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Abstract 
 

A Beauty or a Beast? Estimating Travel Behavior Impacts of  
Privately Owned Autonomous Vehicles via The Chauffeur Experiment 

 
by 

 
Mustapha R. Harb 

 
Doctor of Philosophy in Engineering – Civil and Environmental Engineering  

University of California, Berkeley  
 

Professor Joan Walker, Chair  
 

Today’s automotive industry is witnessing unprecedented technological change. Automation is 
particularly expected to revolutionize how we travel and to have profound impacts on the 

transportation system. Whether autonomous vehicles (AVs) will improve our lives, exacerbate 
existing mobility challenges, or lead to currently unimagined ramifications, however, is still an 

open question. On one hand, the improvements in safety, efficiency, and accessibility are thought 
by many to be the answer to our transportation problems. However, others project a dystopian 

future where the efficiency improvements, while real, are not enough to counteract the trends of 
increasing population, urbanization, and vehicle miles traveled (VMT) per capita, as well as 

induced demand. While it is not certain which future beckons, there is certainty that human travel 
behavior, the focus of this dissertation, will be central to determining the outcome. 

 
The objectives of this dissertation were to: 

 
1) Collect new data on the travel behavior implications of privately owned autonomous vehicles 

through an innovative method that overcomes the limitations of the current literature. 
 

2) Analyze the data to quantify the implications of privately owned autonomous vehicles on 
human travel behavior and the heterogeneity in the response to the technology by different 

demographic and lifestyle groups. 
 

3) Integrate privately owned AVs into an activity-based model framework by estimating short-
term travel demand models and proposing additional components unique to privately owned 

AVs.  
 

The first step to achieving our objectives was to conduct a literature review. We identified 
78 published studies that address issues of travel behavior implications of AVs. We summarized 

the methods currently being used to address research questions on travel behavior changes caused 
by AVs, highlighted their strengths and limitations, and proposed ways to improve upon these 

methods. We then identified critical research questions to be addressed and summarized results 
from the studies that addressed them. We organized the research questions into four categories: 

the first are research questions that have been explored by many studies, where the direction of the 
impact is consistent across the literature, albeit the magnitude varies considerably. For example, 
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the impact of (shared) AVs on VMT has been well explored and most studies predict an increase 
which is projected to range from 1% to 90%. Similarly, many studies explored future mode choice 

preferences with results indicating that, overall, people prefer owning AVs over sharing them. The 
second category of research questions are ones with limited and consistent results, albeit the range 

varies widely. For example, a few stated preference survey studies indicate that reduced stress and 
multitasking during travel will reduce the value of time of AV riders by 5% to 55%. The third 

category of research questions are ones with few but conflicting results. For instance, a few survey 
studies indicate that people (up to 80%) do not believe their residential location will be affected 

by the adoption of AVs. Some simulation studies, however, indicate that lower travel costs will 
encourage people to move away from cities and into suburbs while other studies report the 

opposite. The final category of research questions are ones that received little to no attention in the 
literature. For instance, very few studies focus on exploring how AV owners plan to use zero-

occupancy vehicles (e.g., to run errands) in order to quantify their impact on travel behavior and 
the transportation system. 

 
From the literature review, we found that the two most common methods currently used to 

study the travel behavior implications of AVs are surveys and simulation studies. In this 
dissertation, however, rather than relying on surveys or simulations, we proposed a different 

method to explore the impacts of AVs on travel behavior: an experiment in which we simulate the 
experience of owning personal AVs by providing subjects with personal chauffeurs. Thus, we 

essentially installed the driverless feature onto their own vehicles. Just like an AV, the chauffeur 
took over driving duties so that subjects could relax or use their travel time productively. Subjects 

were also able to send out their chauffeurs to run errands that AVs will run in the future (e.g., 
filling up gas, picking up groceries, picking up friends and family). Subjects were tracked and their 

travel diaries were recorded for three to four weeks, with the outer, non-chauffeur weeks serving 
as control weeks (i.e., status quo conditions), and the middle chauffeur week(s) serving as 

treatment week(s) (i.e., “AV” weeks). By comparing travel behavior during the chauffeur weeks 
to the non-chauffeur weeks, we gained novel insights into what the potential shifts in travel 

behavior might be in an AV future. 
 

We ran two iterations of our experiment. The first was a pilot that involved 13 subjects 
from the San Francisco Bay Area during the summer of 2017. The sample was a convenience 

sample stratified mainly by demographic (families, retirees, and millennials), where all subjects 
received one chauffeur week. We then ran a second, larger experiment in 2019/20 on 43 

households in the Sacramento area, incorporating several improvements over the pilot study. To 
obtain a more diverse sample in terms of demographics, modal preferences, and mobility barriers, 

we partnered with the local metropolitan planning agency, the Sacramento Area Council of 
Governments (SACOG), who gave us access to travel survey data for a representative sample of 

households. We also provided a portion of our households with an extended chauffeur period (two 
weeks) to explore the impact of the treatment period on the results. Finally, we tracked all members 

and vehicles in the household and used a different phone tracking app to record a richer dataset 
that includes more detail on trip purpose, modes (private vs shared), parking, and vehicle 

occupancy. 

We present two types of results in this dissertation. The first set of results are descriptive 

statistics that analyze basic shifts in travel behavior and the heterogeneity in the response to the 
chauffeur service by different demographic groups. These results are largely consistent across both 
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iterations of the experiment. The second type of results are based on the estimation of typical travel 
demand models where we explore the factors behind the behavioral shifts observed in the first set 

of results, as well as investigate how AVs should be incorporated into an activity based-model 
framework. These modeling results are exclusive to the second iteration of the experiment since 

they require a larger sample and detailed trip data only available from the newer tracking app. 
Since descriptive statistics are consistent across experiments, and the second iteration included a 

more comprehensive set of results, we only present key findings from the larger experiment here. 
The sample for the second iteration was fairly representative of the population of Sacramento (the 

study region), albeit included a higher share of females and was more affluent and educated than 
the general Sacramento population. Due to the relatively small sample size and potential self-

selection issues, results reported here are not projected to the general population and are only 

representative of our sample.  

Overall, households used their household vehicles substantially more during the chauffeur 
weeks compared to the non-chauffeur weeks. The total vehicle miles traveled (VMT) of our sample 

increased by 60%, which falls in the higher end of the range reported in the literature (1% - 79%). 
The elderly and individuals with mobility barriers exhibited the highest percent increase in their 

VMT (150%) while families with kids observed the lowest increase (17%). Moreover, almost all 
households (95%), at some point during their chauffeur week, sent their chauffeur out alone to run 

errands (equivalent to zero occupancy vehicle (ZOV) or “ghost” trips in an AV future), and this 
made up half of the increase in VMT. During the chauffeur weeks, the overall systemwide trips 

increased by 25%, which drops to only a 3% increase if ZOV trips are excluded from the analysis. 
Moreover, subjects’ average trip length increased by 16% during the chauffeur weeks, which falls 

in the lower end of the range predicted in the literature (2.5% - 45%). During the chauffeur weeks, 
we observed a 20% increase in night trips (after 7 pm), 76% increase in trips between 20 and 50 

miles, and 81% increase in trips longer than 50 miles. However, if only person trips are considered 
(i.e., ZOV trips are excluded), these numbers drop to 5%, 50% and 61% respectively. During the 

chauffeur weeks, subjects also became more auto-oriented, relying more on their “AV” and 
shifting away from transit trips which dropped by 70% (compared to the 9% - 70% decrease 

predicted in the literature). Similarly, subjects shifted away from active modes of transportation 
with biking and walking trips dropping by 37% and 13% respectively. The increase in vehicle 

miles traveled, therefore, came from three sources: 1) 50% of the increase came from subjects 
sending out their chauffeurs to run errands and serve friends and family; 2) 40% came from the 

increase in the average trip length as subjects traveled to farther locations; and 3) 10% came from 
subjects switching from non-auto modes to using their “AV.” 

 
For the second set of results, we explored how to integrate AVs into activity-based models, 

including model specifications and parameter estimates. We investigated four components of 
activity-based models: activity patterns, destination choice, mode choice, and time of day, which 

also provided insights on the potential factors that led to the behavioral changes described above. 
Our formulations were inspired by the Sacramento regional model, albeit kept parsimonious with 

limited heterogeneity due to the small sample size. We compared the models estimated with data 
from the chauffeur weeks to those during the non-chauffeur weeks. We found that there were no 

statistically significant differences in the parameters of the individual activity patterns, destination 
choice, or time of day models. For the mode choice model, however, while the constant for auto 

did not change, the value of time dropped by 60% during the chauffeur weeks. Moreover, as the 
destination choice model included a logsum from the mode choice model, this resulted in longer 
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average tour lengths, even though the parameters (beyond those in the logsum) of the destination 
choice model did not change. Moreover, while the trip-making propensity of individuals did not 

change significantly, there was a 25% increase in systemwide trip rates due to the “AV” 
(chauffeur) being sent on errands. This pointed to the importance of incorporating zero-occupancy 

vehicle trips into the activity-based modeling framework. By observing how subjects used their 
ZOV trips (i.e., sending their chauffeurs to run errands) we were able to propose a way to integrate 

these trips within a standard activity-based model framework. Our findings suggested that if ZOV 
trips are compartmentalized and separated from individual person trips/tours, the existing structure 

and parameters of an activity-based model do not need to be modified, apart from the reduction in 
the VOT for the auto mode. Zero-occupancy vehicle trips can then be added either as additional 

ZOV home-based tours or as ZOV sub-tours within the standard activity-based model process. 
Lastly, as inter-regional travel (e.g., tours outside the Sacramento area in our study) is modeled 

outside the activity-based model framework, our results indicated that modifications should be 
made to account for the increase in inter-regional tours, which were 54% more frequent in our 

sample during the chauffeur weeks. 
 

To summarize, in this dissertation we designed and executed a unique revealed preference 
AV experiment that allowed us to quantify many of the potential travel behavior changes that 

might result from AVs. A key benefit of having access to an “AV” was the enhanced mobility and 
accessibility our subjects experienced during the chauffeur weeks, which was manifested by the 

increase in average trip and tour lengths and was highlighted by many subjects, e.g., “I love the 
chauffeur service. I’ve already gone to two places I would never have driven to on my own and 

it’s been wonderful.” At the other end of the spectrum, however, an undesirable consequence of 
private AV adoption was the increase in car usage which led to an increase in overall VMT and a 

shift away from transit and active modes of travel. Mode choice and destination choice model 
estimations indicated that the primary factor behind these behavioral shifts was the reduction in 

subjects’ VOT for the car mode, leading to an increase in accessibility (as measured, for example, 
via the logsum). The experiment also highlighted another undesirable consequence of private AV 

adoption, which was the reliance on zero-occupancy vehicles (“ghost” trips). We identified these 
trips as a primary source of travel behavior change, highlighting the importance of incorporating 

them into simulation studies. We then suggested a way to incorporate ZOV trips into an ABM 
framework as additional model components that consist of ZOV home-based tours and ZOV 

subtours using a standard ABM process. Finally, even though our sample size was relatively small, 
we were able to quantify the heterogeneity in the response to AVs. Results indicated that changes 

in travel behavior were largest for individuals with mobility barriers, the elderly, and single 
occupancy households and lowest for families with kids. Similarly, non-auto dependent 

households also observed a substantial shift in travel behavior as they became more auto-oriented.  
 

While our dataset is for a relatively small number of individuals, we were able to obtain 
detailed revealed preference insight for each of these individuals into their travel behavior choices 

with privately owned AVs. To our knowledge, this is the first such exercise using this chauffeur 
approach, and we were able to quantify important travel behavior metrics for privately owned AVs 

as well as estimate traditional (albeit parsimonious) travel demand models. Our results provide 
quantitative and qualitative information on both the many benefits of privately owned AVs (“the 

beauty”), but also the potential drawbacks of their adoption (“the beast”). As policy makers 
contemplate regulations for AV deployment, it will be critical to identify and evaluate the tradeoffs 
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between enhancing the quality of life versus the environmental and social costs of the additional 
travel induced by AVs. 
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Chapter 1  
Introduction 
1.1 Motivation 
Today’s automotive industry is witnessing unprecedented technological. Automation is 
particularly expected to revolutionize how we travel and to have profound impacts on the 

transportation system: “Just like freeways shaped past cities and lifestyles, self-driving vehicles 
will remake the metropolis once again” (Walters and Calthorpe, 2017). A study by Intel (2017) 

projected that the autonomous vehicles industry (also referred to as automated vehicles or self-
driving cars) will be worth $7 trillion by 2050. The battle to develop autonomous vehicle (AV) 

technologies is led by traditional car manufacturers and major tech industry players, spending 

billions to ensure leadership. In September 2016, Uber launched a self-driving taxi fleet in 
Pittsburgh (while retaining a ‘driver’ for legal and safety purposes). Similarly, since April 2017, 

participants of Waymo's early riders' program have had access to a fully autonomous fleet, sans a 

human backup driver, a service that is now open to the public in Phoenix, Arizona as of October 
2020. Waymo's autonomous vehicles drove one million miles on public roads in total between 

2009 and 2015 and have driven an additional 19 million miles since then (Waymo, 2020). In 
January 2020, Honda and General Motors unveiled their autonomous vehicle “the Origin” with no 

steering wheel or break and acceleration pedals (McFarland, 2020). In addition to these companies, 

the intense competition to develop driverless vehicles is spearheaded by a host of companies such 

as Tesla, Ford, Cruise, BMW, and Apple. In California alone, the DMV reports 68 testing permit 

holders as of September 1, 2020 (DMV, 2020). 

AVs and shared AVs (SAVs) blend features of multiple traditional modes—they combine 
the convenience and comfort of private vehicle ownership with key public transit advantages, like 

the ability to multitask or relax during one’s commute or share rides with other passengers for 
discounted fares. AVs, together with advances in information technology, have the potential to 

change our lives, from how we commute to where we live and work, and will impact a host of 
industries (for a summary of these impacts, the reader is referred to Manyika et al., 2013 and 

Clements and Kockelman, 2017). Whether self-driving technology will improve our lives, 
exacerbate existing mobility challenges, or lead to currently unimagined ramifications, however, 

is still an open question. On one hand, automation is expected to improve the transportation system 
through increased road capacity, fewer accidents, reduced parking demand, and increased mobility 
and accessibility. However, the concern is whether the efficiency gains are enough to counteract 

the opposing forecasts of increased travel demand, urbanization, and growth in vehicle miles 
traveled (VMT) per capita as a result of improved mobility and accessibility and lower travel costs. 

While it is not certain how the AV future will look like, there is certainty that the impact on human 

travel behavior, the main focus of this dissertation, will be central to determining the outcome. 

The literature distinguishes between five levels of automations. In this dissertation, we 
focused on full automation, also referred to as levels four and five, where vehicles can operate 
without human intervention or presence. These levels have the potential to result in the most radical 

behavior change as they take over driving duties, allowing users to relax or productively use their 
in-vehicle travel time, and to send out vehicles to autonomously run errands. Consequently, 
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understanding the impact of fully autonomous vehicles on travel behavior is imperative to properly 

regulating them and realizing a “utopian AV future”.   

1.2 Methods Used to Explore the Impact of AVs on Travel-Related Behaviors 
and Their Limitations 

Four method have been used to explore the implications of AV technology on travel-related 

behaviors—controlled test beds, driving simulators and virtual reality, surveys, and 

microsimulations/travel demand models.  

Controlled testbeds (i.e., testing the technology is a controlled and isolated environment to 
minimize safety risks) play an important role in integrating the technology into the transportation 

system by ensuring its safety. However, this method is unlikely to provide insights on the travel-
related behavior changes the technology will induce. Driving simulators and virtual reality can 

provide insight on pedestrian interaction with the technology, people’s driving behavior, and their 
use of in-vehicle travel time. Similar to controlled testbeds, however, driving simulators and virtual 

reality do not provide direct insights on changes in users’ travel-related behaviors. For studies 
based on microsimulations, researchers modify existing travel demand models to incorporate AV 

options and simulate an AV future. This requires making assumptions on travel behavior changes 
caused by the technology. Consequently, microsimulations help in assessing the impact of changes 

in travel behavior on the transportation system, but not in identifying what these changes will be. 
Finally, in survey studies, respondents are asked to imagine how they would feel toward, pay for, 

and use automated vehicles in hypothetical scenarios. Although a valuable technique to provide 
initial insights, it is problematic to employ in contexts that are too far removed the subjects’ 

realities. This is precisely the situation with autonomous vehicles. Each method, its strengths, 
limitations, and contributions to the AV travel behavior literature will be discussed in more detail 

in chapter 2. 

1.3 Objectives 
It is difficult to predict the future of mobility after the adoption of autonomous vehicles for the 

simple reason that they do not currently exist. Consequently, the root of the limitations of current 
methods reviewed above is the lack of the right data. Therefore, this research effort was motivated 

by three main objectives: 
 

1) Collect new data on the travel behavior implications of privately owned autonomous vehicles 
through an innovative method that overcomes the limitations of the current literature. 

 
2) Analyze the data to quantify the implications of privately owned autonomous vehicles on 

human travel behavior and the heterogeneity in the response to the technology by different 
demographic and lifestyle groups. 

 
3) Integrate privately owned AVs into an activity-based model framework by estimating short-

term travel demand models and proposing additional components unique to privately owned 
AVs. 
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1.4 Methodology 
Instead of using microsimulations or surveys, in this dissertation, we proposed a different 

method—an experiment where we simulated people’s lives with personal AVs by providing them 

with personal chauffeurs. 

The feature that will cause the most change in travel behavior is the driverless feature, as 
it allows riders to productively use their travel time and owners to send their AVs to autonomously 

run errands. By providing study participants with personal chauffeurs, we essentially installed the 
driverless feature onto their vehicles. Just like an AV, the chauffeur fully took over driving duties 

so subjects could relax or productively use their travel time. Subjects were also able to send out 
their chauffeurs to autonomously run errands that AVs will run in the future (e.g. filling up gas, 

picking up groceries, picking up friends and family). The experiment allowed subjects to 
experience the driverless feature and adjust their daily travel and activities the way they will in an 

AV future1. This allowed us to study these behavioral shifts through observational data rather than 
the more common survey data. The advantage of experiencing the self-driving feature rather than 

responding to hypothetical scenarios was highlighted by two study participants: 

• “Before this experiment, I could not see me ever having a self-driving car, but now I can see 

how useful it would be.” 

• “[After the experiment] my daughter and I commented on how the self-driving cars would 
affect our behavior in ways we had not thought about.” 

Figure 1 below illustrates the key components and flow of the experiment. First, subjects 
and drivers were recruited and onboarded. Then comes that heart of the experiment: tracking 
subjects’ travel for three to four weeks, with the chauffeur intervention occurring in the middle 

week(s). Finally, an online survey was administered before and after the three/four weeks of travel. 
The details of each components of the experiment (e.g. recruitment, tracking, the chauffeur 

service) are discussed in more detail in chapters 3 and 4.  

 
Figure 1: Flow of experiment and primary data collected 

 
The set-up of our experiment falls under the category of before and after studies (also called 

pre-post studies), where a researcher can compare the outcomes (or treatment effect) of the same 
group of individuals before and after participating in a program. In their book “Impact Evaluation 

in Practice”, Gertler et. al (2011) discuss these experiments and indicate that problems with these 

 
1	Individuals are also expected have access to a shared fleet of autonomous vehicles in an AV future. Therefore, a complement to our experiment 
would be to investigate the travel behavior impacts if people were to make use of a shared fleet of autonomous vehicles (rather than private 
ownership), and this is left for future research.	
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studies arise when programs are implemented over a long period (months or years), since the 
conditions during one time period might be significantly different than those in the other time 

periods, creating biases in the results. However, if the time period is short and conditions are stable, 
one can assume that the effect of time is negligible, and the average treatment effect (e.g. change 

in VMT) can be identified by taking the difference between the treatment (chauffeur) weeks and 
control (non-chauffeur) weeks. A limitation of the short treatment period, however, is that changes 

in long-term decisions (e.g., residential location, car ownership) cannot be studied through the 
experiment, however, they could still be investigated via the entrance and exit surveys. 

1.5 Contributions 
The focus of the dissertation was to quantify and model the travel behavior implications of 

privately owned autonomous vehicles. The contributions of this dissertation are summarized 
below: 

 
First, we collected revealed preference data on the potential travel behavior implications 

of privately owned AVs through an innovative method that overcomes the limitations of current 
methods used in the literature. While most studies rely on stated preference data or simulations, 

we proposed running an experiment in which we used a personal chauffeur to simulate life with a 
privately owned AV. The experiment allowed our study participants to experience, first-hand the 
benefits of some of the more salient features of owning an autonomous vehicle, namely the 

driverless feature. This allowed us to observe how subjects adjusted their “real life” everyday 
travel decisions as a result of having access to an “AV”. An anonymized version of this dataset 

will be made available to other researchers. 
 

 Second, we quantified the impact of AVs on travel behavior using the revealed preference 
data collected. We quantified the impact of the chauffeur service on areas that have been explored 

in the literature such as vehicle miles traveled, trip rates, average trip length, and mode choice, 
albeit with our revealed preference setting. Beyond these important metrics, our dataset also 

allowed us to provide unique insights on central topics that have received little to no attention in 
the literature. For instance, we quantified the heterogeneity in the response to “AVs” by individuals 

from different demographics and with unique lifestyles, modal preferences, and mobility barriers 
(e.g. retirees and individuals with disabilities). This information will be key in ensuring that policy 

decisions made will lead to an equitable transportation system in an AV future. Another key aspect 
of AVs that has received little attention in the literature is zero-occupancy vehicle trips. As subjects 

were able to send out their drivers to run errands and serve friends and family, we gained access 
to unique insights on how zero-occupancy vehicle trips will impact travel behavior, as well as how 

often and for what purposes will these trips be used. This allowed us to identify zero-occupancy 
vehicle trips as a primary source of travel behavior change, highlighting the importance of 

incorporating them in simulations, which has been a shortcoming of most AV-based simulation 
studies thus far. 

 
Third, we proposed a way to model privately owned AVs by incorporating them within a 

standard activity-based model framework. Our focus was on short-term travel decisions, and 
longer-term impacts such as vehicle ownership and residential choice were outside our scope. We 

showed that zero-occupancy vehicles trips can be compartmentalized and separated from 
individual person trips and tours, and then the existing structure and parameters of an activity 
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based-model do not need to be significantly modified. The only parameter we found to be 
significantly different was a reduction in the value of time for the auto mode, which we were able 

to estimate using real world mode choice decisions by our study participants. This resulted in both 
a shift towards auto from other modes as well as longer trip distances. We then proposed a way to 

incorporate zero-occupancy vehicle trips into the activity-based model framework as additional 
zero-occupancy vehicle home-based tours and as zero-occupancy vehicle sub-tours within the 

standard activity-based model framework. While inter-regional travel is exogenous to the activity-
based model framework, a significant increase in inter-regional tours in our dataset suggests that 

modification should be made to account for this increase.  
 

While our dataset is for a relatively small number of individuals, we were able to obtain 
detailed revealed preference insight for each of these individuals into their travel behavior choices 

with privately owned AVs. To our knowledge, this is the first such exercise using this chauffeur 
approach, and we were able to quantify important travel behavior metrics for privately owned AVs 

as well as estimate traditional (albeit parsimonious) travel demand models. 

1.6 Dissertation Outline 
The remainder of the dissertation is organized as follows. In Chapter 2, we review the literature 
that addresses relevant research questions on changes in travel-related behaviors induced by 
autonomous vehicles. First, we identify the methods currently used to address research questions 

on travel behavior changes caused by AVs, highlight their strengths and limitations in contributing 
to the literature, and propose ways to improve upon these methods. We then identify the critical 

research questions, summarize results from studies addressing these questions, and categorize 
questions based on the amount of attention they received in the literature. Chapters 3 and 4 then 

present detailed descriptions of the experimental design and the key findings from the 13-
household pilot experiment in the San Francisco Bay Area and the expanded 43 household 

experiment in the Sacramento area, respectively. In Chapter 5, we present results from short-term 
travel demand models where we estimate key parameters, such as value of time, that are often 

modified/assumed in AV-based simulation studies. We also propose a way to integrate zero-
occupancy vehicles within an activity-based model framework. Finally, in Chapter 6 we 

summarize the work done in this dissertation, our contributions to the field, as well as provide a 

roadmap for future work. 
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Chapter 2  
What Do We (Not) Know About Our Future with 
Autonomous Vehicles? A Literature Review of Travel-
Related Behavior Implications 
 
Mustapha R. Harb 

Amanda Stathopoulos, Ph.D. 
Yoram Shiftan, Ph.D. 

Joan Walker, Ph.D. 

 
Abstract 
While research on developing and testing automated vehicles (AVs) is well underway, research on 
their travel behavior implications is in its infancy. The aim of this chapter is to summarize and 

analyze the literature that focuses on travel-related behavior impacts of AVs, namely levels 4 and 
5, as well as highlight important directions of research. We review five methods used to 

quantitatively investigate these implications and how each method contributes to this literature: 1) 
controlled testbeds, 2) driving simulators and virtual reality, 3) agent-based and travel-demand 

models, 4) surveys, and 5) field experiments. We also present five critical research questions 
regarding the implications of AVs on the demand side of transportation and summarize findings 

from the current literature on: 1) what is the willingness to adopt the technology? and what are the 
impacts of the technology on 2) in-vehicle behavior? 3) value of time? 4) travel-related behaviors 

(activity pattern, mode, destination, residential location)? and 5) vehicle miles traveled (VMT)? 
Results can be divided into four categories. The first category corresponds to results on research 

questions with numerous data points where the direction of the impact is consistent across the 
literature, albeit the magnitude varies considerably. For instance, surveys indicate 19% to 68% of 

people are unwilling to adopt AV technology, a sentiment that is fading over time. Moreover, 
people prefer owning AVs over sharing them. Regarding VMT, most studies predict an increase 

that varies from a low of 1% to a high of 90% depending on the scenario and assumptions under 
study. The second category of findings corresponds to research questions with limited and 

consistent results, albeit the range varies widely. For example, a few stated preference survey 
studies indicate that reduced stress and multitasking during travel will reduce the value of time 

between 5% and 55%. The third category of results is on research questions with a few but 
conflicting data points. For instance, surveys indicate that people (up to 80%) do not believe their 
residential location will be impacted by the adoption of AVs. Some simulation studies, however, 

indicate that lower travel costs will drive people away from cities and into suburbs while other 
studies report the opposite. The final category of results corresponds to research question with a 

single or no data points. For instance, one study explores how users will use vehicles to run errands 
while no studies investigate user preferences for vehicle types (e.g. mobile-homes vs. right-sized) 

or how they plan to use their vehicles when they are not needed (e.g. rent out vs. leave them idle). 
Moving forward, the goal is to shift all results into the first category while simultaneously 

tightening the prediction interval of the magnitude of the impacts. This can be achieved by: 1) 
focusing more efforts on research questions that fall under the three remaining categories to fill 

the holes in the literature, and 2) establishing clarity of assumptions used by researchers to enable 
comparisons and transferability of results.  
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2.1 Introduction 
The development of self-driving technology is well underway, with several companies already 

testing level 4 AVs on public roads without a human safety driver (DMV, 2020). Consequently, 
governments are working diligently to keep up with the advancements in these technologies, 

studying their implications to propose effective policies. In 2018, the USDOT released "Preparing 
for the Future of Transportation: Automated Vehicle 3.0," which focuses on safety, policy, and 

process of AV deployment. The National Conference of State Legislatures reports that 29 states 
have enacted legislation related to autonomous vehicles. For example, in 2018 the Colorado 

Department of Transportation announced its plans for the first autonomous vehicle lane on 
highway C-470 as a first step to embracing AV technology (Aguilar, 2018). However, regulating 

this technology is challenging, considering that the availability of the technology for commercial 
use is still limited and the implications are difficult to predict. 

 
Two main business models are speculated to shape the future of transportation. The first is 

a private ownership model where people own their personal AVs. The second is a sharing model 
(i.e. SAVs) where carsharing and ridesharing companies (e.g. ZipCar and Uber/Lyft) offer on-

demand mobility services. In both scenarios, automation is expected to improve the transportation 
system, however, researchers (Fagnant and Kockelman, 2018; WEF, 2018; Wen et al., 2018; 
Zhang and Guhathakurta, 2018; Creger at al., 2019; Kim et al., 2020) believe that the key to 

capitalizing on the advantages of the new era in transportation is to: 1) integrate its use with high 
capacity transit systems; 2) increase vehicle occupancy levels through pooling and ride-sharing; 

and 3) encourage multimodality and the use of active modes—walking and biking. The 
combination of these features is closely associated with the concept of Mobility as a Service 

(MAAS) (Matyas and Kamargianni, 2018) where users access bundled services and modes using 
a single platform2.  

 
Automation levels four and five have the potential for the most radical change in activity 

and travel-related behaviors, and these implications are the least understood today. Therefore, in 
this chapter, our main focus, albeit not the sole one, is on research regarding automation levels 

four and five. While research on developing and testing these technologies is well underway, 
research on its implications on travel-related behaviors is still in its infancy. The topic, however, 

is receiving growing attention. For example, workshops have been held at the annual Autonomous 
Vehicles Symposium (San Francisco, 2014-2019) and the tri-annual conference of the 

International Association of Travel Behavior Researchers (Windsor, 2015; Santa Barbara, 2018), 
and it was a topic of emphasis at events such as UC Davis' “The Three Revolutions of Future 

Mobility" (UC Davis, 2018). A recurring theme at all these events, however, is how little we know 
about the travel behavior implications of automation and the high degree of uncertainty 

surrounding its future. 
 

The first goal of this literature review is to summarize and analyze the behavioral 
implications that could emerge from increasing automation, and deliver a more detailed treatment 

of these impacts, informed by joint analysis of a broader range of studies and methodologies than 
is considered elsewhere in the literature. A detailed comparative analysis against previous review 

 
2 E.g. Moovit (Moovit, 2019) and TriMet Tickets (TriMet, 2019) are phone applications that allow users to plan multi-
modal trips (bike/scooter sharing, walking/biking, public transit, ride/car sharing) on a single platform, while 
providing real time trip information.  
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papers focusing on automation is delivered in Section II. The second goal is to outline a roadmap 
for future research regarding travel behavior implications of AVs. This is done in three steps: 1) 

summarizing and analyzing the current literature on travel behavior implications of AVs, 2) 
identifying the topics that require further investigation, and 3) concluding with guidance that can 

help advance this field moving forward. 
 

The remainder of this chapter is structured as follows: section two describes the 
methodology and the contribution of this paper in more detail. Section three reviews the methods 

used to study the impact of AVs on travel-related behavior. Section four then summarizes the key 
research questions regarding the impacts of these technologies on activity and travel-related 

behavior and the key findings from the literature. Section five discusses suggestions to improve 
future research. Section six then discusses critical future research directions, and finally, section 

seven presents a conclusion. 

2.2 Methodology 
The literature search process was limited to papers published between 2011 and July 2020 and 
included scientific papers, academic reports, and private sector reports. The search process was 

conducted using various queries in scientific literature databases, such as ScienceDirect, Web of 
Science, Scopus, and Google Scholar. The literature has grown considerably, as illustrated by 
initial search keywords including various synonymous terms “autonomous vehicle/car”, 

“autonomous vehicle/car”, “self-driving vehicle/car” yielding 22,890 records in Scopus. Further 
refinement coupled these AV terms with behavior keywords; “travel behavior”, “value of time”, 

“adoption”, “residential location”, “activity patterns” and derivations. Backward and forwards 
snowballing was used to retrieve relevant studies from identified literature reviews and other 

papers found via the database searches. The procedure to narrow down and classify the search 
results was carried out in 2 steps: Step 1) papers were screened to verify that the main focus of the 

study is in scope—i.e. behavioral response to AVs and their impact on travel demand. Studies with 
a supply focus and research on logistics and goods delivery are beyond the scope of this review. 

An important observation needs to be made concerning supply effects that indirectly affect travel 
behavior. Importantly, we exclude from the review studies that focus on changes in road capacity 

and in the operating costs of AVs and SAVs from the supply perspective. While the operating and 
usage costs will likely cause behavior changes (e.g. in mileage and residential location over time), 

this review maintains the focus firmly on the acceptability and demand in response to pricing. We 
direct the reader to Milakis et al. (2017) for notable examples of these supply-focused analyses. 

Following the content scrutiny was the exclusion of duplicates and non-English language papers. 
Step 2) was to define the research questions that will be addressed. The final list was a combination 

of research questions that were predetermined by the research team from their existing knowledge 
and experience and ones identified during the literature review. The five behavioral research 

questions selected and discussed in this review are: 1) what is the willingness to adopt AV 
technology? and what are the impacts of the technology on 2) in-vehicle behavior? 3) value of 

time? 4) travel-related behaviors (activity pattern, mode, destination, residential location)? and 5) 
vehicle miles traveled? We note that with the high volume of studies on AV acceptance, reviewing 

and including studies from around the world would be a challenging task. Therefore, for studies 
that address this specific research question, the inclusion criterion was limited to studies conducted 

in the US. A high-level comparison with studies from other regions was included, however. For 
the remaining research questions, there were no geographic restriction and all relevant studies were 
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included. This review encompasses a broad range of methodologies used to examine the five focus 
questions. Studies in five domains are covered in the review, namely controlled testbeds, driving 

simulators and virtual reality, agent-based and travel demand models, surveys, and field 
experiments. Following these considerations, 78 papers were included in this review. 

 
The literature search also led to identifying four related AV literature review papers: 

Becker and Axhausen (2017); Milakis et al. (2017); Soteropoulos et al. (2018); and Gkartzonikas 
and Gkritza (2019). Our literature review contributes to the understanding of automation impacts 

by adding an original focus on multiple travel behavior impacts studied using a broader range of 
research methods. Firstly, we expand and update insights from more narrowly focused reviews. 

For instance, Becker and Axhausen (2017) provide a detailed review of surveys on AV acceptance 
focusing on the methods and variables studied. Relatedly, Gkartzonikas and Gkritza (2019) review 

survey studies on AV adoption intentions while focusing on patterns of perceptions and attitudes 
comparing general users, vehicle owners, and transportation experts. Expanding on these, the 

current review examines surveys alongside numerous other data-collection methods. Moreover, 
our review has a different focus than the two remaining review efforts. Soteropoulos et al. (2018) 

review studies that investigate the impact of the technology on travel behavior and land use, while 
considering only modelling based studies such as Agent-Based Models. Milakis et al. (2017), on 

the other hand, review the literature on implications of autonomous vehicles while covering a 
wider array of topics (e.g. road capacity, travel cost, economy, travel choices, etc.) and study types. 

While Milakis et al. (2017) cover some behavior-related issues, they jointly analyze infrastructure 
and policy variables. Interestingly, Milakis et al. (2017) conclude that “More creative techniques 

such as virtual reality or serious gaming would be useful in behavioral experiments about the 
impacts of autonomous vehicles” (p 343). Our review is the first effort to combine the focus of 

behavioral understanding gained via a larger set of data collection and research methods. This 
approach enriches our understanding of the automation phenomenon by allowing more dialogue 

between research disciplines while maintaining the focus on the cascading behavioral effects 
related to self-driving. 

2.3 Review of Methods 
In this section, we review the five methods used to explore the implications of AV technology on 
travel-related behaviors. The goal of this section is to summarize the strengths and limitations of 

each method in the context of travel behavior and make this information accessible. Specifically, 
we focus on examining the coupling between specific methods and behavioral research questions. 

This will guide researchers to select the appropriate research method and address the behavioral 
research questions of interest more robustly. 

 
For human factors and safety research, the three methods of choice are controlled testbeds, 

and driving simulators or virtual reality combined with a survey. For attitudes towards the 
technology and changes in travel-related behaviors, agent-based and travel demand models, 

surveys, and field experiments are the most commonly used methods. Each of the five subsections 
outlines the strengths and limitations and discusses specific contributions of each method to our 

understanding of the impacts of AVs on travel-related behavior, or the lack thereof. The methods 
are organized in an ascending order according to their level of contribution to the travel behavior 

literature on automated vehicles: 
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2.3.1 Controlled testbeds 
The first method we discuss in this section is controlled testbeds, a common tool used to test new 

products and technologies in controlled environments shielded from most of the real-world 
hazards. For AV technology, this means testing the technology in areas with a limited number of 

intersections, pedestrians, traffic, etc.  
 

Controlled test beds are central in ensuring the technology works as expected, and that it 
can be integrated into the transportation system smoothly and safely. They could also provide 

insight on how different traveler segments, such as pedestrians, bikers, and other drivers, will 
interact with the AVs. Therefore, controlled testbeds play an additional important role in 

integrating the technology, by familiarizing people with the technology and getting them 
comfortable with having it on public roads. Yet, controlled testbeds are unlikely to provide insights 

on the changes the technology will induce in people’s travel-related behaviors. Consequently, this 
method is promising for studying human factors and safety, but not as useful for gaining insight 

on the questions raised in the literature review section.  
 

2.3.2 Driving simulators and virtual reality 

2.3.2.1 Driving simulators 
Similar to controlled testbeds, researchers use driving simulators (DS) and virtual reality (VR) to 

study the impacts of the technology while minimizing real-world risk on their subjects. In driving 
simulators, individuals experience a vehicle-like setting, including a car seat, driving wheel and 

pedals, and a screen that simulates a road network. After the driving simulator, a survey is often 
administered to gain insight on the subject’s experience and opinions. This method has been used 

to study safety and human factors in transportation for a long time (e.g. Stein et al., 1983, Akerstedt 
et al., 2005). Recently, driving simulators have been used to study the impact of semi and highly 

automated vehicles on driver behavior and in-vehicle activity engagement (e.g. Vollrath et al., 
2011, Jamson et al., 2013, Buckley et al., 2018). The limitation of driving simulators, however, is 

that people may fail to perceive the true risks associated with driving (e.g. it is regarded as ‘just a 
game’). Driving simulators also can’t reflect the new travel services and opportunities provided by 

automation. Results from these studies, therefore, may not reflect behavior under real-world 
conditions. 

 

2.3.2.2 Virtual reality 
To overcome this limitation, researchers attempt to make their simulations more realistic by using 

virtual reality to immerse their subjects into the simulated world. Similar to DS, a survey is often 
administered after the VR experiment to gain insight on the subject’s experience and opinions. 
Even though VR makes simulations more realistic and immersive, the degree to which VR can 

lead to realistic behavioral results has not yet been established. Similar to driving simulators, 
people in a VR system know it is not real life, and thus might still not perceive the true risks and 

consequences of real-world decisions. In their study, however, Farooq et al. (2018) argue in favor 
of VR and the increased sense of reality it offers over other techniques. They explore the efficacy 

of using text-only, visual-aids (e.g. pictures and videos), and VR on the quality and consistency of 
results from survey studies (the fourth method discussed in this section). They find that using VR 

improves respondents’ understanding of the choice situation and produces more consistent results. 
Similarly, Pillai (2017) uses subjects’ body language and reactions during a VR pedestrian 

crossing experiment to argue in favor of VR, giving examples of subjects making statements such 
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as: “It's crazy that I feel a bit of cold just because it's raining” and showing hesitancy to cross when 
vehicles arrive.  

 
Driving simulators and virtual reality can be powerful tools to study safety and human 

factors. They can provide insight on pedestrian interaction with the technology (VR), people’s 
driving behavior (DS), and their use of in-vehicle travel time (DS). This information allows for a 

better design of vehicles and a safer integration of the technology into the system. Similar to 
controlled testbeds, however, driving simulators and virtual reality do not provide direct insights 

on changes in users’ travel-related behaviors. However, researchers have used DS and VR to 
complement surveys to produce more credible and consistent results regarding the impacts of AVs 

on travel-related behavior, namely trust in the technology and intentions to adopt (e.g. Buckley et 
al., 2018, Jamson et al., 2013, Chang et al., 2017, and Jayaraman et al., 2018). 

 
2.3.3 Agent-based and travel-demand models 

To assess the impacts of policy decisions on the transportation system, researchers and 
practitioners have traditionally relied on aggregate models. However, the rise of more powerful 

computers allowed researches to run large scale disaggregate agent-based microsimulations3. 
Agent-based models are a modeling approach where a system is broken down to its individual 

components—the agents, then the actions and interactions of the individual agents are simulated 
to evaluate their effects on the system as a whole (Zheng et al., 2013).  

 
There are two types of agent-based models: 1) network analysis (e.g. Fagnant and 

Kockelman, 2014); and 2) activity-travel-based models (e.g. Childress et al., 2015). Travel-
demand models consist of the demand side, usually the traditional first three steps of the traditional 

four step models of generation, distribution, and mode choice or the daily activity patterns in 
activity-based models. The network analysis deals with the supply side, finding the equilibrium 

between demand and supply. Accordingly, the main difference between the two approaches is that 
in network analysis, researchers assume a pre-defined demand and assign it on the network making 

various assumptions of changes in the supply side, such as the road capacity, to study the impact 
of introducing the technology on the system’s performance, without accounting for changes in 
travel-related behaviors or induced demand. The limitation of network analysis, therefore, is that 
it focuses on the supply side of the transport system and does not provide insights on changes on 

the demand side, namely travel-related behaviors—our focus in this literature review. On the other 
hand, the purpose of travel demand models is to assess and quantify the impact of changes in 

travel-related behaviors on the transportation system. These models rely heavily on the 
assumptions made by researchers on the changes the technology will bring to the system. On the 

demand side, the most common assumptions made by researchers are the willingness to pay for 
automation, the demand for AV modes (also referred to as market penetration), and the change in 

value of time (VOT). On the supply side, assumptions include an increase in capacity, lower 
parking costs, lower/higher operating costs, etc.  

 
The advantage of travel demand models is that travel-related behaviors are built into the 

model, which makes assessing the impact of changes in these behaviors relatively straightforward. 

 
3 Several software tools are now available to run these simulations such as VISSUM, CUBE, POLARIS, and MATsim. 
Extensions are being added to these software tools to allow for the integration of AVs into the network (e.g. robotaxi 
package in MATsim) 
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However, a key limitation of these models in a travel behavior context, is that they do not inform 
what the travel-related behavior changes will be, rather they require assumptions on these changes 

as input. The reliability and accuracy of the results, therefore, hinge on researchers making 
thoughtful, realistic, and representative assumptions. However, with a technology that doesn’t yet 

exist for large scale commercial use, the validity of these assumptions cannot be tested.   
 

2.3.4 Surveys 
In the lack of real market AV application, researchers have relied mostly on surveys where 

respondents are asked questions and/or presented with hypothetical scenarios about the technology 
under study, and state their preferences, attitudes, and intended choices under those scenarios 

(Ben-Akiva et al., 2019). An advantage of (stated preference) surveys is the ability to solicit 
preferences and provide insights on potential changes in travel-related behaviors for technologies 

and market products that do not currently exist (Hensher, 1982, Louviere and Hensher 1983).  
 

There are two types of survey questions: 1) direct questions about attitudes, intentions, and 
perceptions; and 2) stated preference (SP) and choice-based conjoint analysis (namely discrete 

choice experiments (DCEs)). In discrete choice experiments, respondents are presented with a 
hypothetical scenario and a set of alternatives—the choice set, to choose the one they find most 

attractive. The advantage of these questions is that, when making a choice, people make tradeoffs 
between attributes of the different alternatives, allowing researchers to estimate the respondent’s 

sensitivity to attributes, as well as key tradeoffs they make to reach their decisions (e.g. willingness 
to pay for the technology and their value of time). A key factor in the success of these experiments 

in eliciting true preferences is having the scenario, alternatives, and their attributes and 
corresponding levels mimic, to the extent possible, the true market and decision-making situation 

a respondent faces in that market (Ben-Akiva et al., 2019). This is challenging in the context of 
AVs since they are not available in the market for consumers.  

 
Although a very useful tool, analysts should draw inference from (SP) data with care for 

two reasons. The first is that (SP) survey studies are often criticized due to the perception that 
preferences elicited in hypothetical settings do not reflect respondents’ real preferences (Louviere 

et al., 2000, Ben-Akiva et al., 2019). This is particularly a concern when the context is remote from 
respondents’ experiences. It is the responsibility of the researcher, therefore, to bring the context 

closer to the respondent. To do so, some researchers use VR and driving simulators, as discussed 
previously, while others rely on videos and text descriptions. The drawback of the latter methods 

is that different people interpret descriptions and videos differently, introducing undesirable and 
unobserved heterogeneity in the results. The second reason for drawing inference from (SP) survey 

studies with care has to do with the technology under study. On one hand, current policies 
governing the use and adoption of AVs, or the lack thereof, will develop in the future, which means 

the context in which we frame questions about the technology today might not be representative 
of the future. On the other hand, people’s preferences change as their lifestyles change, which 

means results will change and evolve over time, as we will see in section four. Finally, results from 
(SP) survey studies today represent preferences of current generations. However, future 

generations, born in a time when using the technology is second nature, will have different attitudes 
and preferences towards it. 
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2.3.5 Field experiments 
The last method we discuss in this section is field experiments. Unlike controlled testbeds, field 

experiments are conducted in the real world with real (human) subjects. Researchers conducting 
field experiments have less control over the variables of the experiment than in controlled testbeds. 

However, since AVs are not yet available for commercial use on a large scale, and regulations on 
the technology do not permit it yet, running field experiments in non-controlled environments 

using fully automated vehicle is not feasible. Two types of field experiments are currently used to 
study the impacts of AVs on travel behavior. In the first type of field experiments, subjects get 

access to fully automated vehicles (sans human backup in some cases), in a bounded geographical 
region, however. In the second type of field experiments, researchers simulate automated vehicles 

using a “ghost driver”4 to give the illusion of an AV or using personal chauffeurs as a proxy to 
owning a personal AV5. Similar to an automated vehicle, the personal chauffeur takes over the 

duties of driving, relieving subjects from the stress associated with driving, and allowing them to 
make productive use of their in-vehicle travel time. The chauffeurs can also “autonomously” look 

for parking, run errands, and chauffeur friends and family. 
 

The main advantage of field experiments is allowing subjects to experience firsthand some 
of the features of AVs and adjust their lives accordingly, rather than answering questions on 

hypothetical scenarios. This gives researchers access to revealed preference data on changes in 
travel-related behaviors rather than the more common survey data. Using this data, researchers can 

validate results from survey studies and estimate models to calculate changes in VOT, sensitivity 
to distance, mode choice, etc. Consequently, instead of making assumptions on the changes in 

travel-related behaviors, researchers using travel-demand models can then use results from these 
studies as input to run more accurate and realistic simulations. Moreover, these experiments 

provide insights on how different demographics with different lifestyles react uniquely to the 
technology. Finally, simulating privately owned AVs using chauffeurs provides insight on the 

purpose and frequency of zero passenger errands AVs will perform for owners in the future. 
 

Nevertheless, these studies have their limitations. A general limitation of field experiments 
is that they are conducted in a specific area under unique conditions and regulations. Results from 

these studies, therefore, might not be externally valid, which means one might not be able to 
extrapolate and generalize results to other areas and settings. In the first type of field experiments, 

the main limitation is the restrictions on the locations where vehicles are allowed to operate. This 
can influence subjects’ travel patterns by restricting their destination and mode choice decisions, 

introducing biases to the results. For the second type of field experiments, the main limitation is 
the presence of a chauffeur, since people might behave and travel differently when dealing with a 

machine than with humans, introducing biases to the results. In addition, in each of these field 
experiments, only one adoption model is considered (i.e. shared or privately owned AVs), whereas 

in the future, users will likely have access to various subscription, sharing and ownership models. 
Finally, as these experiments are typically conducted over a relatively short time period, long-term 

decisions such as vehicle ownership or residential location choice cannot be studied. 

 
4 A driver camouflages by dressing up as a car seat, giving pedestrians, drivers, and bicyclists the illusion of a 
driverless car. See for example Rothenbucher et al. (2016). 
5 This is the methodology we proposed in this dissertation 
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2.4 Literature Review of the Critical Travel Behavior Research Questions 
In this section, we identify critical research questions regarding the implications of autonomous 

vehicles on travel-related behaviors. For every question, we summarize findings from the 
literature. The organization of this section follows the flow illustrated in figure 2. The figure 

summarizes the five research questions emerging in this section and their relationship with one 
another. As illustrated in the figure, the relationship between demand (the solid rectangles on the 

left portion of the figure), and the environment (the dashed rectangles on the right portion of the 
figure) is dynamic, and any change in one component induces change in the other. Our focus in 

this literature review is on the demand side of the equation. Tables 1 through 11 summarize the 
reviewed studies, broken down by the research questions addressed and methodological focus. 

Information on the level of automation considered, the adoption model (e.g. privately owned vs. 
shared), main assumptions, and main results of each paper are also provided. Since some studies 

address multiple research questions, they were included multiple times under each corresponding 
research question.  

 

Figure 2: Flow diagram of the critical travel-related behavior research questions 

2.4.1 What is the willingness to adopt self-driving technology? 
Prior to studying the impacts of self-driving technology, it is essential to investigate people’s 

willingness-to-adopt patterns. The review identified 27 papers centered on exploring acceptance 
and intention to adopt automation technology, and the factors that influence these decisions (e.g. 

perceived benefits and risks of the technology, trust in self-driving vehicles safety, etc.). In the 
examination of adoption studies, the questions of interest are: what is the range of AV acceptance 

levels across studies, and what are the main factors that influence the decision to adopt? What 
segments of the population are more willing to adopt the technology, and when are they planning 

to adopt it?  How much are they willing to pay for automation? And finally, how do acceptance 
and adoption intentions evolve over time and in different contexts?  

 
These questions are addressed to date using three of the research methods—driving 

simulators, virtual reality, and survey studies. Tables 1-3 summarize the key results from studies 
that explore people’s intentions to adopt and willingness to pay for AV technology: 
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Table 1: Summary of results on trust & intention to adopt technology 

Topic Method Paper Level of 
automation 

Adoption 
model Research approach Main Finding(s) 
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Buckley et al. 
(2018) Level 3 N/A 

Subjects experience periods of 
autonomous driving and manual 
control 

Trust is a main factor in intent to 
use the technology 

Molnar et al. 
(2018) Level 3 N/A 

Subjects experience periods of 
autonomous driving and manual 
control 

Frequent passengers tend to trust 
the technology more than frequent 
primary drivers  

Zontone et al. 
(2020) Level 5 N/A 

Put 13 subjects through a driving 
simulator and measured the heart rate 
and Electrodermal Activity Skin 
Potential Response (SPR) signal 

Autonomous driving is less 
stressful as a whole but when the 
stress is present, it is stronger 

V
irt

ua
l R

ea
lit

y 
(V

R
) Chang et al. 

(2017)  Level 5 N/A Cars have eyes that make eye contact 
with pedestrians to signal intent to stop 

If vehicles communicate their 
intent to stop, pedestrians feel 
safer and make faster decisions 

Chang et al. 
(2018)  Level 5 N/A 

Measure the effectiveness of different 
vehicle to pedestrian communication 
methods 

Text communication is most 
preferred by pedestrians among 
possible communication methods 

Jayaraman et 
al. (2018) Level 5 N/A Test the impact of trust and AV driving 

style on pedestrian crossing 

People who have more trust in the 
technology are more aggressive in 
crossing 

Su
rv

ey
 

JD Power 
(2012) Level 5 N/A 

General question on the attitudes 
towards the technology and intention to 
adopt 

67% of U.S. residents are not 
willing to adopt the technology 

Vallet (2013) Level 5 N/A 
General question on the attitudes 
towards the technology and intention to 
adopt 

20% of U.S. vehicle owners are 
willing to “hand over the keys to 
an AV if it is safe” 

Seapine 
Software 
(2014) 

Level 5 N/A 
General question on the attitudes 
towards the technology and intention to 
adopt 

88% of U.S. residents are worried 
about riding in a fully autonomous 
vehicle 

Pigge and 
Charles (2014) 

Levels 2 to 
5 N/A 

General question on the attitudes 
towards the technology and intention to 
adopt 

66% of U.S. residents are not 
willing to adopt the technology 

Brown et al. 
(2014) 

Levels 1 to 
5 N/A 

General question on the attitudes 
towards the technology and intention to 
adopt 

60% of U.S. residents are not 
willing to adopt the technology 

Schoettle and 
Sivak (2014) 

Levels 4 
and 5 AVs 

General question on the attitudes 
towards the technology and intention to 
adopt 

33.7% of U.S. residents are not 
willing to adopt the technology 

Abraham et al. 
(2018) 

Levels 1 to 
5 AVs 

General question on the attitudes 
towards the technology and intention to 
adopt 

48% of U.S. residents are not 
willing to adopt the technology 

Ipsos 
(Carmichael 
(2018)) 

Level 5 AVs, 
SAVs 

General question on the attitudes 
towards the technology and intention to 
adopt 

26% of U.S. residents are not 
willing to adopt the technology 

Haboucha et 
al. (2017) Level 5 AVs, 

SAVs 

Discrete choice mode choice 
experiment between currently owned 
conventional vehicle, AVs, and SAVs 

54% of Americans prefer their 
conventional vehicle over self-
driving options 

Bansal and 
Kockelman 
(2017) 

Levels 4 
and 5 AVs 

Questions on attitudes towards the 
technology, intention to adopt AVs, 
and willingness to pay for automation 

55% of U.S. residents perceive the 
technology as a useful 
advancement but 58% are still 
worried about riding in it 

Hardman et al. 
(2019) 

Levels 4 
and 5 AVs 

General question on the attitudes 
towards the technology and intention to 
adopt 

Electric vehicle owners are not 
more likely to adopt AVs than 
conventional vehicle owners. 37% 
of U.S. individuals are pro level 4 
and 5 AVs and 12% are against 
both levels of automation 

Schoettle and 
Sivak (2015) 

Levels 1 to 
5 N/A 

General question on the attitudes 
towards different levels of automation 
and intention to adopt 

The most desirable level for U.S. 
residents is no automation (43.8%) 
and the least preferred is full 
automation (15.6%) 

Lavieri et al. 
(2017) Level 5 AVs, 

SAVs 

General question on the attitudes 
towards the technology and intention to 
adopt 

68.5% of Washington State 
residents are not interested in using 
shared or privately owned AVs 
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Topic Method Paper Level of 
automation 

Adoption 
model Research approach Main Finding(s) 
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Bansal et al. 
(2016) 

Levels 4 
and 5 

AVs, 
SAVs 

General question on the attitudes 
towards the technology and intention to 
adopt 

19% of Austin, Texas residents are 
not willing to adopt the technology 

Zmud and 
Sener (2017) Level 5 AVs, 

SAVs 

General question on the attitudes 
towards different levels of automation 
and intention to adopt 

50% of Austin, Texas residents are 
not willing to adopt the technology 

Bansal and 
Kockelman 
(2018) 

Levels 3 to 
5 

AVs, 
SAVs 

Questions on attitudes towards the 
technology, intention to adopt private 
and shared vehicles, and willingness to 
pay for automation 

39% of Texans are not willing to 
adopt the technology 

Rahman et al. 
(2019) Level 5 AVs 

General question on the attitudes 
towards the technology and intention to 
adopt among the population aged 60+ 

Males trust AVs more and 
perceive them as more useful than 
females. Familiarity with AVs 
leads to more favorable 
perception. 

 

2.4.1.1 Intention to adopt 

2.4.1.1.1 Driving simulators 
Driving simulators, combined with surveys, have been used to study the factors associated with 
the intention to use AVs. For example, Buckley et al. (2018) find that the most significant factors 

in the intention to adopt include trust in the technology and other people’s perceptions of it. 
Complementing this study, Molnar et al. (2018) use driving simulators to study the psychological 

factors that influence people’s trust in technology (i.e. being comfortable with transferring control 
to the vehicle). They find that individuals who frequently travel as passengers (as opposed to 

drivers) tend to be more comfortable with transferring driving control to an AV. The studies also 
find that age (Buckley et al., 2018) and gender (Molnar et al., 2018) have no significant effect on 

the intention to use or trust automation technology.  
 

2.4.1.1.2 Virtual Reality 
In the context of autonomous vehicles research, VR has been used predominantly to explore 
pedestrian interaction with the technology. Jayaraman et al. (2018) place their subjects on an omni-

directional treadmill and use a VR headset to simulate a pedestrian crossing scenario. They find 
that people who trust the technology more are more aggressive when crossing. They also report 

that trust is affected by the driving style of the vehicle (i.e. perceived aggressiveness of driving) 
and increases when intersections are signalized. Chang et al. (2017) and Chang et al. (2018) look 

at the effect of vehicle to pedestrian communication on crossing behavior. In the former, the 
researchers provide vehicles with eyes that make eye-contact with pedestrians to signal the intent 

to stop. They find that this addition helps pedestrians feel safer and make faster decisions. In the 
latter study, the researchers explore the efficacy of various communication methods on crossing 

behavior—adding eyes to the vehicle, adding a panel that displays a text command (e.g. “do not 
cross”), a smile, or a green light on the dashboard that signals it is safe to cross. They find that text 

communication is the most effective way to express the vehicle’s intentions [to stop] to crossing 
pedestrians, who also indicated that they prefer this method over the rest. 

2.4.1.1.3 Survey studies 
Finally, the majority of adoption studies rely on (SP) surveys, administered since 2012 allowing 
the U.S. to track adoption intentions over time. Findings suggest that the overarching sentiment 
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towards the technology is one of concern6, a sentiment however, that seems to be fading with time. 
The main sources of concern are safety—mechanical and software failure (e.g. malfunctions or 

failing to recognize objects), and security—hackers interfering with vehicles or data theft, with the 
former being the primary concern (Schoettle and Sivak, 2014, Kyriakidis et al., 2015, Zmud and 

Sener, 2017, Abraham et al., 2018, Shabanpour et al., 2018, Barbour et al., 2019). On the other 
hand, the main benefits of AVs are perceived to be decreased congestion and reduced travel times, 

fewer crashes and reduced crash-severity, lower travel costs—parking and fuel, and a less stressful 
driving experience (Schoettle and Sivak, 2014, Abraham et al., 2018, Bansal and Kockelman, 

2018, Shabanpour et al., 2018).  

Table 2: Summary of results from surveys on AV acceptance by year and region 

Study Survey 
year Population Result 

JD Power (2012) 2012 

U.S. 

67% unwilling to adopt AVs 

Vallet (2013) 2013 
20% are willing to “hand over the keys 
to an AV if it is safe” 

Seapine Software (2014)  2014 88% are worried about riding in AVs 

Pigge and Charles (2014) 2014 66% are not willing to adopt AVs 

Brown et al. (2014) 2014 60% are not willing to adopt AVs 

Schoettle and Sivak (2014) 2014 33.7% are not willing to adopt AVs 

Bansal and Kockelman (2017) 2015 58% are worried about riding in AVs 

Abraham et al. (2018) 2017 48% are not willing to adopt AVs 

Carmichael (2018) 2017 26% are not willing to adopt AVs 

Haboucha et al. (2017) 2014 
54% prefer their conventional vehicle 
over AV options 

Schoettle and Sivak (2015) 2015 
Most desirable level is no automation 
(43.8%), and the least preferred is full 
automation (15.6%) 

Bansal et al. (2016) 2014 
Austin, Texas 

19% are not willing to adopt AVs 

Zmud and Sener (2017) 2016 50% are not willing to adopt AVs 

Bansal and Kockelman (2018) 2016 Texas 39% are not willing to adopt AVs 

Lavieri et al. (2017) 2014 
Puget Sound, 
Washington 

68.5% are not willing to adopt AVs 

Table 2 highlights the trend of the decrease in unwillingness to adopt AV technology in 

the U.S. The highest percentage of unwillingness to adopt AVs is recorded in 2014 by Seapine 
Software (2014) (88%), while the lowest percentage is recorded in 2017 by Carmichael (2018) 

(26%). Schoettle and Sivak (2015) and Haboucha et al. (2017), however, highlight the fact that 
Americans still prefer their conventional vehicles over AV options. On another note, Hardman et 

al. (2019) surveyed 2,715 conventional and electric vehicle owners in the U.S. to explore if the 
latter are unique in their attitudes towards the technology. The results refute the researcher’s 

hypothesis that electric vehicle owners are more likely to adopt AVs compared to their 

 
6 This is most evident amongst the residents of the areas in Phoenix where Waymo is pilot testing their technology. 
To date, at least 21 attacks by residents have been registered, including slashing tires and waving a gun at a Waymo 
vehicle and its emergency backup driver (Romero, 2018) 
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conventional vehicle owners counterpart. They then group respondents into 5 clusters based on 
their attitudes towards the technology and found that level 4 and 5 AV enthusiasts constitute the 

largest cluster (37%), while 12% had no intention to opt into any of the two levels of automation. 
For the remaining clusters (51% of the respondents), 16% of them were pro level 4 AVs, and the 

rest are skeptical of either level of automation. 
 

Other studies focused on specific regions within the U.S., and as illustrated in table 2, 
Texans seem to have higher trust in the technology compared to the U.S. population with a lower 

percent of the populations expressing unwillingness to adopt AVs. On the other hand, Puget Sound 
residents are closer in their preferences to the general U.S. population. This heterogeneity by 

region is important to capture, and more studies need to target different regions to understand how 
and why people in different states/cities differ in their opinions and preferences towards the 

technology. Capturing this heterogeneity will allow for more effective policies; however, this 
angle of AV acceptance has not received enough attention in the literature. Relatedly, limited 

comparative research across countries indicates that individuals in the U.S. are more concerned 
about the technology and are less likely to adopt compared to their counterparts in China, India, 

Japan, and the UK (Schoettle and Sivak, 2014, Pigge and Charles, 2014, Hulse et al., 2018). 
 

Numerous studies also examine the role played by age and gender for the intention to opt 
into automation. JD Power (2012), Schoettle and Sivak (2015), Haboucha et al. (2017), Lavieri et 

al. (2017), Abraham et al. (2018), Anania et al. (2018), Bansal and Kockelman (2018), Hulse et 
al. (2018), Hardman et al. (2019), and Rahman et al. (2019) all find that males and/or younger 

individuals are more likely to opt into automation. Contrary to these studies, Becker and Axhausen 
(2018) find that males and younger individuals are less likely to use autonomous vehicles. Finally, 

Seapine Software (2014) and Kolarova et al. (2018) find that age and gender have no significant 
impact, while Zmud and Sener (2017) find that age has no significant impact. 

 
Reviewing studies since 2012, the evidence for a positive trend in adoption intentions over 

time cannot be ascribed solely to differences in question wording and presentation of the AV 
acceptance context. Despite this, explaining how adoption intentions are formed behaviorally 

remains an understudied area. A couple of studies by Anania et al. (2018) and Sanbonmatsu et al. 
(2018) examine possible channels for the emergence of intentions. In the former, the researchers 

analyze the effects of positive and negative information on consumers’ willingness to ride in a 
self-driving vehicle. They first present people with different media headlines (positive or 

negative), then ask them to indicate their willingness to ride in an autonomous vehicle. They show 
that participants who were presented with positive information have a higher willingness to ride 

score. Sanbonmatsu et al. (2018), on the other hand, investigate the relationship between people’s 
knowledge about AVs and their attitudes towards them. They show that the most negative views 

are held by people with the least knowledge about AVs. The general positive trend in stated 
intention to adopt in the above studies may indeed be supported by the increase in familiarity with 

AVs due to the growing number of autonomous vehicle urban testbeds including actual customer 
rides (e.g. Waymo in Phoenix). It is likely that the predominantly positive media coverage has 

engendered greater public trust in the technology. More recently, however, negative reporting has 
increased, related to fatal crashes involving AV technology (e.g. Uber’s accident in Tempe, 

Arizona). It remains to be seen how the evolving public and media debate will impact people’s 
perceptions of AVs. 
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2.4.1.2 Willingness to pay (WTP) 
Another important aspect in understanding the intentions to adopt a technology centers on people’s 

willingness to pay for it. Six studies, all using (SP) survey methods, were identified. 

Table 3: Summary of results on willingness to pay for automation 

Topic Method Paper Level of 
automation 

Adoption 
model Research approach Main Finding(s) 
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Bansal et al. 
(2016) * * * The average WTP for Austin 

residents is $7,253 

Schoettle and 
Sivak (2014) * * * 

54% are not willing to spend 
anything on the technology. The 
75th percentile willingness to pay 
is $2,000 

Bansal and 
Kockelman 
(2017) 

* * * 

59% of U.S. residents are not 
willing to spend anything on the 
technology with average 
willingness to pay of $5,857 for all 
respondents and $14,196 
excluding individuals not willing 
to pay anything 

Bansal and 
Kockelman 
(2018) 

* * * 

Texans are willing to pay (WTP) 
$2910, $4607, $7589, and $127 for 
Level 3, Level 4, and Level 5 
automation respectively 

Daziano et al. 
(2017) 

Levels 4 
and 5 

AVs Discrete choice vehicle choice 
experiment with level of automation 
(full, partial, and no automation) as an 
attribute of the vehicle 

U.S. residents' average willingness 
to pay for partial and full 
automation is $3,500 and $4900 
respectively 

Asgari et al. 
(2018) 

Level 5 AVs, 
SAVs, 
PSAVs 

Discrete choice mode choice 
experiment to estimate demand for 
AVs, SAVs, and PSAVs 

U.S. residents' Average 
willingness to pay for partial and 
full automation is $1,483 and 
$1,639 respectively 

 

2.4.1.2.1 Non-DCE survey questions 
In general, surveys indicate that a large share of people are still not convinced about the benefits 
of automation, which is manifested in their reluctance to spend anything on the technology. Bansal 

and Kockelman (2017) and Schoettle and Sivak (2014) report that 58.7% and 54% of U.S. 
respondents are unwilling to spend anything on self-driving technology. Among those who are 

willing to spend, Schoettle and Sivak (2014) find that the 75th percentile of their respondents 
would pay $2,000, compared to $14,196 in Bansal and Kockelman (2017) (this number drops to 

$5,875 if people who have zero willingness-to-pay are included). Asgari et al. (2018), on the other 
hand, look at U.S. individuals’ WTP for different levels of automation and report that the average 

WTP for advanced features, partially autonomous vehicles, and fully autonomous vehicles is 
$1,052, $1,483, and $1,639, respectively. Finally, Bansal et al. (2016) and Bansal and Kockelman 

(2018) report that, on average, Austin residents and Texans are willing to pay $7,253 and $7,589 
for full automation, respectively. 

 

2.4.1.2.2 DCE scenarios 
Daziano et al. (2017) use results from a discrete choice experiment to estimate a multinomial logit 
model, where the level of automation is an attribute of the alternatives presented to the respondents. 

They find that the average willingness to pay for partial and full automation is $3,500 and $4,900, 
respectively. They also estimate a latent class mixture model to capture heterogeneity in the 

population and find three segments in the population: 1) a group (29%) with zero willingness to 
pay for automation; 2) a second group (33%) with a modest willingness to pay of $1,187 and 
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$1,422 for partial and full automation respectively; and 3) a third group (38%) with a high 
willingness to pay of $2,784 and $6,580 for partial and full automation respectively. The last group 

is described as the most eager to purchase the technology, they drive longer distances and have a 
higher education than the other two segments. Interestingly, the choice experiment results appear 

to mirror the survey-based willingness-to-pay responses summarized above, following the higher 
estimates for the enthusiastic population segment. 

 
2.4.2 How will driverless features impact in-vehicle behavior? 

The second research question of interest is the impact of emerging driverless features on in-vehicle 
behavior. Once people adopt AVs, they get access to the benefits of the driverless feature, namely 

relieving riders from the duty of driving and allowing them to engage in a wider range of activities 
during their commute. Consequently, the three research questions of interest within this topic are: 

will people take advantage of the opportunity to engage in other activities during their commute? 
If they will, what type of activities will they engage in? And finally, how will this impact the 

demand for new vehicle types with configurations that allow for more in-vehicle activities such as 
sleeping, working, eating, etc.?   

 
The eight identified papers rely on two main methods; driving simulators and surveys, 

summarized in table 4 below: 

Table 4: Summary of results on driving & in-vehicle behavior 

Topic Method Paper Level of 
automation 

Adoption 
model Research approach Main Finding(s) 
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 Vollrath et al. 

(2011) Level 2 N/A Study driving behavior under no 
automation and partial automation 

Automation results in lower 
maximum speeds at the expense of 
delayed driver reaction when 
human intervention is required 

Strand et al. 
(2014) 

Levels 2 to 
4 N/A 

Study reaction time to automation 
failure in semi and highly autonomous 
vehicles 

The higher the automation the 
worse the reaction is to automation 
failure 

Jamson et al. 
(2013) Level 3 N/A 

Subjects experience periods of 
autonomous driving and manual 
control 

Subjects perform secondary tasks 
more in automation mode but 
experience more fatigue 
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Sivak and 
Schoettle 
(2015) 

N/A N/A Questions on in-vehicle behavior 

The most popular in-vehicle 
activity (46%) is watching the 
road. People will engage in in-
vehicle activities that will increase 
the likelihood of motion sickness 

Asgari et al. 
(2018) * * * 28% prefer not to multitask in a 

fully autonomous vehicle 

Bansal and 
Kockelman 
(2018) 

* * * 

Texans will spend their commutes 
primarily looking out the window, 
talking to others, eating, and on the 
phone  

Wadud and 
Huda (2019) Level 5 N/A 

Asked subjects about current in-
vehicle activity patterns and intended 
activity patterns in AVs  

Riders engage in productive 
activities (e.g. work/study) more 
during outbound trips than during 
return trips where they “switch 
off” and relax 

Pudāne et al. 
(2019) Level 5 N/A 

Conducted a focus group with 27 
subjects regarding their in-vehicle 
behavior and its impact on their daily 
activity schedule 

Some subjects believe they will 
productively use in-vehicle travel 
time while other prefer to just relax 

2.4.2.1 Driving simulators 

Driving simulators are commonly used to study driving behavior as well as in-vehicle behavior. 
Looking at early automation technologies, Vollrath et al. (2011) and Strand et al. (2014) examine 
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the influence of technologies like cruise control and adaptive cruise control on driving behavior. 
The findings point to a seeming paradox; while the assistive technologies result in lower maximum 

velocities and fewer speed violations, they appear to come at the expense of delayed driver reaction 
when human intervention is required. Interestingly, it appears that higher levels of automation lead 

to worse reaction times. Concerning in-vehicle activities, Jamson et al. (2013) examine 
multitasking behaviors and fatigue in highly autonomous vehicles and report that subjects perform 

secondary tasks (e.g. listening to the radio, watching a DVD, etc.) much more in self-driving mode 
than in manual mode. They also find that subjects show more fatigue during self-driving mode. 

Taken together, the driving simulator studies point to some of the risks that emerge with increasing 
automation. Zontone et al. (2020), on the other hand, put 13 subjects through a driving simulator 

and measured the heart rate and Electrodermal Activity Skin Potential Response (SPR) signal. 
Their analysis shows that autonomous driving is less stressful as a whole compared to conventional 

driving, but when the stress is present, it is stronger. This could be attributed to the lack of trust in 
the technology in critical or stressful situations. 

 

2.4.2.2 Surveys 
Survey studies thus far indicate that the population is split on the question of productive use of in-

vehicle travel time. Asking U.S. respondents what activities they would perform if they did not 
have to drive, 46% indicate that they would “watch the road even though I would not be driving” 

(Sivak and Schoettle, 2015). This value was three times the share of the second most popular 
activity, reading (14%), followed by texting (12.7%) and sleeping (9%). Similarly, Asgari et al. 

(2018) report that 28% of their respondents prefer not to multitask in a fully autonomous vehicle. 
Bansal and Kockelman (2018) report that Texans will spend their commutes primarily looking out 

the window (59%), talking to others (59%), eating (56%), and texting or talking on the phone 
(46%)7. Wadud and Huda (2019) conducted a survey to investigate the (possible) link in in-vehicle 

behavior between current vehicles and fully autonomous vehicles. They surveyed 620 responses 
from Bangladesh (35%), UK (37%), U.S. (14%), and "other countries" (10%), with some 

respondents from Bangladesh being individuals who have personal chauffeurs. They differentiate 
between inbound and outbound trips and trip purpose. Analyzing the responses for current in-

vehicle behavior, they find that the most popular activity during outbound trips is "thinking and 
planning" (54%) followed by working and studying (25% and 44% respectively). On the other 

hand, social media is the most popular activity of car passengers during return trips (47.8%). They 
conclude that people “switch off” during return trips and prefer to relax rather than engage in 

“productive activities”. Analyzing intended in-vehicle time use in AVs, however, they find that 
the largest share of respondents will continue to keep watching the roadway (46% and 43% for 

outward and inward trips, respectively). Finally, Wadud and Huda compare the intention to use in-
vehicle time of all respondents to current in-vehicle behavior of individuals with private 

chauffeurs. Ignoring the option to ‘keep watching the roadway’, which was not available for 
existing car users, they find similar patterns for primary activities in both groups and a high 

correlation in “revealed” time use in chauffeur-driven cars in Bangladesh and “intended” time use 
in AVs. Pudāne et al. 2019 on the other hand, conducted a focus group with 27 subjects regarding 

their in-vehicle behavior and its impact on their daily activity schedule. They found heterogeneity 
in in-vehicle behavior depending on how busy people's schedule is.  Individuals with busy 

schedules indicated that they would like to productively use their in-vehicle time (e.g. to work) 

 
7 Percentages sum to more than 100% since respondents were able to select multiple options. 



  

 22 

while others indicated they will not change their in-vehicle behavior and will simply relax during 
travel. 

 
Finally, the reason for people’s hesitancy to engage in in-vehicle activities could be the 

lack of trust in the technology or the concern over motion sickness (which will become more likely 
in vehicles designed to encourage in-vehicle activities (Diels and Bos, 2016)). Sivak and Schoettle 

(2015) predict the percentage of individuals that would suffer from motion sickness as a result of 
in-vehicle activities. They report that 37% are expected to be involved in activities that increase 

the frequency and severity of motion sickness, 6-10% would often, usually, or always experience 
some level of motion sickness, and 6-12% would experience moderate or severe motion sickness 

at some time. However, studies have been conducted to overcome this issue. Solutions involved 
using medication and changing the design of the vehicle—e.g. increase windows area, raise seats, 

and switch seats’ direction (Sivak and Schoettle, 2015, Diels and Bos, 2016). 

2.4.3 How will changes in in-vehicle behavior impact the value of time? 

There is consensus in the literature that the ability to engage in in-vehicle activity and productively 
use commute time will likely decrease people’s sensitivity to in-vehicle travel time. Pinpointing 

the magnitude of this change is of particular importance since the decrease in value of time (VOT) 
is one of the key drivers of change in mobility behaviors. Each of the eight studies addressing the 

VOT to date rely on SP surveys and are summarized in table 5. 
 

Krueger et al. (2016) conducted a stated preference survey on 435 Australians to explore 
their willingness to switch from the mode used on their most recent trip to an SAV or a pooled 

SAV. Their results indicate that the VOT estimates for SAVs and pooled SAVs decreased to about 
65% and 90% of that of the current mode, respectively. Becker and Axhausen (2018) also 

conducted a DCE (in Zurich, Switzerland) with alternatives including conventional modes, and 
added an AV feeder to public transit, SAV, and pooled SAV options. They report a decrease in 

value of time of 38% and 30% for shared and pooled AVs compared to conventional options 
respectively. Similarly, Zhong et al. (2020) conduct an SP survey with a discrete choice experiment 

to explore the reduction in VOT for AVs and SAVs. They survey 1,881 individuals in the US and 
their DCE mode options are a conventional vehicle, an AV, and an SAV. Attributes of the 

alternatives are based on a reference trip provided by the respondent. They find that AVs reduction 
in VOT ranges from 18% for rural residents to 32% for suburban residents while for SAVs, the 

reduction ranges from 8% for rural residents to 14% for suburban residents.  

Table 5: Summary of results on changes in value of time 

Topic Method Papers Level of 
automation 

Adoption 
model Research approach Main Finding(s) 
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Krueger et al. 
(2016) Level 5 SAVs, 

PSAVs 
Discrete choice mode choice 
experiment for AVs and pooled SAVs 

VOT estimates for SAVs and 
pooled SAVs is 65% and 90% of 
that of the current mode the 
respondent uses 

Kolarova et al. 
(2018) 

Levels 4 
and 5 

AVs, 
SAVs 

Discrete choice mode choice 
experiment for AVs and SAVs 

The VOT for AVs is lower than 
that of a conventional vehicle 

Becker 
and Axhausen 
(2018) 

Level 5 SAVs, 
PSAVs 

Discrete choice mode choice 
experiment to estimate demand for 
SAVs, PSAVs, and transit with a SAV 
feeder 

The value of time of shared self-
driving vehicles is 38% lower than 
that of conventional vehicles 
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Topic Method Papers Level of 
automation 

Adoption 
model Research approach Main Finding(s) 
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Bergman 
(2018) Level 5 AVs Discrete choice mode choice 

experiment for AVs 

VOT of AV passengers is similar 
to those of car passengers, higher 
than rail and lower than car drivers 

Correia et al. 
(2019) Level 5 AVs 

Discrete choice mode choice 
experiment for AVs with interiors built 
for leisure vs. work 

AVs with an office interior have 
26% lower VOT than a 
conventional vehicle while an AVs 
with a leisure interior have a 9% 
higher VOT 

Krueger et al. 
(2019) Level 5 AVs 

Joint DCE for residential location and 
mode choice (AVs, conventional cars, 
and transit)  

mean VOT is greatest for 
conventional cars (25.3 AUD/h), 
followed by self-driving car (24.0 
AUD/h) and is smallest for transit 
(19.0 AUD/h) 

Kolarova et al. 
(2019) Level 5 AVs Discrete choice mode choice 

experiment for AVs 

VOT for AVs is 40% lower than 
conventional vehicles for 
commute trips only. The 
difference disappears for leisure 
trips 

Singleton 
(2019) Level 5 AVs 

Qualitative analysis of reduction in 
VOT based on other studies and 
comparison with other modes of 
transport 

The overall reduction in VOT will 
be smaller than what is currently 
being assumed in some simulation 
studies, especially for pooled 
SAVs and shorter trips 

Zhong et al. 
(2020) Level 5 AVs and 

SAVs 
Discrete choice mode choice 
experiment for AVs and SAVs 

Reduction of VOT ranges from 
18% to 32% for AVs and from 8% 
to 14% for SAVs 

Rashidi et al. 
(2020) Level 5 AVs and 

SAVs 
Qualitative and quantitative analysis of 
VOT change 

VOT might increase for AV riders 
compared to conventional vehicle 
riders 

The reduction of willingness to pay for time-savings in (S)AV travel is evident, but more 
research is needed to understand the motivation for the shift, particularly seeing the large variation 
for stated in-vehicle activities in Sec. 4.2.1.2 above. Singleton (2019), qualitatively explores the 

reduction in VOT for AVs as attributed to either: 1) the ability to multitask; or 2) an increase in 
subjective well-being (e.g. reduced stress during commute). He argues that the reduction in VOT 

will be lower than what is currently assumed in the literature and will be closer to that of a car 
passenger rather than a transit rider. That is because the hypothesized rate and benefits from 

multitasking are likely much lower than currently expected, especially for pooled SAVs and 
shorter trips (Singleton 2019). This observation is supported by Bergman (2018), Kolarova et al. 

(2018), Correia et al. (2019), and Krueger et al. (2019). Bergman (2018) estimates a joint revealed 
preference (RP)-stated preference (SP) mode choice model. The RP modes includes a conventional 

vehicle as a driver, a conventional vehicle (as a passenger), and rail, and the SP experiment adds 
an AV alternative.  Indeed, the results confirm that the VOT of AV passengers is similar to those 

of car passengers, higher than rail and lower than car drivers. Moreover, people who multi-task 
are found to have a lower VOT than people who don’t. Similarly, based on the respondents’ most 

recent trip, Kolarova et al. (2018) create a DCE (in Germany) with all conventional modes 
available and add AV and SAV options. Their results confirm that the AV and SAV time-values 

lie somewhere in-between that of public transit and private driving. Notably, the value of time for 
autonomous options was significantly lower than conventional vehicles (55% reduction for AV). 

SAV’s that are theoretically more similar to transit, had a smaller reduction (31% for low income, 
13% for high-income). Kreuger et al. (2019) conducted a SP survey to analyze respondents’ joint 

commuting mode choice and residential choice decision. Their mode choice DCE includes a 
conventional car, AV, and public transit. While the modeling suggested some conflicting 
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conclusions on the VOT for AVs compared to conventional vehicles and transit, their “best” model 
confirms the observed ordering. The mean VOT is greatest for conventional car (25.3 AUD/h), 

followed by AV (24.0 AUD/h) and public transit (19.0 AUD/h).  On the other hand, Correia et al. 
(2019) conducted an SP survey to study the change in VOT in AVs for vehicles designed with a 

leisure vs. work interior. The results confirm the ranking of time-evaluations according to implied 
ease of working. Indeed, the AV with an office interior has 26% lower VOT (5.50€/h) than a 

conventional vehicle (7.47€/h), while an AV with a leisure interior has a 9% higher VOT (8.17€/h) 
compared to a conventional vehicle. Relatedly, Kolarova et al. (2019) estimated a mode choice 

model from the SP survey and found that AVs have a 40% lower VOT for commute trips; however, 
this difference disappears when considering leisure trips. Jointly, this research demonstrates that 

a) the VOT reduction is largely determined by the ability to multitask and the overall experience, 
summarized as subjective well-being, and b) (S)AVs are viewed as a hybrid between private car 

and transit rides, which is reflected in the VOT positioned in-between these alternative modes, c) 
there is variation in implied VOT tied to the perceived work-friendliness of the AV and tied to 

income. The researchers also run the same experiment but switching the AV options with chauffeur 
driven options. They report that the chauffeur options always yielded VOTs lower than those for 

AVs, differences that were statistically significant. They attribute these differences to the 
respondents’ lack of trust in the technology and the fact that it is easier to imagine and relate to the 

chauffeur scenario.  
 

2.4.4 What is the impact on travel-related behaviors? 
Travel decisions are complex processes that involve a myriad of factors and constraints, making 

the study of changes in travel-related behaviors challenging. We break the problem down into two 
longer-term travel-related behavior changes: 1) residential and work/school location choice; and 

2) modality style, and four shorter-term changes: 1) user activity patterns; 2) vehicle patterns (e.g. 
zero occupancy vehicles); 3) location decisions; and 4) mode choice. 

 

2.4.4.1 Long-term impacts 

2.4.4.1.1 Changes in residential and work/school location 
Travel behavior researchers have long been interested in understanding the relationship between 

land use and travel behavior, with a wide literature devoted to this topic. Residential and work 
location choices are long-term decisions that impact a host of travel-related behaviors such as car 

ownership, activity patterns, mode choice, and VMT (Eluru et al., 2010). The study of long-term 
impacts of AV technology is centered on how it changes accessibility and mobility factors that 

drive residential and work/school location choices. For example, automation will enter a context 
of historical U.S. trends of expansive highway systems and urban sprawl centered on private 
vehicle ownership to maintain mobility and accessibility. AVs are likely to reproduce these effects. 

On one hand, the convenience of AVs will increase mobility and make longer commutes less 
onerous, facilitating residential location in lower density areas. Similarly, the ability to send 

children alone to school and send zero-occupancy vehicles to run errands will also make living in 
suburban and rural areas more attractive. On the other hand, the ability of vehicles to autonomously 

look for parking, and the availability of shared services to eliminate the hassle of commuting and 
parking, is likely to increase residential location in dense urban areas. In the longer run, the lowered 

demand for parking infrastructure can result in urban re-design to allow wider-sidewalks and more 
green spaces, making cities more attractive. The research questions of interest, therefore, are: how 

will AVs impact land use related behavior? Will it exacerbate urban sprawl and encourage the 
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relocation away from cities? Will it attract more demand towards cities? Or will it have no 
discernable impact on residential and work/school location choices compared to other factors? 

 
Six identified papers have addressed these questions using three methods; agent-based 

models, 4-step models, and surveys. Table 6 summarize results from studies that explore changes 
in residential location choice: 

Table 6: Summary of results on changes in residential location choice 

Topic Method Papers Level of 
automation 

Adoption 
model Research approach Main Finding(s) 
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 Zhang and 
Guhathakurta 
(2018) 

Level 5 SAVs Serving all travel demand by SAVs 
with low per mile cost 

People will move away from their 
work location due to lower travel 
costs, and some people will move 
closer to the central business 
district 
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Thakur et al. 
(2016) Level 5 AVs and 

SAVs 

Three scenarios compared to a no-
change scenario: 1) only AVs with 
50% reduction in VOT; 2) only SAVs 
with no reduction in VOT; 3) only 
SAVs with 50% reduction in VOT 

Scenario 1 leads to a 4% drop in 
the inner-city population and a 
2.4% increase in the outer-suburbs 
population. Scenario 3 leads to a 
2% increase in the inner-city 
population and 2.7% decrease in 
the outer-suburb population 
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Bansal et al. 
(2016) * * * 

74% of Austin residents believe 
their home location will not 
change 

Zmud and 
Sener (2017) * * * 

80% of Austin residents believe 
their home location will not 
change 

Bansal and 
Kockelman 
(2018) 

* * * 81.5% of Texans believe their 
home location will not change 

Kim et al. 
(2020) Level 5 AVs 

Survey Georgia residents to understand 
long term behavior changes induced by 
AV. 

Majority of respondents expect no 
change in their future residential 
location and car ownership.  

* Information that is provided in an earlier table for studies that address multiple research questions 
 

2.4.4.1.1.1 Agent-Based Models 
Zhang and Guhathakurta (2018) explore the changes in residential location decisions under the 

assumption that cost-effective SAVs are the only mode available in the system. Using a 
combination of a residential location choice model with network analysis they first estimate a 

residential location choice model from a 2011 Atlanta Travel Survey and Zillow home sales data. 
Then, they use network analysis to calculate the level of service variables when a SAV fleet is 

serving all travel demand. The model compares four population segments — households over and 
under 40 years with and without kids — and find that each group will move further away from 

their work location due to lower travel costs (lower value of time and cheaper per mile cost). The 
paper hinges on the strong assumption that SAV travel is the only option available. Yet the paper 

discovers an important new insight, namely: the lower travel costs will make properties with 
preferred structural characteristics, school districts, and neighborhood features more appealing to 

home buyers. This suggests that SAV diffusion can increase the distance range of competition 
between neighborhoods more than current sprawl by expanding accessibility to current non-

drivers.  
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2.4.4.1.1.2 Integrated land use and 4-step model 
Thakur et al. (2016) use a Land Use and Transport Integrated model, which incorporates a 4-step 

model, to explore the impact of AVs on mode choice and residential location decisions. They 
compare three scenarios to a base scenario (e.g. no change in the system): 1) a system with no 

SAVs and where AVs have a 50% reduction in VOT; 2) a system that includes only SAVs, with 
no private AVs, with no reduction in VOT; and 3) a system with only SAVs, with no private AVs, 

with a 50% reduction in VOT. Compared to the base scenario, they find that the first scenario leads 
to a 4% drop in the inner-city population and a 2.4% increase in the outer-suburbs population. The 

third scenario, on the other hand, leads to a 2% increase in the inner-city population and a 2.7% 
decrease in outer-suburbs population.  

 

2.4.4.1.1.3 Surveys 
Four surveys have been used to explore people’s intention to relocate their residence once 

autonomous vehicles are available. In general, people believe that the introduction of AVs will not 
affect this decision. In their survey, Bansal et al. (2016) and Zmud and Sener (2017) respectively 

report that 74% and 80% of Austin residents believe their home location will not change when 
AVs become available. Similarly, Bansal and Kockelman (2018) report that 81.5% of Texans 

believe AVs will not change their residential location. Confirming earlier findings, Kim et al. 
(2020) find that the majority of people expect no change in their residential location and car 

ownership. On the whole, it appears that respondents under-report their intentions for major life-
changes that are hard to envision. Yet the study by Kim et al. (2020) does reveal that the 

opportunities unlocked by automation can have dual effects. Current non-car dependents are more 
willing to move closer to frequently visited locations and shed cars. On the other hand, the more 

people expect AVs to benefit them by increasing their time flexibility and making it easier to travel 
longer distances, the more likely they are to move farther away from work and other currently 

frequently visited places.   
 

2.4.4.1.2 Changes in modality styles 
The second long-term decision AVs can impact is modality styles—the set of travel modes an 
individual habitually uses when they travel (Vij et al., 2013). A modality style reflects a higher-

level orientation, or a lifestyle, that influences both short-term (e.g. mode choice) and long-term 
(e.g. car ownership) dimensions of an individual’s travel and activity behavior (Vij et al., 2013). 

Analysis from the U.S. indicates a recent shift away from auto-dependency towards multimodality 
(Vij et al. 2017). This shift may be attributed to the introduction of shared services such as 

carsharing and ridesharing, and more recently, bike and scooter sharing. These novel modes give 
commuters more options and have relieved constraints of conventional modes such as limited 
parking and poor accessibility to/from transit. By combining the features of several modes, AVs 

will similarly offer commuters more options, potentially causing another shift in modality style 
trends.  

 
The natural questions that arise from these observations are: what will happen to modality 

styles in the AVs era? Will auto-ownership rise as individuals shift back to auto-dependency? Or 
will the technology encourage multimodality and sharing through high quality, smartphone based, 

and flexible shared services (i.e. moving toward Mobility as a Service)? Moreover, what will 
happen to active transportation (i.e. biking and walking)? And finally, will the technology 

cannibalize or rejuvenate transit by complementing it and solving the first mile, last mile challenge. 
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Addressing these questions is important since the degree to which people decide to adopt privately 
owned AVs vs. shared services and transit will dictate the net impact on the transportation system 

and the wider society. 
 

The only technique used thus far to address these questions has been survey studies. Results 
from these studies are summarized in table 7. Respondents in these studies are asked about 

potential changes in car ownership and their likelihood of adopting different modes (i.e. if the 
mode is part of their consideration set). This can provide insights on potential modality styles that 

will be prevalent in a self-driving future. To gain further insight, we also look at some studies that 
investigate the current state of shared mobility. Although these studies are not on autonomous 

vehicles, they provide valuable insight on potential future adoption of SAVs. 

Table 7: Summary of results on changes in modality style 

Topic Method Papers Level of 
automation 

Adoption 
model Research approach Main Finding(s) 
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Zmud and 
Sener (2017) * * * 

60% of people in the U.S. prefer 
owning vehicles as opposed to 
sharing them and 61% believe 
their car ownership will not 
change  

Bansal et al. 
(2016) * * * 

35% and 70% of Texans will not 
use shared vehicles at 1$/mile and 
3$/mile respectively 

Bansal and 
Kockelman 
(2018) 

* * * 
41% and 60% of Texans will not 
use shared vehicles at 1$/mile and 
3$/mile respectively 

Haboucha et 
al. (2017) * * * 

25% of individuals are not willing 
to use SAVs even if they are 
completely free 

Barbour et al. 
(2019) Level 5 SAVs 

General questions on the willingness 
to adopt SAVs and factors that 
influence these decisions 

60% of Americans from 12 states 
indicate no interest in using SAVs 

Kim et al. 
(2019) Level 5 AVs 

Survey Georgia residents to 
understand perceptions regarding AVs 
and mode choice between AVs and 
non-AV options 

There are 4 groups individuals: 1) 
AV over walk/bike, 2) AV over 
transit, 3) AV over flight, and 4) 
ZOV over non-ZOV 

* Information that is provided in an earlier table for studies that address multiple research questions 
 

Many claims have been made that the sharing model will dominate the future of 

transportation, and that car ownership will become obsolete. In 2016, the president of Lyft, John 
Zimmer, made a bold statement, saying that car ownership will “all but end” in major U.S. cities 

by 2025 (Zimmer, 2016). In that same year, the Rocky Mountain Institute (Walker and Johnson, 
2016) released a report called “Peak Car Ownership” where they claim that car ownership will 

peak in 2020 and sharply drop after that. Yet, the diffusion of sharing service use is far from 
universal. In 2016 a Pew Research Center study (n=4,787) found only 15% of American adults 

had used ride-hailing apps, typically sporadically, while just over half (51%) were familiar but 
non-users (Smith, 2016). These rates are echoed in a survey of California residents by Alemi et al. 

(2018). Just three years later, in 2018, another national Pew panel (n=10,683) found that 36% of 
Americans are users, and the share of familiar non-users grew to 61% (Jiang 2019). Still, the 

national survey suggests that use is higher in specific segments, namely for young, higher income, 
urban and male population segments (Jiang 2019). These findings on general sharing uptake help 

inform estimates of future shared AV options. Results from SP studies suggest that, in general, 
people favor owning AVs over sharing them. Zmud and Sener (2017) report that 60% prefer 

owning vehicles as opposed to sharing them. Similarly, Barbour et al. (2019) survey Americans 
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from 12 states to investigate their propensity to use SAVs and find that 60% of respondents are 
not interested in using them. Concerning car ownership, only 23% believe it will decrease when 

AVs become available (Zmud and Sener 2017). Bansal et al. (2016) and Bansal and Kockelman 
(2018), on the other hand, do not compare mode shares but ask respondent about their willingness 

to use SAVs. They find that 35% of Austin residents and 41% of Texans are not willing to rely 
exclusively on SAVs at 1$/mile, respectively. These numbers increase to 70% and 60%, 

respectively, for a 3$/mile fare. Finally, Haboucha et al. (2017) use a discrete choice experiment 
to explore people’s willingness to use SAVs. They report that 25% of their respondents are not 

willing to use SAVs even if they are completely free—i.e. zero trip and subscription cost. 
 

2.4.4.2 Short-term impacts 
We now move to the short-term impacts of AVs on travel related behaviors, namely changes in 
user activity patterns, vehicle trip patterns, destination choices, and mode choices. 

 

2.4.4.2.1 Changes in user activity patterns 
In their everyday lives, people make decisions on what activities to perform, where and when to 

perform these activities, and who to perform them with. These decisions are influenced by long-
term decisions—residential location and modality style, and short-term temporal and spatial 

constraints—people’s schedules and activity locations. The emergence of AVs will relax temporal 
constraints, thereby giving people the opportunity to modify their current activity patterns. The 

flexibility can occur at the individual trip level, for instance, by sending out zero-occupancy 
vehicles to run errands (e.g. picking up groceries) and thereby freeing up time for other [new] 

activities. Similarly, flexibility is also associated with the time-saving that occurs when automation 
enables productive use of commute time. Moreover, AVs can add flexibility at a household level 

by removing parental driving duties and autonomously shuttling between trips to serve multiple 
household members and free up schedule-dependencies (e.g., among parents and their children). 

Therefore, changes in activity patterns that will arise from the flexibility, extra time, and freedom 
that the AV technology can offer should be explored in detail: will people travel more? Will they 

modify their schedules to [no longer] accommodate other people sharing the same vehicle? Will 
they engage in new activities? Will the time of day of activities change? And finally, how will the 

different demographic segments of the population, with their unique lifestyles and constraints, 
react to the technology? Table 8 summarizes results from studies that address relevant questions: 

 

2.4.4.2.1.1 Activity-based models 
Childress et al. (2015) and Kim et al (2015a) respectively modify Seattle and Atlanta’s activity-
based models to study the impact of privately owned AVs under different scenarios. Respectively, 

their four scenarios are based on assumptions of: 1) a 50% and 100% reduction in parking costs; 
2) an increase (to 1.65 $/miles) and a decrease (of 70%) in operating costs of AVs; 3) a 35% and 

50% decrease in the value of time; and 4) a 30% and a 50% increase in network capacity. While 
results varied across scenarios, implied increase in daily trips remained modest (of up to 5% in the 

former study, and up to 2.5% in the latter). 
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Table 8: Summary of results on changes in user activity patterns 

Topic Method Paper Level of 
automation 

Adoption 
model 

Research approach Main Finding(s) 
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Childress et al. 
(2015) Level 5 AVs 

50% reduction in parking cost, 
increase in operating cost 
(1.65$/mile), 35% decrease in 
VOT, 30% increase in road 
capacity 

Increase in daily trips of up to 5%  

Kim et al. 
(2015a) Level 5 AVs 

100% reduction in parking cost, 
70% increase in operating cost, 
50% decrease in VOT, 50% 
increase in road capacity 

Increase in daily trips of up to 
2.5%  

Vyas et al. 
(2018) Level 5 AVs 

Lower VOT (25 to 50%), increased 
road capacity (15 to 80%), 100% 
market penetration, no-escort trips 
(e.g. kids), AV is available all the 
time 

20% decrease in escort trips, 
increase is highest in shopping and 
eating out trips, person trips will 
decrease from -0.3 to -1.5%, 
vehicle trips will increase by 7% to 
8.5% 

Kröger et al. 
(2018) Level 5 AVs 

25% VOT reduction, 8% to 40% 
market penetration, no zero-
occupancy trips allowed, minimum 
age to ride alone in AV is 10 and 14, 
and AVs can be used by mobility 
impaired individuals 

The number of vehicle trips 
increases by up to 7% and 8% for 
USA and Germany respectively 

Su
rv

ey
 

Kim et al. 
(2020) Level 5 AVs 

Surveyed people in Georgia about 
their use of new technologies 
including ICTs, ride hailing 
services, and (prospectively) AVs 

46% believe there will be no or 
minimal change in their activity 
patterns, and for those who believe 
there will be, it is mostly changes 
in the distance of travel (longer) 
rather than frequency 

 

Vyas et al. (2018) also study the impact of private AVs by modifying Columbus, Ohio's 
Activity based model, but their study incorporates more features of AVs. They assume that AVs 

have 25% to 50% lower VOT, 15% to 80% increased road capacity based on the road type (e.g. 
highway vs. arterial), can avoid parking by returning home, and have a 100% market penetration 

rate. Moreover, they allow for no-escort trips for people who cannot drive (e.g. elderly, disabled, 
and youth), and set the minimum age for traveling alone in an AV to 10 years. The allowance for 

no-escort trips appears to be core in determining the distinctive trip-rate changes. Notably, while 
person-trips are reported to decrease (by 0.3% to 1.5%), vehicle trips will increase by 7% to 8.5%. 

Connecting back to the observations about schedule flexibility, the results indicate that, due to the 
no-escort AV option, the percentage of escorting activity would drop by around 20%. Kröger et 

al. (2018) compare the impact of private AVs on the transport system in the U.S. vs. Germany. 
They run two scenarios, a “trend scenario” and an “extreme scenario”. In the “extreme scenario” 

market launch of AVs takes place five years earlier and market uptake is quicker. Here, the 
modeling assumptions include that zero-occupancy trips are prohibited, AVs can be used by 

mobility impaired individuals, and a 25% reduction in VOT. AV market penetration scenarios 
range from 8% to 40%. The researchers find that the number of vehicle trips per year increases by 

2.2% in Germany and 3.1% in the U.S. for the trend scenario, and by 8.3% in Germany and 7.0% 
in the U.S. for the extreme scenario. Finally, Bernardin et al. (2019) modify Vermont’s travel 

demand model by incorporating an AV and a pooled SAV option. The scenarios analyzed assume 
80% or 100% AV penetration with varying rates of SAV pooling and vehicle occupancy rates. 

Rather than banning ZOV travel, a tax is imposed. Interestingly, despite the allowance for pooled 
rides, the study reports a 45% increase (for 100% AV, 50% pooling scenario) and 21% increase 

(for 80% AV, 65% pooling scenario) in vehicle trips. This is largely driven by ZOV trips (from 
both AVs and SAVs) which make up 30% and 33% of vehicle trips in each scenario respectively. 

In summary, all activity-based model studies presented above find an increase in vehicle trips, 
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however, it is challenging to draw definitive conclusions as the range of the increase varies 
significantly. This is largely due to the inherent differences between cities under study and in the 

modeling assumptions made across studies. 
 

2.4.4.2.1.2 Surveys 
Kim et al. (2020) survey people in Georgia about their use of new technologies including ICTs, 
ride-hailing services, and (prospectively) AVs. They find that 46% believe there will be no or 

minimal change in their activity patterns, and for those who believe there will be, it is mostly 
changes in the distance of travel (longer) rather than frequency.   

 

2.4.4.2.2 Changes in vehicle trip patterns 
The independence of the vehicle from the user creates a new area of exploration, namely vehicle 

trip patterns. When studying the implications of automation on travel behavior, it is important to 
differentiate between user activity patterns and vehicle trips patterns. Here, we are particularly 

interested in zero-occupancy vehicles trips, or trips made by the vehicle without its owner. 
Researchers should explore the frequency at which autonomous vehicles will be used to run 

errands, and the type of errands they will perform. Moreover, researchers should investigate how 
people intend to utilize their vehicles when they are not needed: will cars be left idle during that 

period? Will people offer to give friends and family members rides? Or will vehicles be used to 
earn extra money by renting them out? 

 
This is the least explored topic among travel-related behavior questions. To our knowledge, 

only two studies provide some insight on this topic. Bansal and Kockelman (2017) ask respondents 
if they intend to send their kids alone to school in AVs, and only one third indicated that they plan 

to do so. Bernardin et al. (2019) report that 30% and 33% of trips in scenarios 1 and 2 respectively 
were ZOV trips (including deadheading for SAVs).  

 

2.4.4.2.3 Changes in destination choices 
When choosing which grocery store to go to, consumers are subject to trade-offs such as: visiting 
a nearby store or one further away but with better produce. AVs will relax existing trade-offs by 

relaxing location constraints associated with destination choices—i.e. distance and parking 
constraints. The decrease in sensitivity to travel time implies that distance becomes less of a factor 

in destination choices. Therefore, we are interested in exploring the impact of AVs on destination 
choices and whether individuals will take advantage of more pleasant commutes to travel longer 

distances and explore new locations.  
 

The methods used to address changes in destination choice are activity-based models and 
surveys. Results from relevant studies are summarized in table 9: 
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Table 9: Summary of results on changes in destination choice 

Topic Method Papers Level of 
automation 

Adoption 
model Research approach Main Finding(s) 
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Childress et al. 
(2015) * * * 

Average trip length will increase 
by up to 14.5%, and can decrease 
by 16% in the case of increase in 
operating costs  

Kim et al. 
(2015a) * * * Average trip length will increase 

by up to 20% 
Vyas et al. 
(2018) * * * Average trip length will increase 

by 2.5 to 5.5% 

Auld et al. 
(2018) Level 4 AVs 

Extra cost of automation ranges from 
0$ to $15K, 0% to 50% decrease in 
VOT, 0% to 100% market penetration 

Average trip length will increase 
by up to 47% 

Bernardin et al. 
(2019) Level 5 AVs and 

SAVs 

80% - 100% market penetration of 
AVs, ZOV tax policy, 5% increase in 
elderly and children trips, 100 - 200% 
increase in highway capacity, 5% - 
80% increase in intersection capacity 

Average trip length dropped by 
1.15 and 1.48 in scenarios 1 and 2 
respectively 

4-
st
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Thakur et al. 
(2016) * * * 

Scenario 1 leads to a 26% increase 
in average trip length while 
scenario 3 leads to an 8% decrease 
in average trip length 

Huang et al. 
(2019) Level 5 AVs and 

SAVs 

15% increase in trip generation rate, 
AVs cannot avoid parking, higher 
operating costs for AVs options, ASC 
for AVs and SAVs are set to be 
negative, VOT decrease from 10% to 
50% 

Average trip distance increases 
from 14 to 16 miles (14%) 

Su
rv

ey
 Bansal and 

Kockelman 
(2017) 

* * * Long-distance trips will increase 
by an average of 1.3 per month  

* Information that is provided in an earlier table for studies that address multiple research questions 
 

2.4.4.2.3.1 Activity-based models 
Childress et al. (2015) and Kim et al (2015a) also explore the impact of AVs on average trip length. 

The former report a 16% decrease in average trip length under the assumption of increased travel 
cost for AVs. In the absence of that assumption, the average trip length increases to a similar 

degree, by up to 14.5%. On the other hand, since Kim et al (2015a) assume a decrease in operating 
costs, they find an increase in average trip length of up to 20% (from 10 to 12 miles), based on the 

scenario. Similarly, Vyas et al. (2018) report an increase in average trip length from 2.5% to 5.5%, 
based on the scenario. Auld et al. (2018) modify Chicago’s activity-based model while making 

assumptions on the decrease in VOT (between 0% and 50%), the additional cost of an AV 
compared to a conventional vehicle (0$, $5K, and $15K), and the market penetration of the 

technology (between 0% and 100%). They report an increase of average trip length by up to 47%, 
from 11.8 to 17.4 miles. On the other hand, Bernardin et al. (2019) find a drop in average trip 

length of 1.15 and 1.48 miles in each scenario respectively.   
 

2.4.4.2.3.2 4-step model 
In their first scenario, where AVs have a 50% reduction in VOT and no SAVs are available, Thakur 

et al. (2016) find that the average trip length increases by 26%. However, when no private AVs 
are available and SAVs, with a 50% lower VOT, are available, the researcher report a more limited 

8% decrease in the average trip length. On the other hand, Huang et al. (2019) modify Texas’ 4-
step travel demand model to study the impact of introducing AVs and SAVs the transportation 

system in Texas' mega-regions (i.e., Houston, San Antonio, Austin, Dallas, and Fort Worth). They 
assume an overall 15% increase in trip generation rate, that AVs cannot avoid parking, a 10% to 
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50% decrease in VOT, and that the operating cost of (S)AVs is equal to or higher than that of a 
conventional vehicle. They also assume, and that conventional vehicles, all else equal, are 

preferred to AV options (i.e. the alternative specific constant for AVs and SAVs are set to be 
negative, at -0.05 and -0.2). The addition of AV options results in a 14% increase in average trip 

length from 14 to 16 miles. 
 

2.4.4.2.3.3 Survey studies 
Bansal and Kockelman (2017) inquire about the type of trips their respondents would use 
autonomous vehicles for. The largest share of respondents (37.2%) indicated that they plan to use 

AVs in the context of long-distance travel (between 100 and 500 miles). Moreover, they report 
that people believe the number of long-distance trips they make will increase by an average of 1.3 

per month after they acquire an AV. 
 

2.4.4.2.4 Changes in mode choice 
Finally, the last travel-related behavior research question is mode choice, which is the short-term 
product of modality style. Since AVs combine features of private vehicles, public transit, and 

private transportation services, they represent an attractive travel mode alternative. In this research 
question, we are interested in exploring how the availability of new AV options in one’s modality 

style impacts their short-term mode choice decisions. To address this topic, activity-based models, 
4-step models, and (SP) surveys have been used. Table 10 summarize key results from relevant 

studies: 

Table 10: Summary of results on changes in mode choice 

Topic Method Papers Level of 
automation 

Adoption 
model Research approach Main Finding(s) 
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Childress et al. 
(2015) * * * 

Transit and walking shares 
decrease by about 9% and 21% 
respectively. In the case of 
increased operating cost, demand 
for AVs is reduced by a third 
while the demand for transit and 
walking increases by 140% and 
50% respectively 

Kim et al. 
(2015a) * * * Transit shares will drop by up to 

42%  

Hörl et al. 
(2016) Level 5 SAVs 

65% reduction in VOT, and 
$0.85/mile fare, and varied the 
number of SAVs in the system 

Mode share for transit and 
walking will drop by 12% and 
10% respectively 

Liu et al. 
(2017) Level 5 SAVs 

Taxi fares are $0.50, $0.75, $1, and 
$1.25 per-mile, SAV VOT is half that 
of a conventional vehicle while value 
of waiting time is double the VOT of 
conventional vehicle 

Demand for SAVs is 50.9%, 
12.9%, 10.5%, and 9.2% based on 
fare, respectively 

Heilig et al. 
(2017) Level 5 SAVs 

No private AVs, only SAVs that have 
70% lower operating cost compared to 
conventional vehicles. All passengers 
going from the same origin to the same 
destination during the same 15-minute 
period are pooled together (max. 4 
riders per SAV) 

Mode shares for transit, walking, 
and biking will increase by 4%, 
8%, and 5% respectively 

WEF (2018) Level 5 AVs, 
SAVs 

Discrete choice mode choice 
experiment to estimate demand for 
AVs and SAVs, 6.3% increase in road 
capacity, occupancy-based pricing 
scheme, convert parking to driving 
lanes, and dedicate lanes to AVs 

Combined mode share of 37.5% 
for shared and pooled self-driving 
cars, and a 16% drop in transit 
ridership 
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Topic Method Papers Level of 
automation 

Adoption 
model Research approach Main Finding(s) 
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 Kröger et al. 
(2018) * * * 

Transit ridership will decrease by 
up to 17.6% and 10.6% for USA 
and Germany respectively 

Bernardin et 
al. (2019) * * * 

21% - 45% increase in vehicle 
trips. ZOVs accounted for 30% 
and 33% of trips 

Perrine et al. 
(2020) Level 5 AVs 

AVs have 18% higher operating cost 
50% reduction in VOT compared to 
conventional vehicles 

Air travel trip generation will drop 
by 53% while vehicle trips will 
increase by over 100% (for 500+ 
mile trips) 

4-
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Levin and 
Boyles (2015) Level 5 AVs 

Varying VOT (1.15 to 22 $/hour) with 
higher VOT individuals adopting the 
technology earlier, higher road 
capacity, and return home option of 
vehicles to avoid parking 

Transit ridership will decrease by 
64%, demand for AVs that avoid 
parking is 83% at market 
saturation 

Huang et al. 
(2019) * * * 

Car mode share increases by 
16.1% while bus and rail are 
reduced by 66.1% and 71.1% 
respectively, Air travel across 
Texas decreases by 61.8%, 
Market share for SAVs nearly 
doubles as fare drops from 
$1/mile to $0.6/mile 

Su
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Haboucha et 
al. (2017) * * * 

54% of Americans prefer their 
conventional vehicle over the AV 
options 

Asgari et al. 
(2018) * * * 

Private vehicle is preferred to 
SAV and pooled SAV. Transit 
riders are more likely to pool 

Becker 
and Axhausen 
(2018) 

* * * 

Among AV options, pooled SAVs 
are most popular for short trips, 
and transit with SAV feeder is 
most popular for long trips 

Malokin et al. 
(2019) Level 5 NA 

Assume AV riders can multitask just 
like transit riders to explore impacts 
on mode choice 

Mode share for transit will drop 
from 8.174% to 7.157%, while 
mode share for drive alone will 
increase from 77.117% to 
78.596% 

Hardman 
(2020) Level 2 AVs 

Interviewed 36 Tesla autopilot users 
and asked questions on their travel 
behavior 

Autopilot users prefer driving 
over flying 

* Information that is provided in an earlier table for studies that address multiple research questions 
 

2.4.4.2.4.1 Activity-based models 
Mode choice is another output of activity-based models. For instance, Kim et al. (2015a) find that 
the introduction of AVs could result in a drop in transit ridership by up to 42% based on the 

scenario. Similarly, Childress et al. (2015) report that transit and walking mode shares could drop 
by about 9% and 21%, respectively. However, in one scenario where they imposed a policy that 

increases the operating cost of AVs (1.65$/mile) compared to the base case (0.15$/mile), Childress 
et al. (2015) actually find a decrease in demand for drive alone AVs by a third and an increase in 

demand for transit and walking by 140% and 50%, respectively. This indicates that pricing could 
be an effective policy to regulate AVs. Finally, Kröger et al. (2018) find that, for the trend scenario, 

the transit mode share will drop by 6.3% and 2.8% for the U.S. and Germany respectively, and 
these rates increase in the extreme AV scenario to 17.6% and 10.6% for the U.S. and Germany 

respectively. On another note, Perrine et al. (2020) use the rJourney data set and modify the travel 
demand model used by the U.S. Department of Transportation's Federal Highway Administration 

for long distance travel (500+ miles) by adding an AV mode. They assumed that AVs have 18% 
higher operating cost and 50% lower VOT compared to conventional vehicles. They find that the 
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addition of the AV alternative reduces air travel trip generation by 53% and increases vehicle trips 
by over 100%. Hardman (2020) also finds a similar result when he interviewed 36 Tesla Autopilot 

users. He reports that autopilot users prefer driving over flying given the increased convenience of 
driving the technology provides.   

 
Looking at SAVs, Hörl et al. (2016) use an agent-based model to study the impact of adding 

a single passenger SAV service on the transport system in Sioux Falls, USA. They assume a 65% 
reduction in VOT for SAVs compared to conventional vehicles, an operating cost of $0.85/mile, 

and varied the number of SAVs in the system which impacts the level of service. They find that, 
for all levels of service, the number of public transport trips decreases for all hours of the day. 

Moreover, as the number of SAVs increase in the system, demand for private cars drop from 73% 
to roughly 30%, while the demand for walking and transit drops from 15% for both modes to 

roughly 5% and 3% for each mode respectively. Heilig et al. (2017), on the other hand, explore 
the impact of the introduction of pooled SAVs into Stuttgart, Germany’s transport system if no 

private AVs are available. The researchers assume a cost reduction per mile of about 70% for 
SAVs compared to a private car. They also pool together all trips starting within the same 15-

minute time slot and sharing the same origin and destination, with a maximum of 4 riders per SAV 
(e.g. number of cars needed = number riders / 4). Their results indicate an increase in the mode 

share for transit, walking, and biking by 4%, 8%, and 5% respectively. Moreover, Liu et al. (2017) 
explore the impact of the user fare on SAV demand. With fare changes ranging from $0.5/mile to 

$1.25/mile, the demand for SAVs drops from 50.9% to 9.2%, respectively. Finally, in a more 
recent study, the world economic forum, in collaboration with the Boston Consulting Group, 

investigated the impact of a mixed fleet of AVs, SAVs, and conventional vehicles for the city of 
Boston (WEF, 2018). A mode choice model is estimated from stated preference data to calculate 

the mode share for AVs and SAVs (a combined mode share of 37.5%). Based on these mode 
shares, they assume a 6.3% increase in road capacity. They report that the introduction of AVs and 

SAVs into the system will reduce transit ridership by up to 16%. 
 

2.4.4.2.4.2 4-step model 
Levin and Boyles (2015) modify a 4-step model to explore the impact of AV use on Austin, Texas’ 
downtown network. The study includes three modes: 1) an AV with regular parking; 2) an AV that 

repositions to avoid parking; and 3) transit. There results suggest a 64% reduction in transit demand 
and an 83% mode share for the repositioning AV option. In their study, Huang et al. (2019) find 

that the mode share for car options overall increases by 16% and drops by 66% and 71% for bus 
and rail. Similarly, air travel across Texas decreases by 61.8% while decreasing by 82.5% across 

the mega-region (i.e., Houston, San Antonio, Austin, Dallas, and Fort Worth). They also find that 
the market share of SAVs nearly doubles as the fare drops from $1/mile to $0.6/mile.  

 

2.4.4.2.4.3 Survey studies 
Malokin et al. (2019) explore the impact of the ability to multitask and productively use in vehicle 
time on mode choice and find that this feature will decrease transit mode share from 8.2% to 7.2% 

and increase the mode share for the drive alone option from 77.2% to 78.6%. On the other hand, 
Haboucha et al. (2017) explore people’s propensity to switch from their current conventional 

vehicle to either an AV or SAV. They find that 54% of Americans prefer their conventional vehicle 
over the AV options. An important observation is that increasing parking costs can encourage users 

to switch to autonomous options with a higher preference for SAVs. In their study, Asgari et al. 
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(2018) present respondents with DCE scenarios comparing different modal options. In the two 
scenarios where a private vehicle is available, both as a driver and as a passenger, the option was 

preferred by 66% and 50% of the respondents respectively, with pooled SAVs being least 
desirable. Importantly, for captive transit riders, 42% chose public transit and 32% chose the 

pooled SAVs, indicating that people who currently rely on public transit have a higher propensity 
to share rides. Finally, Becker and Axhausen (2018) estimate demand for SAVs and pooled SAVs. 

For short trips (<50 Km) they report a 20%, 8% and 4% share for pooled SAVs, SAVs, and public 
transit with an AV feeder system respectively. These numbers become 17%, 7%, and 19% for trips 

longer than 50 Km. 
 

2.4.5 How will changes in all the above impact vehicles miles traveled (VMT)? 
The final research topic of interest is the impact of the technology on VMT. Vehicle miles traveled 

have been steadily increasing over time, increasing mobility and environmental costs, and AVs are 
hypothesized to further contribute to this trend. Consequently, the research topic of interest is 

quantifying the impact of automation on the system wide VMT. Moreover, since changes in VMT 
induced by automation are the byproduct of the changes in all travel-related behaviors discussed 

thus far, researchers should quantify the contribution of the individual changes in travel-related 
behaviors to the change in VMT. The following are results from studies that investigate changes 

in VMT, summarized in table 11 below: 

Table 11: Summary of results on changes in vehicle miles traveled 

Topic Method Paper Level of 
automation 

Adoption 
model Research approach Main Finding(s) 
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Fagnant and 
Kockelman 
(2014) 

Level 5 SAVs Serve 3.5% of private vehicle demand 
by SAVs VMT will increase by 10% 

Zhang et al. 
(2015) Level 5 

SAVs 
and 

PSAVs 

Serving all personal vehicle trips by a 
SAV fleet while allowing for 
ridesharing 

Ridesharing can reduce VMT by 
4.74% as opposed to no 
ridesharing 

Fagnant and 
Kockelman 
(2018) 

Level 5 SAVs, 
PSAVs 

Serve different levels of private vehicle 
demand by a shared and pooled fleet 

Ridesharing can limit the increase 
in VMT, and can result in a 
decrease if demand for ridesharing 
is high enough 

Schoettle and 
Sivak (2015) Level 5 AVs 

A vehicle can autonomously shuttle 
between trips to serve multiple 
members of the same household  

VMT will increase by 75% 

Zhang et al. 
(2018) Level 5 AVs 

A vehicle can autonomously shuttle 
between trips to serve multiple 
members of the same household  

VMT will increase by 13.3% 
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Gucwa et al. 
(2014) Level 5 AVs 

Increase in road capacity ranging from 
10% to 100%; decrease in VOT of up 
to 50% 

VMT increase will range from 8% 
to 24% 

Biersted et al. 
(2014) 

Levels 3 
and 4 AVs 

Market penetration (25% to 95%), 
vehicle operating costs, and highway 
capacity increase (25-35%) 

VMT increase will range from 5% 
to 35% 

Childress et al. 
(2015) * * * 

VMT increase will range from 4% 
to 20%, but in the case of increase 
in operating costs, it could 
decrease by up to 35%  

Kim et al. 
(2015a) * * * VMT increase will range from 4% 

to 24% 

Hörl et al. 
(2016) * * * 

VMT will increase by up to 60%, 
30% of which comes from empty 
SAVs making pickups 

Auld et al. 
(2017) 

Levels 2 to 
4 AVs 

20% to 100% market penetration, 20% 
to 75% decrease in VOT, and 12% to 
77% increase in road capacity  

VMT increase will range from 1% to 79% 

Heilig et al. 
(2017) * * * VMT will decrease by 20% 
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model Research approach Main Finding(s) 
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Auld et al. 
(2018) * * * VMT will increase by up to 42% 

Vyas et al. 
(2018) * * * 

VMT will increase by 3 to 9%, 
with empty AV trips contributing 
approximately 2-3% to the 
regional VMT 

ITF (2015) Level 5 SAVs, 
PSAVs 

Assumptions on market penetration of 
SAVs (50-100%), with and without 
public transportation, ridesharing vs. 
no ridesharing, car configuration (2, 5, 
and 8 passenger vehicles), reduced 
parking needs 

VMT will increase by 90 % for 
50% market penetration of shared 
self-driving taxis and no public 
transport system 

Liu et al. 
(2017) * * * VMT increase will range from 

9.8% to 15.1%  
Zhang and 
Guhathakurta 
(2018) 

* * * VMT will increase by 11% to 23% 
due to residential relocation 

WEF (2018) * * * VMT will increase by 16% 

Kröger et al. 
(2018) * * * 

VMT will increase by up to 8% 
and 6% for USA and Germany 
respectively 

Taiebat et al. 
(2019) Level 5 AVs 

Estimate people’s elasticity to travel 
demand and induced VMT under 
different scenarios of reduced VOT 
(25% to 60%), and higher fuel 
efficiency vehicles (5% to 20%) 

VMT will increase between 2% 
and 47% based on the scenario 

Bernardin et al. 
(2019) * * * VMT will increase between 7% 

and 34% based on the scenario 

4-
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ep
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Zhao and 
Kockelman 
(2017) 

Level 5 AVs, 
SAVs 

Lower VOT (25% to 75%), higher 
operating cost (1$/mile and 1.5$/mile 
for AVs and SAVs compared to 0.6 
$/mile for conventional vehicles), 
lower parking costs, higher preference 
for conventional vehicles 

VMT will increase by 18% to 41% 

Huang et al. 
(2019) * * * VMT will increase by 46.7% in 

Texas 

Su
rv

ey
 

Hardman et al. 
(2019) Level 2 AVs Surveyed users of Tesla's Autopilot 

and compared their travel behavior 

Very frequent users and Frequent 
users have significantly higher 
VMT than non-frequent users 
(almost 50% higher annual VMT). 

* Information that is provided in an earlier table for studies that address multiple research questions 
 

2.4.5.1.1 Network Analysis: 
Network analysis has mainly been used to explore the fleet reduction achievable from autonomous 
vehicles, and its impact on VMT. Most studies find an increase in VMT, mainly due to the 

relocation of empty vehicles. Fagnant and Kockelman (2014) find that, in a hypothetical city, a 
SAV fleet with no pooling serving 3.5% of private vehicle demand can reduce the number of 

vehicles on the road8 at the expense of a 10% increase in VMT. Zhang et al. (2015), on the other 
hand, conclude that, in a hypothetical city, ridesharing can reduce VMT by 4.74% as opposed to 

no ride sharing, while Fagnant and Kockelman (2018) report that overall system wide VMT in 
Austin, Texas can decrease under the condition that demand for shared rides is high enough. 

  
  Finally, Schoettle and Sivak (2015) and Zhang et al. (2018) find that a reduction in 

household car ownership can be achieved if vehicles can autonomously return home to pick up 
other members, but at the expense of a 75% and 13.3% increase in total VMT respectively. In the 

 
8 Each SAV can replace 11 privately vehicle while serving the same prespecified demand 
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latter study, this number rises to 60% if households that reduce their vehicle ownership are solely 
considered. 

 

2.4.5.1.2 Activity-based models: 
Activity based models have been used extensively as evidenced by 16 studies. To study the impact 

of AVs on the San Francisco network, Gucwa et al. (2014) modify the city’s activity-based model, 
assuming an increase in road capacity ranging from 10% to 100% and a decrease in users’ VOT 

of up to 50%. Based on the scenario, they find that the increase in VMT ranges between 8% and 
24%. For Childress et al. (2015) and Kim et al (2015a), their results varied across scenarios, with 

an increase in VMT ranging from 4% to 20% for the former and 4% to 24% for the latter. Under 
the scenario of an increase in operating costs, however, Childress et al. (2015) find that VMT can 

decrease by 35%. Fehr & Peers (Biersted et al., 2014) also study the impact of personal self-driving 
cars on VMT, making assumptions on the increase in highway capacity, the market penetration of 

the technology, and vehicle costs. They find a 5% to 20% increase in VMT under a 50% market 
penetration of private self-driving vehicles, and this number rises to 35% with full market 

saturation. Similarly, Auld et al. (2017) use Chicago’s activity-based model to study the impact of 
personal self-driving vehicles. They make assumptions on the increase in road capacity (between 

12% and 77%), the decrease in value of time (between 25% and 75%), and the market share of the 
technology (between 20% and 100%). The increase in VMT varied by scenario from a best case 

of 1% to a worst case of 79%. Likewise, after manipulating Chicago’s activity-based model, Auld 
et al. (2018) report that VMT increase varies by scenario, and in the worst case, will reach 42%. 

Moreover, Vyas et al. (2018) find that, based on the scenario, VMT will increase by 3 to 9%, with 
empty AV trips contributing approximately 2-3% of the regional VMT increase. Furthermore, 

Kröger et al. (2018) find that, for the trend scenario, VMT will increase by 3.4% and 2.4% for the 
U.S. and Germany respectively, and these numbers rise in the extreme scenario to 8% and 6% 

respectively. Finally, Taiebat et al. (2019) use the U.S. national household travel survey (NHTS) 
data to run a regression of VMT per trip on fuel cost and travel time cost (using people’s VOT). 

From the model, they estimate people’s elasticity to travel demand and induced VMT under 
different scenarios of reduced VOT (25% to 60%), and higher fuel efficiency vehicles (5% to 

20%). Their results indicate that higher income groups have the lowest elasticity to fuel cost and 
the highest elasticity to time cost, resulting in the highest overall elasticity to VMT demand. They 

report that lower travel costs will lead to an overall increase in VMT between 2% and 47% based 
on the scenario. For the lowest income group, the average household is forecasted to increase VMT 

by 1% to 35%, while the corresponding range is 3% to 58% for the highest income group. 
 

  The studies mentioned thus far only look at privately owned vehicles. Regarding SAVs, 
Hörl et al. (2016) find that introducing the SAV service to the transport system could result in an 

increase of VMT by up to 60%, where 30% of this increase comes from empty SAVs making 
pickups. Similarly, Liu et al. (2017) find that changing the fare can increase VMT between 10% 

and 15.7%. On the other hand, Heilig et al. (2017) find that introducing the pooled SAV system 
and removing private ownership reduced VMT by 20%. Moreover, Zhang and Guhathakurta 

(2018) find that when cost effective SAVs are the only mode of transport available, VMT will 
increase by 11% to 23% as a result of the increase in commute trip length due to residential 

relocation. On the other hand, WEF (2018) find that the mixed fleet of conventional vehicles, AVs, 
and SAVs will result in a 15% decrease in the number of vehicles on the road at the expense of a 

16% increase in VMT. Similarly, Bernardin et al. (2019) find that a mixed fleet of AVs and SAVs 



  

 38 

increases VMT by 45% and 21% based on the scenario. These studies, however, assume fairly 
marginal impacts on travel behavior, in that the basic decision protocols and transport system are 

fairly consistent with the status quo. The International Transport Forum (2015) took it a step further 
in terms of behavioral assumptions and the configuration of the transport system in their analysis 

in Lisbon. They study the impact of a SAVs while making assumptions on the market penetration 
of the technology, whether a high-quality public transit system exists or not, the trip generation 

process, parking, and car sizes. Their results vary by scenario, with their most extreme outcome 
arising from the case of 50% market penetration of single-passenger SAVs and no public transport 

system, which leads to a 90% increase in VMT. This sizeable body of works shows consistent 
VMT increases with advanced automation, a finding that is replicated also when SAVs are 

modelled. The range varies widely however, according to the application context and assumptions. 
 

2.4.5.1.3 4-step model: 
4-step models have also been used to predict impacts of automation on VMT. Zhao and Kockelman 
(2017) manipulated Austin, Texas’ 4-step travel demand model to explore the impact of AVs on 

the system. They replaced the gravity model with a destination choice model and included 4 modes 
in their analysis—conventional vehicles, privately owned AVs, SAVs, and bus. Compared to the 

conventional vehicles, AV options were assumed to have a lower VOT (25% to 75%), higher 
operating cost (1$/mile and 1.5$/mile for AVs and SAVs compared to 0.6 $/mile for conventional 

vehicles), and lower parking costs for AVs (0% to 100%). The model constants were set to give a 
boost to the conventional vehicle market-share, reflecting status quo predilection. Based on the 

scenario, they report an increase in VMT ranging from a low of 18% to a high of 41%. Similarly, 
Huang et al. (2019) report that the decrease in demand for flying caused by the introduction of 

AVs leads to an 46.7% overall increase in VMT in Texas (47% for Austin). 

2.5 Suggestions for Improving Future Studies: 
We observe significant variation in behavioral impact of AVs emerging from each of the research 

methods. In this section we highlight important sources of discrepancy that warrant further work 
to either clarify the source of differences, or to make future exploration more robust by removing 

undue sources of variability in predicted impacts. As we noted in section 3, control testbeds, 
driving simulators, and virtual reality are limited in their contribution to better understand the 

impact of AV on travel behavior. However, VR, can serve as a helpful vignette to provide survey 
attendants a better picture of the world under AV but not as a method by itself.  Accordingly, we 

discuss below the other three methods explored. 
 

2.5.1 Survey studies: 
Several factors contribute to the discrepancy in results from surveys. Primary factors include 

geographic, cultural/contextual and temporal differences, sources of discrepancy that are of 
interest and that should be further explored due to the dynamic nature of AV technology diffusion 

in society. An undesirable source of discrepancy, however, is the inconsistency in the set-up of 
different surveys. During the literature review, we observed that many studies lacked details on 

how (S)AV scenarios were defined to respondents. Meanwhile, for projects that include these 
details, there is inconsistency in how these vehicles, and mobility in the word of AV in general are 

described. For example, AVs in some studies allow riders to switch to manual driving (e.g. 
Kolarova et al., 2018) while in others they do not as they do not have a steering wheel or pedals 

(e.g. Kyriakidis et al., 2015).  Relatedly, some researchers use pictures to bring the context closer 
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to respondent, others use videos, text, or some combination thereof.  All these can affect all 
research questions, namely willingness to adopt AVs. It is important for researchers, therefore, to 

have discussions and address important questions that would enable better comparison among 
studies and the transferability of results. Important questions to address include: How should an 

AV be defined? What method is most effective in bringing the context closer to respondents? What 
is the role of different vignettes (pictures, movies, VR) in describing AVs to participants and how 

should they be designed and used? It is impossible to have all studies use similar settings, but at a 
minimum, researchers should include detailed survey design information related to AV definitions 

and context in publications to allow accurate replication and building on the work already done.  
It would be helpful to suggest some standard scenarios that various researchers in various locations 

would repeat.  Finally, as more companies test their technology on public roads and some limited 
ride hailing services using AVs are introduced more people get familiar with AV, it would be 

helpful to recruit such people for surveys given their closer familiarity with the technology. 
 

2.5.2 Agent-based and travel-demand models: 
The main limitation of agent-based and travel-demand models is that they have to rely on 

assumptions regarding the potential travel behavior changes induced by AV. We found only a 
single paper (WEF, 2018) that uses results from SP studies and field experiments to inform their 

simulation assumptions. Anchoring the simulation design on behaviorally valid parameters allows 
researchers to make assumptions on travel behavior that are more representative of, and specific 

to, the area under study. Relatedly, none of the studies incorporate heterogeneity in the response 
to AVs, a main focus of many (SP) studies (e.g. Daziano et al., 2017, Kim et al., 2019, Kim et al., 

2020). Finally, most simulation studies that consider a private ownership model fail to include 
ZOV trips. Going forward, researchers should think more deeply about how ZOV trips should be 

incorporated in demand models and how these trips will redefine tours and the temporal and 
geographic constraints in one’s daily activity patterns. 

 
When running simulations, researchers typically run multiple scenarios that include a 

combination of assumptions on changes in supply and demand.  The output of these simulations 
is a direct result of the assumptions of both demand and supply in these scenarios, so the definitions 

and range of these scenarios directly affect the results. Within the limitations of these approaches, 
it is still interesting to see the impact of various assumptions on the performance of the 

transportation network. To better isolate the impact of specific assumptions, it is recommended to 
run multiple simulations while varying n a single factor (e.g. value of time reduction) and keeping 

other factors constant and comparing the results for different factors. This has been implemented 
in multiple studies (e.g. Vyas et al., 2018, Auld et al. 2017) and it would allow us to understand 

the effect of each assumption on the direction and magnitude of change (e.g. VMT) to understand 
which policies would have the highest impact. 

 
2.5.3 Field experiments: 

Apart from our study in this dissertation, there are no studies that use field experiments for the 
purpose of exploring the behavioral impacts of AVs. In the future, we propose that researchers 

develop partnerships with technology companies currently engaged in advanced field-testing of 
AVs to; 1) get access to (travel) data from field experiment run by tech companies to unravel 

acceptance and behavioral dynamics around the use of the technology, particularly from 
participants of such tests as they may have a better understanding of AVs, and 2) help design 
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experiments where the primary purpose is understanding changes in travel behavior, as opposed 
to testing the technology, which is the companies’ primary (only) objective. This will require 

policy intervention to encourage tech companies to be part of the solution. 
 

2.5.4 Recommended key actions 
Every method has its pros and cons and addresses differently the various research questions. In 

general, an integrated approach has to be developed using the various methods in combinations.  
Ideally improved insight regarding travel behavior changes under AVs should obtain from (stated 

preference) survey studies, field test, experiment and evolving evidence as various automation and 
shared services penetrate the market and fed into simulation and activity-based models to better 

study the overall implications. One of the main challenges is to develop better ways to provide 
experience and knowledge to respondent about AV. 

 
The travel behavior research community should coordinate and collaborate with the Human 

Machine Interface (HMI) community that deal with AV to leverage field tests for behavioral 
research. Field tests should also consider travel, activity, attitude, behavioral angles.  We should 

collect consistent data over time (longitudinal studies) and across geographies as automation 
penetrate the market as preferences, knowledge, and awareness will change over time. We should 

also try to encourage some standard in design of these studies to have some consistency across 
surveys and experiments. 

2.6 Summary Results and Topics That Require Further Research: 
The study of behavior surrounding adoption and use of AV is critical to inform future mobility 
planning, research, and business-models. Yet, despite the rapidly growing body of work, the results 

in each of the methods are either widely variable, or highly circumscribed. In this section, for each 
of the behavioral research questions raised in section four we provide a concise summary of the 

main results. Following each summary, we delineate a future research agenda. We find that 
research questions and their corresponding results can be divided into four categories: 1) questions 

with numerous data points, where the direction of the impact is consistent across the literature, 
albeit the magnitude varies considerably; 2) questions with limited data points and consistent, 

albeit highly variable data points; 3) questions with a few but conflicting data points; and 4) 
question with a single or no data points.  

 
2.6.1 What is the willingness to adopt AVs? 

2.6.1.1 Summary of results 
The literature indicates that, in general, people in the U.S. still have reservations about AVs, ones 
that seem to be fading over time. Concerns stem mainly from the lack of trust in AVs operating 

properly and the fear of security breaches. The share of the population that is unwilling to adopt 
the technology ranges from 19% to 68% based on the area and year of study. Similarly, the average 

willingness to pay for the technology varies considerably based on the context from $1,600 to 
$14,000, with many respondents (up to 59%) not willing to spend anything ($0). 

 

2.6.1.2 Questions that require further research 
Exploring people’s willingness to adopt the technology and the factors behind these intentions has 

been well explored (23 papers), and thus it belongs to category (1) of research questions. However, 
as more companies test their technology on public roads and more people use autonomous features 
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in their cars and become familiar with the technology, the acceptance of AVs and willingness to 
adopt them will change. Therefore, researchers should continue to design studies and collect data 

to pinpoint the dynamic nature of AV adoption, and monitor the evolution of responses over time, 
for different groups, as a function of social or formal information sources, and across cultures. 

 
2.6.2 What is the impact of AVs on in-vehicle behavior? 

2.6.2.1 Summary of results 
Few studies (5) have addressed this research topic, and the literature indicates that some people 
believe they will multitask while riding AVs while others (up to 46%) believe they will not. Lack 

of trust in the technology and motion sickness are the two main factors that will hinder multitasking 
in AVs. For those who will multitask, the most popular in-vehicle activities will be talking to other 

passengers, texting/talking on the phone, and eating.  
 

2.6.2.2 Questions that require further research 
The general assumption has been that AV users are more likely to engage in increased in-vehicle 
activities. Manufacturing companies have already advertised AV concepts that promote in-vehicle 

activities, like Volvo’s 360c AV that includes a coffee table, a desk, and even a bed. However, as 
the literature indicates, the ability to productively use commute time might not be as attractive as 

initially believed. More research is required to understand whether people want to or will be able 
to take advantage of this feature. The limited, albeit consistent results puts this research question 

in category (2). However, we note that a question that has received no attention is the relationship 
between in-vehicle time use and the demand for different vehicle configurations. Consumers 

currently seem to give limited credence to productive time-use in AV’s, will this lead to relying 
on right-sized9 shared vehicles? Or will people prefer “mobile home” vehicles—i.e. vehicles with 

a bed, bathroom, work desk, etc.? Answering these questions is key to quantifying the impact of 
AVs on road capacity, which adoption model (sharing or owning) is going to dominate, activities 

conducted during commute, etc. 
 

2.6.3 What is the impact on VOT? 

2.6.3.1 Summary of results 
The ability to multi-task or relax during one’s commute is found by most studies to reduce the AV 
riders’ VOT. The decrease varies by mode (AV, SAV, and pooled SAV), and ranges from 5% to 

55%. 
 

2.6.3.2 Questions that require further research 
Although the reduction in VOT is a key driver for changes in travel-related behaviors, not enough 
attention has been devoted to this research question (which belongs to category (2)). We only 

found seven papers that estimate changes in VOT, all of which are SP studies. As estimated VOT 
for automation typically falls between typical transit and private driving, it appears a natural 

extension that it is shaped by expectations of time-use on board, which in turn is shaped by local 
conditions. More effort needs to be put into collecting stated preference data from surveys and 

revealed preference data from field experiments to quantify changes in VOT and how it differs by 

 
9 E.g. choosing a small, single occupancy vehicle when traveling alone to work, and larger vehicle with more space 
when going camping. 
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mode, demographic, and trip purpose, for a more accurate integration of these changes into 
simulation studies.  

 
2.6.4 Changes in travel-related behavior 

2.6.4.1 Residential location choices 

2.6.4.1.1 Summary of results 
When it comes to residential location choice, survey studies indicate that most people do not 
believe their residential location will be affected by the adoption of AVs. Simulation studies, on 

the other hand, indicate that lower travel costs will encourage people to move further away from 
their work location, with some moving closer to the central business district. In a private ownership 

scenario, people will move away from cities into suburbs, while the opposite is true in an SAV 
adoption model. 

 

2.6.4.1.2 Questions that require further research 
This research question has not received enough attention, and the few studies that address it report 
conflicting results, and therefore belongs to category (3) of research question. The conflict in part 

stems from the limited integration between simulation and behavioral studies. More studies should 
be dedicated to addressing the change in residential location decisions rather than including it as a 

marginal question in surveys. In addition to exploring them, the reasons and motivations behind 
these changes should also be investigated. 

 

2.6.4.2 Modality styles and mode choice 

2.6.4.2.1 Summary of results 
When it comes to ownership preferences, people generally prefer owning AVs over sharing them, 

with pooled SAVs being the least favorite alternative among autonomous options. People do not 
believe their car ownership will decrease when they own AVs. For SAVs, 25% of the population 

are not willing to use them even if they are completely free. Moreover, pricing will play an 
important role in the demand for SAVs, which will increase substantially as the fare drops. 

Regarding transit, most studies report that AV technology will reduce transit ridership. Shares are 
expected to drop by amounts ranging from 9% to 70%, based on the assumptions made by the 

different studies. However, a policy of increasing operating costs of AVs has the potential to 
substantially increase transit shares by as much as 140%. 

 

2.6.4.2.2 Questions that require further research 
Changes in modality style and mode choice have received a fair amount of attention (22 papers). 
Moreover, the overall consistency of results puts this research question in category (1). We note 

that most studies only explore people’s preferences for different modes and potential future mode 
shares, yet little attention has been given to understanding the factors behind these results or the 

heterogeneity associated with these decisions. Considering the impact this research question will 
have on determining the future of transportation, additional research is required to understand the 

factors that will shift people away from auto-dependency and into sharing and multimodality. Just 
because sharing and pooling is promoted as an effective counter-balance to private use doesn’t 

necessarily mean people will share vehicles, and more importantly, share rides. It is also important 
to understand which users shared vehicle services will attract—private car users or transit users, 

and the impact this will have on congestion. With the ongoing COVID-19 pandemic it is an open 

question how views of hygiene, health and safety of shared and pooled vehicles is evolving. 
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Further work is needed to examine the cultural, contextual, and generational shifts in how 

automation and sharing is viewed. Which are the critical service-levels, i.e. cost, waiting time, 

travel time, or the flexibility that shared services offer? These questions remain unanswered and 
addressing them will enable decision makers to develop the necessary policies to guide the 

technology into an uncertain future.  
 

2.6.4.3 Activity patterns and destination choice 

2.6.4.3.1 Summary of results 
The literature indicates that the convenience of AVs will induce changes in people’s short-term 

travel decisions. The number of trips will increase by 2.5% to 45%, the average trip length will 
increase by 14% to 20%, and the ability of AVs to autonomously make pickups will substantially 

reduce escort trips (by up to 20%). A policy of increasing the operating costs of private AVs, 
however, can reduce the average trip length by up to 16%. 

 

2.6.4.3.2 Questions that require further research 
When addressing changes in activity patterns and destination choices, most studies report the 

change in the number of trips and average trip length. Results on this topic are limited, yet 
consistent, and thus belong to category (2). However, very little insight has been provided on 

specific changes in activity patterns and destination choices. Questions raised in section four on 
the activities that will be performed more/less frequently, changes in the time of day of activities, 

and whether people will explore new destinations have not been addressed yet. Moreover, 
heterogeneity in the changes based on people’s demographics and lifestyles should also be further 

explored.  
 

2.6.4.4 Vehicle patterns 

2.6.4.4.1 Questions that require further research 
Changes in vehicle patterns, being an entirely new research area that did not exist before AVs, is 

the least explored research question, and therefore belongs to category (4) of research questions. 
It is the first time the concept of “zero-occupancy vehicles” that can pick-up passengers and run 

errands arises. Therefore, researchers are facing difficulty in addressing this research area. 
Nevertheless, considering the impact zero-occupancy vehicles will have on the system, more effort 

should be put into understanding how vehicles will be used when not occupied by passengers. 
From reviewing the literature, the two methods that can be used to explore this research question 

are surveys and field experiments. In the former, respondents can be asked about errands and trips 
they would most likely entrust to a self-driving vehicle. Respondents can also be asked if they 

intend to utilize their vehicles to earn extra income (e.g. rent them out) when not commuting, or 
simply have them idle like they do with today’s vehicles. In field experiments, researchers can 

obtain revealed preference data on vehicle patterns as subjects experience firsthand the reshaping 
of mobility patterns from the driverless feature. 

 
2.6.5 Vehicle miles traveled 

2.6.5.1 Summary of results 
For VMT, most studies predict an increase. Similar to previous findings, however, the increase 

varies considerably across the literature and ranges from a low of 1% to a high of 90% depending 
on the scenario—shared vs. privately owned—and the assumptions made on changes in travel 

behavior. Changes in travel-related behaviors discussed thus far will all contribute to the changes 
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in VMT, from changes in in-vehicle behavior, to lower cost of travel (VOT), changes in residential 
location choice, modality style, user activity patterns, vehicle patterns, and destination choice. In 

two scenarios, however, VMT is found to drop below current levels—when the operating costs of 
private AVs are increased (up to 35% decrease in VMT) and when trips are pooled and the demand 

for pooled SAV is high (up to 20% decrease in VMT).  
 

2.6.5.2 Questions that require further research 
The impact of AVs on VMT has been well investigated (25 papers), and the results are consistent, 
thus this research question belongs to category (1). Despite that, no clear conclusions can be made 

on this topic. A main takeaway from the literature is that we are highly uncertain about the 
magnitude of the change in VMT, but that travel behavior and policy will play a key role in 

determining that magnitude. Therefore, until we have a better understanding of the impact of AVs 
on the other four research questions, and until we obtain better input to simulations we run, results 

on VMT change will continue to vary substantially. 
 

Future analysis of vehicle mile effects needs to account for two complicating factors; 
firstly, there are significantly different behavioral responses to the different levels of automation, 

second, future analysis needs to consider different user segments rather than average travel effects. 
Importantly, the mileage-saving effects of vehicle automation are almost entirely captured at levels 

1 through 3 via platooning and sharing (Wadud et al 2016). However, because level 4 changes the 
cost and convenient of “driving” fundamentally, it is also here that we expect the largest increase 

in VMTs. Moreover, while an overall increase in VMT is problematic, we need to examine the 
possibility that it enables increased mobility and accessibility for those who are currently deficient 

in that area (e.g. elderly, people with disabilities, children, etc.). 

2.7 Conclusion 
In this literature review, we raised five critical research questions regarding the implications of 

autonomous vehicles on the demand side of transportation: 1) what is the willingness to adopt the 
technology? and what are the impacts of the technology on 2) in-vehicle behavior? 3) value of 

time? 4) travel-related behaviors (activity pattern, mode, destination, residential location)? and 5) 
vehicle miles traveled? We also summarized findings from studies in the literature that explore 

these questions, and found that results can be divided into four categories: 1) questions that have 
been explored by many studies, where the direction of the impact is consistent across the literature, 

albeit the magnitude varies considerably; 2) questions with limited and consistent results, albeit 
the range varies widely; 3) questions that are addressed by a few studies, and where findings are 

conflicting; and 4) question with a single or no studies that address them. Moving forward, 
researcher should focus on moving the research towards the first category. This can be achieved 

by: 1) increasing effort to fill the holes in the literature, and 2) establishing clarity of assumptions 
used by researchers to enable comparisons and transferability of results. 

 
As part of the literature review, we also reviewed the five main methods used to study the 

impact of automated vehicles on travel-related behaviors: 1) controlled testbeds; 2) driving 
simulators and virtual reality; 3) agent-based and travel-demand models; 4) surveys; and 5) field 

experiments. We presented an overview of each method, its advantages and limitations, and how/if 
it informs changes in travel-related behavior. Controlled testbeds, driving simulators, and virtual 

reality are useful for studying safety and human factors but do not inform changes in travel-related 
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behaviors. Agent-based and travel-demand models, on the other hand, are an effective tool to study 
the impact of policy decisions and changes in travel-related behaviors on the transport system, but 

do not inform how automation and other technologies will change travel behavior. Rather, these 
models require assumptions on these changes as input. Finally, surveys and field experiments can 

help explore changes in travel-related behaviors. Results from surveys, however, are questionable 
since the context is too remote for respondents to relate to. Whereas for field experiments, 

technological limitations (using a human to simulate the software of the technology) and 
geographical constraints can diminish the realism of the simulation and influence travel behavior, 

introducing biases in results.   
 

The wide discrepancy in results regarding the impacts of AVs on travel behavior highlights 
the uncertainty surrounding the future of automation and the challenge inherent in addressing these 

research questions. The goal of this chapter is to promote a conversation among researchers on 
how to build on the current body of literature to overcome these obstacles. For instance, there is 

limited convergence on what is intended by adoption, and which service models (ownership, 
sharing or mobility as a service) are considered. Moreover, researchers using agent-based and 

travel demand models can use results from survey studies and field experiments as input to their 
models rather than making assumptions on changes in travel behavior (e.g. value of time, demand, 

mode share, etc.). Finally, more synergies should emerge between travel behavior researchers on 
one hand, and cities and companies developing and testing their technology on the other  

 
To conclude, autonomous vehicle technology has the potential to transform our lives, and 

understanding its implications is key in realizing its benefits and minimizing associated costs. The 
only way to do so is through a joint effort by researchers, collaborating and working together to 

build on the intelligence gathered and lessons learned from the current literature and improve the 
design of research regarding autonomous vehicles. 
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Abstract 

Automated driving technologies are currently penetrating the market, and the coming fully 

autonomous cars will have far-reaching, yet largely unknown, implications. A critical unknown is 
the impact on traveler behavior, which in turn impacts sustainability, the economy, and wellbeing. 

Most behavioral studies, to date, either focus on safety and human factors (driving simulators; test 
beds), assume travel behavior implications (microsimulators; network analysis), or ask about 

hypothetical scenarios that are unfamiliar to the subjects (stated preference studies). Here we 
present a different approach, which is to use an experiment to project people into a world of 

autonomous vehicles. We mimic potential life with a privately owned autonomous vehicle by 
providing 60 hours of free chauffeur service for each participating household for use within a 

seven-day period. We seek to understand the changes in travel behavior as the subjects adjust their 
travel and activities during the chauffeur week when, as in an autonomous vehicle, they are 

explicitly relieved of the driving task. In this first pilot application, our sample consisted of 13 
subjects from the San Francisco Bay area, drawn from three cohorts: millennials, families, and 

retirees. We tracked each subject’s travel for three weeks (the chauffeur week, one week before 
and one week after) and conducted surveys and interviews. During the chauffeur week, we 

observed sizable increases in vehicle-miles traveled and number of trips, with a more pronounced 
increase in trips made in the evening and for longer distances and a substantial proportion of “zero-

occupancy” vehicle-miles traveled. 
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3.1 Introduction           
“Every new transportation technology affects the geography of communities and the structure of 

people’s lives. Self-driving cars is such a technology. Just like freeways shaped past cities and 
lifestyles, self-driving vehicles will remake the metropolis once again” (Walters and Calthorpe 

2017). More and more automated features are being introduced into new vehicles currently on the 
market, autonomous vehicles are operating on our roads with a human backup, and fully 

autonomous vehicles (sans human backup) are operating under controlled environments. Tesla 
reports 780 million miles have been driven using its Autopilot; Uber and Volvo have shared, 

autonomous vehicles deployed in Pittsburg; and Waymo is now operating autonomous minivans 
in a suburb of Phoenix without a human backup. Governments in the US and around the world are 

racing to develop the necessary legislation that embraces the technology while ensuring the safety 
of its citizens, and planning agencies are struggling to update policies and plans to best realize a 

future with AVs.  
 

There is much speculation regarding the impact of autonomous vehicles on the transport 
system. On one hand, the improvements in safety and efficiency are thought by many to be the 

answer to our transportation problems, with most images of AV futures implying safe and freely 
flowing roadways. However, others project a dystopian future where the efficiency improvements, 
while real, are not enough to counteract the trends of increasing population, increasing 

urbanization, increasing vehicle-miles traveled per capita, and induced demand. Many believe the 
key to a utopian future is a shared AV fleet. Each of these futures is purely speculative. While it is 

not certain which future beckons, there is certainty that human behavior will be central to 
determining the outcome. And, yet, little is known about how travel will change with autonomous 

vehicles.  
 

The literature distinguishes between different levels of vehicle automation. Here we are 
focused on understanding traveler behavior implications for full automation, where vehicles can 

operate without any human intervention and without a human in the vehicle. This stage has the 
potential for the most radical traveler behavior changes, and these implications are the least 

understood today. The introduction of autonomous vehicles is expected to catalyze changes in 
travel behavior, activity participation, and land use. It is hypothesized to affect the value of travel 

time (e.g., via increased comfort and multitasking) and therefore the amount of travel. It likely will 
affect the quantity and type of vehicle purchases as well as the related decisions of whether to own 

a vehicle or opt for models of shared ownership. In the long run, it can affect decisions such as 
where to live and work, thereby impacting land-use.  

 
It is difficult to predict the future of mobility after the adoption of autonomous vehicles for 

the simple reason that they do not currently exist. However, it is possible to project people into a 
world that includes some of the more salient features of AVs. The biggest difference in using an 

AV, and arguably the feature that will cause the most change in travel behavior, is not having to 
be behind the wheel personally driving the car or even to be in the car at all as it travels from one 

place to another. This feature relieves people from the duty of paying attention to the road, allowing 
them to make better use of their in-vehicle time. Moreover, it permits sending empty cars (zero-

occupancy vehicles or ghost cars) on errands like charging the car, picking up a pizza, or dropping 
off laundry. Finally, it opens up a major new option for individuals with disabilities, individuals 
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without a driver’s license, and elderly who can no longer drive or are not confident anymore in 
their driving ability and reaction time.  

 
Here, we implement via the use of personal chauffeurs an experiment that aims to create 

familiarity with this coming technology that, until a few years ago, lay in the realm of science 
fiction. Our objective in providing subjects with a personal chauffeur is that we are essentially 

providing the “software” of an autonomous vehicle, relieving them from the duty of personally 
driving the car or physically being in the car when the car is making trips. This enables people to 

experience and act directly on how their travel and activities may change if they were to own an 
autonomous vehicle10, and it allows us to study such potential shifts. We present in this chapter 

results from a beta-test of 13 San Francisco Bay Area households.  

3.2 Literature Review 
Four main approaches are currently being used to gain insight into the potential impacts of 
autonomous vehicles: controlled testbeds, driving simulators, stated preference studies, and 

simulation based/scenario analysis studies.  
 

Driving simulators and controlled test beds are extremely useful for studying safety and 
human factors issues associated with a given trip. For example, Jamson et al. (2013) examined 
multitasking behaviors and fatigue via a driving simulator. However, they are not as useful for 

investigating impacts on travel and activity behaviors.  
 

Stated preference studies ask subjects to imagine how they would feel toward, pay for, and 
use automated vehicles in a hypothetical scenario. For example, Cyganski et al. (2015) and 

Schoettle and Sivak (2014) examined multitasking intention; Bansal and Kockelman (2016), 
Milakis et al. (2015), and Zmud and Sener (2017) examined a host of issues regarding autonomous 

vehicles, including willingness to pay for automation, mode choice, auto ownership, potential to 
adopt shared autonomous vehicles, and intention to move; and using a discrete choice framework, 

Daziano et al. (2017) performed an in-depth analysis of willingness to pay for autonomous 
features, Lavieri et al. (2018) studied adoption and use of the technology, Kolarova et al. (2018) 

studied the change in value of in-vehicle travel time, and Felix and Kay (2017) studied for which 
types of trips and purposes people will use automated vehicles. While a valuable technique, 

particularly to gain initial insight, it is problematic to employ in situations where the context is too 
far from situations in which the subjects have placed themselves or could consider placing 

themselves. This is precisely the situation with autonomous vehicles.  
 

Research using agent-based micro simulators (e.g., large-scale urban travel demand 
models) and network analysis (e.g., optimizing over the number of vehicles needed to serve a given 

demand) are particularly relevant to our study, as this literature includes predictions of the 
magnitude of the vehicle-miles traveled (VMT) increase induced by AVs. Because the behavioral 

impacts of autonomous vehicles are currently largely unknown, such studies have thus far assumed 
the travel behavior response either by assuming a fixed demand or making assumptions regarding 

 

10 A	complement	to	our	experiment	would	be	to	investigate	the	travel	behavior	impacts	if	people	were	to	make	use	of	a	shared	fleet	of	
autonomous	vehicles	(rather	than	private	ownership),	and	this	is	left	for	future	research. 



  

 49 

parameters in a travel demand model. For example, Fagnant and Kockelman (2014) generated 
demand from a trip-based model under current behavioral conditions, and then performed a 

network analysis to see how this demand could be served by a shared, AV fleet. Their simulation 
results indicate that the number of cars necessary to serve the demand is drastically reduced (to 

about 10%) but that the relocation of vehicles between trips leads to a 10% increase in VMT. 
Schoettle and Sivak (2015) simulated AV scenarios using NHTS travel diary data, where they 

assumed that a single household vehicle could shuttle between trips made by multiple household 
members. They found that in the most extreme cases the ability of the car to autonomously return 

home would result in a 75% increase in VMT.  
 

Rather than focusing on fixed/current demand, another line of research has modified 
existing travel demand models to reflect potential behavioral and system changes. Childress et al. 

(2015) modified the PSRC (Seattle) activity-based model to study the impact of privately owned 
AVs under different scenarios. Their four scenarios were based on assumptions of reduced parking 

costs, increased operating costs, decreased value of time, and increased network capacity. Their 
results varied across scenarios with increases in VMT ranging from 4% to 20%. Fehr & Peers 

(Biersted et al. 2014) also studied the impact of personal AVs on VMT. After making assumptions 
on market penetration of the technology, level of service of transit, vehicle cost, and highway 

capacity increase, the results indicate that with a 50% market penetration, private AVs will result 
in a 5% to a 20% increase in VMT, and this number rises to 35% with full market saturation. Both 

PSRC and Fehr & Peers assume fairly marginal impacts on travel behavior in that the basic 
decision protocols and transport system are fairly consistent with the status quo. The International 

Transport Forum (2015), in their analysis in Lisbon, pushed the status quo farther in terms of the 
behavioral assumptions and the transport system configuration. They made assumptions on the 

demand for the technology, the quality of service of public transit, the trip generation process, 
parking, car sizes, and the market penetration of the technology. Their results vary by scenario, 

with their most extreme outcome arising from the case of 50% market penetration of single-
passenger autonomous taxis, which leads to a VMT increase of 90%. 

 
These examples illustrate the wide discrepancy across the literature of the predicted 

increase in VMT: from a low of 4% to a high of 90%. Further, key assumptions regarding the 
travel and activity behavior modifications are largely unknown and untested. Notably, Childress 

et al. (2015) point out that “this behavior [decrease of VOT], of course, has not been revealed or 
even stated by drivers, and at this point is speculation based on other modes of transport.” Our 

objective with this experiment is to provide more directly revealed evidence regarding the potential 
travel behavior impacts of autonomous vehicles to inform the otherwise untested assumptions of 

future studies.  

3.3 Experimental Design 
The key components and flow of the experiment are presented in figure 3. First, both subjects and 

chauffeurs were recruited and onboarded. Next came the heart of the experiment: the three weeks 
of tracked travel, with the chauffeur intervention occurring in the middle week. The literature 

(Gertler et al. 2011) suggests that such a three-week format, particularly since it is a relatively 
short time period, allows us to treat the two status quo weeks as a control for the treatment week. 

An online survey was administered before and after the three travel weeks. Each of these 
components is described in more detail below.  
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Figure 3: Flow of experiment and primary data collected 

3.3.1 Subject Recruitment and Onboarding 

Our objective was to recruit a sample that would be illustrative (albeit not necessarily 
representative) of people who would potentially own autonomous vehicles. Given resource 

constraints, we chose to target three different cohorts that represent distinct lifecycle stages: 
Millennials, Families, and Retirees. We hypothesized that the impact of AVs may vary across the 

cohorts as they have markedly different lifestyles. For example, Millennials may rely more on 
ride-hailing services than other generations. For Retirees, safety (e.g. driving at night or on 

congested highways) may be relatively more important factors. For Families, kids and their 
activities are often a priority.  

 
We recruited subjects via a number of channels. We posted advertisements to a UC 

Berkeley Facebook group, a Nextdoor neighborhood social network, and a retirement community 
newsletter. We also recruited via word of mouth from our research group and our subjects. Subjects 

who responded to our recruitment were screened to ensure that they met all of the following 
criteria: 

 

• Be 18 years or older, 

• Live within the 9-county San Francisco Bay Area, 

• Possess a current driver’s license and currently drive, 

• Own a private car and don’t currently use a chauffeur, and 

• Possess a mobile phone with location services. 
 

For subjects who met the criteria, we started the onboarding process. We continued 

recruiting until we reached our target number of 4 subjects within each cohort (and we ended up 
with 5 retirees). A key to the success of the experiment is that the subject understands what an 

autonomous vehicle is and its potential benefits, and how a personal chauffeur simulates these. For 
this purpose, subjects took part in a 30-60 minute one-on-one entrance interview via telephone. 

The household member who participated in this interview is deemed the “primary subject.” The 
primary subjects were informed about the experiment. They were given information on AVs, and 

they were informed of the potential errands that the technology will be able to run and that the 
chauffeur will be able to run these errands for them as well. They were informed that they would 

have access to 60 hours of the chauffeur service that they would allocate based on their needs, and 
that there is no limit on the number of hours per day. Hours were to be scheduled one week in 

advance and subjects had the option to modify the schedule one day in advance (or the same day 
based on the driver’s availability). The aim of the interviews was also to have subjects in a 

futuristic mindset before they are provided with the service, potentially minimizing the time it 
takes subjects to get used to their new “autonomous vehicle.” We also requested that other adult 
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household members formally participate in the experiment so that we could collect survey data 
from them and track their movements, although this wasn’t required. 

 
The subjects were asked to choose a typical three-week period void of special events such 

as holidays or travel. They were instructed to choose only one vehicle in the household to be used 
by the chauffeur and not have the chauffeur jump between multiple vehicles. This vehicle is 

deemed the “primary vehicle.” Further, they were allowed to loan the service to friends or family, 
but if doing so, they had to loan the primary vehicle along with the chauffeur. While our 

experiment does not consider the additional purchase price of an autonomous vehicle, the subjects 
are covering the full operating costs of their vehicles which is the relevant (marginal) cost 

considered in personal travel decisions once the vehicle is purchased.  
 

3.3.2 Chauffeur Recruitment and Onboarding 
Different chauffeur solutions were investigated, and the decision was to use a designated driver 

service that provides chauffeurs for hire using customer-owned vehicles (Dryver). A unique 
relationship with the company was established to ensure it could accommodate our experiment. 

The advantages of our chauffeur service include the use of the subject’s car (reducing the costs of 
the experiment and making costs and the experience more realistic for the subject) and the liability 

being covered by the company rather than the research team, which eased the approval process 
from UC Berkeley. Similar to the subjects, chauffeurs took part in a one-on-one entrance interview 

where they were instructed about the experiment they would be participating in, as well as the 
technology and all its features that they would be simulating. The chauffeur was with the owner’s 

vehicle at all times during the 60 allocated hours and served at the beck and call of the owner. The 
cost of the chauffeur service totaled roughly $1,250 per household.  

 
3.3.3 Data Collection - Tracking 

All primary subjects and other household members taking part in the study installed a tracking app 
on their smartphone (Moves). The app uses the phone’s GPS to passively and continuously record 

all trips, and distinguishes between ones made by active modes (walk and bike) and by “transport” 
modes (personal car, transit, Uber/Lyft, friend’s car, etc.) without any input from the subject.  

 
A vehicle tracking device (Automatic) was installed in the on-board diagnostic (OBD) port 

of the primary (i.e., chauffeur) vehicle. The device cost $150, raising the total per household cost 
to $1,400. The vehicle tracker collects data on the origin and destination, timing, and route of each 

trip. It consistently and continuously records and stores the data, ensuring no loss in data 
throughout the three-week period. Participating subjects were also asked to complete a log sheet 

to note any trips made by any form of public transit or by a non-personal vehicle (Uber/Lyft, 
friend’s car, etc.) to compensate for the limitations of the smartphone tracking app. Similarly, 

chauffeurs were asked to fill out a log sheet to track the number of people in the car and who was 
being chauffeured (the owner, a friend, a family member, zero-occupancy trip, etc.). Finally, data 

from all these sources were joined to form a single data set that includes all trips made by the 
primary subject (including trips made by modes other than the personal vehicle) and all trips made 

by the primary vehicle (regardless of who is in the car).  
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3.3.4 Data Collection – Surveys  
All primary subjects as well as other adult household members formally taking part in the study 

first took an online entrance survey that collected information on demographics, typical travel 
patterns, well-being, and knowledge of AVs and attitudes toward the technology. They also 

completed an exit survey, which was similar to the entrance survey and included an extra section 
that asked subjects about their experience with the simulated autonomous vehicle experience. 

3.4 Results 
We report results from the 13 primary subjects (1 per participating household), excluding any other 

participating family members from this analysis as their participation was not consistent across the 
households. While admittedly a small sample, we present what we believe are the first results from 

an experiment aimed at capturing the impact of autonomous vehicles on activity and travel in a 
naturalistic setting. Further, this serves as a beta test for a larger experiment, and the small sample 

has the advantage of being able to supplement the quantitative data with personal interactions with 
each subject. Our first subjects started the experiment on May 29, 2017, completing the experiment 

three weeks later. By August 7, 2017, all subjects had finished the experiment.  
 

3.4.1 Subject Socio-Demographics 
The beta test sample turned out to be diverse in some aspects but homogeneous in others. The 
participants collectively represented both genders (5 males and 8 females), different ages (from 19 

to 78) and cohorts (millennials, families, retirees), several income levels (from < $25K to $200K+), 
and different household sizes (from 1 to 5) and relationship statuses. However, the level of 

education was homogeneous with almost all subjects having at least some level of college 
education, and most with a college degree. This is not too surprising given that our recruitment 

effort reached a relatively wealthy retirement community, a relatively wealthy neighborhood in 
the San Francisco bay area, and UC Berkeley affiliates. The average age of the millennials was 22, 

the average age of the families was 38, and the average age of the retirees was 73. Two families 
had minors in their household, one family had a college-student child with her own vehicle, and 

the other family was a couple sharing one household vehicle. Four of the retirees were single 
females, and one was a couple. As for the millennials, three of them were single, and one often 

carpooled with her boyfriend. Relatedly, one of the millennials lived with his parents while the 
remaining had other millennial housemates. 

 
3.4.2 Impacts on Travel Behavior 

Here we present the key findings regarding how the AV simulation experiment impacted travel 
and activity behavior in our sample. The results are plotted in Figure 4 and Figure 5. Figure 4 

presents more detailed VMT results for all 13 primary subjects (in no particular order) to provide 
a sense for each individual in the sample. In this figure, we focus on the VMT of the primary 

vehicle (whether or not the primary subject was in the car) in combination with the VMT of the 
primary subject (whether or not via the primary vehicle). The VMT is broken down into three 

components: i) VMT by the primary subject, whether in the primary vehicle or not (although nearly 
all travel by the primary subject was in the primary vehicle throughout the full three weeks); ii) 

VMT of the primary vehicle when it was driven without the primary subject but with some other 
non-chauffeur person (e.g. a friend or a family member), and iii) VMT when the chauffeur vehicle 

was traveling with only the chauffeur (i.e., a zero-occupancy trip in an AV world). Figure 5 
summarizes the impacts on a number of key travel dimensions for each cohort and for the sample 
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as a whole. As can be seen in both figures, the two control weeks are fairly similar to each other 
and distinctly different than the chauffeur week. Accordingly, we focus the analysis on comparing 

the chauffeur week to the average of the pre-chauffeur and post-chauffeur weeks. The key findings 
are described below.  

 
3.4.2.1 Finding 1: VMT increased for 85% of the subjects (by amounts ranging from 4% 

to 341%), and the total VMT from the sample increased by 83% overall. 

As shown in Figure 4, while total VMT decreased slightly during the chauffeur week for the first 
subject, and hardly changed (on average) for the second subject, the remaining 11 subjects 

increased their auto travel. The increases in total VMT during the chauffeur week ranged from a 
low of 4% for one of the Millennials (from 532 to 554 miles) to a high of 341% for one of the 

Retirees (from 117 to 516 miles), with an overall increase of 83% for the entire sample (from 3,344 
to 6,118 miles).  

 
Our entry and exit surveys provide further insight into these VMT shifts. We asked a wide 

array of questions to assess views and attitudes toward autonomous vehicles. The responses from 
the entry survey suggested that subjects would most likely travel more during the chauffeur week. 

Factors leading to more travel that were ranked most influential by the subjects were: 
1) productivity, i.e. people will be able to multitask and make use of their travel time as well as 

enjoy their commute, 2) zero-occupancy vehicles, i.e. people will be able to send cars out on 
errands like picking up the groceries, parking, or refueling without having to be present in the car, 

and 3) convenience, i.e. people will not have to drive and accordingly they are willing to travel on 
longer leisure trips, or even if under the influence of alcohol and at night when they would be too 

tired or sleepy to drive themselves.  
 

Our entry and exit interviews also provide further insight. For example, during the 
recruitment interview, one of the Retirees said that she thought she would not make a good study 

subject because she spends most of her time inside the neighborhood making short trips. However, 
when provided with the chauffeur, she increased her auto travel more than three folds. In the exit 

interview, this subject initially indicated that it was the “novelty” factor that led to such an 
increase— “I had a chauffeur so I wanted to use it!” However, she followed by saying that with 

the chauffeur she was able to take longer trips that she had been wanting to take for some time but 
had not done so when she had to drive herself. So, while there was a novelty factor there was also 

the release of latent demand related to lowering the burden of driving.  
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Figure 4: VMT reported for all primary subjects over each of the three weeks 

3.4.2.2 Finding 2: All subjects sent the car off without them either for errands and/or to 
escort family/friends, which made up 34% of the total induced VMT; 61% of which 

was “zero-occupancy” miles (i.e. errands).  
At some point during the chauffeur week, all 13 of our subjects sent their “autonomous vehicles” 

out on errands, with some subjects doing it more frequently than others. There was a wide range 
of trip purposes, including looking for parking after being dropped off at a destination, sending the 

car home to wait to be called for pickup, picking up the laundry or a meal, and picking up friends 
and family while the primary subject was at work or at home. For one Millennial (a single female) 

and one Family (a family with two minor children), a substantial portion of the induced VMT was 
from trips taken while the primary subject was not in the car. For the Millennial, running errands 

(zero-occupancy vehicle) and loaning the car to friends make up 48% and 21% of the induced 
demand, respectively. For the Family, running errands and driving the kids around without a parent 

make up 22% and 69% of the increase in VMT, respectively. Looking at the entire sample, sending 
the car off without the primary subject (the two lighter colors in Figure 4) accounted for 34% of 

the total increase in VMT (i.e. 943 of the 2,277 miles induced), 61% of which occurred with only 
the chauffeur in the vehicle (i.e. 582 of the 943 miles). Confirmation via the exit interviews 

indicated that most (if not all) of this extra VMT was not simply shifted from another vehicle 
(either within or outside the household) but indeed induced VMT.   
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3.4.2.3 Finding 3: Activity patterns changed, with people taking more trips (on average 
58% more), traveling more in the evenings (on average 88% more trips after 6 pm), 

and taking longer trips (on average 91% more trips longer than 20 miles). 
The increase in VMT partially results from Finding 2 above, but also results from a shift in activity 

patterns as summarized in Figure 5. Overall, 58% more trips were taken in the chauffeur week 
(Figure 5b). Further, there was a 91% increase in trips longer than 20 miles (Figure 5c) and 88% 

more trips taken in the evening after 6 PM (Figure 5d). 
 

The entrance survey provides more insight into these changes. Related to driving at night, 
11 subjects indicated that once they own an autonomous vehicles, they are more likely to 

participate in more leisure activities after dark because they would not need to drive themselves, 
and 12 subjects indicated that they would travel more even when they are tired. Moreover, 3 

subjects, one from each cohort, indicated that they have a physical condition or anxiety which 
prevents them from traveling or limits how long they can travel at night. Related to the distance of 

trips, 11 subjects agreed that they would be more comfortable if they did not have to do the driving, 
and 12 subjects agreed that they would travel to more distant leisure activities once they own an 

autonomous vehicle. While increasing the ease of auto travel is hypothesized to impact people’s 
residential choice in the future, only two of our subjects indicated in their exit survey that they 

believe AVs will result in the relocation of their residence. 
 

3.4.2.4 Finding 4: The Impact on walking was not clearly directional, with 30% of subjects 
decreasing their walking (on average by 31% of miles walked) and 70% of subjects 
increasing their walking (on average by 37% of miles walked). 

Figure 5e presents the change in miles traveled by walking during the non-chauffeur versus 
chauffeur weeks as calculated via the smartphone tracking app. (The results are for 10 subjects 

since the smartphone app did not work for three of the subjects). It is interesting that this is the 
only result we have thus far uncovered that is not clearly directional. In this case, 7 subjects 

increased their walking distance during the chauffeur week, ranging from a 10% to an 80% 
increase; while 3 subjects, one from each cohort, decreased their walking, ranging from a 28% to 

a 32% decrease. Further, this statistic showed the greatest variability between the two non-
chauffeur weeks. The decrease in walking is hypothesized to be due to replacing walking trips 

with driving trips and also the pick-up/drop-off feature of not having to walk to access the car. On 
the other hand, the increase in walking is hypothesized to be due to the more active lifestyle that 

the AVs enabled as represented by the increase in vehicle trips. In our entry survey, when subjects 
were asked if they are concerned that AVs will decrease the exercise they get from active 

transportation, only two agreed with this statement, while the rest either disagreed or strongly 
disagreed.  
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Figure 5: Shifts in weekly travel and activity patterns for the three cohorts 
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3.4.2.5 Finding 5: There were substantial differences across the cohorts.  
While small samples, it is still interesting to note the differences we observe across the three 

cohorts included in the study. The travel behaviors in the non-chauffeur weeks seem to follow 
expectations. The retirees drove the fewest miles, although they made a higher number of trips 

(and therefore shorter trips on average). The retirees traveled substantially less in the evening than 
the other two cohorts. The millennials traveled the most miles, including (by far) the most long 

trips. The millennials were also most active in terms of walking, followed by the retirees. The 
families fell in the middle on all measures except for walking, where they were the lowest.  

 
 As with the status quo behaviors, the relative impacts of the autonomous vehicles on the 

different cohorts are also not surprising. While the retirees traveled the least in terms of VMT, 
long trips, and evening trips in the non-chauffeur weeks, they increased the most on all three of 

these measures in percentage terms. Safety, as the retirees highlighted in their exit interview, is of 
major concern to this demographic as they no longer trust their driving skills as they did before, 

especially at night. For families, in particular the ones with minor children, the factor that 
influenced the change in travel behavior the most was the freedom the autonomous vehicle gave 

the children, which made up a substantial share of the increased travel (Figure 4). All cohorts, 
however, enjoyed the convenience of having someone else run errands for them while they 

conducted other activities. The Millennials, on average, had the largest increase in number of trips 
and were the only cohort, on average, to reduce walking. 

  

3.4.2.6 Non-finding: We cannot say much about mode choice, because our subjects made 
zero use of bicycles and hardly any use of public transit or transportation network 

companies (TNCs) during the three-week experiment and zero use of these modes 
during the chauffeur week. 

Significant discussion about autonomous vehicles is related to the potential impact of the 
technology on mode choice, potentially decreasing use of public transportation and of active 

modes (biking, walking) (Malokin et al. 2015). We had hoped to provide such insight from our 
study. Unfortunately, the subjects we recruited were heavily auto-oriented, and thus we were not 

able to examine such impacts because the use of non-private auto modes (other than walking) was 
almost non-existent in our sample. We were also hoping to get information on substitution with 

TNC use (Uber/Lyft) as our subjects did report periodically using such services, but we did not 
observe such use during our study period. This is not too surprising given the fact that owning a 

vehicle is a prerequisite to participate. Our entry survey confirmed the auto-orientation. When 
asked about the mode of transport used to get to work/school, all subjects with such a trip indicated 

they use some form of personal vehicle, either as a driver or a passenger. Moreover, in the entry 
survey, subjects were presented with scenarios (going to school/work, dinner with friends, grocery 

shopping, etc.) where they had to choose between public transit and an autonomous vehicle, and 
they uniformly chose autonomous vehicles over public transit. Nevertheless, it is noteworthy that 

while there were a few transit trips recorded outside of the chauffeur week, there was zero use of 
public transit recorded during the chauffeur week.  

 
3.4.3 Reflections on the Experiment Itself 

A critical question is how successful this experiment was in how well it was able to mimic what 
life may be like with an autonomous vehicle. To get at this, in the offboarding process we asked a 

number of specific questions in the survey, asked an open-ended question in the survey, and spoke 
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directly with a number of the subjects.  

When asked how much subjects agreed with the statement “the experiment closely 

replicated life with an autonomous vehicle,” four subjects agreed and one strongly agreed, while 
another four disagreed and two strongly disagreed, and one subject felt neutral. The use of the 

word “closely” may have been too strong as in our interviews with the subjects after the 
experiment, almost all subjects said that the experiment helped them get an idea of how life with 

an autonomous vehicle may change (or not change) their lives. Perhaps “reasonably” would have 
been a better word choice. 

 
One of the main issues people had was regarding the chauffeur. The presence of a human 

in the car detracted from the feeling that it was an autonomous vehicle. For example, some subjects 
felt guilty about sending the chauffeur on errands like taking care of their dirty laundry or having 

the chauffeur sit in the car doing nothing for long periods of time waiting for the next trip. Another 
chauffeur-related issue was that some subjects had multiple chauffeurs assigned during their 

chauffeur week, and there was an adjustment to each chauffeur. While the vast majority of our 
chauffeurs lived up to the “professional” claim of the driving service, there were issues with 

chauffeurs including reported aggressive driving, not showing up on time, and in one case causing 
a fender bender.  

 
Another issue was the 60-hour time budget. An autonomous vehicle will be available 24/7 

and not only 60 hours a week. We asked the subjects to submit a plan to allocate their 60 hours a 
week in advance so that we could schedule the chauffeurs. While they were able to make relatively 

dynamic adjustments to the schedule (e.g., a few hours in advance), some reported that pre-
planning their week took away the spontaneity that autonomous vehicles offer.  

 
Finally, there was a novelty issue. Subjects felt that one week was not enough to really get 

into a routine and a lifestyle in which they owned an autonomous vehicle. For some subjects, 
although they already knew they could send the chauffeur on errands, it took them a couple of days 

to internalize the idea and actually do so.  
 

 With all these limitations, however, subjects still felt that they learned something from the 
experiment, and that they got a better sense of how their life might be once autonomous vehicles 

become available. In the exit survey, one Millennial summarized his experience as: “with all the 
limitations of the experiment, I definitely felt the benefits of a self-driving car. I noticed that I 

reach work less tired, I noticed that I can do work on my way back home and not worry much 
about traffic jams, and I noticed that my commute overall feels more pleasant.” 

 
 Another Millennial highlighted the multitasking potential: “A self-driving car would be 

super helpful for multitasking! I would use self-driving cars a lot more for thoughtless activities 
that don't need me present. One thing that I noticed was that I was willing to use my car a lot more 

frequently to accommodate my friends and family. It also made going out and drinking a lot 
easier.” 

 
In their exit survey, a Family mentioned what, to them, was the most important benefit of 

having the autonomous vehicle: “I spend a lot of time in the car driving my kids around to 
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activities. Having a self-driving car would enable me to spend more time on work and would afford 
my kids more freedom.” 

 
 Finally, a Retiree reported: “At my age, I am looking forward to the independence a self-

driving car will provide as my driving skills decline. I believe self-driving cars will improve safety 
in driving, a real boon.” 

3.5 Conclusion 
Researchers seem to agree that autonomous vehicles will increase individual vehicle-miles 

traveled and change travel and activity patterns. However, the predicted magnitude of the VMT 
increase varies considerably and the ways in which people may change activities (number, 

location, duration, type, timing, etc.) are largely uncertain. Our objective was to provide insight 
into these questions by employing an experiment to project people into a futuristic environment 

via the use of chauffeurs. From the experiment, we are able to provide a new kind of data to shed 
light on these issues. While our sample is small, it represents real data from real people making 

adjustments in their everyday lives. We found an 83% overall increase in VMT. The number of 
long trips (>20 miles) and trips after 6 pm increased by 91% and 88% respectively. Retirees were 

the cohort with the largest increase in these two trip types (175% and 246% respectively). 21% of 
the increase in VMT was a result of “zero-occupancy” vehicles, where subjects sent their chauffeur 
on errands. For active transport, namely walking, there was a bidirectional impact in that 30% of 

the sample reduced their walking and 70% increased their walking. Comparing the unique impact 
the chauffeur service had on the travel behavior of the different cohorts, we observe unsurprising 

differences. The retirees, for example, benefited from the ability to travel at night and on longer 
trips without having to worry about safety. For families, children were chauffeured to activities 

without their parents, giving the children more freedom to travel and the parents more time to 
focus on other activities. These results provide new insight to the growing body of knowledge 

regarding our future with autonomous vehicles. Future work includes refining the experiment 
based on this beta test, increasing the size and diversity of the sample, and estimating travel 

demand models in order to quantify changes in utility under autonomous vehicle scenarios.  
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Abstract 
To explore potential travel behavior shifts induced by autonomous vehicles (AVs), we ran an 
experiment where we provided personal chauffeurs to 43 households in the Sacramento area to 

simulate life with an AV. Like AVs, chauffeurs took over driving duties and could be sent out to 
run errands. We recruited households among the participants of the Sacramento Area Council of 

Governments’ 2018 household travel survey. Households were stratified by weekly vehicle miles 
traveled (VMT) and sampled to be diverse in their demographics, modal preferences, mobility 

barriers, and residential location. Thirty-four households received 60-hours of chauffeur service 
for one week and nine households received 60 hours per week for two weeks. Smartphone-based 

travel diaries were recorded for the chauffeur week(s), one week before, and one week after. 
During the chauffeur week(s), overall VMT increased by 60%, over half of which came from 

“zero-occupancy” (ZOV) vehicle trips (when the chauffeur is the only occupant). The number of 
trips made in the system increased by 25%, with ZOV trips accounting for 85% of these additional 

trips. There was a shift away from transit, ridehailing, biking, and walking trips, which dropped 
by 70%, 55%, 38%, and 10%, respectively. Changes in travel behavior varied across the sample; 

households with mobility barriers and those less auto-oriented had the greatest increase in VMT, 
while families with kids had the lowest. The results highlight how AVs can enhance mobility, but 

also bring to light the potential detrimental effects on the transportation system and the need for 
policy on ZOVs.  
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4.1 Introduction 
While the development of autonomous vehicle (AV) technology is well underway, governments 

are lagging behind in terms of planning and legislation. Guerra (2015) reviewed the regional 
transportation plan (RTP) of the 25 most populous U.S. major cities and found that only one 

included any mention of AVs. Interviewing planners at the 25 metropolitan planning agencies 
(MPOs), he found that two of the main reasons for the lack of inclusion of AVs in RTPs are that 

planners do not believe the impact of AVs will be profound and that the impacts are not certain 
enough to make credible planning efforts. Relatedly, Wong and Shaheen (2020) looked at the 

actions taken by states across the U.S. in response to AVs and found that policymakers have 
primarily focused on safety, testing, and infrastructure. However, the potential changes in travel-

related behaviors, which is a critical factor in the technology’s impact on the transportation system, 
has not received enough attention (Wong and Shaheen, 2020). In this study, we seek to improve 

the understanding of the impact of AVs on travel behavior, and consequently the transportation 
system, helping policymakers to be proactive with their policies. 

 
The literature indicates that existing implementations of autonomous features (levels 2 and 

3) in the vehicle fleet are leading to more travel (e.g. Hardman et al., 2019). Our focus is on levels 
4 and 5, which have the potential to result in the most radical travel behavioral shifts as they can 

operate without human presence or intervention in some (level 4) and all (level 5) conditions. The 
two methods used to explore travel behavior shifts relevant to our study are (i) based on the 

analysis of survey data and (ii) microsimulations and travel demand models. In survey studies, 
subjects are usually asked to indicate their preferences, decisions, and potential shifts in their travel 

behavior under hypothetical AV future scenarios. On the other hand, for studies based on 
microsimulations, researchers modify existing models to incorporate AV options and simulate an 

AV future. This requires making assumptions on travel behavior changes caused by the 
technology. The two methods have been used to explore long-term changes in travel related 

behavior such us residential and work location choices and short-term changes such as daily 
activity patterns. For instance, simulation studies consistently find that the introduction of (shared) 

AVs will lead to an increase in vehicle miles traveled (VMT) (e.g., Childress et al., 2015; Taiebat 
et al., 2019), the number of vehicle trips (e.g., Vyas et al., 2018; Bernardin et al., 2019), and the 

average trip length (Thakur et al., 2016; Auld et al., 2018). Moreover, the literature indicates that 
AV options will likely lead to a decrease in transit ridership (e.g., Kröger et al., 2018; WEF, 2018), 

largely due to the assumption made on the reduction of AV riders’ value of time (VOT), which are 
backed by findings from survey studies (e.g., Malokin et al. 2019; Zhong et al. 2020). 

 
We contribute to this literature by quantifying changes in short-term travel behavior. Rather 

than using surveys or simulations, however, we propose a different approach. We build and expand 
on a previous pilot we ran in the San Francisco Bay Area (chapter 3), and administer an experiment 

that utilizes personal professional drivers (“chauffeurs”) to simulate life with privately owned 
AVs. Just like an AV, a personal chauffeur takes over driving duties and can be sent out to run 

errands. The goal of the experiment is to enable study participants to experience the more salient 
features of an AV, namely the driverless feature, and act directly on how their daily travel and 

activities may change in an AV future. This allows us to study and quantify such potential shifts 
and compare our results to findings from the literature. Our results can also inform assumptions 

being made in AV-focused microsimulations. We are able to highlight aspects of travel behavior 
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that have not received enough attention, such as zero occupancy vehicle (ZOV) trips and the 
potential benefits to less mobile groups such as the elderly and handicapped.  

 
The remainder of the paper is organized as follows: first we outline the methodology used 

and describe the experimental design and data collection process. Then we summarize the key 
findings and explore the impact of the treatment period on the results. We then discuss the policy 

implications of the findings and conclude with a summary and future research directions. 

4.2 Methodology 
Building on our previous, smaller 13-household pilot in the San Francisco Bay Area (chapter 3), 
we carried out an expanded study of 43 households in the Sacramento area, in which we 

incorporated several improvements over the pilot study. First, to obtain a more diverse sample in 
terms of demographics, modal preferences, and mobility barriers, we partnered with the local 

MPO, the Sacramento Area Council of Governments (SACOG), who gave us access to travel 
survey data for a representative sample of households in the SACOG region, which consists of six 

counties in California – Sacramento, Yolo, Yuba, Placer, Sutter and El Dorado. We also provided 
a portion of our households with an extended chauffeur period (two weeks) to explore the impact 

of the treatment period on the results. Finally, we tracked all members and vehicles in the 
household and used a different phone tracking app to record a richer dataset that includes trip 

purpose and more detail on modes (private vs shared), parking, and vehicle occupancy. 
 

The flow of the experiment is illustrated in figure 6 below. First, subjects were screened, 
recruited, and onboarded. Next, households began recording their detailed travel diary via a 

smartphone app and a vehicle tracking GPS device. During the first (control) week, travel diaries 
were recorded under status quo conditions. Then households received one or two weeks of the 

chauffeur service. In total, 34 households received one week of the service and nine households 
received two weeks. The two-week chauffeur period helps explore if changes in travel behavior 

persist as the treatment period is extended and the novelty factor fades. After the chauffeur 
week(s), travel diaries were recorded for a second control week. Travel diaries were therefore 

recorded for the chauffeur week(s), one week before, and one week after. A third non-chauffeur 
week of travel diary was also available for each household from the SACOG’s 2018 household 

travel survey data (SACOG, 2018) and was used as an additional control week. An online survey 
was administered before and after the three to four weeks of travel tracking to collect data on 

demographics, regular travel, attitudes and intentions regarding AVs, and (post-chauffeur) 
reflections on the experiment.  

 

 

Figure 6: Flow of experiment and primary data collected 
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4.2.1 Sampling Strategy and Subject Recruitment 
Our sampling strategy targeted a wide array of dimensions related to household mobility and 
demographics. Our sampling frame was the list of 4,010 households that participated in SACOG’s 
household travel survey, for which we had access to their one-week travel diary data. We further 
limited our sample frame to vehicle owners, as this was a prerequisite to participating in the study. 
This population was then stratified according to the household VMT. This dimension was chosen 
because it potentially reflects the general lifestyle and modality style adopted by a household. 
Households were segmented into three categories using the one-third quantile of their VMT 
recorded in SACOG’s household travel survey. Within each of the three VMT levels, we targeted 
respondents with diverse demographics and lifestyles according to their household composition 
(non-family single and multiple occupancy, families with and without children, non-working 
elderly aged 60 and above), income, mode use, and residential location (urban, suburban, rural).  
 

We invited 862 households to participate in the study. Households were recruited in the 
order of their response to our invitation while trying to maintain the diversity of the sample based 
on the demographic characteristics highlighted above. Households interested in participating took 
part in a 20-40 minute phone interview where we described the details of the experiment, what an 
AV is, and how a chauffeur can simulate owning one. They were informed that, during the 
chauffeur week(s), chauffeurs would take over driving duties and could run errands that AVs will 
be able to perform; they would be provided 60 hours of chauffeur service per week that they could 
then allocate based on their needs. Hours were allocated one week in advance and could have been 
modified up to a day in advance (and even on the same day, based on the driver’s availability). 
Furthermore, chauffeurs were assigned to a single household vehicle that was deemed the 
household “AV.” Any “AV” trips, including lending the service to friends and family were 
performed using the household “AV.” Note that during the chauffeur week(s) households did not 
receive rides for “free”; even though subjects did not pay for the professional driver service, they 
still paid for out-of-pocket costs they would incur in an AV future, including all marginal costs for 
parking, tolls, and gas, as well as the fixed costs of auto ownership. 

 
4.2.2 Data Collection 
To understand changes in subjects’ travel behaviors, a detailed travel diary and household level 
data are required. For this purpose, all household members 18 years of age and older and all 
household vehicles were tracked. For vehicle tracking, the GPS device “Automatic” was installed 
on all household vehicles. It is necessary to track all household vehicles to explore the changes in 
VMT for the entire household and the shift in vehicle usage between household vehicles during 
the chauffeur week(s). 
 

For household members tracking, the GPS-based smartphone app “rMove” was used11. 
The app collected detailed information on every trip by nudging subjects to answer a trip survey 
that recorded information on their mode choice, trip purpose, number of individuals traveling with 
the subjects, parking type, etc. Chauffeurs were also instructed to install the app and answer the 
survey questions for all trips made during their shifts, allowing us to record detailed information 

 
11 This is the same app which was used in the SACOG household travel survey. See SACOG (2018) for details. 
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on trips where the chauffeur was the only individual in the car (equivalent to zero occupancy 
vehicles (ZOV) in the future).  
 

Finally, to complement the travel diary data, subjects filled entry and exit surveys that 
provide demographic information, as well as lifestyle questions and perceptions on AVs that could 
help further explain changes in travel behavior. The exit survey had an extra section that asked 
subjects about their “AV” experience. 

 
The average per household cost for a chauffeur week in this study was $2,500, almost 

double that of the pilot ($1,400), limiting the initial sample size for this study to 50, with 7 
households that had to suspend the experiment due to the COVID-19 pandemic in early 2020. The 
increase in cost was mainly due to the change in the chauffeur service provider (required by UC 
liability requirements), which increased the hourly cost from $20/hour in the earlier pilot to 
$35/hour to this larger experiment. Tracking all household vehicles (requiring addition Automatic 
devices) and using the more comprehensive rMove app to collect a richer dataset also contributed 
to increased experiment costs. 
 
4.2.3 Data Cleaning 
With household vehicle data being recorded by Automatic and rMove, there were inconsistencies 
in some trips that had to be rectified. Inconsistencies were eliminated between the data sources, by 
a process that carefully investigated all trips recorded in order to add trips missed by one data 
source and captured by the other, delete trips made by chauffeurs using the household vehicle for 
purposes that were not related to the study (e.g. going on a break to grab lunch), and combining 
data collected with the smartphone rMove data from the chauffeurs with those collected from the 
household members, namely adding “zero occupancy vehicle” trips and “friends and family” trips 
(see definition for the latter in the next section of the chapter). Finally, the second non-chauffeur 
week for three households was dropped as it was affected by the shelter-in-place order caused by 
the COVID-19 pandemic. We note, however, that the shelter in place order only impacted the final 
sample size, but not the results as the weeks that were affected by the shelter in place order were 
not included in the analysis. 

4.3 Results 
In this section, we present the key findings from the experiment. Note these definitions that are 
used throughout: 
 
• Primary (adult) household members are identified as all members who are at least 18 years old 

and have access to household vehicles (i.e. do not depend on other household members to 
travel in a household vehicle such as underaged kids or elderly parents). They are also eligible 
to record their travel on rMove. 

• Friends and family (FAF) are defined as household members that are not primary (e.g. younger 
than 18) or friends and family members that do not belong to the household. Their travel is not 
recorded by the smartphone app as this was installed only by the primary household members. 

• For every household, the travel behavior statistics that are reported are based on the changes 
in their travel behavior measures (e.g. VMT) between the chauffeur and non-chauffeur weeks. 
For instance, if a household traveled 100 and 120 miles in the first and second non-chauffeur 
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week respectively, and 150 miles in the chauffeur week, then they traveled 150	–	((100 +
120)/2) 	= 	40 more miles during the chauffeur week. 

• All results are based on our sample and are not weighted to the population. (Discussed later in 
relation to self-selection bias.) 

4.3.1 Sample Statistics 
Table 13 summarizes the demographics of the population in the SACOG region, SACOG travel 
survey sample, the subset of vehicle owners in SACOG travel survey sample, households invited 
to participate in our study, and our study participants. Summary statistics for all samples, except 
for the overall SACOG region and SACOG travel survey sample, are reported for car owners only, 
as this was a requirement to participating in the study.  

 Table 13: Summary of the population demographics 

 
SACOG Region 

(ACS 2018) 

SACOG HHTS Invited 
Sample 

Study 
Sample Complete 

Dataset 
Vehicle 
Owners 

Households 877,911 3,956 3,708 862 43 
Persons 2,463,103 8,191 7,827 1,955 76 
Gender      
Male 48.4% 45.3% 45.7% 46.7% 38.7% 
Female 51.6% 54.7% 54.3% 53.3% 61.3% 
Age      
Less than 34 yrs.  31.1% 24.5% 24.0% 30.7% 25.0% 
35 yrs. to 54 yrs.  33.5% 31.5% 31.6% 38.1% 46.1% 
More than 55 yrs. 35.4% 44.0% 44.3% 31.2% 28.9% 
Race      
White alone 65.9% 71.7% 72.8% 71.1% 70.3% 
Black or African American alone 6.8% 4.7% 4.0% 4.3% 6.3% 
American Indian and Alaska Native 
alone 0.7% 2.3% 2.2% 2.0% 0.0% 

Asian or Pacific Islander 13.8% 12.1% 12.2% 14.3% 18.8% 
Some other race alone 6.4% 2.7% 2.7% 1.9% 0.0% 
Two or more races 6.5% 6.4% 6.2% 6.5% 4.7% 
Ethnicity      
Not Hispanic or Latino 78.0% 92.1% 92.2% 89.8% 92.1% 
Hispanic or Latino 22.0% 7.9% 7.8% 10.2% 7.9% 
Education       
Less Than Bachelors' 70.1% 66.4% 54.4% 50.2% 12.1% 
Bachelors' or more  29.1% 33.6% 45.6% 49.8% 87.9% 
Household Income      
Less than $75,000 54.6% 45.9% 43.3% 39.4% 25.6% 
$75,000 - $150,000 29.4% 29.8% 31.5% 34.2% 41.0% 
More than $150,000 15.9% 24.3% 25.2% 26.3% 33.3% 
Vehicle Ownership       
No vehicle available 6.3% 6.3% 0.0% 0.0% 0.0% 
1 vehicle available 31.2% 43.2% 46.1% 36.7% 39.5% 
2 vehicles available or more 62.5% 50.5% 53.9% 63.3% 60.5% 
Employment Status      
Employed  61.3% 66.4% 67.4% 24.6% 68.4% 
Unemployed  38.7% 33.6% 32.6% 75.4% 31.6% 
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Overall, the characteristics of the participating households are similar to those of the 

population in the SACOG region and HHTS respondents. The main difference is that our sample 
includes a higher proportion of females and is more educated and affluent. However, this was not 
the case for households invited to participate, indicating that females were more willing to 
participate in the study. The same is true for more educated and higher income households, who 
account for a higher proportion of participants in our sample as compared to the larger SACOG 
region. This is most likely an effect of the higher cooperation rate among these groups and the 
self-selection of certain respondents who are more interested in the research topic (and less 
concerned about any potential risks the experiment might expose them to). It is possible that these 
observable demographic characteristics might be correlated with other unobservable 
characteristics (e.g. lifestyles, attitudes towards the adoption of technology and willingness to trust 
others) which motivated our sample to participate in this study. Consequently, we chose not to 
weight our sample based on demographic characteristics to the broader population of the SACOG 
region as the generalizability of results to the broader population might not be possible and could 
be potential misleading; this is discussed in more detail in a later section where we explore 
potential sources of bias in the study.  

 
4.3.2 Changes in Travel Behavior 
Table 14 summarizes results from this study, the pilot (chapter 3), and relevant statistics from 
studies that explore the impact of privately owned AVs on travel behavior. 

Table 14: Summary of results 

 This Experiment Literature 

 All trips  Excluding 
ZOV trips Pilot Remaining 

Literature Citations 

Average change in VMT  +60% +33% - +1% to +79% 
Childress et al., 2015 

Auld et al., 2017 
Taiebat et al., 2019 

“AV” (chauffeur car) VMT 
change +114% +68% +82% - - 

% ZOV and FAF VMT of 
total VMT 20% - - 

ZOVs account 
for 30% of 

vehicle trips 
Bernardin et al., 2019 

% ZOV and FAF VMT of 
induced VMT 54% - 34% - - 

Change in total miles 
traveled, by all modes +44% +21% - - - 

Change in total number of 
trips, by all modes +25% +3%    

      
      

 SACOG Region 
(ACS 2018) 

SACOG HHTS Invited 
Sample 

Study 
Sample  Complete 

Dataset 
Vehicle 
Owners 

Household Size      
1-person household 25.2% 38.6% 36.3% 29.4% 23.3% 
2-person household 33.1% 37.0% 38.4% 40.7% 44.2% 
3 or more person household  41.7% 24.4% 25.3% 29.9% 32.6% 
Number of household members 
under 18 yrs.  

     

One or more  33.7% 21.3% 22.1% 27.6% 27.9% 
None 66.3% 78.7% 77.9% 72.4% 72.1% 
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 This Experiment Literature 

 All trips  Excluding 
ZOV trips Pilot Remaining 

Literature Citations 

Change in average trip length 
(for all modes) +17 % +17% - +3% to +47% Kim et al., 2015a 

Auld et al., 2018 
Change in number of vehicle 
trips +39% +12% +58% +3% to +45% Kim et al., 2015 

Bernardin et al., 2019 
Change in number of trips at 
night (after 6 pm) +20% +5% +88% - - 

Change in 20+ mile trips +75% +50% +91% - - 
Change in 50+ mile trips  +81% +61% - - - 

Change in transit ridership -70% - - -9% to -70% Levin and Boyles, 2015 
Huang et al., 2019 

Change in walking mode 
share -10% -  -21% Childress et al. 2015 

 
4.3.2.1 Finding 1: Overall VMT increased by 60%, half of which came from ZOV trips. 

There were 39% more vehicle trips, 75% more trips between 20 and 50 miles, and 
81% more trips longer than 50 miles. 

 
4.3.2.1.1 Vehicle Miles Travelled 

The overall VMT increase during the chauffeur week was 60%, which includes all household 
vehicles as well as non-household vehicles (e.g. Uber, car from work, friend’s car). The increase 
ranged from a low of 3% for a family with no kids to a high of 700% for an elderly individual with 
another household member with a disability who usually commutes by transit, trips that were 
substituted by AV trips during the chauffeur week. 
 
4.3.2.1.2 ZOV and FAF Trips 

ZOV and FAF trips made up 54% of the induced demand. One source of ZOV trips was non-auto 
dependent households switching their (commute) mode from transit or biking/walking to “AV” 
and sending the car back home when parking was an issue. The majority of ZOV trips (66.4%) 
and ZOV miles (78%) were pick-ups and return home trips, which include returning home after 
running an errand or after a drop-off to avoid parking or to serve other household members. 
Running errands made up 17% and 13% of total ZOV trips and miles respectively. Shopping was 
the lowest use case for ZOVs (7% and 4% of trips and miles, respectively).  
 

Similar to ZOV trips, picking up and dropping off friends and family members constituted 
most of the FAF trips (66%) and miles (70%). Moreover, driving friends and family to run errands 
ranked second in terms of FAF trip purposes (17%) and miles (13%). Only one of our 11 
households with children in the household recorded any trips with their minor alone in the car with 
the chauffeur.  

 
4.3.2.1.3 Activity Patterns 

Table 14 summarizes the key changes in activity patterns. Interestingly, we found that, during the 
chauffeur weeks, person trips and miles only increase by 4% and 21% respectively, compared to 
25% and 44% in system wide trips and miles respectively (i.e., if ZOV trips are considered). 
Similarly, system wide, we observed a 20% increase in evening trips (trips where the start or end 
time is after 6 pm), 76% more trips with length between 20 and 50 miles, and 81% more trips 
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longer than 50 miles. However, if only person trips are considered (i.e., ZOV trips are excluded), 
these numbers drop to 5%, 50% and 61% respectively. These results indicate that ZOVs were a 
primary source of travel behavior change as they constituted the majority of the additional trips in 
the system.  
 

Moreover, during the chauffeur weeks, we observed an increase in the average and median 
length of person trips by 17% (1 mile) and 23% (0.5 miles) respectively, indicating a decrease in 
subjects’ disutility to traveling to farther locations. Looking at trip purpose, we found that social 
and recreation trips had the lowest percent increase in the number of trips (5%), but the highest 
increase in the average trip length (46%), and these results are not affected by the exclusion of 
ZOVs. On the other hand, pick-up and drop-off trips had the highest percent increase in number 
of trips (180%) and a 37% increase in average trip length. These numbers drop to 45% and 35% 
increase, respectively if ZOV trips are not considered. 

 
The entry and exit surveys provide further insight into the changes in subjects’ travel 

behavior. Factors that contributed to these changes are: 1) more relaxed travel, with 90% of 
respondents indicating that they would enjoy their travel more in an AV; 2) increased productivity 
during travel with 75% of subjects indicating that their travel would be more productive in an AV; 
3) time savings by sending out AVs to run errands with 91% of subjects agreeing with the 
statement that they would be more productive during an average week if AVs can run errands for 
them); 4) traveling when tired or under the influence of alcohol, and 5) safety. 

 
4.3.2.2 Finding 2: Households shifted their vehicle usage away from the non-AV household 

vehicles (53% decrease in VMT) and non-household vehicles (11% decrease in 
VMT) to the AV vehicle (114% increase in VMT, all numbers compared to the non-
chauffer weeks). 

During the chauffeur weeks, we saw a shift away from non-household vehicles (e.g. TNCs, car 
from work, friend’s car, etc.) and more dependency on household vehicles. For household vehicles, 
VMT increased by 66% from 12,067 to 20,085 miles, while it decreased for non- household 
vehicles by 11%, from 1,152 to 1,016 miles. Moreover, since we tracked all vehicles in the 
household, we observed the shift in use among household vehicles. During the chauffeur week, 
we observed a 114% increase in VMT for the “AV” and a 53% drop in VMT for secondary 
vehicles, with some households completely forgoing the use of the non-AV vehicles. This was 
possible because the chauffeur could autonomously shuttle between trips to serve multiple 
household member. Interestingly, when looking at vehicle usage by demographic, we found that 
the elderly and families without kids had a much higher drop in non-AV use (62% for both) as 
compared to families with kids (19%).  
 

The shift in the usage of household vehicles could indicate the potential reduction of car 
ownership in households where members can coordinate their schedules. In their exit survey, one 
subject indicated that this is how they envision their future: “we also only used one car the entire 
week as the chauffeur made it easier for both my husband and I to use the car separately during 
the day, therefore I would envision owning only one car instead of two if in the future we had a 
driverless car”.  
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4.3.2.3 Finding 3: Subjects shifted away from transit, TNCs, biking, and walking trips 
which dropped by 71%, 58%, 37%, and 13%, respectively. 

One of the most important questions regarding an AV future is the impact on mode choice. For 
this purpose, we explicitly collected data on mode choice and targeted households that rely on 
transit, slow modes, and TNCs. During the chauffeur week, households became more auto-
oriented and shifted away from other modes. In our sample, transit suffered the most during the 
chauffeur week, with transit trips and miles dropping by 71% (from 51 to 15 trips) and 90% (from 
714 to 71 miles) respectively. During the non-chauffeur weeks, there were mostly two types of 
transit trips taken by nine of the 43 households—work trips and long-distance trips (e.g. to San 
Francisco), both of which were substituted for AV trips. For work trips, the chauffeur was sent 
back home to avoid parking which was scarce and expensive in downtown Sacramento. Similar to 
transit, TNC trips and miles dropped by 58% and 63% respectively. Since AVs combine the 
attractive features of a personal car (e.g., privacy) and a TNC trip (e.g., no parking concerns), the 
latter loses much of its appeal. The same trend is observed for biking, as the number of trips and 
miles biked dropped by 37% and 38%, respectively.  
 

For walking, even though the overall number of trips and miles decreased by 13% and 17% 
respectively, the change was not uniform across households: in particular, 58% of households 
exhibited a decrease in walking miles (by an average of 42%), 28% exhibited and increase (by an 
average of 92%), and 14% did not record walking trips during the study. For households that 
decreased walking, the average weekly miles walked during a non-chauffeur week was 8 miles, 
double that of households that increased their walking trips who averaged 4 miles. Moreover, 
investigating the differences between groups further, we found that the former group had a much 
higher increase in VMT (80%) compared to the latter group (40%). This indicates that households 
that walk more are likely to substitute walking trips by AV trips. 

 
4.3.2.4 Finding 4: The AV particularly benefited the elderly and individuals with mobility 

barriers (121% and 700% increase in VMT, respectively). 
A benefit of AVs is their potential value for individuals with mobility barriers. In the entrance 
survey, 5 elderly individuals indicated that they have a condition or anxiety that limits how often 
or how long they can drive at night or on a highway. This was reflected in the fact that the elderly 
were the cohort that had the highest percent increase in VMT (121%; 101% if ZOV trips are 
excluded). Relatedly, this cohort exhibited the highest percent increase in the average trip length 
(37% increase; 45% increase if ZOV trips are excluded). Moreover, the chauffeur service also 
gave this cohort the freedom to travel more at night (74% increase; 50% increase if ZOV trips are 
excluded) and on trips between 20 and 50 miles (165%; 218% if ZOV trips are excluded) and 
longer than 50 miles (267% increase; 167% if ZOV trips are excluded). Two days after starting 
the chauffeur service, one elderly participant emailed the research team to express her enthusiasm 
about the service: “I love the chauffeur service. I’ve already gone to two places I would never have 
driven to on my own and it’s been wonderful.” Similarly, in their exit survey, when asked, after 
participating in the experiment, how they believe their life will change when AVs are the norm, 
all elderly subjects shared one of three advantages of AV—safety, the ability to explore new 
places, and going out at night: 
 
• “I would be more inclined to go out at night as well as more distant locations.” 
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• “I like the idea of picking up out of town friends, doing an activity and returning them safely 
home.” 

• “If I had a self-driving car, I would go more places, spend more time with friends, and 
participate in more activities. I often pass up opportunities now because I don’t feel 
comfortable driving in heavy traffic or at night or in unfamiliar places.” 

Our sample also included a particularly interesting household consisting of an elderly 
member and another member with a disability that prevented them from driving a car. The 
chauffeur service opened up a new world for this household, increasing their VMT by 700% and 
their average trip length by 107%. They also traveled more at night, making on average 2 evening 
trips during the chauffeur week compared to 0.5 trips in a non-chauffeur week. Similarly, they 
made an average of 5 trips longer than 20 miles and 1.5 trips longer than 50 miles during a 
chauffeur week, compared to 2.5 trips longer than 20 miles and no trips longer than 50 during a 
non-chauffeur week. 

 
The elderly household member exhibited a similar behavior to other elderly participants 

described above and increased their VMT by ~350%. However, the service was particularly life 
changing for the individual with the disability who went from being a captive transit rider to having 
the freedom to travel anywhere and anytime via their personal car. During non-chauffeur weeks, 
the individual relied on transit for all trips (~200 miles per week), primarily for commuting, and 
had virtually zero VMT. During the chauffeur weeks, they switched to traveling via their AV, 
cutting their one-hour commute by half and raising their VMT to ~350 miles per week. They also 
traveled 156 miles (via all modes) for social activities during an average chauffeur week compared 
to 74 miles for an average non-chauffeur week. To this individual, an important advantage of the 
AV was not being tied to the transit schedule. In their exit survey, they highlighted this by 
mentioning that an AV will change their life by allowing them to “go more places and go at 
different times.” 

 
It is difficult to objectively measure quality of life and how having access to an AV affects 

it. However, the increase in VMT, average trip length, and night trips highlight how AVs would 
allow retirees and individuals with mobility barriers the freedom to travel and explore new and 
farther locations, and at more flexible times of day without having to compromise their safety. 
These results, supported by subjects’ exit survey responses highlighting the benefits of AVs, 
suggest that the greater accessibility provided by the chauffeur service (i.e., “AV”), manifesting 
through farther destinations, is leading to an enhanced quality of life. 

  
4.3.2.5 Finding 5: Changes in travel behavior were the largest for the elderly and single 

occupancy households (121% and 113% increase in VMT, respectively) and lowest 
for families with kids (17% increase in VMT). Non-auto dependent households also 
observed a substantial shift in travel behavior as they transitioned to auto 
dependency (102% increase in VMT). 

Even though we had a relatively small sample, it was interesting to see how the response to the 
chauffeur service differed across multiple dimensions and lifestyles. During the chauffeur week, 
the elderly subjects had the highest increase in VMT (121%; 101% if ZOV trips are excluded) 
followed by single occupancy households (113%; 58% if ZOVs trips are excluded). However, 
single occupancy households had the highest increase night trips (93%; 41% if ZOVs trips are 
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excluded), trips between 20 and 50 miles (153%; 50% if ZOVs trips are excluded), and trips longer 
than 50 miles (500%; 300% if ZOVs trips are excluded). On the other hand, families with kids 
had, by far, the lowest increase in VMT (18%; 10% decrease if ZOV trips are excluded) since this 
demographic has the least flexible schedules as the kids’ activities and needs dictate the 
household’s schedule. 
  

Looking at heterogeneity by VMT category on which our sample was stratified, we found 
that the lowest VMT category observed the highest percent increase (137%; 110% if ZOV trips 
are excluded) in VMT, followed by the medium VMT category (93%; 52% if ZOV trips are 
excluded), and the high VMT category (27%; 5% if ZOV trips are excluded). This is reasonable 
as the lowest VMT category is the least active in terms of overall miles and VMT. For this group, 
which is dominated by the elderly and single occupancy households, the advantage of having an 
AV is manifested in the ability to live a more active lifestyle. On the other hand, households in 
high VMT category (dominated by families with and without kids) already spend a significant 
portion of their day on the road (on average 74 miles per day during a non-chauffeur week), so 
there is little room to add more travel.  

 
We also split the sample into 13 high income households ($150k+), 16 medium income 

households ($75k - $150k), and 10 low income households (< $75k)12. We found that low income 
households had the highest increase in VMT (63%; 28% if ZOV trips are excluded) followed by 
medium income households (54%; 33% if ZOV trips are excluded) and high income households 
(36%; 13%). We note that results might be driven by the fact that the high-income category was 
dominated by six families with kids and four without kids as opposed to one retiree and two single 
occupancy household. Similarly, 10 of the 13 households belonged to the medium (5) and high (5) 
income categories. We note here that, as clear from the results above, there is confounding between 
the different dimensions considered, and more information and a larger and more diverse sample 
is needed to separate the effect for each of these dimensions. 

 
We also explored heterogeneity by residential location. To assign each respondent a home 

location type, we relied on Salon (2015), who classified all census tracts in California into five 
categories – central city, urban, suburban, rural-in-urban and rural. For brevity, we collapsed these 
labels into three categories – urban (urban and central city), suburban, rural (rural and rural-in-
urban). Results indicated that suburb residents had the highest increase in VMT (75%; 48% if ZOV 
trips are excluded), followed by rural residents (47%; 21% if ZOV trips are excluded) and urban 
residents (34%; 9% if ZOV trips are excluded).  

 
Finally, we look at the response of households based on their auto-dependency. We 

classified non-auto dependent households as those that relied on a non-auto mode for commute or 
used non-auto for at least 15% of their trips, which applied to 21 (about half) of our households. 
The rest (22 households) where classified as auto dependent. In terms of VMT and total mile 
traveled via all modes, there was a substantial difference between the two groups with non-auto 
dependent households increasing their VMT and total miles traveled by 102% (68% if ZOV trips 
are excluded) and 70% (42% if ZOV trips are excluded) compared to a 27% (7% if ZOV trips are 
excluded) and a 20% (1% if ZOV trips are excluded) increase for auto dependent households. 
However, in terms of percent increase in total number of trips, the difference is less than 5% (27% 

 
12 four households preferred not to answer 
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and 23% for the two groups respectively and drops to 5% and 2% respectively if ZOV trips are 
excluded). This further highlights the impact owning an AV will have on travel behavior, 
particularly for households that are multimodal. These households not only became more auto-
oriented, but the average trip length also increased by 35% as they switched to AV trips as opposed 
to no change in the average trip length for auto dependent households. 

 
4.3.3 Discussion of Potential Biases 
A primary question about this study is whether our estimates, particularly any reported increases 
in VMT, are suspected to be higher or lower of what could be reasonable to expect in reality. In 
this section, we discuss various factors and provide evidence for sources of bias that could affect 
the estimated results of this study in either direction, including 1) the presence of the chauffeur as 
opposed to a real AV, 2) the “novelty” factor of having access to a chauffeur, 3) the non-stable 
conditions across weeks and shifting activities from non-chauffeur weeks to chauffeur weeks, and 
4) the 60-hour chauffeur service limit. Additional structural factors to the transportation system 
(e.g., levels of congestion and introduction of other new technologies, modes, and business 
models) could affect the true impacts of AV deployment, but these are outside of the scope of the 
study.  
 

We first address aspects of the study that could lead to downward bias (i.e., underestimation 
of the impacts of AV deployment) and then investigate those that could lead to upward bias (i.e., 
overestimation of the impacts of AV deployment).  

 
4.3.3.1 Sources of downward bias 
4.3.3.1.1 Human Driver Instead of a Real AV 

The impact of the presence of the chauffeur was pointed out by many subjects in their exit surveys. 
For instance, we asked subjects if they would have used the car more often if it were a real AV 
and 70% of subjects indicated that they somewhat/strongly agree with the statement while 23% 
somewhat/strongly disagreed, and the rest were neutral. Moreover, 52% somewhat/strongly agreed 
that the presence of the chauffeur made them, or other passengers feel uncomfortable. This human 
factor led subjects to avoid making trips in an attempt to escape interactions with the driver. 
Similarly, the feeling of guilt for “inconveniencing” the driver lead subjects to avoid sending out 
their chauffeur to run errands which they would have done had it been a real AV. Moreover, one 
advantage of the self-driving car is productively using in vehicle time, freeing up one’s schedule 
for more activities. The presence of the chauffeur limited this advantage as subjects felt guilty 
about ignoring the driver or uncomfortable having private conversations in their presence. Below 
are a few direct quotes from the exit surveys that highlight the behavior:  
 
• “It was very hard NOT to become personally involved with the chauffeur, especially since 

mine was a young woman. I even canceled one late-night trip because I wanted her early the 
next morning.” 

• “I definitely decided not to use the service at night when I get home from work around 03:00 
AM. I probably would have used the service for more tasks such as picking up small items 
from the store etc.” 

• “It [the chauffeur] just didn’t seem like a self-driving car to me. I wasn’t comfortable talking 
to other people in the car or on the phone about personal topics, which I do often.” 
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4.3.3.1.2 The 60-hour Chauffeur Limit 

Limiting the chauffeur service to 60-hours per week takes away from the spontaneity a true AV 
will provide, a sentiment many subjects highlighted. Subjects indicated that in many instances, 
they wanted to make spontaneous last-minute trips but could not because they did not have the 
chauffeur booked during these hours. This includes additional (ZOV) trips that subjects will make 
in the future when they have 24/7 access to their AVs. 
 
• “I feel I would be more inclined to constantly run small errands using a self-driving car, i.e. 

picking up ice cream at the last minute etc.” 
• “The time restriction may have impacted our results a little bit, only because with an active 

teenager and our busy lives it's hard to fully predict when we'll need access to a car.” 
• “In a few instances, we sent the driver away only to realize we wanted to go somewhere shortly 

after.” 

4.3.3.1.3 The Novelty Factor 

The novelty factor can actually play a role in either direction as a source of potential bias in the 
results of the study (as discussed in the next section, for the potential “upward” bias of the novelty 
factor). On one side, since the chauffeur period is relatively short, there is a learning curve for 
subjects before getting used to their new lifestyle and using the chauffeur as a real AV. Moreover, 
there might be effects that take longer to for subjects to experience. For example, the lower burden 
of driving and enhanced accessibility might encourage AV owners to travel to farther locations 
and explore new and unfamiliar destinations. This is likely to translate into a downward bias 
affecting our results. In the exit interview, we asked subjects if “one (two) week(s) with a chauffeur 
was not enough to get into a routine and adjust to a life where I own a self-driving car”. Results 
indicated that 66% agreed/strongly agreed, 17% disagreed/strongly disagree, and 17% were 
neutral. The novelty factor particularly impacts ZOV trips as people need time to feel comfortable 
with their driver and figure out how running errands works best for them, biasing results 
downwards. Subjects also highlighted this issue in their exit survey: 
 
• “I understand it had to be limited to one week, but it takes a couple of days to get used to it 

[the chauffeur service].” 
• “A week wasn’t enough for me to feel like the chauffeur setup was an autonomous vehicle” 
 

4.3.3.2 Sources of upward bias 
4.3.3.2.1 Unstable Conditions Across Weeks and Shifting Activities to the Chauffeur Week(s) 

To ensure that the changes in travel behavior are caused by the chauffeur service and not by 
confounding factors, conditions across weeks should be stable. In other words, there should be no 
inherent differences between weeks that would result in biases (e.g. a vacation day during one 
week that is not present in other weeks). Pre-experiment, we control for this condition by requiring 
subjects to select a typical three-week (up to four-week) period with no special events such as 
holidays or travel. Post experiment, testing this condition for all weeks is not possible, so the 
condition is assumed to hold. However, we can get a better idea of how realistic this assumption 
is by testing the stability of conditions between the non-chauffeur weeks. We ran a Paired t-test 
and a Wilcoxon signed rank test (the non-parametric version of the Paired t-test) that compared 
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the total miles traveled via all modes for the two non-chauffeur weeks. Results from both tests 
indicate that the difference between weeks is not statistically significant (p-values of 0.33 and 0.15 
for the paired t-test and the Wilcoxon Signed Rank test, respectively).  
 

Another potential source of bias is subjects shifting activities from the non-chauffeur weeks 
to the chauffeur week. However, since the difference between non-chauffeur weeks is not 
statistically significant, it gives us confidence that this effect is minimal, unless subjects shifted 
the same amount of activities from both weeks to the chauffeur week(s). This is unlikely given 
that when asked if they “rescheduled some of my activities from the non-chauffeur weeks to the 
chauffeur week”, 52% disagreed/strongly disagreed while 34% agreed/strongly agreed, and the 
rest were neutral.  

 
Moreover, we used the one-week travel diary from SACOG’s travel survey as an additional 

control since subjects’ travel behavior during that week was not influence by having access to the 
chauffeur service. We dropped 6 households whose household structure changed between the two 
study periods (e.g., someone moved in or out). Running the same hypothesis tests above, we found 
that the difference between miles traveled using all modes in the average of non-chauffeur weeks 
and the SACOG travel survey week was not statistically significant (p-values of 0.40 and 0.37 for 
the paired t-test and Wilcoxon signed rank test, respectively). 

 
4.3.3.2.2 The Novelty Factor 

The novelty factor can also bias results upward as households have the unique opportunity of using 
a chauffeur service for one (two) week(s) only, thus opting to overuse the service and take 
advantage of it to the fullest: “I think I was trying to imagine ways to make use of the time that I 
otherwise wouldn’t have done this week even if it were a self-driving car simply because I only 
had the service for one week.” We investigate the novelty factor first by comparing effects on the 
one chauffeur versus two chauffeur week households and then by examining non-typical trips and 
extreme behavior.  
 
4.3.3.2.2.1 One vs. Two Chauffeur Week Households 
If the novelty factor results in a larger spike in travel behavior change, then we would expect 
subjects who only had one week of chauffeur service to have a higher per week increase in VMT 
compared to those who received two weeks (as two chauffeur week households can spread 
additional activities over the two weeks). Comparing the two treatment groups, we find that 
households who received two weeks of the chauffeur service actually had a higher percent increase 
in VMT (80%) compared to the one-week households (56%). However, this may be due to the fact 
that the two-week households are dominated by low VMT category households. Therefore, even 
though the overall percent increase in VMT is higher for two chauffeur week households, the 
overall absolute increase in VMT is almost identical (~180 miles).  
 

Examining the difference between the two weeks for the two-week chauffeur households, 
we find that six households decreased their VMT during the second week relative to the first 
(ranging from -6% to -55%), two households increased their VMT (by 15% and 44%), and one 
had virtually no change in VMT across weeks (-2%). This indicates that the novelty factor 
potentially biased results upward and that over a longer period the effect may further fade. We 
note, however, that the main difference between the two weeks comes primarily from a single 
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outlier day. In other words, whether the first or second chauffeur week has higher VMT depends 
primarily on which of the weeks the household decided to take their “non-typical” long distance 
trip, for example to go to San Francisco.  

 
4.3.3.2.2.2 Sensitivity Analysis—Non-typical Trips and Extreme Behavior  
Another aspect of “taking advantage of the chauffeur service to the fullest” is making trips that 
one would not usually do, namely long-distance travel. Even though we believe these trips will 
still be more likely during an all AV era, they might not be typical trips that one would do every 
week. We explore the impact of “non-typical” trips on VMT increase by excluding them from the 
analysis. First, we excluded all trips that start or end outside the Sacramento Area (e.g., trips 
to/from San Francisco) and found that overall VMT increased by 44% compared to 60% when all 
trips were included. Then, we excluded all trips that are longer than 50 miles and found that the 
overall VMT is 55% higher during the chauffeur week. Finally, we took it a step further and 
excluded all trips longer than 25 miles, and still found a 47% increase in VMT during the chauffeur 
week(s). These results indicate that the increase in VMT is coming primarily from an increase in 
the number and average length everyday trips rather than less typical “outlier” trips. 

During the chauffeur week(s), we also observed some extreme behavior that hints at the 
potential extreme travel behavior resulting from AV technology in the future: 

 
• The longest ZOV trip was an 83-mile airport pick-up/return home (to and from SFO).    
• The longest ZOV errand was 120-mile round trip for a package delivery. 
• The longest ZOV food pickup trip was a 45-mile round trip. 
• The highest percent of ZOV miles during the chauffeur week (as a percentage of total VMT) 

for a household was 53%. 

If we exclude the outliers of the airport trip, the food pickup, and the package delivery, the 
ZOV trips as a percentage of the total VMT during the chauffeur weeks reduces from 18% to 16%.  

 
On another note, as discussed earlier, we observed that the individual with a disability 

showed the highest percent increases in VMT and shift from transit to car travel during the 
chauffeur week. Excluding this household from the analysis, however, the average increase in 
VMT during the chauffeur week drops by only four percentage points (from 60% to 56%). 
Similarly, transit miles and trips would drop from 90% to 86% and from 70% to 61%, respectively 
if this household is excluded from the analysis.  

 
We cannot be certain whether this extreme behavior outlined in this section is the result of 

the novelty factor or if these habits will persist in an AV future. Nevertheless, the sensitivity 
analysis indicated that exclusion of these ‘extreme behaviors’ still results in substantial magnitudes 
of travel behavior changes.  

 
4.3.3.3 Self-selection Bias (and Decision Not to Weight Results) 
As noted in Table 13, our study sample included higher proportion of individuals with certain 
demographics (e.g., females and more educated and affluent individuals) as compared to the 
broader SACOG region. It is likely that additional deviation from the overall population might be 
present in other unobserved characteristics, such as individuals’ personal attitudes towards the 
adoption of new technologies, preferences for driving a personal vehicle (vs. being a passenger), 
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the interest in and understanding of research experiments, and various components of individual 
lifestyles which could all play a substantial role in the decision to agree to participate in this study. 
To a certain extent, demographic characteristics tend to be correlated with some of these attitudes, 
and previous studies have explored some of these topics, for example showing that high-income 
individuals and individuals with a higher educational background are likely to be early adopters of 
the AV technology (e.g. Daziano et al. 2017). Other relationships are less explored, and their 
impacts on the results of this study not entirely predictable. 
 

In our entry survey, we present participants with a series of attitudinal statements 
measuring their attitudes towards several topics, including residential location, travel choices, new 
technologies etc. Responses to some of these statements were found to be correlated with some 
socio-demographic characteristics. Most notably, half of the participants who do not have a 
Bachelors’ degree agreed with the statement that – “Learning how to use new technologies is often 
frustrating for me”, whereas only 9% of the respondents who have a Bachelors’ degree or higher 
education agreed with that statement. Similarly, half of the females in our sample agreed with the 
statement that – “I'd usually rather have someone else (trustworthy) do the driving”, whereas only 
one-fourth of men in the sample agreed with the statement. 

 
We believe individuals’ personal attitudes about driving, new technologies, etc. played a 

role in not only affecting their choice to participate in the study, but also how they adjusted their 
behavior during the chauffeur week(s). There is reason to believe that the correlation of 
sociodemographic characteristics with self-selection and behavioral change is spurious (or a partial 
correlation at best). For this reason, we do not attempt to weight our sample based on 
sociodemographic characteristics to generalize the results to the larger population, as this would 
assume the observed behaviors to be representative of those in the larger SACOG region—an 
assumption that is unlikely to hold for the reasons discussed above. 
 
4.4 Conclusion and policy implications 
In this study, we ran an experiment to explore potential changes in travel-related behaviors induced 
by privately owned AVs. We simulated people’s lives with a privately owned AV by providing 
them with a personal chauffeur that, like an AV, took over driving duties and could autonomously 
runs errands. For our sample of 43 households, we were able to quantify actual changes to VMT, 
mode choice, participation in activities, and timing of activities under our AV simulation. The 
results are summarized in Table 14 and discussed throughout the chapter. Here we shift our focus 
to policy implications, inserting statistics from our experiment in the discussion. A major caveat 
is that all of these statistics are for our specific sample, however the numbers do provide helpful 
context regarding possible magnitudes. 
 

The experiment highlighted many of the potential changes that AVs might bring to society 
and to travel demand, in particular. These include some benefits in terms of mobility and 
accessibility (for some categories of users in particular, such as individuals with reduced mobility), 
but also drawbacks and potential for increased car usage, with potentially large negative impacts 
on society in terms of traffic congestion and environmental implications. AVs will cause changes 
in travel-related behaviors, and for many, the change is likely to be substantial. Our study clearly 
shows that, if privately owned AVs are widely adopted, this will lead to more travel as reflected 
by the 60% increase in the overall VMT recorded during the chauffeur weeks. In such a scenario, 
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it is critical to clearly identify and evaluate the tradeoffs between enhancing quality of life versus 
environmental and social cost of the additional travel. Policy makers are particularly interested in 
the topic, especially when it comes to regulating AV deployment and use in order to harvest the 
potential benefits while limiting the eventual negative consequences. 
 

A clear benefit associated with AV deployment is the enhanced mobility and accessibility 
that the elderly and subjects with disabilities experienced during the reported experiment which 
was reflected by this cohort exhibiting the highest percent increase in VMT (150%). At the other 
end of the spectrum, subjects switching away from public transit and active modes of travel and 
the extreme reliance on ZOVs (also known as “ghost” trips) are some of the undesirable 
consequences of AV adoption. The use of public transportation and active modes dropped 
significantly during the chauffeur week(s) as transit, biking, and walking trips decreased by 71%, 
37%, and 13% respectively, partly due to subjects’ ability to avoid the hassle of parking and its 
fees by sending ZOVs home. As ZOVs made up half of the induced demand, limiting their use to 
necessary trips is paramount. For example, by restricting ZOV travel to when it is particularly 
necessary and when owners are willing to pay for the added congestion their empty vehicles are 
causing. 

 
As policy makers discuss future regulations for AV deployment, they are faced with the 

difficult task of exploring the policy mechanisms enforceable today, and/or hypothetically 
available in the future, to promote the socially desirable benefits from the new technology while 
limiting the negative externalities from its deployment. Fuel costs (and other flexible cost 
associated with the use of private vehicles) alone are not working as a deterrent to additional VMT. 
Adequate incentive schemes, road user charges or other policies will be required to reduce induced 
travel. This might translate in local regulations prohibiting (or strongly limiting, also through 
pricing) empty “ghost” vehicle trips, at least in central, more congested locations. Dynamic pricing 
schemes could be enabled to shift demand outside of peak times, or more congested areas, based 
on time and/or location, or to increase vehicle occupancy. Local stakeholders will be also called 
to rethink minimum parking requirements and transit agencies might explore ways to integrate 
their services with AVs, benefiting from autonomous vehicles to provide first/last mile services. 
Regional agencies and metropolitan planning organizations (MPOs) developing long-range 
planning will need to consider AV deployment in their future scenarios and envision strategies to 
mitigate their impacts, including through the coordination of land use development and 
transportation supply. Finally, state and federal agencies should consider these findings as they 
consider electric vehicle (EV) targets as a way to contain tailpipe emissions from AV deployment.  

 
The findings from this chapter also point to the need to explore policy options to target 

specific segments of the population and groups of AV adopters. For example, restrictions on the 
use of private AVs could be more flexible for the elderly and people with disabilities if their 
benefits are deemed more valuable. Relatedly, it is critical to understand the response to AVs by 
different demographics in creating thoughtful policies that maintain an equitable transportation 
system and do not impact underprivileged households more heavily. 

 
Using the insights gathered from this experiment and from other studies in the literature, it 

is critical for policy makers to be proactive with regulating the technology rather than reactive. 
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Changing people’s behavior through legislation will take time as behavior change is slow, 
especially when faced with resistance from users. 

 
The next step in the study is to estimate travel demand models to explore changes in 

sensitivity to travel time, distance, and the overall attractiveness of AVs compared to other modes 
to be used in simulations. Moreover, since the dataset includes observed behavior on subject’s use 
of ZOV trips, we can work to incorporate ZOV behaviors into travel demand models, namely tour 
based models, should be modified to incorporate this new feature as temporal and geospatial 
constraints will change in an AV future. 
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Abstract 
Activity-based travel demand models (ABMs) are being used to study the potential impacts of 
autonomous vehicles (AVs) on the transportation system. This is done by manipulating the 
parameters of existing models to incorporate AV options. The behavioral parameter assumptions 
are often based on educated guesses and are, at best, based on stated preference surveys. In this 
study, we estimated short-term travel demand models using revealed preference data collected 
from an experiment conducted on 43 households (71 individuals) in the Sacramento area in 
2019/20. Our field experiment used personal chauffeurs as a proxy to simulate subjects’ lives with 
a privately owned AV. Smartphone-based travel diaries were recorded for the chauffeur week(s) 
as well as one non-chauffeur week before and one non-chauffeur week after. We investigated four 
components of an activity-based model: activity pattern, time-of-day, destination choice, and mode 
choice. Formulations were inspired by the Sacramento regional model, although kept parsimonious 
with limited heterogeneity due to the sample size. We compared the model estimated with data 
from the chauffeur weeks (i.e., AV future) to those during the non-chauffeur weeks (i.e., current 
conditions). We found that there were no statistically significant differences in the parameters of 
the individual activity pattern, the time of day, or the destination choice models. For the mode 
choice model, however, while the constant for auto did not change, the value of time decreased by 
60%. As the destination choice model included a logsum from the mode choice model, this resulted 
in longer average trip lengths even though the parameters (beyond those in the logsum) of the 
destination choice model did not change. Moreover, while the trip-making propensity of 
individuals did not change significantly, there was a 25% increase in systemwide trip rates due to 
the “AV” (chauffeur) being sent on errands. This points to the importance of incorporating zero-
occupancy vehicle trips into the activity-based modeling framework. Our findings suggest that 
these can be added to an ABM framework as additional model components that consist of ZOV 
home-based tours and ZOV subtours using a standard ABM process. Finally, while demographic 
heterogeneity was not incorporated here, indications suggest that it is particularly important to do 
so for mobility-impaired individuals such as elderly and disabled.  
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5.1 Introduction 
Activity-based travel demand models (ABMs) are being used to study the potential impacts of 
autonomous vehicles (AVs) on the transportation system. This is achieved by manipulating 
parameters of existing models to introduce AV options and simulate an AV future. Forecasts from 
these models play an important role in determining policy to regulate AVs. However, there is 
significant uncertainty as to how to manipulate the models (and parameters) in an ABM to 
represent future AV travel behaviors. Consequently, behavioral manipulations are currently 
primarily based on educated guesses, or at best, based on results from stated preference surveys. 
 
 In this study, we make use of data from an experiment that uses chauffeurs as a proxy for 
privately owned AVs in order to estimate short term travel-demand models. Our objective is to use 
this revealed preference data to estimate the parameters of an ABM that reflect a future scenario 
where private AVs are prevalent. Shared AVs are outside of the scope of this study. We investigate 
four different model components of the ABM framework: activity pattern, time-of-day, destination 
choice, and mode choice. We compare the models estimated on travel data collected during weeks 
in which the chauffeur was available (i.e., the AV scenario) against travel data collected when the 
chauffeur was not available (i.e., the status quo situation). We also investigate the incorporation of 
zero-occupancy vehicle (i.e., ghost) trips into the ABM framework, which is a new travel behavior 
phenomenon that results from AVs.  
 

The remainder of this chapter is organized as follows: section two summarizes the relevant 
literature, section three describes the methodology, section four presents our key results, section 
five includes a discussion of the results, and section six provides conclusions. 

5.2 Literature review 
To simulate AVs in ABMs, models are modified to incorporate changes that AVs are expected to 
bring to the transportation system. On the supply side, the most common assumptions include the 
increase in operating cost of AVs and the increase in road capacity (e.g., Childress et al., 2015). 
On the demand side, the focus of this chapter, several assumptions are made by different studies. 
Less common assumption made by a handful of studies include the reduction in parking cost or 
the ability of AVs to avoid parking (e.g., Childress et al., 2015, Bernardin et al., 2019), the ability 
of minors to independently ride in AVs (e.g., Kröger et al., 2018), and the increase in the trip 
generation rate (e.g., Huang et al., 2019). However, the most common assumptions made in ABMs 
to simulate AVs are the demand for AVs (i.e., market penetration) and the reduction in AV riders’ 
value of time.  
 

The change in rider’s value of time has particularly received significant attention in the 
literature due to its potential impact on travel behavior and the transportation system. Stated 
preference (SP) surveys are primarily used, and the dominant finding is that the comfort and 
convenience of AVs will lead to a reduction in VOT, which is projected to range between 5% and 
55% (e.g., Krueger et al., 2016; Becker and Axhausen, 2018; Kolarova et al., 2018; Zhong et al., 
2020). More recently, however, researchers have challenged the hypothesis that AVs will 
significantly reduce VOT. For instance, Singleton (2019) argues that the reduction in VOT will be 
lower than what is currently assumed in the literature, and closer to car passengers than transit 
riders. The reason is that AV riders will not be able to productively use their in-vehicle travel time 
as much as transit riders. On the other hand, Rashidi et al. (2020) take it a step further and make 
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the case for why VOT could actually increase for AV riders. Interestingly, several studies have 
found results that support these arguments. For instance, Bergman (2018), Kolarova et al. (2018), 
and Kreuger et al. (2019) estimated mode choice models from stated preference survey data where 
AV options where available to respondents and found that the VOT for AVs are lower than 
conventional vehicles but higher than transit. Moreover, Gao et al. (2019) conducted a stated 
preference study and used ride-hailing as a proxy to riding in an AV to bring the context closer to 
respondents. They find that ride-hailing has a 13% lower VOT compared to conventional vehicles, 
and this number goes up to 45% when respondents are explicitly reminded that they can 
productively use their in-vehicle time. However, they report that when the ride-hailing option is 
presented as a shared AV option, the VOT actually increases by 15% compared to the conventional 
vehicle option. However, they attribute this increase to the lack of familiarity and comfort with 
automation at present. Other studies looked at the change in VOT by trip purpose. For instance, 
from the mode choice model estimated on their stated preference survey data, Kolarova et al. 
(2019) find that the VOT for commute trips 40% lower in AVs compared to conventional vehicles. 
This difference, however, disappears when considering leisure trips. Relatedly, Correia et al. 
(2019) conducted a discrete choice experiment to explore changes in VOT for AV riders when 
vehicles are designed to accommodate leisure vs. work activities. For AVs with an office interior, 
they find that the VOT is 26% lower than a conventional vehicle, however, for AVs with a leisure 
interior, the find a 9% increase in VOT.  

Rather than relying on educated guesses or stated preference data, our study is unique 
because we investigate the potential changes in the parameters of short-term travel demand models 
using revealed preference data from real world travel decisions made by our study participants. 

5.3 Methodology 
In this section, we summarize the methodology adopted in this chapter. First, we briefly describe 
the experiment conducted to collect the dataset used for our analysis. Then, we describe the general 
methodological framework adopted in the remainder of the chapter. We start by describing the 
overall structure and flow of an activity-based model. Next we discuss an added complication that 
AVs bring to the standard activity-based model process—zero-occupancy vehicle trips— and our 
proposed method to integrate them into that process. Then we identify the four short-term travel 
demand models that we focus on in the remainder of this chapter. 
 
5.3.1 Data 
For our analysis, we used revealed preference travel diary data collected from an experiment 
conducted on 43 households (71 individuals) in the Sacramento area in 2019/20. In the experiment, 
households were provided with personal chauffeurs to simulate their lives with personally owned 
AVs. Just like AVs would do, chauffeurs relieved subjects from driving duties, allowing them to 
relax during travel or productively use their in-vehicle travel time. They could also be sent out to 
run errands that AVs will run in the future such as autonomously filling up gas and picking up 
friends and family. The smartphone tracking app, rMove, was used to record subjects’ travel 
diaries and travel decisions with and without the chauffeur service. This provided detailed 
information on trips made by participants over the study period, including the origin and 
destination, time and purpose of each trip, and the mode chosen. Subjects were tracked for three 
to four weeks with the outer weeks serving as non-chauffeur control weeks (i.e., status quo 
condition) while the middle week(s) served as treatment chauffeur weeks (i.e., “autonomous 
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vehicle” weeks). For a more detailed description of the experiment and resulting data, the reader 
is referred to chapter 4. 
 
5.3.2 Activity-based travel demand model 
We base our model development on the activity-based model used by Sacramento’s metropolitan 
planning organization (MPO)—the Sacramento Area Council of Governments (Bradely et al., 
2009; SACOG, 2020). The SACOG model is typical of ABM models used in practice and it is also 
the model for the region in which our data were collected. The structure and flow of SACOG’s 
activity-based model is shown in figure 7. As with all ABMs, the model breaks down complicated 
travel and travel-related behaviors into sub-components that are structured hierarchically with 
longer term behaviors at the top down to shorter term behaviors at the bottom. The components 
are linked via conditional dependence when moving down the structure and expectations (typically 
in the form of logsums) when moving up the structure. The model encompasses long-term and 
short-term travel decisions at the individual (person) level. Over the long-term, the model predicts 
travel-related decisions such as work location choice, school location choice, and vehicle 
ownership. Over the short-term, the model predicts travel decisions such as daily activity patterns, 
destination choice, and mode choice. The SACOG model is tour-based in that tours (i.e., round 
trip journeys from home) are the unit of analysis. In this chapter, we focus on the Short-Term 
Choice piece of the model. The day pattern model predicts the number of tours by purpose and 
intermediate stop purposes. Next, the primary purpose, destination, and mode of each tour are 
determined, followed by determination of the details of the intermediate stops and trips. Tours 
where the primary destination falls outside of the bounds of the Sacramento region are determined 
exogenously from this framework as are e-commerce behaviors such as teleworking, online orders, 
and deliveries. 
 

The introduction of privately owned autonomous vehicles into the system (equivalently the 
chauffeur service in our study) adds a new complication to the ABM framework, as a household 
vehicle can serve two purposes as simulated by the chauffeurs in our experiment: the first is taking 
household members to and from their activities, and the second is autonomously making deliveries 
and running errands (i.e., zero-occupancy vehicle (ZOV) trips). The former can be captured within 
the existing ABM structure by reflecting the addition of a new mode or modifying the auto mode, 
where the key modifications/additions relate to the level of service (time and cost), the sensitivity 
to this level of service, and the AV constant. The latter is an additional component of travel 
behavior that needs to be incorporated. As observed in our experiment, these trips can either make 
up their own home-based tours—e.g., the chauffeur/“AV” is sent to autonomously pick up 
groceries and deliver them home) or as a sub-tour in a household member’s individual (person) 
tour—e.g., the chauffeur/“AV” drops the individual at the restaurant, autonomously looks for 
cheap parking, and picks up the individual once dinner is over. In this chapter, ZOV trips/tours are 
compartmentalized as separate from individual trips/tours, similar to how commercial vehicle 
travel, which includes transportation of goods and services (e.g., deliveries) are modeled separately 
from resident travel. That is, we exclude ZOV trips (and pure ZOV tours) in our investigation of 
the day pattern, destination, mode, and timing model components. Further reasoning and 
implications of this decision (including how they might be incorporated in the framework) are 
discussed in section six of the chapter. 
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In the remainder of the chapter, we first present results on four traditional model 
components of short-term travel demand: the daily activity patterns, destination, mode choice, and 
time-of-day models. In SACOG’s ABM, all four models are logit models and capture a high degree 
of heterogeneity by tour purpose and individual and household demographics and significant use 
of conditional dependence and logsums to connect across models. While we base our analysis on 
the SACOG ABM framework, we work with highly simplified versions of a subset of model 
components due to the size of our dataset. Our objective is to look for major structural changes 
that might be required of these models, as well as where it appears there are no significant changes. 
For example, for mode and destination choice, we estimated simple logit models that captured 
limited heterogeneity while focusing on changes in parameter estimates for primary variables of 
interest such as time and cost. Moreover, for the mode choice model, we simplify the choice set 
into four alternatives rather than the eight used in SACOG’s ABM. 

 

After presentation of these four key model components, we return to the discussion of ZOV 
trips and how they might be inserted into the framework. 

 
Figure 7: Structure and flow of SACOG's activity-based model—DAYSIM (Adapted from Bradely et al., 2009). 
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5.4 Results 
In this section, we present a summary of our key findings. We first give a brief overview on the 
study sample then discuss the results for the four models that we investigated. We note that the 
organization of the discussion does not follow the flow of the models in SACOG’s activity-based 
model illustrated in figure 7. Instead, we first present the results for the daily activity patterns 
model (model 1) then the time-of-day model (model 4) as the method of analysis for both is the 
same (hypothesis testing rather than logit model estimation). Next, we present the results for the 
mode choice model (model 3). Since the destination choice model includes a mode choice logsum 
term, we estimated the mode choice model first to account for any potential change in the logsum 
term due to a change in the value of time parameter during the chauffeur week. We then end the 
section by presenting the destination choice model results (model 2). 
 
5.4.1 Sample 
For the sample recruitment, we partnered with SACOG to use the participants of their 2018 
Sacramento household travel survey as our sampling frame. Overall, the characteristics of our 
sample population were close to those of the residents of the Sacramento area. The main difference, 
however, is that our sample had a higher share of females and was more affluent and educated than 
the general Sacramento population. For a detailed description of the sample characteristics, the 
reader is referred to chapter 4.  
 
5.4.2 Model 1: Daily activity patterns 
In SACOG’s ABM, the daily activity patterns model predicts 1) the decision to participate in non-
home activities, and 2) the number of tours made by an individual for the day. For the first decision, 
binary logit models predict the probability of engaging in a non-home activity vs. staying at home 
for each of the seven activity purposes—work, school, meal, shopping, escort, personal business, 
or leisure. Conditional on the decision to engage in a non-home activity, a second logit model 
predicts the number of daily tours performed for the given activity purpose. Both models are 
relatively naïve logit models that use constants to predict the number of daily tours, and include 
variables to capture heterogeneity based on individual demographics (e.g., work/student status, 
age, gender), household demographics (e.g., income, number of kids in household), and activity 
purpose. The model also includes mode choice and destination choice logsum terms to account for 
the effect of accessibility (as measured by the logsum terms) on daily pattern decisions. However, 
rather than estimating logit models, we used hypothesis testing—Paired t-test and Wilcoxon 
signed-rank test (the non-parametric version of a paired t-test) to compare the outcomes of the 
daily activity patterns models and investigate any change in their distribution between the 
chauffeur and non-chauffeur weeks. 
 
5.4.2.1 Number of days with at least one non-home activity 
Here, we look at the number of days subjects decided to engage in at least one non-home activity 
during the chauffeur and non-chauffeur weeks. Comparing the means of the two weeks using a 
Paired t-test and a Wilcoxon signed-rank test, we found no significant difference in the average 
number of days subjects decide to leave the house as illustrated in figure 8 below. In other words, 
having access to the chauffeur service did not affect subjects’ decision to stay home or engage in 
non-home activities. Breaking down the analysis by trip purpose, we found that the results hold.  
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Figure 8: Daily activity patterns - average number of days with at least one non-home activity 

5.4.2.2 Number of tours per day 
After modeling the decision to engage in activities outside of one’s home, the next piece of the 
daily activity patterns model is to predict the number of tours made conditional on the individual’s 
decision to leave their house. Here, we calculated the average number of daily tours (for all 
purposes) during the chauffeur and non-chauffeur weeks as illustrated in figure 9 below. We found 
that the difference across weeks is not statistically significant as subjects made, on average, the 
same number of tours per day. We also found that results hold if we break down the analysis by 
tour purpose.  

 
Figure 9: Daily activity patterns – average number of tours per day 

In summary, the results above indicate that, when modeling personal tours in activity-based 
models for AV studies, parameters in daily activity patterns models do not need to be modified, as 
having access to an AV does not affect the decisions to participate in non-home activities or the 
number daily activities performed.  

5.4.3 Model 4: Time-of-day of activity participation 
After modeling the number of tours an individual makes in a day, a model predicts the departure 
and return time of each tour. There are several versions of the time-of-day model with different 
levels of granularity. SACOG’s activity-based model uses a logit model to predict the departure 
and return time for a given tour using 48 half-hour time periods. The combined decision of a 
departure and return time has a total of 1,716 possible alternatives. Similar to their daily activity 
patterns models, the time-of-day model is a relatively naïve logit model that uses constants to 
predict the time of day of tours, and captures the heterogeneity in the decision based on individual 
and household demographics and activity purpose. Here, we opted for a much simpler version that 
only uses five time periods as defined in SACOG’s activity-based model: 

• AM: 7 a.m. to 10 a.m. 
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• MD (midday): 10 a.m. to 3 p.m. 
• PM: 3 p.m. to 6 p.m. 
• EV (evening): 6 p.m. to 8 p.m. 
• NT (night): 8 p.m. to 7 a.m. 

Figure 10 below summarizes the average number of tours per week for the different 
departure-return time combinations by our sample population. Comparing the time-of-day choices 
of our sample during the chauffeur and non-chauffeur weeks, we saw that the chauffeur service 
had no significant effect on the time-of-day decision for activity participation as subjects made 
tours during the same time periods across weeks. In other words, our results indicate that there is 
no need to modify the parameters of a time-of-day model when simulating AVs in activity-based 
models as AVs will not influence the time-of-day decision for individual activity participation. 

 
Figure 10: Average number of tours by departure-return time for each week type 
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We note that our sample size only allowed for testing potential changes in the above travel 
decisions at the aggregate level. However, individual level analysis suggests that results may be 
different for some demographic groups. For instance, if we deviate from the analysis above, which 
aimed at capturing the joint depart-return time decision modeled in ABMs, and look at the total 
number of evening tours where either the departure or return time is after 6 pm, we find that for 
the elderly (i.e., non-working individuals above the age of 60) and disabled, the difference is 
statistically significant (p-value of 0.037 for the Paired t-test) as they made on average 0.34 
evening tours per day during the chauffeur weeks compared to 0.21 evening tours per day during 
the non-chauffeur weeks. This points to an important future research direction and extension to 
this work which is capturing the heterogeneity in the response to AVs for more accurate 
manipulations of ABM model parameters. 
 
5.4.4 Model 3: Mode choice model13 
For a given tour destination, a mode choice model predicts the primary mode used. In SACOG’s 
activity-based model, a logit model is used to predict the primary tour mode from among eight 
modes—walk, bike, drive alone, shared ride (2 persons), shared ride (3+ persons), walk to transit, 
drive to transit, and school bus. In our model, we simplify the choice set to four modes—walk, 
bike, transit, and car. Moreover, our model is estimated using data from all tours combined, while 
in SACOG’s ABM, separate mode choice models are estimates for work, school, and non-
mandatory tours (e.g., shopping, meals, leisure). Relatedly, while SACOG’s model captures a wide 
range of heterogeneity at the household and individual level, we opted to estimate a parsimonious 
model excluding socio-demographic variables. We note, however, that we did investigate model 
specifications that included socio demographic predictors and found that including these variables 
did not affect the parameter estimates for our key variables of interest, and thus we opted to report 
results from the simpler model.  
 

Since we recorded repeated mode choice decision for our sample, we opted to estimate a 
mixed logit model that accounts for the correlation between the repeated choices made by same 
individual, also referred to as panel effect. We note, however, that we also estimated a multinomial 
logit model, which assumes that the observations are independent, and found that the mixed logit 
model significantly outperform it with 308 lower log-likelihood points. This highlights the 
importance of capturing the effects of repeated choices when estimating models on panel data. 
This effect was particularly strong in our sample since we collected their travel data over a long 
period of three to four weeks. Moreover, the panel effect uncovers unobserved lifestyles that drive 
the mode choice decisions made by our study participants. Since owning a vehicle was a 
prerequisite to participate in the study, our sample was highly auto-oriented, and participants’ 
lifestyles were built mostly around the use of personal vehicles. It is expected, therefore that their 
(repeated) mode choice decisions are correlated and motivated by their lifestyle choices.  

 
For our mixed logit model, we constrained the smallest variance term (the walking 

alternative in our case) to zero as suggested by Walker (2001). Although with four alternatives all 
variances are theoretically identified, in practice estimating all four variances is challenging in 
some datasets, which we found to be the case for our dataset (Walker, 2001). From table 15, we 
see that the model is behaviorally consistent as parameters exhibit the expected signs. The model 

 
13 All model estimations in this study were performed using the software PandasBiogeme (Bielaire, 2020). 
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indicates that biking and walking become less desirable as the number of trips in a tour increase. 
Similarly, for tours where the origin and destination are in the same TAZ, these modes are more 
desirable, reflecting the fact that walking and biking are generally used for shorter tours. 

 
 To test for a potential change in the car mode’s constant during the chauffeur week, we 

included a car alternative specific constant (ASC), and added an additional constant specifically 
for the chauffeur week (i.e., ASCcar + ASCcar_chauff_week * chauffeur_week_dummy). We found that 
the ASC specific to the chauffeur week, with a value of -0.27, was not statistically significant, with 
a t-stat and p-value of -1 and 0.3 respectively, indicating no significant change in the car constant 
across the chauffeur and non-chauffeur weeks. 

 
For estimating the value of time, we follow the method proposed by Ben Akiva et al. (1993) 

and estimated a lognormally distributed VOT, which is done by normalizing the travel time 
parameter by the cost parameter. We note that if a parameter is lognormally distributed—
-~/0(1!" , 3!"), then its logarithm is normally distributed—	ln	(-)~0(1" , 3"). Moreover, the 
estimates produced by the model are in fact the mean and standard deviation of the log of the 
parameter of interest (i.e., 1" , 6"), and thus need to be transformed to 1!" , 3!". In our sample, the 
VOT for car users during the non-chauffeur weeks (e.g., conventional vehicles) was $9.25 per 
hour. This value falls within the range, albeit on the lower end, of VOTs used by SACOG in their 
activity-based model ($7.25 - $38.80; SACOG, 2020). Interestingly, during the chauffeur weeks, 
we see a substantial drop in subjects’ VOT by 60%, which supports the hypothesis that AVs will 
indeed reduce riders VOT.  

 
Other than the reduction in VOT, AVs are also expected to make private vehicles more 

attractive by eliminating the burden of looking for (expensive) parking in areas where it’s limited. 
We could not explicitly include parking cost as a variable in the model since we did not collect 
data on parking fees. However, we used tours where the destination is in downtown Sacramento, 
where parking is a burden, as an instrument to explore the effect of AVs on disutility of parking in 
mode choice models. Similar to the analysis done for the car ASC, we added a dummy variable in 
the car alternative if the tour destination is in downtown, and an additional dummy variable if the 
destination is in downtown and during a chauffeur week to capture any change in the parameter 
during the chauffeur week. The negative sign on the “destination in downtown” dummy indicates 
that, as expected, cars are generally a less attractive alternative when the destination is in 
downtown as parking is a burden. Moreover, the parameter estimate for the dummy variable for 
the chauffeur week was positive with a value of 0.94, indicating that the disutility of using a car to 
go to downtown Sacramento decreased during the chauffeur week as parking became less of a 
concern. However, the parameter was not statistically significant with a t-stat and p-value of 1.36 
and 0.17 respectively, meaning that the difference between the parameters for the chauffeur and 
non-chauffeur weeks was not statistically significant. 
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Table 15: Mode choice model results – 60% reduction in VOT during the chauffeur week 

  ML - VOT ∼ LN(μ,") (1600 draws) 

  Value Rob. Std 
err 

Rob. t-
test 

Rob. p-
value 

ASC Transit 0.00 - - - 
(# transit) 4.10 0.34 11.89 0.00 
ASC Car 2.80 0.94 2.96 0.00 
 (# car) 2.53 0.27 9.53 0.00 
ASC Walk 4.68 1.61 2.91 0.00 
 (# walk) 0.00 - - - 
ASC Bike -2.16 1.14 -1.89 0.06 
 (# bike) 3.16 0.36 8.73 0.00 
Dest. in downtown -2.36 0.66 -3.59 0.00 
Orig-Dest. Same TAZ (walk & bike) 1.77 0.74 2.39 0.02 
Number of trips in tour (bike) -0.34 0.18 -1.94 0.05 
Number of trips in tour (walk) -1.48 0.67 -2.21 0.03 
Travel cost ($s) -0.53 0.17 -3.12 0.00 
Travel time (hrs) - walk & bike -3.39 0.57 -5.98 0.00 
Travel time (hrs) - transit -4.96 0.80 -6.24 0.00 
VOT - car (non_chauff. week) (μ) 2.10 0.34 6.21 0.00 
VOT - car (non_chauff. week) (#)  0.50 0.10 -4.92 0.00 
VOT mean - non_chauff. week $ 9.25 
VOT std. deviation - non_chauff. week $ 6.36 
VOT - car (chauff. week) (μ) 0.39 0.98 0.40 0.69 
VOT - car (chauff. week) (#) 1.35 0.40 3.33 0.00 
VOT mean - chauff. week $ 3.67 
VOT std. deviation - chauff. week $ 13.96 
Average VOT reduction 60.3% 
Initial log likelihood -2856.52 
Final log likelihood -665.14 
Rho squared 0.77 
Adjusted rho squared 0.76 

 
5.4.5 Model 2: Destination choice model 
For destination choice, SACOG uses a logit model that captures a high degree of heterogeneity by 
trip purpose as well as individual and household demographics. Moreover, similar to the mode 
choice model, they estimate separate models for work, school, and non-mandatory tours. In this 
section, we estimated a simplified version of SACOG’s model that did not include 
sociodemographic variables and was estimated using data from all tours combined. The equation 
below is the utility function associated with a given alternative in our estimated models (Ben Akiva 
and Lerman, 1985).  

7# = 8#	 + 1% ln(9#) + :# = -;# + 1′ln	(=>&') 	+ :# 
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Where: 

• 7# is the random utility of destination i  

• 8#	is the systemic utility of destination i 

• 9#	is the log-size variable that measure of the ''size'' of aggregate alternative i which in our 
case is a single TAZ 

• 1% is the parameter estimate for the log-size variable 

• ;# is the destination variables (e.g., distance, mode choice log-sum, destination in downtown 
dummy) 

• - is the vector of parameter estimates for the destination variables 

• ? is a characteristic of the destination (e.g., population, size, employment) 

• @ is the parameter estimate for the characteristics of the destination 

Destination choice models generally have a large choice set (1,500 TAZ alternatives in our 
case) which makes them computationally challenging to estimate. Therefore, it is typical in these 
models to use sampling of alternatives (Ben Akiva and Lerman, 1985). For our models, in addition 
to the selected alternative, we randomly sampled 49 alternatives from the 1500 available TAZs. 
Since we opted for random sampling, no further sampling error term correction was needed (Ben 
Akiva and Lerman, 1985). Table 16 summarizes the results from the estimated models. 

 
Parameter estimates from the models have the correct signs and are statistically significant. 

The negative parameter on (log) distance indicates that, as expected, the utility drops as travel 
distance increases. Moreover, a positive sign on the downtown dummy indicates that downtown 
TAZs are more attractive compared to other destination. Similarly, destinations with higher 
populations and employment are more attractive, while the parameter for the area variable was 
constrained to zero as suggested by Ben Akiva and Lerman (1985). In addition, the mode choice 
log-sum estimate is positive and falls between 0 and 1, which is required for the model to be 
consistent with utility-maximizing behavior (Train, 2009). Here it is important to mention that 
there is a gap in the literature when it comes to calculating the log-sum term for mixed logit models. 
Theoretical work exists on how to calculate the term for the multinomial logit model (Train, 2009), 
but not for the mixed logit model. Consequently, for our models we used the “simulated log-sum”. 
Similar to how the probability is calculated for a mixed logit model, we took a random draw from 
the distribution of each parameter, conditional on this random draw, calculated the log-sum value 
as if the model was a multinomial logit, repeated the proses several times (400 in this case), and 
took the average value. 

 
From table 16, we see that in model 1, the parameter estimates for the log of distance and 

the log-sum variables are larger (in absolute value) for the chauffeur week. However, a 
loglikelihood ratio test indicated that the parameters for the chauffeur and non-chauffeur weeks 
were not statistically significantly different and having generic variables is preferred. This result 
indicates that the decrease in disutility of traveling to farther locations is already accounted for 
through the mode choice log-sum that captures the reduction in VOT. In other words, if the mode 
choice model captures the reduction in disutility of longer travel through the reduction of value of 
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time, then no further adjustments to the destination choice model are required once the log-sum 
variable is included. 

Table 16: Destination choice model results – no difference in parameter estimates across weeks 

 Model 1 Model 2 

 Value Rob. 
Std err 

Rob.    
t-test 

Rob.   
p-value Value Rob. 

Std err 
Rob.   
t-test 

Rob.   
p-value 

Simulated logsum - - - - 0.26 0.03 8.38 0.00 

Simulated logsum (chauffeur week) 0.30 0.04 7.02 0.00 - - - - 

Simulated logsum (non_chauffeur week) 0.26 0.04 6.78 0.00 - - - - 

Destination in downtown dummy 0.79 0.11 7.46 0.00 0.75 0.11 7.18 0.00 

Log of distance - - - - -1.09 0.07 -15.90 0.00 

Log of distance (chauffeur week) -1.08 0.08 -13.42 0.00 - - - - 

Log of distance (non_chauffeur week) -1.05 0.10 -10.84 0.00 - - - - 

Logsize 0.74 0.04 20.35 0.00 0.74 0.04 20.40 0.00 

Population 1.58 0.55 2.88 0.00 1.60 0.55 2.90 0.00 

Employment 3.91 0.54 7.23 0.00 3.93 0.54 7.25 0.00 

Area (acres) - fixed 0.00 - - - 0.00 - - - 

Number of sampled alternatives 50 50 

Initial LL -9263.67 -9263.67 

Final LL -4688.49 -4690.26 

Rho squared 0.494 0.494 

Adjusted rho squared 0.493 0.493 
 

5.5 Discussion 
In this section, we discuss of the key findings presented in this chapter. The discussion follows the 
same order as the results section above. We begin the section with a discussion on the potential 
factors that played a role in the (non)findings of the daily activity patterns and time-of-day models. 
Next we discuss the results of the mode choice model, where we compare our results to the findings 
from the stated preference literature and review the potential limitations of these findings. Then, 
we discuss the implication of the destination choice model findings on travel behavior. We end the 
section by returning to our discussion on zero-occupancy vehicle trips/tours. 
 
5.5.1 Daily activity patterns and time-of-day models 
AVs can influence daily activity pattern decisions in two ways. On one hand, the increased comfort 
during travel can encourage individuals to go out more and participate in non-home activities. On 
the other hand, the ability to send an AV to autonomously perform activities may encourage 
individuals to stay home while the AV runs errands for them. Similarly, AVs can influence time-
of-day decisions. For example, the ability to productively use commute travel time could influence 
people’s departure and return time to and from work. Moreover, driving at night will be easier, 
namely for individuals with conditions that prevent them or limit how often they can drive at night, 
or when individuals are tired or under the influence of alcohol. Interestingly, however, our results 
indicated that, overall, having access to an AV did not affect our subjects’ daily activity patterns 
and time-of-day decisions. Subjects, on average, engaged in non-home activities the same number 
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of days, performed the same number of daily tours, and were consistent in their time-of-day 
decisions during the chauffeur and non-chauffeur weeks.  

 
One factor for this behavior could be the short treatment period of one or two weeks, which 

might not be enough for subjects to change their travel pattern to what it would be in a true AV 
future. Consequently, changes in travel patterns that were not observed in our study might emerge 
in the long-run, and the differences between current and future behavior will be greater. Another 
factor that played a role is that tours with a destination outside Sacramento (e.g., San Francisco) 
were not considered, but were more frequent (54%) during an average chauffeur week compared 
to an average non-chauffeur week. Consequently, since inter-regional trips are modeled outside 
the ABMs framework, modifications should be made to account for the increase in these trips in 
an AV future. Another major factor for this behavior is the exclusion of zero-occupancy vehicle 
trips/tours, which is consistent with findings from our previous study (chapter 4). In that study, we 
found a 25% increase in systemwide trips via all modes during the chauffeur weeks. However, this 
increase disappeared when ZOV trips were excluded from the analysis. Similarly, we found a 20% 
increase in evening trips when households had access to the chauffeur service, however, this 
number dropped to 5% when ZOV trips were excluded. In other words, we found that ZOV trips 
were a primary source of travel behavior change during the chauffeur weeks, and if 
compartmentalized and separated from individual (person) trips/tours, the change in individual 
travel patterns during the chauffeur weeks faded. 
 
5.5.2 Mode choice model 
Results from the mode choice model indicated that the alternative specific constant for the car 
mode did not change across weeks. On the other hand, subjects’ value of time dropped by 60% 
during the chauffeur week, which is closer to the higher end of the VOT reduction range reported 
by studies in the literature, as summarized in table 17 below: 

Table 17: Summary value of time reduction reported in the literature 

Study VOT reduction Comment Method 

Our Study 60% - Revealed preference 
Kolarova et al. (2018) 55% - Stated preference 
Kolarova et al. (2019) 40% For commute trips only Stated preference 
Becker and Axhausen (2018) 30% - 38% Pooled AVs - shared AVs Stated preference 
Krueger et al. (2016)  10% - 35% Pooled AVs - shared AVs Stated preference 
Zhong et al. (2020) 18% - 32% Rural residents - suburbs residents Stated preference 
Correia et al. (2019) 26% AVs with an office interior Stated preference 
Kreuger et al. (2019) 5% - Stated preference 

 
In their exit surveys, subjects provided further insights into the potential factors behind the 

reduction in VOT. The responses supported the hypothesis that the two main factors in the 
reduction of VOT are: 1) reduced stress and 2) the ability to multitask: 
 
• “I do think that access to self-driving cars will help to free up the distraction of driving and 

allow us to focus more on other things such as conversing with other passengers, checking 
emails or making calls instead of having to do so at work or at home, resting, etc.” 
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• “The most useful and surprising part was during my commute. I was able to get more work 
done on a laptop and felt more relaxed when I arrived. I tend to drive fast and also noticed that 
I didn’t care as much about the speed/commute time or some of the poor driving habits of 
others.” 

 
• “[I was] More relaxed during morning commute.” 

 
• “I think self-driving cars will help ease some of life stressors and will allow us to do more with 

our time.” 
 

• “one time I used the chauffeur, I took a nap, I made sure they knew where we were going and 
then I fell asleep.” 

Interestingly, one subject pointed out that they wanted to use their travel time more 
productively, however, motion sickness limited their ability to do so: “I expected to be able to get 
more done on my phone such as checking emails or replying to other messages, but I get motion 
sickness fairly easily and ended up feeling poorly most of the time when I tried to do so”. 

We recognize, however, that our results potentially suffer from selection into treatment 
bias. Even though a lot of effort was put into inviting a representative sample to participate in the 
experiment, we had little control over who responded and ultimately agreed to participate in our 
study. Our sample, therefore, might not be representative of all Sacramento residents. The study 
participants might be individuals who value their time more than the remaining population, and 
thus were eager to have access to the chauffeur service. Consequently, the reduction in their VOT 
might be an overestimate of the reduction of VOT of the entire population. 

Another aspect of mode choice that we investigated was the effect of the chauffeur service 
on the disutility of parking in a mode choice model. We used tours with a downtown Sacramento 
destination, where parking is a burden as an instrument, and found that the disutility of using a car 
to go to downtown Sacramento decreased during the chauffeur weeks as parking became less of a 
concern. However, the difference was not statistically significant. It is difficult to say whether this 
result is true, or if using downtown Sacramento trips as a proxy to parking decisions is not a good 
instrument, especially given the comments subjects made in their exit surveys regarding this topic:  

 
• “I currently work in downtown where it is expensive to park, so once it [the AV] drops me off 

I would send to go park somewhere on the outskirts of town where it can find free parking for 
the day, and then it would pick me up and take me home” 
 

• “One aspect I really enjoyed in the study was not ever having to look for parking. It is definitely 
something that would make me go out more.” 

 
• “Was very convenient when driving downtown to not worry about parking.” 

 
• “I enjoyed participating in the study and especially liked the convenience of not having to park 

when I went somewhere.” 
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Consequently, future experiments should explicitly collect data on parking payments to 

better quantify the effect of this aspect of AVs on mode choice. 
 

5.5.3 Destination choice model 
For destination choice, results indicated that there was no change in parameter estimates between 
the chauffeur and non-chauffeur weeks. However, the model included a mode choice logsum term 
(also referred to as expected maximum utility). This term is used as a measure of accessibility (Ben 
Akiva and Lerman, 1985), which can be defined as a measure of how easily destinations can be 
reached. During the chauffeur weeks, the VOT dropped by 60%, reducing the disutility of traveling 
by car and positively affecting the logsum term, thus increasing overall accessibility. This was 
manifested by an 11% increase in the average tour length of our sample (from 11.17 miles to 12.53 
miles) as subjects traveled to farther locations during the chauffeur weeks. We note that the 
increase was the highest for elderly and disabled individuals who increased their average tour 
length by 45% (from 11.4 miles to 16.5 miles). This further highlights the importance of capturing 
the heterogeneity in the response to AVs by different demographic groups which was missing in 
our analysis due to sample size constraints.  
 
5.5.4 Zero occupancy vehicles 
As highlighted earlier, zero-occupancy vehicles will play a primary role in travel behavior change. 
Therefore, integrating them within the activity-based model framework will be central to making 
simulation more realistic and representative of the AV future, and for results to be more reliable. 
Consequently, a major shortcoming of most simulation-based studies that focus on privately 
owned AVs is the lack of inclusion of zero-occupancy vehicles, which is likely due to the limited 
knowledge available on how these trips will impact travel decision making on an individual and a 
household level. By observing how our study subjects utilized their “ZOVs” (e.g., sending their 
chauffeurs alone to run errands), we recognized that these trips can be integrated as an additional 
model component within the standard activity-based model process, either as their own home-
based tours or as a sub-tour within an individual (person) tour. In this chapter, we showed that 
zero-occupancy vehicle trips can be compartmentalized and separated from individual trips/tours, 
just like commercial vehicles and deliveries. However, rather than handling them outside the ABM 
framework (what is currently done with deliveries and commercial vehicles), our proposed method 
allows us to integrate zero-occupancy vehicles into the standard ABM process by adding them as 
a separate model component without major modifications to the standard ABM structure. The 
advantage of incorporating ZOVs to an ABM process is that it allows for testing the impact of 
different policies (e.g., pricing) on the use of zero-occupancy vehicles. 
 

We recognize, however, that integrating ZOVs within the ABM framework goes beyond 
incorporating them as an additional model component. We would also investigate how these trips 
change temporal and geographic constrains currently imposed on travel decisions in ABMs. For 
example, in current ABMs, if an individual commutes by bus, the mode choice model for their 
return trip from work does not include the “drive alone” option. However, in an AV world, this 
constraint should be relaxed to account for the ability of an AV to autonomously make pickups. 
Relatedly, once ZOVs are integrated into the ABM framework, another complication to consider 
is how to model ZOV trips/tours, for example in a destination choice model: how should their 
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utility function be specified? Is the sensitivity to distance zero since no one is traveling in the 
vehicle? 
 

Answering these questions was beyond the scope of this chapter, however, addressing them 
is key to improving the accuracy of AV-based simulation studies, and therefore will be the focus 
of future extensions of this work. 

5.6 Conclusion 
Activity-based travel demand models are being used to estimate the potential impacts of AVs on 
the transportation system. This is done by manipulating parameters of existing models to simulate 
AVs. Since the impact of AVs on travel behavior is uncertain, the behavioral assumptions made 
rely mainly on educated guesses or findings from stated preference surveys. In this chapter, we 
estimated short-term travel demand models using revealed preference data collected from an 
experiment conducted on 43 households (71 individuals) in the Sacramento area. In the 
experiment, we simulated subjects’ lives with a personally owned AV using personal chauffeurs 
as a proxy. Like an AV, the chauffeur took over driving duties and could be sent out to run errands 
that AVs will run in the future such as filling up gas or looking for parking. Smartphone app-based 
travel diaries were recorded for the chauffeur week(s), one non-chauffeur week before, and one 
non-chauffeur week after. For the analysis, we compartmentalized zero-occupancy trips/tours 
(e.g., when chauffeurs are running errands) and separated them from individual (person) 
trips/tours. We then investigated four components of an activity-based model: activity pattern, 
time-of-day, mode choice, and destination choice. Results indicated that the chauffeur service did 
not have an effect on daily activity pattern and time-of-day decisions as subjects, on average, 
engaged in non-home activities the same number of days, performed the same number of daily 
tours, and were consistent in their time-of-day decisions during the chauffeur and non-chauffeur 
weeks. This indicated that, when simulating personal tours in an AV future, parameters of these 
models do not need to be modified. Similar results were observed for the parameter estimates of 
the destination choice model. On the other hand, for the mode choice model, while the constant 
for the car mode did not change, we found a 60% reduction in subjects’ value of time during the 
chauffeur week. Relatedly, as the destination choice model included a logsum from the mode 
choice model, this resulted in subjects making longer tours during the chauffeur weeks, even 
though the parameters of the destination choice model did not change. This indicated that the 
decrease in utility to travel to further locations was captured in the reduction of value of time 
through the mode choice logsum term, resulting in an increase in subjects’ accessibility. 
 

Finally, we identified zero-occupancy vehicle trips as a primary source of travel behavior 
changes. We also proposed a way to incorporate these trips within the activity-based framework, 
either as their own tours or as sub-tours part of an individual (person) tour. Recognizing the impact 
of these trips on travel behavior, and the importance of incorporating them in simulations, the next 
step will be to further investigate how zero-occupancy vehicle trips should be integrated into 
activity-based model studies. 
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Chapter 6  
Conclusion 
6.1 Research Overview 
The field that focuses on the travel behavior implications of AVs is still in its early stages, albeit 
rapidly growing and advancing. There are a lot of opportunities for improving current studies and 
for new and innovative work. The goal of this dissertation was to contribute to the field. To do so, 
we first conducted a literature review to explore the work that has been done thus far. We started 
by identifying and reviewing the methods currently used to address research questions on travel 
behavior changes caused by AVs, highlighted their strengths and limitations in contributing to the 
literature, and proposed ways to improve upon these methods. We then identified critical research 
questions to be addressed, summarized results from studies that address these questions, and 
categorized the research questions into four categories based on the level of attention they received 
in the literature. 
 

Next, after identifying the main, common limitation of current methods—the lack of the 
right data to address research questions—we proposed a different method that overcomes this 
limitation. We proposed an experiment in which we simulate participants’ lives with a privately 
owned AV by providing them with a personal chauffeur. Just like a privately owned AV, a personal 
chauffeur took over driving duties, allowing subjects to relax during travel or to productively use 
their in-vehicle time. Moreover, subjects were able to send out their chauffeurs to run errands that 
AVs will be able to run in the future such as filling up gas, picking up groceries, or chauffeuring 
friends and family. Subjects were tracked for three to five weeks with the two outer weeks serving 
as control weeks (i.e. status quo conditions with no chauffeur service), and the middle week(s) 
serving as treatment weeks where households received 60 hours of chauffeur service per chauffeur 
week. By comparing the chauffeur weeks to the non-chauffeur weeks, we gained insights on 
potential travel behavior shifts that will occur in an AV future.  
 

We first ran a pilot of the experiment on 13 residents of the San Francisco Bay Area in 
2017, then a larger experiment on 43 households in the Sacramento area in 2019/20. Exploring 
overall changes in travel behavior, the results from both studies were largely consistent. Moreover, 
results were consistent with findings from the literature, albeit the magnitudes fell into the higher 
end of the range of results. Overall, households drove (a lot) more during the chauffeur weeks 
compared to the non-chauffeur weeks. VMT, number of vehicle trips, and average trip length 
increased substantially during the chauffeur weeks. Moreover, households shifted away from 
transit, TNCs, and active modes and relied more on their household vehicles, namely their 
“chauffeur vehicle / AV”. The response to the chauffeur service varied substantially across 
households. Overall, individuals with mobility limitation, namely retirees and individuals with 
disabilities had, by far, the sharpest shifts in travel behavior (e.g. VMT increase, number of vehicle 
and night trips). On the other hand, households with less flexible schedules, namely families with 
kids, had the lowest change in travel behavior. Similarly, households that were not auto dependent 
also observed a substantial shift in travel behavior as they became more auto-oriented. 
 

Because subjects had the option to send out their chauffeur to run errands like they would 
in an AV future, we gathered more insights on the impact of zero-occupancy trips on travel 
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behavior, a topic that has not received enough attention in the literature. During the chauffeur 
weeks, almost all subjects sent out their driver to run errands for them, with ZOV trips making up 
half of the induced VMT. 
 

Finally, we used our data to explore how to integrate AVs into activity-based models, 
including model specifications and parameter estimates. We investigated four components of 
activity-based models: activity pattern, destination choice, mode choice, and time of day. We 
compared the models estimated with data from the chauffeur weeks to those during the non-
chauffeur weeks. We found that there were no statistically significant differences in the parameters 
of the individual activity patterns, destination choice, or time of day models. However, for the 
mode choice model, while the constant for car mode did not change, the value of time dropped by 
60% during the chauffeur weeks. Moreover, as the destination choice model included a logsum 
from the mode choice model, average tour lengths increased during the chauffeur weeks due to the 
drop in VOT, even though the parameters (beyond those in the logsum) of the destination choice 
model did not change. Moreover, while the trip-making propensity of our subjects did not change 
significantly, there was a 25% increase in systemwide trip rates due to the chauffeurs being sent 
on errands. This highlighted the importance of incorporating zero-occupancy vehicles trips into 
simulation studies. Moreover, by observing how subjects used their ZOV trips (i.e., sending out 
chauffeurs to run errands) we were able to propose a way to integrate these trips within a standard 
activity-based model framework. Our findings suggested that ZOV trips can be added either as 
additional ZOV home-based tours or as ZOV sub-tours within the standard activity-based model 
process. 

 
In this dissertation, we made several contributions to the literature. First, we collected 

revealed preference data on potential changes in travel behavior caused by AVs as opposed to the 
more common (stated preference) survey data. To our knowledge, this is the first such exercise 
using this chauffeur approach. Second, we quantified the impact of the chauffeur service on areas 
that have been explored in the literature such as vehicle miles traveled, trip rates, average trip 
length, mode and choice, albeit with our revealed preference setting. Moreover, beyond these 
important metrics, our dataset also allowed us to provide unique insights on central topics that 
have received little to no attention in the literature such as zero-occupancy vehicle trips. Third, we 
proposed a way to model privately owned AVs by incorporating them within a standard activity-
based model framework. We showed that zero-occupancy vehicles trips can be compartmentalized 
and separated from individual person trips and tours, and then the existing structure and parameters 
of an activity based-model do not need to be significantly modified, apart from a reduction in the 
value of time for the auto mode, which we were able to estimate using real world mode choice 
decisions by our study participants. Finally, we proposed a way to incorporate zero-occupancy 
vehicle trips into the activity-based model framework as additional zero-occupancy vehicle home-
based tours and as zero-occupancy vehicle sub-tours. 

6.2 Research limitations: 
Despite the advantages and novel insights it provided, the experiment conducted suffered from 
several limitations, some of which are (currently) unavoidable while others can be mitigated by 
improving the experimental design. Below we summarize these limitations, their impact on the 
results, and ways to overcome them in future experiments. We also include direct quotes from 
subjects’ exit surveys that highlight these limitations. 
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1) Technological limitation:  
The biggest limitation of the experiment is the presence of the chauffeur. Subjects react differently 
when dealing with a machine vs. a human driver for many reasons. First, there is the privacy 
concern, where the presence of the chauffeur limits the ability to have private conversations during 
travel: 
 
• “I wasn’t comfortable talking to other people in the car or on the phone about personal topics, 

which I do often.” 
 

Moreover, with a real autonomous vehicle, unlike with a human driver, subjects do not 
have to worry about the vehicle’s comfort and wellbeing: 
 
• “It was very hard NOT to become personally involved with the chauffeur, especially since 

mine was a young woman. I even canceled one late-night trip because I wanted her early the 
next morning”.  

 
  Similarly, many subjects felt uncomfortable sending out their chauffeur to run errands: 
 
• “I sometimes felt a little bad about asking him [the driver] to go out and run me an errand or 

drive to and from Stockton. I wouldn't worry about the feelings of a machine.” 
 

Another issues with using the chauffeur as a proxy to an AV is that a chauffeur takes away 
one seat from the vehicle, potentially affecting travel decisions on some trips where the number of 
passengers exceeds the number of remaining seats. Moreover, real AVs have the advantage of 
increased safety and efficiency gains through vehicle to vehicle and vehicle to infrastructure 
communication, which is not possible to capture via a chauffeur. Finally, chauffeurs, like other 
humans, get sick and have emergencies that result in them skipping work or having to leave work 
early/unexpectedly. 
 

The drawbacks caused by the technological limitation are (currently) unavoidable, as the 
use of fully autonomous vehicles in unrestricted geographical area is not permitted. Therefore, it 
is not currently possible to overcome limitations associated with the use of a chauffeur to proxy 
an AV until we can run these experiments using real fully autonomous vehicles. 
 
2) Resource limitations: 
The second limitation of this study is the result of limited (financial) resources. Running the 
experiment was very expensive, with an average cost of $2,400 per household per chauffeur week 
for the full experiment, not including the additional cost of salaries for the researchers running the 
experiment, or monetary incentives for the control group we originally planned to recruit.  
 

With a limited budget, the study suffered from a small sample size of 13 households for 
the pilot, and 43 households for the larger experiment. Moreover, to save on costs, the study period 
was limited to one week of chauffeur service for most households, with a nine receiving two 
chauffeur weeks. The relatively short treatment period results in biases caused by the novelty 
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factor. On one hand, it took subjects a day or two to get accustomed to their driver and the chauffeur 
service, and to use it like they would use a real AV:  
 
• “I understand it [the chauffeur service] had to be limited to one week but it takes a couple of 

days to get used to it” 
On the other hand, having the chauffeur for only one or two weeks means that subjects might want 
to take advantage of this unique opportunity and use the service more than they would with a real 
AV: 
 
• “[I] Felt pressured to use the chauffeur to drive more than I would have normally” 
 

Relatedly, and for the same reasons mentioned above, the chauffeur service was limited to 
60-hours per chauffeur week. Even though subjects had the flexibility of personally allocating the 
hours based on their needs, and the ability to adjust hours the same day or a day in advance, having 
to schedule their chauffeur service, and thus their activities schedule  in advance took away from 
the spontaneity that a real AV offers: 
 
• “One of the advantages of a self-driving car is the spontaneity it affords. Scheduling a 

chauffeur, even one who was flexible with the plan, limited that spontaneity.” 
 

Moreover, the hour limit and the fact that chauffeurs had to go home at the end of the day, 
meant that subjects were not able to use the service to make overnight trips which could potentially 
increase as one could sleep in their AV.  
 

Finally, the budget constraints limited the number of chauffeurs to one per household, even 
for households with multiple vehicles. On one hand, this allows us to study how households 
coordinate schedules and jointly schedule activities and trips to be able to share the AV. On the 
other hand, however, it might have forced behavior that is not representative of households’ true 
behavior in an AV future, particularly for households that can afford and will buy multiple AVs in 
the future to avoid having to coordinate schedules.  
 

The limitations described above can be mitigated by expanding the budget of the 
experiment. With more resources, the experiment can be run on a larger, more representative 
sample, and potentially multiple samples in different regions with different lifestyles for a richer 
dataset. Moreover, to overcome the novelty factor, the experiment should be run over several 
weeks/months while providing households with the chauffeur service 24 hours, 7 days a week. 
This ensures that the novelty factor fades with time and households get into their new 
routine/lifestyle of owning an AV. Finally, with a bigger budget, one should recruit both a 
treatment group and a control group (i.e. households that do not receive the service and are only 
tracked under normal life conditions). Having the two groups tracked during the same weeks 
allows us to control for temporal variations that naturally arise from having weeks different due to 
unexpected conditions. 
 
3) Context limitation: 
The first of the context limitations is the fact that households were offered the chauffeur service at 
no extra cost. Even though subjects still paid for out of pocket costs, which impact short-term 
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travel decisions, getting access to the chauffeur service for free could be an encouraging factor to 
overuse the service. 
 

Another potential limitation is that chauffeurs drive the subject’s vehicles rather than 
providing households with another vehicle specifically for the chauffeur service. The advantage 
of that is making the study more representative of a future where subjects own their personal AV 
and have to consider the additional miles being put on the car and the insurance and maintenance 
costs associated with driving one’s car. However, this proved to be a deterring factor for many 
potential subjects who were not comfortable having someone else driving their car or have car 
insurance that does comply with our study’s requirements. 
 

Finally, in this experiment, we only explore the impact of privately-owned AVs on travel 
behavior, when in the future, individuals will have the option of choosing between buying their 
own AV, or relying on shared services, or the combination of both. Even though subjects had the 
option of using currently available shared services during the chauffeur weeks, there was no 
attempt to simulate potential changes in future shared services such as reduced fares due to lower 
operating costs. Overcoming this limitation in future studies could be achieved by providing 
households with personal chauffeurs to simulate personal AVs, as well as subsidizing Uber/Lyft 
rides to see how that influences subjects’ decisions when both alternatives are available in the 
future. It is worthy to note, however, that a major advantage of shared AVs will be the ability to 
dynamically relocate vehicles to efficiently serve the demand, minimize user’s waiting time, and 
provide higher levels of service than today’s shared services. However, this is another 
technological limitation that would not be possible to simulate in future studies before fully 
autonomous vehicles are available. 
 
4) Selection into treatment: 
The last limitation of the study is common to many studies that involve data collection—selection 
into treatment. When recruiting the study sample, a lot of work was put into inviting a 
representative sample. However, we had little control over who decides to respond to our invitation 
and ultimately accept being part of the study. Therefore, the sample mainly included subjects that 
are excited about autonomous vehicles and having access to a chauffeur service. However, as 
highlighted in Chapter 4, the study underrepresented individuals with lower incomes and lower 
educational backgrounds. More effort should be put into future experiments to diversify study 
participants and make sure the sample is representative of the true population. This could 
potentially be done by oversampling from the underrepresented households, as well as providing 
additional incentives that target underrepresented groups such as monetary compensation in 
addition to the chauffeur service or providing the chauffeur service via a rental car to households 
that do have sufficient car insurance. 

6.3 Recommendations for Future Research 
As highlighted above, there is room to improve upon the work done in this dissertation, namely in 
terms of improving the experimental design. Moreover, throughout this dissertation, we 
highlighted several research questions that were beyond our scope and that should be addressed in 
future research. Future extensions to this work are summarized below: 
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1- Run the experiment while overcoming the limitations addressed in the previous section. 
Overall, the study should be run on a larger, representative, and diverse sample with both a 
control and treatment groups. Moreover, the treatment period should be extended to minimize 
the novelty factor, and the chauffeur service should be provided 24/7 to mimic the spontaneity 
of owning an AV. In addition, the experiment should be run in multiple locations to capture 
the heterogeneity in response to the technology as people from different cities, states, and 
countries have different travel behaviors and will respond to autonomous vehicles differently. 

 
2- In chapter 5, we estimated short-term travel demand models to quantify the change in key 

parameters of interest. However, due to our small sample size, we opted to estimate 
parsimonious models with limited heterogeneity. Nevertheless, our descriptive statistics 
indicated that the response to AVs will not be uniform across different demographic groups. 
Therefore, for more accurate simulations, heterogeneity in the response to the technology 
should be accounted for. Once the experiment is expanded, and a larger and more 
representative sample is recruited, more advanced models can be estimated with the intention 
of capturing the heterogeneity that was missing in our analysis. 

 
3- In chapter 5, the analysis performed and models estimated were only at the tour level. However, 

in activity-based models, travel decisions are modeled at the tour level as well as at the level 
of the individual trips that constitute a tour. Consequently, travel decisions at the trip level 
should be modeled to supplement the analysis done in chapter 5. 

 
4- In chapters 5, we proposed a way to integrate AVs, particularly ZOV trips into activity-based 

models. The next step would be to test the proposed method by running simulations while 
explicitly modeling zero-occupancy vehicle trips. This will also require addressing the research 
questions raised in chapter 5 which include: how will ZOV trips change the geographic and 
temporal constraints currently imposed in activity-based models? How should we specify the 
utility equations of ZOV trips/tours in models? Is the sensitivity to travel time and distance 
zero since there are no passengers? 

 
5- Many studies have focused on understanding individuals’ online vs. in person shopping 

behavior (e.g. Dias et al., 2020). These decisions will change and become further complicated 
when an additional alternative is introduced—sending out zero-occupancy AVs to perform the 
shopping activities. This new alternative was available to our study participants, and subjects’ 
daily online and in-person shopping behavior was recorded during the chauffeur and non-
chauffeur weeks. This data can therefore be used to investigate the potential shifts in shopping 
behavior that will arise in an AV world, which can then be used to improve simulation studies. 

6.4 Conclusion: 
The advent of autonomous vehicles will have profound impacts on our lives. AVs will make our 
travel safer, more pleasant, and efficient, fundamentally changing how we make travel decisions. 
Moreover, the increase in mobility and accessibility AVs offer will enhance the quality of life of 
many, particularly mobility impaired individuals. Nevertheless, properly regulating the technology 
will be key to realizing its benefits while avoiding unintended negative externalities. To do so, we 
first need to understand its impacts on the transportation system, and particularly on travel 
behavior. 
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Researchers have increasingly focused on understanding the travel behavior implications 

of AVs. The current literature, however, suffers from two main issues: 1) the impact of AVs on 
certain aspects of travel behavior has not been explored enough, and 2) for research questions that 
are well explored, results vary substantially, making it difficult to derive definitive insights for 
policy purposes. Consequently, there are two key action items moving forward. First, increased 
efforts should be directed towards under-researched topics, such as the impact of AVs on long-
term decisions (e.g. residential/work location choices, car ownership), the impact of zero 
occupancy vehicles trips, and heterogeneity in the response to the technology by different 
demographic groups and individuals with different lifestyles and mobility needs. Incorporating 
these behaviors is key to running more realistic and representative simulations. Second, for well 
explored research topics, we need to tighten the range of results to be able to derive more definitive 
insights. It is important, therefore, for researchers to establish clarity of the assumptions used in 
their studies to enable comparisons and transferability of results, allowing other researchers to 
build on the knowledge gathered and improve upon it.  
 

Policy makers can also play an important role in advancing the research field. As more 
companies test their technology on public roads, and in many cases with human subjects involved, 
policy makers can facilitate partnerships between tech companies and researchers who can use the 
data generated from the ongoing field experiments to improve our understanding of the 
implications of AVs on travel behavior. Finally, we call upon policy makers to be proactive with 
their policies regarding AVs rather than reactive. It is imperative the we start regulating AVs from 
now. Changing people’s behavior through legislation will take time as behavior change is slow, 
especially when faced with resistance from users. 
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