dpy-27 and Sdc-3 in State 11.
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Figure 4.2: Correlation plots for tiling arrays of Design 3. Wild type data for a pair of ChIP-
chip experiments are stratified by the inferred states in the two-protein model. Each data
point represents a probe on tiling array Design 3. There appears to be a positive correlation
between Dpy-27 and Sdc-3 in State 11.



89Design Label unbound µ unbound σ bound µ bound σ
1 WS170-50 0.124 0.151 0.6577 0.195
2 WS180-40-norep 0.170 0.128 0.675 0.178
3 WS180-50 0.053 0.121 0.357 0.161

Table 4.1: Emission parameters for simulating Dpy-27 data

Design Label unbound µ unbound σ bound µ bound σ
1 WS170-50 -0.001 0.153 0.927 0.254
2 WS180-40-norep -0.049 0.115 0.299 0.179
3 WS180-50 -0.005 0.132 0.421 0.189

Table 4.2: Emission parameters for simulating Sdc-3 data

representing Dpy-27 and one representing Sdc-3. The actual center positions of the probes in
each design dictated where the observations occurred. At each observed position, bivariate
Gaussian data were generated according to the design-specific parameters given in Table 4.1
and Table 4.2. Details of the data simulation procedure can be found in Section 4.4. The
only difference here is that correlations were added to the simulation model. In States 00,
01 and 10, the correlations between Dpy-27 and Sdc-3 were set to zero. In State 11, the
correlation was set to either 0.6, 0.7 or 0.8, depending on the tiling array design.

This simulated data set was subsequently fitted to two models. The first model assumes
conditional independence between the two proteins. The second model assumes dependence
between the two proteins in State 11. Thus the second model contains three additional
parameters, which are the design-specific correlations between Dpy-27 and Sdc-3 in State
11. After model fitting, each observed position was assigned to a state according to the
posterior probabilities, i.e. the state which has the largest value for the γ variable. A
confusion matrix was tabulated for each model, to compare the inferred states with the true
states. The results of one simulation experiment are shown in Table 4.3 and Table 4.4.

To compare Table 4.3 and Table 4.4, let us focus on the diagonal elements. Differences in
the off-diagonal elements are only complementary to the differences in the diagonal elements.

State 00 State 01 State 10 State 11
True State 00 48142 41 46 6
True State 01 84 2042 1 19
True State 10 104 2 3587 24
True State 11 45 16 20 7939

Table 4.3: States reconstruction by the conditional independence model



90State 00 State 01 State 10 State 11
True State 00 48133 42 47 13
True State 01 83 2059 1 3
True State 10 100 2 3601 14
True State 11 27 5 14 7974

Table 4.4: States reconstruction by the bivariate model

State 00 State 01 State 10 State 11
True State 00 -0.014 % – – –
True State 01 – +0.365 % – –
True State 10 – – +0.223 % –
True State 11 – – – +0.377 %

Table 4.5: Percent differences between the diagonal elements in the confusion matrices of
the two models

A higher count in a diagonal element means that more probes of a particular state are
correctly classified. There appears to be a slight improvement in the classification rates
when the conditional independence model is extended into the bivariate model, by estimating
design-specific the correlations in State 11. To assess whether the difference is real, 100 cycles
of data simulation and model fitting were performed. In each cycle, the diagonal elements
in the confusion matrix of the conditional independence model were subtracted from those
of the bivariate model, to obtain the differences. These differences were then divided by the
respective average counts and converted into percentages. Table 4.5 summarizes the percent
differences when averaged over the 100 cycles.

Figure 4.3 shows the box plots of the percent differences for the diagonal elements of the
confusion matrices. In each panel, the solid line inside the box represents the median over
100 simulations, and the dashed lines represent 2 SDs away from the mean. Positive values
indicate improvements of the bivariate model over the conditional independence model, in
classification rates. For each of the binding states (01, 10 and 11), the bivariate model exhibits
a slight improvement of less than 1%. Thus we conclude that the benefits of estimating the
correlation parameters are minimal.

This simulation study was carried out in a vanilla setting. Each pair of experiments was
performed using tiling arrays with the same design. The three different designs were covered
by exactly three pairs of experiments. In practical situations, such a balanced pairing of
experiments is uncommon. Thus the estimation of correlations is likely to be unfeasible in
general. Since the conditional independence model is quite robust even in the presence of
correlations, we decided to proceed with it for its feasibility merits.
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two models were divided by their average counts, to obtain the percent differences. Solid
lines represent the medians. Dashed lines represent 2 SDs away from the means.
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4.3 Nonhomogeneous hidden Markov model for multi-

ple proteins

We now present a generalized version of the nonhomogeneous HMM for analyzing multiple
proteins. Consider a situation in which P DNA-binding proteins form the complex of interest.
Suppose that at least one ChIP-chip experiment was performed for each protein. Let p ∈
{1, ..., P} index the proteins. Let Mp denote the number of replicate experiments performed
for protein p, and let m ∈ {1, ..., Mp} index the replicates. We extend the notations used
in Section 3.2 to describe the multiple-protein model. Let T denote the total number of
observed positions after integration of the tiling array designs. Let tk, for k ∈ {1, ..., T},
denote the genomic positions of the observations. Let ∆k = tk+1 − tk denote the number
of single-base steps (i.e. base pairs) between two adjacent observations. Let xp(tk) ∈ {0, 1}
denote the hidden state of protein p at position tk, in the single-protein model. Let ypm(tk)
denote the m-th observation of protein p at position tk. We assume that each protein emits
observations independently of the other proteins, conditional on the hidden states. Thus
we have one set of univariate Gaussian emission parameters for each protein and each tiling
array design. The index for the tiling array designs is omitted with the understanding that
the emission parameters are design-specific.

ypm(tk)|xp(tk) = 0 ∼ N (µp0, σ
2
p0)

ypm(tk)|xp(tk) = 1 ∼ N (µp1, σ
2
p1)

A basic assumption of our model is that the binding status of each protein follows a two-
state Markov chain, with the state being either 0 if unbound or 1 if bound. The combined
binding status of the protein complex follows a Markov chain with 2P states. These states can
be represented by strings of 0’s and 1’s, which indicate the binding statuses of the individual
components. Thus the vector of initial probabilities, denoted by π, has length 2P . The
one-step transition matrix, denoted by A, has dimension 2P by 2P . Figure 4.4 illustrates the
four hidden states of a complex with two proteins. In this case, the initial distribution and
the transition matrix can be written as:

• Initial distribution:
π = (π00, π01, π10, π11)

• Transition matrix:

A =




a00,00 a00,01 a00,10 a00,11

a01,00 a01,01 a01,10 a01,11

a10,00 a10,01 a10,10 a10,11

a11,00 a11,01 a11,10 a11,11




In order to obtain initial estimates for the parameters in the multiple-protein model,
we first need to fit one single-protein model for each component of the protein complex.
The emission parameters estimated by fitting the individual model of each protein can be
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Figure 4.4: Four Hidden States of the Two-Protein Model
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carried over as the emission parameters in the multiple-protein model. Since the emission
distribution of each protein is independent of the other proteins, no further updates of the
emission parameters are needed when fitting the multi-protein model. For a given protein,
each observed position can be assigned to either State 0 or State 1 by thresholding the
posterior probabilities. To obtain an initial estimate of π, we can simply count the positions
where the binding statuses of the individual proteins satisfy the combination specified for
each state. For example, the initial probability of State 01 can be estimated as the number of
positions with Protein 1 in the unbound state and Protein 2 in the bound state, divided by the
total number of observed positions. To obtain an initial estimate of A, we make a simplifying
assumption that the Markov chains of the individual proteins are independent of each other.
Then the transition matrix for the protein complex can be written as the Kronecker product
of the transition matrices of the individual proteins. Again, let us consider the two-protein
example for illustration. Let B denote the transition matrix of Protein 1, and let C denote
the transition matrix of Protein 2. The transition matrix of the complex can be estimated
as A = B

⊗
C.

B =

(
b00 b01

b10 b11

)

C =

(
c00 c01

c10 c11

)

A = B
⊗

C =




b00c00 b00c01 b01c00 b01c01

b00c10 b00c11 b01c10 b01c11

b10c00 b10c01 b11c00 b11c01

b10c10 b10c11 b11c10 b11c11




Please note that we do not expect the Markov chains of the individual proteins to be inde-
pendent of each other. This is because proteins that function in the same complex are more
likely to bind jointly at the same location than separately at different locations. Nevertheless,
the estimates obtained based on the independence assumption are adequate for initializing
the modified Baum-Welch algorithm. We use the Kronecker product only to get the initial
values of the transition probabilities. We then run the modified Baum-Welch algorithm de-
scribed in Section 3.2 to refit the parameters. Recall that the emission parameters for any
given experiment are determined by 1) the binary state of the protein and 2) the tiling array
design. So the only distinction between the single-protein and multi-protein models is that
the latter involves a higher dimensional Markov chain. We also found that the estimates of
the Markov parameters generally converge within 10 iterations of the Baum-Welch updates.

4.4 Simulation study for two proteins

In Section 3.3, we described a simulation study of the two-state nonhomogeneous HMM
for one protein. A four-state model, as illustrated in 4.4, is required to analyze the joint
binding sites of two proteins. The hidden states are: (00) not bound by either one of the two
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proteins; (01) not bound by the first protein but bound by the second protein; (10) bound
by the first protein but not bound by the second protein; (11) bound by both of the two
proteins. The algorithm for fitting this four-state model also involves a linear approximation
to the exponentials of the one-step transition matrix. Although we saw in Section 3.3 that
the approximation errors are tolerable for the two-state model, we cannot be certain about
the four-state model because of its increased complexity. Thus we repeated the simulation
study for the two-protein model.

We selected the same 1 MB region of Chromosome X as the one used in 3.3 for this
simulation study. The chromosomal coordinates of the probes in the selected region were
recorded for the three tiling array designs. These coordinates dictate where the observations
are emitted. The hidden states of the two proteins were generated for every base position
in this region, according to a four-state Markov chain. The length of the Markov chain
is 1 million bases. Following the notations in Section 4.3, let π and A denote the initial
probabilities and the one-step transition matrix of the Markov chain, respectively. Tiling
array data were simulated according to the state-conditional Gaussian distributions. We
assumed that the two proteins emit observations independently of each other, conditional
on the hidden states. This assumption was shown to be acceptable in Section 4.2. Let µp0

and σ2
p0 denote the mean and variance parameters for observations of the p-th protein in the

unbound state. Let µp1 and σ2
p1 denote the mean and variance parameters for observations

of the p-th protein in the bound state. To simulate peaks of variable lengths, a different
value of the mean parameter µp1 was chosen for each peak. The variance parameter σ2

p1 was
fixed at the same value for all peaks of the same protein. Let µ∗

p1 denote another parameter
with a fixed value, which is unique for each protein. The following list summarizes how the
emission parameters were determined at each position.

1. If the current position is in State 00 (not bound by either protein), then use the emission
parameters µp0 and σ2

p0 for p ∈ {1, 2}.

2. If the current position is not in State 00, and it is different from the state of the previous
position, then choose a new mean parameter for each protein that has a new peak. If it
is in State 01 (not bound by the first protein but bound by the second protein), choose
a new mean parameter for the second protein (p = 2). If it is in State 10 (bound by
the first protein but not by the second protein), choose a new mean parameter for the
first protein (p = 1). If it is in State 11 (bound by both of the two proteins), then
choose a new mean parameter for each of the two proteins separately.

µp1 ∼ Uniform(µ∗
p1 − 0.5 × σp1, µ

∗
p1 + 0.5 × σp1)

Notice that the expected value of µp1 is µ∗
p1. Choose the variance parameter σ2

p1, which
has a fixed value for all peaks.

3. If the current position is not in State 00, and it is the same as the state of the previous
position, then continue to generate observations using the same emission parameters
as those used for the previous position.



96Design Unbound µp0 Unbound σp0 Bound µp1 Bound σp1

1 0.124 0.151 0.658 0.195
2 0.170 0.128 0.675 0.178
3 0.053 0.121 0.357 0.161

Table 4.6: Emission parameters for Protein 1

Design Unbound µp0 Unbound σp0 Bound µp1 Bound σp1

1 -0.001 0.153 0.927 0.254
2 -0.049 0.115 0.299 0.179
3 -0.005 0.132 0.421 0.189

Table 4.7: Emission parameters for Protein 2

The values of µp0, σ2
p0, µ∗

p1 and σ2
p1 depend on the tiling array design. The probe design

also dictates whether an observation is emitted at any particular base position. To emulate
the setting of the wild type Dpy-27 data, we generated 3 replicates in each simulated data
set, with one replicate coming from each design. Under this setting, we simulated 100 data
sets using the following parameters. These parameters were obtained by fitting the four-state
nonhomogeneous HMM to the wild type Dpy-27 and Sdc-3 data for the 1 MB region selected
from Chromosome X.

• Markov Chain Stationary Distribution

π = (0.772, 0.035, 0.058, 0.135)

• Markov Chain Transition Matrix

A =




0.9988 0.0006 0.0004 0.0003
0.0126 0.9857 0.0007 0.0010
0.0048 0.0005 0.9929 0.0018
0.0017 0.0002 0.0007 0.9974




Each simulated data set was analyzed using the algorithm described in Section 4.3. The
parameter estimates obtained from the 100 simulations are summarized as boxplots in Figures
4.5 to 4.12. In each panel of these figures, the true parameter value is represented by a red
horizontal line. The inner-quartile range of the 100 parameter estimates is represented by a
box, with a thick line drawn at the median. The whiskers extend to the extreme values of the
parameter estimates. The black dashed lines represent Mean +/− 2 SDs of the parameter
estimates. Figures 4.5 to 4.10 show the emission parameters for each tiling array design
separately. The estimates of µp0, µp1 and σp0 fluctuate around their true values, as expected.
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The estimates of σp1 are consistently larger than the true value of σp1. This is because the
simulation model is slightly more complex than the assumptions of the nonhomogeneous
HMM. To generate peaks of variable heights, a different value of µp1 was chosen randomly
to simulate the tiling array data. Whereas a mixture of Gaussians was generated in the
simulations, the nonhomogeneous HMM assumes only a single Gaussian distribution for
the bound state. Thus the estimates of σp1 were inflated. Figure 4.11 shows the initial
distribution of the hidden states. The true values of the initial probabilities are within the
Mean +/− 2 SDs window of the estimates. Figure 4.12 shows the transition probabilities
of the hidden Markov chain. There appears to be a bias in the estimation of the transition
matrix, which deserves a closer examination.

We saw in Section 3.3 that the bias in the estimation of the two-state transition matrix
is related to the linear approximation of matrix exponentials. This approximation works
better for smaller step sizes than larger step sizes. When we used smaller step sizes in the
simulations, we saw a reduction in the bias. To investigate this for the four-state model,
we also repeated the simulations of the four-state model with progressively smaller spacing
between the probes. Since the purpose is to investigate the effects of step sizes, we used a
hypothetical design with uniform spacing between the probes in the next set of simulation
experiments. Each simulated data set contained only one set of observations for each protein.
For the first experiment, we set the spacing between adjacent probes to 20 bp. For the second
experiment, we set the spacing to 10 bp. For the third experiment, we set the spacing to
2 bp. The computational complexity of the forward-backward algorithm is linear in the
number of observations. In order to keep the running time within reasonable limits, we
varied the length of the Markov chain to achieve the same number (50,000) of observations
in each experiment. Figure 4.13 shows the results of the first experiment, with observations
emitted at every 20 base pairs. Figure 4.14 shows the results of the second experiment,
with observations emitted at every 10 base pairs. Figure 4.15 shows the results of the third
experiment, with observations emitted at every other base pair. Again, bias in the estimates
was progressively reduced when we decreased the step size between the adjacent observations.
Thus we conclude that the bias in the estimation of the four-state transition matrix is also
related to the linear approximation of matrix exponentials.

We then looked at how the bias in the estimation of the transition matrix might affect our
inferences about the hidden states. For each simulated data set, we compared the true hidden
states with the inferred states from our algorithm. For each simulated data set, we tabulated
the number of correctly inferred positions and the number of incorrectly inferred positions
in a confusion matrix. To account for differences in the state prevalences, we reported
each entry as a percentage of the number of observation in each true state. To summarize
across 100 simulations, we drew one boxplot for each entry in the confusion matrix. A good
algorithm should lead to confusion matrices with the diagonal entries close to 100%, and
the off-diagonal entries nearly zero. Figure 4.16 shows the results of the experiment with
observations emitted at the same chromosomal coordinates as the real data. The error rates
were below 7% in all of the 100 simulations. Figure 4.17 shows the results of the experiment
with observations emitted at every 20 base pairs. At ∆k = 20, the error rates were below
5%. Figure 4.18 shows the results of the experiment with observations emitted at every 10
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Figure 4.5: Emission Parameters (Protein 1, Design 1): 100 simulations of tiling array data
were generated according to the chromosomal coordinates of the probes in a 1 MB region of
Chromosome X. Each simulated data set contained 3 replicates for each protein, with one
replicate from each design. Estimates of the emission parameters for Protein 1 on Design 1
are summarized as boxplots. In each panel, the true parameter value is represented by a red
horizontal line. The inner-quartile range of the 100 parameter estimates is represented by a
box, with a thick line drawn at the median. The whiskers extend to the extreme values of the
parameter estimates. The black dashed lines represent Mean +/− 2 SDs of the parameter
estimates.
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Figure 4.6: Emission Parameters (Protein 1, Design 2): 100 simulations of tiling array data
were generated according to the chromosomal coordinates of the probes in a 1 MB region of
Chromosome X. Each simulated data set contained 3 replicates for each protein, with one
replicate from each design. Estimates of the emission parameters for Protein 1 on Design 2
are summarized as boxplots. In each panel, the true parameter value is represented by a red
horizontal line. The inner-quartile range of the 100 parameter estimates is represented by a
box, with a thick line drawn at the median. The whiskers extend to the extreme values of the
parameter estimates. The black dashed lines represent Mean +/− 2 SDs of the parameter
estimates.
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Figure 4.7: Emission Parameters (Protein 1, Design 3): 100 simulations of tiling array data
were generated according to the chromosomal coordinates of the probes in a 1 MB region of
Chromosome X. Each simulated data set contained 3 replicates for each protein, with one
replicate from each design. Estimates of the emission parameters for Protein 1 on Design 3
are summarized as boxplots. In each panel, the true parameter value is represented by a red
horizontal line. The inner-quartile range of the 100 parameter estimates is represented by a
box, with a thick line drawn at the median. The whiskers extend to the extreme values of the
parameter estimates. The black dashed lines represent Mean +/− 2 SDs of the parameter
estimates.
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Figure 4.8: Emission Parameters (Protein 2, Design 1): 100 simulations of tiling array data
were generated according to the chromosomal coordinates of the probes in a 1 MB region of
Chromosome X. Each simulated data set contained 3 replicates for each protein, with one
replicate from each design. Estimates of the emission parameters for Protein 2 on Design 1
are summarized as boxplots. In each panel, the true parameter value is represented by a red
horizontal line. The inner-quartile range of the 100 parameter estimates is represented by a
box, with a thick line drawn at the median. The whiskers extend to the extreme values of the
parameter estimates. The black dashed lines represent Mean +/− 2 SDs of the parameter
estimates.
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Figure 4.9: Emission Parameters (Protein 2, Design 2): 100 simulations of tiling array data
were generated according to the chromosomal coordinates of the probes in a 1 MB region of
Chromosome X. Each simulated data set contained 3 replicates for each protein, with one
replicate from each design. Estimates of the emission parameters for Protein 2 on Design 2
are summarized as boxplots. In each panel, the true parameter value is represented by a red
horizontal line. The inner-quartile range of the 100 parameter estimates is represented by a
box, with a thick line drawn at the median. The whiskers extend to the extreme values of the
parameter estimates. The black dashed lines represent Mean +/− 2 SDs of the parameter
estimates.
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Figure 4.10: Emission Parameters (Protein 2, Design 3): 100 simulations of tiling array data
were generated according to the chromosomal coordinates of the probes in a 1 MB region of
Chromosome X. Each simulated data set contained 3 replicates for each protein, with one
replicate from each design. Estimates of the emission parameters for Protein 2 on Design 3
are summarized as boxplots. In each panel, the true parameter value is represented by a red
horizontal line. The inner-quartile range of the 100 parameter estimates is represented by a
box, with a thick line drawn at the median. The whiskers extend to the extreme values of the
parameter estimates. The black dashed lines represent Mean +/− 2 SDs of the parameter
estimates.
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base pairs. At ∆k = 10, the error rates were below 3%. Figure 4.19 shows the results of the
experiment with observations emitted at every other base pair. At ∆k = 2, the error rates
were below 1%. As the spacing between the observations was decreased, the error rates also
decreased. Again, we found that the errors in state inferences are associated with the bias
in the estimation of the transition matrix. The linear approximation works better when the
transition matrix is closer to the identify matrix. The majority of the errors occur in State
01 and State 10. This is because the 2nd and 3rd diagonal elements of the transition matrix
are smaller (less close to one) than the other two diagonal elements. Since the goal of the
two-protein analysis is to identify the joint binding sites, we are mainly concerned with State
11. Under the setting of the real data, the error rates for inferences about State 11 were
below 2% in all of the 100 simulations. Thus we conclude that the state inference errors
associated with the biased estimation of the transition matrix are tolerable.

4.5 Comparison with the alternative approach

None of the existing peak-calling algorithms have the capacity for analyzing the ChIP-
chip data of multiple proteins simultaneously. When the biologists need to identify the shared
targets of two or more DNA binding proteins, they take the approach of cross-listing the
binding sites identified from the individual proteins. In promoter studies that involve two
or more transcription factors, the investigators often summarize the binding sites of each
protein as a list of target genes. Then, the overlaps between the gene lists are illustrated
using Venn Diagrams [39]. This approach has the limitation that the binding sites that
cannot be mapped to genes are excluded from the analysis. A more general approach is
to cross-list the genomic coordinates of the peaks identified for each protein. Rada-Iglesias
et al. took this approach to compare the binding sites of the human upstream stimulatory
factors USF1 and USF2 [54]. They first obtained a set of binding targets for each protein
using a sliding window peak caller. They then calculated the center positions of all the peaks
in the first set. An overlap was reported if any base within a fixed window around the center
position was shared with some peaks in the second set. The window size was either 1 kb or
2 kb in each direction around the center position. A problem with this approach is that two
peaks with marginal overlaps could easily be reported, when the experimental evidence for
a joint binding site is weak. Hollenhorst et al. used a modified version of this approach to
study three members of the ETS transcription factor family [33]. To identify regions that
are dual-bound by a pair of proteins, they began by locating the center positions of all the
peaks for the first protein. They then examined the p-values of all the probes from the
second protein that lie within 1 kb from each center position of the first set. If at least one
of the probes had a p-value of less than 0.001, then the region represented by this center
position was reported as dual-bound. A more recent study by Boros et al. also adopted the
approach of cross-listing the peaks from the first protein with the probe level statistics from
the second proteins [10]. The advantage of cross-listing with the probe level statistics, as
opposed to cross-listing with the peaks, is that regions with marginal overlaps are less likely
to be reported. Among the three “best” existing algorithms for analyzing NimbleGen data,
MA2C is the only one that provides the probe level statistics in its outputs. So we chose to
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simulated data set, and its entries were normalized into percentages of the true states. Each
panel summarizes one entry in the confusion matrix across 100 simulations. The inner-
quartile range is delineated by the borders of the box, with a thick line drawn at the median.
The whiskers extend to the extreme values. The black dashed lines represent Mean +/− 2
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Figure 4.17: Confusion Matrix (∆k = 20): A confusion matrix was tabulated for each
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Figure 4.19: Confusion Matrix (∆k = 2): A confusion matrix was tabulated for each sim-
ulated data set, and its entries were normalized into percentages of the true states. Each
panel summarizes one entry in the confusion matrix across 100 simulations. The inner-
quartile range is delineated by the borders of the box, with a thick line drawn at the median.
The whiskers extend to the extreme values. The black dashed lines represent Mean +/− 2
SDs.
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emulate this currently popular cross-listing approach using MA2C.
We devised the following two-protein analysis using MA2C, which involves 3 steps. In the

first step, we merged all the peaks from replicate experiments to produce one set of peaks for
each protein, under either the wild type or mutant condition. When merging the replicates,
all of the non-overlapping peaks were kept, along with their original coordinates and MA2C
scores. The overlapping peaks were trimmed such that their chromosomal coordinates in the
merged set represent only the merged regions. The decision to trim the ends of overlapping
peaks was based on the observation that MA2C peaks tend to be long, and that the ends
often include background noise. The MA2C score of each merged peak was defined as the
maximum of MA2C scores of the replicate experiments. This update of the MA2C scores
reflected the thought that replication provides stronger experimental evidence than single
experiments. In the second step, the merged set of peaks from the first protein was cross-
listed with the probe level statistics of the second protein. We calculated the center positions
of all the peaks in the merged set of the first protein. For each peak in the first set, we looked
at the probe level statistics from all replicates of the second protein, which lie within 1 kb
from the center position. If any of these probe level statistics had a p-value of less than
0.001, then the peak was considered a joint binding site. We performed cross-listing on
Dpy-27 and Sdc-3 reciprocally, so two sets of cross-listed peaks were produced. In the third
step, we merged the two sets of cross-listed peaks: 1) using Dpy-27 as the first protein and
2) using Sdc-3 as the first protein. The same criteria used in Step 1 were applied to merge
the cross-listed peaks in Step 3. The result was one set of Dpy-27 and Sdc-3 joint peaks for
each condition, with an MA2C score assigned to each peak.

We performed an ROC analysis to compare the MA2C cross-listing method with our
proposed nonhomogeneous HMM method. The testing set of curated standards described in
Section 3.4 was used to benchmark the comparisons. The joint peaks detected by the MA2C
cross-listing method were ranked by the MA2C scores. The joint peaks detected by the
nonhomogeneous HMM method were ranked by our shape-based peak scores, as described in
Section 3.4. For each method, 100 different sets of peak calls were produced by thresholding
the peaks scores at different values. A curated positive region that overlaped with any of
the called peaks was considered a positive hit. A curated negative region that overlaped
with any of the called peaks was considered a negative hit. Sensitivity and specificity were
calculated according to the following equations.

sensitivity =
number of positive hits

number of curated positive regions
.

specificity = 1 −
number of negative hits

number of curated negative regions
.

Figure 4.20 shows some ROC curves comparing our nonhomogeneous HMM method
with the MA2C cross-listing method described above. Because sensitivity and specificity
were calculated based on the curated sets of positive and negative regions, they should only
be used for making comparisons within each data set. The apparently higher values of
sensitivity and specificity shown for the smo-1 mutant condition should not be interpreted
as better performances of the peak detection methods on this data set. They are merely
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the consequence of having fewer borderline cases in the curated set of standard regions,
as discussed in Section 3.5. Because the wild type data appear cleaner to the human eye,
more borderline cases were included in curated standards. Thus the wild type curated
standards have more discriminative power for comparing different methods. According to
the ROC analysis based on wild type data, our nonhomogeneous HMM method has better
performance than the currently popular cross-listing approach for analyzing two proteins.
More importantly, the nonhomogeneous HMM method has a solid theoretical foundation
and is easily scalable to more than two proteins. The cross-listing approach, on the other
hand, quickly becomes intractable when the number of proteins gets large.

4.6 Issues in the application to real data

When applying the nonhomogeneous HMM to the C. elegans ChIP-chip data, we encoun-
tered a number of issues that are beyond the scope of the core methodology. In this section,
we will discuss how we handled the issues that arose from: 1) preprocessing of the tiling
array data; 2) estimation of the emission parameters on the genome wide scale; 3) combining
replicate data in the postprocessing of peaks; 4) analysis of IgG control data. Finally, we
will summarize the results of our analysis.

4.6.1 Preprocessing of tiling array data

Due to the complex nature of the microarray technology, experimental variations may
easily introduce non-biological biases in the data. These biases include the different labeling
efficiencies of the dyes used in two-color microarrays, variations between the spatial positions
of the probes on a slide or between slides, non-uniformity in the hybridization within a slide,
variations in the hybridization conditions between slides [59]. So preprocessing is an impor-
tant first step in microarray data analysis. Quantile normalization, developed by Bolstad
and Speed [8], has been the preferred method for preprocessing gene expression microarray
data. A number of recently published tiling array analysis packages also chose quantile nor-
malization as the preferred method [69, 42, 34]. So we decided to use quantile normalization
in the preprocessing of the C. elegans ChIP-chip data. The traditional implementation of
quantile normalization assumes that all the arrays in a given experimental set have the same
design of probes. However, our data set contains tiling arrays of different probe designs.
Thus we implemented a modified version of quantile normalization that can accommodate
multiple designs. The traditional implementation builds a target distribution where the i-th
ranked intensity is the average of all the i-th ranked intensities of all the arrays, with each
array sorted in ascending order. A rank is computed for each probe on any given array. The
normalized intensity of a particular probe is the intensity of its rank-equivalent probe on
the target distribution. After normalization, each array should have the same distribution
of probe level intensities as the target distribution. Our modified implementation differs
from the traditional implementation in the way that the target distribution is built, which
is explained below.
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Figure 4.20: ROC curves comparing the nonhomogeneous HMM with the MA2C cross-
listing method, when used to identify the shared binding sites of Dpy-27 and Sdc-3. The
nonhomogeneous HMM is shown in red; MA2C is shown in blue. The right-hand side panels
are zoomed-in versions of the left-hand side panels.
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Our data set consists of experiments performed on tiling arrays with three different probe
designs. Let N1 denote the number of probes in Design 1; Let N2 denote the number of probes
in Design 2; Let N3 denote the number of probes in Design 3. Let N = max(N1, N2, N3).
The target distribution contains N probes. After sorting the probe level intensities of each
array in ascending order, each probe i is assigned an integer xi that indicates its relative
position on the target distribution.

xi = floor[rank(i) ×
N

N1
] if the array belongs to Design 1

xi = floor[rank(i) ×
N

N2
] if the array belongs to Design 2

xi = floor[rank(i) ×
N

N3
] if the array belongs to Design 3

The intensity of the j-th ranked probe in the target distribution is computed as the average
of all the probes with xi = j among all the arrays. For a small fraction of the probes in the
target distribution, the number of experiments used in computing the target intensity is less
than the total number of experiments in the set. Nevertheless, we decided to construct the
target distribution using the maximum value of N to maintain the highest possible resolution.

We quantile normalized the single-channel intensities of each array in the complete data
set. Then, two channels were combined as log base-2 ratios of IP versus input. To verify that
our modified implementation works properly, we looked at the 3 replicates of wild type Dpy-
27 before and after quantile normalization. Figure 4.21 shows QQ-plots of the log ratios for
the replicate experiments performed with Design 1 and Design 2, before and after quantile
normalization. Figure 4.22 shows QQ-plots of the log ratios for the replicate experiments
performed with Design 2 and Design 3, before and after quantile normalization. Figure 4.23
shows QQ-plots of the log ratios for the replicate experiments performed with Design 3 and
Design 1, before and after quantile normalization. The QQ-plot of Design 1 versus Design 2
is substantially closer to the 45◦ line after quantile normalization. This difference is not as
obvious in the QQ-plots of Design 2 versus Design 3 and Design 3 versus Design 1.

We would like to look at the pair-wise differences between replicate data before and
after quantile normalization. In order to achieve a one-to-one correspondence between the
probes of different designs, we created a pseudo-design that contains probes of length 200 bp.
Several probes of length 40 to 50 bp in the original design were binned together according
to the pseudo-design. The intensity of a binned probe on the pseudo-design was computed
as a weighted average of the probes in the original design, with weights proportional to
the number of base overlaps. Mapping to the pseudo-design was performed at the level of
the single-channel intensities. The two channels were then combined as log base-2 ratios
between the binned IP intensities and the binned input intensities. For each binned probe,
we computed pair-wise differences between the log ratios of replicate experiments. When
there is no experimental bias in the data, the expected value of the differences between
replicates is zero. Figure 4.24 shows boxplots of these differences before and after quantile
normalization. Whereas the median of each box deviates from zero before normalization; the
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Figure 4.21: QQ-plots of wild type Dpy-27 replicate data on Designs 1 and 2 before and
after quantile normalization. The 45◦ line is drawn in red.

Figure 4.22: QQ-plots of wild type Dpy-27 replicate data on Designs 2 and 3 before and
after quantile normalization. The 45◦ line is drawn in red.
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Figure 4.23: QQ-plots of wild type Dpy-27 replicate data on Designs 3 and 1 before and
after quantile normalization. The 45◦ line is drawn in red.

median of each box hits right at zero after normalization. Clearly, quantile normalization
was useful for removing the experimental biases in this data set.

4.6.2 Estimation of emission parameters

When fitting the emission parameters on the genome wide scale, we noticed that the
Baum-Welch updates tend to push the mean of the bound state closer to the unbound state
after every iteration. This is probably related to the fact that a large proportion of the
positions with non-zero posterior probabilities for the bound state are actually background
noise. Although the posterior probability of each position is small, the sum of all of them is
substantial. Since the true binding sites make up for only a small proportion of the positions
with non-zero posterior probabilities, the weighting in the emission parameter estimates is
likely to be unfavorable for the binding sites. In other words, the non-binding sites have
a diluting effect on the emission parameter estimates for the binding sites. In the analysis
of wild type data, this issue was resolved by restricting the emission parameter updates to
be solely based on Chromosome X. Since Chromosome X has a much higher density of true
binding sites than the rest of the genome, the diluting effect of the non-binding sites becomes
negligible when the restriction is in place.

When analyzing the smo-1 mutant data, we first tried estimating the emission parameters
from the whole genome, and the same problem described above occurred. When we restricted
emission parameter estimation to Chromosome X, the final estimates of the mean parameters
were generally smaller for the mutant data than the wild type data. A closer inspection of
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Figure 4.24: Boxplots of pair-wise differences between replicates of wild type Dpy-27, be-
fore and after quantile normalization. The 25th and 75th quantiles are represented by the
boundaries of each box. The median is drawn as a thick black horizontal line. The whiskers
extend to the most extreme data points within one interquartile range from the box.
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the mutant data on a genome browser revealed that the autosomal peaks tend to be stronger
than the X-Chromosomal peaks. So, using the X-chromosomal observations to estimate the
emission parameters for the whole genome is not such a good idea with the mutant data.
When a lower value is used as the emission mean of the bound state, more peaks will be
detected due to the overall inflating effect on the posterior probability of the bound state.
Indeed, we saw many noisy regions being called peaks in the mutant data, when the emission
parameters were estimated from Chromosome X.

Another issue that needs to be considered is the comparison between wild type and
mutant peaks. Ideally, the emission parameters of the mutant data should have the same
values as those of the wild type data, because the definition of a peak should be held constant
as we move across the two conditions. The consistency in what defines a peak would then
form the basis for comparing the localization of peaks under the wild type and mutant
conditions. If the emission parameters were dramatically different, then it would be very
difficult to compare the mutant peaks with the wild type peaks. So we would like to check how
similar or different the emission distributions are under the wild type and mutant condition.
In order to do so, we need to know where the mutant peaks are located. The next thing
that we tried was fixing the emission parameters of the mutant data at the same values as
the wild type emission parameters. This approach gave peak calls that appeared reasonable
according to visual inspection. For both the wild type data and the mutant data, we defined
some intervals using the criteria listed below.

1. A probe is considered as a candidate probe if its posterior probability of being in the
binding state is at least 0.8.

2. The maximum gap allowed between candidate probes within any interval is 300 bp.

3. The minimum length required for any interval is 500 bp.

Probes that fall within these intervals are likely to be in the bound state. Probes that
fall outside of these intervals are likely to be in the unbound state. The distribution of the
observations that fall within these intervals can be used as a proxy for the emission distri-
bution of the bound state. Similarly, the distribution of the observations that fall outside
of these intervals can be used as a proxy for the emission distribution of the unbound state.
Figure 4.25 compares the distributions of wild type and smo-1 mutant Dpy-27 observations
collected using tiling array Design 1. Figure 4.6.2 and Figure 4.27 compare the distributions
of wild type and smo-1 mutant Dpy-27 observations collected using Design 2 and Design 3,
respectively. The top row of each figure shows histograms of the observations that are likely
to be in the unbound state, labeled as “probes in non-peak regions.” The bottom row of each
figure shows histograms of the observations that are likely to be in the bound state, labeled
as “probes in peak regions.” The left column of each figure shows the histograms of the wild
type data. The right column of each figure shows the histograms of the smo-1 mutant data.
In general, the wild type histogram has a wider spread than the mutant histogram, indicat-
ing that the wild type distribution has a larger variance. For observations in the non-peak
regions, the mode of each histogram is near zero. For the observations in the peak regions
of Design 1 and Design 2, the modes of the wild type histograms are right-shifted by 0.1 in



122

comparison to the modes of the mutant histograms. For the observations in the peak regions
of Design 3, the modes of both the wild type and mutant histograms are the same.

To compare the wild type and mutant distributions more closely, we made QQ-plots using
the observations in the 5th to 95th percentiles. The top and bottom 5% of the observations in
each data set were excluded to avoid distractions by outliers. Figure 4.28 shows the QQ-plots
of the log ratios for Design 1. Figure 4.29 shows the QQ-plots of the log ratios for Design
2. Figure 4.30 shows the QQ-plots of the log ratios for Design 3. The 45◦ line is drawn
in red on each QQ-plot. For observations in the unbound state, the wild type and mutant
conditions have very similar distributions. For observations in the bound state, the wild
type and mutant distributions deviate from each other slightly. These plots suggest that the
State 1 emission distributions are slightly different for the wild type and mutant conditions.
Nevertheless, the approach of fixing the emission parameters at the wild type values is still
useful for analyzing the mutant data, because it allows the wild type and mutant conditions
to be compared on the same scale.

4.6.3 Analysis of IgG control data

Chromatin immunoprecipitation experiments involve the binding of antibodies to the
protein-DNA complex being analyzed. However, non-specific interactions are also likely to
occur between the antibodies and the other molecules in the cell extract. Certain regions in
the genome are more prone to non-specific binding than others. Thus a standard protocol
in the field is to perform some control experiments using non-specific IgG, also known as
the mock IP’s. The goal of the IgG control experiments is to identify regions of the genome
that are prone to non-specific binding. If a peak overlaps with any of these regions, then it
should be flagged as a false positive.

The Meyer group performed three IgG control experiments using tiling arrays of Design
3: two under the wild type condition and one under the smo-1 mutant condition. Visual
inspection of the data revealed two types of non-specific binding by IgG. The first type of
non-specific intervals consist of long runs of probes with relatively low signals. The second
type of non-specific intervals consist of short runs of probes with very high signals. Thus
we designed a three-state nonhomogeneous HMM to accommodate these different types of
non-specific binding in the IgG data. The hidden states of this model are: 0) non-binding,
1) weak binding with long duration, 2) strong binding with short duration. Because the
binding regions make up for a very small fraction of the genome, it is not practical to obtain
initial estimates of the parameters through an automated procedure. So we manually selected
regions that are characteristic of the two binding states.

We estimated the emission parameters for Design 3 using the observations in the char-
acteristic regions. Just like in the analysis of the mutant data, the IgG emission parameters
were also fixed at initialization and never updated. At each iteration of the modified Baum-
Welch algorithm, only the Markov chain parameters were updated. Table 4.8 shows the
estimates of the emission parameters for tiling array Design 3.

Based on the average length of the characteristic binding regions of each type, we obtained
initial estimates for the diagonal entries in the one-step transition matrix. The transition
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Figure 4.25: Histograms of Dpy-27 observations on tiling arrays of Design 1

State Mean (µ) SD σ
0 0.000 0.191
1 0.227 0.164
2 1.777 0.562

Table 4.8: Emission parameters for IgG on tiling arrays of Design 3
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Figure 4.26: Histograms of Dpy-27 observations on tiling arrays of Design 2
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Figure 4.27: Histograms of Dpy-27 observations on tiling arrays of Design 3
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Figure 4.28: QQ-plots of Dpy-27 observations on tiling arrays of Design 1

Figure 4.29: QQ-plots of Dpy-27 observations on tiling arrays of Design 2
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Figure 4.30: QQ-plots of Dpy-27 observations on tiling arrays of Design 3

probabilities from State 0 to State 1 and from State 0 to State 2 were estimated based on
rough estimates for the relative abundances of State 1 and State 2. Transition probabilities
between State 1 and State 2 were initialized to zero. We then used the transition matrix to
compute the stationary distribution. Although the estimates obtained this way are likely to
be quite off, they are nevertheless useful for initializing the Baum-Welch algorithm. Shown
below are the initial values of the stationary distribution and the transition matrix.

• Initial Estimate of the Stationary Distribution for IgG

π = (0.978, 0.0212, 0.0004)

• Initial Estimate of the Transition Matrix for IgG

A =




0.9999851 0.0000142 0.000000642
0.000656 0.999344 0.00
0.00155 0.00 0.9984466




In the process of fitting the IgG data, we noticed many single probe spikes of artificial
signals that can lead to noisy peak calls. This type of spikes also existed in the IP data
of bona-fide DNA binding proteins. Because the real peaks were far more abundant than
the artificial spikes in the protein IP data, these spikes did not cause any problems there.
However, the artificial spikes are problematic in the IgG data, because there are far fewer
peaks here. Fortunately, the noise can be reduced substantially by applying the filtering
criterion below.
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1. For every probe, compute the absolute differences between the log ratio of the given
probe and log ratios of its immediate neighbors.

2. If either of the two absolute differences exceeds 4 times the current estimate of the SD
for the unbound state, then the probe is filtered out.

At each iteration of the Baum-Welch algorithm, the filtering criterion is applied before
the forward-backward variables are computed. Because the spikes generally occur in the
background of the non-binding probes, the threshold is chosen based on the standard de-
viation of the unbound state. It is conceivable that the spikes may also occur among the
binding probes, but they would be essentially indistinguishable from the real signals. Thus
the filtering criterion aims at removing the single probe spikes in the unbound state.

After running the modified Baum-Welch algorithm for 10 iterations, we observed conver-
gence of the Markov chain parameter estimates, which are given below.

• Final Estimate of the Stationary Distribution for IgG

π = (0.943, 0.057, 0.000)

• Final Estimate of the Transition Matrix for IgG

A =




0.9998 0.0002 0.0000
0.0034 0.9966 0.0000
0.0003 0.0016 0.9981




Figures 4.31 and 4.32 show a couple examples of the intervals in State 1 (weak binding
with long duration). Figures 4.33 and 4.34 show a couple examples of the intervals in State
2 (strong binding with short duration). In each figure, the log ratios of three IgG control
experiments are displayed in cyan. The posterior probabilities of State 1 are shown in orange.
The posterior probabilities of State 2 are shown in pink. To illustrate the effects of filtering
out single probe spikes, let us take a look at Figure 4.33. There is a spike around position
5,921,000 with a value that far exceeds any of its neighboring probes. If left unfiltered, this
spike would lead to a high posterior probability for one of the binding states, but its duration
would be the length of a single probe. Because we incorporated the filtering criterion in the
model fitting procedure, the posterior probabilities of the two binding states are nearly zero
at this position.

Finally, the intervals of State 1 and State 2 were defined by joining neighboring probes
according to the following rules.

1. Consider probes with posterior probabilities of at least 0.8, and call them candidate
probes for that particular binding state.

2. The maximum gap allowed between candidate probes within any interval is 300 bp.

3. The minimum length required for any interval is 500 bp.

If a peak identified from a set of real protein IP experiments contains any overlap with the
IgG intervals, then this peak should be flagged as a possible false positive due to non-specific
binding.
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smo: WS180-50 
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Figure 4.31: An IgG interval of State 1: The log ratios of three IgG control experiments are
displayed in cyan. The posterior probabilities of State 1 are shown in orange. The posterior
probabilities of State 2 are shown in pink.
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Figure 4.32: An IgG interval of State 1: The log ratios of three IgG control experiments are
displayed in cyan. The posterior probabilities of State 1 are shown in orange. The posterior
probabilities of State 2 are shown in pink.
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Figure 4.33: An IgG interval of State 2: The log ratios of three IgG control experiments are
displayed in cyan. The posterior probabilities of State 1 are shown in orange. The posterior
probabilities of State 2 are shown in pink.
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Figure 4.34: An IgG interval of State 2: The log ratios of three IgG control experiments are
displayed in cyan. The posterior probabilities of State 1 are shown in orange. The posterior
probabilities of State 2 are shown in pink.



133Design unbound µ unbound σ bound µ bound σ
1 0.125 0.231 0.680 0.380
2 0.171 0.168 0.690 0.317
3 0.059 0.146 0.379 0.241

Table 4.9: Emission parameters for Dpy-27

Design unbound µ unbound σ bound µ bound σ
1 N/A N/A N/A N/A
2 -0.034 0.133 0.361 0.299
3 0.025 0.193 0.524 0.388

Table 4.10: Emission parameters for Sdc-3

4.6.4 Summary of results

We fitted a two-state nonhomogeneous HMM for each protein under each condition,
according to the method described in Section 3.2. Convergence of the parameter estimates
occurred within 10 iterations of the modified Baum-Welch updates. Table 4.9 shows the final
estimates of the emission parameters obtained from fitting the wild type Dpy-27 data. Table
4.10 shows the final estimates of the emission parameters obtained from fitting the wild type
Sdc-3 data. The same emission parameters were used to analyze the smo-1 mutant data.
The final estimates of the Markov chain parameters for the single-protein models are given
below.

• Markov chain parameters for wild type Dpy-27

π = (0.952, 0.048); A =

(
0.9999 0.0001
0.0019 0.9981

)

• Markov chain parameters for wild type Sdc-3

π = (0.922, 0.078); A =

(
0.9998 0.0002
0.0023 0.9977

)

• Markov chain parameters for smo-1 mutant Dpy-27

π = (0.953, 0.047); A =

(
0.9999 0.0001
0.0019 0.9981

)

• Markov chain parameters for smo-1 mutant Sdc-3

π = (0.800, 0.200); A =

(
0.9997 0.0003
0.0014 0.9986

)
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We postprocessed the probe level summaries into peaks using the method described in
Section 3.4. The peak score cutoffs were selected to control for the false positive rate of
filtering below 15%, according to the training set of curated standards described in Section
3.4. Under the wild type condition, the cutoffs were 1.42 and 1.34 for Dpy-27 and Sdc-3
peaks, respectively. Under the mutant condition, the cutoffs were 1.28 and 1.56 for Dpy-27
and Sdc-3 peaks, respectively. The results were 930 wild type Dpy-27 peaks, 1349 wild type
Sdc-3 peaks, 784 smo-1 mutant Dpy-27 peaks, 2163 smo-1 mutant Sdc-3 peaks.

We then fitted a four-state nonhomogeneous HMM to identify the jointly bound sites
of Dpy-27 and Sdc-3 using the method described in Section 4.3. The emission parameters
shown in Table 4.9 and 4.10 were used in the joint analyses. The final estimates of the
Markov chain parameters are given below.

• Stationary distribution for wild type data

π = (0.918, 0.036, 0.009, 0.037)

• Transition matrix for wild type data

A =




0.9998 0.0001 0.0000 0.0000
0.0039 0.9951 0.0000 0.0010
0.0021 0.0000 0.9966 0.0013
0.0006 0.0010 0.0003 0.9980




• Stationary distribution for smo-1 mutant data

π = (0.780, 0.164, 0.006, 0.050)

• Transition matrix for smo-1 mutant data

A =




0.9996 0.0004 0.0000 0.0000
0.0018 0.9976 0.0000 0.0005
0.0009 0.0000 0.9988 0.0002
0.0001 0.0019 0.0000 0.9980




Notice that the stationary distribution of State 01 is far larger than State 10, suggesting that
Sdc-3 binding sites are more abundant than Dpy-27 binding sites. This is consistent with the
hypothesis that Sdc-3 recruits the dosage compensation complex to discrete X-recognition
elements on Chromosome X, thus Dpy-27 binding depends on Sdc-3 [17]. Besides functioning
as part of the DCC, Sdc-3 also plays other roles in sex-determination. The abundance of
binding sites that are unique to Sdc-3 may also be explained by these roles.

The probe level summaries obtained from the two-protein nonhomogeneous HMM were
also postprocessed using the method described in Section 3.4. We focused on State 11 to
identify the joint binding sites of Dpy-27 and Sdc-3. The peak score cutoffs were selected
to control for the false positive rate of filtering below 15%, according to the training set of
curated standards described in Section 3.4. The cutoffs for the Dpy-27 and Sdc-3 jointly
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Figure 4.35: Peak filtering results (training set): Scatter plots of the peaks along the principal
components. Peaks that overlap with the curated positive (negative) regions in the training
set are colored in red (green). The peak score cutoffs are represented by the solid blue lines.



136

0.5 1.0 1.5 2.0 2.5

−
0.

5
0.

0
0.

5

(a) wild type Dpy27 peaks

PC1 =  0.48 * peakHeight + 0.88 * nonUniform

P
C

2 
=

  −
0.

88
 *

 p
ea

kH
ei

gh
t +

 0
.4

8 
* 

no
nU

ni
fo

rm

0.5 1.0 1.5 2.0 2.5 3.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(b) wild type Sdc3 peaks

PC1 =  0.54 * peakHeight + 0.84 * nonUniform

P
C

2 
=

  −
0.

84
 *

 p
ea

kH
ei

gh
t +

 0
.5

4 
* 

no
nU

ni
fo

rm

1.0 1.5 2.0 2.5

−
0.

5
0.

0
0.

5

(c) wild type Joint peaks

PC1 =  0.61 * peakHeight + 0.8 * nonUniform

P
C

2 
=

  −
0.

8 
* 

pe
ak

H
ei

gh
t +

 0
.6

1 
* 

no
nU

ni
fo

rm

0.5 1.0 1.5 2.0 2.5

−
1.

0
−

0.
5

0.
0

(d) smo−1 Dpy27 peaks

PC1 =  0.27 * peakHeight + 0.96 * nonUniform

P
C

2 
=

  −
0.

96
 *

 p
ea

kH
ei

gh
t +

 0
.2

7 
* 

no
nU

ni
fo

rm

0.5 1.0 1.5 2.0 2.5 3.0

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

(e) smo−1 Sdc3 peaks

PC1 =  0.55 * peakHeight + 0.83 * nonUniform

P
C

2 
=

  −
0.

83
 *

 p
ea

kH
ei

gh
t +

 0
.5

5 
* 

no
nU

ni
fo

rm

1.0 1.5 2.0 2.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

(f) smo−1 Joint peaks

PC1 =  0.44 * peakHeight + 0.9 * nonUniform

P
C

2 
=

  −
0.

9 
* 

pe
ak

H
ei

gh
t +

 0
.4

4 
* 

no
nU

ni
fo

rm

Figure 4.36: Peak filtering results (testing set): Scatter plots of the peaks along the principal
components. Peaks that overlap with the curated positive (negative) regions in the testing
set are colored in red (green). The peak score cutoffs are represented by the solid blue lines.



137Condition Protein False Positive Rate False Negative Rate
wild type Dpy-27 1% 12%
wild type Sdc-3 2% 6%
wild type Joint 4% 7%

smo-1 mutant Dpy-27 1% 7%
smo-1 mutant Sdc-3 2% 5%
smo-1 mutant Joint 1% 18%

Table 4.11: Overall error rates of the final peak calls

bound peaks were 1.28 under the wild type condition and 1.36 under the smo-1 mutant
condition. The results were 1060 joint peaks under the wild type condition and 1093 joint
peaks under the mutant condition.

Figure 4.35 shows the results of filtering by peak scores on the training set of curated
standards. Figure 4.36 shows the results of filtering by peak scores on the testing set of
curated standards. Each panel is a scatter plot of the intervals along the principal components
of peak height and non-uniformity. The training set of curated standards are shown in Figure
4.35. The testing set of curated standards are shown in Figure 4.36. Peaks that overlap with
the curated positive regions are colored in red. Peaks that overlap with the curated negative
regions are colored in green. The cutoff for the final peak scores is represented by the solid
blue line in each plot. Peaks that lie above the blue line were filtered out. The cutoffs
were chosen to control for the training set false positive rates of peak filtering within 15%.
The results of peak filtering look fairly similar between the training set and the testing set,
according to these scatter plots.

To estimate the overall error rates of our final peak calls, we used the ROC results of the
entire method on the testing set of curated standards. The false positive and false negative
rates are summarized for each set of peak calls in Table 4.11. Because these values were
estimated using a relatively small set of curated positive and negative regions, they are only
meant to be suggestive.

Under the wild type condition, the majority of the binding peaks occurred on Chromo-
some X. Under the smo-1 mutant condition, a large fraction of those X-chromosomal peaks
moved off to the autosomes. Among the 930 wild type Dpy-27 peaks, 613 were on Chromo-
some X. In contrast, among the 784 mutant Dpy-27 peaks, only 198 were on Chromosome X.
Among the 1349 wild type Sdc-3 peaks, 445 were on Chromosome X. In contrast, among the
2163 mutant Sdc-3 peaks, only 327 were on Chromosome X. Among the 1060 wild type joint
peaks, 593 were on Chromosome X. In contrast, among the 1093 mutant joint peaks, only
229 were on Chromosome X. Clearly, sumoylation plays an important role in the localization
of the dosage compensation complex to Chromosome X.
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Chapter 5

Conclusions and discussion

5.1 FDR procedure for microarray time course data

DNA microarray time course experiments are often used to monitor gene expression
changes during a biological process. Unlike periodic time courses with cyclic patterns, de-
velopmental time courses may have arbitrary temporal patterns. Developmental microarray
time course experiments are often performed with few time points and few replications.
When the sampling scheme is longitudinal, each replicate consists of a series of samples
collected from the same experimental unit in a temporal order. Thus there may be some
autocorrelations in the time course gene expression data. However, traditional methods of
time series analysis are not applicable because of the small number of time points. The mul-
tivariate empirical Bayes model proposed by Tai and Speed [67, 68] provides a solution to
the analysis of longitudinally replicated microarray time course data. The time series of each
gene is modeled after a multivariate Gaussian vector, which captures the autocorrelations
in time. The empirical Bayes approach stabilizes the estimation of the covariance matrix in
small samples. The MB-statistic derived from this model was shown quite useful for ranking
the genes according to changes in their temporal expression profiles.

In Chapter 2 of this thesis, we developed an empirical Bayes FDR-controlling procedure
for multiple hypothesis testing using the MB-statistic. Under the null hypothesis of no “dif-
ferential expression”, the distribution of the test statistic is related to the F-distribution by a
constant factor. The frequentist FDR procedure applies the Benjamini-Hochberg [3] step-up
adjustment to the nominal p-values obtained under the F-distribution. Because specification
of the null distribution involves the prior degrees of freedom in the hierarchical Bayesian
model, it is sensitive to the variability in hyperparameter estimation. We proposed to esti-
mate the null distribution using the parametric bootstrap. This involves first estimating the
Gaussian parameters using the observed data, and then generating“resampled data”from the
Gaussian model. Critical values of the test statistic are determined according to the empirical
Bayes FDR procedure due to Efron et al. [26]. We performed some simulations to compare
the frequentist and the empirical Bayes FDR procedures under various circumstances. When
the sample size is small, the bootstrap null distribution is slightly anti-conservative. On the
other hand, when the prior degrees of freedom is small, the F-distribution is far off from
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the true null distribution because of hyperparameter estimation errors. We found that that
the empirical Bayes FDR procedure is more robust than its frequentist counterpart to the
variability in hyperparameter estimation.

When applying the FDR procedures to a fungal infection time course in A. thaliana,
we encountered a challenge of the sample size being smaller than the dimension of the
multivariate Gaussian. To overcome this challenge, we split the time course into two subsets,
each with half as many time points carefully selected to capture the long range changes in
gene expression. After analyzing each subset individually, the results were combined using
Intersection Union Tests (IUTs). We adapted both the frequentist and the empirical Bayes
FDR-controlling procedures for the genome-wide IUTs. The top ranked genes selected by
each method were compared by visual inspection. Our results suggest that the empirical
Bayes FDR-controlling procedure is more powerful when the sample size is small.

The main limitation of this method is that hyperparameter estimation is unreliable when
the number of replicates is small, i.e. less than or equal to the number of time points. In
the univariate version of the hierarchical Bayesian model, the prior distribution on σ2 is an
inverse-gamma, with the shape parameter equal to one-half of ν. Smyth [58] developed an
empirical method for estimating ν by taking linear approximations to the log of the sample
variance. This method was adopted for the multivariate model, to obtain an estimate of ν
based on each diagonal element of the sample covariance matrix. The final estimate of ν is an
average of the estimates obtained from the individual diagonal elements [67]. We observed
through some simulations that the prior degrees of freedom tend to be under-estimated,
possibly because the off-diagonal elements are ignored. Improvements to the estimation of
ν, especially in small samples, would be desirable in future research.

5.2 Nonhomogeneous HMM for ChIP-chip data

Chromatin immunoprecipitation on chip (ChIP-chip) experiments are often performed to
detect the genome-wide localization sites of DNA-binding proteins. Tiling arrays containing
probes that are densely placed along the chromosomes are often used in ChIP-chip studies.
The existing methods for analyzing ChIP-chip data cannot integrate experiments performed
on tiling arrays with different probe designs. In Chapter 3 of this thesis, we proposed a non-
homogeneous hidden Markov model to integrate the tiling array data of different designs. At
the center position of each probe, the binding status of the protein is represented by a hidden
state. Emission of the observations depends on which design of tiling arrays was used in the
experiment. We derived a modified Baum-Welch algorithm for fitting the nonhomogeneous
HMM. This algorithm involves a linear approximation to the matrix exponential. Simulation
results suggested that the algorithm is well-behaved under the setting relevant to our study,
and that the inference errors associated with the linear approximation are negligible.

The posterior probabilities of the hidden states are used to identify the candidate probes.
We developed a two-step procedure that converts the candidate probes into peaks. In the
first step, the candidate probes are joined into intervals according to some conventional
criteria. In the second step, a score is computed for each interval based on both the signal
strength and the signal pattern. Intervals that pass a filter on the score are called peaks,
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which are the putative binding sites. We curated a set of positive and negative regions
from a Caenorhabditis elegans data set by visual inspection. We then performed some ROC
analyses to compare our method with the three best existing methods, using the curated
“standards” as the benchmark. When applied to each experiment individually, our method
performs similarly as the best existing methods. When applied to the combined data set,
which consists of replicate experiments done on tiling arrays of different designs, our method
has a pronounced improvement in performance.

Many important biological processes require the concerted functions of multiple proteins
in a complex. Transcriptional regulation by DNA-binding proteins is no exception. A major
challenge in ChIP-chip data analysis is that the existing methods do not provide the option
of analyzing multiple proteins simultaneously. This makes the determination of joint binding
sites very difficult. The current practice is to analyze each protein separately, and then cross-
list the peak calls of the individual proteins. In Chapter 4, we proposed a generalization of the
nonhomogeneous hidden Markov model that enables the joint analysis of ChIP-chip data for
multiple proteins. This model assumes that each protein emits observations independently
of the other proteins, conditional on the hidden states. Simulation results suggested that
the conditional independence assumption is applicable, and that our algorithm is useful
for identifying the shared binding sites of different proteins. We illustrated the usage of this
method through a concrete example of two proteins. ROC curves produced using the curated
“standards” demonstrated that our joint analysis method out-performs the alternative cross-
listing approach.

A new technology called ChIP-seq has emerged due to the recent advancements in next-
generation sequencing technologies. Instead of hybridizing the immunoprecipitated DNA
fragments to microarrays, the samples are analyzed by multiplex short-read DNA sequenc-
ing. The advantages of ChIP-seq over ChIP-chip include higher resolution up to the single
base level, more comprehensive coverage of the genome, and lower requirement for the amount
of immunoprecipitated DNA. Currently, ChIP-seq has limited accessibility due to high costs.
It is conceivable that ChIP-seq might replace ChIP-chip when it becomes more accessible
in the future [49]. Because the two technologies address essentially the same biological
questions, the need for joint analyses of multiple proteins also exists in studies done with
ChIP-seq. Since ChIP-seq generates short reads that could be mapped to arbitrary locations
in the genome, each experiment constitutes a unique “probe design.” The nonhomogeneous
hidden Markov model proposed in this thesis may be adapted for ChIP-seq data in future
research. This requires replacing the Gaussian emission distribution with another distribu-
tion that is compatible with ChIP-seq data. Since the post-alignment data are counts, the
Poisson distribution and the negative binomial distribution are often used to model ChIP-seq
data. When choosing a proper emission distribution for the nonhomogeneous hidden Markov
model, feasibility of the parameter estimation algorithm needs to be considered.
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